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Abstract

The parallel vision algorithm design and implementation project was established to facilitate vision programming on
parallel architectures, particularly low-level vision and robot vehicle control algorithms on the Carnegie Mellon
Warp machine. To this end, we have (1) demonstrated the use of the Warp machine in several different algorithms;
(2) developed a specialized programming language, called Apply, for low-level vision programming on parallel
architectures in general, and Warp in particular; (3) used Warp as a research tool in vision, as opposed to using it
only for research in parallel vision; (4) developed a significant library of low-level vision programs for use on Warp.




1 Introduction _
1986 was an exciting year of progress for the parallel vision algorithm design and implementation effort at
Carnegie Mellon. We accomplished the following goals:
¢ We demonstrated Warp’s use for road following, obstacle avoidance using stereo visjon and ERIM laser
range scanner data, MRI image processing, signal processing, and other vision algorithms.

e We developed a library of low-level vision algorithms, all written in the Warp programming language
(W2). The library is based on the SPIDER FORTRAN subroutine library [32]. The current Warp
vision library includes about 80 different Warp programs, covering edge detection, smoothing, image
operations, Fourier transform, and so on. The actual number of routines in the SPIDER library covered
by these Warp programs is about 100.

e We developed a specialized programming language called Apply for programming low-level vision
algorithms on Warp. This programming language completely abstracts the underlying model of
parallelism from the programmer. Moreover, Apply can generate efficient code for both Warp and Sun
computers.

o We used Warp as a tool for research into vision algorithms, as opposed to purely being used as a tool
for research into parallelism. This important step is rarely reached by many other advanced computers.
The fact that we have already crossed it is evidence of Warp’s good design for vision and a result of our
efforts in making Warp accessible to vision researchers.

In the sections that follow, we discuss each of these accomplishments in detail. Section 3 discusses the Warp
demonstration of August 29, 1986, in which we demonstrated a number of parallel vision algorithms, including
robot road following, obstacle avoidance using both stereo and the ERIM laser range scanner, and Hough transform.
Section 4 gives a summary of the current library status of the Spider subroutine library implementation. Section 5
gives a description of the Apply programming language and its implementation on Warp. Section 6 gives a brief
description of some vision research being done on Warp.

2 Introduction to the Warp Machine
We describe the Warp architecture and then illustrate the Warp architectural decisions by compansons with those
made in a very different type of vision machine, namely bit-serial processor arrays.

2.1 The Warp Architecture and Programming Environment

This is a brief overview of Warp; more detail is available elsewhere [1, 4, 5, 10, 11, 13, 21, 22]. Warp has three
components—the Warp processor array (Warp array), the interface unit (JU), and the host, as depicted in Figure 1.
The Warp array performs the computation-intensive routines, for example, low-level vision routines. The IU
handles the input/output between the array and the host, and generates addresses and control signals for the Warp
array. The host executes the parts of the application programs that are not mapped onto the Warp array and supplies
the data to and receives the results from the array.

The Warp array is a programmable, one-dimensional systolic array with identical cells called Warp cells. Data
flows through the array on two data paths (X and Y), while addresses and systolic control signals travel on the Adr
path (as shown in Figure 1).

Each Warp cell is implemented as a programmable horizontal microengine, with its own program memory and
microsequencer. A Warp cell has a 32-bit wide data path, as depicted in Figure 2. The data path consists of two
32-bit floating-point processing elements: one multiplier and one ALU, a 4K-word memory for resident and
temporary data, a 128-word queue for each communication channel, and a 32-word register file to buffer data for
each floating-point unit. All these components are interconnected through a crossbar switch as shown in Figure 2.

The host consists of a VME-based workstation (currently a Sun 3/160), that serves as the master controller of the
Warp machine, and an “external host,”” so named because it is external to the workstation. The workstation
provides a UNIX environment for running application programs, and the external host provides a high data transfer
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rate for communicating with the Warp array. The externa host consists of three stand-alone 68020-based -~
processors, which ran without UNIX support to avoid operating system overheads. Two of the stand-aloné
processors Me cluster processors responsible for transferring data to and fiom the Warp array, while the third oneis, -
a support processor that controls peripheral devices (e,g., the camera mid the monitor), and handles mterrupts
oripaatkgin theclustersand Waip array. :

Adr Prwr

The first two prototype machines used wire-wrap technology. The production version of Warp is implemeniei
with PC hearts; die 19" tack wiH be able to host the IU and up to 24 Warp cells. For the PC board version, each
cell will fawefocal daft memory of 32K words, enlarged queues, and several other improvements [6].

The Wap programing environment is based cm Common lisp. A compiler, debugger, and execution - ;
mmimmml we iacintal  The programming language, W2; is apprarimaieiy at the level of ¢ or FORTRAN. DM,
mwemrn wefa as arays and sates are included. Control structures include IF, WHILE, and FOR. The compkr
Mies from to programmer aJ the paralelism in the Warp machine except for the parallel execution of the Waip
cells themselves QxDmanication between cells is tmplemeniBd using SEND and RECEIVE, which transfer wmi's
between adjacent celts tidg an asywteiK Wi protocol Cta the prototype machines, the same program is execaiei
on a cdb; each eel has its own program cornier, and can late different branches of conditionals, for exanple*
TMs iedfirictkn is lemoved to the frodittAM machines. The debugger alows single stepping and soarce-lewd
taoricpoiiits, ani aSorvs tie programmer lo o»ii'ae data structures within the Warp array. The execw k*
cavio maeat POA@SS" md pigraras for the oand-alone processors, and aids the programmer fe



managing the memory of the external host.

Warp is integrated into the vision programming environment at Carnegie Mellon. Vision programming is based
on the Generalized Image Library [14] which supports uniform access to images in files, frame buffers, memory,
and printers. Presently, most vision programming is done in C/UNIX, using Suns and Vaxes; we expect to move into
a Sun/Warp/Common Lisp based environment in the future.

2.2 Architectural Alternatives

We discuss the architectural decisions made in Warp by contrasting them with the decisions made in bit-serial
processor arrays, such as the Connection Machine [34] and MPP [7]. We chose these architectures because they
have also been used extensively for computer vision and image processing, and because the design choices in these
architectures were made significantly different than in Warp. These differences help exhibit and clarify the design
space for the Warp architecture.

We attempt to make our comparison quantitative by using benchmark data from a DARPA Image Understanding
(““DARPA IU"*) workshop held in November 1986 to compare various computers for vision [29]. In this workshop,
benchmarks for low and mid-level computer vision were defined and run by researchers closely associated with the
computers being benchmarked on a wide variety of computers, including Warp and the Connection Machine [25].

We briefly review salient features of the Connection Machine, called CM-1, used in these benchmarks. It is a
SIMD machine, consisting of an array of 64K bit-serial processing elements, each with 4K bits of memory. The
processors are connected by two networks: one connects each processor to four adjacent processors, and the other is
a 12-dimensional hypercube, connecting groups of 16 processors. The array is controlled by a host, which is a
Symbolics 3640 Lisp machine. CM-1 is programmed in an extension to Common Lisp called *Lisp [24], in which
references to data objects stored in the CM-1 armray and objects on the host can be intermixed.

‘We should not compare benchmark performance on two different computers without mentioning two critical
factors, namely cost and size. CM-1 is approximately one order of magnitude larger in volume and cost than Warp.

