
N O T I C E W A R N I N G C O N C E R N I N G C O P Y R I G H T R E S T R I C T I O N S :
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

OS/Application Concurrency: A Model

James W. Wendorf

April 1987

CMU-CS-87-153 ?

Department of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Abstract

A mode l of the processing performed on a computer system is presented. The mode l divides processing
into two types: OS processing and application processing. It then defines what it means to have
OS/applicat ion concurrency, and enumerates the different forms such concurrency can take. Examples
are presented to illustrate the m o d e l ' s analytic and predictive capabilities. The mode l provides a common
framework for describing the concurrency in different systems, and it aids in identifying the areas where
increased concurrency m a y be possible. The potential performance improvements resulting from
increased OS/applicat ion concurrency can also be predicted from the model .

This research was supported in part by the US A F R o m e Air Development Center under contract number
F30602-85-C-0274, and the U.S. Naval Ocean Systems Center under contract number N66001-87-
C-0155. The views and conclusions contained in this document are those of the author and should not be
interpreted as representing official policies, either expressed or implied, of R A D C , N O S C , or the U.S.
Government .

OS/Application Concurrency: A Model

Table of Contents
1. Introduction
2 . Model and Interpretation

2 . 1 . E l e m e n t s of t h e M o d e l
2 . 1 . 1 . Def in i t ions
2.1.2. I n t e r p r e t a t i o n a n d Notes

2 .2 . C o n c u r r e n c y
2 . 2 . 1 . Def in i t ions
2 .2 .2 . I n t e r p r e t a t i o n a n d Notes

2 . 3 . O S / A p p l i c a t i o n C o n c u r r e n c y
2 3 . 1 . Def in i t ions
2.3.2. I n t e r p r e t a t i o n a n d Notes

3 . Graphical Representation and Concurrency Analysis
4. Examples

4 . 1 . D e s c r i b i n g Different Sys t ems
4 . 1 . 1 . A M o n o l i t h i c K e r n e l (UNIX)
4.1 .2 . A M e s s a g e - B a s e d S y s t e m (Accent)
4 .1 .3 . A n O b j e c t - O r i e n t e d S y s t e m (E d e n)

4 .2 . Exp lo i t i ng O S / A p p l i c a t i o n C o n c u r r e n c y
4 . 2 . 1 . A n I P C P r o c e s s o r T o Exp lo i t S t r o n g C o n c u r r e n c y
4.2.2 . A n O S P r o c e s s o r To Explo i t W e a k C o n c u r r e n c y
4 .2 .3 . A S c h e d u l i n g P r o c e s s o r T o Exp lo i t G loba l M a n a g e m e n t C o n c u r r e n c y

5. Conclusion
Acknowledgments

OS/Application Concurrency: A Model il

List of Figures
Figure 3-1: The Forms of OS/Application Concurrency 6
Figure 3-2: Performance Improvements From Increased Concurrency 7
Figure 4-1: Modeling OS/Application Concurrency in UNIX 9
Figure 4-2: Modeling OS/Application Concurrency in Accent 10
Figure 4-3: Exploiting Strong Concurrency With An IPCP 12
Figure 4-4: Exploiting Weak Concurrency With An OS Processor 13
Figure 4-5: Exploiting Global Management Concurrency With A Scheduling 15

Processor

OS/Application Concurrency: A Model 1

1. Introduction

A c o m m o n approach to providing hardware support for operating system functions is to add specialized

processors to a computer system. This allows the supported functions to execute concurrently with other

system activities, especially with application processing. As part of our effort to analyze and compare

such O S support techniques [7], we have developed a mode l of OS/application concurrency. This model

provides a uniform and precise terminology for describing the processing performed on a computer

system, and in part icular the relationship be tween O S processing and application processing. The model

defines OS/applicat ion concurrency, and enumerates the different forms such concurrency can take.

This paper presents the OS/applicat ion concurrency model , and discusses its interpretation in terms of

O S and applicat ion process ing on typical computer systems. Specific examples illustrate the mode l ' s

analytic and predict ive capabilit ies when applied to actual system environments . T h e mode l provides a

c o m m o n framework for describing the different examples , and it indicates the areas where OS/application

concurrency can be increased through appropriate system modifications. T h e mode l is also used to

predict the potential performance improvements resulting from the increased concurrency.

2. Model and Interpretation

In this section we define the OS/applicat ion concurrency model , and provide precise definitions for the

different forms of concurrency. A general interpretation is provided along wi th the definitions, indicating

h o w the mode l applies to typical computer systems. Addit ional notes clarify certain aspects of the

definitions and interpretation, particularly as they relate to model ing real systems.

