
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

SYNTACTIC THEORY AND COMPUTATIONAL
LINGUISTICS

Allan Ramsay

198 7 ,£̂ S//vi:;7

TT5BURGH, PENNSYLVANIA 15213PlTTSt

1. What is syntax ?
1.1 Syntax in general linguistics

We take syntax to be the study of structural regularities, both within individual
languages and across sets of languages. This study has long been of interest in
general linguistics, and especially since Chomsky's pioneering work from the late
1950's onwards it has become perhaps the central topic in the field. In the current
chapter we begin by comparing the roles of syntax within general linguistics and
computional linguistics. We then consider a number of specific theories about the
nature of the syntactic rules of natural language. These theories will include ones
which have had considerable influence in general linguistics but which, for reasons
which will be detailed, have not been taken up within computational linguistics; and
ones which have been developed as a direct result of the presence of the computer
as a metaphor and as a constraint.

•

Syntax is taken to refer to the rules which specify which strings of words from the
language in question are acceptable and which are not. As such it does not concern
itself with the question of which strings of sounds or orthographic symbols are
words of the language, or which strings of words constitute sensible or meaningful
sentences. Most linguists who are interested in syntax are well aware that there is a
strong connection between the form of a sentence and its meaning. Indeed, many of
the regularities which syntactic theories try to capture can only be expressed in
terms of relations between the meanings of alternative word strings. The notion of
active and passive forms, for instance, can only be discussed once it is realised that
The girl fixed the puncture and The puncture was fixed by the girl have closely related
meanings. Despite this strong connection between syntax and semantics, work in
general linguistics has attempted as far as possible to keep the descriptions of the
two systems separate. Syntactic rules are expressed in terms of structural features
(e.g. word order, part of speech, inflection). Semantic rules may be based on
syntactic forms, but they do not add anything to them. In computational linguistics.
as we shall see. this rigid separation of levels of description is frequently broken
down.

General linguistics has also followed Chomsky (1965, 1-11) in making a distinction
between 'competence' and 'performance*. This distinction is intended to capture the
gap between the rules that a person might have about the allowable forms in a
language and the processes that they might use for applying those rules in
generation or comprehension. To give just one example, the sentence The sort of
things he likes are generally outdoor sports is not well-formed, as far as the rules of
middle-class British English are concerned, since the subject (The sort of things he
likes) is singular and the main verb (are) is plural. Most native English speakers
would, on reflection, accept that it is not well-formed. Nonetheless, nobody would
regard it as so unacceptable that they could not understand what it meant, and
very few people could be confident that they would never utter a sentence that had
the same flaw. The competence, i.e. the knowledge in principle, of a typical English
speaker includes some rule of subject/verb agreement which would rule out this

example. The performance of most such speakers would be liable to allow it, both
as something they might say and as something they would be prepared to accept if
someone else said it. General linguistics has concentrated on competence, the rules
which make up the language, with little emphasis on the processes people use for
applying these rules. Becker (1975) argues strongly that to concentrate on competence
rather than performance is a profound mistake, an error in belief as to the correct
subject matter for linguistics. A number of workers in computational linguistics, or
at least in the related applied field of natural language processing, have taken up
similar positions. Riesbeck (1978). as part of the 'conceptual dependency* school of
natural language processing (Schank 1975), develops a system which performs a task
very similar to syntactic analysis but which is described in terms which do not
refer to purely structural matters. In so far as the work of Schank and his
colleagues constitutes a theory of language, the explicit denial of a purely syntactic
component has a major bearing on the discussion of syntax within computational
linguistics. It seems appropriate at this point to remark upon the presence within
computational linguistics of theories that deny the very existence of an area of
study concerned with structural matters; to point to the discussion of the possible
architectures for language processing systems in article 32, and of parsing strategies
in article 37; and to concentrate, in the current article, on those theories in
computational linguistics where the existence of an explicit level of description
concerned with syntax is accepted.

1.2 Syntax in computational linguistics

We have argued that the study of syntax in general linguistics is concerned with
structural regularities wherever they are to be found in a natural language or in all
natural languages. Regularities which contribute to semantic or pragmatic analysis are
indeed noted, but general linguistics would also be interested in structural
phenomena which seemed to have no function in the interpretation.

In computational linguistics, the emphasis is often slightly different. Syntactic
theories within computational linguistics are often, though not always, developed
within larger systems for language processing. Within such systems, the function of
the syntactic component is taken as being to encode or decode part of the message
carried by the text. Clearly any system which is to express a meaning via natural
language text or speech, or extract the meaning from it, must recognise the relation
between structure and meaning. Syntactic rules which have direct significance for
meaning will be more important, on this view of the function of the syntactic
component, than ones which do not. Furthermore, the choice of semantic
representation for the overall system is likely to have an influence on the form of
syntactic representation chosen - where the analysis of meaning is. as in Eliza
(Weizenbaum 1966, 36-45), just a matter of reacting to combinations of keywords,
the corresponding syntactic theory will be trivial; text generation systems (McDonald
1983). which need to produce forms which reconcile collections of independent
choices concerned with a variety of different aspects of the message, often use some

version of Halliday's (1985) systemic grammar, in which the various functions of
the range of syntactic options are carefully enumerated. The function of the
grammar, in terms of how it contributes, to the behaviour of the system within
which it is to be used, will often influence the form in which it is described.

The connection between theoretical advances in computational linguistics and technical
innovations in working systems also means that the study of syntax is inextricably
linked with the development of parsing algorithms. The techniques used in natural
language understanding systems are discussed in detail in Chapters 36 and 37 of this
handbook, and we shall not repeat the discussion here. We will, however, have to
make passing reference to facts about them as we cover particular syntactic
formalisms and rules. We will also have to accept that in a number of important
systems, structural rules of the sort that would normally be included in the
syntactic layer of description are integrated with other sorts of rules, so that it is
not possible to extract a separable 'theory of syntax*. For each of the treatments of
syntax which we discuss below, we will have to refer to one or more of (i) its
interaction with some view of semantics and/or pragmatics, (ii) its relation to
parsing and/or generation algorithms, (iii) the degree to which it can be seen as an
autonomous theory of syntax at all.

