
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

New Directions in Object Oriented

Programming: Concepts, Issues and

Alternatives

Mark Paul Keefe

1986

Cognitive Studies Research Papers

WtKNfclilfc-MELLON UNIVERSITY Q ~] (Q
PITTSBURGH, PENNSYLVANIA 15213

New Directions in Object Oriented Programming:
Concepts, Issues, and Alternatives

Mark Paul Keefe

Cognitive Studies Programme
The University of Sussex

Support for this project was provided by Systems Designers, Pic. in the form of a research
fellowship to investigate potential future enhancements in the form of object oriented
programming capabilities to the POPLOG Artificial Intelligence Development System in
development at the Cognitive Studies Programme, University of Sussex.

Contents

Chapter 1 — Introduction 1

Chapter 2 — Basic concepts 3

Chapter 3 — History , 7

1. Smalltalk 7
2. Extensions to lisp 7
3. Extensions to Prolog 9
4. Extensions to the C language 9
5. Other language extensions 9

Chapter 4 — Recent trends . 12
1. Generalizations 12

1.1. Inheritance
12. Instance variables and methods
1.3. Method discrimination

2. Restrictions .. 16
2.1. Inheritance of instance variables and methods
2.2. Data access

Chapter 5 — A system framework. 20
1. Base-level features 21

1.1. Data Hiding and Abstraction
1.2. Dynamic Binding
13. Information Sharing

2. Medium-level features 24
2.1. Representation of Objects
2.2. Method combination
2.3. Multi-methods
2.4. User-defined inheritance

3. Implementation^ Issues . . 33
3.1. Efficient method lookup

Chapter 6 — Case studies 36
1. HP Common Objects 36

1.1. Comparisons with other languages
1.2. Efficiency

2. Flavors 37

- i -

Mark Paul Keefc OOPS Report

2.1. Implementation
3. LOOPS 38

3.1. Efficiency
4. C++ 38

4.1. Implementation
42. Features

5. Objective-C 39
5.1. Implementation

Appendix A — Object Pascal 40

Chapter ; — Introduction

One of the most compelling results to emerge from over 25 years of research
in the area of Artificial Intelligence is that intelligent systems require very large
amounts of domain-specific knowledge. Contrary to early assumptions that the
discovery of a small number of powerful underlying principles of problem solving
behavior would result in flexible, general techniques that could cope with a wide
range of situations, it has been found that the most critical factor influencing the
performance of intelligent systems is the amount of knowledge present.

Besides tending to come in large and unwieldy chunks, knowledge is both hard
to characterize accurately and is constantly changing [Rich 83]. Thus, a correlate to
the finding that intelligent systems need to be knowledge intensive is that the early
techniques for representing and manipulating knowledge, which included the use of
first-order predicate calculus and "semantic" networks, were lacking either in terms
of expressive power, ease of use. uniformity or efficiency.

The object oriented paradigm, which grew out of semantic networks and
frame-based languages, addresses several of the above criteria through its ability to
capture complex structural information in the form of objects and their associated
attributes; generalizations, taxonomies, and exceptions; the distinction between generic
concepts and individual instances of such concepts; and the association of general and
specific behaviors with individual instances.

Object oriented programming has become a powerful tool for the representation
of domain-specific knowledge. Nonetheless, it not well suited for representing all
kinds of knowledge; for example, it provides only limited capabilities for expressing
universal and existential quantification, and none at all for expressing most negative
and disjunctive facts [intelliCorp 84]. In addition, it does not yet have a well
defined semantics, as does predicate calculus. In terms of efficiency, object oriented
programming languages are pushing very hard at the capabilities of modern computer
architectures. However, used in conjunction with other proven AI techniques such
as rule-based programming, it has shown itself to be a necessary and useful addition
to the AI developer's bag of tricks.

There are a growing number of object oriented programming systems and
languages in academic and commercial use, and new languages are still being pro-
posed. Having been around for a relatively small amount of time, object oriented
programming concepts are still being defined and developed, and consideration of the
issues of expressiveness and efficiency have in recent years led to a number of inno-
vations. A growing number of people are becoming interested in developing some
form of standardization, but as yet a date for such a standard is unforeseeable due
to disagreement regarding the semantics of basic concepts and lack of understanding
of the kinds of problems to which the methodology may be usefully applied. A
framework is needed that is general enough to support the variety of different
approaches to constructing object oriented programming systems and can capture and
distinguish the fundamental underlying assumptions and features embodied in the
object oriented programming model. It is to this need that this paper addresses
itself.

Mark Paul Keef e OOPS Report

The following chapters work toward the establishment of such a framework by
exploring some of the basic concepts of object oriented programming, following the
evolution of some of the major systems and languages in existence, and describing
the most important innovations recently proposed.

Chapter 2 presents a glossary of terms that appear repeatedly throughout this
report. An attempt is made to keep the definitions as general as possible in order
to accommodate the incorporation of the ideas presented in subsequent chapters.

Chapter 3 is intended to illuminate some of the distinctions between the many
object-oriented programming systems and languages that have been proposed and
implemented in the past decade or so. The following is one useful way of categoriz-
ing these systems:

• Completely uniform programming frameworks (Smalltalk)

• Extensions of various Lisp dialects (Eg. Zetalisp-Flavors. Interlisp-Loops)

• Systems built as add-on packages to other languages, notably Lisp (Eg. KEE,
ART, Knowledge Craft)

Most of the work in implementing object oriented programming concepts has
appeared in Smalltalk and Lisp, to which are devoted entire sections. Other work
covered in this chapter includes implementations based on Prolog. C, and Pascal.

Chapter 4 examines a number of recent innovations which may have a
significant impact on the power and efficiency of object oriented programming sys-
tems and languages in which they are incorporated. Each innovation is distinguished
as to whether it essentially represents a wide or narrow interpretation of one or
more basic concepts of object oriented programming, and is examined in terms of the
advantages and disadvantages it has to offer.

In Chapter 5, basic concepts and important innovations are drawn together into
a proposed framework that attempts to meet the needs of disparate and occasionally
conflicting features, is powerful enough to support many of the existing approaches
to implementing object oriented programming systems, and is open-ended enough to
support future innovations. A layered approach is utilized which distinguishes fun-
damental or universal assumptions and capabilites from those which are tied to par-
ticular systems, approaches and objectives.

Chapter 6 closes by providing a few case studies of major object oriented
languages. A uniform comparison of strengths and weaknesses along various dimen-
sions is not possible at this time due to the lack of documentation and reported
applications experience available, however, it is considered that the information
presented in this chapter is of potential use to those who are considering the inclu-
sion of object oriented programming capabilities within their own development sys-
tems.

Chapter 2 — Basic concepts

In this chapter, a glossary of terms referring to some of the most common
notions of object oriented programming systems is provided. It is worth noting that
not everybody is in agreement on the basic concepts of object oriented programming
or their semantics. I have therefore tried to keep the glossary as general, and as
minimal, as seems compatible with the goal of providing a useful explanation.

Data Encapsulation

Object

Class

Class Inheritance

The packaging of structure and functionality into a conceptual unit, or
object, is a means of supporting the principle of data encapsulation,
which states that users of objects should not be granted privileged
access to the private parts of such objects. The terms, class, prototype,
module, package, unit, frame, schema and node are used in various
languages to refer to general descriptions of such conceptual units.
The term instance is most often used to refer to an actual entity
whose structure conforms to the general description and whose attri-
butes have specific values. For example, the term, "elephant",
describes a class of animals having a color attibute, of which "Clyde"
is an instance whose color is pink.

The fundamental unit in object oriented programming systems is the
object. It is a data structure which contains unique memory locations
for a set of attributes (instance variables) that describe its current
state, and is associated with procedural code (methods) that implement
operations defined on similar objects. Access to the object's attributes
is normally mediated through an interface. The interface causes a
request for an object to perform one of its operations to be interpreted
as a request for the object to select and invoke a method to carry out
the operation.

Objects are most often organized into groupings of similar objects.
Such a grouping is referred to as a doss. The class of an object
determines the object's structure as well as defining the interface to
the object by determining the set of methods the object may invoke to
carry out operations. Two objects are said to be similar if they
belong to the same class, that is, if they have the same structure.
The structure of an object can be considered to mean the way in
which the object's attributes and behavior is implemented. An object
that is a member of a given class is called an instance of that class.
Information local to each instance is represented in the same manner in
all instances of the class.

Classes themselves are often organized into a hierarchy, or more gen-
erally a lattice. The directed links in the lattice indicate a specializa-
tion relationship between neighboring class nodes in the lattice. The
specialization relation is transitive. A class that is a specialization of
another class inherits structural information from the more general
class, or "superclass", as well as the interface of the superclass. This
means that instances of the inheriting class, in addition to their own
attributes and methods, have all of the attributes and methods defined
for instances of the superclass. Inherited methods and attributes are
indistinguishable from those defined on the inheriting class.

- 3 -

raui Report

Instance

Instance variable

State

Method

Interface

Generic Operation

The term instmc* usually refers implictly to the relationship between
an object and its class (cf, Data Encapsulation). In several languages,
including Smalltalk and Loops, all objects (including classes) are imple-
mented as instances of tome class. When discussing languages in
which classes are implemented in the same way as instances (ie, as
objects), the term "instance" is often used to refer to objects that are
not classes.

An object has storage allocated to hold a set of attributes. These are
usually referred to as butane* variables or slots. Each instance vari-
able associated with an object is denned in a class that the object is
an instance of (it may also have been denned in an inherited class),
and has storage allocated in the object. Thus, if a class A, or one of
the classes it inherits from, defines an instance variable x, then all
instances of A and of classes inheriting from A will have unique
memory locations for storing their own value for the variable x.

A particular combination of values for the attributes of an object at
some point in time is referred to as the object's state.

The code that implements a particular operation defined on a class of
objects is referred to as a wuthod.1 The method may have been
directly defined on that class of objects, or it may have been defined
on an ancestor of the class in the inheritance lattice; in either case, it
is said to be defined for that class of objects.2 When an operation on
a particular object is requested, it is necessary to locate an appropriate
method with which to perform the operation. The method can some-
times be determined statically, but in general a dynamic lookup is
necessary (namely, when the object's class cannot be determined at
compile-time).1 The way in which an object finds an appropriate
method with which to respond to a particular request is generally
determined by the position of the object's class in the inheritance lat-
tice. In particular, the object's class is usually examined to see if it
is directly associated with an appropriate method. If it is, that method
is used; if not, a search from the object's class through its inherited
classes is conducted until an appropriate method is found.4

The set of operations defined on a class of objects is called the
inter/act to objects of that class. The interface provides a way of
mediating between "outside" requests for an object to perform one of
its operations, and the selection of the code with which to perform it.5

An operation that may be requested in the same (syntactic) manner
for different classes of object in order to acheivc some "standard"
behavior (ie, expected, or grossly similar) is referred to as a generic

1 Note that the terms "method" and "operation" are not synonymous. I will use the term
"operation" when referring to some abstract action or sequence of actions (eg, object X a requested to
perform its print-self operation), and the term "method" when referring to the actual code used to
perform such an operation.

2 In Common Objects it is possible for one class to inherit from another without inheriting all of
trie methods denned on the inherited class.

$ This kind of dynamic binding scheme is critical for the support of modularly designed programs,
that is, programs whose parts may later be reused, without modification, in constructing new applications.

4 Dialects vary on what happens if none is found; in Smalltalk and many other dialects it is simply
an error, however, other dialects may make it possible to cause some actions to occur before allowing
control to be returned to the caller (eg, through the use of wrappers in Flavors).

5 Protection of an object's private attributes can be guaranteed by forcing outside access to the
attributes of the object to be performed by going through the interface (ie, by requesting an access
operation). The object's structure can be safely modified, by redefining attributes and methods in the
object's class or superclasses, without changing the interface.

Chapter 2 Basic concepts

Computational Metaphor

Protocol

Message passing

operation. Generic operations differ from ordinary operations in that
they hare a distibuted definition rather than a single definition; that
is, there is generally more than one method that implements the
operation. The definition used to perform the operation varies from
call to call, whereas with ordinary operations, the same definition is
always used.

The way In which objects art requested to invoke methods for per-
forming operations in a given language is sometimes referred to as the
computational mmtaphor of the language. Message passing (see below) is
one example of a computational metaphor. Procedure call, in which
one of the formal arguments is treated a* special (le, given responsibil-
ity for determining a method to implement the operation) is another.
In some languages (eg, Smalltalk) message passing is the only computa-
tional metaphor. In others, all computations are performed by pro-
cedure calls, with "object" arguments treated specially.* Some other
languages prefer to mix the two metaphors, with message passing used
to request generic operations on objects (implying dynamic method
lookup, cf Method) and procedure call used to request non-generic
operations on any kind of data.

Object interfaces can be used to design a standard protocol so as to
treat instances of different classes in a uniform manner. This can be
achieved by specifying a generic operation such that the operation's
performance is requested in the same manner regardless of the class of
object to which it is to be applied.

In many but not all languages, operations on objects are requested
through the use of messag* passing. The set of messages a class of
objects is able to respond to can be regarded as the interface to
instances of the class. A "message" is composed of a symbol identify-
ing an operation whose performance b requested (the message "selec-
tor"), an object responsible for performing the operation (the message
"receiver") and any formal arguments whose values are necessary.
Thus, the sender must know the name of the message selector and the
number of arguments required for the operation. An instance of a
particular class may successfully respond to a message for which an
applicable method has been defined on the class (the instance may be
said to "handle" the message) by interpreting the selector and invoking
the appropriate method with the arguments supplied.7

Object oriented programming supports the principle of data encapsulation by
providing a means of packaging the attributes associated with a conceptual entity,
along with specific methods to access the attributes, into a physical data structure.
Direct access to an object's attributes is possible from methods defined on the
object's class. Outside access requests can be channelled through a well-defined
interface which causes such requests to be interpreted as requests for the object to
select and invoke an appropriate method.

6 For example, C++ introduces the notion of virtual functions, which are called in the same manner
as ordinary C functions, but can cause a dynamic dispatch to the actual code used to implement the
function.

7 The set of messages which a class documents as being denned for its instances (as well as instances
of subclasses of the class) constitute the message interface to instances of that class; it is the channel
through which an instance may be asked to carry out one of its operations.

Mark Paul Kecf c OOPS Report

Object oriented programming enables programs to be defined in a modular style
by allowing the specification of generic (virtual) operations whose invocation is
independent of the class of object upon which they are to be performed. In order
for code to be reusable, requests to perform such operations must not need
modification when the implementation of objects has been modified. This implies
that the caller should not require knowledge of the object's representation, nor of
how the operation is actually performed. The caller should only need to know
what operation it wants performed and how to request it. Performing the same
operation on dissimilar objects should be possible without the caller needing to know
that the objects are dissimilar.

