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ABSTRACT

Bundy et al (1985) have provided an analytical comparison of a number of rule-
learning programs including the Focussing algorithm and the Classification algorithm.
They analyse the behaviour of these algorithms in the case where the description
space consists of a set of relation trees. However, it is possible to add some
interesting footnotes to their analysis if we take the step of re-construing the
description space as a geometrical space. Under this construal, the behaviour of both
the Focussing algorithm and the Classification algorithm is analysed in terms of the
construction of hypercuboids. This analysis leads to a number of observations: (i)
that there is at least one. novel generalisation of the Focussing algorithm, (ii) that a
heuristic-based strategy for coping with the disjunctive-concept problem will, in gen-
eral, involve the exploitation of a valid metric over the description space and (in)
that the class of disjuntive rules (or concepts) which can be constructed by the
Classification algorithm (Hunt et al, 1966) is characterised by some quite specific
geometrical constraints.

1. Introduction

The analysis provided by Bundy et al (ibid.) shows that a number of rule-learning
programs are quite closely related and that many of them are subsumed by the con-
cept learning algorithm associated with Young et al (1977). This algorithm, called
the Focussing algorithm, is described in some detail. The description concentrates on
the case where the description space consists of a set of relation trees. A relation
tree is characterised as follows.
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It is noted that a description space consisting of such trees allows a partially
specified rule to be represented. The most general form of a partially specified rule
is defined by associating an "upper marker" with a specific node in each relation tree.
The most specific form of a partially specified rule is defined by associating a "lower
marker" with a specific node in each relation tree. If upper and lower markers in a
single tree coincide, then the tree is described as "firmed-up". If upper and lower
markers in all trees coincide then the rule (or concept) is completely specified.

The Focussing algorithm, as described by Bundy et al, consists basically of two
processes: generalisation and specialisation (which Bundy et al call "discrimination").
Specialisation becomes possible following the presentation of a negative training
instance; i.e. an instance for which the rule being learnt should fail, or to which the
concept being learnt is not applicable. It entails moving upper markers downwards in
their respective relation trees so that the most general form of the rule is not
satisfied by the negative training instance. Similarly, generalisation becomes possible
following the presentation of a positive training instance and entails moving lower
markers upwards so that the most specific form of the rule is satisfied by the train-
ing instance.

As Bundy et al point out. this basic algorithm generalises a number of learning pro-
grams, e.g. (Waterman. 1970). (Langley. 1981) and (Brazdil. 1978). and is similar to
the program described in (Mitchell et al. 1983). It has been noted that the idea
underlying the Focussing algorithm resonates with certain ideas in epistemology.
Charniak and McDermott have in fact, referred to (a version of) it as the "empiri-
cist algorithm" in recognition of the fact that it has roots in theories of the early
empiricist philosophers (Charniak and McDermott, 1985. p. 614). The algorithm is
capable of producing quite interesting learning behaviour; the most well-known
example is perhaps Winston's learning system which was able to learn appropriate
descriptions for a variety of blocksworld concepts (Winston. 1975).

2. Focussing in a geometrical description space
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Consider the description space consisting of the two relation trees depicted in Fig. 1,
(part of an example used by Bundy et al, 1985). This description space translates
into a geometrical space of three dimensions. One of these dimensions is a special
case. It ranges over the set of values {positive, negative}; I call it the P/N dimension
below.

The second dimension ranges over the set of values {singular(X), plural(X)}. This
entire set of values is associated with the value true(X). The third dimension ranges
over the set of values {action(X,Y), agent(X.Y). object(X.Y)}. The subset of contigu-
ous values {agent(X.Y). object(X.Y)} is associated with the value actor(X.Y) while
the set of values {action(X.Y), agent(X,Y), object(X,Y)} is associated with the value
true(X.Y). Values from different relation trees having the same lexical form are
assumed to be distinct.

In this construal the placing of markers in relation trees corresponds to the forma-
tion of hypercuboids. (A hypercuboid is defined as the n-dimensional generalisation
of a rectangle.) Note that any marker (either upper or lower) must be associated
with a node in a relation tree. It must therefore be associated with a set of contigu-
ous values in the corresponding dimension. In the case where a marker is placed at
the root node, it is associated with the entire set of values in the dimension.