2. Simple phrase structure rules

Before we go on to consider particular syntactic models in detail, we will look
briefly at the general notion of rewrite rule which underlies the vast majority of
approaches to syntax. The simple notion we are going to present here seems to be
inadequate in a number of ways, and the theories discussed below are largely
attempts to deal with these inadequacies. Before we can go on to see how successful
they are. we have to see what it is they are trying to improve on. This
introductory discussion may be skipped by readers with any background in
linguistics, who will find it very familiar.

The production of both speech and text is a matter of generating sequences of
physical stimuli which can be perceived by some other person or persons. In the
case of speech these stimuli are sounds, in the case of text they are marks on paper
or some similar medium. It is widely accepted that these sequences can be analysed
as sequences of things called 'words'; that individual words often have some relation
to the world or to ideas in people's minds which can be triggered in a
reader/listener's mind when the word is recognised; and that complex relations
between such ideas can be encoded by 'structural relations* between the words in
some sequence. This chapter is not concerned with what words are or how the
sequence of physical stimuli is construed as a string of words. Nor are we concerned
here with how words come to have relationships with either the world or with
ideas in people's minds. What we need to understand here is, what are structural
relations, and to a lesser extent how are they recognised and how do they encode
relations between meanings.

The very first point to note about rules describing possible structural relations is
that they are generally couched in terms of word classes, rather than individual
words. The relations between old and man in the old man, between red and bus in a
red bus, and between hard and problems in some hard problems are universally taken
to be the same, and to depend on the fact that old, red and hard are all adjectives
and man, bus and problem are all nouns. There is substantial disagreement about
exactly what this relation is. but very little argument with the claim that it should
be described, at least in part, in terms of categories such as 'adjective* and 'noun*.
We will take it for granted in all the following discussion that there are word
classes and that syntactic rules are couched in terms of them (in the older literature
they are sometimes called 'parts of speech*, in recent literature they are sometimes
called 'lexical categories').

The simplest notion of structural relationship which we see in syntactic theory is
just a labelled relation between one word and another. In the phrase the black cat,
for instance, we might say that black is a modifier of cat and the is a specifier of
cat. With this very simple notion, there is no implication that one of the words in
the relation is somehow more 'important' than the other, nor is there any restriction
on how far apart the words in a relation can be or on what other words can
appear between them. There have been attempts, such as Hudson's (1984) 'word
grammar', to elaborate syntactic theories in terms of collections of binary relations
of this sort, but they have not been used much in computational linguistics and we
shall not consider them further (but see (Muraki/Ichiyama/Fukumochi 1985) for at
least one example of a computational system using a 'dependency grammar' for
Japanese).

It is more usual to describe relationships between groups of words, using some
elaboration of the idea of 'rewrite rules*. These are equations which say that one
group of symbols is equivalent to another, so that any string containing one can be
rewritten as a string containing the other. In the simplest form in which such rules
are used in syntactic theory, the left hand side of the equation contains a single
symbol and the right hand side contains one or more. The symbols that occur in
these rules are the names of syntactic categories. The following extremely simple
example will illustrate what can and cannot be done with such sets of rules:

S « NP VP
NP - determiner noun
VP « verb NP

A.: Simple phrase structure rules

This set of rules could be used either to describe how a sentence could be made up
of a sequence of words belonging to the categories determiner, noun, verb,
determiner, noun; or to show that such a sequence could be interpreted as a
sentence. Article 37 will consider programs to do these tasks in detail. The

-5-

remainder of the current article is concerned with elaborations of the notion of
rewrite rule which capture phenomena which are hard to describe with the basic
form.

3. Syntactic theories

We will cover the syntactic models which have been developed within computational
linguistics, or influenced by it. in an order which roughly reflects how much they
can be viewed as independent syntactic theories, rather than as parts of some larger
view of language. This order should not be taken to indicate that it is right (or
wrong) to regard syntax as an area which can be studied in isolation from other
aspects of language, nor does it reflect anything much about historical development
or about the author's views as to which are most interesting or important. It
should, however, enable readers to see more clearly where computational linguistics
has close links with general views on syntax and where it is more closely tied to
performance models.

3.1 Transformational grammar
3.1.1. Transformational grammar proper

The most influential syntactic theory developed within general linguistics for the past
30 years or so has been Chomsky's theory of 'transformational grammar', first
proposed in (Chomksy 1965). Transformational grammar (henceforth TG) has
undergone a long process of development since its first appearance. The basic theory
extends the simple notion of rewrite rule by allowing in a collection of rules which
perform 'transformations'. In most presentations, e.g. (Akmajian/Heny 1975).
transformational rules are presented in a format rather like the following rule for
the relation between active and passive forms:

SD: NP aux v e r b NP
1 2 3 4

SC: 4 2>be+en 3 by* l

B.: passive transformation

Here SD stands for 'structural description', SC for 'structural change*. The
structural description corresponds roughly to the left hand side of a rewrite rule. It
specifies the form which a sequence of symbols must have if the rule is to apply to
it. and it numbers them so they can be referred to later. The structural change
describes the form of the structure which may be obtained by applying the rule, i.e.
in this case it consists of the NP that was the fourth component of the original
structure, followed by the old second component followed by a past tense form of
be, followed by the old third component, followed by a structure made out of the
the word by and the old initial NP (the symbols <, > , + and * denote different
ways of attaching one tree structure to another - as leftmost or rightmost child, as

children of the same existing parent, or as children of a new parent).

