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Abstract 

A high-performance systolic machine, called Warp, is operational at Carnegie Mellon. The machine 
has a programmable systolic array of linearly connected cells, each capable of performing 10 million 
floating-point operations per second. Many image processing operations have been programmed on 
the machine. This programming experience has yielded new insights in the mapping of image 
processing operations onto a parallel computer. This paper identifies three major mapping methods 
that are particularly suited to a Warp-like parallel machine using a linear array of processing 
elements. These mapping methods correspond to partit ioning of input dataset, partit ioning of output 
dataset, and partit ioning of computation along the time domain (pipelining). Parallel implementations 
of several important image processing operations are presented to illustrate the mapping methods. 
These operations include the fast Fourier transform (FFT), connected component labelling, Hough 
transform, image warping and relaxation. 
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1 Introduction 
Warp is a programmable systolic array machine designed at Carnegie Mellon [1] and built together 

with its industrial partners—GE and Honeywell. The first large scale version of the machine with an 

array of 10 linearly connected cells is operational at Carnegie Mellon. Each cell in the array is 

capable of performing 10 million 32-bit f loating-point operations per second (10 MFLOPS). The 

10-cell array can achieve a performance of 50 to 100 MFLOPS for a large variety of signal and 

low-level vision operations. 

Warp's first applications are low-level vision for robots, laboratory processing of images [4] and 

analysis of large images ( lOKxlOK). It has therefore been important for us to understand how to map 

typical image processing operations onto the Warp array so that work can be partit ioned evenly 

between ail the cells. 

We have identified three major mapping schemes. They include two methods of space division (that 

is, the assignment of part of the data to each cell): one is input partitioning, or the assignment of part 

of the input to each cell, and the other is output partitioning. The third method is pipelining: each cell 

does one stage of a multi-stage computat ion. All the mapping schemes that we have used on Warp 

for image processing operations are covered by these three mapping methods. 

We begin with a brief review of the Warp machine and architectural features of its linear processor 

array that have allowed efficient mapping of many image processing operations onto the machine. 

Then we consider each mapping method, describe how it is done, and list its advantages and 

disadvantages and other characteristics. More precisely, in Section 3 we consider the input 

partit ioning method, and present a new parallel implementation for the connected component 

labelling computat ion. Section 4 deals with the output partit ioning method, illustrated by Hough 

transform and image warping. Section 5 discusses the pipelining method using the FFT and 

relaxation as examples. 
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2 The Warp Machine 
In this section we first give an overview of the Warp system, and then descr ibe the linear processor 

array used by the system. 

2 .1 S y s t e m O v e r v i e w 

The Warp machine has three components—the Warp processor array, or simply Warp array, the 

interface unit, and the host, as depicted in Figure 1. We describe this machine only briefly here; more 

detail is available separately [1]. The Warp processor array performs the bulk of the computat ion—in 

this case, low-level vision routines. The interface unit handles the input /output between the array 

and the host. The host has two functions: carrying out high-level application routines and supplying 

data to the Warp processor array. 

HOST 

Adr 
INTERFACE 

UNIT 

CELL : fr-* CELL m 

WARP PROCESSOR ARRAY j u — — — — — — — — — — — — — — — — — — — — — — — J 

Figure 1. Warp machine overview. 

The Warp processor array is a programmable, linear systolic array, in which all processing elements 

(Warp cells) are identical. Data flow through the array on two data paths (X and Y), while addresses 

and systolic control signals travel on the Adr path (as shown in the Figure 1). The data path of a Warp 

cell is depicted in Figure 2. Each cell contains two floating-point processors: one multiplier and one 

ALU [16]. These are highly pipelined; they each can deliver up to 5 MFLOPS. This performance 

translates to a peak processing rate of 10 MFLOPS per cell or 100 MFLOPS for a 10-cell processor 

array. To ensure that data can be supplied at the rate they are consumed, an operand register file is 

dedicated to each of the arithmetic units, and a crossbar is used to support high intra-cell bandwidth. 

Each input path has a queue to buffer input data. A 32K-word memory (expandable to 64K-word) is 

provided for resident and temporary data storage. 
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Figure 2. Warp cell data path. 

As address patterns are typically data-independent and common to all the cells, full address 

generation capability is factored out from the cell architecture and provided in the interface unit. 

Addresses are generated by the interface unit and propagated from cell to cell (together with the 

control signals). In addition to generating addresses, the interface unit passes data and results 

between the host ancf the Warp array, possibly performing some data conversion in the process. 

The host is a general purpose computer (currently a Sun workstation, with added MC68020 cluster 

processors for I/O and control of the Warp array). It is responsible for executing high-level 

application routines as well as coordinating all the peripherals, which might include other devices 

such as the digitizer and graphics displays. The host has a large memory in which images are stored. 

These images are fed through the Warp array by the host, and results from the Warp array are stored 

back into memory by the host. This arrangement is flexible. It allows the host to do tasks not suited to 

the Warp array, including low-level tasks, such as initializing an array to zero, as well as tasks that 

involve a lot of decision making but little computat ion, such as processing a histogram (computed by 

the Warp array) to determine a threshold. 

