
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

THE META-HELP Browser:
Towards a Prac t i ca l Interface on-l ine
Documentation (1)

Andrew Law
CABINET! 1986

Cognitive Studies Research Papers

Ser ia l No. CSRP. 063

The Universi ty of Sussex
Cognitive Rtudies Programme,
School of Social Sciences,
Falmer, Brighton, BN1 9QN

The META-HELP Browser :
Towards a Practical Interface to on-line Documentation [l]

Andrew Law

Cognitive Studies Programme
University of Sussex

School of Social Sciences
Arts E

Brighton BN1 9QN

1. Introduction
This paper considers the problems and possibilities of providing an interface to

on-line help facilities in a large AI software development system. Such systems and
the interface developed to access on-line help have much in common with other
large information sources such as public view-data systems (e.g. PRESTEL) or on-line
library catalogues.

Some of the properties of an "ideal" interface and information source on which
it would operate are described. This description is based on an analysis of the
nature of large software development systems and users' needs. The construction of
such an interface at present is considered impractical for two reasons: firstly, it
requires techniques and knowledge beyond the state of the art and secondly, the
documentation of many existing environments is incompatible with such an interface
— the aim of the paper is to outline ways in which existing systems can evolve
towards the provision of more adequate help. However, the analysis highlights
users' needs and the problems of providing an ideal interface, and specifies some of
the properties required of less ambitious interfaces.

Menu interfaces are simple to implement and are believed to have several
advantages over other interfaces (e.g., command based interfaces). However, several
hitherto unrecognised problems are involved in implementing menu interfaces in
large, complex information sources. These involve: first, problems of navigation and
speed of travel through the menu network and second, their lack responsiveness to
users* immediate tasks and general levels of experience.

Having discussed the problems of both types of interface, a third form, the
META-HELP browser, is described. This is an unintelligent, menu based browser. It
is considered to have all of the advantages of other menu based interfaces but
overcomes some of their problems. It is seen as a step towards full specification of
the properties of an ideal interface.

Overview of Paper
Section 2 provides a brief description of AI work where the need for

documentation and interfaces to the documentation are identified. In Section 3 there
is a brief description of the the sorts of tasks with which an ideal interface and
information source would need to cope. The interface envisaged is an intelligent
knowledge based system whose construction is presently beyond the state of the art
of Cognitive Science. Having considered some problems with the development of
intelligent interfaces, and the poor state of existing on-line documentation in some
help systems, Section 4 considers the possibilities and problems of providing menu

A. Law META-HELP Browser

interfaces to on-line help. There is a selective review of research on menu
interfaces and a discussion of its implications for the design and implementation of
menu interfaces in this domain. It highlights fundamental problems which have not
hitherto been considered. In Section 5 there is a discussion of the development of the
META-HELP browser interface. This is an implementable, unintelligent menu based
browser for on-line documentation. This interface is considered to embody the
advantages of menu interfaces as well as overcoming some of their problems.

2. AI Environments : Why on-line documentation and why the need for an
interface?

In order to understand the problems involved in producing an interface to on-
line information it is first necessary to briefly describe the nature of AI work and
AI environments.

In AI it is common practice to use the process of exploratory programming and
debugging to solve a problem. As Khabaza (1985a) points out, programming to
further understanding, rather than to produce a useable, efficient product, is in sharp
contrast to conventional programming, where clear design specifications are usually
required before programming begins.

This rather unusual style of programming demands a special form of
environmental support and documentation. There is usually a profusion of facilities
available in the system and (as shown below) each of these has many properties
about which the user may need to know. There is often simply too much
information to be remembered by the user, therefore it needs to be stored in a
manual or on-line. The user's primary demand is fast and easy selection of the
different forms of information about these facilities.

Many of these environments have been developed by industrial or university
research departments (e.g. LOOPS, ART, KEE, POPLOG, etc.). Novel computational
facilities, perhaps not describable in traditional computer science terminology, are
frequently added to the system, necessitating extensible on-line documentation
sources.

POPLOG, a multi-language AI software development system, contains over 1500
on-line documentation files, which vary widely in levels of detail but which are
organised into four general groups:

HELP — explanation of facilities to the average user.

REF —- more detailed account in the style of a technical reference manual.

DOC — long overviews of general facilities such as the editor, primarily
intended for being printed out and used as a manual.

TEACH — tutorial introductions to a wide range of subjects from fundamental
facilities through to tutorials on AI concepts.

See Appendix A for an example of a short HELP file.

The user can access information by a call specifying the group name followed
by the topic name e.g. "help ved" or "ref numbers11. However, the user must know
the name of the file she requires, or search through large indexes, guessing the
relevance of a file to her problem from its title.

XVJJU X A-JL JLÎ JUJT O 1 U W

Existing Problems
Through our informal observations it is clear that many users prefer to find a

human expert than to search for information themselves, even though the
documentation may contain the information they require. The difficulty of accessing
information via current command driven interfaces may be related to Fisher, Lemke
and Scwab's (1985) report that 40% of the functionality of some complex systems is
unrealised and/or unused.

Khabaza (1985a) has illustrated a variety of reasons why users may be
unwilling to use these command based interfaces.

(a) When using command based interfaces the user must know the name of the
facility she is looking for. However, there is often no naming convention in the
description of facilities provided in AI environments - so the user often cannot
guess the name of the facility she wants.

(b) The documentation is often "uneven" that is, some areas are well documented,
others are undocumented. Because of this unevenness, the user cannot know
whether some facility will exist, or whether it will be documented.

(c) Even if the user knows that the facility exists and is documented, she may not
know how it will be classified, and therefore where to look for it.

(d) Indices of help files are often incomplete. This often misleads users into
thinking that existing facilities are not present. It is very difficult to update
the help file system consistently because when some information is added, no
procedure exists for determining which help files and indexes should be updated
to reflect the change. This also means that some help files may not only be
incomplete, but also incorrect because they refer to a previous state of affairs.

(e) Related to (a) and (d), the user may not know the name of the desired
facility. This can lead to a great deal of fruitless searching through indexes.

3. The Structure of the Ideal' Interface
This section discusses the problems involved in the design of an "ideal" interface

and information source by considering the needs of users. The phrase "information
source" (as opposed to on-line documentation) is used here as the interface may need
to draw upon other forms of more abstract machine readable representations than
simply textual. The most optimistic and ambitious view of the interface presented
here is one which could replace the human expert in situations where a user needs
(though may not ask for) some form of help with her activities. In this case the
interface may be expected not only to find files but also to generate new text (or
diagrams or speech etc.).