Transformations may also refer to 'features'. These are properties which nodes in a
tree may possess in addition to their main category. For instance a noun phrase may
possess features specifying whether it is singular or plural, whether it is first, second
or third person, what gender it is and so on. These features may be given specific
values in some transformation, e.g. the rule for 'dative' movement (to account for
the relationship between give it to me and give me it) might specify that the main
verb must be bitransitive, as in:

SD: verb(trans«bitrans) NP to NP
1 2 3 4

SC: 1+4* 2 0 0

C: Dative movement

We will not go further into the details of particular transformations here, since it
turns out that TG, although extremely influential in general linguistics, has had
comparatively little impact on computational linguistics. To see why this is so. we
have to consider the way in which transformations operate. Early TG posits the
following relationships between the objects involved in an utterance:

SURFACE STRUCTURE > SOUNDS

A

DEEP STRUCTURE > MEANING

D.: Information structures in TG

The deep structure is a phrase structure tree generated according to the rules of
some base phrase structure grammar. The rules of this 'base component' simply
determine what objects are legitimate phrase structure trees, i.e. what objects can be
deep structures. There are a collection of semantic rules, which relate deep structure
phrase trees to meanings. To anything which can be both meant and said, there
must correspond a deep structure phrase tree. The transformation rules define the
relation between deep structure trees and surface structure trees. Any sequence of
transformations that can applied in turn to some deep structure tree will generate
another tree, which will be a surface tree. There are then phonological rules which
relate the leaves of surface structure trees to sequences of sounds.

-7-

Inspection of diagrams such as the above suggest at first sight that TG is proposed
as a processing model of language understanding or generation. However, if we want
to regard the arrows as indicating information flow then a processing model would
be expected to look more like the following:

Understanding Generat ion

sounds sounds

i fa

surface structure surface structure

A
NX

deep structure deep structure

A

meaning meaning

E.: information flow in process models

In other words, the rules of a processing model would be expected to show how
you could work systematically from sounds to meaning or meaning to sounds. The
organisation of figure D. expresses constraints between components of the language
system, not routes by which information is carried during the generation or analysis
phases of language processing. To construct a computational model of generation
based on TG, it would be necessary to indicate how the relevant deep structure tree
was obtained for any given 'meaning*. This is not generally done - semantic rules
indicate how to interpret a deep structure tree, not how to construct one whose
meaning matches the meaning you want to express. To construct a computational
model of understanding, it would be necessary to show first how to obtain the
surface structure tree corresponding to a given sequence of sounds or graphemes, and
then how to find a deep structure tree from which this surface structure tree could
be derived by a sequence of transformations. TG does indeed provide a collection of
functions from the set of deep structure trees to other sets. e.g. to surface structure
and thence to sequences of sounds, or to semantic interpretations; but in both
generation and comprehension, deep structure trees are intermediate structures which
have to be constructed on the basis of information about either meaning or
appearance. What would be needed if TG were to be used as the syntactic
component of a language processing program would be the INVERSES of the
functions that the theory actually provides. As is well known, functions which are

easy to compute do not necessarily have inverses which are easy to compute. This
is particularly true of attempts to use TG for comprehension. For this we would
need to find a function which could apply sequences of inverse transformations to
surface structure trees to get deep structure trees. This would be hard enough if we
knew in advance how many transformations had been applied in the derivation of
the surface structure tree. It is made far harder by the fact that we do not. Even
worse, before we can attempt to relate the surface structure to the deep structure
we need to find a function which would get surface structure trees from lexical
strings. The function which goes from surface structure to lexical string simply
enumerates the leaf nodes of the tree. This is a many-to-one mapping, and as such
does not even have an inverse.

TG was originally propounded as a descriptive theory of language, with no explicit
claims abaut its relationship to specific processing mechanisms. The theory is thus
not critically damaged by arguments about its computational intractability. However,
the same arguments can be recast as criticisms about the overall 'power* of the
grammar, in the sense that it provides too few restrictions on what might or might
not be possible as a grammar for a natural language, and in this form they are
damaging to the goals of the theory. Later work has played down the role of
transformations like the passive transformation of figure B., and has also tried to
constrain their possible forms, by introducing constraints at various levels. Recent
presentations of TG include rather general restrictions on the forms of
transformations, derived in large part from work by Ross (1986); constraints
(known as 'filters') on the form of the surface structure (Chomsky/Lasnik 1977);
constrained specifications of the set of features to be considered in syntactic rules
(Jackendoff 1977); and semantic constraints on the co-occurrence of various forms of
noun phrase, particularly pronominals (Chomsky 1980) and the 'traces* of noun
phrases that are left afW transformations have shifted or deleted them from their
original positions. The general aim of these constraints is to restrict the range of
possible grammars, thus giving the theory greater predictive power and perhaps
addressing the problem, raised by Wexler and Culicover (1980), that the rules of
the original form of TG are unlearnable under reasonable conditions on the data
available to the language learner. As a by-product it might happen that the theory
will become less computationally awkward, since it was the presence of complex
sequences of transformations that made it difficult in the first place. Unfortunately
diagrams of the components of the most recent 'government and binding* form of
the theory show that it is still very difficult to relate it to notions of unidirectional

information flow either from meaning to lexical string or in the other direction.
FILTERED

SURFACE STRUCTURES > SOUNDS

CASE MARKED
SURFACE STRUCTURES > SEMANTIC REPRESENTATIONS

t
SURFACE STRUCTURES

DEEP STRUCTURE

A
BASE RULES

F. Information structures in late TG.
(after (Radford 1981))

In figure F., the relations between levels above deep structure are generally
constraints on the form that entities at lower levels may take, or on the actions
that may be performed upon them. In particular, the laws that connect case marked
surface structures and semantic representations constrain, via semantic rules, the co-
occurrence of noun phrases in the surface structures. There is thus now a link
between semantic representation and lexical string, but it is still not in a form in
which it is easy to see how a given semantic representation would drive the
generation of a lexical string or vice versa.

We see, then, that the form in which TG is cast makes it awkward to use as the
syntactic component of a computational model of language processing. There have
been some attempts to apply it in its original form, for instance (Petrick 1973), and
it is also possible to develop programs which will test proposed sets of
transformations with specified base grammars to see whether or not they lead to the
generation of unacceptable sentences (Friedman 1969). These, however, are the
exception rather than the rule. The major interaction between TG and computational
linguistics has been the way in which computational linguistics has demanded that
transformations be used in a more constrained and tractable manner, and hence has
contributed towards the recent move to restrict the number and scope of application
of transformational rules.