2 .2 The W a r p P r o c e s s o r A r r a y 

The Warp array is a linear array of identical cells. The linear configuration was chosen for several 

reasons. First, it is easy to implement. Second, it is easy to extend the number of cells in the array. 

Third, a linear array has modest I/O requirements since only the two end-cells communicate with the 

outside world. 

The advantages of the linear interconnection are outweighed, however, if the constraints of 

interconnection render the machine too diff icult to use for programmers. The concern is whether or 

not we can efficiently map applications on the linear array of cells. While many algorithms have been 
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designed specifically for linear arrays [6], computations designed for other interconnection 

topologies can often be efficiently simulated on the linear array mainly because the Warp cell, the 

building-block of the array, is itself a powerful engine. In particular, a single Warp cell can be 

programmed to perform the function of a column of cells, and therefore the linear array can, for 

example, implement a two-dimensional systolic array in an efficient way. 

A feature that distinguishes the Warp ceil f rom many other processors of similar computat ion power 

is its high I /O bandwidth—an important characteristic for systolic arrays. Each Warp cell can transfer 

up to 20 million words (80 Mbytes) to and from its neighboring ceils per second. (In addit ion, 10 

million 16-bit addresses can flow from one cell to the next ceil every second.) We have been able to 

implement this high bandwidth communication link with only modest engineering efforts, because of 

the simplicity of the linear interconnection structure and c locked synchronous communicat ion 

between cells. This high inter-cell communicat ion bandwidth makes it possible to transfer large 

volumes of intermediate data between neighboring ceils and thus supports fine grain problem 

decomposit ion. 

For communicat ing with the outside world, the Warp array can sustain a 80 Mbytes/sec peak 

transfer rate. In the current setup, the interface unit can communicate with the Warp array at a rate of 

40 Mbytes/sec. This assumes that the Warp array inputs and outputs a 32-bit word every (200 ns) 

instruction cycle. However the current host can only support up to 10 Mbytes/sec transfer rates. The 

smaller transfer rate supported by the host is not expected to affect the effective use of the Warp 

array for our applications for the following reasons: First, the Warp array typically does not perform 

an input and and output more than every two or more cycles. Second, for most signal and image 

processing applications, the host deals with 8-bit integers rather than 32-bit f loating-point numbers, 

and therefore the I/O bandwidth for the host needs only be a quarter of that for the Warp array 

(assuming the image can be sent in raster-order). This implies that 10 Mbytes/sec transfer rate for 

the host is suf f ic ient 

Each cell has a large local data memory that can hold 32K or 64K words; this feature is seldom 

found in special-purpose, systolic array designs, and is another reason why Warp is powerful and 

flexible. It can be shown that by increasing the data memory size, higher computat ion bandwidth can 

be sustained without imposing increased demand on the I/O bandwidth [7] . The large memory size, 

together with the high I /O bandwidth, makes Warp capable of performing global operations in which 

each output depends on any or a large port ion of the input [8] . Examples of global operations are 

FFT, component labell ing, Hough transform, image warping, and matrix computat ions such as matrix 

mult ipl ication. Systolic arrays are known to be effective for local operations such as a 3x3 
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convolution [6]. The additional ability to perform global operations significantly broadens the 

applicability of the machine. 

In summary, the simple linear processor array used in Warp is a powerful and flexible structure 

largely because the array is made of powerful, programmable processors with high I/O capabilities 

and large local memories. 

Carnegie Mellon is continuing development of the Warp hardware with its industrial partners. A 

major effort of developing a VLSI Warp chip that can implement the entire Warp cell except its local 

memory has started. The integrated Warp system will achieve an order of magnitude reduction in 

cost, size, and power consumption, and a similar increase in computing power. It will consist of tens 

of cells with a total computing power of over a bill ion floating-point operations per second. 
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3 Input Partitioning 
In this sect ion, we describe the first mapping method—input part i t ioning. In input partit ioning each 

cell receives part of the input data, and generates all of the output corresponding to its set of inputs. 

Each processor does the same operation on its port ion of the input. The outputs are then combined. 

We will illustrate this mapping method by considering a rather elaborate example, that is, the labelling 

of connected components in an image. 

3.1 I ssues in t h e I npu t P a r t i t i o n i n g M e t h o d 

Input partit ioning is natural in low-level image processing. Image operations are often local and 

regular, or produce data structures that are fairly easy to combine, as in histogram. Image sizes tend 

to be large (for example, 512x512) so that much parallelism is available even if the image is divided 

only along one dimension (for example, each cell gets one set of adjacent columns). In addit ion, this 

method lends itself naturally to raster-order processing; if the image is divided according to columns, 

the image can be sent in in raster order, while each cell accepts its portion of the inputs as they are 

pumped through the array. 

The overhead in computation time for input partit ioning comes from three.sources: first, the cost of 

dividing the image into its parts; second, the cost of any additional bookkeeping on the Warp cell to 

allow outputs to be recombined later (see below)j; and third, the cost of recombining outputs. 

