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Abstract 

We exploit the inheritance mechanism of object-oriented languages in a new domain, fault-tolerant distributed 

systems. We use inheritance in Avalon/C-H- to transmit properties, such as serializability and crash resilience, that 

are of specific interest in distributed applications. We present three base classes, RESILIENT, ATOMIC, and DYNAMIC, 

arranged in a linear hierarchy, and examples of derived classes whose objects guarantee desirable fault-tolerance 

properties. 

1. Introduction 
The inheritance mechanism provided by a number of object-oriented programming languages (cited in Section 7) 

is generally thought to be an effective program structuring technique, increasing the modularity and reusability of 

programs. In these languages, inheritance allows programmers to define types with behavioral properties similar to 

previously existing types. 

In this paper, we show that inheritance can be used effectively in a new application domain, fault-tolerant 

distributed systems. In this domain, we are concerned not only with the usual desired behavioral properties of types 

as manifest in the sequential domain, but also with properties that are desired in the presence of concurrency and 

faults. Thus, we show that inheritance is not only useful for transmitting sequential properties from one type to 

another (e.g., the UFO property of a stack), but also for transmitting properties like serializability and crash 

resilience. In particular, we discuss how Avalon/C-H- [Herlihy&Wing 87] uses the C++ [Stroustrup 86] inheritance 

mechanism to provide support for highly concurrent fault-tolerant applications, via objects that provide their own 

synchronization and recovery. 
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Foundation under grant DMC-8519254. 
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policies, either expressed or implied, of the Defense Advanced Research Projects Agency or the US Government 
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Fault-tolerant distributed systems require properties that are typically not of interest in the sequential domain. In 

the presence of concurrency and failures, the data they manage must satisfy application-dependent consistency 

constraints, which may encompass objects stored at multiple sites in a distributed system. The data must be highly 

available, that is, highly likely to be accessible when needed. Data must be reliable, that is, unlikely to be lost or 

corrupted by system failures. Examples of applications that require such properties include airline reservations and 

electronic banking systems, where incorrect or unavailable data may be extremely expensive. 

This paper is organized as follows: Section 2 describes the transaction model used to organize distributed 

computations, and some relevant features of C++; Sections 3,4, and 5 describe the base Avalon/C++ class hierarchy; 

Section 6 describes some restrictions on the use of these classes that must be obeyed to preserve their semantic 

intent; and Section 7 presents related work and a discussion. 

2. Background 

2.1 . Model of Computation 

We assume that distributed computation is done at a set of nodes that communicate over a network. Such a 

system is subject to a number of failures: nodes may fail, perhaps destroying local disk storage, and communications 

may fail, via lost messages or network partitions. 

A widely-accepted technique for preserving consistency in the presence of failures and concurrency is to organize 

computations as sequential processes called transactions. Transactions are atomic, that is, serializable, recoverable, 

and permanent. Serializability means that transactions appear to execute in a serial order. Recoverability means that 

a transaction either succeeds completely and commits, or aborts and has no effect Permanence means that the 

effects of a committed transaction survive failures. Transactions may be nested. 

Avalon/C++ provides transaction semantics via atomic objects. Atomic objects ensure the serializability, 

recoverability, and permanence of the transactions that use their operations. All objects shared by transactions must 

be atomic. Avalon/C++ provides a collection of built-in atomic types, and users may define their own atomic types 

by inheriting from the built-in types. 

Sometimes it may be too expensive to guarantee atomicity at all levels of a system. Instead it is often useful to 

implement atomic objects from non-atomic components [Weihl&Liskov 85]. In Avalon, such components are 

called resilient objects; they satisfy certain weak consistency properties in the presence of crashes. 
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2.2. Overview of C++ 
C++ is an object-oriented extension of C [Kernighan&Ritchie 78], designed to combine advantages of C, such as 

concise syntax, efficient object code, and portability, with important features of object-oriented programming, such 

as abstract data types, inheritance, and generic functions. 

New types are defined in C++ using the class construct A class is declared to contain members. These may be 

objects, including functions, of any C++ type. Members may either be public or private. Private members may be 

manipulated only within the class that implements a type; code external to the class {clients of the class) may access 

only public members. The public/private distinction is often used to provide an abstraction boundary for a type by 

hiding its representation in private members, and making its operations public members. 