3.1.2. Augmented transition networks

Transformational grammar was originally an attempt to capture the relations
between active and passive forms, between questions and assertions, and so on. The
mechanisms which were invoked to describe these phenomena included the notion of
'moving things around', and the use of 'features*. The conclusion of section 3.1.1
was that TG had not had as much influence within computational linguistics as it
had in general linguistics, but this does not mean that the notions of movement and
feature sets have not been taken into computational linguistics.

The most notable form in which they have been used has been within the
framework known as 'augmented transition networks' (ATNs). For quite some while
this form of grammar, introduced in (Woods 1970), completely dominated the view
of syntax held by people working within computational linguistics. It now has a
number of serious competitors, but is still the form of grammar most widely
discussed in textbooks on computer models of natural language processing (e.g.
Charniak and McDermott (1985, 206-222), Rich (1983, 315-320). Winograd (1983)).
The ATN formalism arises out of a notation known as 'recursive transition
networks' (RTNs) which allows context free phrase structure rules, as introduced in
section 2. to be expressed in a way that has a natural computational interpretation.
Consider the standard rule describing the structure of an English sentence, and the
way it might be used for parsing:

S « NP VP

This rule, when interpreted for parsing, can be seen as saying that to see if some
string of words makes up a sentence, see if it makes up a noun phrase followed by
a verb phrase. We can rephrase that just slightly so that it reads, to see if
something is a sentence try to find a noun phrase, and if you find one then try to
find a verb phrase. We can develop a notation which captures this idea of find
sequences of structures by writing the rule as a network, which is to be crossed,
e.g.

s t a r t NP VP end
S: > > > >

G.: RTN for a simple sentence

The use of network formalisms in language processing systems, particularly for the
syntactic component, is discussed in detail in Article 30. and we have no wish to
repeat it at length here. The important point here is the influence that the new
notation had on how the grammar is viewed. The switch from rewrite rules to
transition networks makes comparatively little difference to the expressive power of
the grammar. What it does do is provide a strong indication of how the grammar
should be interpreted computationally, namely as a series of attempts to cross arcs.

-11-

This in turn suggests that a grammar might be written directly as a program in
some suitable language, in which the actions of trying to cross an arc were built in
as primitives. Some workers have developed languages explicitly for writing
grammars as programs, e.g. Winograd (1972), others have simply made use of some
existing language, typically LISP. In either case, programs will contain calls to
procedures which traverse 'lexical arcs*, i.e. arcs labelled with the names of lexical
arcs, and 'recursive arcs', i.e. ones whose label is the name of a non-terminal
category. In parsing, a lexical arc can be traversed if the next word in the input is
of the appropriate type, whereas a recursive arc can be traversed if some way can
be found through the network for the relevant category (again see Chapter 37 for
more details on parsing algorithms for recursive transition networks). In all cases,
once the grammar is expressed as a program in some language, it is natural to
wonder whether the other facilities of the language can be deployed to increase the
expressive power of the grammatical formalism.

Recursive transition networks, of the type described above, are no more powerful
than phrase structure grammars. It has often been argued that phrase structure
grammars are inadequate for providing a concise and comprehensive coverage of the
phenomena observed in the grammars of natural languages. Clearly, then, recursive
transition networks are also likely to be inadequate as they stand. The introduction
of extra notions from programming languages allows the power of the basic
formalism to be extended without abandoning the original ideas on which it was
based. In particular, recursive transition networks were converted to augmented
transition networks by allowing the programs which represented them to include
actions which set and tested 'registers'. These registers function in very much the
same way as programming language variables. They are named locations where data
may be stored. There are some slight differences between the way that ATN
registers behave and the way that straightforward local variables behave, but it is
clear that the idea of registers was very strongly influenced by the existence of local
variables, and in virtually all implementations of ATN grammars registers are
implemented by tinkering with the mechanisms by which local variables are
implemented (but see (Ramsay 1985 a) for an alternative option).

Registers can be used in two obvious ways. Firstly they can be used for storing,
and subsequently testing, the values of features such as NUMBER or PERSON which
are subject to agreement constraints. Thus, freely translating the ATN formalism
into English, we might have a rule for sentences which looked something like:

(i) Cross a NP arc.
(ii) Set the value of the register NUMBER to be the same as the value it had
for the NP.
(iii) Cross a VP arc.
(iv) Check that the value NUMBER has on the VP is the same as its current
value.

H.: ATN for a simple sentence

-12-

Here steps (i) and (iii) correspond to the arcs in the recursive network for sentences.
Step (ii) checks the value that NUMBER .had at the point when the NP arc had
been crossed, and copies it to be the current value of NUMBER. We see here that
this register has different manifestations for different networks in just the way that
a local variable has different manifestations for different procedure calls; but that,
unlike a normal local variable, you can access the value that a register had at the
point when the embedded network was crossed. Step (iv) finally checks the number
agreement between subject and verb, by inspecting the value of NUMBER for the
VP and ensuring that it is the same as the recorded value for the subject.

The example above shows one common way of using registers. The other major use
of registers is for recording the function, or role, of some * component of the
analysis. There might, for instance, be a register called AGENT for recording which
of the NPs in a sentence refers to the entity that actually performed the action
referred to by the sentence. For active sentences, the AGENT usually corresponds to
the SUBJECT, i.e. the NP which immediately precedes the main verb. For passive
sentences, the SUBJECT is more usually seen as the PATIENT, i.e. it refers to the
entity on which the action was performed. ATN registers may be used to capture
this notion of the SUBJECT of a passive sentence being the PATIENT 'moved' out
of position as follows:

(i) Cross a NP arc.
(ii) Store the NP as the value of the register AGENT.
(iii) Cross a VP arc.
(iv) If the value of the register VOICE for the VP arc was "passive", copy the
value of AGENT to PATIENT.

