
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

LOGIC PROGRAM DERIVATION FOR A CLASS

OF FIRST ORDER LOGIC RELATIONS

George Dayantis

October 1986

Cognitive Studies Research Papers

Serial No. CSRP- 061

The University of Sussex,
Cognitive Studies Programme,
School of Social Sciences,
Falmer, Brighton BN1 9QN

LOGIC PROGRAM DERIVATION FOR A CLASS OF FIRST ORDER LOGIC RELATIONS

George Dayantis

ABSTRACT

Logic programming has been an attempt to bridge the gap between
specification and programming Language and thus to simplify the software
development process. Even though the only difference between a
specification and a program in a logic programming framework is that of
efficiency, there is still some conceptual distance to be covered
between a naive, intuitively correct specification and an efficiently
executable version of it. And even though there have been developed
some mechanical tools in the form of formal inferences that assist in
covering this distance, no fully automatic system for this purpose is
yet known. In this paper we present a general class of first-order
logic relations, which is a subset of the extended Horn clause subset of
logic, for which we give mechanical means for deriving Horn logic
programs, which are guaranteed to be correct and complete with respect
to the initial specifications.

Keywords: Automatic programming, logic programming, pogram derivation,
PxtendpH Horn clauses.extended Horn clauses

LOGIC PROGRAM DERIVATION FOR A CLASS OF FIRST ORDER LOGIC RELATIONS

U LOGIC PROGRAMMING

First order predicate Logic has been a widely used formalism for
expressing problems in general and properties of algorithms as input-
output relations more specifically. Green was one of the first
researchers to use resolution-based theorem proving within this logic
formalism for problem solving (question-answering systems CG1D). In the
early 70's Kowalski CK1,E2D exposed the significance of logic as a
programming language by giving operational and fixpoint semantics for
the Horn-clause subset of predicate logic and comparing them with the
proof and model theoretic semantics of logic.

Since then logic has gained enough prominence as a software
development tool to form a seperate field in Computing Science, that of
logic programming CH5,L1D. Logic programming is an attempt to bridge
the gap between specification and programming language requirements. By
making a clear seperation of the logic and the control, it makes it
possible for the programmer to deal initially with the logic of his
problem and then derive more efficient, still logically equivalent,
versions of it by altering the control accordingly. The apparently
simple operational semantics of Horn-clausal logic and its various
efficient implementations, mainly in the form of PROLOG interpreters and
compilers CB3,C1,C7], makes it quite appealing as a programming
language.

Of course, even though it has been shown that any problem expressed
in first order predicate logic can be reformulated using only Horn
clauses, expressing problems in Horn clauses is certainly not claimed to
be very natural. Various attempts have been made, by Bowen CB6], Murray
CM13 and Stickel CS2] to implement full first-order logic as a
programming language. Apart from efficiency considerations, the lack of
intuitively clear operational semantics for full first-order logic is a
major drawback of this approach.

Still, even when using full first-order Logic for writing programs
it is usually the case that an evidently correct specification is not
the most efficiently executable one and thus there is still need for
independent specifications, a situation that gives rise to all the
problems of relating specifications to programs - issues of correctness
and completeness. Here though, in contrast with conventional software
production environments, logic offers a single formalism for specifying
and implementing software, thus greatly simplifying the tasks of program
verification and synthesis and in general the reasoning about such
programs.

2. LOGIC PROGRAM DERIVATION

Clark & Sickel CC2,C4D, Hannson CH13, Hogger CH2,H3,H4D, Vasey [V1D
and others from Imperial College have been trying to develop
transformation techniques, based on logical object-Level deduction, for
deriving (Horn) logic programs from first-order logic specifications and
also for increasing the efficiency of logic programs.

According to Hogger CH2,H3,H43/ logic procedure derivation refers
to the task of showing that the statements (procedures) comprising a
Logic program arfe true theorems about the problem domain implied by a
first-order axiomatic formulation of the problem, which constitutes the
program's specification. In practice this amounts to constructing a
series of deductions (a derivation) treating the sentences in the
specification as assumptions in order to prove each statement in the
program. Because logic programming languages are generally non-
deterministic, proof of each statement is logically independent of
proofs of the other statements and furthermore is independent of any
assumptions about the behaviour of the program in execution.

We shall illustrate Hogger's general method for deriving Horn
clause programs from standard logic specifications by deriving such a
program from the following specification of the subset relation:

S1: subset(H,l2) <-> ¥z (member(z,U) -> member(z,l2))
S2: Vx "member(x,niI)
S3: member(x,u.l) <-> x=u or member(x,l)

where we represent sets as lists, with the assumption that they do not
contain duplicates, with "nil" representing the empty list and "." being
the concatenation operator on lists - "u.l" is the list with head "u"
and tail "I".
The inference steps can be thought of as combining resolution with
conversion to clausal form. Some of them bear strong similarities (are
analog) to the "fold" and "unfold11 transformation operations developed
by Burstall and Darlington CB2D in a recursive equations framework.
We start by converting the if-half direction of S1 into clausal form.
We get the two clauses:

C1: subset(H,l2), member(f(11,12),11) <-
C2: subset(L1,l2) <- member(f(11,12),12)

where "f" is a skolem-function symbol, denoting an arbitrary function of
"IV1 and "12", introduced during the conversion to eliminate the
existential quantifier (skolemisation).
Notice that C1 is a non-Horn clause.
Now the basis of the recursive Horn clause program,