C++ supports inheritance. A class can be derived from another class, and becomes a subclass of that class. Each 

derived class has a single, explicit superclass. The public members of the superclass become public members of the 

subclass. The subclass does not inherit the superclass's private members; thus, even in the subclass implementation, 

the inherited superclass object must be manipulated using its public members. The latest version of C++ (Version 

1.2) recognizes that finer control over the visibility of inherited members is sometimes necessary, and adds a new 

member classification called protected. Protected members are something of a compromise between public and 

private members: when a class with protected members is inherited, its protected members become private members 

of the derived class. The Avalon/C++ class hierarchy uses all three kinds of members. This hierarchy is made up of 

three classes, RESILIENT, ATOMIC, and DYNAMIC, arranged in a linear inheritance tree (DYNAMIC inherits from 

ATOMIC, which inherits from RESILIENT). The next three sections describe these classes in detail. 

3. RESILIENT Objects 

The most basic class in our hierarchy is RESILIENT, RESILIENT provides the means for its derived classes to ensure 

operation-consistency: after a crash, a resilient object will be recovered in a state that reflects only completed 

operations; the effects of operations in progress at the time of the crash are never observed. Resilient objects are 

also permanent: the recovered state of a resilient object is guaranteed to reflect all operations performed by 

transactions that committed before the crash. Before presenting the class definition for RESILIENT, we first describe 

our underlying model of storage. 

3.1. Three-Level Model of Storage 
Conceptually, there are three kinds of storage for objects: volatile, non-volatile, and stable. We assume that local 

storage of nodes of a distributed system is structured as a virtual memory system, where volatile semiconductor 

memory serves as a cache for memory pages from non-volatile backing store, such as magnetic disk. Resilient 

objects reside in this local storage of nodes. Since nodes are subject to crashes that destroy all their local storage, if 

resilient objects are to survive such crashes, they must be written to stable storage, a storage medium that survives 
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crashes with high probability. (Stable storage may be implemented using redundant hardware [Lampson 81] or 

replication [Daniels 87].) If every resilient object is logged to stable storage after modifying operations are 

performed on it, then an operation-consistent state may be recovered after a crash by "replaying" the log. 

Replaying the log is a sufficient method for restoring a system's state (e.g., it is used by the Argus system 

[Liskov&Scheifler 83]). However, recovering the state of a system entirely from the log is a time-consuming 

operation. If we note that crashes can be divided into two classes, node failures and media failures, we can do 

better. In a media failure, both volatile and non-volatile storage is destroyed, while in a node failure only volatile 

storage is lost In practice, node failures are far more common than media failures. To optimize recovery from node 

failures, a protocol known as write-ahead logging [Gray 78] is used. Write-ahead logging uses the following steps 

to modify an object 

1. The page(s) containing the object are pinned in volatile storage; they cannot be returned to non-volatile 
storage until they are unpinned. 

2. Modifications are made to the object in volatile memory. 

3. The modifications are logged on stable storage. 

4. The page(s) are unpinned. 

These steps assure that resilient objects always appear in an operation-consistent state in non-volatile storage. In the 

case of node failure, then, where the contents of non-volatile storage are preserved, the states of resilient objects may 

be recovered much more quickly. Of course, modifications must still be logged to stable storage against the 

occurrence of a media failure. 

Avalon uses the Camelot system [Spector et al. 86] to handle operating-system level details of transaction 

management, such as the write-ahead logging protocol described above. Other Camelot facilities we use include 

inter-node communication, commit protocols, and crash recovery. 

3.2. Class Definition 

Figure 3-1 shows the class header for RESILIENT. 

class r e s i l i e n t { 
public: 

void p i n ( ) ; / / P i n s t h e o b j e c t i n p h y s i c a l memory. 
void u n p i n ( ) ; / / Unpins and l o g s t h e o b j e c t t o s t a b l e s t o r a g e . 

Figure 3-1: The RESILIENT Class 

Classes derived from RESILIENT inherit the PIN and UNPIN operations. These can be used to ensure operation-

consistency for the derived class, PIN causes the pages containing the object to be pinned, as in the write-ahead 

logging protocol, while UNPIN logs the modifications to the object and unpins its pages. After a crash, a resilient 

object will be recovered to a previous state in which no transaction is pinning i t Further, if a transaction makes 

nested PIN calls, then the changes made within inner PIN/UNPIN pairs do not become permanent until the outermost 

UNPIN is executed. This allows implementors of classes derived from RESILIENT to guarantee operation-consistency 
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by enclosing all modifications made by an operation within an outer PIN/UNPIN block. 