3-1. The Knowledge Base
The nature of some aspects of the ideal interface are discussed in terms of

what sorts of knowledge might be needed and how it should be organised if it were
to be realised as an intelligent knowledge based system.

This knowledge was informally "elicited" by several methods. First,
introspection; the contributors to this analysis are a mixed group of experts, novices,
tutors and students, and are all major contributors to the existing documentation [2].
Second, as part of an Alvey project, Aaron Sloman has begun an analysis of some
of the kinds of knowledge required by a sophisticated programmer. This analysis
has helped us identify some of the types of help that are required in the various
stages of the software design process. A third source was provided by analysing the

ivJ-C i A-XUCL-JT muwscr

results of a local query answering service. This system allowed users to present
their queries to the system, these were converted to mail messages, logged and
answered several days later. However, it is recognised that this is a biased source of
data as only a limited set of users used this service (those that could operate it and
had problems that could wait a few days to be answered). Finally, the process of
building and critiquing the META-HELP browser highlighted different aspects of
knowledge involved (see Section 5).

The knowledge involved is discussed under two broad headings:

— Domain specific (what an expert should know about the system)

— Extra-domain (what a helpful expert guide should also know)

3.1.1. Domain Specific Knowledge
This concerns knowledge strictly related to the target domain, i.e. what on-line

information sources should contain

Range and Nature of Problem Domains
Because of the nature of AI work, the information source has to cover a wide

range of topics. For example, there needs to be information covering issues that
concern the editor/s, library packages or the possible interactions with the operating
system. Some AI environments contain multiple languages (for instance, in POPLOG
there are three languages; POP-11 (see Barrett, Ramsay & Sloman, 1985), Common
Lisp and PROLOG, with the possibility of another object oriented language in later
developments). Each of these languages need to be individually documented as well
as the possible interactions between them and information common to them all.

The "grammar" or syntax of each of the languages defines a potentially
infinite set of possible procedures which might or might not be in the library.
Therefore it is not possible to have a finite, pre-determined collection of
documentation concerning what information might be requested. The interface
should be able to generate text from some general representations. It may also need
to recognise that, although what the user requests does not exist, there is a facility
which might be transformed, or used as a building block. A human expert can often
suggest things the user should look at to see if any of them would help. However,
this often requires considerable creative insight on the part of both parties, insight
which, as yet, we cannot simulate.

Within each of the domains mentioned above there are variety of problems that
could arise. These relate to various stages in the software design process: In the
design and implementation stage the user may need to know what a procedure does
or how it does it. For example, early in the design process a user may wish to
know what facility could perform some function (e.g., she understands what sort of
thing she needs but does not know the name of it in this system), at a later stage
she may have identified the required procedure but may not fully understand its
precise operations or she may know the name and precise function of some
procedure but she does not know how it is formally specified (e.g., what is the
order of the arguments?). In other stages of the design process a user may have
queries concerning program debugging or program efficiency. It is possible that each
of these forms of queries will require different forms of representation of the
information in question.

So, there is a wide domain of knowledge that needs to be present in the
information source. The knowledge also needs to be structured in a rich enough

A. Law META-HELP Browser

manner so as to be used by the interface, and recognised by the user, as a basis of
an answer for a variety of different types of problems arising at different stages of
the design process.

Types of Questions
Within each domain and type of problem the questions can be of several

general types e.g.;

General : 'Why doesn't my program work', 'What's a good way of solving this
type of problem'

Specific : 'Is there a facility that does X\ 'Where can I find out about Y'

Also, a user wanting information about a particular sort of procedure may
present the question in terms of a high level formal specification of the desired
behaviour, an implementation-dependent specification, or an actual example of the
behaviour, e.g.;

'Is there a procedure which when given an association table and a key will
return the associated value?'

'Is there a procedure which when given a list and an item will return the
element of the list immediately after X?'

'Is there a procedure which when given AGE and the list

[NAME TOM SEX MALE AGE 33 JOB BRICKLAYER SPOUSE MARY]

will produce the result 33?'
There are severe difficulties in representing information so that the interface

can recognise the relevance of a single facility to each of the questions (in this case
association tables). Information could be organised and presented according to the
constructs and facilities provided (the system's viewpoint), or according to the
possible applications to which they might be put (the user's viewpoint). Often the
latter would be more helpful for the user, but anticipating the set of all possible
requests in these terms would be horrendously difficult, if not impossible,
considering the infinite generative power of the languages involved.

Forms of Presentation
Both the questions and answers could be given in various different (though not

necessarily mutually exclusive) forms e.g.:

— pointer to file/s
— graphical
— textual
— a program, program fragment or program schema

Given that different presentations may be appropriate under different
circumstances, two additional major problems arise: First, identifying when a
particular form of presentation is appropriate. This decision process is likely to be
guided by extra-domain, pedagogical knowledge. The second problem concerns the

A. Law META-HELP Browser

difficulty of translating between different forms of presentations (either from the
questions form of presentation to the information representation, or from the
information representation into the answers form of presentation). Unique problems
arise in this domain even with natural language processing. For instance, there are
many problems in coping with multiple syntactic ambiguities and with enriching the
grammar to allow sentences in which program code is intermixed with English
(e.g., see Allport, 1984).

3.L2, Extra-Domain Knowledge (what it is to be a ^helpful' expert)

From the discussion above, it is clear that a richly structured knowledge base
concerning information about the software facilities will not be enough to provide a
helpful interface. Other sources of knowledge will be required, some of these are
discussed below.