2.1. Elements of the Model

T h e OS/appl icat ion concurrency mode l has four elements: load, processes, s tatements, and " w o r k s -

fo r ' ' relation. T h e load on a computer system is a set of processes, where each process is a sequence of

s tatements . S o m e processes work-for other processes. Without loss of generality, the mode l assumes a

single global clock, and each statement executes during a specified interval in the global t ime frame.

Once a compute r system has been modeled in terms of these four elements , the concurrency within the

system can be described precisely.

OS/Application Concurrency: A Model 2

2 . 1 . 1 . Def in i t ions

L o a d : A load is a set of processes {Pv . . . , P ¿ , . . . }, wi th
a Boolean-valued function " W o r k s - F o r " defined on all pairs of processes in the set.

P r o c e s s : Every process P. has a type ProcType(P¡) e {APP, OSP, GMP} , and

a s tatement sequence {S{(P)>..., Sk(P¡)9... } .

4 4 W o r k s - F o r ' ' (- >) ' For every process P¿ with ProcTypeiP) = OSP, there is a single process P..
such that ProcTypeiPp = APP and P^Pj = TRUE (denoted s imply P^Pp.
In all other cases P.->P. = FALSE (denoted P.-A Pp.

S t a t e m e n t : Every statement Sk(P¡) has a type StmtType(Sk(P)) e {AP, O S } , and
an integer StartTime(Sk(P)), and an integer EndTime(Sk(P¿)), where :

StmtType(Sk(P¡)) = OS if ProcType(P) = OSP o r GMP, and
StartTime(Sk(P)) < EndTime(Sk(P)) < StartTime(Sk+l(P)).

2.1.2. I n t e r p r e t a t i o n a n d No te s

T h e load on a computer system is modeled as a set of processes. Tha t set can either be finite or

unbounded in size. E a c h process is a sequence of serially executed statements, where the sequence can

either be finite o r unbounded in length. Each statement is a period of uninterrupted execution on a

processor. Statements are classified as either O S or application processing (OS o r AP). There are three

different types of processes:

1. A n application process (APP) is the normal type of process that a user provides as load to the
system. A n APP process can include both application processing (AP s tatements) and OS
process ing (o s statements).

2. A n O S process (OSP) does only OS processing, and the work it performs is on behalf of a

part icular APP process.

3 . A global managemen t process (GMP) also does only O S processing, but the work it performs
is for the global benefit of the system, rather than on behalf of a part icular APP process.

Notes :

1. Usual ly the load being modeled will be a finite set of processes, which execute on the
system dur ing a particular per iod of t ime. However , the load can be unbounded if a
continuously: running system is to be modeled. - The sequence of s tatements in a
continuously running process would then be unbounded as well .

2 . Statements m a y be very fine grain (such as individual machine instructions) or h igher level
operat ions (such as entire subroutines), depending on wha t is mos t convenient for the
system being modeled. T i m e gaps be tween successive statements in a process indicate
per iods of inactivity, when the process is wait ing for external events or for an available
processor.

3 . Transi t ions be tween AP and OS s tatements within an APP process reflect the synchronous

OS/Application Concurrency: A Model
3

invocat ion of O S processing. Actual mechanisms for O S invocations can vary from kernel
t raps, to message transmissions, to object invocations. But each of these mechanisms would
be modeled as an AP s tatement, followed by some number of OS s tatements. A n additional
OS s ta tement m a y also be needed to mode l the return from an O S invocation back to
application processing.

4 . O S processing for a part icular APP process can be modeled either as OS s tatements within
the APP process , or as separate OSP processes that work-for it. Normal ly , synchronous OS
process ing is modeled as OS statements within the APP process , while OSP processes ,
represent asynchronous (and potentially concurrent) O S processing.

5. In m a n y real systems, a single O S server " p r o c e s s " can do work on behalf of mult iple
cl ient application processes. However , this would be modeled using a separate OSP process
for each APP process.

6. W h e n model ing a given system, there are no hard and fast rules for determining what is OS
process ing and wha t is application processing. However , w e can provide some general
guidel ines based o n what is commonly considered to be " O S p r o c e s s i n g " by practit ioners
in the field. In general , O S processing is a set of services, available to all application

- -processes-in a control led^nanner . ^These-services^include communica t ion , synchronization,
virtual m e m o r y management , file system, and I/O facilities. T h e global system
managemen t functions, which are modeled with GMP processes , include resource
scheduling, file system maintenance, and accounting procedures.

2.2. Concurrency

In this model , concurrency is defined in terms of a Boolean-valued function. F o r any pair of statements

in the load, the function will indicate whether o r not they are concurrent. Different forms of concurrency

can then be dist inguished, based on the StmtTypes of concurrent statements.