As an example, consider a class RES_X_Y derived from RESILIENT, containing members x and Y, both of which are 

pointers to resilient objects. 
class re»_X_Y: public r e s i l i e n t { 

r e s _ X _ t y p e *X; / / X and Y p o i n t t o r e s i l i e n t o b j e c t * . 
r e a _ Y _ t y p e *Y; 

public: 
void modify () ; 

} 

MODIFY is an operation that modifies the objects pointed to by X and Y . The implementation of modify would 

have the following structure: 
void re»JC_Y: :modify () { 

p i n ( ) ; / / P i n t h e e n t i r e o b j e c t . 

( * X ) . p i n ( ) ; / / P i n X . . . 
/ / . . . m o d i f y X . . . 
( * X ) . u n p i n ( ) ; / / . . . a n d u n p i n X. 

<*Y) . p i n < ) ; / / P i n Y . . . 
/ / . . . m o d i f y Y . . . 

< * Y ) . u n p i n ( ) ; / / . . . a n d u n p i n Y. 

u n p i n ( ) ; / / Unpin t h e e n t i r e o b j e c t . 
> 

Without the outermost PIN/UNPIN pair, operation-consistency might be violated, since a crash occurring after 

modifications had been made to x but before modifications had been made to Y would leave the object in an 

inconsistent state. 

Since PIN and UNPIN should always be called in pairs, Avalon/C++ provides a special control structure, the 

p i n n i n g block, that enforces this constraint The structure 
p i n n i n g ( o b j e c t ) < s t m n t > ; 

is equivalent to 
o b j e c t . p i n () ; 
<* tmnt>; 
o b j e c t . u n p i n ( ) ; 

with the additional guarantee that the UNPIN will be executed even if <s tmnt> causes control to pass outside the 

block prematurely, e.g., by executing a b r e a k or r e t u r n . If o b j e c t is omitted in a p i n n i n g statement, it 

defaults to the value t h i s , which refers to the current object in C++. 

33. Using the Class RESILIENT 

Consider defining a resilient array of integers, RESJNT.ARRAY . An object of this type should provide normal 

array operations such as STORE and FETCH, but should do so in an operation-consistent manner. We could 

implement RES J N T . A R R A Y as a subclass of RESILIENT as follows: 
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class r e s _ i n t _ a r r a y : public r e s i l i e n t { 
int e l t s [ 1 0 0 ] ; 

public: 
r e s _ i n t a r r a y ( in t ) ; 
int f e t c h ( in t ) ; 
void s t o r e (int, i n t ) ; 
void o p e r a t o r = ( r e s _ i n t a r r a y f i ) ; / / A r r a y c o p y . 

}; 
r e s _ i n t _ a r r a y : : r e a _ i n t _ a r r a y (int i n i t i a l « 0 ) { 

pinning () 
for (int 1 - 1 ; i < - 1 0 0 ; i++) e l t s [ i ] * i n i t i a l ; 

> 

void r e s _ i n t _ a r r a y : : s t o r e (int i n d e x , int v a l u e ) { 
pinning () 

a l t s [ i n d e x ] « v a l u e ; 
> 

int r e s _ i n t _ a r r a y : : f e t c h (int i n d e x ) { 
return e l t s [ i n d e x ] ; 
} 

void r e s _ i n t _ a r r a y : : o p e r a t o r s ( r e s _ i n t _ a r r a y f i t a r g e t ) { 
pinning ( t a r g e t ) 

for (int i - 1 ; i <» 1 0 0 ; i++) t a r g e t . e l t s [ i ] » e l t s [ i ] ; 
} 

Now, suppose we have a RES_INT_ARRAY of 100 integers, and we want to add 1 to each element. We can use a loop 

where each element is fetched, incremented, and stored back into the array. Given the above implementation of 

STORE we would make 100 calls to each of the PIN and UNPIN operations. Unfortunately, the log write done by 

UNPIN is expensive, both in terms of space taken on stable storage, which is a scarce resource, and in terms of time. 