L: ATN for passive sentence

It is clear from this example that ATNs facilitate the integration of semantic and
syntactic processing, so that ATN based analyses often blur the distinction between
the two levels. The current example, for instance, mentions the roles AGENT and
PATIENT, which might be regarded more as semantic than syntactic categories. It is
again the fact that the ATN formalism encourages the view of syntactic rules as
parts of a program that leads to the mixing of the two levels, and hence perhaps to
a different view of the function and nature of syntax.

Registers may be used for a number of other purposes. The most important
remaining function for registers is for holding components which have been 'moved'
out of position until they are wanted, e.g. for accounting for topicalisation, as in
Him I don't want to meet, and for relative clauses, as in The man who the woman who
I was talking to used to be married to. Most ATNs use a special register called the
'HOLD' register for this function. HOLD differs from other registers in behaving
more like a 'free' or 'global' variable, in programming language terms, than a local
variable, but it can still easily be seen as a consequence of the translation of

-13-

recursive transition networks into programs. The existence of the HOLD register
raises important questions about the relationship between properties of programming
languages and the development of the syntactic theory. The HOLD register is used to
deal with one of the most difficult questions for any syntactic theory, namely the
apparent movement of syntactic structures. It is hard to escape the feeling that this
particular solution is directly a consequence of the presence, in a particular family
of programming languages, of the notion of a global variable, and that it is not
motivated by much analysis of the way movement rules operate. The ATN
formalism has contributed to the development of syntactic theory by offering a new
view of the role of syntactic rules, and by giving the theoretician new tools, in the
form of facilities from programming languages, with which to describe the linguistic
facts. It may also have led to some rather irrelevant discussion of the best way to
use the HOLD register, when the question that should really be addressed is whether
this register is an appropriate way of dealing with movement rules in the first place.

ATNs were developed to provide a computationally tractable alternative to TG. The
use of registers, which is very largely imported from the use of variables in
ordinary programming languages, allows many of the phenomena described by TG to
be captured in ways which are very similar to the TG characterisations. ATNs have
been widely and successfully used in practical natural language systems (Woods
1973. 1975). and many facets of TG have been recreated within the ATN paradigm.
Until very recently they had few competitors for the role of the syntactic
component of a natural language processing system (although, as we shall see, there
have always been people who have tried to develop natural language understanding
systems with no syntactic component at all). There has. however, always been
some disquiet over the fact that there is no restriction on the programming facilities
that can be called upon to set and test the values of registers. Since we can call
upon any program we like at any point in an ATN. there is no way in which we
can restrict the formal power of the formalism to be less than that of a full
Turing machine. There is also no way that we can be sure that the apparent
structure exhibited by the network is really a good picture of the rules of the
grammar, since it is possible to include arbitrary amounts of processing in addition
to the basic acts of traversing lexical and non-lexical arcs. The next section describes
a number of formalisms influenced by a slightly different programming paradigm
which are claimed to suffer less from these problems, but it remains the case that
most existing practical programs use some form of ATN for their syntactic
component, and that the ATN continues to be a significant candidate for people
wishing to build new systems.

3,2 Unification grammars

ATNs extend the simple notion of phrase structure rule by including the use of
ideas from programming, especially the use of variables in the guise of registers. The
programming ideas that are used in ATNs are very largely those from the tradition
of programming which talks in terms of sequences of actions whose results are
stored in variables, from which they can later be retrieved and tested. There is a

-14-

group of programming languages, exemplified by the logic programming language
PROLOG, in which the notion of a variable is radically different. This alternative
view of variables has been used to develop a number of different ways of extending
the basic phrase structure rule format, as described below.

Under this alternative view, a variable gets a value when an attempt is made to
'unify* it with some object. If you try to unify a variable with something which is
not itself a variable, the effect is very much the same as for ordinary variables -
the object becomes directly associated with the variable, and can be inspected via
reference to the variable. If, however, the thing being unified with the variable is
itself another variable, all that happens is that it is noted that the two variables
must henceforth always refer to the same thing. There are some slight complications,
to do with unifying variables which have previously been unified with other
concrete objects, and with possible circularities which may arise in the process of
unification, but the basic idea is simple. Unification of two objects, whether or not
they are variables, is a matter of seeing whether it is possible for them both to
stand for the same thing, and if so recording that from now on they do in fact do
so. This is so even if they are both variables which have not yet been given values
to stand for. As soon as one of them is unified with something which does have a
value, the note that they must both stand for the same thing means that the other
one must also have the same value. This notion of giving variables values by
unifying them was introduced in the course of work on automatic theorem proving
by Robinson (1965), and is now used as the variable binding mechanism in the
programming language PROLOG.

3.2.1, Definite clause grammar

Unification has also been used to provide a constrained way of using variables
within phrase structure rules. Work by Pereira and Warren (1980) on implementing
an ATN-like grammar in PROLOG led them to a formalism in which the
components of phrase structure rules were supplemented by the presence of sets of
variables. When this formalism, called 'definite clause grammar' (DCG), is used for
parsing, the structure built when a component of the right hand side of a rule is
parsed is unified with its specification. Since the specification will contain variables,
the unification will record facts about the values of those variables - possibly that
they have certain specific values, possibly just that their values must be the same as
those of some other variables. The following DCG rule for a sentence shows how
the formalism captures the facts about subject-verb agreement in English:

sentence -• np(NUM.PERS). vp(NUM,PERS)

J.: DCG sentence rule

We have here a simple phrase structure rule supplemented by the presence of the
variables NUM and PERS (in most dialects of PROLOG variables are marked as

-15-

words with initial upper case letters). The rule for NPs will be expected to return a
structure such as np(singular. first), which can be unified with the expression
np(NUM.PERS) to record the fact that NUM should have the value "singular" and
PERS the value "first". When the vp rule subsequently returns its result, the values
which it provides for NUM and PERS will also have to be "singular" and "first" or
the overall application of the rule will fail.