2 . 2 . 1 . Definitions

"Concurrent-With" (||): Sk(P) \\SfPp = TRUE if and only if

StartTime{SfPp) < StartTime(Sk(P)) < Endrime{SfPp\ o r
StartTime{SkiP)) < StartTimeiSfPp) < EndTime{Sk(P)).

"AP/AP-Concurrent-With" (^H^): Sl[J>)AP\)fpS{J>p = 'mJE if and only if
Sk(P)%SfPp and StmtType(Sk(P)) = StmtTypeiSfPp) = AP.

"OS/OS-Concurrent-With" {os\\os)\ Sk(P) 0S\\0SSfPp = TRUE if and only if

Sk{P)\\SfPp and SmtType(Sk(P)) = StmtType(SfPp) = os.

"OS/AP-Concurrent-With" {os\f): S^P)0S\^SfPp = TRUE if and only if
S^WSfJPp and StmtType(Sk(Pt)) = OS and StmtTypeiSfPp) = AP.

file:////SfPp

OS/Application Concurrency: A Model 4

2.2.2. I n t e r p r e t a t i o n a n d No te s

A statement in one process is concurrent with a s tatement in another process if any part of their

execution intervals overlap. Application/application (AP/AP) concurrency is when two AP s tatements are

concurrent. OS/OS concurrency is when two OS statements are concurrent. OS/applicat ion (OS/AP)

concurrency is when an OS s tatement is concurrent with an AP statement.

Notes :

l . T w o statements within a single process cannot be concurrent, since by definition the
statements of a process are executed serially.

2 . T h e mode l locates areas of concurrency by specifying which statements are concurrent.
Us ing the StartTime and EndTime of s tatements, it is also possible to measure the amount of
concurrency (see Section 3 below).

3 . " O S / A P - C o n c u r r e n t - W i t h " is an asymmetr ic function, but that does not restrict its ability
to express all of the OS/applicat ion concurrency in a system.

2.3. OS/Application Concurrency

OS/applicat ion concurrency can be further classified, based on the types of processes involved. Three

distinct classes are defined, called " s t r o n g " , " w e a k " , and "g loba l m a n a g e m e n t " concurrency.

2 .3 .1 . Def in i t ions

" S t r o n g - C o n c u r r e n t - W i t h " (ostff) : Sk(P) ostff SfPp = TRUE if and only if

S^P^^SfPp and P^Pj.

" W e a k - C o n c u r r e n t - W i t h " (os\$): Sk(P¿) 0S\twS¡(Pp = TRUE if and only if

S^P^W^S^Pp and P¡-/>Pj and ProcType(P¿) ^ GMP.

" G l o b a l - M a n a g e m e n t - C o n c u r r e n t - W i t h " (°s\\f) : Sk(P) o s \ ^ St(Pp = TRUE if and only if

S^P^fSfPp and ProcType(P¡) = GMP.

2.3.2. I n t e r p r e t a t i o n a n d No te s

Strong concurrency involves concurrent processing on behalf of a single APP process. A n OS statement

in an OSP process is concurrent with an AP s tatement in the associated APP process . W e a k concurrency

involves concurrent process ing on behalf of different APP processes. A n AP s tatement is concurrent with

an OS s ta tement in another APP process o r non-associated OSP process . Global management concurrency

is when an OS s tatement in a GMP process is concurrent with an AP s tatement.

OS/Application Concurrency: A Model
5

Notes :

l . I n mos t exist ing computer systems, strong concurrency is the least c o m m o n form of
OS/appl icat ion concurrency. However , it can provide greater performance benefits than the
other forms, especially in light load situations. It reduces the running t ime of an individual
application process by overlapping its OS and application processing.

2 . S t rong concurrency can manifest itself either as " p o s t - c o m p u t a t i o n " or " p r e -
compu ta t i on" . Post -computat ion is when an APP process requests asynchronous O S

—preoess ingrand thea-continues-with -application processing-while-its OSP p recess handles the
request. Pre-computat ion is when an OSP process performs some work and buffers the
results in anticipation of a future request from its APP process.

3 . W e a k concurrency depends on the existence of mult iple application processes. It arises
natural ly in almost any mult iprocessor system, assuming there are enough processes at a
g iven t ime so that one can be doing application processing while O S processing is being
done on behalf of another.

4 . Globa l managemen t concurrency also arises naturally in almost any mult iprocessor system,
assuming there are enough processes so that AP s tatements can be executing at the same
t ime as the statements of an OSP process.

3. Graphical Representation and Concurrency Analysis

W h e n model ing a system and analyzing potential performance improvements from increased

concurrency, it is helpful to represent processes and their component statements graphically, as illustrated

in Figure 3 - 1 . A process is represented by a vertical t ime-line, with t ime increasing from top to bottom.