Object oriented programming is partly a matter of facilites provided by a
language and partly a matter of design methodology. Different object oriented pro-
gramming languages take different views on how strongly the twin principles of data
encapsulation and program modularity should be upheld. For example, in some
languages, it is very difficult to write code that violates these principles. Other
languages merely make it possible to write programs that adhere to them, but also
provide ways of getting around such restrictions.

Chapter 3 — History

It is useful to have some idea of how various concepts, languages, and systems
evolved in order to compare different approaches, to assess the staying power of new
ideas.1 and so forth. In this chapter, brief summaries are given of the evolution of
some of the major object oriented programming systems and languages.

1. Smalltalk

The earliest versions of Smalltalk [Kay 72] were influenced both by earlier
languages (especially Simula-€7. [Dahl 66. Dahl 70]) that provided constructs to sup-
port data encapsulation, as well as by theoretical work, mainly at MIT. that advo-
cated the use of message passing as a control structure [Hewitt 76].

Ideas culled from the research of Bartlett. Quillian. Minsky. Schank. Norman,
Rumelhart, Rosch, Bobrow. Winograd. and others — whose work on structured
representations of memory, perception, inference, and general concepts went under
such names as Schemata, Frames, Semantic or Associative Networks. Scripts, and Proto-
types — contributed greatly to the concepts of

• attributes, features, or properties of an object;

• attachment (in some sense) of procedural behavior to an object;

• organization of objects into networks representing relationships between objects
through which information can be shared.

Smalltalk has been completely redesigned twice [Ingalls 81, Goldberg 83], with
the following major evolutionary changes:

(1) The language itself has become more and more "object-oriented" to the extent
that everything in the Smalltalk-80 system is an object (from numbers, charac-
ters, and strings, to compilers, editors, and file systems, to classes and contexts)
and all processing is effected by message passing [cf. Ingalls 81].

(2) More and more attention has been paid to the Smalltalk user interface, espe-
cially as machine address space, processor power, and bit-mapped graphics
hardware and software have improved.

2. Extensions to Lisp

Lisp is a particularly good language for extending, partly due to its simple but
general syntactic structure, partly because there is no difference between built-in and
user-defined features, and partly because programs can be manipulated as data. For
example, a simple Lisp interpreter can be written in Lisp relatively straightfowardly;
this can then be extended to interpret larger and larger supersets of the Lisp
language. There are various ways of providing support for object oriented

Flavors, Smalltalk, and Loops are the most widely available object programming systems, having

Mark Paul Kecf e OOPS Report

programming in Lisp, differing mainly in the level of integration with the language.

Extensions to Lisp implementing "frame systems" [Bobrow 77], "Scripts" "Sche-
mata" etc, began to appear around 1975. These systems are similar in that they all
use the notion of "structured objects" as the basis of a representational formalism
for capturing various kinds of knowledge [Rich 83],

The CLU language, developed at MIT around 1979, appears to have been the
first of the Lisp dialects to offer object oriented programming facilities. Its major
innovation was in drawing a strong distinction between mutable and immutable
objects, the latter being those whose internal state is never modified (eg, integers and
booleans). The Units system, devised by Stefik [Stefik 79]. emerged at about the
same time as CLU, but emphasized the use of knowledge-engineering tools as
opposed to general data abstraction facilities. Units was the precursor to Loops,
KEE, and Strobe.

The Zetalisp (Symbolics) Flavor System was released in 1981 [Symbolics, Wein-
reb 81, Weinreb 85], providing deep level system support and a wide range of
features. Flavors appears to be the first commercially available system to provide
multiple inheritance. It allows the user to specify complex patterns of combination
for methods inherited from more than one superclass.

Bobrow and Stefik at Xerox PARC, developed Loops [Bobrow 83] which pro-
vides multiple inheritance, metaclasses, active values, and composite objects. Since
then, countless object extensions to Lisp dialects as well as object languages based on
Lisp have emerged, including Strobe, NIL, VLISP, Mering, LeLisp, bVLISP. and
XL1SP.

Between 1983 and 1985. a handful of high-level knowledge engineering tools
began to appear from the commercial AI startups, notably KEE [intelliCorp, KEE
84], ART [Inference Corporation, Williams 85 Clayton 85], Knowledge Craft [Carne-
gie Group. Pepper 86] and Omega [Delphi SpA, Attardi 86]. These and others
(ABE?, Units, Strobe) have grown out of work on the provision of high-level tools
with which to build expert systems shells. Research in cognitive engineering and
knowledge-based systems have played important, complementary roles, particularly in
determining how the interface between the user and the system ought to appear and
behave.

With the emergence of Common Lisp has come a more recent spate of proposed
"standard" object extensions, including ObjectLISP [LMI, Drescher 85], CommonLoops
[Xerox PARC, Bobrow 85], and Common Objects [Hewlett-Packard Labs, Snyder 85].
Both Common Loops and Common Objects rely on extending the lisp d e f S t r u c t
form (used to create Pascal-like, aggregate record types) for creating user-defined
types. ObjectLISP uses nested Lisp C l o s u r e s to implement lexical environments in
which variables and functions can have distinct bindings.2 Symbolics are also revising
their Flavors System [Keene 85], although not yet proposing that it be adopted as a
standard. They, like most others, have adopted a "wait-and-see" attitude. A Com-
mon Lisp Object Oriented Programming Subcommittee has been formed in "recogni-
tion of widespread recognition of the opportunity and timeliness of integrating
objects into Common Lisp".

2 Performing operations on ObjectLISP objects is acheived not so much by message passing as by
restoring an object's lexical environment in order to access its function bindings (methods).

unaptcr J History

Flavors* Common Loops, and Common Objects are examined more closely in the
case studies section.

3. Extensions to Prolog

There have been a number of proposals for extending Prolog with OOP facili-
ties, including ESP [Chikayama 84], Concurrent Prolog [Shapiro 83], and some others
that don't even have a name [Zaniolo 84]. These have not been nearly as successful
in terms of popularity, and have been somewhat more controversial than Lisp exten-
sions, perhaps in part because it is not clear whether the object oriented program-
ming paradigm is fundamentally compatible with the logic programming paradigm,
for example, with regard to creating new objects, changing the values of variables,
etc. Some very interesting work has been done, however, in an attempt to address
these problems, by those working on Concurrent Prolog [Shapiro 84].

4. Extensions to the C language

After some initial skepticism by those who were unwilling or unable to accept
the huge resource requirements of Smalltalk-80. the C community has been quick to
jump on the bandwagon. Work on "C with classes" at Bell Laboratories dates back
to 1982, with the main influence reported to be the Simula-67 class concept, and has
evolved into what is now called C++ [Stroustrup 86].

The intent was to create data abstraction facilities which are both expressive enough
to be of significant help in structuring large systems, and at the same time useful in
areas where C*s terseness and ability to express low level detail are great assets.
Consequently, while C classes provide general and flexible structuring mechanisms,
great care has been taken to ensure that their use does not cause run time or storage
overhead which could have been avoided in old C. [Stroustrup 84a]

C++ is discussed in greater detail in the case studies section.
A second approach to supporting object oriented programming in C appears in

Objective-C. developed by Productivity Products International [PPI 84]. Objective-C
also claims to be a superset of C. Objective-C extends the C syntax to allow a
"message expression" to appear wherever C functions may appear. Objective-C mes-
sage expressions have a format very similar to simple Smalltalk message expressions
except that they are surrounded by square brackets (allowing for complex, nested
expressions) and cannot be binary expressions. Objective-C is also dicussed in the
case studies section.

Apple are also investigating the addition of object oriented extensions to the C
programming language. They believe Objective-C and C++ are not simple enough to
gain widespread acceptance amongst C programmers. Norm Meyrowitz at Brown
University [Meyrowitz 85] has designed a C extension that follows Apple's Pascal
extension, discussed below. Modula-2 is claimed to be easily extendible in a similar
manner.

5. Other language extensions

Object Pascal is Apple's object oriented extension to Pascal [Tesler 85]. Object
Pascal is a descendant of Apple's original extension to Pascal, known as Clascal.

Mark Paul Kecf c OOPS Report

Apple was unhappy with the Clascal syntax, having found it difficult to learn and
use. Out of consultations with Niklaus Wirth, the inventor of Pascal, came the
design for Object Pascal. Simplicity was a main objective, another being that the
design should not be clouded by implementation issues. Apple's experience with
Clascal had indicated that certain concepts, such as metaclasses and class methods,
were "of limited usefulness" and "tended to confuse new users". An example of
Object Pascal syntax is provided in appendix A.

Table 1 is an attempt to summarize some of the information presented in this
section.

- 1 1 -

System

Simult-67

Smalltalk

Units

CLU

Fltvon

Act

PSL

T
GLISP

Loops

Strobe

NIL

VLISP

Mering

ULisp

K££

ART

ESP

C++

Objective-C

ObjectLISP

Common Loops

Common Objects

CRL

XLISP

Object Pascal

BLOBS

- Omega

POOPS

Derivation

t

t

Lisp

Zetalisp

\ t

Lisp

IrUtrlisp

Lisp

Zetalisp

Prolog

C

Common Lisp

Pascal

PoplJ

Common Lisp

Prolog

Origin

K. Nygaard

Xerox PARC

M. Sunk

MIT CS

Symbolics

MIT AI

University of Utah

Yale University

C. Novak

Xerox PARC

Schlumbcrger-Doll Research

MIT CS

P. Cointe

J. Fcrbcr

J. Challioux

InteiliCorp

Infeience

ICOT

Bell Labs

Productivity Products

LMI

Xerox PARC

Hewlett-Packard Labs

Carnegie Group

D. Betz

Apple

Cambridge Consultants

Delphi SpA

University of Aberdeen

First
Appearance

1966

1972

1979

19S1

1982

1983

1984

1985

1986

f Original language

Table 1: Timescale and origin of object oriented
programming systems and language extensions*

The derivation if the original language the new tyvtem it built on (if any).
The origin if either the place where the language w o developed, or the
author of the m«ff"»> or report describing the language, if known. The year
of appearance represent* the date a manual or report was ftrtt published.

Chapter 4 — Recent trends

Recent trends in the development of object oriented programming systems fall
broadly into two categories: those that attempt to generalize and those that attempt
to narrow the interpretation certain fundamental OOP concepts. This chapter
highlights some of the major innovations on both sides to emerge in the past couple
of years and examines some of the issues underlying them.

1. Generalizations

The most central notions of object oriented programming, as described in the
glossary presented in chapter 2, can be extended in several ways. Inheritance of
structure and behavior from a single superclass can be generalized to multiple inheri-
tance, provided that some conflict resolution scheme is devised to deal with name
clashes. This is typically achieved by defining a class precedence list of the superc-
lasses associated with each class. Inheritance may also be generalized by allowing
structure and behavior to be shared through arbitrary relationships between classes,
for example, through partitive relationships. The general notion of knowledge sharing
may also be realized by allowing an object performing some operation to create new
objects and to delegate parts of the operation to them, or to copy itself and forward
the original request for the operation to be performed to its replacement.

Instance variables can be extended to have arbitrary extra information associated
with them, other than merely values — an idea stemming from the notion of pro-
perty lists in Lisp. One particular use of such information is the incorporation of
daemons which can be triggered upon instance variable access. These can themselves
be generalized to be arbitrarily nested, such that the act of triggering a daemon can
itself trigger another daemon, and so on.

Method discrimination based on the message name (selector) and the class of
the receiving object can be generalized by allowing method selection to be influenced
by the classes, or types, of any number of message arguments. The semantics of
message passing can be viewed as a special kind of procedure call. These emerging
lines of research are discussed in the following sections.

1.1. Inheritance

Inheritance is usually tied to the notion of a class specialization hierarchy, with
more specific classes in the hierarchy inheriting structural information from more
general classes. The most obvious generalization of this scheme is to allow multiple
inheritance, in which a class is allowed to inherit structural information from more
than one superclass, with what was formerly an inheritance hierarchy now becoming
an inheritance lattice.

Most of the major object oriented languages (Common Loops. Loops. Flavors.
ObjectLISP, Common Objects) already provide multiple inheritance. It is rumored
that Smalltalk will provide multiple inheritance, but there still appears to be some
amount of disagreement amongst some people regarding the general power and utility
of this approach to the sharing of information. Other notable languages lacking

- 12 -

cnaptcr 4 Kecent trends

multiple inheritance are C++1, Objective-C. and XLISP.

Notice that it is possible to shift the focus of attention from talking about how
an inheritance mechanism may be implemented (eg, through a class specialization
scheme) to simply talking about where structure and behavior are inherited from,
that is how this information is shared amongst various classes of objects. This sug-
gests that specialization is but one way to factor and organize shared information.
Suppose you point to a green automobile and ask one to guess the color of the door
on the hidden side. A good guess would be "green", because the door bears a parti-
tive relationship to the automobile, and the automobile is green. In this example,
the inference process is aided by an arbitrary relationship between an object about
which some particular information is desired and an object about which some
relevant information is known.

The point is that specialization is only one kind of potentially useful relation-
ship amongst (classes of) objects. While it provides a natural organizational mapping
onto a wide variety of knowledge-sharing situations, there are a potentially large
number of other kinds of relationships that may prove superior on a host of occa-
sions. One of the most frequent of these occurs when the need arises to access
default information, as the automobile example illustrates. Strobe [Smith 83], Mer-
ing [Ferber 84], UNITS, and ART are examples of languages that make use of this
approach. Loops, KEE, and ESP provide some support for partitive relationships
through the ability to define composite objects through the use of templates.

Specialization, as a way of organizing classes so that they may inherit structure
and protocol, has been seen to be a special case of the idea of allowing objects to
respond to certain messages while passing along those for which a response is not
locally defined to other kinds of object. The more general notion of forwarding
messages to other objects is implemented in the Actor languages [Lieberman, 1986]
through the use of delegation. In the Actor languages, an object (actor) is not
confined to the "hard-wired" paths of a class inheritance lattice. Instead, it may
delegate all or parts of a message to arbitrary other actors. The decision of who to
delegate the message to can be made at run time, rather than at actor creation time
or compile time. Programming cliches are provided that "emulate the usual forms
of inheritance from conventional object languages [Stefik 86, AI Magazine]." At
present, it is difficult to try to assess just how much the delegation approach might
suffer by not allowing as much advantage to be taken of the organizational benefits
that doubtless result from the use of specialization networks.

It should be mentioned that specialization raises several implications that can be
difficult to disentangle:

(1) It provides a nice way of implementing the inheritance of structure, protocol,
and default information.