P1: subset(nil,l2) <-

can be obtained directly by resolving the clausal form of S2,
"<~ member(x,niI)", with C1.
The recursive clause of the program can be derived more naturally by
reasoning with the specification in standard form. By matching the
atoms "member(z,11) M and "member(x,u.l)11 in S1 and S3 respectively
("unfolding") we obtain:

S4: subset(u.l,l2) <- Vz CCz=u or member(z,O] -> member(z,l2)]

I t suffices, in this case, to use only the if-half of the definition of
subset.
Now we begin to convert S4 into clausal form:

S5: subset(u.l,l2) <- Vz Cz=u -> member(z,L2)3 &
Vz Cmember(z,l) -> member(z,l2)]

Any further conversion would result in non-Horn clauses. Fortunately
the two non-atomic conditions in S5 can be replaced by equivalent atomic
ones using the equivalences:

S6: Vz Cz=u -> member(z,l2)] <-> member(u,l2)
S7: Vz Cmember(z,l) -> member(z,l2)] <-> subset(l,l2)

The first equivalence is a special case of the more general equivalence,
which states the substitutivity property of equality:
Vz Cz=u -> X] <-> X1

where X1 is obtained from X by replacing all occurrences of "z" by Mu"
(or vice versa).
The second equivalence is an instance of S1 and applying it corresponds
to the "fold" operation.
Thus we easily obtain the rest of the program:

P2: subset(u.l,l2) <- member(u,l2), subset(l,l2)

Some of the inference (derivation) steps presented here and other
more complex ones needed for more difficult derivations can be easily
mechanised and thus performed automatically, but there remains a
significant portion of them, which seems to require some inventiveness.
It should be emphasised here that no complete inference sustem exists
yet for such derivations. Furthermore, since we are often interested in
computing only part of the relation defined by the specification - that
is, the final set of derived procedures need not be logically equivalent
to the initial specification but only to be implied by it - the decision
of what constitutes a sufficient set of procedures for computing the
relation of interest is \/ery much dependent upon our particular choices.

The same applies to transformation techniques for improving the
efficiency of logic programs. These include changing the computation
sequence - bottom-up versus top-down -, changing the data structures,
adding extra arguments, using auxiliary predicates and generalising.

Thus, although deduction is a logically sufficient tool for
creating logic programs from specifications or from other programs, this
tool requires intelligent control in order to be practical. Yet there
is hope that at least a semi-automatic tool can be implemented for
helping with such manipulations. One attempt towards this direction is
reported in CV1D. In this paper, however, we restrict our attention to
a specific class of relations, which we identify in section 4 and for
which fully automatic program derivation is possible as we shall show.
And because we find that a systematic treatment of data types in logic
is necessary for the adequate formalisation of our results, we present
such a treatment in section 3 below.

2- CHARACTERISING DATA TYPES J^ LOGIC

Clark & Tarnlund in their "First order theory of data and programs"
CC5D were the first ones to present a uniform way to characterise and
deal with data types within the framework of first-order logic. Later
various other researchers CV13 have come up with different treatments of
data types in logic. Here, however, we restrict our attention to
recursively defined data types and present a general axiomatic way of
characterising them, which serves as the basis for formalising some
results in the next section.

Quite often we are interested in relations defined over recursively
defined data types; that is, at least one of their arguments ranges over
such a data type. By data type - or sort - we mean a collection of
values, a subset of the Herbrand Universe. A simple way to characterise
data types without departing from first-order logic is to use
predicates, since any relation can be thought of as defining data types
for its arguments ,i.e. the sets of values that belong to the relation.
For example, we can assume the existence of a predicate 'natural1 of one
argument, such that fnatural(x)f is true if and only if 'x' is a natural
number - belongs to the data type natural. Of course the data type
'natural1 can be easily axiomatised with the following recursive
definition:
natural(x) <-> x=1 exor 5y (natural(y) & x=succ(y))
together with an equality axiom: succ(x)=succ(y) <-> x=y ,
where Mexorfl is the symbol for exclusive or, "1" is a constant and
"succ11 is the successor function; "V and "succ11 are the two
constructors of the type. Notice that the elements of this type are of
the form : 1, s u c c d) , succ(succd)), for any finite time of 'succ1

occurences, which is a rather more awkward representation than the usual
1,2,3,... .

In general, in order to axiomatise an arbitrary data type with a
recursive definition we assume the existence of two constructor
predicates 'AT and fA2 f, such that:
Rectype(r) <-> A1(r) exor

3u 3v (Rectype(ui) & ... & Rectype(un) &
Othertypei(vD & ... & Othertypem(vm) &
A2(r,u,v))

where u=(u1,..,un), v=(v1,..,vm) (u and v can be tuples of variables)
and Othertypei, i=1,..,m, denote arbitrary types.
A1, the base constructor, establishes a bottom element for the type and
A2, the main constructor, builds new elements of the type out of old
ones. A kind of an equality axiom may also be added:
3u1 3v1 Vu Vv (A2(r,u,v) -> u=u1 & v=v1).

Naturally we associate an induction schema with any so defined data
type, which enables us to reason about - most significantly the well-
definedness of - any relation defined over such a type.
For Any Formula P :
Vr C(A1(r) -> P(r)) &

Vu Vv (A2(r,u,v) -> (P(u1) & •.. & P(un) -> P(r)))] |-
Vr (Rectype(r) -> P(r))

If now, for example, we define a relation 'even1 as:
even(x) <-> 3y x=2*y and we wish it to have meaning only when fxf is a
natural number, we can type-restrict the definition by using:
Vx (natural(x) -> (even(x) <-> 3y x=2*y)).