Statements are intervals along the l ine, wi th heavy, solid segments representing AP s tatements and dotted

segments representing O S statements. If processes are drawn side by side, aligned in t ime, the

concurrency becomes evident.

Figure 3 - l (a) shows strong concurrency: SfQ)0S\tfsM(F) and SM(Q)0S\lf Si+2(P). T h e arrows

be tween the two processes indicate t ime dependencies . For example , Sj(Q) m a y represent post-

computa t ion that can only occur after the request is made in SM(P). S y + 1 (0 m a y represent pre­

computa t ion that m u s t be completed before the results can be retrieved in 5 . + 3 (P) . Figure 3 - l (b) shows

weak concurrency: SM(Q)0S\ffSfP) and SM(P)0S\f£Sj+2(Q). Figure 3- l (c) shows global management

concurrency: SfQ)0S\$Sfft mdSM(Q)0S\ffS.+2(P).

The amount of concurrency in a system, and the resulting performance improvements , can be

determined from the model . As an example , Figure 3-2 illustrates the effect of adding an I/O processor to

a hypothetical uniprocessor system. Assume there is an application process P that repeatedly computes

OS/Application Concurrency: A Model 6

(a) Strong Concurrency (b) Weak Concurrency
APP Process

P

Stmt &
(AP)

Stmt a
(OS)

Stmt a
(AP) 1 + 2

Stmt a
(OS) 1+3

Stmt S,
(AP) 1 + 4

Time

OSP Process

Inactive

Stmt S,
(OS) 3

(Post-
Computation)

Inactive
Stmt S,+1

(OS) 11 + 1

(Pre-
Computation)

Inactive

Time

APP Process APP Process
P Q

Stmt S.
(AP)

Stmt S,
(OS) l+i

Stmt a
(AP) 1+2

Time Time

Stmt S,
(AP)

Stmt S
(OS) j+i

Stmt a
(AP) J+2

(c) Global Management Concurrency
APP Process GMP Process

Stmt a
(AP)

Stmt a
(OS) 1+1

Stmt a
(AP) 1+2

Inactive

Stmt S
(OS) -

Inactive

Stmt S,
(OS) j+i

Inactive

N1/
Time

Figure 3-1: T h e Fo rms of OS/Applicat ion Concurrency

some values and writes them out. O n the uniprocessor system (Figure 3-2(a)) this can be modeled as an

APP process (P) and its associated interrupt handler process (IH). One compute/wri te cycle of the

application is shown, al though for convenience the cycle is taken from the beginning of one write request

through the end of the following computat ion. The t ime for each statement in the cycle is given in units

of " T * \ For example , SfP) (Request " W r i t e ") takes IT units of t ime.

After the device has started writing, it takes 3T units of t ime until it completes the operat ion and

interrupts the processor. Whi le the interrupt is being handled, P is inactive, wait ing for the processor to

become available again. Since there is only one processor in the system, there can be no concurrency.

T h e total elapsed t ime for one cycle of the application is:

— Write + Compute + Handle Interrupt
= (R e q u e s t 4 4 W r i t e ' ' + Buffer Data + Start Device + Return) + (AP SM(P) + AP Si+5(P)) +

(Device Interrupt + Release Buffer + Return)
= (IT + 2T + 2T + IT) + (2T + 4T) + (IT + 2T + IT)

= 16T

W h e n an I/O processor is added to the system (Figure 3-2(b)), all of the device handl ing can be done by

that processor. This is modeled us ing an OSP process , IOP, where IOP-+P. Again, one cycle of the

OS/Application Concurrency: A Model 7

(a) Uniprocessor System
APP Process OSP Process

P IH—>P
Request "Write"

Buffer Data

Start Device

Return

AP Computation

Inactive

AP Computation

8T

i + 5
4T 4T

Inactive

Device Interrupt

Release Buffer

Return

Inactive

Time Time

(b) System With I/O Processor
APP Process OSP Process

P IOP—>P
Request "Write

Buffer Data

Release Buffer

Return

AP Computation

Start Device

Device Interrupt

Time Time

F i g u r e 3-2: Performance Improvements From Increased Concurrency

application is shown, bu t note that SfJOP) and S^x(IOP) (Release Buffer, and Return) are concerned with

the previous write operation. This is because the IOP cycle is skewed relative to P. Also note that a IT

delay has been introduced be tween Buffer Data (SM(P)) and Start Device (S ^ 3 (/ 0 P)) . This reflects the

delay involved in notifying the I/O processor and having it find the data. Since all of the statements in

IOP are concurrent with statements in P, the total elapsed t ime for one cycle is :

Wri te + Compute
= (Request " W r i t e " + Buffer Data + Return) + (AP Computat ion)

= (1T + 2T + 1T) + (6T)

= 10T

A convenient way to express the performance improvement is wi th the elapsed t ime ratio (ETR):

y^rrrn> ElapsedTime on Systemwith Added Processor IOT
E T R = — - — — -——:—— = - — = 0.625

ElapsedTime on Original System loT

This indicates that concurrency has reduced the elapsed t ime for the application to 6 2 . 5 % of wha t it was

originally. T h e savings come from making Start Device , Device Interrupt, Release Buffer, and Return (2T

OS/Application Concurrency: A Model 8

+ IT + 2T + IT = 6T) concurrent with other statements in P. Half of that (3T) is strong OS/application

concurrency, whi le the other half (3T, plus .5T for Find Data) is OS /OS concurrency.