Negotiation About the Nature of the Problem

From our informal observations of novices and experts it seems unlikely that
the form of interaction between the interface and the user can, or should, be a
uniform unidirectional process, e.g.:

user's question — >
interface's understanding — >

interface's answer — >
user's understanding

In many cases of human-human interaction it is clear that users do not
initially ask the right question. In some cases users may not be clear about what
the problem is (e.g., a debugging problem), they may know what the problem is but
they may ask for the wrong sort of help, or they may mis-identify the problem
and hence ask the wrong question, for example:

7 have a problem but dorCt know what it is, or what question to ask*

7 have a problem, I know what it is but I*m not dear about how to describe it1

7 have problem X and need answer concerning Y'

(when in fact they have problem Z and need answer concerning P, or they
have problem X and need answer concerning P)

To solve such problems, as well as having detailed domain knowledge, it is also
necessary for the expert and user to negotiate about what each of them thinks is
the problem and why. That is, the expert and user need to co-operate in the
diagnosis of the 'real' problem and the reason for it arising. In the case of the third
example the expert not only needs to negotiate what answer is required, he needs to
be able to identify that negotiation is required in the first place. This period of
negotiation is crucial in the following processes that human experts engage in:

(1) Identifying the problem (helping the user to find the problem and the question).
(2) Clarifying the problem originally identified by the user, explaining it and

helping the user to generate a more appropriate question.

JLM. \M TT 9 V X

(3) Identifying the real problem and appropriate question, understanding how the
user made the mistake of identifying the wrong problem and hence the wrong
question, and explaining this to her.

It is unlikely that information will be required only when the user asks for
it. A really intelligent interface would need to be able to "look over the user's
shoulder*. Part of the knowledge involved in this process would be the system's
sensitivity to the context in which a request is made. For example, a human adviser
might mention the efficiency issues only after noticing that the user is writing code
which could produce a lot of garbage collections. More generally, like any intelligent
interface, it would need to be able to build a "deep" user model — a task
currently beyond the state of the art.

Sensitivity to the User's Needs
The various ways the questions illustrated above can be asked should reflect

aspects of the way it will be answered. For example, we should not provide an
answer paralleling the level of abstraction of the first question illustrated above, to
a user asking the last question. Therefore, if the interface is to be able to cope with
a variety of users with differing levels of expertise, it is likely that some tutorial
or explanatory facilities will need to be provided — as well as some decision
procedures for recognising when they need to be utilised.

The work of Kidd (1985) on the analysis of "what users ask11 and its relation
to the design of more appropriate expert system architectures indicates that the
design of expert systems that respond sensitively to users is a non-trivial problem.

3.2. Problems with Incomplete Implementations
The are several problems involved in producing interfaces which are semi-

implementations of this ideal interface. If they have limited power they may be
inconvenient to use — though of course it is possible that they would be used more
effectively than present interfaces. Users may find that simplistic models of
themselves are restricting, (say models based on broad classes of types of user, or
simplistic rules such as if user has seen document Y, X times, then they understand
the concepts introduced in document Y and should not be referred to it again"). This
may be especially annoying to users if the system is insensitive to their individual
rate of development or progress. These restrictions may be greater than those
provided by "inflexible", unintelligent interfaces.

However, these systems may not simply be inconvenient to use, such
implementations may be harmful, particularly if they are the only means or the
best means of accessing information, or where they have become the means upon
which users come to rely. For example, a system which has no information about
the context in which a user is working may be "destructively" helpful. A question
concerning how to reverse the elements of a list may be inappropriate if the
procedure which produced the list in the first place could have have been written to
construct the list in the reverse order. If we implement a system which does not
take into consideration the context of the questions it is asked, we must be certain
that the question is clearly understood by the user and that the user has identified
the appropriate question. These contraints will not always be fulfilled.

If we rely on such a system as the only means of help, (i.e. only when the
user asks a question is more information given), then a user may "make do", and
not consider developing her understanding any further. Hence an intelligent help
guide which just answered question presented to it could lead to the development of

A. Law META-HELP Browser

bad programming styles, limited conceptions or even misconceptions about the
system. This is not to suggest that unintelligent interfaces would not produce these
problems, rather that we should not assume that the more intelligent an interface is
the more flexible and useful it is.

33. Prognosis
It is clear that the state of the art in Cognitive Science does not provide us

with the knowledge or techniques to produce the ideal interface. However, there is
research that is relevant to the solution of some of the problems involved in
developing such an interface. This research includes the investigation of expert
system architectures that will support multiple representations and inference
techniques. The work on blackboard architectures is clearly relevant here. The
research into expert system architectures that support mixed-initiative interactions
will also contribute to providing systems that can support more complex forms of
user-system interaction. It is possible that we will have to develop "deep"
representations of the domain in question and the user. Therefore the research into
deep modelling techniques will also be relevant. However, it appears that the major
problem will not be in the development of adequate techniques and formalisms, but
in the identification and organisation of the knowledge involved. The HCI research on
user's understanding of programming languages will be relevant to some aspects of
this problem.

It is also clear that the on-line documentation of many exisiting programming
systems would be incompatible with the use of such an interface. The
documentation is often not complete or richly enough structured.

However, it is also necessary to acknowledge that there is a demand for more
adequate, implementable interfaces to existing on-line documentation. In the next
section there is a discussion of the use of menu based interfaces to on-line
documentation.

4. Menus — The Simple Answer?
This section presents a selective review of some research on menu interfaces

and discusses its implications for design and implementation. While it is shown that
menus have many advantages over command based interfaces, this section also
highlights some fundamental problems with the use of menu interfaces which have
not hitherto been considered.

4.1. Menus and their Advantages
Menus have been put to two main uses in the interface:

— "View Data" systems (e.g. PRESTEL)
— Menu driven command language interfaces

(e.g. ZOG, see Robertson et al (1981)

Both forms of interface offer the user a limited set of options. In the first case
the user chooses between different domains or items of information she wishes to
look at. In the second case the user selects a command she wishes to invoke (the
distinction is not that clear cut; selecting some piece of information indirectly
involves issuing a command to invoke that information).

Some of the advantages of menus are (Norman, 1983) that they are fairly
transparent in their use and require little, if any, training to introduce the user to
their basic operations.

In presenting a list of appropriate options they capitalize on the advantage of
recognition as opposed to command languages which rely heavily on recall, which
can be a problem even for experts in large complex systems. Well structured menus
should also encourage the development of a spatial map or model.

The user learns where to expect certain types of information; eg. references to
text files giving examples of a particular domain may always be found at the end
of the menu concerned, or introductory references at the beginning. If there are no
references in these places then the user can conclude that further searching is
pointless. This enables the user to know what is not available as well as what is
and begins to overcome the problem of users not being able to know what is and
what is not documented.

In hierarchical menus the user can begin her search with broad category
descriptions leading to menus with more precise definitions. This means that she can
begin to search for information about some domain without knowing how it is
named within the system, provided that the broad category names are well chosen
for the task. This begins to overcome some of the problems associated with users
not knowing the names of functions because of the lack of naming conventions.

