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1. Introduction 
Probe Selection (PS) is an important facet of any diagnostic program. The problem solved here is to 

find an optimal algorithm for P S in a causal chain. The word 'optimal' has been used in the literature on 

diagnosis to designate both locally optimal and globally optimal algorithms. Locally optimal algorithms 

use some best-first technique to choose next the probe that optimizes some metric and they are not 

generally optimal, although they do provide good heuristics. Globally optimal algorithms choose that 

sequence of probes that optimizes some metric and they are truly optimal. In this work, optimal will be 

used to refer to the latter. High-level descriptions of devices make use of hierarchies and aggregated 

variables to 'hide' the overall complexity of the device and simplify the problem solving process. There 

are no standards for high-level descriptions of systems, but a causal dependency structure has been 

commonly used to represent systems in qualitative modeling, economics, etc. Examples may be found in 

[3], [6]. Causal chains are simple structures that are found in such high-level device descriptions. 

The advantage of using high-level descriptions of systems is that it provides a means of using the 

actual structure of the device to do PS . Previous work on optimal algorithms has made little or no use of 

the structure of the system that is malfunctioning. Typically, it is assumed that the device is an aggregate 

of components, but the dependencies between components are not modelled. Some structural information 

is sometimes introduced in terms of the modular structure of the system, but the dependencies between 

modules at any one level are ignored. 

This objection does not apply to heuristic algorithms. However, the fact that there are heuristics 

that exploit structure and no optimal algorithms to evaluate them against even for simple structures only 

increases the need for such algorithms to be developed. In fact this point applies also to the so-called 

information-theoretic heuristics that do not assume any structure. Real systems have complicated 

structures. It is probably fair to assume that a heuristic that does not do well on simple structures will do 

no better on real systems. Thus, the development of optimal algorithms for simple structures will be 

useful in the evaluation of heuristics. 

Algorithms for optimal solutions for PS commonly make the assumption that the costs of all probes 

are the same. This will be referred to as the equal-cost assumption. A simple example is the 'half-split' 

technique and its generalizations. This gives the "almost optimal" solution for a causal chain under the 

equal-cost assumption [5]. The "unequal cost" case was identified as an open problem as early as 1960 

[l]. It turns out that there exists a polynomial time algorithm to find the optimal solution for the 

unequal cost case for causal chains. This algorithm is presented in section 3. For more general structures 

the problem remains open. 

Most of the issues raised here can be found discussed in detail in [2] along with useful references. 
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Examples of optimal algorithms that may be adapted to do PS , but are largely free of structural 

constraints, may be found in [7]. Another common model for diagnosis that will not be treated here is 

found in t-fault diagnosability studies [4]. However, some of the ideas developed in this paper may apply 

to this domain. This lead is currently being investigated. 

The rest of this paper is organized as follows. Section 2 defines the model to be used for analysis 

and the problem statement. Section 3 presents the algorithm along with a proof of its correctness. 

Section 4 is a discussion on how the algorithm may be improved along various dimensions and of its 

limitations. 

2. The Model 
The physical situation that is being modelled is a troubleshooting session in a repair shop that has 

to service large numbers of the same device/s. Therefore, the parameters of interest are the costs of tests, 

the relative frequency of failures of different components, and the shortest average troubleshooting time 

per session. Before the problem can be formally stated, notation must be developed. A causal chain is 

represented diagramatically in Figure 1. 

F u n c t i o n s : f1 f 2 f 
# ># ># . . . # ># 

Nodes: 0 1 2 n-1 n 

Figure 1. A Causal Chain. 

The nodes are possible testing points. Bi-valued measurements can be made at a node, which is 

either OK or Not-OK. Associated with every node i is a cost of measuring the node, T.. The costs of 

measurement may be different for different nodes. A function can be mapped back to a component in the 

system. Thus if the node i is OK but i + 1 is Not-OK, f. is f a u l t y and the component that provides 

function f. should be replaced. Also, the node i is Not-OK if any f., j < = i is faulty. Associated with 

every function f. is a relative frequency of failure p f . These represent the fraction of times f. has been 

faulty over the total number of faulty functions for some large number of troubleshooting sessions. 