(2) It allows "natural" boundaries to be imposed on the organization of a program,
around which abstract problems are more easily decomposed and solutions com-
posed. Programs are consequently easier to read, grasp, and therefore maintain
and modify.

(3) It provides a means of expressing meta-relationships. that is not only is low-
level knowledge — say, how to locate a default value — expressed, but at a

1 C++ and Smalltalk-80 have raised enough discussion and controversy amongst both applications and
systems developers to warrant having their own USENET newsgroups — net.lang.c++ and nct.lang.st8O,

Mark Paul Keef e OOPS Report

much higher level, a programmer can more readily discern how different parts
of a program relate to each other.
The second and third implication may be seen as different ways of expressing

the same idea, and even the first implication is. in some sense, equivalent to the
other two. The three differ in their conceptual point of view, and all three
viewpoints need to be addressed in attempting to decide how an inheritance mechan-
ism ought to be realized.

1.2. Instance variables and methods

Instance variables hold values that represent the internal state of an object. In
completely uniform languages, such as Smalltalk, the value is itself an object. In
other kinds of object languages, instance variables may take on any of the type of
values a variable is allowed to take on in the language, including procedures in
some languages.

One kind of generalization then is to implement methods as instance variables,
provided the syntax is transparent enough to hide the distinction between instance
variable access and method invocation. This is the approach taken in KEE, Strobe,
and the UNITS package, amongst others. In these languages, message sending is
extended to include the notion of sending a message to a slot. The use of Lisp as a
base language makes such an approach particularly easy to implement becaxxse of the
uniform manner in which variables (symbols) and symbolic expressions (eg. message
expressions) are evaluated to produce results.

Loops, like KEE and Strobe is a direct descendant of the UNITS package.
These languages are intended to be used primarily in "knowledge engineering" appli-
cations, and as such, one of their design objectives is to provide a mechanism allow-
ing supplementary information to be associated with a slot (instance or class vari-
able) that describes the kind of value that can-be stored there. In the Loops sys-
tem, these extra bits of information describing a slot are referred to as propetty
annotations.

Examples of information which may naturally be stored with a slot are docu-
mentation, history of previous values, value constraints, certainty information and
(in Units. KEE and Strobe) the datatype of the value. The datatype can be used to
provide auxiliary methods for printing, matching, application, etc. which are activated
when a procedure attached to the slot itself is not provided.2 as well as to restrict
the kinds of values that can be stored in the slot.

In Loops, instance variables may be annotated with daemons, known as active
values, that trigger procedure calls upon instance variable access [Stefik 86. IEEE
Software]. The annotations may be annotated recursively. For example, it is possi-
ble to implement an active value that is accessed by calling a "get" function. The
value the get function gets may itself be implemented as an active value, thus
triggering another get function, and so on. The same is true for "put" functions.

respectively .
2 Of course, In a uniform framework such annotations would be unnecessary because the slot value

would itself be an object with appropriate methods for these operations.

Chapter 4 Recent trends

The PGPLOG package LIB FLAVOURS allows daemons to be triggered before
and/or after instance variable access, by allowing b e f o r e and a f t e r methods to
be defined on instance variables as well as on primary methods. The daemon
methods are combined and run in the usual Flavors-style : daemon method combi-
nation order, so that they may be invoked before and/or after instance variable
access.

1*3. Method discrimination

Method discrimination refers to the process of selecting an appropriate method
with which to respond to some particular message. Classical methods are those in
which .method discrimination is based on the method selector and the class of the
receiving object. Assuming for the moment that message sending has the same syn-
tax as procedure calls and the first argument is interpreted as the receiver, then
classical method discrimination means discriminating on only the method selector and
the first argument.

Common Loops generalizes the notion of method discrimination by allowing
method selection based on any number of arguments, including all of them or none
of them, hence, the notion of fmdtirmtthods. The discrimination is controlled by
specifying the type (class) of arguments in the method definition. Object space is
seen as an extension of the Common Lisp type space, so, for method discrimination
purposes, the message receiver is treated as just another argument. For a given set
of arguments to a message, there can be a continuum of applicable methods, from
simple functions to those whose arguments are fully specified. The most specific
applicable method is chosen to handle the message; only when no other method
matches is a method with no type specifications on its arguments invoked.

From the caller's point of view, it makes no difference whether it is a method
or a function that is being invoked.3 The advantages are that

• The efficiency of compile-time type-checking is made possible,

• message arguments are treated more uniformly, and

• methods can be more cleanly decomposed.4

Suggested extensions to the Common Loops kernel include allowing type specifications
to permit range constraints, disjunctive cases, and so on.

A problem with making use of the Common Lisp type space is that its types
are not completely hierarchical, raising the possibility of ambiguities in type
specifications. That is, a message argument might be of a type that is a descendant
of more than one ancestral type; for instance, the message

(f 00 Obj n i l)

invokes a method whose second argument is a subtype of every type in Common
Lisp. Thus, two or more methods named foo, which agree on the type specification
of the first argument, obj, but disagree on the specification of the second argument,
would be equally applicable for purposes of method discrimination, due to the lack
of precedence definitions in the Common Lisp type space. Common Loops tackles

3 Thus, less knowledge is required of how a particular operation is implemented.
4 This is because it is no longer necessary to use potentially large, arbitrarily nested case selectors to

deal with the message arguments.

Marx Paul Kecfe OOPS Report

this problem by

...making precedences explicit where possible, and by disallowing the use of
particular types in type-specifications of methods where no precedence could be
reasonable imposed.

For example, Common Loops assigns l i s t and s e q u e n c e to have precedence over
symbol . Thus a foo method whose second argument is specified to be of type
l i s t is more applicable than one whose second argument must be of type sym-
b o l .

Common Lisp also allows and, or, mod, n u l l , and member as type
specifiers. While Bobrow. et al, disallow these as type specifiers in the core
language, they suggest allowing some of them as a possible extension to the Common
Loops kernel. Common Lisp also allows types to be specified by defining a relation-
ship that the type s a t i s f i e s . Common Loops disallows s a t i s f i e s as a type
specifier because "...it is not possible to determine a precedence relation between two
S a t i s f i e s specifiers [Bobrow 85]'*. Other Common Lisp type specifiers are disal-
lowed because their implementation is not defined in the Common Lisp specification;
these include: p a c k a g e , pathname, s t ream, r a n d o m - s t a t e , r e a d t a b l e .
and c o m p i l e d - f u n c t i o n .

The Flavors system provides a more limited capability to discriminate on other
message arguments, known as the : c a s e type of method combination. It allows
subsidiary message names (keyword selectors) to cause dispatching in the same way
that the main message selector (method name) caused the primary dispatch. This is
a less general solution than that advocated by Common Loops; in particular, in does
not appear to conform to the Flavors system principle that adding new classes of
object should only require adding new code, not modifying existing code [Weinreb
85].

2. Restrictions

Narrower interpretations of the basic concepts of object oriented programming
systems are primarily concerned with the operational semantics of inheritance
schemes. To restate what is normally meant by inheritance, a class may inherit
both instance variables and methods from one or more other classes. Each instance
of the inheriting class contains storage for the union of

(a) all instance variables defined in the class itself, and

(b) all instance variables defined in the inherited classes and their superclasses.

The inheriting class cannot distinguish between instance variables defined locally and
those it has inherited. For all practical purposes, an inherited instance variable
belongs to the class.5

An instance variable name that appears more than once in the inheritance lat-
tice is inherited at most once by the inheriting class. In other words, every instance
variable has a unique value. For an instance variable defined more than once by
the ancestors of the the inheriting class, the ancestor it will be inherited from is
predetermined (at compile-time) by a traversal algorithm for the lattice.

s From an implementation viewpoint, this implies that the class is responsible for managing the

Chapter 4 Recent trends

Local storage of inherited methods is not strictly necessary, since inherited
methods can be accessed by traversing links in the inheritance lattice. Each instance
of the inheriting class can invoke those methods defined by the class, as well as
those (implicitly) inherited from superclasses whose definitions have not been over-
ridden. Again, each method thus associated with the inheriting class has a unique
definition which is determined by the ordering of the traversal in a manner analo-
gous to that for instance variables.

2*1. Inheritance of instance Tariables and methods

Having stated the above, we are now able to examine an alternative view of
inheritance, advocated by Snyder and implemented in the design of HP Common
Objects [Snyder 85]. Common Objects defines inheritance of instance variables as
follows (for "type" may be substituted "class*'):

...if the type child inherits from a type parent, then each object of type child
automatically includes as part of its representation the...instance variables of an
object of type parent. These inherited instance variables are distinct from
any...defined by the type child and any...inherited by child from other types,
regardless of the names of the instance variables. Thus, for example, if the type
child inherits from types parent 1 and parent2, and the type parent2 also inherits
from parent 1, then objects of type child will include two distinct sets of the
instance variables of type parent 1.

This definition of multiple inheritance is quite different from that of the Flavors
system, as well as most other systems, in which there can be only one inherited
instance variable for a particular name, irrespective of how many superclasses define
that instance variable.

A further difference is with regard to the ability to access inherited instance
variables:

If a method defined on the type child wishes to access an instance variable inherited
from the type parent (or an ancestor of parent), it may do so only by invoking
methods defined on the type parent (including methods inherited by parent).

In contrast, Smalltalk, Flavors, and many other systems allow direct access of inher-
ited instance variables. As Snyder argues,

Our approach is motivated by the principles of data abstraction and encapsulation.
From the software engineering point of view, inheriting a type is no different than
using a type: if an inheriting type can access the instance variables defined by the
inherited type, then the instance variables would have to be part of the external
interface of the inherited type.

According to the principles of data abstraction, strictly speaking, an object of
type child that inherits an instance variable x, from type parent, must not make
any assumptions about the implementation and internal representation of x. This
principle is upheld in Common Objects by specifying that the only way for the
object to access the value of x is by invoking a method belonging to parent.6 This
also upholds the principle of data encapsulation, namely that users of objects ought
not to have privileged access to the internals of those objects.

instance ramble, ie, describing how to access it, restricting the kinds of values it can hold, etc.
6 The method invoked need not be inherited by child.

Mark Paul Keef c OOPS Report

It is important to point out that since inherited instance variables cannot be
accessed directly by name, name conflicts are impossible. This property allows a
powerful mechanism for supporting multiple, distinct perspectives on an object. The
value of x can depend on the object's current context, or the perspective from which
it is being viewed.

2.2. Data access

Common Objects also differs from most systems in its treatment of method
inheritance by use of a model of indirect method invocation, as explained below.
Noting that when a type child is to inherit from a type parent, it is usually the
case that one wants instances of child to define the same operations as instances of
parent,

...facilities are provided for automatically defining on type child methods
corresponding to the operations defined on type parent, passing in the same
parameters, and returning the results returned by the method on parent. In effect,
the methods defined on type parent are inherited by type child. This...is
semantically more accurate than saying that child shares the inherited method with
parent.

Thus, in Common Objects, inheriting from a type (class) does not necessarily mean
that all methods belonging to the inherited class now belong to the inheriting class
as well. Options provided for specifying which methods are going to be redefined
and a set of methods to inherit exclusively can be vised to prevent some or all
methods of the inherited type from being inherited.

Thus, a method belongs to a class only if,

(a) the method is directly defined by the class, or

(b) the method has been explicitly inherited by the class.

By default, an inheriting class automatically inherits all of the methods defined by
the inherited class, except for certain automatically generated "universal methods"
(to avoid naming conflicts). It is an error to attempt to inherit the same method
from more than one type.

A third major difference is that since a determination is made at compile-time
which instance variables and methods are to be inherited, subsequent modifications
(eg, new methods) to inherited types do not propagate to inheriting types. The
motivations for compile-time determination of inherited instance variables and
methods include:

...simplicity of the definition, improved efficiency, and the ability to perform
compile-time type checking for certain errors....Further flexibility could be provided
by a programming environment that supports automatic propagation of changes to all
inheriting types, at the user's option.

In discussing efficiency considerations, it should be noted that methods for accessing
inherited instance variables can be open-coded (declared to be "inline-methods") so
that the compiled code may actually directly access the instance variables, at no
extra cost. Optimizing indirect method invocation is left up to the implementor,
with the following footnote:

It is intended that these methods on type child be implemented very efficiently.
Some implementations may choose to define a separate function for the method on

Chapter 4 Recent trends

type child, but do it in such a way that the additional overhead resulting from the
indirection is very small. Other implementations may choose to use the same
underlying function to implement the method on type child and the method on type
parent, so that performing an operation on an object of type child is no more
expensive than...on an object of type parent; in this case, more work must be
performed by the implementation to present the illusion that each type has its own
method [Snyder 85, pp. 17-19].

Chapter 5 — A system framework

In this chapter. I propose a general framework for designing an object oriented
programming system within the POPLOG AI development environment. A layered
approach is examined in which various features appearing in existing object oriented
programming systems are assigned to different levels in the overall architecture (see
Fig. 1).

Section 1 identifies three key features of object oriented programming systems:
data hiding and abstraction, dynamic method lookup, and information sharing
through inheritance. These features provide the foundation of the framework and
comprise a common base upon which a number of different approaches to object
oriented programming can be implemented. As such, they are referred to as base-
level features.

Section 2 examines a number of higher level features found in specific object
oriented programming systems, focusing on the notions of doss, instance, and subclass
as the most common mechanisms used to define the semantics of inheritance, ie, the
sharing of information through specialization and instantiation.

Section 3 discusses the most critical issues relating to implementational efficiency
and low-level support: primitive slot access and method lookup.

Medium-level:

Class, instance, subclass, metaclass. class variables
Multiple inheritance
User-defined relationships & search methods
Message sending
Method combination (send-super, daemon, user-defined)
Multi-methods

• Information hiding and data abstraction
Base-level: • Dynamic method binding

• Information sharing through inheritance

• object allocation and deallocation
Low-level: • primitive slot access

• method caching

Figure 1: Levels of support for object oriented programming features.

Chapter 5 A system framework

The motivation for an attempt to classify the more familiar as well as the less
well-known features of existing systems in terms of levels of support in an overall
framework arises not only from the need to identify a common base capable of sup-
porting a wide variety of experimental and proven approaches to object oriented pro-
gramming but also because such a layered approach provides the additional leverage
afforded by allowing the application developer to choose a level to work at that is
appropriate to the needs dictated by the application.

1. Base-level features

It is a tricky business trying to' determine exactly what is and what is not an
object -oriented programming system. Nowadays, object oriented programming capa-
bilities are widely seen as being highy desirable, and many different notions of the
essential features of object systems have been put forward. As for my own views,
I prefer to picture the situation as follows.

There is a set of base-level or "core" features, characteristic to all object
oriented languages and programming environments. Any language claiming to be
object oriented must provide a set of features which includes the set of base-level
features as a proper subset. The features I view as strictly necessary for object-
oriented programming are.