Therefore from a technical point of view menus seem to offer a feasible,
solution to the problem of providing an interface to a complex domain — they are
relatively easy to implement. They also seem to have many advantages over
command based systems, and overcome many of the problems facing the designer of
an interface to on-line documentation in existing software development systems. The
next section examines some of the research on menus for implications for menu
design and in order to clarify the question of their utility.

4.2. Research on Menu Interfaces
Much of the empirical research on menus has produced results which are

difficult to assess in terms of utility when considering design and implementation
issues. Where there are design implications, they have addressed "low-level11 factors
(size of menu frame, effects of different select character types, number of items in a
menu frame, etc.). More importantly, the problems of applying menus in specific
situations (in particular in large complex view data systems with many different
users searching for information for different purposes) have not been fully
considered. It is suggested that these offer serious problems for traditional menu
interfaces.

Although menus appear to have useful qualities there seem to have been very
few empirical comparisons of menus with other interfaces. An exception to this is a
the study by Whiteside et. al. (1985). They compared seven different interface
designs (representing command, menu and iconic styles). The menu system in this
study produced the lowest performance and subjective reaction scores for all users.
That is, compared to the other interface styles, menus were liked the least and
produced the worst performance. However, the authors strongest conclusion was that
interface style was not the important factor in interface design (e.g the difference in
performance is not a question of the disadvantages of menu interfaces compared to
command systems per se), instead they suggest that 'the care with which an
interface is crafted is more important than the style of interface chosen* (p. 190).
However, they provide no indication as to what "good crafting** is.

Rather than compare menu interfaces to other forms of interfaces, it is possible
instead to identify what are likely to be some problems with menus per se. A
major problem with menus is that, even in moderate sized systems, the trees to be
navigated can be very large. This can lead users to forgetting where they are,

A. Law META-HELP Browser 10

getting lost, make mistaken choices etc. Several researchers have attempted to define
features which aid performance in large trees.

Gray (1986) assessed whether menu titles had any significant effect on
performance. He concluded that in small systems they had negligible effect, but with
larger (deeper) systems, while there was no increase in speed of performance, there
was an increased accuracy of performance. However, the reasons for this increased
accuracy are not reported and it is not possible to assess them from the data
provided.

Perlman (1985) assessed whether select key types (the items which have to be
typed in or otherwise selected to invoke the command or other items) had any
effects on performance. He found that select key/item compatibility enhanced time
performance, and that single letter select keys matched with the first letter of the
item to be chosen were the optimal type. He also found that sorted menu items
(e.g. alphabetical and numerical) decreased performance time, suggesting that users
may use simple searching strategies. However, in the design of many menu systems
such conclusions will not be that helpful. In some systems there would be many
items beginning with the same characters meaning that the intitial character could
not be used as a select character. In other systems it is often not the case that
there can be a simple, predictable, one word description of the item to be selected.
As mentioned, in AI software development systems there are few clear naming
conventions. This means that users cannot predict the function of a command from
its name. Hence a user cannot predict an item's initial letter, and so they cannot
predict where it is likely to be located in the menu frame. However, this does not
mean menus should not be used. Users may find it much easier to be presented
with a list from which to choose since an option's neighbours help clarify its
meaning.

These results, while potentially conclusive for some systems, can only inform
designers about low-level details of implementation. Other work has more directly
assessed the problem of the complexity of menu networks. In particular, it has
concentrated on what is known as the depth/breadth trade-off.

Miller (1981) compared the effects of four different menu structures on
performance;

(a). 1 level 64 choices at this level
(b). 2 levels 8 choices at each level
(c). 3 levels 4 choices at each level
(d). 6 levels 2 choices at each level

Miller found that configuration (b) produced the fastest performance and the
fewest errors. He concluded that the number of levels in a hierarchical system
should be minimised, but not at the expense of display crowding (as with (a).).
However, Snowberry, Parkinson, and Sisson (1983) repeated the experiment and
showed that the first configuration could produce the fastest performance and the
least errors if the items in the one level menu were categorised. This is related to
the point made above, that the meaning of an option can be disambiguated by other
options available. If the range of options is very large then the process of
disambiguation is intractable. However, if the options are well organised, then each
option can be disambiguated by its local neighbours. Some problems of categorisation
have already been discussed in relation to Perlman's work, where it was suggested
that it is often not always possible to provide a simple alphabetical or numerical
sorting of the items in a menu frame. However, there are other problems concerning

JUT A. V TW t

what design criteria should be used for the categorisation and description of menu
items. These are discussed in Section 4.3.

43. Some Problems With the Research
This section outlines additional sorts of problems that arise out of the use of

such systems, and questions whether they can be dealt by using traditional menu
interfaces.

Large Domains
Most of the studies mentioned above have involved "toy" menu systems with at

the most 64 items. Many large software development systems would require menu
interfaces (whether command or view-data) much larger than this. As mentioned
POPLOG has over 1500 cross referenced documentation files. If, for example, menus
had eight references in each frame then this produces approximately 200 nodes.
Although there is some evidence from Tullis, (1985) that the "breadth is better than
depth" slogan holds for large systems too it is not clear that the problems which
arise can be ameliorated simply by juggling with the structural parameters of the
menu system.

Complex Structures
All the studies mentioned above have dealt with simple hierarchical, tree

structured menu systems. In many cases the structure cannot be so simple. For
instance many of the POPLOG files are heavily cross referenced, producing a tangled
network rather than a hierarchy. This is partly because the same information can be
seen as having different hierarchical structures imposed upon it, depending on the
needs of the user. Each file may refer to documentation about some function that
can be used in a variety of ways. The menu structure will need to reflect this rich
structuring. It is not enough to provide only one route to the item, but several —
i.e. a heterarchy is needed rather than one hierarchy. It is also likely that the
network will be "multi-dimensional"; not only will users need to access the same
information via different routes, but they may need different types of descriptions of
the same function. For example, a user may want to have a description of the
purpose of some function, she may know the name and function of some facility
but only need its syntactic specification, or the user may be a novice and would
require more of an introduction to the function than an would an expert. Several
related problems arise from the characteristics of large complex information sources.