2.2.1 Programming model

Bit-serial processor arrays implement a data parallelism programming model, in which different processors
process different elements of the dataset. In the Connection Machine, the programmer manipulates data objects
stored in the Connection Machine array by the use of primitives in which the effect of a Lisp operator is distributed
over a data object.

In systolic arrays, the systolic processors individually manipulate words of data. In Warp, we have implemented
data parallelism programming models through the use of input and output partitioning. We have encapsulated input
partitioning over images in a specialized language called Apply [15]. In addition to these models, the high
interprocessor bandwidth of the systolic array allows efficient implementation of pipelining, in which not the data,
but the algorithm is partitioned.

2.2.2 Processor I/Q bandwidth and topology

Systolic arrays have high bandwidth between processors, which are organized in a simple topology. In the case of
the Warp array, this is the simplest possible topology, namely a linear array. The interconnection networks in the
Connection Machine allow flexible topology, but low bandwidth between communicating processors.

Bit-serial processing arrays may suffer from a serious bottleneck in /O with the external world, because of the
difficulty of feeding a large amount of data through a single simple processor. This bottleneck has been addressed
in various ways. MPP uses a *‘staging memory’’ in which image data can be placed and distributed to the array
along one dimension. The I/O bouleneck has been addressed by a new version of the Connection Machine, called
CM-2[33]. In this computer, a number of disk drives feed data into various points in the array. The CM-1
benchmark figures do not include image I/O: the processing is done on an image which has already been loaded into
the array, and processing is completed with the image still in the array. Otherwise, image /O would completely




dominate processing time. For many purposes it is more convenient to process an image which is stored in a frame
buffer or host memory, which is easier in Warp because of the high bandwidth between the Warp array and the
Warp host. All the Warp benchmarks include I/O time from the host.

The high bandwidth connection between processors in Warp makes it possible for all processors to see all data in
an image, while achieving useful image processing time. (In fact, because of the linear topology, there is no time
advantage to limit the passage of an image through less than all processors). This is important in global image
computations such as Hough transform, where any input can influence any output. For example, the transform of a
512x512 image into a 180x512 Hough space took 1.7 seconds on Warp, only 2.5 times as long as the 0.7 seconds
for this computation on CM-1. The ratio here is far less than for a simple local computation on a large image, such
as Laplacian and zero crossing.

The limited topology of the Warp array architecture has implications for some global algorithms, in which
processing is done separately on different cells, then combined in a series of pairwise merge operations using a
‘“‘divide and conquer’’ approach. For example, in the Warp border following algorithm for a 512x512 image,
individual cells trace the borders of different portions of the image, then those borders are merged in a series of
merge operations in the Warp array. The time for border following on Warp is 1100 milliseconds, significantly
more than the 100 milliseconds the algorithm takes on CM-1.

2.2.3 Processor number and power

Warp has only ten parallel processing elements in its array, each of which is a powerful 10 MFLOPS computer.
CM-1, on the other hand, has 64K processing elements, each of which is a simple bit-serial processor without
floating-point capability. Thus, the two machines stand at opposite ends of the spectrum of processor power and
number.

We find that the small number of processing elements in Warp makes it easier to get good use of the Warp array
in problems where a complex global computation is performed on a moderate sized dataset. In these problems, not
mnchdamwanehsmxs“avmlable." For example, the DARPA IU benchmarks included the computation of the

m mal convex hull [27] of a set of 1000 points. The CM-1 algorithm used a brush-fire expansion
algmmm,whmhledwmexecuumumconOOmﬂlmecondsforﬂwoomplctecompumuom The same algorithm
was implemented on Warp, and ran in 18 milliseconds. Similar ratios are found in the times for the minimal
spanning tree of 1000 points (160 milliseconds on Warp versus 2.2 seconds on CM-1) and a triangle visibility
problem for 1000 three dimensional triangles (400 milliseconds on Warp versus 1 second on CM-1).

Simple algorithms at the lowest level of vision, such as edge detection computations, run much faster on large
arrays of processors such as the Connection Machine than Warp. This is because no communication is required
between distant elements of the array, and the large array of processors can be readily mapped onto the large image
array. For example, the computation of an llxlll.aplnmm[lﬁlonasuxsummge followed by the detection
of zero crossings, takes only 3 milliseconds on CM-1, as opposed to 400 millise

The floating-point processors in Warp aid the programmer in eliminating the need for low-level algorithmic
including Voronoi diagram and convex hull. The use of floating-point made it unnecessary for the Warp
programmer to make assumptions about data range and placement.

In conclusion, we see that bit-serial processor arrays excel in the lowest level of vision, such as edge detection.
The CM-1’s performance at this level exceeded Warp’s by two orders of magnitude. However, specialized
hardware must be used to eliminate an important I/O bottleneck to actually observe this performance. The use of the
router in the Connection Machine allows it to do well also at higher levels of vision, such as border following. We
also see that the more general class of programming models and use of floating-point hardware in Warp give it good
ﬁWhn%mdﬂmﬂmWﬂmemmmﬁmmm

sets.




3 Warp Demonstration

3.1 Introduction

This is a summary of the Warp demonstration of August 29, 1986, in which several different algorithms were
demonstrated on Warp. The algorithms included several vision algorithms, as well as algorithms from signal
processing and scientific computing.

3.2 Road-following

3.2.1 Task Description

The Terregator is controlled using algorithms running on Warp and the Sun to follow a road. The road is
segmented from the background using shape and color. After cach image is processed, the vehicle is steered so that
it is in the center of the road by the time the next image is processed.

3.2.2 Algorithm Used

There are several steps in the algorithm. First, the image is reduced in size and classified into three regions using
color. The colors used initially come from a training image where the road is outlined by the user using the cursor.
Later they come from the previous image, as described below. The classification is done using a quadratic form, so
that each color is defined as an ellipsoid in color space. Points are classified as left of road, road, or right of road
depending on which is most like according to the measured means and covariance matrices of each feature.

In the second step, the image is cleaned up using simple image processing heuristics. The pixels classified as road
are selected, and a binary grow/shrink algorithm is performed to remove isolated pixels and fill in cracks in the road.
The image is then scanned row by row to determine the road position on each scan line.

In the third step, a Hough transform is performed to determine the actual road position given the estimated left and
right road edges on each scan line. The Hough transform is constrained to find a road of the right width (using the
width estimated from the training image).

In the fourth step the colors of the regions to the left and right of the road and the road itself are remeasured, giving
improved estimates of the colors. The colors are remeasured for two reasons. First, the colors must be updated for
the next image —the colors can change over time, due to lighting changes or scene changes, and we need to keep
track of this. Second, it is possible for the colors to change radically from scene to scene, usually due to a video
transmission error (loss of color is quite common with weak NTSC transmission) and so the first step sometimes
completely fails—no road is detected using the old colors, or very little road is detected. In this case we take our
best guess (assuming the road is straight ahead if we see nothing) and measure the current colors; this almost always
allows us to recover from this kind of error.

In the fifth and sixth steps, the second and third steps are performed again, using the new color estimates.

In the seventh step, the vehicle is steered towards the center of the road, using the road position estimated by the
Hough transform.