For many computations, on a linear systolic array, these costs are negligible. Consider convolut ion­

like operations with a small kernel, for example. In these computations, each output depends only on 

a local, corresponding area of the input image. The computat ion is partit ioned so that each cell takes 

a set of adjacent columns from the image. The cost of partit ioning the data is simply the cost of 

sending a row through the array while each cell picks off its part of the data, which is negligible since 

systolic arrays have sufficient internal bandwidth to allow the communicat ion of the data through all 

ceils at little cost. There is no additional bookkeeping, and the cost of recombining outputs is simply 

the cost of concatenating the outputs from the different columns of the image, which again is 

negligible. 

The advantages of input partit ioning are its ease of programming and the good speedup it usually 

gives to an algorithm. Using a simplif ied cost model, we can calculate the speedup from input 

partit ioning as follows. Suppose computation of the output for the complete input set on one cell 

takes t ime n. Then computation of the input on k cells takes t ime n/k+kc, where c is the t ime 

required to combine two cell 's outputs, assuming the outputs are combined in sequence over the 
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cells. If we are allowed to optimize this by adjusting the number of cells the optimimum point has 

*=Vn/.c Computation is wasted if the number of cells is greater than this, and as the number of cells 

approaches this point adding more cells becomes less cost-effective. For 512x512 image processing, 

we have / i=512x512xJ, where d\s the cost of comput ing the operation on one input pixel. Assume 

that each cell takes one operation to read in the previous cell 's outputs, and another operation to 

insert its outputs and send them to the next cel l . Then c = 2 . Hence the optimal number of cells is 

362x Vrf, much more than the number of Warp cells in the Warp machine, so that no time is wasted. 

For 8-bit histogram, c=256 (the cost adding two histograms), and d=3 (based on the current 

implementation of histogram on Warp) so the optimal number of cells is approximately 55, again much 

more than the number of Warp cells. 

There are, however, two potential disadvantages to the input partit ioning method. First, 

intermediate data structures may be duplicated at each cell, wasting memory. For example, consider 

labelled histogram: in this algorithm the input is a standard grayvalue image and a labelled image 

(produced by a connected components algorithm). The output is a set of histograms, with each 

histogram / counting the frequency of occurrence of pixel values in the standard image whose 

location has the label i in the labelled image. If each cell computes the histogram for a portion of the 

input image, then the same table of histograms spanning all the labels (which may be in the hundreds) 

must be maintained at every cell. Second, it is not always possible to find a simple method to 

recombine outputs. In fact, devising an efficient way for output recombination can be quite a 

challenge. 

Consider for example one important algorithm in image processing—the extraction of region 

features from a labelled image. In this algorithm, significant regions of the image have been labelled, 

so that the input is an image with each region identified by having its pixels all be the same label, and 

the task is to reduce this labelled image to a set of symbolically described regions and their 

properties. Once this is done, the region property set is processed, for example, to find a large region 

of a particular color that may correspond to a road. Many different properties may be required to do 

this, and the particular property set depends on the application: properties may include area, center 

of gravity, moment of inertia, grayvalue mean and variance, boundary properties such as number of 

concavities, and internal properties such as number of holes. Some of these properties (such as 

area) are quite easy to compute separately and recombine later, while others (such as number of 

holes) may require some careful thought to figure out how they can be fit into the input partit ioning 

method. 

For example, how can a cell determine the number of holes lying on the boundary of the portion of 
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the image for which the cell is responsible, as shown in Figure 3? Luckily in this case, there is a 

relatively simple solution. Assume that we have also labelled the complement of the shaded region 

using a connected components algorithm as described below. Then a cell can determine whether a 

region on the boundary is hole or not by examining the label of the pixels of the region. This can be 

done using the following method: first, make sure that the outer border of the image is labelled 

consistently by creating a border around the image that is all zero. Then each cell can determine the 

" ins ide" relationships of all the labels in any column as follows: it scans the column from the border 

in, and the first t ime a new label is encountered, the region that label represents is inside the region 

represented by the label in the row just above. (This method can be rigorously proved using the 

Jordan Curve Theorem [2]). 

Figure 3. Determining the number of holes on the boundary of two sub-images. 

However, combining outputs in an input partit ioned method is not always this easy, as we shall see 

in the next section. 

3 .2 Component labell ing 

Assume that significant pixels in a given image are identified by some means. (For example, in a 

binary image, the significant pixels have the value 1.) All the signif icant pixels form a set of connected 

components; the component labelling problem is to produce a labelled image in which two pixels 

have the same label if, and only if, they belong to the same connected component. We first describe a 

8 



INPUT PARTITIONING 

serial labelling algorithm suited to implementation on one Warp cell. We then show that a parallel 

labelling algorithm that can be efficiently implemented on an array of Warp cells, each essentially 

executing the serial labelling algorithm on a sub-image. 

3 .2 .1 Ser ia l l a b e l l i n g A l g o r i t h m 

The serial algorithm presented here appears to be more efficient than many previously known 

methods in the crucial step of sorting components that are connected into equivalence 

classes [11,14] . Our algorithm is similar to a new algorithm by Jack Schwartz, et al. [13] Their 

algorithm has the potential that it can be efficiently implemented in a special-purpose hardware with a 

small memory. Our algorithm, on the other hand, readily leads to a parallel version as we shall see in 

the next subsection. 