• Data Hiding and Abstraction
• Dynamic Binding (Run-time Method Lookup)
• Information Sharing (Inheritance)

The following three sections discuss the properties of these features, focusing on
their respective benefits with regard to designing and developing complex program-
ming applications.

1.1. Data Hiding and Abstraction

The most central idea of object oriented programming is that of wrapping up
related pieces of information along with the typical operations on that information
into a single, uniform data structure. The structure is referred to as an object, the
related pieces of information are known as object attributes or properties (also vari-
ously called slots, fields, instance variables, etc), and the code segments that imple-
ment the operations are called methods. The most distinguishing characteristic of
such a scheme is the association between the object and the methods that implement
operations on the object. Whenever an operation needs to be performed that
involves the object's attributes, the "user" issues a request for the object to perform
the operation on itself, rather than requesting a procedure to perform the operation
on the object. Such a request causes a method which is associated with that kind
of object and appropriate for the requested operation to be selected and invoked.
This is in contrast to non-object-oriented systems where the user selects a procedure
in advance to perform the operation. The essential difference is one of placing
responsibility for choosing the right method with the object rather than with the
user. Such systems not only provide a means of delegating this responsibility to the
objects involved, but typically encourage or enforce the constraint that only the
methods associated with an object may access or modify that object's attributes.

MarJt raui Keere uura

The principal advantages of this model of programming are,

(1) It becomes much easier to design and modify the behavior of program segments
using this object, since all of the procedures that depend on the object's
representation are localised, both lexically and conceptually (an object's methods
need not all appear in one place, but can nonetheless be viewed as belonging to
the same lexical environment — one in which all of the object's attributes are
bound to a set of values representing its current state).

(2) The object can be ignored when designing or modifying program segments that
do not logically involve the object. This leads to a reduced risk of introducing
bugs into existing code in the process.

(3) It is possible to ensure the integrity of information privately maintained by the
object. This, in turn, leads to an improved ability to verify the correctness of
programming segments involoving the object.

(4) It is often more natural for a programmer to think in terms of objects with
attributes and associated operations or behaviors. Adopting a more natural
representation leads to a reduction in cognitive demands on the programmer,
who is then able to divert a larger proportion of his or her limited mental
resources to the problem at hand. This leads to more efficient problem solving
and design with fewer oversights and mistakes.

(5) Procedures that operate on the object can be more eficient in many cases, since
they can be designed to deal with a particular kind of data rather than many
different kinds.

(6) The way in which the object represents and maintains its attributes can be
modified without affecting program segments involving the object, since only the
procedures associated with the object depend on its representation. An object's
methods thus act as a layer of insulation between the object's internal informa-
tion and the rest of the program.

1.2. Dynamic Binding

A second base-level feature necessary for object oriented programming is the
ability to support dynamic association of methods to requests. That is. method-
lookup needs to be performed at run-time to ensure high reusability of program
code segments.

The motivation for dynamic or run-time method lookup is partly necessitated
by the first criterion, that of data encapsulation, since users can no longer specify in
advance which procedure should be invoked to handle a given operation involving an
object. However, a second factor motivating the need for such a feature is that it
enables the design and use of generic operations — operations with the same basic
behavior which may be performed in different ways depending on the kind of object
involved.

The way in which the operation is carried out can be made transparent to the
user by providing a syntax for issuing a reqest to an object to perform the opera-
tion. The system handles the request by determining the kind of object receiving it
and the name of the operation and using these two pieces of information to select
and invoke the appropriate method. The syntax allows only for the name of the
operation and the object which is to receive the request; the kind of object is not

Chapter 5 A system framework

usually specified. The selection of a method for responding to such a request must
be made at run-time, so that more than one kind of object will be able to handle
the same request. Some of the benefits that acrue from the ability to dynamically
associate methods with requests are,
(1) It enables the design of program segments which do not have to be modified in

order to incorporate new kinds of objects associated with the same generic
operations as existing objects. In non-object-oriented systems, "generic" opera-
tions can only be approximated by using a complex conditional or case switch-
ing statement which selects an appropriate procedure or code segment based on
the kind of data item involved. Adding a new type of data item very often
neccessitates modifications to one or more such switching statements. The use
of dynamic binding in method lookup obviates the need for such modifications
by relinquishing control of method selection to the object involved in the
operation.

(2) Program segments which request objects to perform operations can be easier to
understand and modify. Many different methods, associated with different
kinds of objects, can share a single symbolic name, thus clarifying the inten-
tions of the programmer and the program's behavior.

(3) When an object dynamically changes from one kind of object into another, it
can use a new method associated with the new kind of object. Program seg-
ments requesting the object to perform an operation needn't "know" that the
object has changed.

13. Information Sharing

The final base-level feature of object oriented programming systems is an
economical mechanism for sharing information common amongst objects. Such a
mechanism eliminates duplication and redundancy of code, allowing both structural
information — such as the names of object attributes — and procedural information
(methods) to appear textually in one place rather than many. Relationships between
individual objects and groups of objects serve as the basis for shared information.

Various kinds of relationships will naturally occur between objects, forming a
complex network where links represent the relationships and nodes represent objects
or groups of objects. Of these kinds of relationships, a subset are special in that
they can be used to indicate paths in the network along which information can be
"inherited" from one node by another. Some of the main advantages afforded by
using such an inheritance scheme for sharing information are.

(1) Programs can occupy less secondary and primary storage as a result of elim-
inating much redundant code.

(2) Objects can require fewer memory locations by sharing structural information.
(3) Less duplication of code means less program text segments to be concerned with

when modifications become necessary.
(4) Naturally occurring relationships amongst objects are explicitly represented.

further clarifying the programmer's intentions.

The three features outlined in the preceding subsections, data hiding and
abstraction, dynamic binding of methods, and information sharing through

inheritance, together constitute the most critical and distinguishing characteristics of
object oriented programming systems. These are the key features which support and
enable all of the benefits enumerated in this chapter, and the common base upon
which higher-level features found in different object oriented programming systems
and languages can be built.

2* Medium-level features

In this section I discuss a number of medium-level features found in some of
the major object oriented programming systems.

In the previous section I outlined what I believe to be the most important con-
cepts necessary to object-oriented programming systems: data abstraction, dynamic
binding of methods, and information sharing through inheritance. Underlying all
three of these ideas is the notion of the "kind of object". Most object-oriented pro-
gramming systems provide for objects to be organised into classes. From here on I
will4 use the phrase, "class of object", or simply, "class." when referring to objects
that are similar (have the same structure and behavior)1. Similar objects use the
same method for responding to a particular request and have the same structural
attributes.

The notion of doss is a great help in specifying how to implement the key
concepts mentioned above. In particular, it provides a convenient way of describing
the structure of simila objects. Along with the notion of class comes the notion of
subclass, which provides a means of specifying a class of objects that is just like
another class of objects, except for a few differences. A third related notion is that
of instance — an object that belongs to some class is said to be an instance of the
class. Instances of a subclass may have some different atttributes in addition to
those found in instances of the superclass, or may be able to perform additional
operations, or may have slightly extended or altogether different methods for per-
forming the same operations. The notion of class, and the relationship subclass-of
provide a basis for one means of implementing an inheritance mechanism, which I
will proceed to dicuss in this section.

I have deliberately excluded class, instance and subclass from the set of base-
level features in the proposed object oriented programming framework, because I
don't wish to preclude from my definition those OOP systems in which various
kinds of relations (eg. part-of. child-of, precedes, and other arbitrary specified rela-
tionships) are allowed as the basis of a particular inheritance strategy. In my view,
one of the main goals of a POPLOG OOP system is that it should provide a common
base upon which different kinds of inheritance mechanisms can be built. With that
point in mind, the notions of class, subclass and instance should be kept separate
from the notion of information sharing through inheritance. A second important goal
is that the kernel should be small and easy to integrate into the core of POPLOG. An
attempt should be made to keep special features such as active values, and flavors
style method combination out of the kernel. A third major goal is that the kernel
can be implemented to run efficiently. This topic is examined in section 3.

1 From a taxonomical lUndpoint, it is clear that an object is capable of being an instance of more
than one class, though OOP literature usually treats objects as though only the opposite statement is
possible (ie, an object is an instance of only one class). Therefore, note that when I refer to "the class
of X" I am always referring to the class which was instantiated to create X.

- 24 -

Chapter 5 A system framework

2.1. Representation of Objects

In OOP systems which use class, subclass and instance as the basis of the
inheritance mechanism, inheritance of structural, default, and behavioral information
is shared via the relationships instance-of and class-of. All classes that are subclasses
of some class have access to (inherit) information associated with that class in addi-
tion to their own information. All objects that are instances of some class share
the information associated with that class (ie, the information accessible ' rom that
class).

Thus, the representation of a class needs to include a means of acce ing inher-
ited information, typically a pointer or list of pointers to a superclass or set of
superclasses. The representation of an instance needs to include a means of accessing
its class.

It should be noted that we have been dicussing classes and general objects as
though they were in fact two kinds of structural entities. In fact, there are several
good reasons why it is better to view a class as a special kind of object, the main
one being that in doing so all of the previously discussed advantages of object-
oriented programming systems become available to us in designing and implementing
the system itself.

For example, a class object could have a method for instantiating (creating an
instance of) itself and perhaps a method for initializing a new instance. This would
allow the class object to have control over how its instances are representr<i
Changing the representation of instances of the class (eg, adding and remo
instance attributes) can be achieved by requesting the class object to do so. We can
allow subclasses of class objects to represent their instances in a slightly different
manner, but respond to the same protocols for making modifications. And of course
we can keep all of the structural, default, and behavioral information pertinent to a
class of objects where it naturally belongs — in the class object.

Representing classes with class objects means that we must define a class of
class objects so that we can describe their structure and behavior to the system.
Such a class is referred to as a metaclass. Metaclasses are provided in many exist-
ing systems, including Smalltalk, LOOPS, CommonLoops (but not Flavors). Metac-
lasses have some other attractve uses, such as,

(a) The ability to represent one kind of class variable (a variable that is shared
amongst all instances of a class) — the kind that is allocated once for each
class2.

(b) The ability to determine a '"precedence relation** amongst classes in systems that
allow multiple inheritance. That is, when a new class is defined, its class
object can be requested to produce an ordering on the set of classes from which
the new class inherits information. Such an ordering is critical for resolving
the kinds of conflicts that arise in programs that make use of multiple inheri-
tance.

3 The more typical knd of cUss variable is that which is allocated only once for a given class and
all its subclasses. These two different extents of the meaning of class variable — once per class and once
per class-and-subclassess — are directly related to the two different uses of the word instance alluded to
in the previous footnote.

Mark Paul Kecf e OOPS Report

Because a primary objective is that the OOP system provide a common base for
implementing different kinds of inheritance mechanisms, many of which will include
multiple inheritance schemes, the system will benefit greatly from a highly modular
way of computing precedence relations. Class objects are the natural way to pro-
vide this modularity in an object oriented programming system.

The POPLOG library package, LIB FLAVOURS, provides something approaching
class objects called metaflavours. However, they are not currently used as class
objects in the sense that I propose in that they do not themselves represent the
information associated with a class. Rather, they are instances of a special class of
object which provides methods for implementing some of the desirable kinds of
behavior mentioned above (eg. they have methods for creating instances, adding and
removing attributes and methods, etc) but does not describe attributes for storing
information about the class. In effect, they act as a convenient interface to the data
structure that actually represents a class (a flavour_record). So they provide many
of the benefits of the three key concepts of object-oriented programming systems
with regard to manipulating knowledge about the system itself — they can even be
used to compute class precedence relations, though this important feature is not
treated uniformly at present — but the structural and behavioral information about
classes is not localised; it is dispersed into two places (flavour_records and
metaflavours). The LIB FLAVOURS library might benefit substantially and dramatically
in terms of expressive power by applying the principle of data abstraction to the
system's knowledge about itself.

2.2. Method combination

In a non-object-oriented language that provides the ability to associate opera-
tions with data-types, one can define an operation which is carried out differently
for each different type of data. The dependency between the method for performing
an operation and the type of data for which the method is appropriate is captured
explicitly, allowing for a reduction in run-time errors, but if one wants to add a
new global operation — one which can be applied to all types of data — one must
define as many different methods as there are data types. This can be a heavy bur-
den both in terms of ease of applications development and in space requirements.

Inheritance reduces this burden by allowing slightly different types, or classes,
to share the same methods where appropriate. When it is inappropriate for an
inheriting class to use a method provided by one of its ancestors, it can override, or
shadow, the inherited method by providing one of its own. However, in many cases
the shadowing method must augment the behavior provided by the shadowed
method; that is, it needs to do the same thing that the shadowed method would
have done, plus something extra.

To illustrate, suppose one defines a class 2-d-point. having instance variables x
and y. and a print method that prints the values of x and y; then one defines a
class 3-d-point. which inherits from 2-d-point, and provides an instance variable z.
Clearly, instances of 3-d-point should not merely use 2-d-point's print method
without alterations because their value for z wouldn't be printed. On the other
hand, completely shadowing 2-d-point's print method would be wasteful because
most of the code would have to be duplicated. This is where method combination
becomes extremely useful.

Chapter 5 A system framework

What one wants is to have instances of 3-d-point respond to print requests by
using 2-d-point's print method to print their values for x and y. and then use their
own method for printing the value of z.

Method combination is in fact so useful that practically every object oriented
language provides a mechanism supporting it. The two most common styles of
method combination are "send-super" and Flavors* "daemon" combination.

Send-super is the most general as well as the most prominent of the two styles
of method combination, appearing in Smalltalk-80. LOOPS, CommonLoops. HP Com-
mon Objects, Object Lisp, and others. In this scheme, method combination is
specified by including a syntactic statement in a shadowing method. The statement
indicates that processing of the current method is to be suspended while the request
that caused it to be invoked is re-issued to the same object — only this time the
object is asked to respond by invoking whatever method would have been invoked
in the first place had it not been shadowed by the current method. When process-
ing of the shadowed method is complete, processing of the current method resumes.
Send-super statements can be dynamically nested, allowing any number of shadowed
methods for the same operation on a particular class of object to be combined.
Thus the print method for 3-d-points could be defined so as to first call send-super.
and then print the value of the instance variable z. Defining a new print method
on a class of 4-d-point objects, inheriting from 3-d-point. and contributing an
instance variable w. would consist of first printing the value of w. then calling
send-super to print the other values.