3.2.3 Mapping the Algorithm on Warp

The Sun, clusters, and Warp array all participate in this algorithm. Thcmdmuomspedormedby
the image into ten regions, and having each cell average and reduce one region. The color classification algorith
pafanwdearp,nmdmwbymhceﬂoncmmofthcmlmnnsoNhemmmdU asting t
color features to all cells. The grow and shrink o; mdommgawmlmmethod,m&mtmhceﬂ
must overlap some of its columns with the next cell. Thcexmmofmemadposmmmmhmlmcwdmn
using the cluster processor. The Hough transform is performed on the Sun. The recalculation of the color features
is done on Warp, again by splitting the columns of the image into ten parts, and giving each cell one tenth. The




color features are then combined by each cell with the previous cell's.

3JL4 Performance
The principal criterion in this dgorithm is that the Terregator be driven successfully at full speed, 300 mm/sec

(appiox 1 km/hr), which is accomplished. Therefore, it was not necessary to optimize many of the steps.

The agorithm executes in 6 seconds/image. A comparable algorithm written by Richard Wallace took about 10
seconds/image on a SUN-3, but worked on a much coarser image: it was only 32x32 pixels. The Warp
implementation makes only asmall concession to image reduction: the imageis 256x256, reduced from 512x512.
Thus, the Warp agorithm is approximately 100 times faster than a SUN-3 (about a 200-fold improvement over a
Vax 11/780).

If it were possible to run the Terregator faster, then the agorithm's running time could be decreased by about 225
seconds using two steps. Firgt, cluster code that feeds the image directly into the Warp array instead of first storing
the image in the cluster and then feeding the image from the cluster memory to Waip should beused This will give
approximately 0.75 seconds speedup.  Second, the Hough transform can be implemented on Warp, giving
approximately 15 seconds speedup. This speedup is obtained with no loss in image resol ution.

Further speedup can be obtained by using a specialy built device, currently under development at Carnegie Mellon,
for feeding the image from the frame buffer to Warp (0.6 seconds) and further reduction of the image size.
Approximately afactor of 3 is obtained for every reduction of 4 in image size, so a reduction to 128x 128 images
should give an dgorithm that executesin 1 second

3-3 Obstacle Avoidance with FIDO

33.1 Task Description

FIDO is alarge program that is used to avoid obstacles. Two cameras are used to produce a three-dimensional
estimate of possible obstacles positions. The program then plans and executes a path around any obstacles. Two
Warp low level vision functions are used in the program. These are described below. Most of the rest is executed
on the Sun workstation that runs Warp. One complete step currently takes 8 to 10 seconds. :

33.2 Algorithm Used
Two dgorithmsare used: Interest Operator, and Correlation.

Interest Operator. Given a 256x256 pixel image, divided into 10x10 subimages, choose the most interesting
points in each sub-image. A point is defined as interesting if it has a much different pixel value than any of its
neighbors. For each point, calculate the intengity difference between that point and its neighbors above, to the right,
to the upper right, and to the upper left. For each point, choose the minimum of these values. Then for each -
subimage, choose the maximum pixel difference of those left. This will givea set of 100 pixel positionsand interest
values. '

Correlation. Given two 512x512 images and a set of 50 points corresponding to one of the images, find the
coiTesponding points in the other imago. To make matching more likely, two image pyramids are used. Each levd
of apyramid is a tower resolution image obtained by averaging 4 pixels into 1. Matching is done between the two
image pyramids stating with the lowest resolution level and continuing to higher resolution levels, with the match at
the enroot level guiding where to search in the next level. Associated with each match is a correlation vdue*
indicating how good the match is. TTie dgorithm is as follows. The4x4 pixel areais placed over the 8x8 pxd
areain 5x5 different ways and the correlaion of the overlapping pixels is calculated. The maximum cosrelasion
md its position are returned



3.3.3 Mapping the Algorithm on Warp

Interest Operator. Each of the 10 cells in the array takes one tenth of the image (one tenth of the columns, all of
the rows, with some overlap). Each cell then computes the ‘‘interestingness’’ of each point in its section, storing
appropriate points and sending them to the host at the end of the function.

Correlation. Each cell gets 5 sets of areas and does a complete computation on each of them in turn.

3.3.4 Performance
Interest Operator. The interest operator function takes about 0.5 seconds on the Warp.

Correlation. The correlation takes about 1 second to execute. This will be shortened by moving some other
operations to the Warp array.

3.4 Obstacle Avoidance Using ERIM Laser Range Scanner

3.4.1 Task Description

The ERIM laser range scanner is proving to be a highly effective device for obstacle avoidance. It provides direct
three-dimensional information about the world, which can only be inferred using vision based techniques. The
obstacle avoidance algorithm uses the ERIM scanner to construct a three-dimensional map of the world, which can
then be navigated reliably. Three steps of the obstacle avoidance algorithm are implemented on Warp.

3.4.2 Algorithm Used

The first step of the algorithm takes the output from the ERIM scanner and calculates the three-dimensional
coordinates of each point. This is a straightforward application of a polynomial formula to the value returned for
each point.

The second step takes the three dimensional coordinates and constructs a grid of the world in front of the vehicle.
The grid is divided into approximately 60 cells horizontally, and 64 cells vertically. A matrix is accumulated in each
cell that will later be used to construct the covariance matrix of coordinates in each cell. The points are mapped into
this grid, and the matrix is updated.

The third step solves for the eigenvalues of each covariance matrix, which gives the height and tilt of a best fit plane
through the points in each grid cell.

The fourth step calculates the accessible and inaccessible regions of the grid using a connected-components analysis.

The fifth step calculates a path for the vehicle to take through the accessible regions of the grid.

3.4.3 Mapping the Algorithm on Warp

Only the first three steps are performed on Warp. In the first step of the algorithm the image is divided into ten
regions, with each cell calculating the polynomial on one region. In the second step, it is the output array (the grid)
that is divided ten ways, and each cell sees all of the input data. The third step computes the eigenvalues. This
method was chosen because of the limited memory of the current Warp prototype.

3.4.4 Performance

Approximately five seconds are spent on the Sun in the first three steps of the algorithm. The first three steps take
350 ms on the Warp array, a speedup of five to ten. This allows us to achieve video rate for ERIM processing
(500ms/frame). Just as significant as the execution time on Warp is the programming time. To obtain speed, the
Sun algorithm uses several pre-computed lookup tables and is very obscure, while the power of the Warp makes it
possible to code the algorithm in a straightforward manner, by simply doing the polynomial calculations as they are
normally written.




The last steps of the algorithm do a single pass DP method to find a path through the obstacles, and then smooth
the path by fitting arcs. There should be no problem in implementing the DP method in less than about 50 ms.
Smoothing is more complex, and may be hard to implement on Warp. But in any case we can have the Sun do this
planning while Warp is processing the next image. So the whole application should run in less than 500 ms, the
ERIM frame rate, compared to 15 seconds (approximatcly) on the Sun—a factor of 30.

3.5 Path Planning

3.5.1 Task Description

Given a 512x512 image whose points are associated with various COSIS, the path planning task is to find the
minimum-cost path from any point t©0 2 goal point. Path planning is often performed by an autonomous land vehicle
(ALV).

3.5.2 Algorithm Used

'I‘hcimageisscannedineightdirecdonsrepeatedly. Everyscanupdatmmecurrmtcostofeach point, using a
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3.63 Mapping the Algorithm on Warp

Each cdl gets 1/10" of the set of angles. Each cell gets every pixel, does the caculations for its subset of angles
and generates 110™ of the resulting image which is output at the end. The agorithm was implemented on Warp
with a set of 50 angles (step of 3.6 degrees). Searching for pesks in the 50x512 output is done on the host and for
each maximum found in the output image at position (*\)) aline with distance/ from the origin and making an angle
i degrees with the x-axisis drawn.