In general, in order to denote that a specific argument fx' of a
relation fRf can only range over some data type 'Sometype', we use a
conditional definition when defining 'R' :
Vx (Sometype(x) -> (R(x,y) <-> Definiens))
where 'Definiens1 stands for the definiens and 'y' holds the place of
any other arguments.
This means that the relation 'R' is defined only for those first
arguments that satisfy 'Sometype1 - are of this type.
In the case where 'Sometype' is a 'Rectype' we can safely omit this

explicit type information, since it can be usually inferred from the use
of the constructor predicates •A1f and 'A2' in the definiens. More
specifically, if the relation 'R' is defined recursively on a 'Rectype'
its definition would look like:
R(x,y) <-> CAKx) & R2(x,y)] or iu 3v [A2(x,u,v> S R3(u,v,y)3
or
~R(x,y) <- A K x)
R(x,y) <-> 9u 3v CA2(x,u,v) & R4(u,v,y)]

^. jA CLASS 0£ FIRST-ORDER LOGIC RELATIONS

In CK5U and elsewhere Kowalski identifies an extension of Horn
clauses, called the extended Horn clause subset of logic, which offers
more axpressive power than the Horn clause subset and admits efficient
computations. A clause belongs to the extended Horn clause subset of
logic if and only if its condition contains a universally quantified
Horn clause. Additionally we say that a relation is defined with an
extended Horn clause if and only if the if-half of its definition is an
extended Horn clause. Quite a number of common relations, some of which
are presented below, fall naturally within this class. Here we identify
a class of first-order relations, which can be defined with a subset of
the extended Horn clause subset of logic and for which we present means
for mechanically transforming their definition into Horn clausal form.

First we present a few examples of relations in this class and
explain the relationship with their corresponding programs.

Example 1 : The 'subset1 relation.
This has already been presented in section 2, but here we slightly alter
the format in the 'member1 specification so as to conform with our
general schema of specifying relations over recursive data structures
presented in the previous section.

Both arguments of 'subset1 are assumed to be of type 'list', which
is axiomatised as follows :
List (L) <-> l=nil exor

3lh §lt (element(lh) S list(lt) & l=lh.lt)
and
Ih1.lt1 = Ih2.lt2 <-> Ih1=lh2 & It1=lt2 ,
where 'nil' and '.' are the term constructors of our representation of
lists and 'element' is an arbitrary type.

S1
S2
S3

subset(U,l2) <-> Yz (member(z,U) -> member(z,l2))
~member(x,l) <- l=nil
member(x,l) <-> 9lh 5lt (l=lh.lt & (x=lh or member(x,lt)))

Notice that the if-half of S1 belongs to the extended Horn clause
subset of logic, since its condition is a universally quantified Horn
clause. Additionally the antecedent of this Horn clause is a
recursively defined relation ('member'). In the definition of
fmember(x,l)' S2 is the base case, since 'I' is instantiated to 'nil'
and S3 contains the recursive occurence of 'member' with 'l=lt', the
tail of the original list. The well-definedness can be easily proved by
induction on lists.

The corresponding program for 'subset' as inferred above is:

P1 : subset(nil,l2) <-
P2 : subset(u.l,l2) <- member(u,l2) & subset(l,L2)

Notice that this is a recursive program on the first argument; P1 is the
base case clause and P2 the recursive one, since it contains a recursive
call to 'subset' with its first argument being the tail of the original
list. Termination can be proved by induction on lists. It is
essentially the recursion of the first occurrence of •member1, which has
been eliminated in the above program, in the initial specification that
has been transferred onto 'subset1. And as it will be shown below, one
could avoid all the trouble of formally inferring this program - as we
did in section 2 - and write it down more or less directly following
some syntactic rules.

Example 2 : The •max1 relation.
'max(l,x)' holds when fl' is of type •list1, fx' of type •element1 and

•x1 is the maximum element of 'I' with respect to some ordering relation
('=<•) defined on elements.

S1 : max(l,x) <-> member(x,1) & Vz (member(z,l) -> z=<x)
S2, S3 : as in the above example.

Similarly here 'max1 is defined with an extended Horn clause and if we
first isolate the second conjuct in S1 as follows :
S4 : max1(l,x) <-> Vz (member(z,l) -> z =<x)

we can obtain the following recursive program for fmax1':

P2 : max1 ,
P3 : max1(u.l,x) o u=<x & max1(l,x)

which does not involve the relation 'member' and for which the same
observations can be made as in the above example.
Thus, we get the following program for 'max1:

P1 : max(l,x) <- member(x,l) & max1(l,x)
together with P2, P3.
Of course, we can get a more efficient version of this program by using
some extra knowledge about the 'max9 relation :
P1
P2
P3

max(u.niL,u) <-
max(u.l,u) <- max(L,y) & u>y
maxCu-ly.x) <- max(L,x) & u=<x

but this does not concern us here.

Example 3 : The 'ordtree' relation.
The argument of 'ordtree' is assumed to be of type 'tree', which is
axiomatised as follows:
tree(x) <-> x=null exor

ixl 5w ixr (tree(xl) & node(w) & tree(xr) &
x=t(xl,w,xr))

and
t(xl1,w1,xr1) = t(xl2,w2,xr2) <-> xl1=xl2 & w1=w2 & xr1=xr2 ,
where 'null' and ft' are the term constructors for our representation of
trees and 'node' is an arbitrary type.
'ordtree(x)1 holds when the nodes of tree 'x* are ordered with respect
to an ordering relation '<'. 'leftof(u,v,x)' holds when node 'u' is on
the left of node fv' in tree 'xf. 'belongs(u,x)' holds when fuf is a
node of tree 'x'.