4. Examples

W e n o w briefly discuss a number of examples that illustrate how the OS/applicat ion concurrency

mode l can be applied to actual system environments . T h e first three examples (UNIX, Accent , and Eden)

demonstra te the m o d e l V expressiveness across o r a n g e of "OS paradigms,; from mono l i th i c kernels, to

message-based systems, to object-oriented systems. The remaining examples show how the mode l can be

used to analyze specific instances of OS/application concurrency, and to predict the performance

improvements resulting from that concurrency. Three examples are presented, covering the different

forms of OS/applicat ion concurrency (strong, weak, and global management) . These three examples are

treated in detail and studied experimental ly in [7].

4*1. Describing Different Systems

T h e OS/applicat ion concurrency model provides a c o m m o n framework for describing the concurrency

in different systems. In the following examples , three systems that appear on the surface to be very

different are all mode led in a similar fashion. The purpose of these examples is to demonstrate the

expressiveness of the OS/applicat ion concurrency model , rather than to analyze the concurrency and

associated performace improvements . Analysis examples will follow later.

4 . 1 . 1 . A M o n o l i t h i c K e r n e l (UNIX)

T h e U N I X operat ing system [6] is an example of a monoli thic O S kernel . Typical UNIX user

processes would be modeled as APP processes , while the basic system processes (such as " i n i t " and

" s w a p p e r ") would be GMP processes . Mos t O S processing in U N I X is handled synchronously with

respect to the request ing user process . A user process requests OS processing by " t r a p p i n g " into the

kernel , and the process will only cont inue with application processing after the requested O S processing is

completed. This type of O S processing can be modeled as a subsequence of OS s tatements, within the

statement sequence of an APP process (see Figure 4- 1(a)).

On a mult iprocessor U N I X system [1] , various forms of concurrency are possible. Mult iple processes

can be execut ing statements at the same t ime, giving application/application, OS/OS, or OS/application

concurrency, depending on the types of the concurrent statements. Mos t OS/applicat ion concurrency

would be in the form of weak or global management concurrency, as illustrated in Figure 4-1(a).

However , s trong concurrency is also possible, due to the buffered handl ing of I/O operat ions. For

OS/Application Concurrency: A Model 9

(a) Weak Concurrency
APP Process APP Process

P Q
AP Computation

Kernel Trap

OS Computation

Return From Trap

AP Computation

AP Computation

Kernel Trap

OS Computation

Return From Trap

AP Computation

Time Time

(b) Strong Concurrency
APP Process OSP Process

AP Computation

Kernel Trap

Buffered Write

Return From Trap

AP Computation

Time

Q-»P

Inaet ive

Write Buffer to Disk

Inactive

Disk Interrupt
Release Buffer

Inactive

>4/
Time

F i g u r e 4 - 1 : Model ing OS/Applicat ion Concurrency in U N I X

example , the buffered, delayed writ ing of file system data blocks can be modeled as a post-computat ion

form of s t rong concurrency, by introducing an OSP process to represent disk write operations and the

associated interrupt handl ing (see Figure 4 - 1(b)). Similarly, the prefetching and buffering of sequential

file data blocks can be modeled as a pre-computat ion form of strong concurrency.

4 .1 .2 . A M e s s a g e - B a s e d S y s t e m (Accent)

Accent [5] is an example of a message-based operating system. A small message-pass ing kernel

provides the foundation for such a system, and m u c h of the traditional O S functionality resides in separate

system processes outside the kernel . M o s t O S processing is then requested by sending a message to the

appropriate O S server process . Model ing a message-based system such as Accent is similar to model ing

UNIX, in m o s t respects. A use r ' s application processes would be modeled as APP processes, and global

managemen t functions (such as scheduling) would be modeled as GMP processes. Kernel functions (such

as message primit ives) would be modeled as OS s tatements within the s tatement sequences of processes

(see Figure 4-2) .