3.6.4 Performance

For a512x512 input image and 50 angles, the Warp processing time is about 2 seconds. Each cell does about 6
million floating-point operations per pixel which gives atotal of 30 MFLOPS for the Warp array. Warp takes 2
secondsto execute the dgorithm. Carefully written code on aVax 11/780 runs 390 times dower.

3J7 Graph Algorithms: Finding Minimum-cost Path

3-7.1 Task Description

A random graph of 350 nodes and an arbitrary number of edges between nodes are given. Each edgeis assgned a
cost Thecc™ofap”thisctefinedtobettesumofthea™tsof the edges in die path. The minimum cogt path task is
to find the minimum-cost path between al pairs of nodes.

3.7.2 Algorithm Used
WaflshaPs dgorithm isused [3]. The kernel of the algorithm is given below:
for (ke O ; k< 350 ; k ++)
for (1«0 ; 1< 350 ; i++)
for { j -0 ; j< 350 ; j++)
- CLilT « MIHC CTiT[j] _
ClLiTk]I+C[KI[ID
HI

3J3 Mapping the Algorithm on Warp
Each cell performs one outmost iteration (indexed by variable k) of the above agorithm. Each run of the Warp
arrag(__p’erfdpns 10 iterations of the above dgorithm. To complete thetask, 35 Warp runsare necessary.

374 Pexforssamce
“Warp-currently uses about 16 seconds to complete the whole task, including the overhead of the host control.
Wwp isabout 98 times fester than the VAX 11/780 for this problem.

SJStitetitifle Computing: Solving Elliptic PBEswith SOR

3JJI Tusk DeicripCion
OR it ttsci to solve a boundary value problem (Dirichlet type) of dliptic partial differentid equations on a
sguarevegion [Q,IMO0»I].
PEIUYHQUx Y} U D +K(x 3} X U=F(xY),
where U is the uskaosm sad P, Q, K, F are given functioas. The region is discretized into a mesh of 225%225 aad a

daggered grid ifferoice a™jdmmim is applied to derive a linear system of equations with 50,625 unknowns.
The tasktott>solve thislinear sysein of equations.

For this tenamttaicn, the moded problem of afrisson equation is sdected asabdicitraarl. That is UMU _=0, the
left boundary aid right boundary of the square region are set to 0, the upper baimdary and the lower bwnSary arc
st to non-zero given functions.
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3.8.2 Algorithm Used
The Successive Over-Relaxation (SOR) iterative method is used for solving the PDE problem. The optimal
relaxation coefficient @ = 1.972 is used to accelerate the convergence.

3.8.3 Mapping the Algorithm on Warp

Each warp cell performs one iteration of SOR. The unknown vector U is sent through the Warp array in raster
order, as it is done in sequential algorithms. Once a cell completes the update of one row of mesh points, and sends
them to the next cell, the cell updates the next row while the next cell starts updating the first row for the next
iteration, and so on for the whole array of 10 cells.

In one run through the Warp cell, 10 iterations of SOR is done with the same relaxation coefficient @. The
convergence test is then performed on the host. If the solution has not converged yet, another run of Warp is carried
out. For one given benchmark example, the algorithm takes 322 iterations to reach the stopping criterion of relative
error 1.0e-4, which means 33 runs of Warp array.

3.8.4 Performance
Warp currently takes about 16 seconds to complete a solution which requires 330 iterations, including the host
overhead and convergence test. Warp is about 440 times faster than a VAX 11/780 for the SOR algorithm.

3.9 Scientific Computing: Adaptive Beamforming for Sonar Using SVD

3.9.1 Task Description

Adaptive beamforming is a method by which dynamic weighting may be applied to a linear array of receiving
elements, such as sonar hydrophones. The phase weightings that are applied alter the overall array beam pattern in
such a way as to maximize the gain in one desired direction while minimizing it in the others with respect to some
particular criteria.

This beam steering effect is used in this demonstration, to reduce the gain of the array in the direction of some large
interference signals while improving it in the direction of weak sources.

We perform the demonstration using synthesised frequency domain data, i.e., commencing the algorithm after the
FFT operation. Additionally, instead of performing the inner product of the weight vector with the frequency
domainmauix,wep!otaf\mcﬁmofmewdghtvecwrinapolarfammasthisshowsﬂwadapmﬁonofmeamy
mﬂwfaceof:merfumgsomcw In particular, we display the actual beampattern both before adaptation

wg!mngﬁmcm The beam pattern is shown in polar coordinates, from O to 90 degrees. The angles of
interference are also shown.

Cornerstone of the demonstration, from an algorithm point of view, is the execution of a complex Singular Value
Decomposition (SVD). We perform the complex SVD via a 100x 100 real SVD. The SVD of a real matrix A is
defined as:

UTAV=Z’
where Z is a pxp nonnegative diagonal matrix, and U and V are mxm and n X a orthogonal matrices, respectively.
The nonzero elements in the diagonal of X are the singular values of A. The algorithm is based on the Hestenes
methods. The method generates a sequence of J's such that:

Ml.»J =UZ
Each J; is obtained by a set of plane rotations that orthogonalize columns. We use Schimmel and Luk’s
ordermgﬁﬂl

We have a set of rotations applied to A and each complete rotation set is called a sweep. The algorithm follows two
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distinct phases:
1. A rotation set is carried out. It consists of inner products between ‘‘adjacent’’ columns. For each
column-pair three values are generated. For an nxn problem a total of 3xn/2 (or 3x(n/2-1),
depending on whether the rotation is odd or even) values are generated.

2. From these n/2 triplets, the sine and cosine of the rotation angle are calculated. These values make up
the structure of the tridiagonal J ; matrix, which is then multiplied by A to generate the new A matrix.
A new rotation is then carried out.
A sweep consists of n of the above rotation sets (either ‘“‘odd’” or “‘even’). When the sweep is completed, a
convergence criteria can be applied. Alternatively, it is known that log(n) sweeps are sufficient to compute the
singular values.

3.9.3 Mapping the Algorithm on Warp
A 100x 100 problem is considered. The algorithm has been mapped on Warp as follows. First, the A matrix is
stored into Warp. In particular, each Warp cell contains ten rows.

‘When a rotation set is executed, each cell starts computing the inner products of the fifty sections of column-pairs
it contains. Each cell computes the inner product of each column in a column pair individually, as well as the inner
product of the two columns together, producing a triplet of numbers. The first cell then passes the partial results to
the next cell, which adds them to those it generated, and passes them along to the next cell. The end result is a
stream of triplets being sent to one of the cluster processors.

The cluster processor receiving the triplets computes the sine and cosine, and sends them to the other cluster
processor. Simulation has shown that, to reliably converge, it is necessary to carry out this computation in
double-precision. Luckily, the cluster processors feature a 68881 floating-point co-processor, which has double-
precision floating-point computation capability. Simulation has also shown that double precision is not needed in
‘other phases of the computation. This was very important for us because the Warp array works on single-precision
only. Finally, the computation on the cluster requires both full-precision division and square-root, none of which is
available as a hardware primitive on the Warp array.

When the second cluster starts receiving the sines and cosines, it sends them back to the Warp array, which
performs matrix multiplication (i.e., AJ}) Then, a new rotation is started. No convergence criteria is implemented,
but, rather, log(n) sweeps are carried out.