In the Flavors daemon style of method combination, methods are specified as
being either "primary" or "daemon" methods. Daemon methods can be tagged as
either : b e f o r e or : a f t e r , indicating that they are to be run before or after the
primary method, respectively. Each class, or flavor, can define at most one each of
primary, before, and after methods. When a flavor is compiled, it is associated with
a "combined method" for each operation its instances can perform. The combined
method is a procedure that invokes all of the before daemons for the operation (ie.
the before daemon defined by the flavor itself, if any. along with any inherited
ones), followed by a single primary method, followed by all after daemons. The
order of invocation normally (ie. by default) reflects the nesting of flavors in the
precedence list of inherited flavors, so that before daemons are invoked in order of
most specific to most general flavor while after daemons are invoked in the reverse
order. The primary method invoked is the first primary method found in the pre-
cedence list. ie. that contributed by the most specific flavor to provide one. Thus,
using daemon style method combination, one could implement the print method on
3-d-points by simply defining an after daemon which prints the value of the
instance variable z. The combined method would invoke the primary print method,
resulting in the values of x and y being printed, and then invoke the after daemon,
resulting in the value of z being printed. The print method for 4-d-points could be
a before daemon to print the value of w.

From the examples one should be able to observe the inherent modularity of
both approaches. In each case, one need only add code that takes advantage of pre-
existing code without redundancy or the need for modification.

The appeal of Flavors' daemon style method combination lies mainly in the
way it allows operations to be decomposed into a chunk of information describing
some general or basic behavior (the primary method) and one or more other chunks

Mark Paul Kecf e OOPS Report

describing some extra or more specific behaviors which are activated or triggered by
a request for the operation (daemon methods). The syntax for specifying that a
method is to be treated as primary, before, or after, also permits a number of
other, less common styles of method combination. For example, in defining a flavor,
one can indicate that one or more methods are to be combined using the : o r style
of combination (: daemon is the default style in the Flavors system). The com-
bined method constructed for : Or tagged methods invokes each method found in
the precedence list in turn, until one returns a non-nil (Boolean true) valued result.
Some of the other styles of method combination supported by the Flavors system
include:

: and Invoke each method until one returns nil.

:progn Invoke each method and return last result (in the :daemon style, the
combined method returns whatever the primary method returns).

: I I91 Return a list of results obtained by invoking each method.

:case Dispatch on subsidiary method name.

It is also possible for users to define their own idiosyncratic styles of method com-
bination; for example, one could define a style called :max which would return the
maximum (numeric) result obtained by invoking each method.

There are two main problems with the Flavors approach to method combina-
tion:

(1) The combined method for a particular flavor may have to be recompiled when
ancestral flavor descriptions are modified;

(2) It is more difficult to control the invocation of individual methods, since control
is automated by the combined method.

Using combined methods allows method combination to be made very efficient
since method lookup for primary and daemons can be performed when the combined
method is created (at compile-time rather than run-time)3. A send-super mechanism
requires shadowed methods to be located at run-time. However, if an inherited
flavor redefines, or undefines. one of the individual methods used to construct the
combined method, then the combined method has to be recompiled. This could lead
to something of a bottleneck during the initial development phase of rapid prototyp-
ing.

Send-super statements are pure programming language expressions and. as such,
can be conditionalized. can return results, etc. Using send-super, the programmer
can retain control over how and when method combination takes place. For exam-
ple, a shadowing method could contain a conditional call to send-super, allowing the
programmer to control whether or not the shadowed method is invoked.

Conditional method combination is not supported in the daemon style of combi-
nation. Flavors does provide a mechanism more functionally similar to the send-
super approach in the form of wrappers: dtfwropper can be used to obtain the
effect of wrapping some code around invocations of shadowed methods. An example

3 Note that the combined method itself must still be dynamically located.

Chapter 5 A system framework

of the need for wrappers is when a before daemon may want to prevent the pri-
mary method from being executed — a wrapper can be used in place of the before
daemon to conditionalize the execution of the primary method. Using wrappers in
conjunction with daemons is more complex and somewhat inelegant as a model of
method combination.

Another problem with automatically constructed combined methods is the ina-
bility of an individual method to modify arguments before the next method (in the
combined method) "sees" them, or to make use of the results of previously invoked
individual methods. Again, these capabilities are more easily handled with send-
supert since send-super expressions can be called with arguments different from those
used in the original request and their results can be used afterwards in the body of
the shadowed method. Finally, a send-super expression can occur any number of
times, or within a loop inside a method definition.

Both the send-super and the Flavors daemon styles of method combination
appear to have many proponents. The daemon style trades off expressive power for
efficiency as well as a cleaner decomposition, at least as far as looks go4. In order to
regain the generality send-super provides, by leaving control over method combina-
tion in the hands of the programmer, something like wrappers must be provided,
resulting in a less elegant model of method combination. However, the Flavors
model of method combination has the advantage of readily extending itself to sup-
port alternative styles of method combination, even user-defined ones.

It might be worthwhile for a system designer to explore the possibility of com-
bining the nice decompositional aspects of Flavors style method combination with the
more general expressive capabilities afforded by send-super. while attempting to
retain a clean and extensible model of method combination in general. In the mean-
time, my advice would be to provide both existing styles of method combination at
the medium level of the framework, with precedence being given to send-super
because of its greater expressiveness and its arguably wider popularity.

23. Multi-methods

One of the primary motivations underlying the principle of data abstraction is
to capture the dependencies between procedures and the types of data they can be
applied to.

If the programmer is thinking purely in terms of objects that perform opera-
tions on themselves, then it is appropriate to treat an individual object as the (sole)
controller of the methods employed in performing those operations. This is true of
systems that employ the notion of sending messages5 (eg, Smalltalk. LOOPS, (old)
Flavors. LIB FLAVOURS. LIB NEWOBJ).

4 Conceptually, send-super decomposes combined behavior into the same sort of dynamically nested
structure, although the decomposition may not be as cosmetically apparent.

5 "Sending messages" is the more familiar way of referring to what I have been calling "issuing
requests". I chose to avoid the former phrase because I don't regard it as one of the key concepts of
object oriented programming systems; certain systems I would definitely regard as object oriented (eg,
CommonLoops, (new) Flavors, ObjectLisp) never resort to using the phrase in their literature. The
message-passing metaphor is not nearly as central to object oriented systems in my opinion as is the
dynamic binding of methods — in fact, the use of message-sending syntax is just one way of indicating
that a method should be selected dynamically in a manner controlled by the "message receiving object" to
perform a particular operation.

In systems like CommonLoops and (new) Flavors, dynamic method invocation
looks no different than ordianary function calls. In these systems, the user doesn't
need to know whether something has been implemented as a method or as a func-
tion, and this can be an advantage (eg. programs can become incrementally "object
oriented" by redefining functions as methods; users don't need to try to guess
whether to achieve some operation by sending a message or calling a function).

Traditional method invocation is supported in these systems by having the item
in the functional position of a list (LISP syntax) discriminate dynamically according
to the class of the first argument. The obvious generalization, as discussed in the
chapter on recent trends, is to allow discrimination based on zero or more argu-
ments. In this way we can capture more of the dependencies between procedures
and data-types (eg. dependencies involving n-ary functions).

It is certain that there are some classes of problem for which it is more
expedient to think in terms of procedures than in terms of objects, and others for
which thinking purely in terms of one or the other is less well-suited to the task
than thinking in terms of both. In line with the current philosophy of building
hybrid systems that allow more than one methodology or approach to be brought to
bear on general problem solving. I think it would be wise to try to accommodate
both kinds of orientation. Howver, because the orientation of systems like Common-
Loops and (new) Flavors appears to be swinging back a little toward thinking in
terms of procedures that perform operations on data. I believe that support for
multi-methods does not belong in the base-level.

2.4. User-defined inheritance

As has been suggested a number of times throughout this report, the exclusive
reliance on specialization and instantiation, based on the supporting notions of class,
subclass, and instance, as a basis for the sharing of information poses a limitation
on the kinds of problems that can be modeled naturally and effectively within the
object oriented programming paradigm. Typically, a programmer wishing to adhere
faithfully to the paradigm is forced to use specialization to achieve economy and
modularity even in situations in which some other kind of relationship might in fact
be more effective. In this section I provide a rough sketch of how a more general.
user-defined inheritance mechanism might be provided.

As an illustration of the problem, suppose one is attempting to model a situa-
tion involving a number of projects, project leaders, and other people involved in
working on the projects whom we will call project workers. We can start by
defining the classes project, project-leader, and project-worker. Both projects and
project workers are associated with a project leader. We can capture this by
defining a slot for each of these two classes called lias-project-leader. Both project
leaders and project workers are associated with a project. This could be represented
by defining a slot for each of these two classes called lias-project. Note that there
is already potentially a great deal of redundant information, since each project
worker for a given project has the same project leader.

If we are limited to the use of specialization as a means of eliminating this
redundancy, we will need to sit back and think about how to redesign the represen-
tation. One solution might be to define classes corresponding to each project which
would capture information relevant to all project workers associated with that

- 30 -

Chapter 5 A system framework

project. For example, for project 1 there could be a class called project-1-workers
with a class slot (shared amongst instances) called has-project-leader. eliminating the
need for such a slot in instances of project-worker. Since each project-X-workers
class would be similar, we could define a superclass to capture the similarity. How-
ever, this organization is not as flexible as before, since we now have classes that
are tied to specific projects as well as instances of specific projects6. There is still
some redundancy as well since both the object representing a project and the object
representing those working on the project have has-project-leader attributes which
will always contain the same instance of project-leader. This might suggest that a
project and a project leader could be combined through multiple inheritance into a
class we might call project-witli-leader; however, we would then be dealing with a
rather artificial entity — a thing that is at the same time both a project and a pro-
ject leader. Either way, as the application grows more complex, we may well find
that the class inheritance lattice needs to be restructured or redesigned many times.

The interesting thing to note is that there are a number of naturally occuring
relationships amongst projects, project workers, and project leaders that could poten-
tially serve as effective means of capturing and expressing shared information. What
we would really like to be able to express is the equivalent of the english state-
ment, "The project leader for someone working on project X is the same as the pro-
ject leader for project X", or "To determine one's project leader, look up the infor-
mation in one's project." Trying to express this kind of inference knowledge within
the structure of a specialization lattice can result in less natural and hence less flexi-
ble knowledge representations.

In order to eliminate the rigidity of an inheritance mechanism tied to a particu-
lar kind of relationship, a means of explicitly representing general inheritance rela-
tionships (those along which information can be shared amongst objects) is called
for.

Note that in most if not all cases, an object attribute can be considered to be
the name of a relation which holds between the object and the attribute's value.
So, for example, a project worker is related to a project by the Las-project relation.
A user-definable inheritance scheme would allow one to specify the relationships that
can be used to draw particular inferences about an object; for example, one could
indicate that one or more named pieces of information pertaining to a given object
or object class can be obtained through a particular attribute if the information is
not directly represented within the object. This would allow us to say that if an
object representing a project worker does not have a has-project-leader slot, then its
project leader can be determined through its has-project slot.

This kind of meta-knowledge — in this case knowledge of how to draw a par-
ticular inference — would appropriately be represented in the metaclass for project
workers7. The metaclass for project workers could have a slot named inlierits-Tia
containing a table which associates a request for the project leader with the attribute
has-project.

Conceptually, every class object would have a slot named subclass-of whose
value would be a list of class objects. Every instance would have a slot named

* The principle that as much information, relevant to a particular entity as possible should be
represented within a single object has been violated.

7 That is, in an object representing information about the project-worker class, as opposed to
information about its instances.

Mark Paul Kccfc OOPS Report

instance-of whose value would be the class object from which it was instantiated.
This would allow specialization to be used as a default relationship when no other
relation is specified for a particular search item.

Based on the design outlined above, the inheritance mechanism would work as
follows: Given a request for a particular piece of information, determine whether
the information is represented directly in the object; if so. return it; if not. use the
instance-of attribute/relation to determine the class of the object. If the class
object found therein has an inherits-via attribute, use the table there to determine
which attribute/relation to proceed searching in; if the class object has no inherits-
via attribute, or if the table doesn't have a mapping for the request, proceed by
searching in the rebclass-of attribute/relation of the class object.

I» order for the inheritance mechanism to maintain some level of integrity as
well as control over complexity, it is necessary to impose the restriction that once a
particular kind of relation has been decided upon (through the advice of the
inherits-via attribute) the system uses that relation throughout. This means that
having determined the class of the object in question, if inheritance initially goes
through the arubclas9-of relation, then it will proceed only via subclass-of relations;
similarly, if it initially goes through the has-project relation, it will stick to that
kind of relationship.

Since relationships are not always of the binary kind, it is necessary to have a
means of guiding the search for information through multiple paths in a particular
relationship lattice. For example, a project worker might be associated with a list
of projects rather than only one, raising the question of which project to pursue
first. Furthermore, the search process may need to continue as a result of going
through a given relation8. In order to have maximum leverage over the search stra-
tegy, one needs to be able to define a method whose function is to determine a
search path through a relationship lattice. Pre-defined functions could be provided
for standard search strategies such as depth-first, breadth-first, progressive deepening,
etc.

Search methods can be considered as part of an inheritance relation, suggesting
the need for a pre-defined class of objects used to represent information about rela-
tions. Other attributes that might usefully be linked to relationships are

• inverse-relationships
A slot indicating the inverse of a relationship: eg. the inverse of instance-of is
has-instances.

• transformations
A slot containing a mapping table used as a filter to transform values inherited
via the relationship.

Inheritable relations can be categorized within the class lattice as a kind of
attribute through which information can pass9. Thus, in addition to the kinds of
attributes mentioned above, they would pick up other useful slot attributes such as
cardinality, type restrictions, daemons, defaults, and documentation (by being a sub-
class of the class alot, which would be used to describe such meta-attributes).

1 as implied by the *ubcla»-of relation with multiple superclasses.
9 The inverse of an inheritable relation is usually not an inheritable relation, so this variety would

be differentiated from inheritable relations.

Chapter 5 A system i. iework

3. Implcmentational Issues

3.1. Efficient method lookup

In typical object oriented programming systems, each class of objects is associ-
ated with a set of methods which implement the operations or behaviors defined on
instances of the class. Methods can be shared by defining inheritance relationships
between classes so that instances of a class have access not only to the methods
associated with that class* but also the methods associated with other classes from
which the class directly or indirectly inherits methods. When an instance of a class
is requested to perform an operation, its method for responding to the request must
be dynamically located by searching through an ordered sequence of classes from
which its class inherits methods10

The dynamic lookup of methods typically represents the main botteleneck in
performance of OOP systems, and therefore a good deal of effort has gone into
determining what can be done to make method lookup more efficient. The main
result of these efforts has been a moderately successful solution known as method
caching.

