
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

0

A COMPLETE UNIFICATION ALGORITHM FOR

ASSOCIATIVE-COMMUTATIVE FUNCTIONS 1 ' 2

by

Mark E. Stickel

Department of Computer Science

Carnegie-Mellon University

Pittsburgh, Pennsylvania

A n important component of mechanical theorem proving systems are unification algorithms

which find most general substitutions which, when applied to two expresssions, make them

equivalent. Functions which are associative and commutative (such as the arithmetic addition

and multiplication functions) are often the subject of mechanical theorem proving. A n

algorithm which unifies terms whose function is associative and commutative is presented here .

T h e algorithm eliminates the need for axiomatizing the associativity and commutativity

p roper t ies and returns a complete set of unifiers without recourse to the indefinite generation

of variants and instances of the terms being unified required by previous solutions to the

prob lem.

R e s e a r c h supported by the National Science Foundation (GJ-28457X2) and by the Advanced
Research Projects Agency of the Secretary of the Office of Defense (F 4 4 6 2 0 - 7 3 - C - 0 0 7 4) .

*To be presented at the Fourth International Joint Conference on Artificial Intelligence (Tbil isi ,
Georg ia , U.S.S.R.; Sept. 1975).

Introduction

1

A t the core of many theorem proving systems is a unification algorithm which returns

for a pair of input expressions a set of unifying substitutions, assignments to the variables of

the expressions which make the two expressions equivalent. Typical is the unification

algorithm of Robinson [6] for unifying atomic formulas of the first order predicate calculus in

resolut ion theorem proving [l] .

This work treats the case of unifying terms of the first order predicate calculus w h e r e

the function is associative and commutative. Such functions are mathematically important and

thus of interest to developers of theorem proving programs. Examples of such functions are

the arithmetic addition and multiplication functions.

The case where the function is simply commutative is easily handled by a tr iv ial

extension to Robinson's unification algorithm which unifies the arguments of one term against

permutations of the arguments of the other term.

The case where the function is simply associative is quite difficult and we know of no

genera l solution. Suggestive of the difficulty of this problem is the fact that there may be an

infinite number of unifiers for a pair of terms. For example, the terms f(xa) and f(ax) w h e r e f

is associative, a is a constant, and x is a variable has unifiers with x=a, x=f(aa), x=f(aaa),

(We represent the argument lists of associative functions with no extra parentheses, i.e.,

f (abc) rather than f(af(bc)) or f(f(ab)c).)

T w o principal approaches to handling associativity or commutativity are available. The

f i rs t , standard approach is to represent the terms conventionally, i.e., f(af(bc)) o r f (f (ab)c)

ra ther than f(abc), and axiomatize the associativity or commutativity p roper ty . T h e

associativity axiom would be f(xf(yz))=f(f(xy)z) and the commutativity axiom would be

f (x y) = f (y x) . These axioms could be applied using some equality inference rules such as

paramodulation [5] .

The second approach represents associative functions as functions with an arb i t rary

number of arguments, i.e., uses f(abc) rather than f(af(bc)) or f(f(ab)c). Special purpose

unification algorithms are provided for terms whose functions are associative, commutative, o r

both. Examples of this approach in first order predicate calculus theorem proving are the

w o r k of Nevins [2] and Slagle [8] . The algorithms for associativity, and for associativity and

commutativity are incomplete, i.e., they fail to re\urr\ all the unifiers in some cases. A n

example of this approach in the area of programming languages for problem solving is the use

of the associative data type tuple or vector and associative and commutative data t ype bag in

the Q A 4 and QLISP languages [7,4]. Again, in this case the algorithms for pattern matching

(uni fy ing) these expressions are incomplete. In both these cases, the incomplete algorithms

can be augmented by a process which alters the input expressions to cause the unification

algorithm applied to the altered expressions to return additional unifiers. The addition of this

process (Slagle's widening operation for the first order predicate calculus [8] and Shekel's

var iable splitting operation for expressions of QA4 and QLISP [9]) results in completeness.