The comrectness of the algorithm has been checked with the SVD EISPACK routine. Both Warp and the
EISPACK routines started from the same matrix, generated with the EISPACK random number generator routine.

3.9.4 Performance

The performance of the whole adaptive beamforming application is strictly dependent on the speed of execution
of the SVD. The following numbers are for a 100x 100 problem. The array executes a sweep in 150ms., which is
about 40 MFLOPS. A total of 8 sweeps are performed. A 100x100 problem, defined as ‘‘A matrix in
core—singular values in core,’” takes about 6 seconds on Warp. The EISPACK routine on the same matrix took
about 23 seconds on a Vax 8650. Therefore, Warp is about 23 times faster than a Vax 11/780. This factor of 23 is
when the the time for the whole adaptive beamforming algorithm is measured.

Further speed-up can be obtained by assigning the computation of the rotation parameters to both cluster processors.
An improvement of about two seconds is expected. The execution time on the current Warp of a 100x 100 SVD
problem camnot go below 4 second, therefore. Further improvements require a dedicated ‘‘Boundary
Processor’” —under development at Carnegie Mellon—to compute the rotation parameters. With such a component
it is reasonable to assume that Warp could execute the task in less than two seconds.
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3.10 Signal Processing: 2-D Correlation Using FFT

3.10.1 Task Description
A discrete 512x512 two-dimensional cyclic correlation of two input images is performed. The ouput image
should have a maximum where the input images match.

3.10.2 Algorithm Used

The correlation is done with a’512x512 Fast Fourier Transform (FFT). Firgt, the direct FFTs of the two input
images are computed. Then, the conjugate of the direct FFT of one of the images is multiplied by the direct FFT of
the other, and the inverse FFT of the result of this multiplication is computed and displayed.

3.103 Mapping the Algorithm on Warp

This is basicaly an application of the FFT agorithm aready implemented on Warp. The algorithm implemented
on Warp is asystolic 9-stage constant geometry 512-point one-dimensional FFT where each cell does one stage, that
is, takes the partial results from the previous cell, does the calculations and passes the new partial results to the next
cell A 512x512 2-D (direct or inverse) FFT is done by calculating the 512-point 1-D FFTs of the 512 rows in a
first pass and then the 512-point 1-D FFT s of the 512 columns of the result of the first pass. That gives atotal of
1024,512-point 1-D FFTs,

3.10.4 Performance

Tlie Warp processing time for a (direct or inverse) 512x512 2-D FFT is about 03 sec and the actual processing
time (considering 1/0O overhead) is about 25 sec which is about 40 times faster than FACOM M-160AD. For this
correlation application, where there are also other computations being done on Warp like ftoat-to-integer
conversions for displaying and complex multiply, the total time isabout 8 seconds. Thisimplies that Warp is about
300 times faster than the Vax 11/780. The speed-up can be substantially increased when the host code for the
application isimproved

3.11 Mandelbrot Sets

3.1L1 Task Description .

This demonstrates the application of Warp in mathematics. A newly active field -of mathematlcs is problem
solving ‘using computer graphics. " The'idea is to write a program that wH produce result that on be. dlsplayed
rather than just priming a meaningless sequence of numbers.

3.11” Algorithm Used

The Mandelbrot and Julia Seis are derived firm ample femciQiw that arc computed Heratively. The basic
function for these sets is

X il
wbem X, and ¢ are defenniMx| at the start of the repetition. What mat e the computation intefesting is that both X,

and c are complex numbers. Because of this* the simple operation above produces vary complicated results* By
picking agroup of stating ¢ or X, values, images can be crcatoi Mandelbrot and Juia Sets are fractal cures.

3JUL3 Mqpptag the Alfwttfcm m Wmrp
Each Warp cell works « 1/10* ef' the image* performing the same o p ~ n at is neighbors but on different
input parameters.




3.11.4 Performance

The program that runs on the Warp does a 512x512 image with 256 iterations (each iteration is 10 floating point
operations) in 7.5 seconds. An equivalent program takes 12 minutes on a Vax 11/780. Such curves can only be
generated on computers with floating point capabilities.

3.12 Summary of Measured Warp Speed-ups

Some of the tasks presented in this document have been implemented on various computers. In particular, Vax
8650, Vax 11/780 with floating-point accelerator, and SUN-3 with 68881 floating-point co-processor have been
used. We have normalized the performance of Warp to that of a Vax 11/780 by using the following, approximate
factors:

SUN-3 is approximately 2 times faster than Vax 11/780, and
Vax 8650 is approximately 6 times faster than Vax 11/780.

The label N/A means that a meaningful comparison does not apply. The mark (*) means that the speed-up can be
further improved by a factor of at least two, when the application program for Warp is optimized. Explanations are
given in the section where the task is discussed.

Task Speed-up over
! Vax 11/780

Road-following......... et eeeeeeeeaeeeeteeeeteeeitteiitteitee e teeeaaeeeaeeeaereerteesteesaee st * ... 200
Obstacle Avoidancewith FIDO.................... €w v i e e e e o NIA
ALV Algorithms. Obstacle Avoidance

Using ERIM Laser Range Scanner..........cccovveieeiineennen! 60 *)
ALV Algorithms; Path Planning..............eeeeeeiiiiiiiiiiie e 60 *)
ALV Algorithms: Finding Linesby Hough Transform.............................. .. .. 390
Graph Algorithms: Finding Minimum-cost Path................ccoooiiiii ! 98
Scientific Computing: .Solving Elliptic PDEswith SOR................................. 440
Scientific Computing: Adaptive Beamforming for Sonar

usingSvD_.......... T™MIM e ™ 23 *)
Signal. Processing: 2-D Correlation Using FFT...._ ™. ™ _— ™ ™ MO 3000 (M)
Mandelbrot Sets ™. ... e & L0, ML L TMTM (T TV 95

4Vidon Library Implementation Status

As an imporant aid for the Warp programmer, and to facilitate use of Warp by people who do not want to
program Warp, we have:created alibrary of low-level vision routines. All of these routines are written in the Warp
programming language (W2)-earlier implementations of some routines in Warp microcode (WI and W0) which
were superseded by W2 code. In the future, we plan to rewrite some of the programs in the Apply language, which
will aso give these routines the capability of being ran efficiently on computers other than Warp, such as the Sun.
The library is based on the, SPIDER FORTRAN subroutine library [32]. The current Warp vision library includes
about 80 different Warp programs, covering edge detection, smoothing, image operations, Fourier transform, and so
on. Theactual number of routines in the SPIDER library covered by these Warp programs is about 100,

S Low Level Vison on Warp and the Apply Programming Model
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) computer ing is image to image
In vision, the first, and ofien most time-consuming step in image processing 4
operations. In this step, an input image is mapped into an output image through some local operation that applies to
a window around each pixel of the input image. Algorithms that fall into this class include: edge detection,
smoothing, convolutions in general, contrast enhancement, color transformations, and thresholding. Cgllecuvely,
we call these operations low-level vision. Low-level vision is often time consuming simply because images are

quiiehrm—uypicdsimisSIZxSlZpimls.sotheopmnionmuﬂbeappﬁed%Z,lMﬁm

Fortunately, this siep in image processing is easy to speed up through the use of parallelism. ’I‘hcopemnon
applied at every point in the image is often independent from point to point, and also does not vary much in
execution time at different points in the image. This is because at this stage of image processing, nothing has been
done 1o differentiate one area of the image from another, so that all areas are processed in the same way. Because of
these two characteristics, many parallel computers achieve good efficiency in these algorithms, through the use of
input partitioning (23], also known as data parallelism.