Navigation
One major problem involves supporting the user in navigating complex

networks. Users may need navigational information, firstly because of size; it will be
easier to get lost in larger systems. The second reason is that in such large
systems, with a diversity of users, it may not be simply that menus offer the
advantage of recognition over recall, but also that users may be entering into
entirely novel domains. They may want to browse through the information,
exploring from a node to look for the relevant information and conveniently
returning to that node if not satisfied. However, unlike the ideal interface, with
menu based interfaces it would often be necessary for users to examine information
relating to their specific interests before they found exactly what they wanted —
thus it could (inadvertently) act as a pedagogical device. They may want a general
picture of the sorts of domains covered beneath the current level (and in networks,
above and parallel to it). A user may decide that she has made a wrong choice and
wants to quickly review the other choices at that point, without necessarily having

to follow the paths previously selected to return to it. Then again, after browsing
through alternative options, she may want to return to a point, reached earlier, via
the quickest route, or even in one selection step.

Cognitive Mismatch

Many of the studies mentioned above report that when given a goal to find a
certain item, users often make errors in selection. As shown above, altering the
structural parameters of the menus can have some effect on performance. It has
been shown that the amount of information in the menu frame and the number of
opportunities to make "slips" has an effect on performance (see Miller, 1981 and
Snowberry et. al, 1983). This balance, between amount of information and the
opportunities to make mistakes, defines the parameters of the depth/breadth trade-off.
Generally this work has stressed the importance for performance of the quantity of
the information. Snowberry et al (1983) pointed to the fact that simple quantitative
parameters are not the only factors to affect performance and that "categorisation"
within menu frames can aid performance. This increase in accuracy of performance
is probably caused by the process of mutual disambiguation. While it has been
suggested that categorisation improves performance, problems of categorisation,
organisation and description have not received much attention.

However, Young and Hull (1982) suggested that a crucial feature of many
existing menu systems is "cognitive compatibility" or 'the extent to which the system
repects the users prior knowledge, habits and cognitive limitations ... in particular,
certain difficulties are to be explained by a "cognitive mismatch" between the
designers decisions embodied in the frame and the expectations of the user' (Young
and Hull 1982, p. 571-2).

Most of the studies mentioned above involved simple, well defined tasks (e.g.
Whiteside et. al., 1985). With such small, simple domains and with a restricted set
of clearly defined possible goals, it is unlikely that the subject would not
understand the domain. However, in larger, more complex domains, and with users
who have many different purposes and levels of expertise (such as PRESTEL or
POPLOG on-line documentation), the problems of "cognitive conflict" become
increasingly important. Below, through illustrations from the POPLOG environment
and by elaborating on Young and Hull's work, two major forms of conflict are
discussed; conflicts between purposes and conflicts between levels of experience.

Users with Different Purposes

A general problem in many large complex menu systems is the difficulty of
organising and presenting information (or a type or set of commands) which might
be used for many different purposes. Consider some of the possible descriptions of a
spade; a spade, a shovel, a digging implement, a chopping implement, a carrying
implement with limited capacity, a prop, a wooden handled implement with a sharp,
broad, metal edge. Each description is valid (though not limited to a spade) and
only some descriptions might be relevant to deciding on its appropriateness for
different tasks. That is, it may not be enough to call a spade a spade, it will
depend on what task one has in mind and what the user's "background" knowledge
is. For instance, the distinction between a spade and a shovel may not be important
for some users. However, some may need a tool embodying the unique properties of
a shovel (curled edges, large capacity) and, because they have a specific goal and a
refined notion of the differences between spades and shovels, they may not have
expected to have found its description associated with spade. Alternatively a user
may not recognise that there is a difference between a spade and a shovel, or she
may not know the name "shovel", though she does know the name "spade" — if the

A. Law META-HELP Browser 13

description of the shovel is indexed under that of the spade she may never find it.
As shown in Section 3, like shovels, software constructs and facilities can be

put to many uses — indeed probably more. A major problem is how to organise
and present information in a manner so that different users with different tasks will
recognise its relevance to their problem. Presentation (the descriptions) and
organisation (the overall structure of information) are clearly related in that the
form of description (its level of generality etc.) will determine the menu structure
or organisation.

As mentioned in Section 3, in the provision of on-line information, a distinction
could be made between organising information according to the constructs and
facilities provided (system oriented) or according to the possible applications to
which they might be put (task oriented). For example a POPLOG user may simply
want information in order to find out about editing a file. In the (caricatured)
system orientation this might be found under the description 'copying data from the
terminal device to the file device*. In the task orientation this might be found under
the description 'editing a file in VED\ The system vs task distinction should not be
confused with structural vs functional descriptions: e.g. 'a wooden handled object
with a sharp, broad, metal edge' vs 'a carrying implement with a limited capacity'.
Some software constructs and facilities can have system descriptions which are either
structural and/or functional.

There are problems with both sorts of approaches. Even in the relatively simple
case of organising POPLOG on-line documentation (compared, say, to the librarian's
problem of wanting to find an organisation for all human knowledge) we are not
sure what a system oriented view would be, or even whether there is a single
system view. For example, at the level of a particular programming language there
is one system view. But from the viewpoint of how that language has been
implemented — i.e. what the underlying representation is — there is another view.
The latter view may be important for users concerned with efficiency or obscure
errors. Also as mentioned, like human knowledge, software constructs are being
continuously developed and so occasionally change their relationship to each other —
hence we may have to accomodate a system view that changes over time. Another
problem with the system view is whether users would be successfully and
conveniently able to use such a description of information to know whether it is
relevant to their problem (consider the example given above of editing a file).

However, in developing a task-oriented organisation, anticipating the ways a
facility may be used is often very difficult, and in some cases a facility will be
useable in many ways (infinitely many in the case of programming languages).
Clearly then in many cases there would be a problem with the amount of space
taken up by the possible set of all task oriented descriptions (assuming we could
specify them all). Consequently, this would cause problems for navigation and ease
of browsing.

