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Abstract: This paper outlines a formal language for the statement of constraints on syntactic categories
in order to represent the claims made by diverse grammatical frameworks in a uniform way,
independent of the notations and substantive claims of any framework. We define a class of
objects called "category structures1', each such object providing a constructive definition for
a space of syntactic categories. Definitions for extension, unification, and identity are
provided arbitrary syntactic categories, and a formal language for the statement of
constraints on categories is provided. The language is basically a modal logic, one which
includes K l . l (also known as S4Grz), which is characterized by the class of all finite partial
orderings. Some interesting special cases are exhibited. By combining a category structure
with a set of constraints, one can define the category systems of many well-known
grammatical frameworks. Checking a category for conformity to constraints can be done in
linear time. This work aims at providing a unitary class of data structures for the
representation of syntactic categories in a range of diverse grammatical frameworks, and
thus making it possible for various pseudo-issues in natural language processing research to
be avoided.



1. Introduction*
Syntactic categories are data structures containing information about grammatical constituents (words,

phrases, clauses, sentences). In recent computational linguistics, categories are centrally important, and may have
considerable internal complexity, often obscured by idiosyncratic notations and implicit abbreviations. Our work
aims to provide a precise metatheoretical definition of Syntactic category'. This exercise is complementary to
that of Pereira and Shieber (1984) and to recent work of Rounds and others on the development of a logic for the
description of elaborate grammatical representation structures (see Kasper and Rounds 1986, Moshier and Rounds
1986, Rounds and Kasper 1986).

2. Category structures

First we define the notion CATEGORY STRUCTURE. We will write *2' for the set {0,1}, AB for the set of total
functions from B into A, A^B) for the set of partial functions from B into A, P{A) for the power set of A, and A(/)
for the domain of a (partial) function / (if / is a partial function then A(/) is the set of items which / assigns a
value to).

A category structure is basically a choice of primitives (features and ranges of possible values for them).
Formally, a category structure X is a quintuple (KyFrA,x,p)> where K is the set of categories induced by F, Ay x
and p, F is a finite set of features, A is a finite set of atoms, X is a function in 2F, and p is a function from
( / W / ) = 0} into P{A). The function x partitions F into two sets: the set of type 0 features F° = {/|x(/) = 0}, and
the set of type 1 features Fl = {/|x(/) = / } . Type 0 features take atomic values; type 1 features take categories.
The function p assigns a range of atomic values to each type 0 feature. K is recursively defined in terms of
(F,i4, x, p). We first define the set of pure type 0 categories of X (those containing only type 0 features), K°, as in

( I ) :

(1) K° = A(F > n &{{</> *)\*e P ( / )»

Then we build up AT as follows:
(2) a. KQ = {0}

i

c. K = LJ Kn (where N is the set of natural numbers)

Given the way K is built up, the induction step in (2b) being restricted to union of finite partial functions, it should
be clear that AT is a recursive set.

We define certain relations and operations on the space K of potential categories. The most important is the
relation is extended by, symbolized by TT. The definition is as follows.

* This work originates in joint research with Robert Carpenter, Thomas E. Hukari, Ewan H. Klein, and
Robert D. Levine, and some of their ideas, particularly Carpenter's idea of adding a modal operator to the
language of feature cooccurrence restrictions in Gazdar et al. (1985), are crucial. Gazdar et al. (1986) presents a
fuller application of this work in linguistic theory. We are grateful to Joseph Halpern, David J. Israel, Ronald
M. Kaplan, William A. Ladusaw, Richard E. Otte, Fernando Pereira, P. Stanley Peters, Carl J. Pollard, Stuart
M. Shieber, and Manfred Warmuth For very helpful conversations. They are not to be associated with any errors
that this paper may contain. We also thank Calvin J. Pullum, who did the diagrams. The research was supported
by grants from the (U.K.) SERC and ESRC (Gazdar), NSF grants BNS-85 11687 and BNS-85 19708 (Pullum),
and the UCSC Syntax Research Center.