Since a single O S server process can do work on behalf of many different application processes, it

should be modeled as mult iple OSP processes , one for every APP client process . Al though OSP processes

OS/Application Concurrency: A Model 10

(a) Weak Concurrency
APP Process

P
AP Computation

Send Request

Inactive

Receive Reply

AP Computation

Time

OSP Process APP Process
Q—*P R

Inactive

Receive
Request

Handle
Request

Send
Reply

Inactive

Time

OS Computation

AP Computation

Time

(b) Strong Concurrency
APP Process OSP Process

P Q—»P
AP Computation

Send Request

AP Computation

Receive Reply

AP Computation

Time

Inactive

Receive Request

Handle Request

Send Reply

Inactive

Time

F i g u r e 4 -2 : Model ing OS/Applicat ion Concurrency in Accent

are used, only weak concurrency m a y be possible (in a mult iprocessor system) if the service requests are

handled completely synchronously, as shown in Figure 4-2(a) . Fo r example , if a client sends a request

and then waits for the result, and the server doesn ' t send the result until the requested O S processing is

completely handled, then the application and OS processing will a lways be serialized with respect to each

other. However , if the server buffers the request message , and allows the client to cont inue with

application processing while the server handles the requested O S processing, then the system would be

exhibit ing strong concurrency (see Figure 4-2(b)) .

4 ,1 .3 . A n O b j e c t - O r i e n t e d S y s t e m (E d e n)

E d e n [3] is an example of an object-oriented system. At the heart of the system is a small kernel

support ing object j n a n a g e m e n t a n d operat ion invocation. M o s t of the traditional O S functionality then

resides in separate system objects outside the kernel . O S processing is requested by invoicing operations

on the appropriate system objects. Since objects in Eden are active entities (each has a process associated

with it), the similarities be tween the Eden object-oriented system and the Accent message-based system,

at least from a model ing standpoint, should be evident. User-defined objects would be modeled as APP

processes , and global management functions (such as scheduling) would be modeled as GMP processes.

T h e mode l ing of system objects would then be done in m u c h the same way as model ing server processes

OS/Application Concurrency: A Model 11

in a message-based system. Mult iple OSP processes would be used, wi th each process corresponding to a

different user-defined object that invokes operations on the system object. W e a k concurrency and strong

concurrency arise in the same way as described above for the Accent system.

4.2. Exploiting OS/Application Concurrency

T h e OS/applicat ion concurrency mode l aids in identifying the areas where increased concurrency may

« <be possible r ^ c H t c a n o n i s e d ^ o ^ r e c H c t ^ ~In the-following

examples , three specific techniques for exploit ing OS/application concurrency are briefly analyzed. Each

technique involves a different form of concurrency (strong, weak, and global management) . T h e analyses

follow the approach illustrated earlier in Section 3.

4 . 2 . 1 , A n I P C P r o c e s s o r T o Exp lo i t S t r o n g C o n c u r r e n c y

A compute r system wi th an added IPC processor (IPCP) can improve the performance of

communica t ing processes by exploit ing strong concurrency. In a message communica t ion facility like

that of Accent , the " S e n d " primitive for queueing a message on a kernel message queue would be

modeled as a sequence of OS s tatements within the sending APP process (see Figure 4-3(a)) . Similarly,

receiving a queued message would be modeled as a sequence of OS s tatements within the receiving APP

process . As an illustration, Figure 4-3(a) shows a single process that sends a message , does some

computat ion, and then receives the message . Using the t ime values provided, this entire sequence takes:

Send + Compute + Receive
= (Trap + Validate + Copy + Wakeup + Return) + (AP Computat ion) +

(Trap + Find + Copy + W a k e u p + Return)
= (IT + IT + IT + IT + IT) + (6T) + (IT + IT + IT + IT + IT)

= 16T

T o introduce strong concurrency in the message transfer sequence, the IPC primit ives are modified.

Instead of queueing messages o n a kernel queue, messages will now be constructed in a designated buffer

area, and newly arrived messages will be available for direct access from the same area. A n IPC

processor t ransfers-messages from senders ' buffers to receivers ' buffers. Figure 4-3(b) shows h o w the

send/compute/receive sequence is modeled on this system. T h e 4 * S e n d " primitive is modeled as a single

OS s tatement. It flags a message within the buffer as complete and ready for transfer. " R e c e i v e " locates

a message that has arrived in the buffer area, and it too is modeled as a single OS statement. The IPCP is

mode led as mult iple OSP processes , one for each APP process that sends o r receives messages .