For each marker therefore (call it ml) we can derive two values which are the
extremal elements of the set of contiguous values associated with mi's host node.
These extremal values define the position of two boundaries of the hypercuboid for
the relevant dimension.
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The application of the Focussing algorithm to markers placed in relation trees
corresponds, roughly, to a process in which an "outer" hypercuboid is shrunk, and an
"inner" hypercuboid expanded until they coincide. Note that the presentation of a
positive training instance corresponds to the instantiation of a point in space whose
coordinate in the P/N dimension is the value "positive". Obviously, the response of
the Focussing algorithm corresponds to an expansion of the inner hypercuboid so that
it encloses the new point. Conversely, the presentation of a negative training
instance corresponds to the instantiation of a point whose coordinate in the P/N
dimension is the value "negative". The response of the Focussing algorithm
corresponds to a shrinking of the outer hypercuboid so that it excludes the new
point (but see below).

We can depict the description space described above using a two-dimensional figure
such as Fjg. 2. In this figure, the two "real" dimensions correspond to the two major
axes and specific training instances correspond to the "P" and "N" characters appearing
in the different cells of the figure. All instances represented as Ps are points having
the value "positive" in the P/N dimension while all instances represented as Ns have
the value "negative" in this dimension. Positive and negative training instances are
associated with values of the real dimensions in the obvious way. Note that below,
we will refer to positive training instances as "Ps" and to negative training instances
as "Ns".

3 i n g u I a r ( X )
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Fig. 2

Consider the behaviour of the Focussing algorithm in the case where it is presented
with the following sequence of training instances.

plural(X) & object(X,Y)
singular(X) & agent(X)
plural(X) & action(X,Y)

(positive)
(positive)
(negative)

These training instances are in fact the ones represented in Fig. 2.

In the standard construal, the Focussing algorithm is initialised via the presentation
of the initial positive instance. This leads to upper and lower markers being associ-
ated with nodes in relation trees in the appropriate way. Following presentation of
the second positive instance generalisation will take place. That is to say lower
markers will be raised so as to cover the new case. Following the presentation of a



Page 5

of the inner hypercuboid and presentation of the final, negative instance leads to a
shrinking of the outer hypercuboid so as to exclude the negative instance. At this
point the inner and outer hypercuboid are identical and the algorithm terminates.
The form of the final hypercuboid is represented by the asterisks in Fig. 3.

s l n g u l o r ( X )

p i u r a l ( X ) N

• P •

I P •
**************************

act ion(X.Y) agent(X,Y)

Fig. 3

object(X.Y)

3. Generalised Focussing

Our construal leads us to distinguish between the standard Focussing algorithm and
an interesting generalisation of it. Recall that the standard Focussing algorithm
involves the movement of markers. As we have noted, this behaviour can be con-
strued in terms of the manipulation of hypercuboid boundaries. However, it is
important to note that the Focussing algorithm is only capable of implementing a
subset of the possible hypercuboid boundary manipulations.

In effect, it can only, move boundaries between positions enclosing the extremal ele-
ments of the set of contiguous values associated with a pair of nodes having a
parent-child relationship. This means that it cannot, for instance, position boundaries
so as to enclose the two values action(X,Y) and agent(X.Y) in Fig. 3.

It is credible that a Focussing algorithm capable of implementing arbitrary boundary
movements might have interesting properties. Consider the dimension corresponding tc
a relation tree of depth one whose leaf nodes are the values past(Y), present(Y) and
future(Y). The standard Focussing algorithm can only generalise the first two values
by moving a lower marker to the root node. In effect, the generalisation is thereby
forced to embrace the future(Y) value in addition to the past(Y) and present(Y)
values. Obviously, there might be situations in which a generalisation of past(Y) and
present(Y) might advantageously exclude the future(Y) value. We therefore infer,
that a generalised Focussing algorithm, capable of implementing arbitrary boundary
movements, might have an improved performance.