Our algorithm works in two passes. The first pass takes the image in raster-scan order, and 

produces a partially labelled image and a label mapping table (LMT) for each row. The partially 

labelled image has the property that the labels for each row are correct (in the sense that two pixels 

have the same label if and only if they belong to. the same connected component) if only that row and 

all rows above are taken into account. The second pass takes the partially labelled image and L M T s 

in reverse order (that is, reverse raster-scan order) and produces a final labelled image. The LMT 

translates labels on one row into the labels on the previous row that correspond to the same 

connected component. 

In the first pass, we scan each row twice, in two phases. The first phase scans the row left to right 

and produces a partially labelled row, a (tentative) LMT, and a re-labelling table (RLT). The RLT is 

used to unify labels in a row that belong to the same connected component; RLT(a) = RLT(b) if a and 

b belong to the same connected component based on information from the current and previous 

rows. The second phase scans the row right to left and applies the RLT to produce the final labellings 

and LMT for that row. 

For each row the first phase works as follows: scan the row from left to right, and for each 

significant pixel, label it using the following strategy: 

Let P be the pixel we are considering, A the left neighbor of P on the row above, and B the left 

neighbor of P on the same row, as shown in Figure 4. Let l(X) denote the label of pixel X, and let 

LMT(/) denote the value of the LMT table for label /. A pixel P gets a label / (?) according to the 

following procedure: 

1. If LMJ(l(A)) exists, then 1(P) = LMT(/ (^) ) . 

9 
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2. If method 1 is not possible, and B is a significant pixel, / ( / ' ) = /(/*)• 

3. If methods 1 and 2 are not possible, l(P) gets a new label. 

A C C 

B P 

Figure 4. Pixel labels. 

Suppose that l(Q is the label of a neighboring pixel on the row above (either above or 

immediately to the right of P). Then LMT( / (Q) » l(P) should be added to the LMT if this entry d id 

not exist in the table. If the entry already existed in the table with LMT( / (Q) = d and l(P) not 

equal to d , then the relabelling table (RLT) for the current row should be updated to include the 

entry RLT(/(?)) = d and I(P) should be set to d 

Similarly, suppose that i(P) is the new label of a pixel, and. 1(B) is the label of the left neighbor. 

Then RLT(/(2?)) * 1(P) should be added to the RLT if this entry did not exist in the table. 

In the second phase, we rescan the row right to left and produce the final labellings and LMT for the 

first pass. This phase works as follows: 

Let P be the pixel we are considering, and l(P) its label from the first phase. We will replace 

l(P) with a label from the RLT. If RLT(/(?)) has no value, no replacement is done. Otherwise, we 

consider RLT(RLT(/(F))). If this has no value, we replace l(P) with RLT(/(/ 3)). If RLT(RLT(/(P))) 

has a value, we replace l(P) with it and, at the same time, set RLT(/(P)) • RLT(RLT(/(/*))) in the 

RLT table. 

After completing the rescan of the row, we use the RLT table to update the LMT table obtained 

from the first phase. That is, if l(P) is a value in the LMT table and RLT(/(P)) has a value, then we 

replace l(P) with RLT(/(/>)) in the LMT table. 

The following property holds during the first pass processing: 
P1. When finishing the second phase for a row, any two pixels on the row that can be 
connected by a path lying totally on or above the row must have the same label. 

We prove property P1 by induction on rows, starting from the top row. 

• Property PI clearly holds for the first row. 

10 
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• Suppose that property P1 holds for the k m row. We want to prove it for the (k • 1 ) s t row. 
Consider any two pixels x and y on (k + 1 ) s t row that can be connected by a path (without 
loops) lying totally on or above the (k + l ) s t row, as illustrated by Figure 5. Assume that 
the entire path does not lie on the (k + 1 ) s t row, otherwise Pi clearly holds. 

Imagine that the portion of the path that lie on the (k + 1 ) s t row is removed. Then the 
remaining path is broken into segments which lie entirely above the (k + 1 ) s t row. The end 
points of each segment are on the k m row, and by the induction hypothesis, they have the 
same label. 

ROW k-

ROW k + l — ^ 

Figure 5. A path connecting two pixels x and y on the (k + 1 J3* row. 

Because the original path has no loops, the segments are ail disjoint. Therefore, they 
cannot cross each other, but can be nested as shown in Figure 5. 

Consider those segments, called outer segments, which are not nested inside any other 
segments. The outer segments must all be connected by line segments on the (k + 1 ) s t 

row, which are part of the original path. It is easy to check that the first pass algorithm 
will label ail the pixels on these line segments with the same label. The operation of the 
first pass algorithm for these labellings is totally independent from other possible 
segments which are nested inside the outer segments. 