This use of so-called "logical variables* provides an elegant account of a number of
phenomena, without extending the formal power of the grammatical formalism in an
unrestricted manner. In particular, it makes it possible to deal neatly with cases
where the values of features are unspecified, and it also describes the movements
which the ATN uses the HOLD register for.

To see the first, consider the sentence The sheep are grazing on the far side of the
hill. The* initial NP, the sheep is specified for person, but not for number.
Application of a rule for NPs would return a result like np(_JL, third), where the
symbol starting with an underscore denotes an unnamed variable. The unification of
this with np(NUM, PERS) would simply have noted that NUM had the same value
as this unnamed variable. The VP, are grazing on the far side of the hill, is specified
for number but not person, so a VP rule would return a result like vpCplural, _2) .
Unifying this with vp(NUM. PERS) would ensure that NUM had the value "plural",
which would then be carried over to the variable _ 1 ; and that _ 2 had the same
value as the current value of PERS, namely "third".

The use of logical variables to capture the notion of 'unbounded movement' or
'unbounded dependency' dealt with by the HOLD register in ATNs is rather more
intricate. Essentially it involves using a variable called SLASH for recording items
which have been found 'out of place*, and unifying this variable with components of
the right hand sides of rules to see if the object which was found out of place can
be made use of within the current rule. The following rules illustrate the use of
SLASH for these tasks.

sentence (SLASH) -• np, vp(SLASH),
sentence(fa 1se) -> np, sentence(np).

vp(SLASH) -> v, np(SLASH),
np(np) -• .

K.: SLASH categories in a DCG

In these rules features other than SLASH have been omitted for clarity. The first
sentence rule says that a sentence may consist of a NP followed by a VP, with the
sentence and the VP having the same value for SLASH. The second says that a
sentence with np as the value of SLASH can be turned into one with false as the
value of this feature if it is preceded by an np. This is the rule which captures the
notion of movement, by seeing the initial noun phrase as something which should

-16-

have appeared inside the sentence. By constraining the value of SLASH in the
sentence component of the right hand side to be "np". it indicates that somewhere in
the analysis of this sentence there will be a place where a noun phrase would
normally be required, but where on this occasion it is missing. The verb phrase rule
simply notes that an ordinary verb phrase consisting of a verb followed by a noun
phrase will inherit the value of SLASH from the noun phrase. The noun phrase rule
indicates that one way for a noun phrase to have "np" as the value for SLASH is
for it to consist, in fact, of nothing at all - "a noun phrase missing a noun phrase
is an empty string". There are, of course, other ways for a noun phrase to have
"np" as the value for SLASH, for instance by having a post-modifying relative clause
or prepositional phrase which has "np" as the value for SLASH. It is the fact that
SLASH may be inherited from nested constituents, where the nesting may be
arbitrarily deep, that makes it possible to use it for explanations of unbounded
dependencies.

It is not easy to write rules which refer to SLASH so that they operate correctly,
any more than it is easy to write ATN rules which refer to HOLD. Furthermore, in
both cases the presence of the new feature tends to make straightforward parsing
algorithms far less efficient than they were before it was introduced. Nonetheless,
SLASH has an advantage over HOLD in that it behaves in exactly the same way as
any other logical variable, whereas HOLD does not behave just like any other
register. The behaviour of SLASH in the original presentation of DCG was not
subjected to a more rigorous analysis than the behaviour of HOLD in most
presentations of ATNs, but at least it did not require the importation of any more
notions from programming languages than were already required for other
phenomena.

The DCG formalism makes use of logical variables, then, to perform a number of
the tasks for which ATNs used registers with tests and assignments. There remain a
number of phenomena, such as the relation between active and passive forms,
between questions and assertions, and so on. which cannot be described easily by
anything in the basic DCG formalism. The original presentation of DCGs was forced
to allow rules to include explicit reference to arbitrary PROLOG program text, in
the same way that ATNs allow reference to arbitrary program text. DCGs have
restricted the use of arbitrary program text, but they have not eliminated it. The
next few sections describe work which, from a variety of starting points, has led to
the development of DCG-like formalisms in which the extra complications are
described in a principled way, rather than by recourse to ad hoc programs.

3.2*2. Generalised phrase structure grammar

Generalised phrase structure grammar (Gazdar/Klein/Pullum/Sag 1985), extends the
notation of simple phrase structure grammar in three directions, as follow:

(i) An ordinary phrase structure rule such as

-17-

sentence -• np vp

states that a sentence may be made up of a np followed by a vp. In generalised
phrase structure grammar (GPSG) this statement is split into two components. One,
the 'immediate dominance* rule, says that a sentence may be made out of a np and
a vp - nothing is said about the order in which they are to appear. The other
component, the 'linear precedence* rule, says that WHENEVER a rule refers to a np
and a vp on its right hand side, the np must precede the vp. Splitting the grammar
into two components in this way may seem likely to make it more cumbersome and
less perspicuous. The presence of far-reaching global constraints such as the one
given mean that the two stage format captures a number of regularities which
would otherwise be invisible, and also that the grammars developed tend in fact to
be more, not less, compact than grammars developed without this' separation.

(ii) The •relation between rules dealing with, say. active and passive forms is
captured in GPSG by the presence of 'metarules'. These are rules which specify that
the existence of a rule fitting some pattern entails the existence of another related
rule. Consider the following metarule for passive forms:

VP - W. NP

VP[PASSIVE] - W , (P P ([b y])

L.: passive metarule in GPSG

This rule says that for every rule which says that a VP is made up of some items
plus a NP, there must be a rule which says that a passive VP may be made up of
the same set of items, plus optionally a PP whose preposition is by. In all metarules,
the letter W stands for an arbitrary, possibly empty, collection of items. Note that
metarules are defined over immediate dominance rules, so that a metarule like the
above does not say anything about the ordering relations between the items matched
by W and the NP or PP.