D) UCllIilUUIl. CAlCUMUll

If a and b are atoms, then a is extended by b {a C b) if and only if a = b.

If a and (3 are categories, then a is extended by (3 (a C p) if and only if:

(i) V/e A(a) nF° [a( / ) - p(/)] and

(ii) V/eA(a)nF l [o</ )C:p( / ) ] .

Tiis yields an obvious definition for identity of two categories:

4) Definition: identity
If a and p are categories, a - p if and only if a C p and p C a .

Jets of categories can be unified in a sense familiar from recent logic and grammatical theory. A constructive
lefinition of the unification operation (symbolized U) is given in (5).

5) Definition: unification
If a and b are atoms, then a U b = a if and only if a = b.
If a and P are categories, then

(i) if </, v> e a but p(/) is undefined, then </, v) e a U P;
(ii) if (/, v> € p but olf) is undefined, then </, v) e a LJ P;
(iii) if (/, V;) e a and (/, v) e p, then (/, vi U v •) <E a U P if v̂  LJ v. is defined and a LJ P is

undefined otherwise;
(iv) nothing else is in a U p.

The relation C induces a meet semilattice on K. The greatest lower bound for C in a set S g^K is the largest
:ategory that is extended by all the members of S, i.e. the intersection of the members of S. This is always
defined, even if it is empty; and the empty set is of course a category in K. However, C does not induce a lattice
:>n K. For arbitrary sets S c A , there is not necessarily any category that all the members of S are extended by, and
htence not every pair of categories in K has a join.

We now introduce a language for imposing constraints on K in order to separate out proper subsets that
respect specific grammatical frameworks. Note that there is no guarantee that the categories used by some
specified grammatical framework will yield a semilattice under £ for constraints may make certain intersections
of categories illegal, creating sets of categories having no intersection that is itself a category.

3. The constraint language Lc

We formalize constraints as statements that can be true or false of a category. A constraint delimits a
subspace within the set K induced by a given category structure Z, namely, the subspace of categories that satisfy
the constraint. Different varieties of grammar use different subspaces.

Our goals in formulating our constraint language, Lc, are rather different from those of Rounds et al. The
language Lc is a language for characterizing sets of legal categories, not a language whose expressions are
intended for use in place of categories. Crudely put, our language is for category definition whereas Rounds' is
for category manipulation.

We define two types of constraint: BASIC and COMPLEX. If / is an element of F, and a is an element of A, then
there are just two distinct types of well-formed basic constraint: /and (/: a), where x(/) = 0. The following are
well-formed complex contraints: -»<{>, D<J>, 00, (<j> v \y), (<}> A \\f), (<j) -»\|/), (<j) <-> y) , and ( / : <j)), where / e Fl

and <j) and \\f are well-formed basic or complex constraints. (Here and from now on, we will omit parentheses in
the obvious way whenever they are not needed to prevent ambiguity in the statement of constraints.)

All well-formed expressions of LQ have the same kind of denotation—they denote truth values
(i. e. members of 2) relative to category structure Z and a category a in Z. If (j) is a well-formed expression of L^,
then we use Q^Q^ a to stand for the denotation of ({> with respect to the category structure Z and category a. If
0 ^ 0 = * l ^ e n ^ e s^ a^ s a^ t^iat a S A T I S F I E S §- O u r semantic rules are the following, where a,/, <j>, and y are as1 a
above.
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(6) a. []/ Q ̂  a = 1 iff a(/) is defined.

b. D / :aQ 2 ; a - l i f fa ( / ) -a .

8-

h.

i. QD<))O â= 1 iff Q(})Qia= land forall/inF1nA(a),DD(t)D^a(^ =

J-

Informally, (6a) says that a category satisfies/just in case it contains some specification for the feature /; (6b)
says that a category satisfying (f:a) has as one of its elements the pair (Jya)\ and (6c) says of a category
satisfying ( / : (J)) that the type 1 feature / is defined and that the category which is the value of / satisfies <j).
Clauses (6d) through (6h) are self-explanatory.