Learnability, Ease of Use and Levels of Experience
Related to the problem of users having different purposes is their level of

experience. It may be that in making a interface easy to learn for beginners (such as
a menu interface) it is made awkward for experts. It is likely that there will be
many different users with a range of experience with the system, and therefore
unlikely that any one interface would satisfy all users all the time. Whiteside et.
al. (1985) suggested there is no trade off between ease of use and learnability with
menus. Interfaces (including menus) that novices found easy to learn were also
found to be easy to use by experts and novices. However, the tasks presented to the

LAW ivusiA-HUJLT Browser

users involved "simple operations on text files, such as displaying, merging, and
sending to another user" (Whiteside et. al., 1985 p. 186). Menu systems are often
designed to shield the user from the intricacies of the intermediate steps of a
command (hence making them easier to use and learn). This may also prevent users
from understanding and using the intermediate steps that may, in some systems, for
some users be important in providing the extra "generative power" those intermediate
steps could produce in different combinations. Providing the novice "tourist" of the
interface with a phrase book may help her on initial "day trips" into the system but
may not be the best way of helping her learn the grammar of the "language" so
that she can generate phrases of her own. That is, it may prevent novices from
becoming experts. It may also prevent expert users from utilising the commands in a
more flexible manner.

Information can be presented to users in a variety of ways and at different
levels of complexity. There may be a need to distinguish between information
produced specifically to help users learn about some new concepts or facilities and
information provided to generally help users use these concepts or facilities (as with
the TEACH/HELP distinction in POPLOG). Systems which only provide one level of
information may be easily learnt and, for some tasks, found easy to use by all
users, but experts may require significantly different types of information than
novices and may not find them adequate for all purposes. Adelson, (1984) has found
that experts and novices have different program recall abilities; experts tend to be
able to recall the general or abstract features of the program while novices tend to
remember far more fragmented and concrete features of the program. So, for
instance, experts may not find it so difficult (indeed they may prefer) to infer the
relevance of systems oriented decriptions to their task, whereas novices may find this
process much harder. It seems therefore that the problem of "learnability" vs "ease of
use" will be serious for simple menu based systems where the range of complexity
of activities is extensive.

5. META-HELP Browsers and Support Mechanisms
This section describes the development of the META-HELP interface to the

POPLOG on-line documentation. This is a menu based interface embodying their
advantages over command based versions but overcoming some of their problems.

Our aim was to provide a conceptual structure representing the contents of the
documentation. The intention was that users should use a menu based version of
this in order to identify and invoke the information they required. This was done in
the context of the new These give meta-level information about the structure and
contents of the help files in order to help users browse "over the top of the
documentation" — dropping down into it when they identify the material they
require. The META-Help files and the access mechanism are located in the same
interface as is used for most other activities, namely the POPLOG editor — VED.
This means that users can switch freely between various modes or tasks such as
sending mail, reading HELP file, running a program, copying sections of a
documentation file into a private file etc.

Each META-HELP (M-H) file has a title, parent/s (a reference to another M-H
file) and children (a reference to either other M-H files or documentation files). Each
reference has an associated description of what information it is concerned with.
This mechanism will support a heterarchical organisation which can be viewed as a
collection of interlocking tree-structured hierarchies. However, we are not limited to
producing tree structures as each reference can be to any node at any position in
the network. References can also be to sections within documentation files. This
means that when these references are invoked the user is not forced to work

MJKTA-HJEUf Browser

through large amounts of information irrelevant to their task.

As a menu based interface it has all their advantages, that is, it capitalises on
the user's more effective cognitive processes (recognition as opposed to recall).
Therefore there is no need for a user to know the name of a file in order to begin
a search for it. There is also no need for a user to type the name of a file in order
to invoke it. Two simple key sequences are provided — one to place the cursor on
the next cross reference in the M-H file and another to invoke the reference under
the cursor. The categorisation of files within these M-H files facilitates the process
of mutual disambiguation and the simple procedures required to use it mean it is
easy to use and easy to learn to use. Finally, it is implementable and compared to
other more intelligent systems it is computationally inexpensive. This mechanism will
also, in time, be able to be made more intelligent and more responsive to users*
needs. Some of the ways it can and has been extended are discussed below. [3]

5.1. Additional Mechanisms

5.I.I. Navigational Information and Speed of Travel

There are at least two (not necessarily mutually exclusive) types of
navigational information that users may need. This may require the design of
additional mechanisms to be used in conjunction with the menu based system.

Static map : a picture of the system

This might simply be a "map" of the network displayed graphically or in some
other form. It would represent all the nodes and their relative position to each
other. However, additional information could be provided about the nature of the
information; M-H or leaf node (the item which was searched for via the M-Hs),
introductory information, tutorials, examples etc.

Dynamic map : the user's path history

This would be a map of the path that the user has taken through the network.
This could be provided separately (e.g. an unstructured list of items viewed), or it
could be used in relation to the static map of the network. A simple form of this
dynamic map could be developed so that if at the beginning of a session a user
"jumps" to a certain node in the tree, only the map below this point is invoked
(this would only be appropriate in hierarchies, rather than networks). A more
elaborate map would not only remind users what node they had visited, but where
it was in relation to other nodes, showing them how to get back to that point.
This contextual information could be further elaborated to highlight, for instance,
what was not selected at each particular node — i.e. what remains to be viewed,
as well as what has already been viewed). This would obviously be useful in
view-data systems, but also in menu based command interfaces where a set of
commands frequently used could be highlighted (through frequency of use) on the
map, and hence more easily located and invoked, though there would be no
additional constraints on finding new information. A prototype dynamic map has
now been built for POPLOG.

There are two main constraints on providing this information. First, there are
technical constraints: In very large systems it is likely that both forms of maps
would be very large and complex. The screen size of terminals and the availability
of high resolution graphics would probably be crucial factors. The colours, textures
and shapes provided by high resolution graphics would probably be needed to
present information about the items in the map, such as the status of the nodes:

A. Law META-HELP Browser 16

whether the are active or inactive (M-Hs or leaf nodes viewed or unviewed), or the
contents or category of the nodes: M-H or leaf, tutorial, introduction, examples etc.

Second, there are user constraints: Even if the technical constraints were
overcome, it is unlikely that all this information should always be on the screen.
Much of the information will be redundant at times and may produce unnecessary
cost in terms of computational power or screen space. It may also be too much
information for the user to attend to at once, so that she may enter into a situation
where she needs a "meta" browser in order to sucessfully use the navigational aid.
Another user constraint derives not from the user's general attentive abilities but
from her range of experience.

In order to limit the information available on the screen and to aid selective
attention, certain criteria could be given for the presentation of information. Rather
like traditional geographical maps, the presentation of information could be given in
different "scales", where "scale" simply constrains the amount of information
provided. The "scale" could be adapted to the user's needs. A simple way of
providing "scale" related to the user's immediate needs would be that, for recently
invoked or frequently used M-Hs or leaves, more information would be provided
about them and their relation to surrounding nodes than others. More advanced
maps might utilize "fisheye" techniques (e.g., see Furnas, 1986).