We discuss a particular parallel computer, the Warp machine, which has been developed for image and signal
processing, and describe its use at this level of vision. We also define a language, Apply, which is specifically
designed for implementing these algorithms. Apply runs on the Warp machine, and in C under UNIX, with good
efficiency in both cases. Therefore, the programmer is not limited to developing his programs just on Warp,
although they run much faster (typically 100 times faster) there; he can do some development under the more
generally available UNIX system.

We consider Apply and its implementation on Warp to be a significant development for image processing on
supercomputers in general. The programmer of a supercomputer usually makes a substantial commitment to the
particular supercomputer he is using because he cannot expect that his code will run efficiently on any other
computer. This limits the use of supercomputers, because such a great investment in coding is required that only
truly commitied users will make this investment. With Apply however, the programmer can recompile his code for
other machines. Right now, only UNIX systems and Warp run Apply programs. But since we include a definition of
Apply as it rans on Warp, and because most paralle]l computers support input partitioning, it should be possible to
implement it on other supercomputers as well. Once this is done, the Apply programmer will be able to port his
code casily to many different computers, lengthening the lifetime of his code and lessening the commitment he must
make 1 a particular computer.

Apply also has implications for benchmarking of new image processing super s. Currently, it is hard to
compare these computers, becanse they all run different, incompatible languages and operating systems, so the same
program cannot be wested on different computers. Once Apply is implemented on different supercomputers, it will
be possible w0 et their performance on an important class of image operations, namely low-level vision.

Apply is not a panaces for these problems; it is an application-specific language, which is potentially machine
independent. It cannot be used for all vision algorithms, and even some low-level vision algorithms cannot be
efficiently expressed in it as it is curremtly defined.

We begin by discussing our carly work on low-level vision, where we developed the input partitioning method on
Warp. Then we define and discuss Apply. Following this, we describe how Apply might be implemented on other
compusers,

AL

We map low-level vision algorithms onto Warp by the inpw partitioning method. On a Warp array of ten cells,
the image is divided into tem regions, by column, as shown in Figure 3. Thas gives each cell a tall, narrow region 10
process, for S12x 512 image processing, the region size is 52 columns by 512 rows. To use technical terms from
mMmemm*‘m"d&emm"wﬁ"hhmdmmukmw

arp array.

The emage i divided im tus way uung 2 senes of macros called GETROW, PUTROW, and COMPUTEROW.
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Figure 3: Input partitioning method on Warp

GETROW generates code that takes arow of an image from the externa host, and distributes one-tenth of it to each
of ten cells. The programmer includes a GETROW macro at the point in his program where he wants to obtain arow
of theimage; after the execution of the macro, abuffer in theinternal cell memory has the data from the image row.

The GETROW macro works as follows. The external tost sendsin the image rows as apacked array of bytes-for
a512-byte wide image, this array consists of 128 32-bit words. These words are unpacked and converted to floating
point numbers in the interface unit The 512 32-bit floating point numbers resulting from this operation are fed in
seguence to the first cell of the Warp array. This cell takes one-tenth of the numbers, removing them from the
stream, and passes through the rest to the next cell. The first cell then adds a number of zeroes to replace the data it
has removed, so that the number of data received and sent are equal

This process is repeated in each cell. In thisway, each cell obtains one-tenth of the data from arow of the image.
As the program is executed, and the process is repeated for all rows of the image, each cell sees an adjacent set of
columns of the image, as shown in Figure 3.

We have omitted certain details of GETROW-for example, usually the image row size is not an exact multiple of
ten. In this case, the GETROW macro pads the row equally on both sides by having the interface unit generate an
appropriate number of zeroes on either side of the image row. Also, usually the area of the image each cell must see
to generate its outputs overlaps with the next cell's area. In this case, the cell copies some of the data it receives to
thenext cell. All thiscode isautomatically generated by GETROW.

PUTROW, the corresponding macro for output, takes a buffo of one-tenth of the row length from each cell and
combines them by concatenation. The output row starts as a buffo of 512 zeroes generated by the interface unit
The first cell discards the first one-tenth of these and adds its own data to the end. The second cell does the same,
adding its data after the first When the buffer leaves the last cell, al the zeroes have been discarded and the first
cell's data has reached Ihe beginning of the buffer. The interface unit then converts the floating point numbersin the
buffer to zeroes and outputs it to the external host, which receives an array of 512 bytes packed into 128 32-bit
words. Aswith GETROW, puTROW handles image buffos that are not multiples of ten, this time by discarding data
on both sides of the buffer before the buffer is sent to the interface unit by the last cell.

During GETROW, no computation is performed; the same applies to PUTROW. Warp's horizontal microword,
however, allows input, computation, and output at the same time. COMPUTEROW implements this. Ignoring the
complications mentioned above, COMPUTEROW consists of three loops. In the first loop, the data for the cell isread
Mo a memory buffo from the previous cell, as in GETROW, and at the same time the first one-tenth of the output
buffer is discarded, as in PUTROW. In the second loop, nine-tenths of the input row is passed through to the next
cell, as in GETROW, at the same time, nine-tenths of the output buffer is passed through, asin PUTROW. Thisloopis
unwound by COMPUTEROW so that for every 9 inputs and outputs {Kissed through, one output of this cell is
computed. In the third loop, the outputs computed in the second loop aze passed on to the next cell, asin PUTROW.
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There are several advantages to this approach to input partitioning:

e Work on the external host is kept to a minimum.” In the Warp machine, the external host tends to be a
bottleneck in many algorithms; in the prototype machines, the external host’s actual data rate to the
array is only about 1/4® of the maximum rate the Warp machine can handle, even if the interface unit
unpacks data as it arrives. Using this input partitioning model, the external host need not unpack and
repack bytes, which it would have to if the data was requested in another order.

» Each cell sees a connected set of columns of the image, which are one-tenth of the total columns in a
row. Processing adjacent columns is an advantage since many vision algorithms (e.g., median
filter [18]) can use the result from a previous set of columns to speed up the computation at the next set
of columns to the right.

o Memory requirements at a cell are minimized, since each cell must store only 1/10% of a row. This is
important in the prototype Warp machines, since they have only 4K words memory on each cell.

o The image is processed in raster order, which has for a long time been a popular order for accessing
data in an image. This means that many efficient algorithms, which have been developed for raster-
order image processing, can be used.

* An unexpected side effect of this I/O model was that it made it easier to debug the hardware in the
Warp machine. If some portion of a Warp cell is not working, but the communication and
microsequencing portions are, then the output from a given cell will be wrong, but it will keep its proper
position in the image. This means that the error will be extremely evident-typically a black stripe is
generated in the corresponding position in the image. It is quite easy to infer from such an image which
cell is broken!

5.3 Introduction to Apply
The Apply programming model is a special-purpose programming approach which simplifies the programming

task by making explicit the parallelism of low-level vision algorithms. We have developed a special-purpose
programming language called the Apply language which embodies this parallel programming approach. When
using the Apply language, the programmer writes a procedure which defines the operation to be applied at a
particular pixel location. The procedure conforms to the following program model:

o It accepts a window or a pixel from each input image.

o It performs arbitrary computation, usually without side-effects.

It returns a pixel value for each output image.