(iii) Finally GPSG attempts to replace the use of arbitrary computations involving
the values of of features by a system of 'co-occurrence restrictions* and other
general principles for determining the possible values for features. In GPSG. as in a
number of other systems which use unification as the method for describing how
feature values are assigned, features may have as their values other features (which
may have other features which may ...). The mechanisms which generate the
allowable values for features are couched entirely in terms of basic logical operators,
such as entailment and equivalence, and simple operations on trees of features. The
rules which are built up using these mechanisms are indeed complex, as the
properties of natural language would lead us to expect; but at least the fundamental
components from which they are built are reasonably restricted and well-defined.

GPSG has received considerable attention within computational linguistics, for a

-18-

number of reasons. Firstly, the formalism does indeed seem to make it possible to
write down concise descriptions of a number of facets of the grammar of natural
languages - a fact which should make the theory of interest to both general and
computational linguistics. It is hard to provide arguments for or against this claim in
the present context - there is insufficient space, and the topic does not really lie
within computational linguistics anyway - but it certainly needs to be considered.
Secondly, it is clear how a grammar specified as a GPSG might be expanded into the
form of either a simple phrase structure grammar, for which efficient parsing and
generation algorithms exist, or a DCG, for which reasonable parsing and generation
algorithms exist. This led to initial hopes that GPSG could easily be used within
practical systems, since 'all' that would have to be done would be to expand the
grammar and plug it into some existing algorithm. In practice this has proved to be
rather an over-optimistic view. A number of people (Thomson 1982. Ramsay 1985
b) have argued that the best way to use GPSG within computational systems is to
expand out the metarules, and then to develop parsing/generation algorithms which
are explicitly aimed at the resulting formalisms. Article 37 discusses a number of
these processing aspects. It is appropiate to note here that the metarules play, in
some sense, a similar role to the transformations of TG. in that they are posited as
explanations of how different surface forms may be intimately related at some other
level. Just as with transformations, the presence of metarules makes processing far
harder than it would otherwise be, and recent versions of GPSG include as few of
them as possible. It is significant that neither transformations nor metarules are now
used to account for passive forms, which are currently taken to be generated from
different starting points from the corresponding actives. The current impression is
that the performance of systems using GPSG is not markedly better than that of
systems using, say. ATNs of similar power and coverage. The third major advantage
of the GPSG formalism is that it was developed with a formal compositional
semantics firmly in mind. It is clearly to GPSG's credit that the connection between
syntax and semantics is recognised as paramount, and that syntactic rules which do
not have semantic signficance are treated as anomalies to be explained. Unfortunately
few of the systems which do make use of GPSG grammars interpret them in terms
of the full semantics. As the performance of GPSG-oriented parsers improves, and
the use of the full semantics becomes more widespread, we will see more systems
using on GPSG. At present its most compelling claim is as a framework for
explaining and describing grammatical phenomena, and as such it may be most
appropriate to judge it from the standpoint of general rather than computational
linguistics.

3.23. Functional unification grammar

Functional unification grammar (Kay 1985) makes use of very similar mechanisms to
GPSG, though with slightly different aims. In functional unification grammar (FUG),
as in GPSG. there are a collection of phrase structure rules which specify how
groups of structures may be combined. Again as in GPSG. the phrase structure
rules are split into two components - a description of the objects that can appear on

-19-

the right hand side of the rules, plus a partial ordering governing the order in
which they may appear. The descriptions of individual structures are couched in
terms of features and their expected values, with the assumption that comparison of
an object with a specification will be done by unifying them. The partial ordering
for a rule is specified within the rule, rather than by global linear precedence rules
as in GPSG. Furthermore, the ordering within a rule is specified in terms of the
roles the structures are to be allocated to. rather than simply in terms of specific
categories being required to precede or follow other categories. In FUG, therefore, it
is possible to write rules in which objects belonging to the same category appear,
and yet to specify that one of them must precede the other. The following pattern
illustrates the format of a FUG rule:

CAT «• S
PATTERN - (... SUBJECT PREDICATOR ...)

«
SUBJECT « [CAT « NP]
PREDICATOR - [CAT - VERB]
MDOD - DECLARATIVE

M.: Subject verb agreement in FUG

In this pattern there are two distinguished features, namely CAT and PATTERN. All
rules have an entry for category, and all rules whose entry for this feature is other
than a lexical class name have a PATTERN (or possibly several PATTERNS, since
the PATTERN is supposed to specify a partial ordering among constituents, and it
may not be possible to specify the appropriate order \yith a single pattern). In the
above rule, the fact that the CAT is S indicates that the rule describes a sentence of
some sort. The PATTERN specifies the partial ordering by stating that there must be
at least two constituents, one of which is the SUBJECT of the sentence and the
other the PREDICATOR, and furthermore that the SUBJECT must immediately
precede the PREDICATOR.

The other components of the rule specify that the SUBJECT must have NP as its
CAT and the PREDICATOR must have VERB as its category, and that the MOOD
of the sentence being described is DECLARATIVE. This rule says a certain amount
about what a sentence is, without attempting to say everything, for instance without
saying anything about voice. Another sentence rule might be written to describe the
form of an active complement-taking sentence, as in

CAT — S
PATTERN - (... PREDICATOR OBJECT ...)

OBJECT - [CAT - NP]
PREDICATOR - [CAT - [VERB - [VOICE - ACTIVE]

[TRANS]]]
VOICE - ACTIVE

N.: Active transitive An FUG

Here we have a description of the relation between the PREDICATOR and the
OBJECT of an ACTIVE sentence. The PREDICATOR is expected tb come immediately
before the OBJECT. The PREDICATOR is again just a verb, but now it has been
specified as one which has the feature VOICE»ACTIVE» and which also has the
feature TRANS, which may or may not have further sub-features. The object is
simply required to be something with CAT-NP, and the whole rule describes a
sentence with VOICE-ACTIVE.

These two rules are orthogonal to one another. One states some constraints on the
items which are to be the SUBJECT and the PREDICATOR of the sentence, the
other states constraints between the PREDICATOR and the OBJECT. Both rules could
be conflated into a single rule which embodied the same set of constraints, e.g.