Widening and variable splitting are both operations that must be performed on one o r both

input expressions an arbitrary number of times, replacing single variables of the expressions

uniformly b y two variables; it is essentially (repeated) paramodulation b y the functionally

r e f l e x i v e axiom.

A n example of the latter approach is the unification of f(abz) and f (x y) w h e r e f is

associative and commutative. The special purpose unification algorithm would re turn the

unif iers {x « -a , y H (b z) } , {x« -b , y*-f(az)}, {x« -z , y H (a b) } , {x« - f (bz) , y*-a}, { x H (a z) , y « - b } , and

{ x H (a b) f y « - z } . But this is an incomplete set of unifiers since the possibility that the value of

z is not whol ly contained in either the value of x or the value of y is not represented. A f t e r

per forming a widening operation on f(abz) resulting in f (a b z j z 2) by instantiating z b y f (Z] Z 2) ,

additional new unifiers such as { x H (a z j) , y « - f (b z 2) , z<-f (z jZ 2) } and { x « - f (a b z j) , y « - z 2 ,

z < - f (z i z 2) } are returned by the unification algorithm.

Related to this approach, though different in detail, is Plotkin's work on the theory of

2

building in equational theories [3] of which associativity and commutativity are examples. In

the case of associativity, Plotkin retains terms in a normal form: right associative form,

although it could equivalently have been our unparenthesized form. His equivalent of the

widening ru le , the replacement of a variable by two new variables, is applied continually

inside the unification algorithm rather than being used outside it. Thus his unification algorithm

may generate an infinite number of unifiers as opposed to a unification algorithm guaranteed

to produce a finite number of unifiers and a potentially infinite process (widening) for altering

inputs to the unification algorithm to obtain additional unifiers. The difference in approaches

seems to be principally one of organization of the search process.

In this paper, we present a new special purpose unification algorithm which we call the

A C unification algorithm for terms whose functions are associative and commutative which

re turns a complete set of unifiers. This algorithm eliminates the need for axiomatizing

associativity and commutativity and also eliminates the cost of continually applying these

axioms which often results in much unnecessary or redundant computation. It also eliminates

the need for using the process of widening or variable splitting whose necessity (for

d iscover ing a complete set of unifiers in the case of unifying any particular pair of

express ions) is difficult to ascertain.

Terminology

Definition. A farm is defined to be

(1) a constant,

(2) a variable, or

(3) a function symbol succeeded by a list of terms (the argument, 0 f the function).

We shall use the symbols a, b, and c to represent constants, x, y , and z (possibly

i n d e x e d , to represent variables, and f to represent a function which is associative and

commutative.

Definition. A substitution component is an ordered pair of a variable v and a term t

w r i t t e n as v«-t. A substitution component denotes the assignment of the term to the variable

o r the replacement of the variable by the term.

Definition. A substitution is a set of substitution components with distinct first elements,

i.e., distinct variables being substituted for. Applying a substitution to an expression results in

the replacement of those variables of the expression included among the first elements of the

substitution components by the corresponding terms. The substitution components are applied

to the expression in parallel and no variable occurrence in the second element of a

substitution component will be replaced even if the variable occurs as the first element in

another substitution component. Substitutions will be represented by the symbols cr and 0.

T h e application of substitution 9 to expression A is denoted by A9. The composition of

substitutions $v denotes the substitution whose effect is the same as first applying substitution

9, then applying substitution cr, i.e., A(9cr) = (A0)<r for every expression A.

Definition. A unifying substitution or unifier, of two expressions is a substitution which

w h e n applied to the two expressions results in equivalent expressions. In ordinary unification,

t w o expressions are equivalent if and only if they are identical. In unification of argument lists

of commutative functions, two expressions are equivalent if they have the same function

symbol and the same arguments in the same or different order.

Definition. Term s is an inslflntfi of term t, and t is a generalization of s, if there exists

a substitution 9 such that W=s.

Similarly, substitution 9 is an instance (generalization) of substitution * if, for e v e r y

te rm t r \9 is an instance (generalization) of t*.

T h f t ftp. Unification Algorithm

We present here an algorithm for unifying two terms whose function is associative and

4

commutative. Terms will be represented as if the function had an arbitrary number of

arguments with no superfluous parentheses.