Now consider any arbitrary outer segment, together with those segments, called the inner 
segments, that are immediately nested inside the outer segment. These segments must 
all be connected by line segments on the ( k+ 1 ) s t row, which are part of the original path. 
The following fact holds after first phase of the first pass. All pixels on the find segments 
that are connected to the left end point of the outer segment will receive the same label, 
say, a; and pixels on the line segments that are connected to the right end point of the 
outer segment will receive label a or another label, say, 6, with RLT(6) = a in the RLT table. 
After the second phase, all the pixels on the line segments receive the same label, 
namely, a. Again, these labelling operations are totally independent from whatever 
segments that may be nested inside the inner segments. 

To complete the proof, we continue applying the above arguments to cover all the 
segments of the original path. 

For the second pass, we scan the image in reverse order, from bottom to top, and use the LMT 

tables produced by the first pass to propagate labels upwards. We use two working tables (WT and 

WTold), which are assumed to be empty initially. The algorithm works by scanning each row from 

right to left as follows: 

Let P be the pixel we are considering and 1{P) its label from the first pass. If WT(l(P)) has a 
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value, label P with that value. If not, check to see if WTold(LMT(/(/ >))) has a value, say a. If so, 

assign P the label a, and insert WT( / ( / > ) )=a in the WT. If WTold(LMT(/(/ >))) has no value, assign 

P the next available label number, say, to, and insert WT(/(/>))=b in the WT. 

At the end of the scanning of each row, we assign WTold the current value of WT, and set WT 

to be empty. 

The following property holds during the second pass processing: 
P2. When finishing the scan of a row, any two pixels on or below the row that can be 
connected by a path must have the same label. 

We prove property P2 by induction on rows, starting from the bottom row. 

• Property P2 clearly holds for the bottom row. 

• Suppose that P2 holds for the (k + 1 ) s t row. We want to prove that it holds for the k t h row. 
Consider any two pixels x and y on or below the k t h row that can be connected by a path. 
We can assume at least one of x and y is on the k m row. 

o Without loss of generality, assume that y is on the k m row and x is not. We trace the 
path from x to y. Consider the point v where the path is on the (k + 1)3* row for the 
last t ime. Let w be the next point of the path. Then w must be on the k m row. By 
the induction hypothesis,, x and v have the same label. By the algorithm of the 
second pass, w has the same label as v. The proof is complete if y is w. If y is not 
w, then y and w are connected by a segment which lies totally on or above the 
(k + 1 ) * row. By the property Pi of the first pass, y and w have the same label at the -
end of the first pass, and therefore also at the end of the second pass. 

o Assume that both x and y are on the k m row. We trace the path from x to y. 
Consider points u and v where the path is on the (k + 1 row for the first and last 
t ime, respectively. Then by an argument similar to the above one, we can show that 
u and v, x and a, and v and y have the same label. 

Implementation of this algorithm on a single Warp cell is straightforward. The most complex data 

structures are one-dimensional arrays whose size is one scan line, which easily fits a Warp cell 's 

memory, and which can be addressed using Warp's addressing facilities. The algorithm must be 

modified, however, to run on multiple cells. This modification is explained in the next sect ion. 

3 .2 .2 Parallel labell ing Implementat ion 

Assume that there are k cells in the Warp array. We split the image into k equal size regions 

horizontally, and assign regions to cells in order from top to bot tom. 

• Step A: All the cells label their own regions simultaneously, using the serial labelling 

algorithm presented above. 
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• Step fl: Cells 2 to k perform the following operations in the sequential order: 

o Step Cell 2 performs the following operations on the first and last rows of region 
2. 

1. Input from cell 1 the last row of region 1 and its labels. 

2. Re-label the first row of region 2 (assuming that above it is the last row of 
region 1 input from cell 1 in the previous step), remember the re-labelling, 
and save the resulting LMT table as LMT 2 . (This labelling is done by the same 
scheme as the one applied to a typical row in the first pass of the serial 
labelling algorithm.) 

3. Apply the same re-labelling (remembered from the previous step) to the last 
row of region 2. 

o Step £ 3 : Cell 3 performs operations similar to those of step B2 on the first and last 
rows of region 3, and saves the resulting LMT table as LMT 3 . 

o • • • 

o Step Bk: Cell k performs operations similar to those of step B2 on the first and last 
rows of region k, and saves the resulting LMT table as LMT*. 

• Step C: Cells k to 1 perform the following operations in the sequential o rde r 

o Step C*: Ceil k performs the following operations: 

1. Initialize the working table WT to be empty. 

2. For each pixel P on the last and first rows of region /c, if WT(/(?)) has a value, 
assign it to be the label of P. If not, assign P the next available label number, 
say, b, and insert WT( / (? ) )=b in the WT. 