In a Central Processing Unit, the term "cache" refers to a portion of very fast
storage, generally transparent to user programs. It is kept constantly updated to
hold the most frequent memory references, so as to greatly speed future references,
thereby facilitating dynamic address translation. In object-oriented programming sys-
tems, the term "method caching" refers to the technique of maintaining a fast-access
store containing the addresses of frequently executed methods. By storing a fixed
number of addresses to the most freqently invoked methods, each method can usu-
ally be located in a relatively small number of steps, thus significantly reducing the
aggregate time spent performing method lookup.

A fair amount has been written concerning method caching [cf. Krasner 83]. In
this section, I merely give an outline of a fairly simple method caching scheme in
order to put across the general idea.

Since every method can be uniquely identified by specifying its name (selector)
and the class with which it is associated, the simplest approach to implementing a
method cache is to use a hash table, where the hashing function takes a class and
selector as arguments and returns an index into the table.

The entries in the cache should be fixed size sequences (I will assume they are
linked lists) containing method records11

Assuming that the number of methods defined is fairly constant and the size of
the cache is considerably smaller than the total number of methods, the most rea-
sonable strategy for improving method lookup is to fill the cache with the most fre-
quently used methods. One way of doing this is for each method invocation,

(1) Apply the hash function to the class of the object and the message selector
(method name) to obtain an index i.

10 Note that classes are usually considered to inherit from themselves — so the instance's class is in
the sequence.

n The method records should be structures having fields for the method name, class name, and a
pointer to the method, for reasons which will become apparent shortly.

Mark Paul Keef e OOPS Report

(2) Search the linked-list at i to determine whether the method is present in the
cache.

(a) If the method is in the table, bring it to the front of the list at location i
before proceeding to execute the method.

(b) If the method is not in the table, attempt to locate the method by searching
the inheritance chain for the object's class. If this succeeds in locating the
method, update the cache by constructing an appropriate method record for the
method (if necessary) and pushing this onto the front of the list at location i
before proceeding to execute the method. Note that in order for the list to
remain a fixed size (actually not to exceed a maximum size, since it will start
out empty) one of the list elements may have to exit the list (and hence the
cache) as a result of the update; this should be the element at the opposite end
of the list. If the method was not located as a result of the search through
the inheritance chain, take whatever action is specified as occurring when a
method cannot be located for a particular request (eg. signal an error).

It should be noted that whenever a method is defined, the cache may need to
be updated (ie, only when a method is being redefined and the address of the old
definition is in the table).

How does the above algorithm adhere to the strategy of retaining the most fre-
quently used methods in the method cache? By constraining each list in the cache
to have a maximum size, methods must begin to exit the cache as each list reaches
this maximum during updates. The lists are maintained in such a way as to reflect
the ordering of invocation frequency by placing the most recently used method at
the head of a list and discarding the method at the tail when a list is full. Fre-
quently used methods will tend to remain in the cache while infrequently used ones
will soon exit to make way for new ones.12

As indicated above, the method cache needn't use physical list structures (the
overhead of removing and inserting methods might be too high); it is sufficient to
map a set of priorities for leaving the cache onto the set of methods that hash to
the same location. Method records containing class and method names, as opposed to
merely the address, are necessary to distinguish between all of the methods that
hash to the same location.

This scheme is similar to the "working set" model used in paged virtual
memory systems, and therefore works best when

(a) a certain set of methods are invoked significantly more often than the rest;

(b) the cardinality of this set is the same as the cache size;

(c) the set is relatively stable for long periods of time.

As one or more of these ideal conditions is relaxed, the improvement in perfor-
mance of method lookup tends to be eaten up by the overhead of maintaining the
cache. Assuming that the majority of application programs will possess something
resembling working sets of methods, the main problem becomes identification of the
average size of these sets so that the optimal cache size can be determined. To my
knowledege there are no theoretical results for determining the optimal cache size,
however a few empirical results appear in [Krasner 83].

12 Of course, this is only an approximation of most frequently used. At given times the cache may
not contain the most frequently uied methods, but most of the time it will. It would be more

Chapter 5 A system framework

It is clear that the optimal cache size will be application dependent, and might
also depend on language and implementation specific factors, such as the number of
predefined methods and the way in which method priorities (for leaving the cache)
are updated. Probably the best advice is to experiment with different cache sizes
over a wide range of large and small applications. It should also be pointed out
that certain applications may not have the equivalent of working sets of methods;
for example, an application might be designed that causes each method in the pro-
gram to be invoked in repeated sequence (overlooking the fact that such a design
would be unable to take advantage of many obvious benefits of OOP, such as the
ability to add methods without modifying code). Applications in this category
would suffer even worse than normal due to the overhead imposed by a method
caching scheme like that outlined above. For this reason, it may be desirable to
give the programmer some control over method caching, for example by allowing
cache parameters to be user-modifiable.

accurately termed "most recently used", but that label doesn't indicate the intent of the strategy.

Chapter 6 — Case studies

1. HP Common Objects

1.1. Comparisons with other languages

(1) In most object oriented programming languages, objects contain storage for no
more than one instance variable with a given name, regardless of the number
of superclasses of the object which define that instance variable. In Common
Objects, instances of the class contain as many distinct storage locations for an
instance variable as the number of superclasses that define it (including the
class itself as well as duplicate superclasses). So, if instance variable x is
defined in classes cl, c2, and c3; c2 inherits from cl; c3 inherits from c2 and
clf then instances of c3 contain four distinct instance variables named x (one
from c3, one from c2, and two from cl).

(2) Most object oriented programming languages allow any method defined on a
class to directly access instance variables inherited from superclasses (ie. per-
form "get" and "put** operations on them just like an ordinary variable).
Common Objects disallows direct access of an inherited instance variable from
any methods other than those defined on the class which defines the inherited
instance variable (including inherited methods). Thus, if y is an instance vari-
able defined by class cl, and class c2 inherits from cl, then methods defined by
c2 may only access y by invoking methods defined on cl.

(3) In most object oriented programming languages, if two or more classes define
methods with the same name, then a class which inherits from these classes
only inherits one of these methods (selected according to some precedence rela-
tion defined on the superclasses of the inheriting class). In Common Objects, if
a class attempts to inherit from two classes which define methods with the
same name, an error is signaled, thus, the programmer must explicitly indicate
from which of the superclasses the method is to be inherited.1

1.2. Efficiency

• In general, when invoking a method named foo, as in
(-> x :foo argl arg2 arg3)

a run time lookup is required to identify which method to invoke.2 because the
type of the object denoted by the variable x is not statically known, unless its

1 An ciror will not be signaled so long as the :ggthOflS IGXO&pt options to 11 n h e r l t - f T Q n \ o
the !T9d9f^'nfti--ynflrh'h0fig option to dBf-llTO-typS are used to restrict which methods the class inherit
in such a way that no more than one method with a given name is inherited.

2 The need for dynamic binding of method names to code segments is one of the hallmarks of the
object oriented programming paradigm.

- 36 -

Chapter 6 Case studies

type happens to have been declared.3 The table lookup is generally cheaper than
a search through nested, multiple-superclass lists. The table can be reorganized
in order to make certain time-critical methods cheaper to look up (at the cost
of making others more expensive to look up).

• A method can be declared as "inline**, causing the compiler to directly substi-
tute the code that performs the method in all statically determinable invoca-
tions, thus avoiding the overhead of message sending. This may lead to
increased code si2e in return for a possible payoff in speed (It is only recom-
mended for very simple methods, such as those which merely return a result
or send a single message). Certain automatically generated methods are inline
by default, including those that access inherited instance variables (so. compiled
code does in fact directly access inherited instance variables while source code
does not).

• Invoking methods from within a method defined on the same type of object, or
on a directly inherited type, using c a l l - m e t h o d or a p p l y - m e t h o d
requires no run time method lookup since both the object type and the method
name are statically known.

• The Common Objects model of method inheritance implies that if type A
defines a method for the operation foo. and type B inherits the foo method
defined on objects of type A. then a method is defined on objects of type B for
the foo operation which simply applies the method defined on objects of type
A. If t4 defines a message for the operation baz. and t{ inherits from t M (for i
an integer, 1 ^ i ^ n), then n different methods exist for the operation baz.
The Common Objects definition leaves it up to the implementor to decide
whether to try to minimize the overhead of indirect method invocation4 or to
eliminate the overhead by having the compiler produce code in which all of t{

share the same method. In the latter case. Snyder points out. "more work
must be performed by the implementation to present the illusion that each type
has its own method".

2. Flavors

2.1. Implementation

Objects are implemented using a new. built-in data type d t p - i n s t a n c e . The
first word of this structure points to an "instance descriptor" containing the internal
data for the flavor. The remaining words are value cells containing the values of the
instance variables. The instance descriptor is a d e f S t r u c t appearing as a pro-
perty of the flavor name, and containing information such as the name of the flavor,
the size of an instance, a method dispatching table and information for accessing
instance variables. Message sending is supported by defining a convention on the
way objects are applied to arguments (this was true for the old Flavors system
anyway).

3 Note that a declaration to the compiler that x is of type t would mean that types that inherit
from t could not be substituted for x. thus reducing the benefits of modularity.

4 Note, for example, that the overhead of executing the baz method for objects of type ^ is greater
than for objects of type ty for j < k.

3. LCX)PS

3.1. Efficiency

Loops uses a small method cache to improve performance during method
lookup. Initial loading of a method is slow, due to method lookup being performed
by searching the inheritance lattice. Methods in the cache are found quickly —
approximately 2 to 3 times the amount of time of a normal Interlisp function call.
The estimated hit rate is approximately 90 percent.

A Loops Get V a l u e takes about 10 times the time to perform an Interlisp
variable lookup (due to the check for A c t i v e Values) . A large, tested example
program spent about 30 percent of its time in G e t V a l u e .

Instances are created with space allocated for all their instance variables (except
for V i r t u a l C o p y instances). The overhead above and beyond this space is 5 to
6 words per instance.

4. C++

4.1. Implementation

C++ is a superset of C (almost) which enables data abstraction by supporting
user-defined types, called "classes." Classes are like C s t r u c t S. the first
difference being that instance slots (what C calls "members") can be functions; the
second difference is that access restrictions can be placed on specified members. A
class declaration is divided into "public** and "private" parts. The private members
of an instance can only be accessed by public members, or by an explicitly declared
set of functions, called "friends." When a class is defined, constructor functions are
generated for creating and initializing instances of the class. Member functions can
be overloaded, so that the compiler chooses one based on the types of the argu-
ments. Operators can be defined as member functions, or friends, and can be over-
loaded. Dynamic storage handling can be hidden from users of objects. Classes can
be arranged into abstraction hierarchies (single class inheritance) Functions can be
declared as virtual to allow dynamic typing of objects. A new data type, "refer-
ences" can be vised to impose call-by-reference semantics on function call.

4.2. Features

One of the most important contributions of C++ may be the notion of friend
functions. For example, a class of complex numbers can be defined having the
usual real and imaginary instance variables and specifying (non-member) friend
operator functions whose arguments must be complex numbers (the operators can be
overloaded so as to be generic). According to Stroustrup. the need to occasionally
give method selection responsibility to the function, rather than a "receiving" object
(a la Smalltalk), is due here to the fact that "the inherent asymetry in the notion
of objects does not match the traditional mathematical view of complex numbers**.
The problem of responsibility boils down to the question of asking for what kinds
of N-ary operations is it the case that only one operand clearly should be given the

power to control the outcome of requests to perform the operation.

5. Objective-C

5.1. Implementation

A new. built-in type, i d . is provided which can hold a pointer to an object.

An object in Objective-C is implemented as a block of memory consisting of a
"shared part" and a "private part". The shared part of an object is shared by all
instances of the object's class. It consists of a "template" defining the object's struc-
ture (storage for instance variables) and a "dispatch table" used to select the method
(piece of executable code) that implements some named operation. The private part
of an object is the set of storage locations for the object's instance variables. Only
methods defined on an object (accessible via its dispatch table or the dispatch table
of one of its superclasses) have access to the object's private part.

"Factory objects" are objects that can create "instance objects" of a given class
(there is one factory object for each class). The i s a instance variable, defined for
all objects, is a pointer to the object's factory object. The shared part shared by all
instances of a class is actually the private part of the factory object for the class.

A message sent to an object causes the i s a link to be traversed, so as to
access the (shared) dispatch table for the class. If an applicable method is not
found there, the superclass's dispatch table is accessed, and so on. When an
appropriate method is found, the method is executed and any value it returns is
returned to the calling environment (ie, from which the message was sent). Thus,
Objective-C provides dynamic binding.

The shared part of factory objects contains the dispatch table used in respond-
ing to messages sent to the factory object (eg. n6w) and the structural description
of the factory object (the shared part of a factory object is only shared by itself,
since there is only one per class).

There are several system-provided classes for example. O b j e c t , Array, Bag,
C o l l e c t i o n , etc.

Appendix A — Object Pascal

The following example of the Object Pascal syntax is taken from [Doyle 86].
Type

S h a p e - O b j e c t { L i k e a r e c o r d d e f i n i t i o n }
b o u n d 1 n g R e c t : R e c t ;
c o l o r : i n t e g e r ;
P r o c e d u r e D r a w ; { . . . w i t h m e t h o d f i e l d s }
P r o c e d u r e E r a s e ;
P r o c e d u r e M o v e B y (d e I t a H , d e l t a V : i n t e g e r) ;
F u n c t i o n A r e a : i n t e g e r ;

E n d ;

C i r c l e - O b j e c t (S h a p e) { C i r c l e i n h e r i t s f r o m S h a p e }
P r o c e d u r e S e t R a d i u s (r a d i u s : i n t e g e r) ;
P r o c e d u r e D r a w ; O v e r r i d e ; { O v e r r i d e t h e I n h e r i t e d D r a w }
F u n c t i o n A r e a : i n t e g e r ; O v e r r i d e ; f . . . a n d A r e a m e t h o d s !

E n d ;

P r o c e d u r e S h a p e . E r a s e ;
{ m e t h o d i m p l e m e n t a t i o n q u a l i f i e d w i t h o b j e c t t y p e }

B e g i n
E r a s e R e c t (b o u n d i n g R e c t) ;

E n d ;

P r o c e d u r e C i r c l e . S e t R a d i u s (r a d i u s) ;
B e g i n

b o u n d i n g R e c t . r i g h t : • b o u n d I n g R e c t . I e f t + r a d i u s * 2 ;
b o u n d i n g R e c t . b o t t o m : - b o u n d i n g R e c t . t o p + r a d i u s * 2 ;

E n d ;

Appendix A Object Pascal

{ O b j e c t v a r i a b l e s o r e r e f e r e n c e s t o t h e o b j e c t }

V o r
a S h a p e : S h a p e ;
o C t r c l e : C i r c l e ;

o S h a p e . c o l o r :• b l u e ;
oCI r e I e . b o u n d 1 n g R e c t : « m y R e c t ;
o S h a p e . M o v e B y (1 0 . 2 e) ; { M e t h o d i n v o c a t i o n s

P r o c e d u r e T r i a n g l e . M o v e B y (d e l t o H # d e l t a V : i n t e g e r) ;
B e g i n

M a v e r V e r t i c e s (d e l t a H . d e l ! V) ;
I n h e r i t e d M o v e B y (d e I t a H , o e i t a V) ;

{ C a l l * S h a p e . M o v e B y — l i k e * - S u p e r }
E n d ;

{ A l l o c a t e m e m o r y f o r t h e o b j e c t d a t a a n d t y p e i n d i c a t o r !