The map is not be just navigational tool but also a means of travel within the
network. The user can choose between selecting an item from the current M-H (and
hence placing it in the dynamic map) or choosing an item from the M-H map and
treating this as an item to be selected. This makes travelling around the networks
much faster. The user need not return to a point via the intermediate nodes
indicated on the map, she need only select the node at which she wishes to arrive.

5.1.2. Keyword Searches Linked with M-H
Because of the number of documentation files, their diverse subject matter and

the lack of rigour in their structure, it is unlikely that a keyword mechanism for
directly accessing documentation files could be built or would be useful. The number
of keywords would be too many for the designers to adequately collate and for the
users to remember. However, a more limited subset of keywords could be produced
for the M-H system. When a user invokes M-H she may include several keywords
with the command. These keywords could then be used by the system to infer
which are the most relevant area/s, these could be highlighted on the map. She
could then chose to "jump" to one of these nodes directly, once she is at this point
she can perform a more refined search herself. This will allow users to travel much
faster within the network. It may also help in overcoming some of the problems of
users not recognising the relevance of some menu descriptions to their tasks in that
much of the work in inferring the relevance of material would be done by the
system's comparisons of keywords, leaving the user to make a more refined search at
the end only.

In the future a synonym search mechanism could be usefully integrated with
information about the user to make the search more responsive to her past
experience or immediate goals. For instance in the discussion about the description of
spades it was shown that certain "users" (e.g. a "novice" digger) may not realise that
there is a distinction between spades and shovels. If "spade" is given as a keyword
then the system might return information relevant to both the use of spades and
shovels (perhaps including tutorial material on the distinction between them).
However, if it is an expert user (in this domain) then only information relevant to
spades should be given. Far more intelligent systems might also examine the task

A. Law META-HELP Browser 17

that the user is trying to perform and point out that a shovel would be far more
appropriate.

5.13- The M-H Database

Whenever a M-H file is installed a database is updated. This contains a
description of the M-H files name, its parent/s and children. Using this database a
user can (with a single keystroke) "jump up" from a particular documentation file to
the appropriate place in the M-H system (i.e. the place where it is referenced). If
there is more than one reference then a menu of options is presented. This allows a
user to go from the specific (a known file) to the general (a M-H file giving
references to related subjects they may wish to know about).

This database also allows us to keep the documentation more up to date.
Whenever documentation files are altered the author can be informed about its
reference in the M-H system and question about how the M-H description needs to
be changed. With an extended keyword mechanism, when new files are added
(perhaps tagged with some keywords) it may be possible to advise the author where
in the M-H system the new file should be referenced. This advice would be based
on a comparison of the keywords in the existing M-H structure and the keywords
in the new file.

5.1.4. Responsiveness to Users' Needs

While menus have many advantages over command based systems a major
problem with them (and many command based systems — but not the "ideal
interface") is that they are not dynamically responsive to users* individual needs or
levels of experience (though neither are most command based systems). However, it
is hoped that the M-H system will be extended to be more responsive.

Use of Maps

A simple version of the adaption of M-H structure and content to the user's
overall experience would be simply to provide alternative M-H systems; e.g. an
"expert's" M-H system and a "novice's" M-H system. However, as mentioned earlier,
users may find simple blanket classifications of expertise overly restrictive. As
Draper (1985) has shown, such notions of expertise are unlikely to be useful. In an
analysis of expertise in UNIX, one of his findings was that those users commonly
classed as experts do not have expertise that encompasses all domains. Instead,
"experts" tend to be fluent in certain areas, and relatively inexperienced in other
domains. However, the structure of the M-H system allows us, in principle, to
design a simple system that represented the user's experience in a more flexible
manner. A record could be kept of what and how many times a user had visited
different areas of the M-H system. This record could then be used to change the
structure or the content of the M-H system in accord with their experience. This
begins to overcome the problems of "learnability vs ease of use".

More intelligent systems would be able to identify patterns in the paths taken
by users (during one session or over a period of sessions) and use this either to not
only constrain what is on the screen but also to suggest new routes or items not
identified or known by the user. For instance, if a user is searching an area of the
M-Hs which has not been viewed before, introductory texts could be included.
Alternatively, if she has viewed this area many times it is likely that she will not
need introductory texts, and hence they could be excluded — though some
indication of the exclusion should probably be given so that the user could invoke
them if necessary.

A. Law META-HELP Browser 18

6. Conclusion

Although menu interfaces are now in common use, and there seem to be many
advantages in their use, empirical research has not provided am adequate clarification
of their benefits and has had little to contribute in terms of design implications. In
certain systems many different kinds of problem arise with menu use. These systems
are characterised by large amounts and complexity of information, diversity of users
and of possible uses of the information. Many of the problems that arise concern
navigation through the menu structure and the lack of responsiveness to users'
needs.

The META-HELP browser is a menu based interface to on-line documentation
in a large software development system. As it is menu based it has many
advantages over the existing command based interface. However, the additional
support mechanisms overcome some of the disadvantages of menu based systems
applied in this domain.

Notes

[l] Much of this paper is the result of the research involved in the Alvey project
"Towards an Intelligent Help-File Finder" carried out at the Cognitive Studies
Programme at Sussex University. Aaron Sloman, Tom Khabaza, Andrew Law and
David Allport all participated in this research. Some of this paper, namely parts of
Section 3.1.1. and Section 5. have been taken from Sloman, Allport, Khabaza & Law
(1986), Sloman (1985) and Sloman (1986), and some examples have been taken
from Khabaza (1985b). However, the mistakes are entirely the author's
responsibility.

[2] Many of those involved in the development of POPLOG and in teaching and
research in the Cognitive Studies Programme at Sussex contributed to this analysis.
This group includes Aaron Sloman, Tom Khabaza, Jon Cunningham, Claire O'Malley,
Josie Taylor, Steve Draper and David Allport.

[3] See Appendix B and C for examples of M-H files.

References

Adelson, B., (1984). When novices surpass experts: the difficulty of a task may
increase with expertise. / . Exp. Psychology, Learning, Memory and Cognition,
Vol 10, No.5, 483-495.