3. Save WT as WT*. 

4. Form a new working table WTnew by inserting to it WTnew( j )=WT(LMT*( j ) ) 
for each label a assigned to the last row of region k-1. (Note that cell k input 
all the labels assigned to the last row of region £ - 1 in the first step of step 
Bk) 

oStep Ck-ii Cell £ - 1 sets WT to be the WTnew input from cell /c, performs 
operations similar to those in the second step of step Q on the last and first row of 
region k-1, save WT as WT* - ! , and forms WTnew for cell £ - 2 . 

o . . . 

o Step C\: Cell 1 sets WT to be the WTnew input from cell 2, performs operations 
similar to those in the second step of step Q on the last row of region 1, and save 
WTasWTx 
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• Step 0 : All the cells re labe l their own regions simultaneously, with different labels used 
for each region. More precisely, for each / = I k, cell / re-labels rows in region / in 
order from bottom to top. Consider the operations of cell /. For the bottom row, the cell 
assigns Wold to the value of WT; from step C, initializes WT to be empty, and re-labels the 
row in the following manner: for each pixel P on the row, if \N1(I(P)) has a value, assign it 
to be the label of P. If not, check to see if WTold(/( / > )) has a value, say a. If so, assign P 
the label a, and insert WT(l(P))=a in the WT. If WTold(l(P)) has no value, assign P the 
next available label number, say, to, and insert WT(l(P))=b in the WT. At the end of the 
scanning of the row, cell / assigns WTold to the current value of WT, and sets WT to be 
empty. Cell / then performs similar operations on the row above. 

We see that steps B and C are essentially the first and second passes, respectively, of the serial 

algorithm applied only to those rows which are on the boundaries of adjacent regions. Since after 

step A pixels belonging to the same connected component in each region have the same label, the 

labels produced by steps 8 and C are the same as those produced by the first and second passes, 

respectively, of the serial algorithm applied to the whole image. Therefore after step C, the bottom 

row of each region will have the final labels, and as a result all other rows of each region will receive 

the final labels dur ing step 0 . 

Note that sub-steps in steps 8 and C must be carr ied out sequentially, that is, by only one cell at a 

time. However, the time taken by these steps is not significant with respect to the total t ime of the 

parallel algorithm, when the number of rows n in the given image is much larger than the number of 

cells k in the Warp machine. More precisely, suppose that the serial algorithm takes t ime Tv Then 

the time for the parallel algorithm is roughly: 

where the first term is the time for steps A and D, and the second term is that for steps 8 and 0 . 

Therefore the speedup ratio is 

h > — • 
For /?=512 and 10 (as in the case of the current Warp machine), the speedup ratio is more than 8. 

14 



OUTPUT PARTITIONING 

4 Output Partitioning 

In this section we consider image processing operations where the value of each output depends 

on the entire input dataset, or a subset that cannot be determined a priori. The input partit ioning 

method described in the preceding section does not work well here, because any subset of the input 

dataset alone will not have all the information needed for generating any output. For these 

operations, it is often natural to use the second mapping method—output partit ioning. In output 

partitioning the output dataset is partit ioned among the cells. Each cell sees the entire input dataset 

and generates part of the output set. Outputs from different cells are concatenated as they are fed 

out of the array. We will use the Hough transform and image warping to illustrate the output 

partitioning method. 

4 .1 Issues in t he O u t p u t Pa r t i t i on i ng M e t h o d 

An advantage of this method is that it does not require the duplication of intermediate data 

structures necessary in input partit ioning, such as the LMT in component labelling. It is less wasteful 

of memory. Each cell must maintain only the data structures it needs to compute its outputs, which it 

would have to anyway (there is no cost to this unless output data structures overlap). 

In this method, for maximum efficiency on a synchronous machine like Warp, each ceil must be able 

to make use of each data item. The reason for this is that as the data are sent in , each datum must be 

either used or rejected; but because the decision to accept or reject a datum must be made at 

run-time, enough time must be left to process the datum even if it is rejected to maintain synchrony. 

As a result, no t ime is saved by rejecting data. Consider the labelled histogram computat ion. As we 

observed in the input partit ioning sect ion, it may not be possible to partition this algorithm by input 

because duplication of data structures may lead to too large memory requirements (since hundreds of 

histograms must be stored at each cell). If output partitioning is used in this algorithm, and the 

histograms are split across cells (by, for example, storing a range of the histogram elements at each 

cell) then each datum is used by only one cell (the cell that holds the histogram elements for that data 

range) and so there is no speedup from parallelism. There appears to be no good method of 

implementing this algorithm on a synchronous distributed memory machine like Warp if the local 

memory of a cell is not large enough for the intermediate data structures needed for input 

partit ioning. In this case either the algorithm must be output partit ioned, without an increase in speed 

over one cell, or the algorithm must be implemented on Warp's cluster processors. 

In output partit ioning, the only overhead is duplication of effort when intermediate results for one 

output could contr ibute to the computation of another output, but these intermediate results are on 
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different cells and so must be recomputed. For example, in FFT the computat ion of any single output 

requires nearly the same effort as to calculate all outputs. There is no overhead associated with 

broadcasting the input data or combining the output data: on Warp, data can be broadcast at little 

cost. Since each cell has all the information it needs to compute each output, all that has to be done 

is to concatenate outputs, which can also be implemented at negligible cost on Warp. 

In input partit ioning there was an advantage if each ceil took a set of adjacent columns of the input 

data; for local neighborhood operations, it is necessary to have a set of adjacent columns that form 

the neighborhood. No such input or output advantage exists for output part i t ioning; since each cell 

sees the entire dataset, it can produce any set of outputs that is necessary. 

As examples of output partit ioned algorithms, we present the Hough transform and image warping. 