N e w (a S h a p e) ;
N e w (a C i r e I e) ;

BIBLIOGRAPHY

"The Smalltalk-80 System, " BYTE, vol. 6, no. 8, pp. 36-49, August
1981. Describes how message sending objects are used in the
Smalltalk-80 system.

The Portable Standard Lisp Userfs Manual, Utah Symbolic Computa-
tion Group, Department "of Computer Science, University of
Utah, January 1983.

KEE: The Knowledge Engineering Environment, IntelliCorp,
Knowledge Systems Division, Menlo Park, California, 1984. A
technical overview, presenting a demonstration application.

"Objective-C," Sample Reference Manual, Productivity Products
International, Inc., Sandy Hook, CT, 1984. The reference
manual for Objective-c, with selected chapters omitted.

Introduction to Knowledge Craft, Carnegie Group, Inc., Pitts-
burgh, PA, 1985.

"BLOBS is the language for simulation and reasoning," Senior Re-
view, pp. 187-192, October 1985. An Object-Oriented Black-
board package written in Popll.

"Knowledge Craft Overview," Software Version 3.1, Carnegie Group
Inc., Pittsburgh, PA, July 1986.

Agha, G.A., "Actors: A Model of Concurrent Computation in Disti-
buted Systems," PhD Thesis, MrT'IB £4£> M I T A I Lab> J u n e

1985. A PhD thesis dealing with operational semantics of
Actor languages.

Allen, E.M., R.H. Trigg, and R.J. Wood, "Franz Lisp Environment,
Variation 2," TR-1226, Maryland Artificial Intelligence
Group, University of Maryland, College Park MD, November
1983.

Althoff, J.C., "Building Data Structures in the Smalltalk-80 Sys-
tem," BYTE, vol. 6, no. 8, pp. 230-285, August 1981. Demon-
strates how easily many kinds of data structures can be ad-
ded to the Smalltalk-80 system.

Anjewierden, A., "Object Orientation in PCE-Prolog," Journeeg
Langages Orientes Objet, pp. 167-176, AFCET-Informatique,
Paris, January 1986.

Attardi, G. and M. Simi, "A Description Oriented Logic for Build-
ing Knowledge Bases," ESP/86/3, Delphi SpA, Viareggio, Ita-
ly, April 1986.

Attardi, G., A. Corradini, S. Diomedi, and M, Simi, "Taxonomic
Reasoning," ESP/86/2, Delphi SpA, Viareggio, Italy, March
1986.

Barrett, R.f A. Ramsay, and A. Sloman, POJD-IJL: A Practical
Language for Artificial Intelligence, Ellis Horwood'^Ltd. ,
Chichester UK, 1985. The reference~for the Pop-11 language.

Bars tow, D.R., H.E. Shrobe, and E. Sandewall, lntera£tj.ve Pro-
gramming Environments, McGraw-Hill, New York, 1984.

Betz, D., "XLISP: An Experimental Object-Oriented Language," Ver-
sion 1.4, Manchester, NH, January 1985. Documentation for
XLISP: a highly portable version of LISP with object-
oriented extensions.

Betz, D., "An XLISP tutorial," BYTE, vol. 10, no. 3, pp. 221-236,
March 1985. A revised version of [Betz 85a].

Bobrow, D.G., "An Overview of KRL: A Knowledge Representation
language," CogTiiJtrve Science, vol. 1, no. 1, pp. 3-46, 1977.
Describes KRL, a language based partly on Minsky's work on
Frames.

Bobrow, D.G. and I.P. Goldstein, "Representing Design Alterna-
tives," Proceedings of AIjSB?, Amsterdam, July 1980. A
description of an experimental personal information environ-
ment which provides users with descriptive structures for
programs and documents.

Bobrow, D.G. and M. Stefik, The LOOPS Manual, Xerox Corporation,
Palo Alto, CA, December 1983. Reference manual for one of
the major OOP systems in use today; a knowledge engineering
environment that attempts to integrate several different
programming paradigms (object oriented, rule oriented, ac-
cess oriented, procedure oriented) on top of Interlisp.

Bobrow, D.G., K. Kahn, G. Kiczales, L. Masinter, M. Stefik, and
F. Zdybel, "CommonLoops: Merging Common Lisp and Object-
Oriented Programming," ISL-85-8, Xerox Corporation, Palo
Alto, CA, August 1985. Proposed object oriented programming
facilities for Common Lisp, including, multiple, type-
specified generic methods.

Bobrow, D.G. and M. Stefik, "Perspectives on Artificial Intelli-
gence Programming Languages," Science, vol. ?, no. ?, pp.
945-950, February 28, 1986. More on~the familiar themes of
integrating various programming paradigms and Loops features
(browsers, guages, access-oriented programming, multiple in-
heritance, etc).

Bonnet, A., "Structured Objects," in Artificial intelligence.
Promise and Performance, pp. 120-127, Prentice/Hall, Engle-
wood Cliffs NJ, 1985. ~Short discussion of frames, schemata,

- 3 -

prototypes, and objects and their impact on knowledge
representation.

Borning, A.H. and D.H.H. Ingalls, "Multiple Inheritance in
Smalltalk-80," Unpublished Report, Software Concepts Group,
Xerox PARC. A paper describing how to extend Smalltalk-80
to provide multiple inheritance.

Borning, A.H., "The Programming Language Aspects of ThingLab: A
Constraint-Oriented Simulation Laboratory/1 in ACM Transac-
tions on Programming Languages, vol. 3, pp. 353-387, October

• 1981.

Brachman, R.J.,- "On the Epistemological Status of Semantic Net-
works," in N.V. Eindl^er (Ed), Associative Networks:
Representation and Use~of KnowX£lg£]£L Commute; rs** PP* 3-50,
Academic Press, New York, 1979. Contrasts capabilities and
drawbacks of various network formalisms for representing
knowledge.

Brachman, R.J., "I Lied about the Trees" Or, Defaults and Defini-
tions in Knowledge Representation," The AI Majgazirie, vol.
?, no. ?, pp. 80-93, Fall 1985. On the~limits of inheri-
tance with overriding for general knowledge representation
especially, the inability to represent irrevocable, univer-
sal truths, and hence, definitions.

Burke, G., Introduction to NIL, MIT LCS, Cambridge MA, March
1983. NIL has limited, built-in, extensively-used Flavors
capabilities; eg, complex method combination is replaced by
1 send-forward'.

Cannon, H.I., "Flavors: A Non-Hierarchical Approach to Object-
Oriented Programming," Draft (unpublished), 1982. Influen-
tial, hard to find paper discussing conflict resoltion in
multiple inheritance systems.

Chailloux, J., "VLISP: 10.3 Manuel de Reference," RT 16-78,
Universite de Paris 8, Vincennes, 1978.

Charniak, E. and D. McDermott, "AI and Internal Representation,"
*n Introduction to Artificial Inteiiigence, pp. 1-31,
Addison-Wesley, Reading MA, 1985.

Charniak, E. and D. McDermott, "Memory Organization and Deduc-
tion," in Introduction to Artificial. InteHjjjence, pp. 442-
351, Addison-Wesley, Reading MA, 1985. Deductive Inference
using associative nets, etc.

Chikayama, T., "Unique Features of ESP," TM-0055, ICOT, Tokyo,
April 1984. A discussion of object facilities and macro ex-
pansion in ESP.

- 4 -

Chikayama, T., ESP Refe£enc£ Manual, I COT, \
A useful reference describing Japanese
terns.

Clayton, B.D., ART Programming Primer, Inferen
Angeles, CA, April 1, 1985.

Clayton, B.D. , ART Programming Tutorial,f Volume
Corporation, Los Angeles, CA, March 15, 1981

Clayton, B.D., ART Programming Tutorial, Volume Two, Inference
• Corporation, Los Angeles, CA, March 15, 1985.

Clocksin, W.F. and C.S. Mellish, Programming ijn Prolog, Springer
Verlag, Berlin, 1981. The main reference for the Prolog
language.

Cointe, P. and Rodet, "Formes: A New Object-Oriented Language for
Managing a Hierarchy of Events,11 Internal Report, Institute
de Recherche et de Coordination Acoustique-Musique, Paris,
1983. Describes an object oriented language written in
VLISP [cft Chailloux 78] designed for music composition and
synthesis.

Cointe, P., "The extension of VLISP through the objects," Sci.
Comput. Program. (Netherlands), vol. 4, no. 3, pp. 291-322,
December 1984. Yet another object oriented extension of
Lisp.

Cointe, P., "FORMES: Composition and Scheduling of Processes,"
Convgut. Music J. (USA), vol. 8, no. 3, pp. 32-50, Fall 1984.
Applications~of OOPS in computer music.

Cook, S., "Languages and Object-Oriented Design," H2E CoHosium
an Object-based design (Dijjest No. 88), IEE. London, Eng-
land, November 1984.

Cox, B. J., "Message/Object Programming: An Evolutionary Change
in Programming," iEÊ E Software, vol. 1, no. 1, pp. 51-61,
January 1984. A discussion of the main differences between
procedure oriented and object oriented programming.

Dahl, O-J., B. Myrhaug, and K. Nygaard, "SIMULA Common Base
Language," Report S-22, Norweigian Computing Center, 1970.

Dahl, O.J. and K. Nygaard, "SIMULA - An Algol-based Simulation
" r.nmmnn "irat inne r\f the ATM xrni Q ^^

- 5 -

1984.

DeSmedt, K., "Using object-oriented knowledge representation
techniques in morphology and syntax programming," in ECAI-
84: Advances in Artj.ficjal Intelligence, pp. 181-184, El-
sevier Science Publishers, North Holland, 1984. THls paper
should be interesting to those wanting to use OOP techniques
in computational linguistics.

Deutsch, L.P., "Building Control Structures in the Smalltalk-80
System," BYTE, vol. 6, no. 8, pp. 322-347, August 1981. II-

lustrates the ease with which complicated control structures
are implemented in the Smalltalk-80 language.

diPrimio, F. and T Christaller, "A Poor Man's Flavor System -
Part 1," Working Paper No. 47, ISSCO, Universite de Geneve,
1983. Describes a Flavors system Implemented in UCI Lisp
[cf, Meehan 79].

Doyle, K., B. Haynes, M. Lentczner, and L. Rosenstein, "An Object
Oriented Approach to Macintosh Application Development,"
Journees Langage^ Qrientes Objet, pp. 46-54, AFCET-
Tnformatique, Parii, January 1986. A description of MacApp,
Object Pascal, Apple's work in Smalltalk.

Drescher, G. L., "ObjectLISP for experienced LISP programmers,"
1401-0000, Lisp Machines International, Cambridge, MA, Au-
gust 1985. Proposed object oriented programming facilities
for Common Lisp.

Duff, C.B., "Designing an Efficient Language," BYTE, vol. 11, no.
8, pp. 211-226, McGraw-Hill, August, 1986.

Ferber, J., "MERING: An Object-Oriented Language for Knowledge
Representation," in ECAJ-84: Advance^ in Artificial, Irtteni^
gence, pp. 195-204, Elsevier Science Publishers B.V., North
Holland, 1984. A short but very interesting paper on an ob-
ject extension to LISP.

Ferber, J., "Object Languages: A Matter of Messages," Micro Syst.
(France), vol. 52, pp. 152-159, April 1985. The integration
of procedure and data in the MERING language.

Gabriel, R.P., "Massively Parallel Computers: The Connection
Machine and Non-Von," Science, vol. ?, no. ?, pp. 980-985,

Goldberg, A., Smalltalk-80: The Interactive Programming Environ-
merit, Xerox Corporation? Palo AJto, California, 1983. A
very useful reference describing how to use the interactive
graphics tools provided by Smalltalk.

Goldberg, A. and D. Robson, Smalltalk-ftp: The Langrjaĝ e and its
Implementation. Addison-Wesley,""Reading, MA, May 1983. The
main reference for the Smalltalk language and programming
environment; carefully presented and well-written with com-
plete details of the implementation of the virtual machine
and selected parts of the virtual image.

Goldstein, I.P. and D.G. Bobrow, "Extending Object Oriented Pro-
gramming in Smalltalk,1* in Conference Record of the 1980
Lisp Conference, pp. 75-81,~1980. ""

Greif, I. and C. Hewitt, "Actor Semantics of Planner-73," Working
Paper 81, MIT, Cambridge, MA, November 1974. Presents for-
mal definitions and descriptions of Actor programs.

Griss, M.L., E. Benson, and G.Q. Maguire, "PSL: A Portable Lisp
System," Conference Record of the 1982 Symposium on Lisp and
Functional Programming, August 1982.

Griss, M.L. and E. Benson G.C. Maguire, "PSL: A Portable Lisp
System," in Conference Record of J:he 198,2 ACM Ŝ jn£o§liiID 2J3
Lisp and Functional. Programming, pp. 88-97, August 1982.

Hewitt, C., "Viewing Control Structures as Patterns of Passing
Messages," A. I. Memo 410, MIT AI Laboratory, December 1976.
Presents the basis of Actor theory - communication between
actors.

Hewitt, C. and H. Baker, "Laws for Communicating Parallel
Processes," AI Working Paper 134a, MIT AI Laboratory, Cam-
bridge MA, May 1977. Presents laws that must be satisfied
by computations involving communicating parallel processes,
stated in the context of the actor theory.

Hewitt, C, "Using Message Passing Instead of the GOTO Con-
struct," Working Paper 164, MIT AI Laboratory, Cambridge MA,
May 1978. Presents a programming methodology using message
passing in an environment with many processors.

Hewitt, C, "Concurrent Systems Need both Sequences and Serializ-
ers,M Working Paper 179, MIT AI Laboratory, Cambridge MA,
February 1979. Distinguishes two classes of concurrent
languages: those which support the notion of a sequence of
values and some kind of pipelining operation over the se-
quence, and those which support the notion of transactions
and some way to serialize transactions; in actor theory this
amounts to the distinction between serialized and unserial-
ized actors; this paper presents the utility of modeling
both in a coherent formalism.