Clients can choose to avoid this expense by explicitly enclosing the loop in a pinning block. Clients are permitted to 

call PIN and UNPIN because they are public members of RESILIENT, and are therefore visible to classes derived from 

RESILIENT. Thus, this loop could be written as: 
/ / P i n and l o g o n c e , r a t h e r t h a n 1 0 0 t i m e s , 
pinning (a) 

for ( i ; i < 1 0 0 ; i++) a . s t o r e ( i , a . f e t c h ( i ) + 1 ) ; 

Here, the PIN and UNPIN calls made by the STORE operation are not expensive because they recognize that their 
object is already pinned, and return immediately. 

In summary, resilient types can be defined as subclasses of RESILIENT. If an operation that modifies a resilient 

object calls the inherited PIN and UNPIN operations properly, the object will be operation-consistent and permanent. 

If a client calls an object's operations many times, as in a loop, performance can be enhanced by enclosing those 

operations in a p i n n i n g block. 

4. A T O M I C Objects 
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4.1. Class Definition 
Figure 4-1 gives the class header for ATOMIC. 

class a t o m i c : public r e s i l i e n t { 
protected : 

void s e i z e ( ) ; / / G a i n s s h o r t - t e r m l o c k , 
void r e l e a s e ( ) ; / / R e l e a s e s s h o r t - t e r m l o c k , 
void p a u s e ( ) ; / / R e l e a s e s s h o r t - t e r m l o c k f o r some p e r i o d 

/ / o f t i m e , t h e n r e g a i n s i t . 
public: 

/ / " P i n " and " u n p i n " a r e p u b l i c , by i n h e r i t a n c e from " r e s i l i e n t . " 
virtual void commit ( t i d ) ; / / C a l l e d a f t e r a t r a n s a c t i o n t h a t o p e r a t e d on 

/ / t h e o b j e c t commi t s , 
virtual void a b o r t ( t i d ) ; / / C a l l e d a f t e r a t r a n s a c t i o n t h a t o p e r a t e d on 

/ / t h e o b j e c t a b o r t s . 
} 

Figure 4-1: The ATOMIC Class 

Objects of class ATOMIC are intended to be atomic, that is, serializable, recoverable, and permanent We will now 

discuss how the operations of ATOMIC may be used to satisfy these three aspects of atomicity. Permanence is 

"inherited" from RESILIENT; since ATOMIC is a subclass of RESILIENT, the PIN and UNPIN operations of RESILIENT 

are public operations of ATOMIC, and may be used in the same way to ensure permanence and operation-consistency. 

Atomic objects must be recoverable, that is, the effects of aborted transactions, including those aborted by 

crashes, must be undone. Recoverability is a stronger property than resilience. Resilience permits the effects of 

aborted transactions to be observed, while recoverability does not. To implement recoverability, ATOMIC provides 

COMMIT and ABORT operations. Whenever a top-level transaction commits (aborts), the Avalon system executes the 

COMMIT (ABORT) operation on all the atomic objects on which the transaction or its descendents have operated. 

ABORT operations are also called when nested transactions "voluntarily" abort, ABORT operations usually undo the 

effects of aborted transactions, while COMMIT operations discard recovery information that is no longer needed. 

COMMIT and ABORT are C++ virtual operations: classes derived from ATOMIC may reimplement these operations, and 

when COMMIT or ABORT are called by the system, the most specific implementation for the object will be called. 

(Many other languages would call these generic functions.) Thus, ATOMIC allows type-specific commit and abort 

processing, which is useful and often necessary in implementing user-defined atomic types efficiently, as described 

in [Greif et al. 86] and [Herlihy&Wing 87]. 

Many transactions may attempt to execute operations on atomic objects concurrently. They must be synchronized 

at two levels: at the operation level, so that a transaction may execute an operation without fear of interference from 

other transactions, and at the transaction level, so that serializability is not violated. 

ATOMIC provides the SEIZE, RELEASE, and PAUSE operations to aid derived classes in ensuring operation-level 

synchronization. Each atomic object contains a short-term lock, similar to a monitor lock. Only one transaction 

may hold the short-term lock at a time. The SEIZE operation obtains the short-term lock, and RELEASE relinquishes 

i t PAUSE releases the short-term lock, waits, and reacquires it before returning. Thus, these operations allow 
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transactions mutually exclusive access to atomic objects. Note that these operations are protected members of the 
ATOMIC class. They are not provided to clients of derived classes, since it would not be useful for clients to call 
them. 