The modal operators introduced in (6i) and (6j) allow for recursive constraints to be imposed on successively
embedded layers of category values. A category a satisfies D<|> provided that, firstly, a satisfies <j>, and secondly,
whenever a assigns a category (3 to a type 1 feature/, p satisfies D<j>. The possibility operator in (6j) is, as usual,
the dual of the necessity operator: 06 says of a category a satisfying it that either a satisfies <}>, or there exists a
category-value P assigned to a type 1 feature/by a such that p satisfies 0$ .

Note that if a C P and a satisfies <}), it does NOT follow in Lc that p satisfies <|) (compare Rounds and Kasper
1986, Theorem 6). For example, we have 0 C { ( F , ^ ) } and 0 satisfies —iF, but {{F,a)} does not Likewise, the
fact that both a and p satisfy some constraint <{> does not entail that a U P will satisfy <(>, even if a U P is defined.
Observations such as these lead Moshier and Rounds (1986) to reject a classical semantics for their feature
description language in favor of an intuitionistic semantics that, in effect, quantifies over possible extensions. But
a classical semantics fits the intended meaning of our category constraints exactly, so there has been no need for
us to make a similar move.

We will write h <|> to mean that for every category structure £ and category a in Z, a satisfies (j). Given this,
we can list some valid formulae and valid formula schemata of the logic of category constraints.

(7) a. h ( / : a) - > / (for all a e p(/) , / E F°)

This simply says that if a feature has an atomic value, then it has a value. We also have all the valid formula of
the standard prepositional calculus, which we will not list here. Furthermore, we have the following familiar
valid modal formulas.

(7) b.
c. l=n(<j>-><{>)
d. hn<i>—>§
ĝ  1= (̂  —y Q<J>

f. hQ(<!>A\|/)«-»(n<{> AD \ | / )

h. h n<> -> nno
Here, (7h) shows us that our logic at least contains S4 (we follow the nomenclature of Hughes and Cresswell



968) throughout). But we do not have hO<{> —> •<><}>, and so our logic does not contain S5. To see this,
>nsider the following category, assuming F is a category-valued feature: { ( F , 0 ) } . This category satisfies OF but

The category {(F, {(G, a)}), (H, {<G, /?)})} (graphically represented in (8), below) provides us with an
lalogous falsifying instance for hODcj) -» D0<|> when we set <{> = (G: a).

F

H

lis shows that our logic does not contain S4.2. Interestingly, the converse of this constraint is valid; hence:

) i . hDO<j>-»<>•<{>
lis is easy to demonstrate: if a satisfies DO<t> then 0<j> must hold in all the categories that terminate a, and if <><))
>lds in those categories, then <|> and D<j> hold in them as well. So •<{> holds in at least one category in a, and thus
must satisfy OD<t>. This shows that our logic at least contains Kl and, as a consequence, is not contained by S5.

However, our logic cannot contain K2, since the latter contains S4.2. Nor does it contain K1.2 since the
tter's characteristic axiom, namely N}> -»•(<><{> -> <j>) is shown to be invalid by the category
Q, a), <F, {<G, b), <F, {(G, a)})})} (shown in (9), below) when we set <f> = (G: a).

0 G

F

a
G

F

b

I fact, our logic does not merely contain Kl, it also contains Kl.l, whose characteristic axiom is:

') j. h •(•($-> O$) ->§)->$)
hughes and Cresswell note that Kl.l *is characterized by the class of all finite partial orderings, i.e. finite frames
i which R [the accessibility relation] is reflexive, transitive and antisymmetricaT (1984, 162). So it should be no
irprise, given the basis for our semantics, that our logic turns out to include Kl.l. This logic, also known as
4Grz (after Grzegorczyk 1967), *is decidable, for every nontheorem of S4Grz is invalid in some ,/imfe weak
artial ordering' (Boolos 1979, 167).

Two further valid formula schemata of Lr have some interest, before we conclude the list of valid formulae
K7):

7) k. h<Kf (for a l l / e F 1 )
1. H/:<!>)->O<t> (for all fe Fl)

Tie first of these follows from the fact that categories are finite in size and thus ultimately grounded in categories
lat contain no category-valued features: / must be false of these terminating embedded categories, and hence
>—»/ must be true of the category as a whole. The second states that if a category is defined for a category-valued
sature whose value satisfies <j), then the category as a whole satisfies 0<j).