4 .2 The Hough T r a n s f o r m 

The Hough transform is a template matching algorithm originally invented to f ind lines in c loud 

chamber photographs [5] and later generalized to f ind arbitrary parameterized curves [3J. The 

algorithm works by mapping each significant pixel into a set of locations in a table representing 

different locations in the parameter space. The mapping takes each pixel in the image into ail 

possible combinations of parameters generating curves that pass through the image pixel. 

For example, in line-finding, lines are parameterized by two values, 8 and p. The line described by a 

particular pair of values of these parameters is 
x cos 0 + y s in 6 * p. 

Thus, for line Finding, the Hough transform takes the (x,y) location of each signif icant pixel and, over a 

range of 0 values, calculates the p value for this (x,y) using the formula above. It then increments a 

table at location (0 , p). Once the entire data set has been processed, the table is scanned and peaks 

are found. These peaks are the most likely lines in the image. 

This algorithm can be used to find any other curve by changing the mapping between the image 

space and the parameter space. For example, to f ind circles of a certain size one maps each 

significant pixel into the (x, y) locations of centers of circles that pass through this pixel (which is itself 

a circle in the parameter space). 

The t ime-consuming step in this algorithm is the mapping between the image and the parameter 

space. This can involve floating-point computat ion and must be done once for each significant pixel 

in the image, which can be a good port ion of the image. Also, the parameter space searched can be 

quite large, depending on its dimensionality and the granularity of the parameter search. 
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The Warp implementation of the Hough transform works by dividing the parameter space into 

different segments to a cell 's memory, then allocating each segment to one Warp cell. The host 

preprocesses the image by selecting significant pixels and sending their locations to Warp 

(alternatively, these pixel locations can be generated in a pass of the image through Warp). The 

location of each significant pixel is sent to every cell systolically. At each cell, the segment of the 

Hough space that belongs to the cell is indexed by some set of parameters pvp2 pn. The pixel 

location is fed into a formula with some particular value of the first n— 1 parameters and the n[h 

parameter is generated. Table lookup can be used to simplify computat ion of the nth parameter. Thfc 

table element at this location is then incremented. This process is repeated until the computation for 

the entire segment belonging to the cell is completed, and then the pixel location is sent on to the 

next cel l . Thus in the steady state, all the Warp cells carry out computat ions simultaneously for 

different segments. 

After ail the data has been sent through the Warp cell, each cell selects its significant peaks and 

sends them to the host where the maxima of all the peaks can be found. 

4 .3 Image Warping 

In some applications, it is desirable to remap or " w a r p " an image according to some transformation. 

This may be done, for example, if the lens distortions introduced by a particular calibrated lens are to 

be undone. A more interesting application of this technique [15] is in a robot vehicle which is 

following a road; the camera is mounted on the vehicle, and of course sees an image distorted by 

perspective projection. If we know the position of the ground plane relative to the camera, we can 

warp the image so that it appears, as it would from an aerial view. Once this is done, it is relatively 

easy to find the road edges. For example, after this transformation road edges appear as parallel 

lines. 

In a typical application of this technique a " f ish-eye" lens is used (because this lens gives a very 

wide angle view of the road, making it easier to keep the road in view when going around turns). The 

point (-UJ) on the ground plane is first projected onto the unit sphere centered at the origin, then 

perpendicularly to the image plane which is tangent to the sphere at (0,0,1). The overall 

transformation is M(iJ)=(- l , i ) / V l + / * + / • Figure 6 shows the center l ine and edges of a road 

being first projected onto the surface of a unit sphere, and then onto the image plane. 

Using the inverse of this transformation, each pixel in the output image is mapped into some pixel in 

the input image, which may not be at an integral location. Suppose AC1 maps each pixel location ( y ) 

of the output image to a location (x+&x,y+ A^) in the input image, where x, y are integers and 
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Image p l a n e 
z =" 1 

Figure 6. Fish-eye lens project ion. 

0 < AXt Ax < 1. The pixel value o at location (ij) for the output image is the interpolation of the values of 

the four pixels— i w , / w , / w , / j r s u r r o u n d i n g ( x + &x,y+ A )̂ in the input image. More precisely, 

o^ lwA^+^a -AxJKl -A^) + [/^A^+^d-AxJlA^ 

To compute the output image, we must, for each location (/j), first evaluate the function M to compute 

(x+&*y+ and then compute o. 

In the Warp implementation, each cell first receives and stores the entire input image. Then the 

ceils generate the output image in parallel. Each of the n cells takes every n t h output element, 

computes its value from the input image, and sends its value out of the array. 

If a cell 's memory is not large enough to hold a complete image, the algorithm can be done in 

several passes, with each cell taking the same port ion of the input and generat ing what outputs it can 

from the given input port ion. The partial output images can then be combined to create the complete 

output image. Note that this algorithm is memory limited; doubl ing the memory available to a cell 

leads to a doubl ing of the speed of the algori thm, up to the point that a cell can hold a complete 

image. 
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5 Pipelining 
In pipelining, an algorithm is broken down into steps, and each ceil does one step of the 

computat ion. Inputs flow into the first cell, are subjected to a series of operations, and eventually, 

become outputs that flow out of the last cell. Intermediate results flow between cells. This mode of 

computation is what is usually thought of as "systol ic processing." 