51 : erdtree(x) <-> Vu Vv (Leftof(u,v,x> -> u < v>

52 : ~leftof(u,v,x) <- x=null
53 : leftof(u,v,x) <-> 3x1 5w 3xr (x=t(xl,w,xr) &

(u=w S belongs(v,xr)) or
(v=w & belongs(u,xl)) or
(beLongs(u/xL) & beLongs(v,xr)) or
leftof(u,v,xl) or Leftof(u,v,xr))

54 : **belongs(u,x) <- x=nuLL
55 : belongs(u,x) <-> 3x1 3w 5xr (x=t(xl,w,xr) &

(belongs(u,xl) or u=w or
belongs(u,xr)))

The corresponding program is :

P1 : ordtree(nuLL) <-
P2 : ordtree(t(xl,w,xr)) <- auxiU(xl,w) & auxiL2(w,xr) &

auxiL3(xl,xr) & ordtree(xL) & ordtree(xr)

auxiLI(null,w) <-
auxiLI (t(xL,w1,xr),w) <- w1 < w & auxiLI (xL,w) & auxiLI(xr,w)

auxiL2(w,nuLL) <-
auxiL2(w,t(xL,w1,xr)) <- w < w1 & auxiL2(w,xL) & auxiL2(w,xr)

auxiL3(nuLL,x) <-
auxiL3(t(xL,w,xr),x) <- auxiL2(w,x) & auxiL3(xL,x) &

P3
P4

P5
P6

P7
P8

which is recursive, does not involve 'leftof1 and 'belongs1, but
introduces three new relations - auxiLI,auxil2,auxiL3 -, which are again
recursively defined. Notice that here the passage from the
specification S to the program P is not as obvious as in the previous
two examples mainly due to the nested recursions. Nevertheless S and P
are equivalent under the "closed world11 assumption and a simple
syntactic transformation suffices to obtain P from S as we shall show
Later.

ALL of the above example relations are members of a more general
class, which we identify below.

Firstly we define a class of relations, which we call RR
(Recursively-defined Relations). We consider relations of at least two
arguments, either of which can stand for a tuple of arguments. A third
argument is added in the representation of these relations to stand for
any other - if any - arguments, which are uninteresting for our
purposes. This class is defined recursively as follows:

DEFINITION 1:
A relation R belongs to RR iff it belongs to one of the classes
RRO, RR1, RR2, RR3, RR4.

A relation R belongs to RRO iff it is defined as follows:

SO : R(r,q,s) <-> q=f(r) , for some arbitrary function f.

A relation R belongs to RR1 iff it is defined as :

51 : * R(r,q,s) <- AKr)
52 : R(r,q,s) <-> 3u 3v (A2(r,u,v) &

CR2(u,v,q,s) or
R(u1,q,s) or ... or R(un,q,s)3)

where:
i) A1, A2 are constructor predicates for a recursive data type, as
described in the previous section,
ii) R1 either belongs to RR (as it stands)

or it can be re-expressed as:
RKr,q,s) <-> R1'(f(r),q,s) ,
where "f" is an arbitrary function or as:
R1(r,q,s) <-•> R1f(s1,q,(r,s2)) ,
where (s1,s2) is a splitting of the arguments in s
and R1f belongs to RR.
iii) Similarly for R2.

A relation R belongs to RR2 iff it is defined as :

53 : R(r,q,s) <-> (AKr) & RKr,q,s)) or
5u 3v (A2(r,u,v) &

CR2(u,v,q,s) or
R(u1,q,s) or ... or R(un,q,s)D)

where A1,A2,R1,R2 are as above.

A relation R belongs to RR3 iff it is defined as follows:

54 : R(r,q,s) <-> RKr,q1,s) & R2(r,q2,s)
where q=(q1,q2) (an arbitrary split) and R1, R2 belong to RR.

A relation R belongs to RR4 iff it is defined as follows:

55 : R(r,q,s) <-> R1(r,q,s) or R2(r,q,s)
where R1, R2 belong to RR.

Examples of RR-relations are the relations: 'member1, 'leftof1 and
•belongs1 defined above.

Notice that, if we consider only the "<-M-half of any of the above
definitions for the relation R, it can be directly expressed in Horn
clausal form, thus providing us with a logic program for computing any
instance of the relation R - given a Horn-logic interpreter like PROLOG
-, which is not only correct but also complete with respect to the
initial specification.
The correctness follows trivially from the truth of: A <-> B |- A <- B.
For the completeness we also need the "closed world assumption"
(c-w.a.); that is, if there aren't any other clauses with head "A",
which means that the only way to establish "A" is by showing "B" - "A"
is true only if "B" is -, it follows that: A <- B |- B <- A and thus: A
<- B |- A <-> B.
These programs corresponding to the above classes are given below:

RRO: R(r,q,s) <- q=f(r) or in a simpler form: R(r,f(r),s) <-

RR1: R(r,q,s) <- <T AKr),} A2(r,u,v), R2(u,v,q,s)
R(r,q,s) <- {* AKr),} A2(r,u,v), R(u1,q,s), ..., R(un,q,s)

Notice that the omission of the (negated) base case is justified by the

c.w.a., if we add - as we have done - the Literal " " A K r) " , which we can
safely omit since Su A2(r,u) -> ~ AKr) , to the other clauses in order
to preserve correctness.

