NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:

The copyright law of the United States (title 17, U.S. Code) governs the making

of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

A COMPLETE UNIFICATION ALGORITHM FOR

ASSOCIATIVE-COMMUTATIVE FUNCTIONS 1:2
by

Mark E. Stickel
Department of Computer Science
Carnegie~Mellon University

Pittsburgh, Pennsylvania

Abgiract

An important component of mechanical theorem Proving systems are unification algorithms
which find‘mosi general sﬁbstiiutions which, when applied to two exprasssions, make them
equivalent. Functions which are associative and commutative (such as the arithm.atic addition
and multiplication functions) are often the subject of mechanical theorem proving. An
algorithm which unifies terms whose function is associative and commutative is presented here.
The algorithm eliminates the need for axiomatizing the associativily and commutativity
properties and returns a complete set of unifiers without recourse to the indefinile generation

of variants and instances of the terms being unified required by previous solutions 1o the

problem.

lResearch supported by the National Science Foundation (GJ-28457X2) and by the Advanced
Resaarch Projects Agency of the Secretary of the Office of Defense (F44620-73-C-0074).

270 be presented at the Fourth Internationaj Joint Conference on Artificial Intelligence (Tbilisi,
Georgia, US.SR,; Sept. 1975).

At the core of many theorem proving systems is a unification algorithm which returns
for a pair of input expressions a set of unifying substitutions, assignments to the veriables of
the expressions which make the two expressions equivalent. Typical is the unification
algorithm of Robinson [6] for unifying atomic formulas of the first order predicate calculus in
resolution theorem proving [1]

This work treats the case of unifying terms of the first order predicaie calculus where
the function is associative and commutative. Such functions are mathematically important and
thus of interest io developars of theorem Proving programs, Examples of such functions are
the arithmeiic addition and multiplication functions.

The case where the function is simply commutative is easily handled by & trivial
exiension to Robinson's unification algorithm which unifies the arguments of one term against
permutations of the arguments of the other term,

The case where the function is simply associative is quite difficult and we know of no
general solution. Suggestive of the difficulty of this problem is the fact that there may be an
infinite number of unifiers for a pair of terms. For example, the tarms f(xa) and f(ax) where f
is associalive, a is a constant, and x is a variable hag unifiers with x=a, x=f(aa), x=f(aaa), ...
(We represent the argument lists of associative functions with no extra parentheses, i.e.,
f(abc) rather than f(af(bc)) or f{f(ab)c).)

Two principal approaches to handling associativity or commutativity are available. The
first, standard approach is to reprasent the terms conventionally, i.e., f(at(bc)) or f{f(ab)c)
rather than f(abc), and axiomatize the associativity or commutativily property. The
associalivity axiom would be f{xflyz))=f{f(xy)z) and the commutativity axiom would be
f(xy)=f(yx). These axioms could be applied using some equality inference rules such as
paramodulation [5].

The second approach represents associative functions as functions with an arbitrary

lnumbér of arguments, i.e, uses f(abc) rathar than flaf(bc)) olr f(f(ab)c). Special purpose
unification algorithme are provided for lerms who;se functions are associative, commutative, or
both. Examples of this approach in first order predicate calculus theorem proving are the
work of Nevins [2] and Slagle [8). The algorithms for assoéialivity, and for associativity and
commutativity are incomplete, i.e., they fail to return all the unifiers in some cases. An
example of this approach in the area of programming languages for problem solviu;lg is the use
of the associative data type tuple or vector and associative and commulative &ata type bag in
the QA4 and QLISP languages [7,4). Again, in this case the algorithms for pattern matchmg
(unifying) these expressions are incomplete. In both these cases, the incomplete aigorithms
can be augmenied by a process which alters the input expressions o cause the unification
algorithm applied fo the aliered expressions to return additional unifiers. The addition ot this
process (Slagle's widening operation for the first order predic;te calculus {8] and Stickel's
variable splitting operation for expression; of QA4 and QLISP [9]) results in completeness.
Widening and variable splitling are both operations that must be performed on one or both
input expressions an arbilrary number of limes, replacing singte variables of the expressions
vniformly by two variablas; it is essentially (repested) paramodulation by the functionally
reflexive axiom. |

An example of the latter approach is the unification of t(abz) and f{xy) where { is
associative and commutative. The special purpose unification algorithm would return the
unifiers {x+a, yef(bz}}, {xeb, yei(az)}, {x+z, yef(ab)}, {x+f(bz), y+a), {xei(az), y+b}, and
{xi-f(ab), y+z}. But this is an incomplete set of unifiers since the possibility that the value of
z is not wholly contained in either the value of x or the value of y is not represented. After
performing a widening operation on f(abz) resulting in f(abzzp} by instantialing z by f(2122)
additional new unifiers such as {xef{az), y+i(bzp), zef(z) 290} and {x+-flabz}), y*z2,
zef(z22)} are returned by the unification algorithm.