4. The far-miss problem

In the standard construal of the Focussing algorithm it is the case that specialisation
(or discrimination) can take place in a variety of different ways. This is due to the
fact that moving an upper marker down in any one relation tree will generally be



non-determinism can lead to unfortunate consequences.
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Fig. 4 depicts the form of the outer hypercuboid following the presentation of two
positive instances (PI and P2) and one negative instance (Nl). The outer boundary
has been shrunk to exclude Nl. This shrinking involved the movement of the lower
boundary so as to exclude the plural(X) value. The next instance presented is a
positive instance of the form plural(X) & agent(X.Y) (P3). Clearly, if we expand
the inner hypercuboid so as to include P3 an anomolous situation will result in
which the inner hypercuboid extends beyond the outer hypercuboid. This situation
cannot be dealt with by the basic algorithm and seems to require exhaustive search-
ing of the diflFerent possibilities. The general conclusion is that an incorrect, deter-
ministic shrinking of the outer hypercuboid may lead to a failure of the Focussing
algorithm (see also Bundy et al, 1985. p. 159).

5. The disjunctive-concept problem

The analysis provided by Bundy et al includes a description of the way in which
the Focussing algorithm can fail in the case where the rule being learnt has a dis-
junctive form. They show that when a certain sequence of positive and negative
instances are presented to the algorithm, situations will arise in which either upper
markers are moved below lower markers or in which lower markers are moved
above upper markers. The rule corresponding to the resulting configuration of mark-
ers is clearly meaningless: its most specific form will be more general than its most
general form.

When we construe the description space as a geometric space, this problem (the so-
called disjunctive-concept problem) appears as a static property of a set of instances,
which is not affected by the presentation schedule.

Consider Fig. 5. It is obvious that we cannot form a hypercuboid in this space
which both encloses all the Ps and excludes all the Ns so we can infer that the
Focussing algorithm cannot produce a completely specified rule for this collection of
instances. One way out is to assume that either the negative instance or one of the
positive instances corresponds to noisy data and can therefore be ignored. However,
if we accept all the instances as valid, we have to conclude that the concept
corresponding to the positive instances must have a disjunctive description; e.g.
(plural(X) & object(X)) OR (singulaKX) & agent(X)).
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The general conclusion is as follows: whenever points corresponding to negative
instances fall inside the smallest hypercuboid enclosing all the positive instances, it is
the case that the Focussing algorithm cannot produce a completely specified rule
describing«the instances. Note that the sequence in which instances are presented
makes no difference.

6. Shell Creation

Bundy et al show that a number of Focussing-related learning programs try to
implement solutions to the disjunctive-concept problem (ibid.). They also note that
none of the solutions are particularly satisfactory. One technique discussed is "shell
creation". This technique is described as a modification of the Candidate Elimination
Algorithm reported in Mitchell et al (1983). The process of Shell Creation involves
the construction of what Bundy et al call "rule-shells11 and is introduced as follows.

To cope with inconsistencies caused by disjunctive rules it is necessary to
introduce a new rule-shell and to divide the positive instances between the
old and the new shells. Negative instances should apply to both shells (p.
167).

Clearly, under our construal. new rule-shells correspond to new hypercuboids. The
interpretation of Bundy et al*s conclusion follows automatically. To cope with the
case where it is not possible to construct a single hypercuboid which encloses all Ps
and excludes all Ns. it is essential to introduce multiple hypercuboids. Having done
this, it then becomes necessary to decide which Ps should be considered to belong to
(and therefore expand) which hypercuboids. Ns are easily processed since any N can
be used to shrink any hypercuboid.

Bundy et al suggest that all solutions to the disjunctive-concept problem which use
techniques similar to Shell Creation are flawed. They sum things up as follows.

these "solutions" are far from perfect, and rely on very favourable training
orders. It seems to us that any adaption of Focussing to learn disjunctive
concepts correctly ... must include storage of all the training instances.
This is due to the problem of deciding which instances belong to which
disjunct. We know of no way of ensuring that the division of instances is
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might exist through which the division (or, in general, the assignment) of instances
might be performed correctly, first time?