We will assume that the argument lists of the two terms being unified have no common

arguments. This presents no difficulty since no unifiers are lost and efficiency is gained if

common arguments are eliminated immediately. This is done by removing common arguments

a pair at a time, one from each of the argument lists. For example, before unifying f (xxyabc)

and f (bbbcz) , the b's common to the two terms are removed yielding f(xxyac) and f (bbcz) , and

the c's common to the two new terms are removed yielding f(xxya) and f(bbz) . A n example of

the utility of immediately removing common arguments is the unification of f (g (x) y) and

f (g (x)g (a)) . If the g(x) 's common to the two terms are immediately removed, the unification

algorithm will return the most general unifier {y*-g(a)}. If the common g(x) 's are retained,

unification will likely result in the generation of the additional less general unifier

(x<-a,y<-g(a)}.

The algorithm will be expressed partially in terms of an algorithm for the complete

unification of terms with an associative and commutative function with only variables as

arguments. The result of unifying such terms is an assignment to each variable of the terms

some sequence of terms. Each variable is assigned a term tj (whose function symbol is not f)

o r a term f (t j n l . . . t m
n m) (with nj occurrences of term tj as arguments of f). For such an

assignment to be a unifier, the only requirement is that for each term tj used in any

assignment there are the same number of occurrences of that term occurring as arguments of

f in each of the unified terms instantiated by the assignment. For example, in unifying

f (x i x j x 2 x 3) and f t y i y ^) ! if term t is part of some assignment to one of the variables, then

2 times the number of occurrences of t in the assignment for x j plus the number of

occurrences of t in the assignment for x 2 plus the number of occurrences of t in the

assignment for X3 must equal 2 times the number of occurrences of t in the assignment for y |

plus the number of occurrences of t in the assignment for y 2 . For example, { x j H (b b) ,

5

X2« - f (ab) , X3« -a , y j ^ - b , y2*"f(aabbb)} is a unifier of f (x jXjX2X3) and f (y j y j y 2) since there are

2 a's and 5 b's in the instantiations of f (x jXjX2X3) and f (y j Y j u n ' ^ e c * term being

f (aabbbbb) .

With each pair of terms with an associative and commutative function with only variable

arguments is associated a single equation representing the number and multiplicity of variables

in each term. For example, the equation 2 X J * X 2 * X 3 = 2 y j ^ 2 is associated with the pair of

terms g iven above. This equation succintly represents the condition for a substitution to be a

uni f ier : that the sum of the number of occurrences of any term in the value of each variable

multiplied by the multiplicity of the variable in the term must be equal for the two terms.

Non-negat ive integral solutions to such equations can be used to represent unifiers.

T h e solutions must be non-negative integral since each variable must be assigned a

non -negat i ve integral number of occurrences of each term.

In o rder to generate all the solutions to the problem of unifying the two terms, it is

necessary to be able to represent all the solutions to the equation derived from the terms.

E v e r y non-negat ive integral solution to the equation is representable as a sum of elements of

a particular finite set of non-negative integral solutions to the equation, i.e., e v e r y

non -negat ive integral solution to the equation is a sum (equivalently, a sum with non-negat ive

integral weights) of elements of a particular finite set of non-negative integral solutions. The

finite set of non-negative integral solutions by whose addition the entire non-negative integral

solution space is spanned is generable by generating in ascending order of value solutions to

the equation, eliminating those solutions composable from those previously generated. This

process can be made finite by placing a bound on the maximum solution value which will be

u s e d ; such a maximum is proved in a later lemma to eliminate no needed solutions.