Related to this approach, though different in detail, is Plotkin's work on the theory of

building in equational theories [3] of which associativity and commulativity are examples. In
the case of associativity, Plotkin retains terms in a normal form: right associative form,
although it could equivalently have been our unparenthesized form. His equivaient of the
widening rule, the replacement of a variable by two new variables, is applied continualy
inside the unification algorithm rather than being used outside if. Thus his unification algorithm
may generate an infinite number of unifiers as opposed 10 a unification algorithm guaranteed
to produce a finite number of unifiers and a potentially infinite process (widening) for altering
inpuls fo the unification algorithm to obtain additional unifiers. The difference in approaches
seems fo be principally one of organization of the search process.

In this paper, we present a new special purpose unification algorithm which we call the
AC unification algorithm for larms whose functions are associative and commutative which
returns a complete set of unifiers. This algorithm eliminates the need for axiomatizing
associativily and commutativity and also sliminates the cost of continually applying these
axioms which often results in much unnecessary or redundant computation. It also eliminates
the need for using the process of widening or variable splitting whose necessitly (for
discovering a complete set of unifiers in the case of unifying any particular pair of

ax#rassions) is difficult to ascertain,

Tarminology
Definition. A tarm is defined o be
(1) a constant,
{(2) a variable, or
(3) a function symbol succeeded by a list of terms (the arguments of the function).
We shall use the symbols 8, b, and ¢ fo represent constants, x, y, and z (possibly
indexed) to represent variables, and { {o represent a function which is associative and

commutative.

Definition. A substitution component is an ordered pair of a variabte v and a term {
written as v-1. A subslitution component denotes the assignment of the term to the variable
or the replacement of the variable by the term.

Definition. A subsiitulion is a sel of substilution components with distinct first elaments,
i.e., distinct variables being substituted for. Applying a substitution to an expression resulis in
the replacement of those variabies of the expression included among the first elements of the
substitution components by the corresponding terms. The substitution components are applied
to the expression in parallel and no variable occurrance in the second element of a
substitution component will be replaced even if the variable occurs as the first slement in
another substitution component, Substitutions will be represented by the symbols ¢ and 8.
The application of substitution & to expression A is denoled by Af. The composition of
substitutions #¢ denotes the substitution whose effect is the same as first applying substitution
#, then applying substitution ¢, i.e., A(8e) = (Ad)s for every expressio-n A.

Definilion. A wnifying substitution or unifier of two expressions is a substitution which
when applied to the two expressions resulls in equivalant expressions. In ordinary unification,
two expressions are equivalent if and only if they are identical. In unification ot argument lists
of commutative functions, two expressions are equivalent it they have the same function
symbol and the same arguments in the same or different order.

Definition. Term s is an instanca of term t, and t is a ganeralization of s, if there exists
2 substitution @ such that té=s.

Similarly, substitution ¢ is an instance (ganaralizatidn) of substitution ¢ if, for every

term i, t¢ is an instance (generalization) of te.

Ihe AC Unification Algorit

We present here an algorithm for unifying two terms whose function is associstive and

commutative. Terms will be represented ac if the function had an arbitrary number of
arguments with no superfiuous parentheses.

We will assume thal the argument lisis of the two terms being unified have no common
arguments. This présenis no difficulty since no unifiers are lost and efficiency is gained if
common arguments are eliminated immediately. This is done by removing common arguments
a pair at a time, one from each of the argument lists. For example, before unifying f{xxyabc)
and f(bbbcz), the b's common 1o the two terms are removed yielding f(xxyac) and f(bbcz), and
the c's common to the two new terms are removed yielding f(xxya) and f(bbz). An example of
the utility of immediately removing common arguments is the unification of f(g(x)y) and -
f(g(x)g(a)). If the g(x)'s common 1o the two terms are immediately removed, the unification
algorithm will return the most general unifier {yeg(a)}. If the common glx)'s are retained,
unification will likely result in the generation of the additional less general unifier
{xca,y-g(a)}.