Consider Fig. 6. This figure depicts a situation in which five positive training
instances have been presented. Two inner hypercuboids are represented. Each one
encloses two positive instances. The hypercuboid enclosing PI and P2 will be
referred to as the leftmost hypercuboid. The hypercuboid enclosing P3 and P4 will
be referred to as the rightmost hypercuboid.

s i n g u I a r ( X )

p l u r a l ( X )

* * * * * * * * * * * * *
• P1 *

• P2 •
•

• P3 •

• P4 *

a c t i o n ( X . Y ) o g e n t ( X , Y )

Fig. 6

o b j e c t ( X , Y )

Clearly, if we have a heuristic for performing correct assignments first time, then
we should be able to use it to decide whether P5 should be assigned to the leftmost
or the rightmost hypercuboid. The question is could such a heuristic exist? and if
so. how would it work?

Note that we will expect the heuristic function to satisfy a number of criteria: (i)
it must produce definite and consistent results; (ii) it must not refer to any implicit
properties of the particular instances presented, or to any implicit properties of the
particular description space involved; |Ciii) it must compute the same result, regard-
less of the way in which we pose the problem.

In addition we will expect that it will generate preferences which are intrinsically
coherent. This means that we will expect that the generated preference for assigning
some specific instance (call it PI) to some specific hypercuboid (call it HI) will not
be "outweighed" by the generated preference for assigning PI first to some intermedi-
ate hypercuboid and then on to HI. If generated preferences were of this sort then
we would be able to increase our level of preference for any particular assignment
simply by devising ever more elaborate assignment schedules. Finally, we will expect
our heuristic to function normally in the special case where hypercuboids always
enclose single points.

Clearly, any heuristic satisfying these criteria must exploit what is. in effect, a valid
metric over the description space. Presented with any two points in the description
space, the heuristic must be capable of generating a distinct level of preference for
assigning one of the two points to a hypercuboid enclosing the other. Note that this
level of preference, interpreted as a distance measure, satisfies all the axioms for a
valid metric, including triangle inequality.



8. The Classification algorithm

Bundy et al describe an algorithm, called the Classification algorithm, which, they
say. can deal flawlessly with disjunctive concepts. The particular example they dis-
cuss is Quinlan's ID3 program. The basic behaviour of this algorithm is well-
documented, e.g. (Quinlan. 1983). (Bundy et al, 1985). (Hunt et al, 1966).

The processing of positive and negative instances by the Classification algorithm leads
to the construction of a decision tree. Each node of this tree" corresponds to an attri-
bute and its branches correspond to the possible values of the attribute. The leaf
nodes of the tree are associated with sets of instances which are either empty or
contain only positive or negative instances.

The initial step in the Classification algorithm involves choosing an attribute on
which to split the instances up into "classes". This choice is made from a set of
attributes (call it A).

Initially A is simply the set of all attributes. Any attribute can be chosen from A
and an information-theoretic criterion is used to implement the choice. This states
that the attribute selected will be the one which achieves the greatest reduction of
the entropy of the distribution of instances. Intuitively, it states that an attribute
in which positive and negative instances are less mixed-up will be preferred to one
in which they are more mixed-up.

If an attribute with K possible values is selected, then K classes will be formed
each of which is associated with one of the values of the dimension. Each of these
classes contains all those instances which have the value associated with the class,
The partitioning of instances into classes according to the values of an attribute X is
referred to as "splitting on X" (see Bundy et al. 1985. p. 173). The set of attributes
corresponding to the set of classes which contain a mixture of positive and negative
instances is then derived. This set is now assigned to be the new value of A and
the process continues recursively.

9. Hypercubes formed by the Classification algorithm

It is interesting to consider the behaviour of the Classification algorithm in terms of
hypercuboid formation. To do this we have to construe the description space
described above as a geometrical space.

As before, we assume that the description space has one special dimension whict
ranges over the values "positive" and "negative" (P and N) and K real dimensions
We assume that each of these K real dimensions corresponds to a specific attribute
and ranges over the attribute's set of possible values. In the case where there are
two attributes we will obviously be able to represent positive and negative traininj
instances using the familiar two-dimensional diagram, e.g. Fig. 7.
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Fig. 7 depicts the geometrical description space corresponding to the case where there
are just two attributes under consideration: a "size" attribute and a "colour" attribute.
The possible values of the "size" attribute are {large, med, small}, while the possible
values of the "colour" attribute are {red, blue, green, pink}. The diagram depicts the
"size" attribute and the "colour" attribute as dimensions in the usual way: three posi-
tive training instances and two negative training instances are shown. We now con-
sider the way in which the Classification algorithm would process this collection of
instances and how we should construe its behaviour in terms of hypercuboid forma-
tion.