Allport, D., (1984). A parser for helpfile English. MSc thesis, University of Sussex,
1984.

Barrett, R, Ramsay, A. & Sloman, A. (1985). POP-11: A Practical Language For AI.
Ellis Horwood and Wiley: Chichester.

Draper. S. W. (1985). The nature of expertise in UNIX. In B. Shackel, (Ed.) Human
Computer Interaction — Interact '84. 465-471. Amsterdam: North Holland.

Fisher, G., Lemke, A. & Scwab, T. (1985). Knowledge based help systems. In L.
Borman and B. Curtis (Eds.) Human Factors in Computing Systems: CHI '85

A. Law META-HELP Browser 19

Conference Proceedings. ACM: New York.

Furnas, G. W. (1986). Generalised fisheye views. In M. Mantei & P. Oberton, (Eds.)
Human Factors in Computing Systems: CHI '86 Conference Proceedings. ACM:
New York.

Gray. J. (1986). The role of menu titles as a navigational aid in hierarchical
menus. In SIGCHI Bulletin, Vol. 17 (3). 33-40.

Hardy, S., (1984). A new software environment for list-processing and logic
programming. In T. O'Shea and M. Eisenstadt, (Eds.) Artificial
Intelligence: Tools Techniques Applications. Harper and Row: London.

Khabaza. T., (1985a). Towards an intelligent help file finder. To appear in R.
Hawley, (Ed.) Artificial Intelligence Programming Environments. Ellis-Horwood:
Chichester.

Khabaza, T., (1985b). What is an Intelligent Help-File finder. An unpublished
internal paper, produced in the Cognitive Studies Program Sussex University.

Kidd, A.L. (1985). What do users ask? — some thoughts on diagnostic advice. In M.
Merry (Ed.) Expert Systems '85: Proceedings of the Fifth Technical Conference
of the British Computer Society Specialist Group on Expert Systems. C.U.P:
Cambridge.

Miller, D.P. (1981). The depth-breadth trade off in hierarchical computer menus. In
Proceedings of the Human Factors Society 25th Annual Meeting 296-300.

Norman, D.A. (1983). Design principles for human-computer interfaces. In A.
Janda (Ed.) Human Factors in Computing Systems: CHI '83 Conference
Proceedings. ACM: New York.

Perlman. G. (1985). Making the right choices with menus. In B. Shackel (ed.)
Human Computer Interaction — INTERACT '84 Elsevier Science Publishers.

Tullis, T.S. (1985). Designing a menu — based interface to an operating system. In
L. Borman and B. Curtis (Eds.) Human Factors in Computing Systems: CHI '85
Conference Proceedings. ACM: New York.

Robertson, D. McCraken and Newell, A. (1981). The ZOG approach to man —
machine communications. International Journal of Man-Machine Studies, 14,
461-488.

Sloman, A. (1985). Case for support: Towards an intelligent help file finder.
Unpublished internal discussion paper. Cognitive Studies Program, Sussex
University.

Sloman, A. (1986). Towards a model of a good software designer. Unpublished
internal discussion paper. Cognitive Studies Program, Sussex University.

Sloman, A., Allport. D., Khabaza, T. & Law, A. (1986) Towards and Intelligent
Help File Finder - Interim report to the Alvey Knowledge Based Systems
Club.

A. Law META-HELP Browser 20

Snowberry, K. Parkinson, R. & Sisson. N. (1983). Computer display menus.
Ergonomics, 26, 699-712.

Young, .M. & Hull, A. (1982). Cognitive aspects of the selection of viewdata options
by casual users. In Proceedings of the 6th International Conference o Computer
Communication, 571-576.

Whiteside, J., Jones, S., Levy. P.S. & Wixon, D. (1985). User performance with
command, menu and iconic interfaces. Human Factors in Computing Systems:
CHI '85 Conference Proceedings. 185-191.

A. Law META-HELP Browser 21

Appendix A : An example of a short POPLOG HELP file

HELP * FOREACH

foreach < pattern > do < actions > endforeach;
foreach < pattern > in < database > do < actions > endforeach;

FOREACH is used for iteration over a database. The
< pattern > is matched (see HELP *MATCHES) against each
element of the database, which defaults to the value of the
variable ^DATABASE when the IN clause is omitted. After
each successful match, the < actions > are performed. Usually,
the match will have side-effected the value of some variables.

See also HELP
* FOR - Iteration over lists and integers
* FOREVERY - like FOREACH, but matches a list of patterns
* DATABASE - for the use of the POP-11 DATABASE
* LOOPS - for other types of iteration

A. Law META-HELP Browser 22

Appendix B : An example of a POPLOG META-HELP file

META-HELP * LISTJNITIAL

O-Parent:

1- Introduction to lists
2- Overviews of list processing
3- List Syntax and creating lists
4- Pattern matching with lists

5- Accessing parts of lists (e.g.
getting the head)
6- Examining the characteristics
of lists (e.g., membership,
length, etc.)
7- Processing the contents of a
list (e.g., sorting, deleting
elements)
8- Iteration over lists (a means
of performing some action to or
for each element of a list)

9- Pair manipulation
A- Input/Output
B- Dynamic lists
C- Copying lists

META-HELP

(doesn't exist
META-HELP
META-HELP
META-HELP

META-HELP

META-HELP

META-HELP

META-HELP

META-HELP
META-HELP
META-HELP
META-HELP

* INDEX

yet)
* LIST__OVER
* LIST SYNTAX
* LISTJV1ATCHING

* LIST_ACCESS

* LIST_EXAMINE

* LISTJPROC

* LIST_JTERATION

* LIST PAIR
* LIST 10
* LIST DYNAMIC
* LIST COPY

A. Law META-HELP Browser 23

Appendix C : An example of a POPLOG META-HELP file

META-HELP * LIST.JTERATION
0- Parent:

General introduction to iteration
1- Using a "for" loop

Iteration over the elements in a list. The
facilities can be used to peform some action
each element of a list:

2- Using a procedure for the action
3- Using a procedure for the action
but creating a new list from the
results
4-Iterating over those elements of a
list which match over a given
pattern
5- Iterating over COMBINATIONS
of elements which match a
collection of patterns

META_HELP * LIST_INITIAL

HELP * FOR

following
to or for

HELP * APPLIST
HELP * MAPLIST

HELP * FOREACH

HELP * FOREVERY