The algorithm will be expressed partially in terms of an algorithm for the complete
unification: of terms with an associative and commutative function with only variables as
arguments. The result of unifying such terms is an assighment to each variable of the terms
some sequence of tarms. Each variable is assigned a term t; {whose function symbol is not f)
or a term f(ll"l...tm"m) (with n, occurrences of ferm ti as arguments of f). For such an
assignment to be a unifier, the only requirement is that for each term t; used in any
assignment there are the same numbaer of occurrences of that term occurring as arguments of
f in each of the unified terms instantiated by the assignment. For example, in unifying
f(xlx]xzx:;) and fly y|y5), if term t is part of some assignment to one of the variables, then
2 times the number of occurrences of t in the assignment for x| plus the number of
occurrences of { in the assignment for X2 plus the number of occurrences of t in the
assighment for x3 must equal 2 times the number of occurrences of t in the assignment for Yi

Plus the number of occurrences of t in the assignment for y2. For example, {x; «f{bb),

xzc-f(ab), X3+a, Y1+by yz'-f(aabbb)} is a unifier of f(xlxlx2x3) and f(y{y|y2) since there are
2 a’s and 5 b's in the instantiations of f{x;xxpx3) and fly v y2) with the unified term being
f(aabbbbb).

With each pair of terms with an associalive and commutative function with only variable
arguments is associated a single equation representing the number and multiplicity .of variablaes
in each term. For example, the equation 2x|exy+x3 = 2ytyy is associated with the pair of
terms given above. This equation succintly represents the condilion for a substitution to be a
unifier: that the sum of the number of occurrences of any term in the value of each variable
multiplied by the muitiplicity of the variable in the term must be egual for the two terms.

Non-negative integral solutions to such equations can be used to represent unifiers.
The solutions must be non-négative infegral since each variable must be assighed a '
non-negative integral number of occurrences of each term.

in order to generaie all the solutions fo the probiem of unifying the two terms, it is
necessaty to be able to represent all the solutions to the equation derived from the terms.
Every nonvnogativa.integral soiution to the equation is representable as a sum of elements of
a particular finite set of non-negative integral solutions to the equation, ie., every
non-negative integral soiution to the equation is a sum (equivalently, a sum with non-negative
integral weights) of elements of a particular finite set of non=negalive integrﬁl solutions. The
finite set of non-negative integral solutions by whose addition the entire non-negative integral
solution space is spanned is generable by generaling in ascending order of value solutions to
the equation, eliminating those solutions éompOSabla from those previously generated. This
procaess can be made finite by placing a bound on the maximum solution value which will be

used; such a maximum is proved in a later lemma to eliminate no needed solutions.

Consider the equation 2x; *Xp+Xg = 2yl+y2. Solutions 1o the equation are:

¥y 2X| o3 2¥)tyo

—
[8
W

N O WA —
- — 0000 OIKX
CON O —~ O
COO—rn O —px
—0 —— — O oK

I
2
2
2 25
2
2

OCMNOOO——
NN NRN - -

Associated with each solution above is a new variable (in the rightmost column). The
assignment of as many occurrences of that variable as specified in the solution to each of the
"variables of the original term results in a partial solution to the unification of the the original
terms. In particuiar, the assighment of 2 occurrences of variable 23 to x5 and | occurrence to
Y1 results in an equal number of occurrences of variable 23 in each of i{xlxlxzx:3) and
tlygyo).

Every non-negalive integral solution 1o the equation is a (non-negative integer
weaighted) sum of i_he 7 solutions presented above, i.e., every solution is reprasaniable as
X1"26°27, Xp=Zp+24+2zg, x3=210223024, Y 172342425427, Y2°21425422g - for some
non-negalive infegral values of zj,..2g. However, not every solution to the equation is a
solution fo the unification problem for which the equation was derived. There is an addifional
constraint that each variable of the originél terms must be have at least one term in its value
it cannot have zero terms in its value.