Therefore the sum of all p f ' s is equal to 1, and the individual frequencies can be taken to represent the 
i 

probability that f. is faulty. 

P r o b l e m S t a t e m e n t : Given that n is Not-OK and that 0 is OK, find the P S strategy that 

results in the shortest expected time per troubleshooting session, assuming that there is only a single 

faulty function. In Section 4, the multiple-fault case is explored. 
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2 . 1 . S e g m e n t s o f C a u s a l C h a i n s 

A s e g m e n t of a causal chain is any continuous portion of the causal chain. Segments will be 

denoted by [l,r], where 1 and r are integers designating nodes and 0 < = 1 < r < = n . For example, in 

Figure 1, [0,3],[0,i] and [2,n] are all segments. Associated with any segment is the probability that the 

fault will lie in that segment. This is denoted by p^ rj and is equal to p r - p ,̂ where p x is defined as 

^ X = = l Pr • Po * s defined t o be 0. Any strategy for fault location proceeds by partitioning [0,n] into 

successively smaller and smaller segments. Since one test point is chosen at a time, a segment is 

partitioned into exactly two smaller segments. Thus every strategy can be represented by a s t r a t e g y 

t r e e , a binary tree whose elements are segments. Also associated with a segment [l,r], is the time a 

troubleshooter expects to spend in that segment per troubleshooting session, assuming that s/he is using 

an optimal strategy to locate the fault in [l,r] and that the strategy tree used has [l,r] as one of its 

elements. This time will be denoted by T ^ j . A restatement of the problem is to find the procedure that 

returns T|Q n j as its expected troubleshooting time per session. TopProbe([l,r]) will denote the first 

element to be probed in [l,r] as part of an optimal strategy to locate a fault in [l,r], 1 < k < r for some k. 

3. An Optimal Solution 

3 . 1 . S o m e P r o p o s i t i o n s 

. P r o p o s i t i o n 0 : If [l,r] is an element of a strategy tree, the probability that the troubleshooter 

will localize the fault to [l,r] is P|j rp 

Proof: The proof is straightforward and is omitted. 

P r o p o s i t i o n 1 : T|. = 0. 

Proof: Trivially true. No troubleshooting remains to be done, as the faulty function has been 

identified. 

P r o p o s i t i o n 2 : Given that TopProbe([l,r]) = i, 1 < i < r; Tp rj = P | l r ] X T . + .j + Tj. r j . 

Proof: By definition, T^ rj = expected time spent in [l,r] using an optimal strategy = (expected time 

to measure node i) 4- (expected time spent in [l,i] using an optimal strategy) + (expected time spent in 

[i,r] using an optimal strategy). 

The second and third terms are defined to be .j and T|. r | respectively. The first term is equal to 

(probability that node i is measured)XT. . Node i will only be measured if the fault is localized to the 

segment [l,r] in the strategy tree. The probability that this occurs is equal to p^ r j , by proposition 0. 
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Proof: The first node to be probed in [ j ,k+l] has to be a node i, where j < i < k + 1 . By proposition 

returns the minimum triplet. Note that Tp j_h 2j s i m P ^ e s t o P[j j + 2 ] l * ° r 0 < = J < n — 1 > ^y 
proposition 1. 

P r o p o s i t i o n 4 : Assume that T j c fj and TopProbe([c,f]), j < = c < f < = k a r e known for all 

possible segments [c,f] for fixed j ,k. Then T j u k + 1 | and TopProbe([u,k+l]) may be successively calculated 

for decreasing values of u from k to j using the expression in proposition 3. 