RR2: R(r,q,s) <- A K r) , R1(r,q,s)
R(r,q,s) <- A2(r,u,v), R2(u,v,q,s)
R(r,q,s) <- A2(r,u,v), R(u1,q,s), ..., R(un,q,s)

RR3: R(r,q,s) <- RKr,q1,s), R2(r,q2,s)

RR4: R(r,q,s) <- RKr,q,s)
R(r,q,s) <- R2(r,q,s)

It should be noted that in all of the above programs we assume the
existence of logic programs for the introduced relations R1 and R2, a
fact that follows from our definitions - formally by induction.

Now we define another class of relations, which we call extended RR
(ERR for short). Relations in this class have at least one(!) argument
and a second uninteresting argument is added as in the previous classes.

In order to simplify the identification process we first convert
the definiens of the definition of the relation of interest into a
normal form. Such a normal form is a conduction of formulas, such that
if and only if one of the conjucts is a universally quantified
implication the defined relation will be one that is defined with an
extended Horn clause. This normal form is arrived at by applying the
following equivalence preserving transformations. Each step is applied
repeatedly until no more applicable.
Step 1 : Remove double implications.
By applying the equivalence preserving rewrite rule:

P <-> Q => -> & ->

Step 2 : Move negations inwards.
By applying the equivalence preserving rewrite rules:

Vq A => 3q
3q A => Vq
(A & B) =>
(A or B) =>
(A -> B) =>

~A
~A
A or ~B
"A & ~B
~C , where C is a newly created relation

defined as: C <-> (A -> B) .

Step 3 : Expand implications.
By applying the equivalence preserving rewrite rules:

(A & B) -> C => (A -> (B -> O)
(A or B) -> C => (A -> C) & (B -> C)
Vq A -> B => 9q (expand_implications(A -> B))
Jq A -> B => Vq (expand_jmplications(A -> B))

Step 4 : Distribute universal quantifiers over conjuctions
By applying the equivalence preserving rewrite rule:

Vq (A & B) => Vq A & Vq B

Step 5 : Reduce quantifiers1 scope-
By applying the equivalence preserving rewrite rules:

Vq (A -> B) => §q A -> B , if q does not occur free in B
Vq (A -> B) => A -> Vq B , if q does not occur free in A

In the following definition we assume that the definiens are in a normal
form, that is the above transformation steps have been applied to it.

DEFINITION 2:
A relation Q belongs to ERR iff it is defined as follows:

Q(r,s) <-> Vq (R(r,q,s) -> A(q,s))

where R belongs to RR and A is an arbitrary relation, for which
we can obtain a Horn logic program.

Examples of ERR-relations are the relations: 'subset1, 'maxi1 and
•ordtree1 defined above.

Notice that for this class a Horn logic program cannot be obtained
directly, that is, simply by converting into clausal form as above.
However the following theorem provides us with an easy way to get such a
logic program, which is correct and complete with respect to its
specification.

THEOREM : If a relation belongs to ERR then it can be re-expressed in a
logically equivalent way (under the c.w.a.) using only Horn clauses.
More specifically, if Q is defined as:

S : Q(r,s) <-> Vq (R(r,q,s) -> A(q,s>>

then the corresponding programs are as follows:

I) if R belongs to RRO then
P : Q(r,s) <- A(f(r),s)

II) if R belongs to RR1 then
P1 : Q(r,s) <- AKr)
P2 : Q(r,s) <- A2(r,u,v), Q2(u,v,s), Q(u1,s), ..., Q(un,s)
where AS1: Q2(u,v,s) <-> Vq (R2(u,v,q,s) -> A(q,s)) (|-| AP1)

III) if R belongs to RR2 then
P1 : Q(r,s) <- A K r) , Q1(r,s)
P2 : Q(r,s) <- A2(r,u,v), Q2(u,v,s), Q(u1,s), ..., Q(un,s)
where AS1: QKr,s) <-> Vq (R1(r,q,s) -> A(q,s)) (|-| AP1)

and AS2: Q2(u,v,s) <-> Vq (R2(u,v,q,s) -> A(q,s)) <|-| AP2)

IV) if R belongs to RR3 then
AS : Q(r,s) <-> Vq <R1(r,q,s) -> Q1(r,s))

where AS1: Q1(r,s) <-> Vq (R2(r,q,s) -> A(q,s))

V) if R belongs to RR4 then
P : Q(r,s) <- Q1(r,s), Q2(r,s)

where AS1: Q1(r,s) <-> Vq (RKr,q,s) -> A(q,s))
and AS2: Q2(r,s) <-> Vq (R2(r,q,s) -> A(q,s))

PROOF :
For each of the above five cases we shall show that the relationship
that holds between the program and its specification is that of logical
equivalence (under the c.w.a.) from which the correctness and
completeness results follow trivially.