Hence, we must form that subset of the 27=128 sums for which each element of the
S-—tuple is non-zero. (it is not necessary to consider sums in which any solution has a
coefficient other than 0 or 1 since such solutions (in the unification problem) are already
representable since the sojution's inclusion with coefficient [introduces a variable which can
have as its value an arbitrary number of terms as arguments of f thus simutating the case of
fhe coefficiant baing greater than 1) There are 69 such sums including for example

(representing the sum by the set of its indices) {2,3,6}, {1,2,3,6}, and {4,6} with associated

unifiers

[x) 26, Xg+22 Xa+1(zazah Y +23, Y2+ Hizp267))
{x1¢2g, Xg+2p, X3+ iz 2323) ¥ w23 Y12 2526760} and
{x) 2g, Xp*24) X3+241 ¥1“24) Y2+ 12626}

Note that if a variable could have as ils value zero ferms rather than one or more
terms as in the first order predicate calculus, it would be unnecessary to form this subsel of
2" (where n is the number of solutions) sums. Only the sum of all th‘e solutions would be
required since any variable prasent in this sum could have value zero, and the variables in the
corresponding unifier couid be malched against zero terms. This is the situation with fragment
variables in the bag daia type in QA4 and QLISP (7,4] (see [9)).

To be more precise in the definition of the aigorithm, the algorithm consists of the
following steps:

1. Form an equation from the two terms where the coefficient ot each variable in the equation
is equal io the multiplicity of the corresponding variable in the term.

2. Generate all non-negalive integral solutions to the equation eliminaling all those solutions
composable from other solutions.

3. Associate with each solution a new variable.

4. For each sum of the solutions (no solution occurring in the sum more than once) with no
zero components assemble a unifier composed of assignments to the original variables with as
many of each new variable as specified by the solution glement in the sum associated with the
new variable and the original variable.

Now we present the complete algorithm for unifying general terms with associative and
commutalive functions using the algorithm for the variable only case above. We are here
concerned with tarms whose function is associative and commutative with arbitrary arguments,
i.e., argumenis that may contain ordinary (non-associative, non-commutative) functions or f or
other functions which are associative and commutative. We assume the presence of ordinary

unification to deal with those aspects of the unitication problem not dealt with explicitly here.

First, when unifying two terms, two new terms with only vﬁriable arguments are formed
by uniformly replacing distinct arguments by new variables. These new terms have only
variable arguments and are generalizations of the original two terms. For example, in unifying
fixxya) and f(bbz), we form generalizations f{xlxlx2x3) and f(ylylyz) with substitution
{x1€x, xoey, X33, y; ¢b, yp+z] instantiating the new terms to the original lerms.

Next, using the previous aigorithm for the variable only case, we unify the
generalizations of the original terms. This has aiready been done for the exampie above
resulting in 69 unifiers as stated previously. |

Now we have the generalizations of the two original terms, & substitution to instantiate
them to the original terms, and a complete set of their unifiers. Every unifier of the original
terms is a simultaneous instance of the substitution to: instantiate the generalizations to the
original terms and a unifier of the generalizations. So all that is necessary to get all the
unifiers of the original terms is to unity (for each variable baeing substituted for) the value in
the substitution and the value in the unifiers.

In the example, x3 must have vaiue 2 and y| must have value b. Thus, any unifier of
f(xlxixzng) and f(ylylyz) which assigns to X3 Or yo a non-variable, i.e., a term of the form
f(..) may be immediately excluded from consideration since the unification of it with the
assignment including x3+a and y{«b wiil fail. (This constraint could be applied during the
generation of sums of solulions to the equation rather than aflerwards.) This constraint
eliminates 63 of the 63 unifiers, leaving sums (1) {4,6}, (2) {2,4,6}, (3) {1,5,6}, (4) {1,2,5,6},
(5) {1,2,7}, and (6) {1,2,6,7} with associated unifiars
(1) {x)*26, xp+24, x3¢24, v, €24, yp*ilzgzg)},

(2) {x) €2g, xp+H{z524), X3€24, ¥ *24, yo+i(2p2625)},
(3) {x ¢zg, xp+i(zgzg), x3+2y, Y1+25, yo+ilzy252g)},
(4) ix1 <26, xa+H(zp2525), x3v2], v, w25, yp+(z; 25252 i,
(5) {x; ¢z, X2%22, X3%2y, Y| *27, yo+H{z{25)}, and
®) {xg—f(zsz-;), X223, X3¢2, y| +27, yzt-f(zlzzzszs)}.
9

Unifying each of these with {x; «x, x5¢y, x3+3, y|+b, yo+z}, we oblain
(1) no unitier since 24+a and z4+b are nol unifiable,
(2) no unifier since z4+a and z,+b are not unifiable,
(3) {xwzg, yet(bb), z+-t(azgzg)} (= {y-f(bb), zet{axx)}),
{4) {x+zg, y<flbbzy), z-1(azpzg2g)} (= {y<t(bbz;), zeflazoxx)i),
(5) {x+b, yr2zy, z+i{azy)} (= {x+b, z+f(ay))}), and
(6) {x+f(bzg), y*rzp, z+H{azy2g2g)} (= {xef(bzg), zeflayzgzg)}).
This is a complete set of unifiers of f(xxya) and f(bbz).