6

Consider the equation 2 x , . x 2 . x 3 = 2 y , . y 2 . Solutions to the equation are:

1 ll I2
 i 3 ? \2 ̂ Y-*3 U[f2

2 0 1 0 0 1 1 i \\

4 0 1 1 1 0 2 2 zl
5 0 2 0 1 0 2 2 zc
6 1 0 0 0 2 2 2 z
7 1 0 0 1 0 ? o „ 6

Associated with each solution above is a new variable (in the rightmost column). The

assignment of as many occurrences of that variable as specified in the solution to each of the

' var iables of the original term results in a partial solution to the unification of the the original

terms. In particular, the assignment of 2 occurrences of variable Z3 to X3 and 1 occurrence to

y j results in an equal number of occurrences of variable Z3 in each of < (X J X J X 2 X 3) and

f (y i Y 2) -

E v e r y non-negative integral solution to the equation is a (non-negative integer

we ighted) sum of the 7 solutions presented above, i.e., every solution is representable as

x j = z 6 * z 7 , x 2 = Z 2 * z 4 * 2 z 5 , x 3 =z j*2z 3 *z/ j , y^z^^^i^zy, y 2 = z i * z 2 * 2 z 6 for some

non -negat ive integral values of zj,...,Zg. However, not every solution to the equation is a

solution to the unification problem for which the equation was derived. There is an additional

constraint that each variable of the original terms must be have at least one term in its va lue;

it cannot have ze ro terms in its value.

Hence, w e must form that subset of the 2^=128 sums for which each element of the

5 - tup l e is non -zero . (It is not necessary to consider sums in which any solution has a

coefficient other than 0 or 1 since such solutions (in the unification problem) are already

representable since the solution's inclusion with coefficient 1 introduces a variable which can

have as its value an arbitrary number of terms as arguments of f thus simulating the case of

the coefficient being greater than 1.) There are 69 such sums including for example

(represent ing the sum by the set of its indices) {2,3,6}, {1,2,3,6}, and {4,6} with associated

unif iers

{ x ^ z g , x 2 « - z 2 , x 3 H (z 1 z 3 z 3) , y i ^ z 3 , y 2 H (z j z 2 z 6 z 6) } , and

{ x j t - z g , x 2 < - z 4 , x 3 < - z 4 , y ! ^ z 4 , y 2 H (z 6 z 6) } .

Note that if a variable could have as its value zero terms rather than one or more

terms as in the first order predicate calculus, it would be unnecessary to form this subset of

2 n (w h e r e n is the number of solutions) sums. Only the sum of all the solutions would be

requ i red since any variable present in this sum could have value zero , and the variables in the

corresponding unifier could be matched against zero terms. This is the situation with fragment

var iables in the bag data type in QA4 and QLISP [7,4] (see [9]) .

To be more precise in the definition of the algorithm, the algorithm consists of the

fol lowing steps:

1. Form an equation from the two terms where the coefficient of each variable in the equation

is equal to the multiplicity of the corresponding variable in the term.

2. Generate all non-negative integral solutions to the equation eliminating all those solutions

composable from other solutions.

3 . Associate with each solution a new variable.

4. F o r each sum of the solutions (no solution occurring in the sum more than once) with no

z e r o components assemble a unifier composed of assignments to the original variables with as

many of each new variable as specified by the solution element in the sum associated with the

new variable and the original variable.

Now w e present the complete algorithm for unifying general terms with associative and

commutative functions using the algorithm for the variable only case above. We are here

concerned with terms whose function is associative and commutative with arbitrary arguments,

i.e., arguments that may contain ordinary (non-associative, non-commutative) functions or f o r

o ther functions which are associative and commutative. We assume the presence of ordinary

unification to deal with those aspects of the unification problem not dealt with explicitly here .

8

First , when unifying two terms, two new terms with only variable arguments are formed

b y uniformly replacing distinct arguments by new variables. These new terms have only

var iable arguments and are generalizations of the original two terms. For example, in unifying

f (x x y a) and f (bbz) , we form generalizations f(xjXjX2X3> and H y j y i y 2) substitution

{ x j < - x , X2 « -y f X3*-a, y j< -b , y2*~z} instantiating the new terms to the original terms.

Next , using the previous algorithm for the variable only case, we unify the

general izations of the original terms. This has already been done for the example above

result ing in 69 unifiers as stated previously.