I) In this simple case we can prove both directions of the equivalence
using a single chain of inferences, which always preserve equivalence.
Thus we have : S |-| P (assuming SO) since:
S: CQ(r,s) <-> Vq (R(r,q,s) -> A(q,s))] |-| (by SO)
|-| CQ(r,s) <-> Vq (q=f(r) ~> A(q,s))] |-| (substitutivity)
j-j CQ(r,s) <-> A(f(r),s)] |-| (by c.w.a. for -|)
|-| CQ(r,s) <- A(f(r),s)D : P

II) For simplicity in the proof we consider only the case where 'u1 in
•A2(r,u,v)' is a singleton. The more general case does not present any
additional conceptual difficulty.
Correctness : We have to show: 5,51,52,AS |- P1&P2 , which can be split
into a) S,S1,S2 |- P1 and b) S,S1,S2 |- P2.

a) S,S1 |- P1 .
S: CQ(r,s) <-> Vq (R(r,q,s) -> A(q,s))3 |-
|- CQ(r,s) <- Vq (R(r,q,s) -> A(q,s))D j- (since: "A -> (A -> B>>
|- CQ(r,s) <- Vq (~ R(r,q,s))D |- (by S1)
|- CQ(r,s) <- AKr)3 : P1.

b) S,S2 |- P2 .
S: CQ(r,s) <-> Vq (R(r,q,s) -> A(q,s))3 j-
|- CQ(r,s) <- Vq (R(r,q,s) -> A(q,s))] |- (by S2)
I- CQ(r,s) <- Vq Ou 3v (A2(r,u,v) & (R1(u,v,q,s) or R(u,q,s))) ->

A(q,s))]
|- (since u,v do not depend on q and (A & B -> C) <=> (A -> (B -> C)))
j- CQ(r,s) <- (3u iv (A2(r,u,v) ->

Vq (R1(u,v,q,s) or R(u,q,s) -> A(q,s))))]
|- (since (A -> B) -> C => A & B -> C)
|- CQ(r,s) <- 3u 5v (A2(r,u,v) &

Vq (R1(u,v,q,s) or R(u,q,s) -> A(q,s)))D
|- (since: A or B -> C <=> (A -> C) & (B -> C)
|- CQ(r,s) <- 3u iv (A2(r,u,v) & Vq (R1(u,v,q,s) -> A(q,s)) 8

Vq (R(u,q,s) -> A(q,s)))
|- (by AS and by S with r=u -folding)
|- CQ(r,s) <- 3u 5v (A2(r,u,v) & Q1(u,v,s) & Q(u,s))D : P2

Completeness : We have to show: P1,P2,AS,S1,S2 j- S.
Notice that by c.w.a.:
P1 & P2 |-| Q(r,s) <-> A1(r) exor

5u 5v (A2(r,u,v) & Q1(u,v,s) & Q(u,s)).
However, to construct this proof we need to resort to induction. Thus,
according to our induction schema, it suffices to prove S for those "r"
such that AKr) holds and by assuming S for r=u to prove it for r=r,
where A2(r,u,v) holds.
Thus we have:
a) Base case. Assume: AKr) <-> true. Then ~ R(r,q,s) <-> true (:AS) and
P1,P2 |- CQ(r,s) <-> true] |- (by AS)
|- CQ(r,s) <-> Vq CR(r,q,s) or A(q,s))D |-
|- CQ(r,s) <-> Vq (R(r,q,s) -> A(q,s))D : S
b) Induction step.

Assume (A1(r) <-> false and) A2(r,u,v) <-> true, for some u nd v and,
by assuming CQ(u,s) <-> Vq (R(u,q,s> -> A(q,s))] (: S ') , prove S.
Then: P1,P2 I - CQ(r,s) <-> Q1(u,v,s) & Q(u,s)D | - (by AS and S1)
| - CQ(r,s) <-> Vq (R1(u,v,q,s) -> A(q,s)) &

Vq (R(u,q,s) -> A(q,s)) 1 j -
| - CQ(r,s) <-> Vq (RKu,v,q,s) or R(u,q,s) -> A(q,s))J j -
| - CQ(r,s) <-> Vq Ou 3v (A2(r,u,v) & (RKu,v,q,s) or R(u,q,s))) ->

A(q,s))3
(by S2) | - CQ(r,s) <-> Vq (R(r,q,s) -> A(q,s))D : S.

Ill) Similarly in this case we only consider the case where 'u1 is a
singleton.
Correctness : We have to show: S,S3,AS |- P1&P2 , which can be split
into a) S,S3 |- P1 and b) S,S3 |- P2.
However for a better presentation we can follow the same path of (top-
down) inferences up to a point for both (a) and (b) and then continue
with two different branches in a bottom-up fashion. Thus:

S: CQ(r,s) <-> Vq (R(r,q,s) -> A(q,s))D |-
|- CQ(r,s) <- Vq (R(r,q,s) -> A(q,s))3 |- (by S3)
|- CQ(r,s) <- Vq ((AKr) & RKr,q,s)) or

5u 3v (A2(r,u,v) & CR2(u,v,q,s) or R(u,q,s)D) ->
A(q,s))]

|- CQ(r,s) <- Vq (AKr) & R1(r,q,s) -> A(q,s)) &
Vq (iu 3v (A2(r,u,v) & CR2(u,v,q,s) or R(u,q,s)]) ->

A(q,s))D
|- CQ(r,s) <- (AKr) -> Vq (R1(r,q,s) -> A(q,s))) &

Vu Vv (A2(r,u,v) ->
Vq (R2(u,v,q,s) or R(u,q,s) -> A(q,s)))D

(by AS and by S with r=u -folding)
|- CQ(r,s) <- (AKr) -> Q1(r,s)) &

Vu Vv (A2(r,u,v) -> Q2(u,v,s) & Q(u,s))D : IS

a) We have to prove: S,S3 |- P1 ; it suffices to show: IS |- P1 .
Thus: IS |- Q(r,s) <- A K r) & Q1(r,s) <=>
<=> IS, A K r) , Q1(r,s) |- Q(r,s) <=>
<=> CQ(r,s) <- (true -> true) &