To ensure both operation-level synchronization and transaction-level serializability, operations of atomic types 
often contain loops of the form: 

for ( ; ; ) { 
s e i z e () ; 
if ( <TEST> ) { 

<...BODY...> 
r e l e a s e ( ) ; 
return; 

} 
else { 

p a u s e ( ) ; 

/ / D o f o r e v e r . . . 
/ / E n t e r c r i t i c a l r e g i o n 
/ / OK t o p r o c e e d ? 
/ / E x e c u t e t h e o p e r a t i o n . 
/ / Leave c r i t i c a l r e g i o n . 

} / / Try a g a i n l a t e r . 

} 

<TEST> is a condition that is true when the serializability constraint allows the operation to proceed. It generally 

involves queries to the Avalon system concerning the state of transactions. <...BODY...> represents the substance 

of the operation. Because this structure is very common, Avalon/C-H- provides a special control construct, the when 
statement, to abbreviate it. The following code is equivalent to the code above, with the added guarantee that the 

short-term lock is released even if a statement of <...BODY...> (such as a return statement) causes a premature 

exit 
when ( <TEST> ) { 

<...BODY..J> 
} 

4.2. Using the Class ATOMIC 

Consider an example of a user-defined atomic type. We will create the class ATOMJNT_ARRAY , an atomic array 

of int, that ensures synchronization using two-phase or read/write locking [Eswaran et al. 76]. Below is the 

interface of a RW_LOCK class that will be used in the representation of ATOMJNT_ARRAY. 
class rwJLock: public r e s i l i e n t { 

public: 
r w _ l o c k ( ) ; / / C r e a t e a new l o c k . 
bool c a n j r e a d ( t i d ) ; / / R e t u r n s t r u e • > r e a d l o c k g r a n t a b l e , 
bool c a n j r r i t e ^ t i d ) ; / / R e t u r n s t r u e «> w r i t e l o c k g r a n t a b l e . 
void w r i t e J L o c k ( t i d ) ; / / G r a n t w r i t e l o c k , 
void r e a d _ l o c k ( t i d ) ; / / G r a n t r e a d l o c k . 
void r e l e a s e ( t i d ) ; / / R e l e a s e a l l l o c k s h e l d by t h e t r a n s a c t i o n . 

The representation of ATOMJNT_ARRAY also includes a stack of versions of the array, so that we can recover from 

transaction aborts. This version stack must be kept operation-consistent, so each version is an object of the 

previously defined class RES_INT_ARRAY. The definition of version is shown below. 
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struct v e r s i o n { 
t i d who; 
r a a _ i n t _ a r r a y * w h a t ; 
v a r « i o n ( t i d t , r a « _ i n t _ a r r a y * a){who • t ; what - a 

We now present the implementation of ATOMICJNT.ARRAY. 
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class a t o m _ i n t _ a r r a y : public a t o m i c { 
r w _ l o c k l o c k s ; 
v e r s i o n _ s t a c k s t a c k ; 

public: 
a t o m _ i n t _ a r r a y (int) ; 
void s t o r e (Int, int) ; 
int f e t c h ( in t ) ; 
void commit ( t i d ) ; 
void a b o r t ( t i d ) ; 

a t o m _ i n t _ a r r a y : : a t o m _ i n t _ a r r a y (int i n i t i a l »0) { 
t i d s e l f - *<new t i d ) ; / / Own t r a n s a c t i o n i d . 
P I N N L N 8 <> < / / Making u p d a t e . 

l o c k s . w r i t e _ l o c k ( s e l f ) ; / / G r a n t w r i t e l o c k t o s e l f . 
s t a c k . p u s h ( v e r s i o n ( s e l f , new r e s _ i n t _ a r r a y ( i n i t i a l ) ) ) ; 

} 

void a t o m _ i n t _ a r r a y : : s t o r e (int i n d e x 
t i d s e l f « *(new t i d ) ; 
when ( l o c k s . c a n j r r i t e ( s e l f ) ) 

pinning () { 
l o c k s . w r i t e _ l o c k ( s e l f ) ; 
/ / Commit ted w r t l a s t w r i t e r ? 
if ( b o t h ( s t a c k , t o p () .who, s e l f ) ) { 

v e r s i o n v = s t a c k . p o p O ; 
v . e l e m s [ i n d e x ] » v a l u e ; 
s t a c k . p u s h ( v ) ; 

} { 

int v a l u e ) { 
/ / C a l l e r ' s t i d . 
/ / Check l o c k c o n f l i c t . 
/ / Making u p d a t e . 
/ / Get w r i t e l o c k . 