Now w e have the generalizations of the two original terms, a substitution to instantiate

them to the original terms, and a complete set of their unifiers. Every unifier of the original

terms is a simultaneous instance of the substitution to- instantiate the generalizations to the

or iginal terms and a unifier of the generalizations. So all that is necessary to get all the

unif iers of the original terms is to unify (for each variable being substituted for) the value in

the substitution and the value in the unifiers.

In the example, X3 must have value a and y j must have value b. Thus, any unifier of

f (x j X | X 2 x 3) and f f y j y ^) which assigns to x 3 or y 2 a non-variable, i.e., a term of the form

f(.. .) may be immediately excluded from consideration since the unification of it with the

assignment including x 3 « - a and y j< -b will fail. (This constraint could be applied during the

generat ion of sums of solutions to the equation rather than afterwards.) This constraint

eliminates 63 of the 69 unifiers, leaving sums (1) {4,6}, (2) {2,4,6}, (3) {1,5,6}, (4) {1 ,2,5,6} ,

(5) {1 ,2 ,7 } , and (6) {1,2,6,7} with associated unifiers

(1) { x i « - z 6 , x 2 « - z 4 , x 3 « - z 4 f y ! * - z 4 , y 2 H (z 6 z 6) } ,

(2) { x ^ z g , x 2 H (z 2 z 4) , x 3 « - z 4 , y t * - z 4 , y 2 « - f (z 2 2 6 z 6) } '

(3) { x j ^ - z g , x 2 « - f (z 5 z 5) , x 3 * - Z l , y j * - z 5 , y 2
f - f (z i Z g Z g) } ,

(4) { x ^ z g , x 2 « - f (z 2 z 5 z 5) , x 3 . - Z l , y , . - z 5 , y 2 H (z 1 z 2 z 6 z 6) } l

(5) { x ! « - z 7 , x 2 « - z 2 , X 3 « - z l f y ^ z ; , y 2 H (z 1 z 2) } , and

(6) { x 1 H (z 6 z 7) , x 2 « - z 2 f x 3 « - z l f y t * - z 7 , y 2 H (z 1 z 2 z 6 Z g) } .

9

Unifying each of these with { x j « - x , X2*-y, X3 « -a , y j ^ -b , y2 4 "z}» we obtain

(1) no unifier since z 4 *-a and z/j«-b are not unifiable,

(2) no unifier since z^a and z 4 *-b are not unifiable,

(3) { x < - z 6 , y H (b b) , z* - f (azgz 6) } (= { y H (b b) , z H (a x x) }) ,

(4) { x « - z g , y « - f (b b z 2) , z « - f (az 2 ZgZg) } (= { y « - f (bbz 2) , z « - f (az 2 xx) }) ,

(5) { x « -b , y « - z 2 , z « - f (a z 2) } (= {x« -b, z H (a y)) }) , and

(6) { x H (b z g) , y « ~ z 2 , z « - f (az 2 ZgZg) } (= {x« -f (bzg), z « - f (ayz 6 Zg) }) .

This is a complete set of unifiers of f(xxya) and f(bbz).

Since X3 and y j of the variable only case correspond to a and b respectively, and a and

b are not unifiable, any sum including solution 4 to the equation 2xj*x 2 *X3 B 2 y j * y 2 can be

excluded from consideration since it would require (as in (1) and (2) above) the unification of

a and b. A s with the constraint on variables corresponding to non-variable terms not being

assigned more than one variable (terms of the form f(...)) in the variable only case, this latter

constraint on solutions can be applied during the generation of unifiers in the variable only

case rather than afterwards. Elimination of solution 4 before generation of the 2 n sums, and

elimination of sums which do not meet the first constraint would result in the formation only of

unif iers (3) , (4) , (5) , and (6) oi the variable only case, each of which has a corresponding

unif ier in the general case.

More precisely , the algorithm consists of the following steps:

1. Form generalizations of the two terms replacing each distinct argument by a new variable.

2. Use the algorithm for the variable only case to generate unifiers for the generalizations of

the two terms. The variable only case algorithm may be constrained to eliminate the

generat ion of unifiers assigning more than one term to variables whose value must be a single

t e r m , and the generation of unifiers which will require the later unification of terms which are

obv ious ly not unifiable.