Since x3 and y; of the variabie only case correspond to a and b respeciively, and 2 and
b are not unifiable, any sum including solution 4 to the equation 2x;+xp+x3 = 2yjtyg tan be
excluded from consideration since it would require (as in (1} and (2) above) the unification of
a and b. As with the constraint on variables corresponding to non-variable terms not being
assigned more than one variable {terms of the form f(...)) in the variable only case, this latter
constraint on solutions can be applied during the generation of unifiers in the variable only
case rather than aﬂerwards.. Elimination of solution 4 before generation of the 2'? sums, and
elimination of sums which do not meel the first constraint would result in the formation only of
unifiers (3), (4), (5), and (6) of the variable only case, each of which has a corresponding
unifier in tha general case.

More precisely, the algorithm consists of the following stsés:
1. Form generalizations of the two terms replacing each distinct argument by a new variable.
2. Use the aigorithm for the variable only case to generate unifiers for the generalizations of
the two terms. The variable only case algorithm may be constrained to eliminate the
generation of unifiai"s assigning more than one term lo variables whose value must be a single
term, and the generalion of unifiers which will require the later unification of terms which are
obviously nof unifiable.

3. Unify for each variable in the substitution from step | and the unitiers from step 2 the

10

variable values and return the resulting assignments for variables of the original terms. This

is a complete set of unifiers of the original terms.

of the AC Unification Ajgorithm

We will first establish the validity of eliminating arguments common to the two terms.
This will be done by proving that any unifier of the ferms is a unifier of the terms with a pair
of common arguments removed and vice versa.

Theorem. Let sl,...,sm,ll,...,tn be terms with si"“j for some i,j. Let ¢ be a unifier of
f(sl...sm) and f(tl...tn), and lel ¢ be a unifier of f(sl"'si-lsid"‘sm) and ml'"tj-ltjiil'"tn)' Then
(1) ¢ is a unifier of f(sl...si_lsi,l...sm) and ml"-'j-ltjol"'tn)' and (2) ¢ is a unifier of f(s)..sp,)
and f(t] ...tn).

Proof.

1. i(siOf(sl...si_lsi,l...sm)ﬂ) =f(s)..5,,)0 = ft)..t,)e = f(ljaf(ll...tj_lij,l...tn)o), and sio=tj8.
Therefore. f(s; w8j=]8ja] S0 = ml""j-lij*l'"tn” and @ is a unifier of f(sl'"si-lshl"'sm) and
ml""j-ltj*l"'tn)'

2. f(sl..,si_lsi,l S o = f(il...ij_lij,l...tn)a and sic=tja. Therefore
"Si’f(sl'"si-lsiol"-sm)’) =fls)..s)0 = iyt)e = i(tjvf(tl...tj_ltj,l...tn)cr) and ¢ is a unifier of
f(s}..5,,) and f(t;..t,). QED.

The lemma below establishes that every non-negative integral solution to an equation of
the form 21Xt A X, = blyl’""bnyn I5 composable as a (non-negative integral waighted)
sum of a fixed finite set of non-negative integral solutions. i also establishes a solution value
within which all the non-negative integral solutions in the cet may be found.

‘Lemma. Every non-negalive integral sclulion (xl,...,xm,yl,...,yn) to the eguation

AXp A X, = blyl’""bnyn with positive integral coefficients 3 113b by, is an additive

1]

linear combination of non-negative integral solutions with value ajx| .. *a X, (=blyl""’bnyn)
less than or equal lo the maximum of m and n limes the maximum of the least common
multiples of pairs of numbers one from ay,..,3,, and one from by ,..by.

Proof. Assuﬁe with no loss of generality that the least common multiple (lcm) of a; and
by is the maximum of the least common mullipies and that mz2n.

Proof by induction on the value of a solution k.

k=0. The solution with k=0 with x4=0, ., Xp0) Y120y - y,=0 is generable as the
additive linear combination of non-nagatiQa integral solutions with value less than or equa! to
m*lcm(al,bl) with zero coefficients.