Proof: By induction on r. Basis step : For u = k, the result is trivially true. Induction Step : Let the 

proposition be true up to u = i > j + 1 . Then for u == i—1, the proposition is also true. It follows from 

proposition 3 that to calculate Tj. ̂  k + 1 j the terms required are of the form T j a b j , i—1 < = a < b < = k 

for all segments [a,b] or of the form T| g k + 1 j , i < = s < k + 1 , for all values of s. All terms of the first 

form are available as per statement of proposition 4. All terms of the second form are available as per 

induction hypothesis. Therefore, the expression in proposition 3 may be used to compute Tj. l k + 1 j . It 

follows from proposition 3 that TopProbe([i-l,k-(-l]) is also obtained. 

P r o p o s i t i o n 5 : At the end of the procedure embodied in proposition 4, T | c fj and TopProbe([c,f]), j 

< = c < f < = k + 1 , will be known for all possible segments [c,f] for fixed j ,k. 

Proof: From the statement of proposition 4, T | c ^ and TopProbe([c,f]), j < = c < f < = k are 

assumed known for all segments [c,f]. Therefore, the values that remain to be calculated are Tj. k + 1 j and 

TopProbe([ i ,k+l]) for all values of i, j < = i < k + 1 . The procedure in proposition 4 successively 

calculates all Tj. k + 1 j and TopProbe([i ,k+l]) for all values of i, j < = i < k + 1 . 

P r o p o s i t i o n 6 : T j Q .j may be successively calculated for increasing values of i from 2 to n, using 

the procedure embodied in proposition 4. 

Proof: By induction on i. Basis step : For i = 2 , the result is trivially true, as T|Q ^ is known and 

proposition 4 may be used to compute T|Q 2 j and TopProbe([0,2]). Induction Step : Let it be true that the 

procedure in proposition 4 has been used successfully to calculate Tj Q -j for all i < = t < n. It follows 

from proposition 5 that T ^ ^ , can be calculated using the procedure in proposition 4. 

X T . + T 

[j,k+l] 

+ Tp .j + Tj. k + 1 | . These triplets may be computed for all such i, 

. Note that TopProbe([ j ,k+l]) is also obtained, being that i that 
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3 .2 . T h e O p t i m a l A l g o r i t h m 

The optimal algorithm is the procedure described in proposition 6 , above. This algorithm has been 

implemented in C and tested on a micro-vax. An example is provided here as an illustration. 

Let n = 4 , T = 3, T 0 = 5 , T Q = 4 , p r = 0 . 2 5 , p r = 0 . 2 5 , p r = 0 . 1 2 5 , p f = 0 . 3 7 5 . 
1 1 6 f l *2 f3 f4 

The solution proceeds by finding T|Q 1]»T| 0 2]>T| 0 3 ]»Tj 0 4 j in that order. Tj Q xj = 0 . by definition. To 

find T|Q 2 | , T| X 2 j must be found. This is also 0 by definition. 

Hence, Tj Q 2 j = P | 0 2 ] ^ ' ^ i = 0 - 5 X 3 = 1 . 5 0 and TopProbe( [0 ,2] ) = 1, by applying the simplified 
formula in proposition 3. 

To find T | Q 3 j , first T j 2 3 j and T ^ 3 | must be obtained in that order. T j 2 3 j is 0 , and T ^ 3 j may be 

found by using proposition 4 to be 1 . 8 7 5 , TopProbe([ l ,3] ) = 2 . T j 0 3 j may now be calculated using 

proposition 4 . 

T [0,3i = Minimum[ ( P [ 0 , 3 ] x T I + T [0 , i ] + T [ i f 3 ] ) ' ( P [ 0 , 3 ] x T 2 + T[o,2] + T [2,3]) 1 = Minimum! ( 0 - 6 2 5 
X 3 + 0 + 1 . 8 7 5 ) , ( 0 . 6 2 5 X 5 + 1 . 5 0 + 0) ] = Minimum[3 .75 ,4 .75 ] = 3 . 7 5 and TopProbe( [0 ,3 ] ) = 1. 