3. Uni fy for each variable in the substitution from step 1 and the unifiers from step 2 the

10

var iable values and return the resulting assignments for variables of the original terms. This

is a complete set of unifiers of the original terms.

Proof of Termination, Soundness, and Completeness

of the AC Unification Algorithm

We will first establish the validity of eliminating arguments common to the two terms.

This wil l be done by proving that any unifier of the terms is a unifier of the terms with a pair

of common arguments removed and vice versa.

Theorem. Let s j ,...,sm,t j ,...,tn be terms with Sj=tj for some i,j. Let $ be a unifier of

f (s | . . . s m) and f (t j . . . t n) , and let * be a unifier of f (s j . . .S j . jS j 4 j . . . s m) and f (t i . . . t j « j t j 4 j . . . t n) . Then

(1) 0 is a unifier of f (s j . . .S j . . jS j 4 j . . .s m) and f (t i . . . t j . j t j^j . . . t n) , and (2) * is a unifier of f (s j . . . s m)

and f (t j . . . t n) .

Proof.

1. f (s j f f f (s 1 . . .S j . 1 s j , 1 . . . s m) J) = f (s r . . s m) * = H\{.\)$ = f (l j W (l 1 . . . t j . 1 t j M . . . t n) ») l and Sjff=tj*.

T h e r e f o r e f (s j . . . S j . iS j 4 j . . . s m) J = f (t j . . . t j . i i•••* r i ^ a n d ' i s a u n i , i e r °* ^ s l * • s i - l s i * l - s m ' a n c l

f < t , . . . t H t H . . . t n) .

2. f (s j . . .Sj - . jSj 4 j . . .s m)<r = *0 i -* j - i*j*i -* n)^ »nd Sj<r=tj<r. T h e r e f o r e

f(Sj<rf(si. . .Sj. jSj^i. . .sm)<r) = f(sj...sm)<r = f(tj...tn)<r « f (t jaf(t j . . . t j . j t j 4 j . . . t n)<r) and <r is a unifier of

f (S l . . . s m) andf (t ! . . . t n) . QED.

The lemma below establishes that every non-negative integral solution to an equation of

the form a j X j * . . . a m x m = b j y j * . . . * b n y n is composable as a (non-negative integral weighted)

sum of a f ixed finite set of non-negative integral solutions. It also establishes a solution value

within which all the non-negative integral solutions in the set may be found.

Lemma. E v e r y non-negative integral solution (x j , . . . ,x m ,y| , . . . ,y n) to the equation

a j x i * , . . * a m x m = b j y j * . . . * b n y n with positive integral coefficients a j , . . . , a m f b j , . . . , b n is an additive

11

l inear combination of non-negative integral solutions with value a j X j * . . . * a m x m (= b j y j * . . . * b n y n)

less than or equal to the maximum of m and n times the maximum of the least common

multiples of pairs of numbers one from a j , . . . ,a m and one from b j , . . . ,b n .

Proof. Assume with no loss of generality that the least common multiple (Icm) of a j and

b j is the maximum of the least common multiples and that m>n.

Proof by induction on the value of a solution k.

k=0. The solution with k=0 with x j*0, x m = 0 , y j = 0 , y n =0 is generable as the

additive linear combination of non-negative integral solutions with value less than or equal to

m*lcm(aj , b j) with zero coefficients.

Assume the lemma is true for eve ry non-negative integral solution with value less than

o r equal to k. Prove it is true for k.

Case 1. k < m*lcm(aj ,bj) . In this case, the solution is included among the non-negat ive

integral solutions with value less than or equal to m*lcm(aj,bj) and the lemma is t rue.

Case 2. k > m*lcm(aj , b j) . Since a jX j*. . .*a m x m = k > m*lcm(aj ,bj) , and each ajXj>0, at

least one ajXj must be greater than l cm(a j f b j) , and Xj must be greater than l cm(a j ,b j) /a j .