7) m. h(/:(!>)-*/ (for all / e F1)
I = ( ( / : ^ ) A ( / : \ | / ) ) H ( / : ( ) ) A V ) (for a l l / E F 1 )n.

o. ( fo ra l l ^F 1 )

It is worth considering at this point the valid formulae one would get in certain restricted classes of category
tructures. Suppose we consider category structures which contain only atom-valued features (i.e. F = F°). In
his case, as one would expect, the modal logic collapses into the propositional calculus and the relevant notion of
alidity (call it h0) gives us the following:



(10) ho4><
The converse case, where we only permit category-valued features (i.e. F-Fl)9 is uninteresting, since it is not
distinct from the general case: we can always encode atom-valued features as (sets of) category-valued features
and subject the latter to appropriate constraints, as follows. For every feature specification (/, a) such that/<E F°
and a e p( / ) , we introduce a new type 1 feature fa and use the presence of {fa, 0) to encode the presence of
(/, a) and likewise absence to encode absence. Then, for each pair of atoms a and b in p( / ) , we require the new
features to satisfy •—\(fa A/Z>). And to constrain each new feature fa to have the empty set as its value, we
stipulate •—\(fa: g) for every feature g.

However, consider validity in category structures containing at most one category-valued feature (call this
kind of validity h^). With this restriction, the S4.2 axiom considered earlier becomes valid:

(11) }=!<>•<{>-»•<>({>

In addition, we get (12).

(12) h1n(D(t)^nv)vn(n\}/->n<)))
This means that this restricted logic at least contains K3, but it cannot contain K4, since ht $ —» (ODcj) —> D<j>) is
falsified by the category « G , a), (F {(G, b)y <F, {(G, a)})})} when we set <}> = (G: a).

(13)
G

F

a
G

F

b

In fact it must also contain K3*l, in view of the validity of (7j) above, and this logic, also known as S4 JGrz , is
characterized by finite linear orderings (Hughes and Cress well 1984, 162-163). This is the characterization we
would expect given the character of the hj restriction on the form of permissible categories, since with only one
categoiy-valued feature, there is at most one path through the structure of a category and so the partial order
becomes a linear order. These observations concerning the logic induced by category structures where \Fl\ = 1 are
of some potential relevance to the study of indexed grammars (Aho 1968) whose categories can be construed as
being restricted in just this way (see Gazdar et al. 1986).

A word is in order about tthe time complexity of the decision procedure for Lc. We define the checking
problem for categories as the problem of determining for an arbitrary category a and a fixed formula <j) of LQ
whether a satisfies ()). For Lc, it it is easy to show that the checking problem for categories is solvable in linear
time (see Gazdar et al. 1986). Of somewhat less interest for practical purposes than the checking problem is the
universal checking problem, that of determining for arbitrary inputs <J>a, <{> a formula and a a category, whether
a satisfies <|>. Here <J> is not held constant, so its size contributes an additional factor to the complexity of the
problem. Nonetheless, the universal checking problem is solvable in at worst quadratic time. For some special
cases, both the checking problem and the universal checking problem are of course much easier. For example, if
only type 0 features are permitted, checking is decidable in real time by a simple inspection of the finite number
of (/, a) pairs, regardless of whether <{> is part of the input or not.

The much harder satisfiability problem, that of determining for an arbitrary formula <{> whether there exists a
category a that satisfies it, is of even less interest in the present context When a grammatical framework
intended for practical use is devised, the constraints on its category system are formulated to delimit a particular
set of categories already well understood and exemplified. There is no practical interest in questions about
arbitrary formulae of Lc for which no one has ever considered what a satisfying category would be like. We
would expect the satisfiability problem for Lc to be PSPACE-complete, like the satisfiability problem for most
modal logics.