/ / Modify i n p l a c e . . . 
/ / Copy t o p e l e m e n t . 
/ / S t o r e . 

/ / Push new v e r s i o n . . . 
v e r s i o n v ( s e l f , n e w r e s _ i n t _ a r r a y ) , 
v . e l e m s * s t a c k . t o p ( ) . e l e m s ; / / Copy t o p e l e m e n t , 
v . e l e m s [ i n d e x ] « v a l u e ; / / s t o r e , 
s t a c k . p u s h ( v ) ; 

int a t o x n _ i n t _ a r r a y : . - fe tch( in t i n d e x ) { 
t i d s e l f « *(new t i d ) ; 
when ( l o c k s . c a n j r e a d ( s e l f ) ) / / c h e c k l o c k c o n f l i c t . 

Pinningo { / / 
U p d a t i n g l o c k t a b l e , 

l o c k s . r e a d _ l o c k ( s e l f ) ; / / c ^ t r e a d l o c k , 
return s t a c k . t o p ( ) . e l e m s [ i n d e x ] ; 

} 

void a tom_in t_array : : commit ( t i d f i n i s h e d ) 
when ( t rue ) 

pinning () { 
v e r s i o n v » s t a c k . t o p ( ) ; 
while ( ! s t a c k . e m p t y ( ) ) 

s t a c k . p o p O ; 
s t a c k . p u s h ( v ) ; 
l o c k s . r e l e a s e ( f i n i s h e d ) ; 

{ 
/ / Always ok t o commit . 
/ / Making m o d i f i c a t i o n . 
/ / Get c u r r e n t v e r s i o n . 

/ / D i s c a r d o t h e r s . 
/ / Push b a c k c u r r e n t v e r s i o n . 
/ / R e l e a s e l o c k s . 

void a t om__ in t_a r r ay : : abort ( t i d f i n i s h e d ) { 
when ( t r u e ) / / Always ok t o a b o r t , 

pinning() { / / Making u p d a t e , 
while (! s t a c k . e m p t y ( ) fit 

b o t h ( f i n i s h e d , s t a c k , t o p () .who)) 
s t a c k . p o p O ; / / D i s c a r d a b o r t e d s t a c k , 

l o c k s . r e l e a s e ( f i n i s h e d ) ; / / R e l e a s e l o c k s . 
} 

} 
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The type of read/write locking and version stack recovery used in the above example is a very common method of 

ensuring atomicity. Avalon/C+f provides a special subclass of ATOMIC, called DYNAMIC, which is optimized for this 

case, and is described in the next section. While DYNAMIC is a convenient method for implementing many atomic 

types, for some types greater concurrency can be gained by implementing type-specific transaction synchronization 

and recovery [Weihl&Liskov 85, Herlihy&Wing 87]. These types need to be derived from class ATOMIC directly. 

5. DYNAMIC Objects 

DYNAMIC is a subclass of ATOMIC, specialized to provide two-phase read/write locking and automatic recovery. 

Locking is used to ensure transaction serializability, and the automatic recovery mechanism "rolls back" the effects 

of aborted transactions on DYNAMIC objects. (The name dynamic refers to the particular local atomicity property 

that two-phase locking implements [Weihl 84].) 

5.1. Class Definition 
Figure 5-1 gives the class header for DYNAMIC. 

class dynamic: public a tomic { 
public: 

void w r i t a _ l o c J c ( ) ; / / A t o m i c a l l y o b t a i n s a l o n g - t e r m w r i t * l o c k , 
void read__lock(); / / A t o m i c a l l y o b t a i n s a l o n g - t e r m read l o c k . 

/ / Note t h a t "commit" and "abort" a r e i n h e r i t e d from "atomic", and t h a t 
/ / "pin" and "unpin" are i n h e r i t e d from " r e s i l i e n t " v i a "atomic ." 