Similarly , since b j y j • . . . • b n y n = k > m*lcm(aj,bj) , and each bjyj>0, and n<m, at least one b j y j

must be greater than l cm(a j ,b j) , and y j must be greater than lcm(aj ,b j)/bj. Consider the

solution with Xj=lcm(aj,bj)/aj, yj=lcm(aj,bj)/bj, and all other variables zero . This is just the

solution in lowest terms involving only Xj and y j and has value lcm(aj,bj) < l c m (a j , b j) . Since

IcmCaj jb jJ/aj > lcm(aj,bj)/aj and lcm(aj ,b j)/bj > lcm(aj,bj)/bj by the maximality of l cm(a| ,b j) ,

the solution involving only Xj and y j can be subtracted from the solution with value k leaving a

non -negat ive integral solution as result. But this difference solution has value k-lcm(aj ,bj) < k

and is thus composable from solutions with value less than or equal to m*lcm(ai , b j) .

T h e r e f o r e , the solution with value k > m*lcm(ai,bi) is the sum of some solution involving only

Xj and y j with value less than or equal to Icmfa^bj) and some other set of solutions with

value less than or equal to m*lcm(aj ,bj) and the lemma is true for this case. QED.

12

The lemma proves an upper bound on solution values that must be examined in the

determination of a complete set of non-negative integral solutions which span the

non -negat ive integral solution space by addition. We believe that tighter bounds can be

p r o v e d . Although a proof for a tighter bound would be desirable, it should be noted that a

l o w e r p roven bound would not reduce the number of found solutions theoretically necessary,

but only decreases the cost of computing them, and would have no effect on the form or

number of unifiers returned by the algorithm. This is true since any additional solutions

d iscovered using a higher bound than necessary must be composable from solutions bounded

b y any p roven lower bound and would therefore be recognized as redundant and be omitted.

The maximum of the least common multiples of the coefficients one from the left side

and one from the right side of the equation is a lower bound on solution values which must be

examined, i.e., solutions with at least this value must be examined. This is because one of the

needed solutions not otherwise generable is the solution involving only the variables wi th

those two coefficients with maximum least common multiple and having value equal to the

maximum least common multiple.

Theorem. The A C unification algorithm for terms with associative and commutative

function with only variables as arguments always terminates, is sound (returns no substitutions

which are not unifiers), and is complete (every unifier is an instance of a returned unifier).

Proof. The algorithm is guaranteed to terminate since it performs a finite number of

operat ions on the finite number of non-negative integral solutions generated from the equation

corresponding to the two terms. The generation of these solutions is finite due to the trial

solution values being bounded.

The algorithm is sound since each solution of the derived equation causes the

introduction into each of the instantiated terms of an equal number of new variable

occurrences. Thus, the two instantiated terms have the same number of occurrences of each

n e w variable and are therefore unified.

13

A n y unifier must assign to each variable a term of the form tj (whose function symbol is

not f) or a term f (t j n l . . . t m
n m) (with nj occurrences of term tj as arguments of f) . Let k be the

cardinality of the set of such terms tj in any solution to the unification of a pair of terms with

on ly variables as arguments. The two instantiated terms must have an equal number of

occurrences of each of these k terms as arguments of f. That is,

a | C j j • . . . • a m C j m = b j d j j * . . . * b n d j n (l<i<k) where m is the number of distinct variables in the first

te rm being unified, n is the number of distinct variables in the second term, aj is the

multiplicity of the variable in the first term, bj is the multiplicity of the j ' * 1 variable in the

second term, C j j is the number of occurrences of term i in variable j in the first term, and dj j

is the number of occurrences of term i in variable j in the second term.

Each tuple (CJ j v . . . v c; m v dj j v...9d|n) is a solution to the equation

a j X j * . . . * a m x m = b j y j * . . . * b n y n corresponding to the terms being unified. It can thus (according

to the lemma) be formed as the sum of certain non-negative integral solutions to the equation

we ighted b y positive integers.

Consider the unifier corresponding to the sum of all those solutions to the equation

which are required in the formation of any of the tuples <Cj j t . . . f Cj m ? dj | f . . . r dj n) . We will show

that the hypothesized unifier is an instance of this unifier returned by the algorithm.

Include in the value of the new variable associated with each of these solutions a

number of occurrences of term i equal to the coefficient of the solution in the weighted sum.