The Apply compiler converts the simple procedure into an implementation which can be run efficiently on the
Warp supercomputer, or on a uni-processor machine in C under UNIX.

5.3.1 The Apply Language

The Apply language is designed for programming image to image computations where the pixels of the output
images can be computed from corresponding rectangular windows of the input images. The essential feature of the
language is that each operation is written as a procedure for a single pixel position. The Apply compiler generates a
program which executes the procedure over an entire image. No ordering constraints are provided for in the
language, allowing the compiler complete freedom in dividing the computation among processors. As a
consequence of this, however, Apply does not allow the output of the computation at one pixel location to be used as
the input for the same computation at a nearby pixel, as is done in several low-level vision operators, such as
uniform smoothing (see FLWL2 [32]) or median filter [18]. Provision for limited feedback is an area for future
research.

Each procedure has a parameter list containing parameters of any of the following types: in, out or constant.
Input parameters are either scalar variables or two-dimensional arrays. A scalar input variable represents the pixel
value of an input image at the current processing coordinates. A two-dimensional array input variable represents a
window of an input image. Element (0,0) of the array corresponds 10 the current processing coordinates.
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Output parameters are scalar variables. Each output variable represents the pixel value of an output image. The
final valueof an output variableis stored in the output image at the current processing coor dinates.

Congant parameters may be scalars, vectors or two-dimensional arrays. They represent precomputed congants

which are made available for use by theprocedure. For example, a convolution program would use a constant array
for the convolution mask.

The reserved variables ROV and COL are defined to contain the image coordinates of the current processing
location. Thisisuseful for algorithms which are dependent in a limited way on the image coor dinates.

Figure 4 is a grammar of the Apply language. The syntax of Apply isbased on Ada[2]; we chose this syntax
because it is fiamiliar and adequate, and because we do not wish to create yet another new language syntax, nor do
we consider language syntax to be an interesting research issue. However, as should be clear, the application
dependence of Apply means that it isnot an Ada subset, nor is it intended to evolve into such a subset

Apply is strongly typed and does not allow assgnment of integer expressions to floating variables or floating
expressons to integer variables. Mixed expressions are also disallowed An integer expresson may be explicitly
converted to floating by means of the pseudo-function FLOAT and a floating expression can be converted to integer
by using the pseudo-function INTEGER.

procedure R PROCEDURE function-name ( function-args )
IS
variable-declarations
BEGIN
statements
END function-name;

function-args function-argument , function-args

| function-argument

function-argument

var-list : parameter-source type
var-list = IN type BORDER const-expr

—

var-list ::=  variable , var-list
1 variable
parameter-source = IN
| ouTt
] CONST

variable-declarations
s:= var-list : .type ; variable-declarations

i Empty
type ::= ARRAY ( dimension-list ) OP elementary-type
| elementary-type
dimension-list ri= range , dimension-list
i range
range 1:x®  int-expr .. Mmt-expr
elementary-type ::=m  Sign object
i object
sign ::= S| G\ED
| UNSI GNED
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‘ object ::=  BYTE
1) ] INTEGER
| FLOAT

statements 1= Statement ; statements
| statement ;

: assignment-stmt
| if-stmt
| for-stmt

statement

assignment-stmt scalar-var := expr

variable

scalar-var :
| variable ( subscript-list )

subscript-list 1:=  imt-expr , subscript-list
| int-expr

expr + expr
| expr - expr
| expr * expr
| expr | expr
|
I

expr

( expr )
pseudo-function ( expr )

bool-expr

for-stmt ::=  FOR int-var IN range LOOP

Figure4: Grammar of the Apply language

vmmmﬂmmdmmmmmmmﬂmm. Case is
not significant, except in the preprocessing stage which is implemented by the m4 macro processor [20].

Pmmmﬂuwmm so they can be only one or two dimensional; function variables can be of any
imension. Both the C and FORTRAN forms of array indexing (with brackets or commas separating dimensions)
mﬂiwed. BYTE, INTEGER, and FLOAT refer to (at least) 8-bit integers, 16-bit integers, and 32-bit floating point
numbers. BYTE values are converted implicitly to INTEGER within computations. The actual size of the type may
be larger, at the discretion of the implementor.
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Some restrictions in the current implementation of Apply result from limitations in the W2 compiler [12] for the
prototype Warp machine.
o There are no Boolean and, or, or not operations.
© There may not be any for loops inside of if statements.
« For loops must have constant integer lower and upper bounds.
© There are no structured varigbles, only scalar variables and arrays.
 There is no facility for writing functions which invoke other functions.

We expect these limitations will be lifted in the future, once Apply is implemented on the printed-circuit board
version of Warp.

532 An Implementation of Sobel Edge Detection

As a simple example of the use of Apply, let us consider the implementation of Sobel edge detection. Sobel edge
detection is performed by convolving the input image with two 3 by 3 masks. The horizontal mask measures the
gradient of horizontal edges, and the vertical mask measures the gradient of vertical edges. Diagonal edges produce
some response from each mask, allowing the edge orientation and strength to be measured for all edges. Both masks

are shown in Figure 5.
1 1.2 1 | i 1 0-1 |
i 0 0 0 | i 2 0 -2 |
| -1 -2 -1 | I 1 0-1 |
Horizontal Vertical

Figure 5: The Sobel convolution masks

An Apply implementation of Sobel edge detection is shown in Figure 6. The lines have been numbered for the
purposes of explanation, using the comment convention. Line numbers are not a part of the language.

procedure scbel (inimg : imn array (-1..1, -1..1) -1
of byte
bﬂm o'
thresh : const float,
mag : out float)
is —
horiz, vert : integer; -

boriz := imimg(-1,-1) + 2 * inimg(-1,0) -
+ inimg(-1,1) - inimg(l,-1)
- 2 % ipimg(1,0) - inimg(l, 1);

wvext := inimg(-1,-1) + 2 * inimg(0,-1) -~ 6
4+ inimg(l,-1) - inimg(-1,1)
- 2 * inimg(0,1) - inimg(l,1);

wmewnN

mag := sqgrt (FLOAT (horizx) *FLOAT (hoxrism) -
4+ FVLOAT (vert) *FLOAT (vexrt));
if mag < thresh then ~ 8
mag = 0,07 -
and L12; -= 10
and sobel; .= 11

Figure 6: An Apply implementation of thresholded Sobel edge detection

Line | defines the input, output and constant parameters (0 the function. The nput parameter inimg is 2 window
of the input image. The comstant parameter thresh is a threshold. Edges which are weaker than this threshold are
suppressed i the output magnitude image, mag. Line 3 defines horiz and vert which are internal vanables used o
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hold the results of the horizontal and vertical Sobel edge operator.

Line 1 also defines the input image window. It is a 3x3 window centered about the current pixel processing
position, which is filled with the value O when the window lies outside the image. This same line declares the
constant and output parameters to befloating-point scalar variables.

The computation of the Sobel convolutions is implemented by the straight-forward expressions on lines 5 through
7. These expressions arereadily seen to be adirect implementation of the convolutions in Figure 5.

533 Border Handling

Border handling is always a difficult and messy process in programming kernel operations such as Sobel edge
detection. In practice, this is usualy left up to the programmer, with varying results-sometimes borders are
handled in one way, sometimes another. Apply provides a uniform way of resolving the difficulty. It supports
border handling by extending the input images with a constant value. The constant value is specified as an
assignment Line 1 of Figure 6 indicates that the input image inimg is to be extended by filling with the constant
value 0.