Vu Vv (false -> Q2(u,v,s) & Q(u,s))] |- Q(r,s) <=>
<=> Q(r,s) |- Q(r,s) , valid.

b) We have to prove: S,S3 |- P2 ; it suffices to show: IS |- P2 .
Thus: IS |- Q(r,s) <- A2(r,u,v) & Q2(u,v,s) & Q(u,s) <=>
<=> IS, A2(r,u,v), Q2(u,v,s), Q(u,s) |- Q(r,s) <=>
<=> CQ(r,s) <- (false -> Q1(r,s)) &

Vu Vv (true -> true)] |- Q(r,s) <=>
<=> Q(r,s) |- Q(r,s) , valid.

Completeness : We have to show: P1,P2,AS,S3 |- S.
Notice that by c.w.a.:
P1,P2 | - | Q(r,s) <-> (AKr) & Q1(r,s)) or

(A2(r,u,v) & Q2(u,v,s) & Q(u,s))
Again we resort to induction. According to our induction schema, it
suffices to prove S for those "r" such that AKr) holds and by assuming
S for r=u to prove it for r-r^ where A2(r,u,v) holds.

a) Base case. Assume: AKr) <-> true. Then
S3 |-| R(r,q,s) <-> RKr,q,s) (:S3f) and

P1,P2 |- CQ(r,s) <*-> (true & Q1(r,s)) or falseD |-
|- CQ(r,s) <-> Qi(r,s)D |- (by AS1)
|- CQ(r,s) <-> Vq (R1(r,q,s) -> A(q,s))D |- (by S31)
|- CQ(r,s) <-> Vq (R(r,q,s) -> A(q,s))] : S.

b) Induction step.
Assume (A1(r) <-> false and) A2(r,u) <-> true, for some u and v and,
by assuming CQ(u,s) <-> Vq (R(u,q,s) -> A(q,s))D (:S'), prove S.
First, we have: S3 |-| R(r,q,s) <-> R2(u,v,q,s) or R(u,q,s) : S31 •
Then: P1,P2 |- CQ(r,s) <-> false or (true & Q2(u,v,s) & Q(u,s))3 |-
|- CQ(r,s) <-> Q2(u,v,s) & Q(u,s)3 |- (by AS2 and S1)
|- CQ(r,s) <-> Vq (R2(u,v,q,s) -> A(q,s)) &

Vq (R(u,q,s) -> A(q,s))] |-
|- CQ(r,s) <-> Vq (R2(u,v,q,s) or R(u,q,s) -> A(q,s))D |- (by S31)
|- CQ(r,s) <-> Vq (R(r,q,s) -> A(q,s))3 : S.

IV) From S and S4 easily follows that:
Q(r,s) <-> Vq1,q2 (RKr,q1,s) & R2(r,q2,s) -> A((q1,q2),s)) |-|
Q(r,s) <-> Vq1 (RKr,q1,s) -> Vq2 (R2(r,q2,s) -> A((q1,q2),s))),
from which AS follows (using AS1).
Of course this is not a (Horn clause) program, but it can be easily seen
- formally by induction - that a logic program can be ultimately
deduced.

V) From S and S5 easily follows that:
Q(r,s) <-> Vq (RKr,q,s) or R2(r,q,s) -> A(q,s)) |-|
Q(r,s) <-> Vq (RKr,q,s) -> A(q,s)) &

Vq (R2(r,q,s) -> A(q,s)) ,
from which P follows (by using AS1, AS2).
The same as for the previous case applies here.

Q.E.D.

The identification and synthesis process for the ERR class of
relations described in the above theorem has been implemented in PROLOG,
thus providing with an automatic tool for synthesising (naive) programs
for such relations.

2- CONCLUDING REMARKS

We have identified a subset of the extended Horn clause subset of
logic, for which we proved that it can be reexpressed in Horn clausal
form. Thus, for relations that are defined with clauses belonging to
this subset we gave mechanical means for obtaining a directly executable
(by standard PROLOG interpreters) program.

The significance of this transformation depends on two factors.
The first is the generality of this class: how many relations are
naturally expressed in this way? In CK5D Kowalski argues that the
extended Horn clause subset of logic has great expressive power and many
examples, as the ones presented above, can be found that fall within
this class. Moreover our subset is still general enough; the only
requirement is that the antecedent of the universally quantified Horn
clause is recursively defined with an ultimate direct instantiation of
the universally quantified variables. Such a case is very common when
dealing with recursively defined domains as shown in the examples above.

The second is whether the recursive Horn clausal form, which is the
end product of this transformation is really more efficiently executable
than the initial specification. As Kowalski points out in CK53 one can
build interpreters that encompass the extended Horn clause subset of
logic: "By translating the universal quantifier into double negation and
interpreting negation by failure such clauses can be executed both
correctly and efficiently, though incompletely". The source of
incompleteness is the introduction of negation, which means that we
cannot get all possible answers to a query. For example in the case of
the 'subset1 example this method will work only for queries with both
arguments instantiated - to test if the relation holds between two known
sets -, while execution won't terminate in any other use. This, of
course, is a severe limitation, given our expectations from a logic
programming language that is supposed to offer input-output non-
determinism, and it can be overcome using the recursive programs.
Furthermore, he argues that such an iterative execution - effectively
generating every instance of the universally quantified variables that
satisfies the antecedent and checking if it also satisfies the
consequent - is more efficient than a recursive one, since it does not
require a stack. Given that there are efficient ways of implementing
recursion - tail-recursion in particular can be turned into iteration -
we argue that the recursive programs that result from our transformation
are in general more efficient than the corresponding iterative execution
of the initial specifications. Additionally they do not require any
extra sophistication from the logic interpreter for their execution.