This wil l result in the proper assignment of C j j occurrences of term i to each variable j of the

f i rst term and djj occurrences of term i to each variable j of the second term.

Do this for each of the k terms in the solution. Let no other or additional terms be

included in the values of the new variables.

This assignment of terms in the solution to new variables associated with equation

solutions generated in the unification process results in the correct number cy or djj of each

te rm being assigned to each variable of the original two terms.

14

Thus, any solution to the unification of two terms with only variables as arguments is an

instance of a returned unifier and the algorithm is complete. QED.

Theorem. The A C unification algorithm for general terms with associative and

commutative function always terminates, is sound, and is complete.

Proof. Let s and t be any two terms being unified. Let s* and t* be the terms

result ing from replacing each distinct term by a new variable, s* and t* are generalizations

of s and t respect ively , i.e., s*0=s and t*0=t for some 0 of the form { . . . ,X j « -C j , . . . } where each X j

is a new variable and each Cj is the term in s or t it replaces in s* or t*

Let { c r j } denote the unifiers of s* and t* returned by the unification algorithm for terms

wi th associative and commutative function with only variab.es as arguments. Each cyj is of the

form { . . . ,Xj« -dj , . . . } where each Xj is a variable of s* or t* a;«d dj is the term assigned to it by

the unification algorithm. According to the previous theorem, unification terminates, is sound,

and is complete for this case.

Simultaneous instances, of $ and trj represent unifiers of s and t since s*0=s, t*0=t, and

s < r r t

Unifying each c (with each dj of a returned unifier v of s* and t* results in (by the

assumption of termination, soundness, and completeness of the recursive call on the unification

algorithm for terms of iesser complexity) a complete set of unifiers for the original terms s

and t. QED.

Conclusion

We have presented an algorithm for unifying general terms with associative and

commutative function. We have proven that the algorithm is guaranteed to terminate, is sound,

and is complete.

The advantages of this algorithm as compared to other approaches to unifying such

15

http://variab.es

terms are that the associativity and commutativity properties need not be axiomatized and that

all the unifiers of a pair of such terms are immediately returned eliminating the unnecessary

and redundant computation often occurring in other approaches which generate only some of

the unifiers at each step with no indication of when all the unifiers have been generated.

Bibliography

1 Chang, C. L. and Lee, R. C. T. Symbolic Logic and Mechanical Theorem Proving.

Academic Press, New York, 1973.

2 Nevins, A . J . A human oriented logic for automatic theorem proving. / . ACM 21, A (Oct.

1974) , 606 -621 .

3 Plotkin, G. D. Building-in equational theories. In Meltzer, B. and Michie, D. (Eds.). Machine
Intelligence 7, Edinburgh University Press, Edinburgh, 1972, pp. 73 -90 .

4 Reboh, R. and Sacerdoti, E. A preliminary QLISP manual. Technical Note 81, Artif icial
Intell igence Center , Stanford Research Institute, Menlo Park, Calif., Aug. 1973.

5 Robinson, G. and Wos, L. Paramodulation and theorem-proving in f i rs t -order theories with

equality. In Meltzer , B. and Michie, D. (Eds.). Machine Intelligence 4, Edinburgh Univers i ty

P ress , Edinburgh, 1969, pp. 135-150.

6 Robinson, J . A . A machine-oriented logic based on the resolution principle. / . ACM 12, I

(Jan. 1965), 23-41.

7 Rulifson, J . F., Derksen, J . A. and Waldinger, R. J . QA4: a procedural calculus for intuitive

reasoning. Technical Note 73, Artificial Intelligence Center, Stanford Research Institute,

Menlo Park, Calif., Nov. 1972.

8 Slagle, J . R. Automated theorem-proving for theories with simplif ies, commutativity, and

associativity. / . ACM 21, 4 (Oct. 1974), 622-642.

9 Stickel, M. E. Unification algorithms for artificial intelligence languages. Chapter of

incomplete Ph.D. Dissertation, Department of Computer Science, Carnegie -Mel lon

Un ivers i ty , Pittsburgh, Penn.

16