Assume the lemma is true for every non-negative integral solution with value less than
or equal to k. Prove it is true for k.

Case 1. k § mxiem{a),b;). in this case, the solution is included among the non-negative
integral solutions with value less than or equal fo miicm{ay,b)) and the lemma is true.

Case 2. k> mxlem(a;,by). Since apx *.tapXm = k > mxicm(ay,by), and each a;x>0, at
least one -ax; must be greater than Icm(al,bl), and x; must be greater than Icm(al,bl)/ai.
Similarly, since by |*.*byy, = k> mxlemiag,b;), and each bjyj)O, and nim, al ieast one bjyj
must be greater than lem(a,b;), and Y must be greater than Icm(al,bl)/bj. Consider the
solution with xi=lcm(ai,bj)/ai, yj=lcm(ai,bj)/bj, and ali other variables zero. This is just the
solution in lowest terms involving only x; and Y and has value Icm(ai,bj) < lem(ay,by). Since
lem(ay,by)/a; 2 Icm(ai,bj)/ai and Icm(al,bl)/bj 2 Icm(ai,bj)/bj by the maximality of lem(ay,by)y
the solution involving only x; and yj can be subtracted from the solution with value k leaving a
non-negative integral solution as result. But this difference solution has vaiue k-lcm(ai,bj) <k
and is thus composable from solutions with value less than or equal to m*lcm(al,bl).
Therefore, the solution with value k> mxiem(a,by) is the sum of some solution involving only
X; and Yj with value less than or equal {0 Icm(al,bl) and some other set of solutions wilh

value less than or equal lo m*lcm(al,bl) and the temma is true for this case. QED.

12

The lemma proves an upper bound on solution values that must be examined in the
determination of a complete set of non-negative integral solutions which span the
non-negative integral solution space by addition. We baelieve that tighter bounds can be
proved. Although a proof for a tighter bound would be desirable, it should be noted that a
lower proven bound would not reduce the number of found solutions theoretically necessary,
but only decreases the cost of computing them, and would have no effect on the form or
number of unifiers returned by the algorithm. This is true since any additional solulions
diccovered using a higher bound than necessary must be composable from solutions bounded
by any proven lower bound and would therefore be recognized as redundant and be omitted.

The maximum of the least common muitiples of tha coetficients one from the le#t side
and one from the right side of tha equation is a lower bound on solution values which must be
examined, i.e., solutions with at least this value must be examined. This is because one of the
needed solutions not otherwise generable is the solution involving only the variables with
those two coefficients with maximum least common muitiple and having value equal to the
maximum least common muitiple,

Theorem. The AC unification algorithm for terms with associative and commutative
function with only variables as arguments always terminates, is sound (returns no substitutions
which are not unifiers), and is complete (every unifier is an instance of a returned unifier).

Proof. The algorithm is guaranteed to terminate since it performs a finite number of
operations on the finite number of non-negative integral solutions generated from the equation
carresponding to the two lerms. The genaration of these solutions is finite due to the trial
solution values being bounded.

The algorithm is sound since each solution of the derived aquation causes the
introduction into each of the instantiated terms of an equal number of new variable
Occurrences. Thus, the two instantiated terms have the same number of occurrences of aach

new variable and are therefore unified.

13

Any unifier must assign to each variable a term of the form t; (whose function symbol is
not) or a term f(t;"1..t; "m) (with n; occurrences of term t; as arguments of f). Let k be the
cardinality of the set of such terms {; in any solution to the unification of a pair of terms with
only variables as arguments. The two instantialed terms must have an equal number "of
occurrencas of each of these k terms as arguments of . That s,
211 **3mCim = bldil""'bndin (1<iSk) where m is the number of distinct variables in the first
term being unified, n is the number of distinct variables in the sacond term, 3 is the
multiplicity of the j"‘ variable in the firsi term, bj is the muitiplicity of the j"‘ variablie in the

sacond term, c;; is the number of occurrences of term i in varisble j in the first term, and dij

|
is the number of occurrences of term i in variable j in the second term.

Each tuple (€] piCimdi L) s @ solution to the equation
apxy A X, = bl)’l’"-'bnyn corresponding to the terms being unified. It can thus (according
to the lemma) be formed as the sum of certain non-negative integral solutions to the equation
weighted by positive integers.