} 

Figure 5-1: The DYNAMIC Class 

DYNAMIC objects should be thought of as containing long-term locks. READ_LOCK gains a read lock for its caller. 

Many transactions may simultaneously hold read locks on an object. WRTTE_LOCK gains a write lock for its caller; if 

one transaction holds a write lock on an object, no other transaction may hold any kind of lock on it. Transactions 

hold locks until they terminate. READ_LOCK and WRTTELOCK suspend the calling transaction until the requested 

lock can be granted, which may involve waiting for other transactions to complete and release their locks. If 

READ_LOCK or WRITE.LOCK is called while the calling transaction already holds the appropriate lock on an object, it 

returns immediately. 

Classes derived from DYNAMIC should divide their operations into writers and readers, that is, operations that do 

and do not modify the objects of the class. To ensure serializability, reader operations should call READ_LOCK on 

entry, and writer operations should call WRITE_LOCK. Note that no short-term mutual exclusion lock on the object is 

necessary: if any transaction holds a read lock on an object, then no transaction holds a write lock, so all are free to 

read the object without fear of its being modified as they read it; conversely, if one transaction holds a write lock on 

an object, no other transaction may hold any type of lock, so it need not fear interference. 

These locking mechanisms can be used to ensure serializability; atomicity also requires that we ensure 
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recoverability and permanence, DYNAMIC inherits the PIN and UNPIN operations from RESILIENT (via ATOMIC); these 

can be used to guarantee permanence and operation-consistency. If these are used properly, the Avalon run-time 

system guarantees recoverability by performing special abort processing that "undoes" the effects of aborted 

transactions. Thus, atomic types derived from DYNAMIC need not provide commit or abort operations. 

5.2. Using the Class DYNAMIC. 

We now present another implementation of the ATOMJNTJVRRAY class defined in Section 4. This 

implementation inherits from DYNAMIC; the contrast in code size and complexity should show the utility of 
DYNAMIC. 

class a t o m _ i n t _ a r r a y : public dynamic { 
r * » _ i n t _ a r r a y e l e m a ; 

public: 

a t o m _ i n t _ a r r a y (int n , int i n i t i a l «0) { 
r e a d _ _ l o c k ( ) ; 
• l a m a • r e a _ i n t _ a r r a y ( n , i n i t i a l ) ; 

} 

void s t o r e (int i n d e x , int v a l u e ) { 
w r i t e _ l o c k ( ) ; 
e lema [ i n d e x ] « v a l u e ; 

} 

void f e t c h (int i n d e x ) { 
read__lock ( ) ; 
r e t u r n e lema [ i n d e x ] ; 

> 
> 

WRITE_LOCK and READ_LOCK are public operations of DYNAMIC, and thus may be called by clients of classes 

derived from DYNAMIC. Clients might want to call these locking operations explicitly to decrease the likelihood of 

deadlock. Two transactions Tl and T2 might each want to obtain write locks on objects A and B; if Tl gets A and 

T2 gets B, there will be a deadlock ~ neither will be able to make any progress. Deadlock can be avoided if all 

transactions obtain locks on the objects they require in some system-wide canonical order. Therefore, clients might 

want to structure their code so that each transaction obtains all the locks it requires before executing any operations. 

They would do this with explicit calls to READ_LOCK and WRTTE_LOCK. 

DYNAMIC uses specially optimized facilities provided by the Camelot system, and is therefore quite efficient It is 

probably appropriate for deriving most atomic types. As noted previously, however, for certain types more 

concurrency can be allowed by a customized implementation inheriting from ATOMIC instead of DYNAMIC. 

6. Restrictions on Containers 

Some types are (conceptually) parameterized over the types of objects that they can contain. In order to preserve 
the intended meaning of the type, some restrictions are necessary on the types that can be used to instantiate these 
parameterized container types. 
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6.1. Restrictions for Resilience 
Let us consider the class RES_ARRAY, a generalization of the RESJNT.ARRAY class that is parameterized over the 

element type of the array. It is necessary to ask what kinds of objects we can put in RES_ARRAYS, and still maintain 

resilience of the array object considered as a whole. First, any type that is stored in-line is permissible. An in-line 

type is any type that contains no pointers. The fundamental types of C++ (char, int, or float) are in-line. A 

struct whose members are all in-line is in-line. Similarly, a (C++) array whose elements are all in-line is 

in-line. Note that if a RES.ARRAY has an in-line element type, then logging the array to stable storage will log all the 

elements as well. 