If the programmer does not specify how an input variable is to be extended as the window crosses the edge of the
input image, Apply handles this case by not calculating the corresponding output pixel

We plan to extend the Apply language with two other methods of border handling: extending the input image by
replicating border pixels, and alowing the programmer to write a special-purposeroutine for handling border pixels.

5.4 Apply on Warp

The implementation of Apply on Warp employs straight-forward raster processing of the images, with the
processing divided among the cells as described in Section 5.2. The Sobel implementation in Figure 6 processes a
512x 512 image on a 10 cell Warp in 330 ms, including the I/O time for the Warp machine.

53 Apply on Uni-processor Machines

The same Apply compiler that generates Warp code also can generate C code to be run under UNIX. We have
found that an Apply implementation is usualy at least as efficient as any alternative implementation on the same
machine. This efficiency results from the expert knowledge which is built into the Apply implementation but which
is too verbose for the programmer to work with explicitly. (For example, Apply uses pointers to move the operator
across the image, instead of moving data). In addition, Apply focuses the programmer's attention on the details of
his computation, which often results in improved design of the basic computation.

The Apply implementation for uei-jHOcessor machines relies upon a subroutine library which was previously
developed for this purpose. The routines are designed to efficiently pass a processing kernel over an image. They
employ data buffering which alows the kernel to be shifted and scrolled over the buffo* with a low constant cost,
independent of the size of the kernel. The Sobe implementation in Figure 6 processes a512x 512 image on aVax
11/785 in 30 seconds.

5.6 Apply on Other Machines

Hare we briefly outline how Apply could be implemented on otter parallel machine types, specificaly bit-serial
processor arrays, and distributed memory general purpose processor machines. These two types of paralé
machines, are vary common; many parallel architectures include than as a subset, or can simulate them efficiently.
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5.6.1 Apply on Bit-serial Processor Arrays

Bit-serial processor arrays [8] include a great many parallel machines. They are arrays of large numbers of very
simple processors which are able to perform a single bit operation in every machine cycle. We assume only that it is
possible to load images into the array such that each processor can be assigned to a single pixel of the input image,
and that different processors can exchange information locally, that is, processors for adjacent pixels can exchange
information efficiently. Specific machines may also have other features that may make Apply more efficient than
the implementation outlined here.

In this implementation of Apply, each processor computes the result of one pixel window. Because there may be
more pixels than processors, we allow a single processor to implement the action of several different processors over
a period of time, that is, we adopt the Connection Machine’s idea of virtual processors [17].

The Apply program works as follows:
o Initialize: For nxXn image processing, use a virtual processor network of # X n virtual processors.

« Input: For each variable of type IN, send a pixel to the corresponding virtual processor.
o Constant: Broadcast all variables of type CONST to all virtual processors.

e Window: For each IN variable, with a window size of mxm, shift it in a spiral, first one step to the
right, then one step up, then two steps two the left, then two steps down, and so on, storing the pixel
value in each virtual processor the pixel encounters, until a mxm square around each virtual processor
is filled. This will take m? steps.

e Compute: Each virtual processor now has all the inputs it needs to calculate the output pixels. Perform
this computation in parallel on all processors.
Because memory on these machines is often limited, it may be best to combine the ‘‘window’’ and ‘‘compute’”
steps above, to avoid the memory cost of prestoring all window elements on each virtual processor.

5.6.2 Apply on Distributed Memory General Purpose Machines

Machines in this class consist of a moderate number of general purpose processors, each with its own memory.
Many general-purpose parallel architectures implement this model, such as the Intel iPSC[19] or the Cosmic
Cube [31]. Other parallel architectures, such as the shared-memory BBN Butterfly [9, 26], can efficiently
implement Apply in this way; treating them as distributed memory machines avoids problems with contention for
memory.

This implementation of Apply works as follows:

o Input: If there are n processors in use, divide the image into n regions, and store one region in each of
the n processors’ memories. The actual shape of the regions can vary with the particular machine in
use. Note that compact regions have smaller borders than long, thin regions, so that the next step will
be more efficient if the regions are compact.

e Window: For each IN variable, processors exchange rows and columns of their image with processors
holding an adjacent region from the image so that each processor has enough of the image to compute
the comresponding output region.

« Compute: Each processor now has enough data to compute the output region. It does so, iterating over
all pixels in its output region.

5.6.3 Apply on the Hughes HBA

Apply has been implemented on the Hughes HBA computer by Richard Wallace of Carnegie Mellon and Hughes.
In this computer, several MC68000 processors are connected on a high-speed video bus, with an interface between
each processor and the bus that allows it to select a subwindow of the image to be stored into its memory. The input
image is sent over the bus and windows are stored in each processor automatically using DMA. A similar interface
exists for outputing the image from each processor. This allows flexible real-time image processing.

The Hughes HBA Apply implementation is straightforward and similar to the Warp implementation. The image
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S is divided in ‘‘swaths,”” which are adjacent sets of rows, and each processor takes one swath. (In the Warp
) implementation, the swaths are adjacent sets of columns, instead of rows). Swaths overlap to allow each processor
| to compute on a window around each pixel. The processors independently compute the result for each swath, which
is fed back onto the video bus for display.

| 5.7 Summary

We have described our programming techniques for low-level vision on Warp. These techniques began with
simple row-by-row image processing macros, which are still in use for certain kinds of algorithms, and led to the
? development of Apply, which is a specialized programming language for low-level vision on Warp.

‘We have defined the Apply language as it is currently implemented, and described its use in low-level vision
programming. Apply is in daily use at Camegie Mellon for Warp and vision programming in general; it has proved
to be a useful tool for programming under UNIX, as well as an introductory tool for Warp programming.

The Apply language crystallizes our ideas on low-level vision programming on Warp. It allows the programmer
to treat certain messy conditions, such as border conditions, uniformly. It also allows the programmer to get
consistently good efficiency in low-level vision programming, by incorporating expert knowledge about how to
i implement such operators.

One of the most exciting characteristics of Apply is that it may be possible to implement it on diverse parallel
' machines. We have outlined such implementations on bit-serial processor arrays and distributed memory machines.
Implememamnoprplyonothﬂmachmcsmllmakcpormgoﬂow-lcveiv:smwogrmnsmer,smuldextend
: the lifetime of programs for such supercomputers, and will make benchmarkin

«««««

6 Symmetric Texel Detection on Warp

In this research, repetitive textures are analyzed by using local point symmetry to detect the texture elements.
Point symmetry is detected by an Analysis of Variance (ANOV A) [28] statistical test which is applied to a window
surrounding each pixel location.

The ANOVA method consists of partitioning the variance of the data into two portions: that which is explained by
the model and that which remains unexplained. The method is applied at each pixel location to measure point
symmetry. mmoddwmnwmmpudswhmhmbcmdommmmmmmﬂmumuw
MWmhmedbymemodﬂmmmbymeﬁoﬂmgmmwmnmmmewm@wm

: | phasize particular pixels around the central pixel, for example
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In the Warp implementation of this algorithm, apair of nested loops over the input image window compute the
weighted mean surrounding each pixel. A second pair of nested loops compute SS,, and SS.  Thisimplementation
involves 1321 floating-point multiplications and 1982 floating-point additions per pixel For a512x512 image, 346
million multiplications are required and 519 million additions. The prototype Warp processes a512x512 imagein
30s. The same processing would take more than an hour on aSUN-3.
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