Note that the dimension (attribute) along which the Ps and the Ns are least mixed-
up is the "colour" dimension (attribute). This dimension will therefore be chosen first
for splitting. The classes that result from this splitting contain only Ps or Ns. The
algorithm therefore terminates.

The disjunctive concept constructed by this algorithm in this example corresponds to
the decision tree depicted in figure 6. It corresponds to a disjunctive rule for the
given positive instances: blue(X) OR pink(X).

red b l u e g r e e n

I
p! nk

IP!

Fig. 8

Note that each time the Classification algorithm splits on an attribute it creates a set
of K hypercuboids boundaries, where K - 1 is simply the number of values over
which the dimension (attribute) ranges. Each of these boundaries separates two possi-
ble values of the selected dimension.

In the initial case, a set of K hypercuboids is formed as a result. The boundaries of
these hypercuboids in the other dimensions enclose the extremal values in these
dimensions. If the algorithm terminates after the first splitting then the struture of
the decision tree will correspond exactly to this set of N hypercuboids. Fig. 9 dep-
icts the set of hvpercuboids constructed bv the Classifiction algorithm for the exam-
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If the algorithm does not terminate after the first splitting then the next best
dimension will be selected and classes derived in the described way. As in the initial
case, this process effectively identifies K - 1 boundaries. However in contrast, these
boundaries only apply to hypercuboids which contain both Ps and Ns. In effect all
hypercuboids which contain both Ps and Ns are split up into K "sub-hypercuboids"
(K being the number of values in the selected dimension). The process continues
until all hypercuboids contain only Ps or Ns.

Construing the behaviour of the Classification algorithm in terms of hypercuboid for-
mation enables us to directly compare the (hypercuboid formation) behaviour of the
Focussing algorithm with the described behaviour of the Classification algorithm. We
note immediately that the Classification algorithm differs from the Focussing algo-
rithm in that it is able to construct more than one hypercuboid. This is of course
the property that underlies its ability to form disjunctive concepts.

We should also note that whereas the Focussing algorithm can. in principle, form
arbitrarily shaped hypercuboids the Classification algorithm is restricted to forming
hypercuboids which are, geometrically speaking, highly constrained. It is in fact the
case that the Classification algorithm can only form hypercuboids whose two boun-
daries in any one dimension enclose either a single value of the dimension, or its
extremal values. In simple terms, the boundaries in any one dimension of a hypercu-
boid formed by the Classification algorithm must, definitionally, be either as close as
they can possibly be, or as distant as they can possibly be.

If we consider the entire set of possible hypercuboids which can be constructed ir
any given geometrical space of a reasonable size, and compare it with the set oi
hypercuboids which can be constructed in the same space using boundaries which are
of the described form, we will conclude that the size of the former set is
overwhelmingly greater than the size of the latter set. The implication is that the
Classification algorithm can only construct a small proportion of possible hypercu-
boids in any given space and must therefore be assumed to be only capable, in gen-
eral, of constructing a small proportion of the possible disjunctive rules for a giver
set of instances.



"generalized graph" description spaces into geometrical spaces. However, our arguments
revolve around a reconstrual rather than a mapping; therefore they are not invali-
dated by Mitchell's observation.

We have shown that under the described interpretation a number of possibilities
emerge: (i) a generalisation of the Focussing algorithm, which might have useful pro-
perties, can be envisaged; (ii) a very simple account of the disjunctive-concept prob-
lem can be provided which does not refer to the details of a presentation schedule
and which can be supported with a simple graphical illustration; (iii) an argument
can be constructed suggesting that any systematic solution to the disjunctive-concept
problem will involve the exploitation of what is. in effect, a valid metric over the
description space and (iv) it can be demonstrated that the Classification algorithm is
only capable of forming a small subset of the possible disjunctive concepts for any
given description space.
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