To find T | 0 4 | , first T j 3 4 j , T j 2 4 j and 4 | must be found in that order. T | 3 4 j = 0 . T j 2 4 j = 2 , 

TopProbe( [2 ,4 ] ) = 3, T ( 1 4 ) = 4 . 8 7 5 and TopProbe([ l ,4] ) = 3. 

Using proposition 4 , T ( Q 4 ] = Minimum[ (T± + T [ 0 1 j + T [ M ] ) , ( T 2 + T [ M + T [ 2 4 ] ) , ( T 3 + T [ Q 3 | + 

T [ 3 4 j ) ] = M i n i m u m [ 7 . 8 7 5 , 8 . 5 , 7 . 7 5 ] = 7 . 7 5 and TopProbe( [0 ,4 ] ) = 3 . 

The optimal strategy may be obtained by successively indexing TopProbe([l,rj), starting with 

TopProbe( [0 ,4] ) . Thus the optimal strategy for this example is -
probe 3; 
if 3 is OK then 
f 4 is faulty; 

else { 
probe 1; 
if 1 is Not-OK then 
f t is faulty; 
else i 

probe 2; 
if 2 is 01c then f 2 is faulty; 
else f 3 is faulty; 

> 
> 
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4. Extensions, Improvement and Limitations 

4 . 1 . T i m e C o m p l e x i t y 

The time complexity of the algorithm is 0 (n 3 ) . This is evident from the expression for the total 

number of operations Q. Q = S | = 2 J2k==z0 Y,j=k The first summation represents the values of 

T|Q .| that have to be obtained. The second summation represents the values of . 9 | that must be found 

before T | 0 .j can be calculated. The third summation represents the number of operations to calculate 

T | k i 2 | . The term 3 follows from the expression in proposition 3. Every constituent expression within the 

expression to be minimized has 3 operations (two additions and one multiplication). The 1 that is added 

to 3 represents the assumption that choosing the minimum of v elements is equivalent to v operations. 

4 .2 . E x t e n s i o n s 

The fact that this algorithm has to be run just once for any system and that a high-level description 

of a device will not result in large n, implies that an O (n 3 ) algorithm should be computationally 

acceptable. Heuristics can also be tested out against this optimal solution for at least up to an n in the 

high hundreds. 

The algorithm can also be applied in hierarchical fashion to optimally localize the fault to some 

module and then used to find the optimal strategy tree within that module. This is a straightforward 

extension. 

There is another easy extension to troubleshoot the multiple-fault case. The optimal strategy for 

[0,n] is used repetitively to locate one fault at a time. Since the algorithm identifies a faulty function f. 

by finding that node i-1 is OK and node i is Not-OK, it follows that the first function to be identified as 

faulty will be the faulty function with the minimum i. The component that provides i is replaced, and on 

checking node n, it is found that at least one fault remains. The search can now be confined to [k+l ,n] , 

assuming that the new component is functioning correctly. The optimal strategy for troubleshooting 

[k+l ,n] is also known, as this was calculated by the algorithm in deducing the strategy tree for [0,n] and 

may now be used. This procedure can be used repetitively until all faults are located. 

In many troubleshooting situations, numerical data are not known. The algorithm may be applied 

to qualitative data by substituting weights for the qualitative values for relative failure frequencies and 

times of measurement. The p f ' s thus generated may need to be normalized. 
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4 .3 . L i m i t a t i o n s 

The model imposes restrictions on the systems that this technique may be applied to. Some 

examples are -

• A pure chain structure is assumed. 

• All measurements are bi-valued. 

• Compensating failures are not allowed. 

• The definition of optimality does not include the run-time of the algorithm. 

4 .4 . C o n c l u s i o n 

The chief contribution of this work is an optimal algorithm to do probe selection in causal chains. A 

noteworthy feature of the model used is that it assumes that probes may have different costs of 

measurement. The algorithm runs in polynomial time. 
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