Consider the unifier corresponding to the sum of all those solutions {o the equation
which are required in the formation of any of the tuples (c“,...,cim,dil,...,din). We will show
thai the hypothesized unifier is an instance of this unifier returned by the algorithm, |

Include in the vaiue of the new §ariab|e associated with each of these solutions a
number of occurrences of term i equal to the coefficient of the solution in the waighted sum.
This will result in the proper assighment of €ij occurrences of term i to each variable j ot the
first term and dij occurrences of term i 1o each variable j of the second term. |

Do this for each of the k terms in the colulion. Lei no other or additional terms be
included in the values of the new variables.

This assignment of terms in the solution to new variables associated with equatiqn

solutions generated in the unification process results in the correct number ¢jj or dij of each

term being assigned to each variable of the original two terms.

14

Thus, any solution to the unification of two terins with only variables as arguments is an
instance of a returned unifier and the algorithm is complets. QED.

Ihgorers. The AC unification algorithm for peneral terms wih associative and
commutative function always terminates, is sound, and is complets.

Proof. Let s and t be any two terms being unified. Let s* and t* be the terms
resulting from repiacing each distinct term by a new variable. s¥* and t* are generalizations
of s and t respactively, i.8., s%0=5 and 1*g-t for some ¢ of {ne form {...,xi!-ci,...} where each X;
is @ new variable and each c; is the term in s or t it replaces in s* or t¥.

Let {crj} denote the unifiers of s* and t* returned by the unification algorithm for terms
with associative and commutative function with only variabies ag arguments. Each o is of the
form {...,xiﬁdi,...} where each X; 1s a variable of s* or t* a4 d; is the term assigned to it by
the unification algorithm. According to the previous theorem, unification terminates, is sound,
and is complele for this case.

Simultaneous insiance§ of # and 9 reprasent unifiers of s and t since s*ﬂ=s, l*ﬂzl, and
s*cj=t*cj.

Unifying each ¢; with each d; of a relurned unitier v of s* and t* results in (by the
assumption of terminatior;, soundness, and completeness of the recursive call on the unification
algorithm for terms of jessor compiexily) a complete set ot unifiers for the originai terms s

and t. QED.

Conclusion
We have presented an algorithm for unifying genaral lerms with associative and
commutative function. We have proven that the aigorithm is guaranteed to terminate, is sound,
and is complete.

The advantages of this algorithm as compared to othar approaches fo unifying such

i5

http://variab.es

terms are that the associativity and commutativity properties need not be axiomatized and that
all the unifiers of a pair of such terms are immediately returned eliminating the unnecessary
and redundant computation often occurring in other approaches which generate only some of

the unifiers at each step with no indication of when all the unifiers have been generated.

Bibli ;

| Chang, C. L. and Lee, R. C. T. Symbolic Logic and Mechanical Theorem Proving.
Academic Press, New York, 1973.

2 Nevins, A. J. A human oriented logic for automatic theorem proving. J. ACM 21, 4 (Oct.
1974), 606-621. ‘

3 Plotkin, G. D. Building-in equational theories. In Meltzer, B. and Michie, D. (Eds.). Machine
Intelligence 7, Edinburgh University Press, Edinburgh, 1972, pp. 73-90.

4 Reboh, R. and Sacerdoti, E. A preliminary QLISP manual. Technical Note 81, Artificial
Intelligence Center, Stanford Research Instilute, Menlo Park, Calif., Aug. 1973.

§ Robinson, G. and Wos, L. Paramodulation and theorem=-proving in first-order theories with
squality. In Meltzer, B. and Michie, D. (Eds.). Machine Intelligence 4, Edinburgh Univarsity
Press, Edinburgh, 1969, pp. 135-150.

6 Robinson, J. AL A machine-oriented logic based on the resolution principle. J. ACHM 12, 1
(Jan. 1965}, 23-41.

7 Rulifson, J. F., Derksen, 3. A. and Waldinger, R. J. QA4: a procedural calculus for intuitive
reasoning. Technical Note 73, Artificial Intelligence Center, Stanford Research Institute,
Menio Park, Calif., Nov. 1972.

8 Slagle, J. R. Automated theorem-proving for theories with simplitiers, commutativity, and
associativity. J. /ACM 21, 4 {Oct. 1974), 622-642.

g Stickel, M. E. Unification algorithms for artificial intelligence languages. Chapter of

incomplete Ph.D. Dissertation, Department of Computer Science, Carnegie-Mellon
University, Pillsburgh, Penn.

16