In Figure 4-3(b) , the statements of the IPCP process are all s trong-concurrent-with " A P Compu ta t i on"

OS/Application Concurrency: A Model 12

(a) Original Send/Receive (b) Send/Receive With IPCP
APP Process

P
Kernel "Send" Trap

Validate Message

Copy to Kernel

Wakeup Receiver

Return from Trap

AP Computation

Kernel "Receive" Trap

Find Message

Copy from Kernel

Wakeup Sender

Return from Trap

6T

IT

IT

IT

IT

IT

Time

APP Process
P

"Send"
(Flag Ready Message)

AP Computation

"Receive"
(Locate Buffered Message)

IT

IT

Time

OSP Process
IPCP—*P

1.5T

IT

IT

IT

IT

IT

1.5T

Inactive

Validate Message

Determine Receiver

Copy Message

Wakeup Sender

Wakeup Receiver

Inactive

Time

F i g u r e 4 - 3 : Exploit ing Strong Concurrency With A n I P C P

in Process P . T h e t ime required for the complete send/compute/receive sequence is :

Send + Compute + Receive
= (Flag Message) + (AP Computat ion) + (Locate Message)

= (IT) + (6T) + (IT)

= 8T

T h e elapsed t ime ratio is E T R = 8T/16T = 0.5, indicating that the elapsed t ime has been reduced to half of

what it was originally. T h e savings come from reducing the non-overlapped processing t ime for " S e n d "

and " R e c e i v e " b y 4T units each. M o r e details concerning the design, implementat ion, and performance

analysis of an I P C P similar to the one outlined here can be found in [7, 8] .

4 .2 .2 . A n O S P r o c e s s o r T o Exp lo i t W e a k C o n c u r r e n c y

As was indicated earlier, weak concurrency arises naturally in a lmost any mult iprocessor system, since

O S processing on behalf of one application process can proceed in parallel wi th the execut ion of other

application processes . In some systems, such as Pu rdue ' s dual processor U N I X [2] , all O S processing is

handled by a designated O S processor (also called the " M a s t e r ") . Applicat ion processing can be done on

OS/Application Concurrency: A Model
13

either the Mas te r o r the " S l a v e (s) " (application processors) . W h e n a process is executing on a Slave and

requests some OS processing, the Slave must switch processes. The Master can then handle the requested

OS processing, while the Slave executes another application process.

(a) Uniprocessor System
APP Process APP Process

P Q

AP -Computation

Kernel Trap

OS Computation

Return From Trap

AP Computation

IT

IT

2T

IT 9T

3T

Inactive

Inactive

6T

13T

IT

IT

AP Computation 3T

>J7
Time Time

AP Computation

Kernel Trap

OS Computation

Return From Trap

AP Computation

Inactive

(b) System With OS Processor
APP Process APP Process

P Q
AP Computation

tMaster)

Kernel Trap

OS Computation

Return From Trap

AP Computation
(Master)

IT

IT

2T 6T

3T IT

Inactive .
(Switching Processors)! 1 T

AP Computation
(Slave)

Inactive

3T

Time

AP Computation
(Slave)

Kernel Trap

2T

IT

IT IT

Inactive
(Switching Processors)

OS Computation

Return From Trap
AP Computation

(Master)

Time

Figure 4-4: Exploi t ing Weak Concurrency Wi th A n OS Processor

Figure 4-4 illustrates h o w weak concurrency is achieved in a system with an OS processor, and shows

the result ing performance improvements . T w o APP processes, P and Q, are both ready to run. On a

uniprocessor system (Figure 4-4(a)) their execution is interleaved, and hence there is no concurrency.

OS/Application Concurrency: A Model 14

Both processes are s imultaneously inactive for a IT period of t ime whenever the processor is being

switched be tween them. F rom the t imes shown in the uniprocessor model , the total t ime to complete the

two processes is 24T.

On the system with an O S processor (Figure 4-4(b)) , process P first executes on the Master while

process Q executes on a Slave. Before Q can do its 4 * OS Compu ta t i on" , it mus t switch to the Master .

There is a IT delay before the Master not ices that Q is wait ing for it, and then another IT is needed for the

Master and Slave to switch processes. All of the OS s tatements in P are weak-concurrent-with 4 4 A P

C o m p u t a t i o n " in Qy and vice versa. There is also some application/application concurrency (2T units).

As a result of the concurrency, the total t ime to complete the two processes is now 13T, and so

E T R = 13T/24T = 0.542 (the elapsed t ime has been reduced by nearly half).

4 .2 .3 . A S c h e d u l i n g P r o c e s s o r T o Exp lo i t G l o b a l M a n a g e m e n t C o n c u r r e n c y

As a final example , consider a real-t ime system that uses a complex, computat ion intensive scheduling

algori thm, such as described in [4] . Schedul ing is mode led as a g loba l managemen t process (GMP), since

it is not actually performed on behalf of a particular application process (see Figure 4-5). On a

uniprocessor system (Figure 4-5(a)) there is no concurrency, and thus the scheduler ' s computat ion t ime

contributes directly to the total elapsed t ime. In this particular example there are two APP processes, P

and Q, that are both ready to r u a P executes first, and when it 4 4 W a i t s " for an event the scheduler

(SCHED) chooses to run Q, and switches to i t The total elapsed t ime to complete both P and Q is 15T.