This method requires that the algorithm be regular, so that each cell can do nearly an identical 

operation. This is not often the case in image processing, so that this method has not been as widely 

used as the space partit ioning methods mentioned before. 

This method has the advantage that there is no duplication of data structures between ceils; each 

cell maintains only the data structures necessary for its stage of the computat ion. Also, the input and 

output sets are not divided, so that there is no extra cost associated with splitting them up or 

recombining them. 

We illustrate this method with the FFT. Other image processing tasks suited to this mode of 

computation are one-dimensional convolution [6] and relaxation [12], which is discussed in the next 

section. 

5.1 Fast Fourier Transform 

The problem of computing an n-point discrete Fourier transform (DFT) is as follows: 

Given x* xx Xn-U 

compute y&yi yn-x defined by 

yt = V ( * " 2 ) + • • • 

where o> is a primitive n-th root of unity. 

Assume that n is a power of two. The well known fast Fourier transform (FFT) method solves an 

n-point DFT problem in O (n logn) operations, while the straightforward method requires O(rt) 

operations. The FFT involves l og 2 n stages of n/2 butterfly operations, and data shuffl ings between 

any two consecutive stages. The so-called constant geometry version of the FFT algorithm allows the 

same pattern of data shuffling to be used for all stages [9 ] , as depicted in Figure 7 with / i=16. In the 

f igure the butterfly operations are represented by circles, and number h by an edge indicates that the 

result associated with the edge must be multiplied by oA 

We show that the constant geometry version of the FFT can be implemented efficiently with 

Warp [6] . In the Warp array, all the butterfly operations in the M h stage are carried out by cell /, and 
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Figure 7. Constant geometry version of FFT. 

results are stored to the data memory of cell / + 1 . While the data memory of cell / + 1 is being filled by 

the outputs of cell /, cell / + 1 can work on the butterfly operations in the ( / + l ) s t stage of another FFT 

problem. Note that every ceil accesses its memory in a shuffled order. As the same shuffl ing is 

performed for all the stages, the interface unit can send the same address stream to all the cells. In 

practical applications, there are often a large number of FFTs to be processed, or there are FFT 

problems being continuously generated. Thus it is possible that a new FFT problem can enter the first 

cell, as soon as the cell becomes free. In this way all the cells of the systolic array can be kept busy all 

the t ime. 

5.2 Re laxa t i on 

In some image processing algorithms, the input image is subject to multiple passes of the same 

operation [10,12] . This process is called relaxation, in which pass / + 1 uses the results of pass /. A 

natural way to implement relaxation on Warp is to have cell / perform pass / and send results to cell 

i + l . 

Relaxation could also be implemented on Warp using the input partit ioning method. But this 

requires more involved communicat ion and control between cells. For example, as each cell 

completes a pass of the relaxation method over its port ion of the image, it must communicate the 

results of its computat ion to its neighbors—both its predecessor, and its successor. This requires 

bidirectional communicat ion on the Warp array, which is physically possible, but diff icult to schedule. 

Therefore, it is better to implement relaxation by pipel ining, with each cell performing one stage of 

the relaxation. In image processing, it is common for relaxation algorithms to require tens of passes 

over the image to stabilize (since images are large, it takes many passes for constraints to relax 

across the entire image). Thus, the ten-cell size of the Warp array is suited to image processing 

relaxation methods. 
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6 Conclusions 
It is somewhat surprising and convenient that only three algorithm partit ioning methods seem to 

work for all image processing algorithms that can be implemented on Warp. In this section we 

analyze the reasons for this result. 

First, we must note that image processing has several characteristics that help make these 

partit ioning techniques, or variants of them, work on any parallel computer. Images are large, which 

is a ready source of parallelism, and at the low level, results from one part of the image do not 

influence what computation is done in another part of the image. This makes it easy to distribute 

computation among ceils by splitting up the input or output images, since there is little 

communicat ion among distant parts of the image. 

Second, the short, linear structure of Warp and its high internal bandwidth make it easy to divide 

algorithms up among cells. The algorithm must be divided only along one dimension, and only among 

ten cells, rather than two-dimensionally among hundreds or thousands of cells. This means there is a 

negligible cost associated with broadcasting, splitt ing, or combining the data among all cells. 

Third, the host can prepare inputs for Warp, as in the Hough transform, where it filters out non­

significant pixels so only significant pixels will be processed by the Warp array. This makes* load 

balancing in the array easier. 

Fourth, each cell has a fairly large local memory. This memory can be used to store intermediate 

results for output after the entire data stream is processed. This is used in the FFT, component 

labelling, image warping and the Hough transform. The relatively large local memory of each cell 

(and fast inter-cell communication) are necessary for many operations as shown in a recent 

analysis [7]. 

Fifth, the cells have programmable local control. Different cells can do different things as long as 

the timing is the same. Therefore different global operations, or different computat ion stages needed 

for one global operation, can be processed at different cells in one pass. This alleviates the host I/O 

bottleneck problem. 
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