4. Two example applications

The first of our two example applications is the category system employed in categorial grammar, which
originates with work by Lesniewski and Adjukiewicz in the 1940s, and which has attracted renewed interest in the
1980s (see Bach, Oehrle and Wheeler 1986; van Benthem 1986; van Benthem, Buszkowski and Marciszewski



The set of categories used in categorial grammar is infinite. It is often defined as the smallest set containing
)me set of basic categories {av ..., an}, and closed under the operation of forming from two categories a and p a
ew category a|(3.

To reconstruct the category system for categorial grammar, we define Z as shown in (14).

14) a.

b.

c.

d.

F
A

{LABEL, DOMAIN, RANGE}

X = {(LABEL, 0) , (DOMAIN, 1), (RANGE, 1)}

p - {(LABEL, A)}

Ve then add the following:

15) a. D (DOMAIN «-» - i LABEL)

b. D (DOMAIN <r* RANGE)

i simple structural induction argument suffices to show that we can obtain a bijection between the categorial
rammar categories and the admissible categories induced by F, A, and the constraints defined above (see Gazdar
t al. 1986). Here, for example, is how the adverbial category ((S | NP) | (S | NP)) would appear:

16) LABEL NP

DOMAIN

RANGE

DOMAIN

RANGE

LABEL S

LABEL NP

DOMAIN

RANGE

LABEL s
The categories defined thus far are non-directional, in the sense that a complex category can combine with an

xgument either to its left or its right. However, most definitions assume directional categories (cf. Bach 1984).
rhis further specification can be easily incorporated by introducing a new feature name DIRECTION which takes
values in 2. We then add a constraint that categories taking values for DOMAIN also take a value for DIRECTION, thus
letermining the directionality of the category.

17) • (DOMAIN <r± DIRECTION)

Ulearly we could employ an analogous move to subsume the a/[i vs. a//(i category distinction employed in
vtontague (1973).

Turning now to our second sample application, the generalized phrase structure grammar framework (GPSG),
is set out in Gazdar, Klein, Pullum, and Sag (1985; henceforth GKPS), makes extensive use of features that are
permitted to have categories as their values, as the following example indicates:



(18)

BAR

N

V

SUBJ

AGR

SLASH

2
0
1
0
*r

+-

r

Js
•

BAR

N

V

PER

PLU

2
1
0
3
1

BAR

N

V

PFORM

RE

0
0

by

BAR

N

V

PER

PLU

2
1
0
3
1

We show here how the set of categories for the GKPS version of GPSG would be reconstructed in the framework
presented here (see GKPS pp. 245-6, for the complete lists where we abbreviate with ' . . . ') .

( 1 9 ) a. F = {SUBJ, N, V, PLU, PFORM, PER, BAR, ..., RE, AGR, SLASH}

b. A = {0, 1,2,3,..., fry, to,...}
C. T - {(SUBJ, 0 ) , <N, 0>, (V, 0 ) , (PLU, 0>, (PFORM, 0>, (PER, 0>, (BAR, 0 ) , ..., <RE, 1>, <AGR, 1>, (SLASH, 1»

d. p = {(SUBJ, 2), (N, 2), (v, 2>, (PLU, 2>, (PFORM, {by, to, ...}>,..., <PER, {1,2,3}), (BAR, {0,1,2})}

We add to this, for each feature/e F1, the following constraint:

(20) •-.(/:<>/)
This prevents a category-valued feature / from being specified anywhere within the value of an occurrence of /.
This gives us exactly the set of GKPS categories, which is, of course, finite in virtue of (20).
Gazdar et al. (1986) give a number of other examples of category systems used by a variety of well-known
grammatical frameworks. The unitary form of representation given to the objects used in these diverse systems is
potentially of assistance in the exploration and comparison of grammatical formalisms. Questions concerning
whether particular rule types and operations on categories that are familiar from one approach to grammar can be
carried over unproblematically to another approach, and questions concerning the implementation difficulties that
arise when a given formalism is adopted can in many cases be settled in a straightforward and familiar way,
namely by reducing them to previously encountered types of question.
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