- 7 -

Hewitt, C , G. Attardi, and H. Lieberman, "Specifying and Proving
Properties of Guardians and Distributed Systems," AI Memo
505, MIT AI Laboratory, Cambridge MA, June 1979. Discusses
Guardians, abstractions that can be used to regulate the use
of expensive resources in a distributed system.

Hewitt, C. and H. Lieberman, "Design Issues in Parallel Architec-
tures for Artificial Intelligence," AI Memo 750, MIT AI La-
boratory, Cambridge MA, November 1983. Describes design
goals for architectures which hope to overcome the limita-
tions of the von Neuman architecture, discusses actor theory

• as an approach to deal with these issues.

Hussman, M., "IS-A Isn't Enough: Towards a taxonomix framework
for intensional concepts," in ECAI- 84: Advance?* jin Artifi-
cial injL§liigonce, pp. 350-351, Elsevier Science Publishers,
North Holland, 1984.

Hutchinson, A. , Inh£liiSil££ LH 2. Data J§§_se of Frames^, Dept. of
Computing, King's College London.""" Decrlbes a simple mechan-
ism for generalized inheritance of slot values.

Ingalls, D.H.H., "Design Principles Behind Smalltalk," BYTE, vol.
6, no. 8, pp. 286-299, August 1981. An enlightening discus-
sion of how the design principles underlying the
Smalltalk-80 language have contributed to its power and
usability.

Ingalls, D.H.H., "The Smalltalk Graphics Kernel," BYTE* vol. 6,
no. 8, pp. 168-199, August 1981. A description of how the
Smalltalk Graphics Kernel provides the interface through
which all text and graphics are displayed in the Smalltalk-
80 system.

Janlert, L.E., Studies în Kn,owJ.edg£ ESEIS^^illStl0-!}• University of
Umea, Institute of~nformation Processing, Umea, Sweden, Oc-
tober 1985. Two long papers: "Modeling change - the frame
problem', and "Pictures and words'; the first paper has a
lot to say about hierarchical inheritance models.

Kaehler, T., "Virtual Memory for an Object-Oriented Language,"
BYTE, vol. 6, no. 8, pp. 378-397, August 1981. Describes
how virtual memory techniques can be used in an object
oriented system when the active memory space needed by a
language is much larger than the amount of available memory.

Kay, A., A. Goldberg, and Eds., "Smalltalk-72 Instruction Manu-
al," SSL 72-6, Xerox PARC, Palo Alto CA, 1972. Reference
manual for the first version of Smalltalk.

Keene, S.E. and D.A. Moon, "Flavors: Object-oriented Programming
on Symbolics Computers," Proceedings Common Lasp Conference,
Symbolics, Inc., Boston, MA, December 1985. A short but in-
formative paper on the New Flavor System.

Krasner, G., "Machine Tongues VII: The Design of a Smalltalk
Music System," Computer Music JourjnaJ., vol. 4, no. 4, pp.
4-14, 1980.

Krasner, G., ''The Smalltalk-80 Virtual Machine," BYTE, vol. 6,
no. 8, pp. 300-321, August 1981. Describes how the use of a
Smalltalk-80 Virtual Machine allows the system to be tran-
sported easily amongst different 16-bit microprocessors.

Krasner, G., Small talk-80: Bits of HisJ;or£, Worths of Advice,
Addison-Wesley, Reading MA, 1983. A useful collection of

0 articles describing the experiences of several implementors
of the Smalltalk-80 system.

Ledbetter, L. and B. Cox, MSoftware-ICs: A Plan for building
reusable software components," BYTE, pp. 307-316, McGraw
Hill, June 1985. Presents an approach to preserving reusa-
bility of software modules (eg, class definitions) borrowed
from electrical engineering.

Lieberman, H. and C. Hewitt, "A Real Time Garbage Collector that
can Recover Temporary Storage Quickly,11 AI Memo No. 569, MIT
AI Laboratory, Cambridge MA, April 1980. An algorithm which
makes short term object storage cheaper than long term,
operates in real time; object creation and access times are
bounded, the method works well with multiple processors and
a large address space.

Lieberman, H. , "A Preview of Act-1," AIM-625, MIT AI Laboratory,
Cambridge MA, June 1981.

Lieberman, H. , "Machine Tongues IX: Object Oriented Programming,"
Computer Mu^ic Journal, vol. 5, no. 1, pp. 34-50, 1982.

Lieberman, H. , "Delegation and Inheritance: Two Mechanisms for
Sharing Knowledge in Object-Oriented Systems," Proceedings
2l AFCET Lcmgjjges Orientes Objet., pp. 79-89, January 1986.
A good introduction to some of the concepts used in Actor
languages; contrasts alternative mechanisms for sharing in-
formation .

Liskov, B. et al, "CLU Reference Manu ," TR-225, MIT LCS, Cam-
bridge MA, October 1979.

Marrin, K., "Software Tools, Tailored Architectures extend Lisp
and Smalltalk capabilities. II," EDN (USA), vol. 29, no. 20,
pp. 53-62, October 1984.

Meehan, J.R., The New UCI LJ.SJ* Manual . Lawrence Erlbaum Associ-
ates, HilTsdale NJ, 1979.

Meyrowitz, N. , ObJectC R££>ort, Brown University, June 1985.
Discusses work on adding OOP to the C language, in a similar
vein with to Apple's Object Pascal.

Middleton, S. and R. Zanconato, "BLOBS: An Object-Oriented
Language for Simulation and Reasoning/' Working Paper, Cam-
bridge Consultants Ltd., Cambridge, February 1985. *A rather
glossy overview of an object blackboard package written in
Popll.

Miyoshi, H. and K. Furukawa, "Object-Oriented Parser in the Logic
Programming Language ESP," TM-0053, ICOT, Tokyo, April 1984.
Presents an interesting application written in ESP, illus-
trating the use of partitive inheritance.

Nilsson, N.J., "Structured Object Representation," in Principles
of Artificial intelligence, pp. 361-415, Tioga, Palo Alto
CA, 1980. * A more formal presentation of structured objects;
emphasis on relationships between structured object
representations (including associaitive nets) and deductive
inference techniques, such as predicate calculus.

Novak, G.S. Jr., GLISP User's Manual, ??.

Pascoe, G.A., "Elements of Object-Oriented Programming," BYTE,
vol. 11, no, 8, pp. 139-144, McGraw-Hill, August, 1986.

Pepper, J. and G. Kahn, "Knowledge Craft: An Environment for Ra-
pid Prototyping of Expert Systems," Pro.ceedi.ngs of the SME
£2Dl§X§JQ££ 2J2 Artificial Intelligence for the Automotive In-
dustrjr, Dj|tr;oj[t, Michigan, March 12-^3, 1986., Carnegie
Group, Inc., Pittsburgh,~PA7 March 1986.

Rees, J.A. and N.I. Adams, "T: A Dialect of Lisp, or, LAMBDA:
The Ultimate Software Tool," in Cjonfjsren̂ e Record oX the
!£fL2 ACM Symposium on MSJD and Functional Programming, pp.
114-122, August 1982. Has aroused interest from the Common
Loops community; message sending and function call have the
same syntax; classical method discrimination.

Rich, E., "Structured Representations of Knowledge," in Artifi-
cial Intelligence, pp. 201-244, McGraw-Hill, Singapore,
1983.

Robson, D., "Object-Oriented Software Systems," BYTE, vol. 6, no.
8, pp. 74-89, August 1981. Discusses how object-oriented
software systems provide the underlying design of
Smalltalk.

Serlet, B., "Object Oriented Programming in Cedar," Journees Lan-
gages Or^entes Objet, pp. 64-68, AFCET-InformatTque, Paris,~
January 1986. A brief description of Cedar, and of whether
the title begs the question.

Shapiro, E. and A. Takeuchi, "Object-Oriented Programming in Con-
current Prolog," TR-004, ICOT, Tokyo, April 1983. Discusses
an interesting approach to integrating object oriented and
logic programming, using parallel distributed processing

techniques.

Shapiro, E. Y., "A Subset of Concurrent Prolog and its Inter-
preter," TR-003, ICOT, Tokyo, February 1983. A description
of an interpreter for Concurrent Prolog [Shapiro 83a].

SIoman, A. , The Computer KevoJ.uJii.on An Philosophy: Philosoghy,
S £ aHd Models o f Mind, Harvester, Hassocks, Sussex,
1978.

Smith, R.G., "Strobe: Support for Structured Object Knowledge
* Representation," in Proc. IJCAX-83, pp. 855-858, 1983.

Describes an interesting object extension to Interlisp,
derived from the UNITS package.

Snyder, A., "Object-Oriented Programming for Common Lisp,!1 ATC-
85-1 (Rev. 1), Hewlett-Packard Company, Palo Alto, CA, July
1985. Proposed object oriented programming facilities for
Common Lisp; describes some interesting alternative views on
the operational semantics of inheritance.

Steele, G.L., Common LISP: The Language, Digital Press, Hanover
MA, 1984. The main reference on Common LISP.

Stefik, M., D. G. Bobrow, S. Mittal, and L. Conway, "Knowledge
Engineering in LOOPS: Report on an Experimental Course,"
AAAI, pp. 3-13, Fall 1983. Report on a 3-day course teach-
ing knowledge programming in Loops.

Stefik, M. and D.G. Bobrow, "Object-Oriented Programming: Themes
and Variations," The A£ Magâ zijie, vol. ??, no. ??, pp. 40-
62, January 1986. A highly recommended discussion and sur-
vey of basic concepts and recent trends.

Stefik, M.J., "An Examination of a Frame-Structured Representa-
tion System," in Pr_ocjs of the Sixth International Joint
Conference on Art2f_icJ[a2 Intelligence, pp. 845-852, August
1979. The reference for the UNITS package: the precursor to
Loops, KEE and Strobe.

Stefik, M.J., D.G. Bobrow, and K.M. Kahn, "Integrating Access-
Oriented Programming into a Multiparadigm Environment," IEEE
Software, vol. ??, no. ??, pp. 10-18, January 1986.
Describes how Loops provides access-oriented programming,
and how it is used.

Stroustrup, B.t "Data Abstraction in C," Computing Science TR-
109, AT&T Bell Labs, Murray Hill, NJ, January 1984. A brief
overview of how C++ adds classes, data hiding, etc to C*

Stroustrup, B., A C++ Juj:orij|i, AT&T Bell Laboratories, Murray
Hill, NJ, September 1984? Presents examples of data
abstraction and encapsulation in C++.

Stroustrup, B., in The C++ ZL9^L^MiLllZ L<*HZUQ£*L> Addison-Wesley,
Reading MA, 1986. ~The main reference for C++.

Tesler, L., "The Smalltalk Environment,11 BYTE, vol. 6, no. 8, pp.
90-147, August 1981. Demonstrates how programming and de-
bugging in Smalltalk are inherantly interactive in nature.

Tesler, L., "Object-Oriented User Interfaces and Object-Oriented
Languages," 1983 ACM Conference on Personal and Smal1 Com-
puters , vol. 6, no. 2, pp. 3-5, 1983.

Tesier, L., Object Pascal Report, Apple Computer, Inc., February
1985. Describes progress on OOP extensions to Pascal; des-
cended from earlier work on Clascal with design help from
Niklaus Wirth.

Tesler, L., "Programming Experiences," BYTE, vol. 11, no. 8, pp.
195-210, McGraw-Hill, August, 1986.

Theriault, D. , "A Primer for the Act-1 Language," AIM--672, MIT AI
Laboratory, Cambridge MA, June 1982.

Tyugu, E. H., "NUT - An Object-Oriented Language," Proc. of Third
ICAI and information-control l^s^ems of robots, North-
Holland, Amsterdam, Netherlands, June 1984.

Ungar, D., R. Blau, P. Foley, D. Samples, and D. Patterson, "Ar-
chitecture of SOAR: Smalltalk on a RISC," nth Annual Intl.
Symposium on Computer Architecture Pr^oceedijig^, no. CAT. NO.
84CH2051-1, pp. 188-197, IEEE Computer Society Press, Silver
Spring, MD., USA, June 1984. Implementing Smalltalk on Re-
duced Instruction Set Computers.

Wall, R.S., "Industrial strength knowledge representation," Third
Intl. Ph2£Slx Conf• on Computers and Communications Proceed-
rng£, no. CAT. N0~ 84CH2010-7, pp. 6-10, IEEE Computer So-
ciety Press, March 1984.

Weinreb, D. and D. Moon, "Objects, Message Passing, and Flavors,"
in Li.sj2 Machine Manual,, Chapter 20, pp. 401-447, Symbolics,
Inc., June 1984. The older reference for the Symbolics Fla-
vors System.

Weinreb, D. and D. Moon, "Introduction to the Flavor System," in
Reference Gujjde t£ Symbolics-Lisp , pp. 417-476, Symbolics,
Inc., March 1985. The main reference for the Symbolics Fla-
vors System.

Wertz, H. , "bVLISP: An Example of a Programming Environment,"
^J2H£H££5 kiiILS2i*£L§ 2£i£Qi£jS Ob^et, pp. 55-63, AFCET-
Informatique, Paris, January 1986.

Wilks, Y., "Good and Bad Arguments about Semantic Primitives,"
D.A.I. Research Report No. 42, Department of Artificial In-

- 12 -

telligence, University of Edinburgh, Edinburgh, Scotland,
May 1977.

Williams, C. , ART: Con̂ cegtuajL Overview, Inference Corporation,
Los Angeles, CA, 1985.

Winston, P.H. and B.K.P. Horn, "Object-Centered Programming: Mes-
sage Passing and Flavors,1* in LISP, pp. 239-251, Addison
Wesley, Reading MA, 1984. A somewhat limited but useful in
troduction to object oriented programming for beginning AI
students and programmers.

Wood, R.J., "Franz Flavors: An Implementation of Abstract Data
Types in an Applicative Language," TR-1174, Maryland Artifi
cial Intelligence Group, University of Maryland, College
Park MD, 1982. A description of a Flavors system based on
Franz Lisp [cf, Allen 83].

Yonezawa, A., H. Matsuda, and E. Shibayama, "An Approach to Ob-
ject Oriented Concurrent Programming: A Language ABCL,"
J^urneejs Langages Orientes Ob^et, pp. 125-135, AFCET-
Informatique, Paris, January 1986. A framework of parallel
computation and a scheme of distributed problem solving;
very interesting work based in part on Actor theory.

Zaniolo, C , "Object Oriented Programming in Prolog," in 1984
IHi^£H5ii£HSl Symposium on Logic Programming, pp. 265-270,
IEEE, February~1984. A simple approach to providing some
object oriented capabilities in Prolog.

Zippel, R., "Capsules," Proceedings of the SKSPLAN f83 S^m^os^um
on Programming Language Issues in~Software S^siEems, vol.
18, no. €, pp. 166-169, June T983? ~