W h e n a scheduling processor is added to the system (Figure 4-5(b)) , SCHED can m a k e the decision to

next run Q whi le P is still executing (4 4 C h o o s e Next P r o c e s s " in SCHED is global-management-

concurrent-with 4 4 A P C o m p u t a t i o n " in P). SCHED can also prepare for the switch to Q by preloading

part of its saved execut ion state, assuming the system architecture permits i t T h e actual switch from P to

Q can then be done more efficiently (.5T compared to IT in the example) . As a result of the global

managemen t concurrency, the total elapsed t ime to complete bo th P and Q is 10.5T, giving

E T R = 10.5T/15T = 0 .7 (the elapsed t ime has been reduced 30%) .

5. Conclusion

This paper has presented a mode l for describing the processing performed on a computer system, and in

particular the relationship be tween O S processing and application processing. T h e purpose of the model

is to provide a c o m m o n framework for describing the OS/applicat ion concurrency in different system

environments , and to aid in identifying the areas where concurrency can be increased through appropriate

OS/Application Concurrency: A Model
15

(a) Uniprocessor System
APP Process GMP Process APP Process

P SCHED Q

AP Computation

Kernel Trap

OS Computation

Wait

4T

IT

IT

IT

Inactive 8T

7T Inact.

12T

4T

IT

Choose
Next
Process

Switch

Inact. 3T

Inactive

AP Computation

\ | / Ni/ \ p
Time Time Time

(b) System With Scheduling Processor
APP Process GMP Process APP Process

P SCHED Q

AP Computation

Kernel Trap

OS Computation

Wait

Inactive

4T 4T

IT IT

IT

IT

3.5T

2T

.5T

3T

Choose
Next
Process

7.5T
Prep.
Switch

Inact.

Switch

Inact. 3T

Inactive

AP Computation

Time Time Time

F i g u r e 4 - 5 : Exploi t ing Global Management Concurrency With A Scheduling Processor

system modificat ions. T h e mode l can also be used to predict the potential performance improvements

resulting from the increased concurrency. The usefulness of the mode l for these purposes was

demonstrated by means of specific examples . It was applied to a monoli thic kernel (UNIX) , a message-

based system (Accent) , and an object-oriented system (Eden). It was also used to analyze the

effectiveness of three part icular techniques for increasing the amount of OS/application concurrency.

These three techniques demonstra ted the different forms of OS/applicat ion concurrency: strong, weak,

and global management .

Acknowledgments

I would like to thank Anita Jones for originally suggesting the development of a precise model , and for

helping m e unders tand what it means to be precise. T h e current mode l developed out of earlier

discussions with Anita. I would also like to thank Hide Tokuda for his constant advice and

encouragement , as well as Tom Lawrence of R A D C and Debora Teasdale of N O S C for their support.

OS/Application Concurrency: A Model 16

References

[1] Bach , M J . and Buroff, S J .
Mult iprocessor U N I X Operat ing Systems.
AT&T Bell Laboratories Technical journal 63(8) :1733-1749, October, 1984.

[2] Goble , G.H. and Marsh , M.H.
A Dual Processor VAX 111780.
Technical Repor t T R - E E 81-31 , Purdue University, School of Electrical Engineer ing, September,

1981.

[3] Lazowska , E.D. , Levy , H.M. , Almes , G.T., Fischer, M.J. , Fowler , R.J., and Vestal , S.C.
T h e Architecture of the Eden System.
In Proc, of 8th Symp. on Operating Systems Principles, pages 148-159. A C M , December , 1981.

[4] Locke , C D .
Best-Effort Decision Making for Real-Time Scheduling.
P h D thesis , Carnegie Mel lon University, Computer Science Department , 1986.

[5] Rashid , R.F . and Robertson, G.G.
Accent : A Communica t ion Oriented Network Operat ing System Kernel .
In Proc. of 8th Symp. on Operating Systems Principles, pages 64-75. A C M , December , 1981.

[6] . J t i t ch i e , Did . .and .ThQmpsQn, K.
T h e U N I X Time-Shar ing System.
Communications of the ACM 17(7):365-375, July, 1974.

[7] Wendorf, J .W.
Operating System I Application Concurrency in Tightly-Coupled Multiple-Processor Systems.
P h D thesis , Carnegie Mel lon University, Computer Science Department , 1987.
(In preparat ion).

[8] Wendorf, J .W. and Tokuda , H.
An Interprocess Communication Processor: Exploiting OSIApplication Concurrency.
Technica l Report , Carnegie Mel lon University, Computer Science Depar tment , A R T Project,

March , 1987.