In the light of the above discussion a link between iteration and
recursion should become apparent. Furthermore, it should be realised
that the above result depends \/ery much upon the nature of recursion and
it is unlikely that similar results can be obtained for more general
subsets of logic. Obviously, additional domain-specific knowledge and
intelligent manipulation is necessary for the derivation of efficient
Horn clause programs from arbitrary first-order logic specifications.

6. ACKNOWLEDGEMENTS

I am grateful to Professor Matthew Hennessy for his continuous
support and useful suggestions during the preperation of this paper. I
am also indebted to the State Scholarships Foundation of Greece for its
fi nanc ia I support•

7. REFERENCES

* ABBREVIATIONS:
* JACM = Journal of the Association for Computer Machinery
* CACM = Communications of the Association for Computer Machinery
* IJCAI = International Joint Conference on Artificial Intelligence

CB1D Bowen, K. Programming with full first-order logic.
Machine Intelligence, Vol.10, pp.421-440, 1982.

CB2D Burstall, R.M. & J. Darlington. A transformation system for
developing recursive programs. JACM, Vol.24, pp.44-67, 1977.

CB3] Byrd, L., Pereira, F. & D. Warren. A guide to version 3 of DEC-10
Prolog. Technical Report DAI, Occasional Paper 19, University of
Edinburgh, 1980.

CC1] Campbell, J.A. (ed.) Implementations of PROLOG.
Ellis Horwood series in Artificial Intelligence, 1984.

CC2] Clark, K. Synthesis and verification of logic programs.
Research Report CCD, Imperial College, 1977.

CC3D Clark, K. & J. Darlington. Algorithm classification through
synthesis. Computer Journal, Vol.23, No.1, 1980.

CC4] Clark, K. & S. Sickel. Predicate logic:A calculus for deriving
programs. 5th IJCAI, pp.419-420, 1977.

CC5D Clark, K. & S. Tarnlund. A first order theory of data and programs.
Information Processing '77, North-Holland, pp.939-944, 1977.

CC6] Clark, K. & S. Tarnlund (eds.). Logic Programming.
Academic Press, 1982.

CC73 Clocksin, W.F. & C.S. Mellish. Programming in Prolog.
Springer-Verlag, 1981.

CD1] Darlington, J. A synthesis of several sort programs.
Acta Informatica, Vol.11, No.1, pp.1-30, 1978.

CD2D Darlington, J. An experimental program transformation and
synthesis system. Artificial Intelligence, Vol.16, pp.1-46, 1981.

CD33 Davis, R.E. Generating correct programs from logic specifications.
Ph.D thesis, University of California, USA, 1979.

CE1] van Emden, M. Programming with resolution logic.
Machine Intelligence, Vol.8, pp.266-299, 1977.

CE2] van Emden, M. & R. Kowalski. The semantics of predicate logic as
a programming language. JACM, Vol.23, No.4, pp.733-742, 1976.

CG1] Green, C.C. Application of theorem-proving to problem solving.
1st IJCAI, pp.219-237, 1969.

-16-

CH13 Hannson, A. A formal development of programs. Ph.D. thesis,
Dept. of Information Processing, Univ. of Stockholm, Sweden, 1980.

CH23 Hogger, C.J. Program synthesis in predicate logic. Proceedings of
AISB/GI Conference on A.I., pp.138-146, Hamburg, 1978.

CH33 Hogger, C.J. Derivation of Logic Programs. Ph.D thesis.
University of London, Imperial College, 1978.

CH43 Hogger, C.J. Derivation of Logic Programs.
JACM, Vol.28, No.2, pp.372-392, 1981.

CH53 Hogger, C.J. Introduction to Logic Programming.
Academic Press, 1984.

CK13 Kowalski, R. Predicate logic as programming language.
Information Processing, IFIP '74, North-Holland, pp.569-574, 1974.

CK23 Kowalski, R. Algorithm=Logic+Control.
CACM, Vol.22, No.7, pp.424-435, 1979.

CK33 Kowalski, R. Logic for problem solving. North-Holland, 1979.

CK43 Kowalski, R. Logic Programming.
Information Processing (IFIP) '83, pp.133-145, 1983.

CK53 Kowalski, R. The relation between logic programming and logic
specification, in: (eds.) Hoare, C.A.R. & J.C. Sheperdson.
Mathematical logic and programming languages. Prentice-Hall, 1985.

EL13 Lloyd, J.W. Foundations of logic programming. Springer-Verlag,1984.

CM13 Murray, N. Completely non-clausal theorem proving.
Artificial Intelligence, Vol.18, pp.67-87, 1982.

CP13 Pepper, P.(ed.) Program Transformation and Programming
Environments. NATO ASI Series, Vol.8, Springer-Verlag, 1984.

CS13 Stickel, M. A Prolog Technology Theorem Prover.
International Symposium on Logic Programming, ACM, 1984.

CV13 Vasey, P.E* First-Order Logic Applied to the Description and
Derivation of Programs. Ph.D thesis, Imperial College, 1985.