Problems arise when we start to consider pointer types. If we declare A to be a RES_ARRAY of pointers to i n t s , is 

A a resilient object? The answer is no, since A[l] points to an int, which is not a resilient object. We could 

change the value of this int during a transaction, thus conceptually modifying the state of the array, but no record 

of this modification would ever reach stable storage, allowing permanence to be violated. 

Here, then, is a rule for ensuring that a type is resilient: if objects of a type may contain other objects, and the 

containing type is intended to be resilient, then the type of the contained objects must either be an in-line type, or it 

must be a pointer to a resilient object This rule ensures that the latest version of a resilient object will be written to 

stable storage every time an operation that modifies it completes. 

The inverse problem occurs when we have a object that is not meant to be resilient, but conceptually contains 

some resilient object The Camelot system requires that resilient and non-resilient data be allocated in different 

sections of memory. If we allow a non-resilient object to contain an in-line resilient object, then we must allocate 

space for the aggregate object in one of these sections of memory. We cannot put it in the non-resilient section of 

memory since then the resilient object would not be resilient. We also cannot put the object in the resilient section 

of memory, for a more subtle reason. If we were to allocate memory there, and there were a node crash, the 

non-resilient part of the object would become meaningless after recovery: the storage allocator would think it had 

been allocated, although no variables reference it. This type of garbage would build up over time. Therefore, as a 

rule we forbid non-resilient objects to contain resilient objects *'in-line;'* they can point only to resilient objects. 

6.2. Restrictions for Serializability 
A rule very similar to the rule for resilience applies for serializability. If a container type is intended to ensure 

serializability of the transactions accessing it, then it should be instantiated either with an in-line type or with a 

pointer type to another type that ensures serializability. Care must be taken that nested atomic objects do not lead to 

deadlock. 
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7. Related Work and Discussion 

The use of inheritance to provide resilience and atomicity in Avalon/C-H- is not closely tied to the details of the 

C++ inheritance mechanism. It could be adapted to inheritance mechanisms in languages such as Smalltalk 

[Goldberg&Robson 83], Flavors [Moon 86], CommonLoops [Bobrow et al. 86], CommonObjects [Snyder 85], and 

Owl [Schaffert et al. 86]. The abstract types of the Emerald language [Black et al. 87] provide capabilities similar 

to inheritance. It would be especially interesting to investigate what form our extensions might take in a language 

allowing multiple inheritance, where a class may inherit from more than one superclass. 

Avalon/C++ is in many ways similar to Argus [Liskov&Scheifler 83], a language designed to provide support for 

fault-tolerant distributed computing. Like Avalon/C++, Argus allows users to write atomic data types and 

transactions. The major additional features offered by Avalon/C++ are: (1) user-defined atomic types are defined 

using type inheritance, whereas in Argus such types are typically defined by including atomic objects in the 

representation; (2) Avalon provides explicit linguistic support for both hybrid and dynamic atomicity, not just 

dynamic atomicity; and (3) Avalon uses the Camelot system for its low-level support, thereby gaining the ability to 

recover efficiently the state of the system's objects from non-volatile storage after node failures. Argus always 

reconstructs state from the log after crashes. 

Dixon and Shrivastava [Dixon&Shrivastava 87] explore the use of C++ for just recoverability. They assume a 

simpler failure model, where transactions "voluntarily*' abort; crashes are not handled. Crash recovery places more 

stringent demands on our language. Synchronization primitives are not integrated into their class structure at all. 

We are currently implementing Avalon/C++. The implementation will take the form of a preprocessor that 

produces C++ code. We make extensive use of the Camelot system for low-level transaction support; Camelot, in 

turn, relies on the Mach operating system [Accetta et al. 86] for memory management, inter-node communication, 

and lightweight processes. 

We have shown how inheritance can be applied to a novel domain: fault-tolerant distributed computing. In doing 

so, we have used inheritance to transmit properties quite different from the normal behavioral properties transmitted 

in the serial domain. We believe that the inheritance of properties such as synchronization and recovery is an 

important paradigm for the extension of object-oriented languages to distributed environments, especially in 

environments with stringent reliability requirements. 
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