CAT » S
PATTERN « (... SUBJ PRED OBJECT ...)

SUBJ - [CAT - NP]
OBJECT - [CAT - NP]
PRED - [CAT - [VERB - [VOICE - ACTIVE]

[TRANS]]]
MX)D « DECLARATIVE
VOICE - ACTIVE

O.: conflated rule in FUG

There is nothing in FUG to say whether it is better to keep the rules separate or
combine them. In the above examples, most people would choose to keep the rule
describing the relationship between the SUBJECT and the PREDICATOR separate
from the rule describing the relationship between PREDICATOR and OBJECT, since
the SUBJECT rule is universal (in English) across sentence types, whereas there are
a wide variety of forms for the relationship between the PREDICATOR and its
objects and complements. FUG should perhaps be seen less as a theory of grammar
than as a rather general notation for writing grammars. The distinction is rather
fine. A theory of grammar such as GPSG is supposed to be adequate for capturing
the regularities of all and only the natural languages, whereas a grammatical

-21-

notation like FUG is supposed to be adequate for capturing the regularities of
natural languages. For FUG to form a theory, rather than a notation, it would
probably need to specify more clearly when two rules should be stated separately
and when they should be combined. It should then be possible to see what linguistic
forms FUG ruled as possibilities for any natural language whatsoever, and hence to
regard it as a theory describing the range of possible languages. As it is, it is a
reasonably perspicuous notation which enables the grammar writer to separate out
phenomena as required. Systems using FUG grammars can make use of a number
of well-known parsing techniques (e.g. unification for feature instantiation, chart
parsing for recording well-formed substrings). It is, however, significant that rules of
FUG provide partial descriptions of the structures they are concerned with, for
instance that the rules in figures M. and N. both talk about different constituents of
the same structure. This is a departure from the normal structure of rewrite rules,
and necessitates considerable reorganisation of the parsing mechanisms. Kay (1985)
gives a detailed algebraic analysis of the changes that are involved.

It should finally be noted that FUG permits the presence of semantically motivated
features, and that there is indeed no particular distinction between semantic and
syntactic features. As such the formalism, like that of the ATN. perhaps leads to a
blurring of the distinction between the two levels. It is significant that FUG has
been chosen by a number of workers in language generation for the syntactic
component (see e.g. Appelt (1985)).

3.2.4. Lexical functional grammar

Lexical functional grammar (Bresnan/ Kaplan 1982, Bresnan 1978) is another variant
on the notion that grammars may best be specified in terms of partially ordered sets
of constituents, each described by a set of expected feature values. LFG resembles
GPSG more than FUG. in that it is intended as a grammar rather than just as a
notation. In LFG, as in both the other cases, the grammar has a component
consisting of a set of phrase structure rules and a component for generating new
rules. LFG is much more closely related to transformational grammar than are FUG
or GPSG. and in LFG the phrase structure component corresponds closely to TG's
base component. However, in LFG the component which corresponds to TG's
transformational component is regarded as applying solely to lexical items, rather
than to the trees generated by the base component. In LFG each word has an entry
describing the relations it can enter into with other words or structures. The word
write, for instance, might have entries which specified that it took a subject and an
object (as in he wrote a letter) or a subject, an object and a second object (as in he
wrote her a letter). These would be expressed something like

write » write(Subject. Object)
write - write(Subject. Object. Object2)

The phrase structure rules have associated with them interpretations in terms of the
lexical rules, so that we might have rules like

- 1 1 -

S -> NP VP
(P~Subject)-l PA-I

VP -• verb NP
P*«l (PAObject)-i

VP -> verb NP NP
P"-l (P"0bject2)-l (P*Object)«l

VP -> verb NP PP(to)
P*«l (P*Object)«l (P~Object2)«l

P.: Typical LFG rules

The notation here is slightly confusing. An equation like (P^Subject)^! means that the
item underneath which the equation appears is the subject of the structure described
by the whole rule. One like P**l means that the item underneath which it appears is
to share all feature values with the structure described by the whole rule, e.g. that
in the first rule the VP is to share all features (including Subject) with the S.

The essential point about these rules is that they can be compared directly with the
lexical entries to see if and how a given phrase structure rule can be used to
analyse a fragment of text containing a particular word. With the entry for write
given above, and the given set of phrase structure rules, we see that he wrote her a
letter can be analysed using the second VP rule as a tree roughly like

he

her

Q.: LFG parse tree

so long as the sense of write corresponding to the second lexical entry is taken, the
first NP in the VP is taken to be Object2 and the second NP is taken to be Object.
Similar analyses will show that he wrote a letter to her is acceptable with the second
sense of write, so long as a letter is taken as Object and her as Object2, and he wrote
a letter is acceptable with the first sense of write and a letter as Object. Furthermore
the annotation of phrase structure rules with functional roles leads to an
understanding of how the syntactic forms encode semantic functions. It is important

-23-

to LFG that the equations attached to phrase structure rules provide a clear and
precise semantics, in terms of the mathematical notion of a function. These equations
can be used with the lexical entries to filter out inappropriate senses of words and
unacceptable applications of phrase structure rules, and hence to constrain the parsing
process; to govern the process of semantic interpretation; and to indicate how to
choose phrase structure rules to expand functional equations into lexical strings.

LFG originated as an attempt to retain as much as possible of transformational
grammar, whilst making parsing and generation more manageable. The biggest change
from TG to LFG is the requirement that the 'movement transformations* should be
embodied as annotations of the phrase structure rules. This means that there is no
need to try arbitrary transformations during the course of analysis or generation.
Instead a static set of phrase structure rules are used, with the annotations being
used to filter out unacceptable applications of rules. It would be fair to contrast
the following diagram of the information structures in LFG with figures D. and F.
for TG.

MEANING REPRESENTATION

I
LEXICON

i
ANNOTATED PHRASE STRUCTURE RULES

SURFACE FORMS

R:. Information structures in LFG

From this diagram we get a clear view of how LFG might be used within a
processing framework, and as such the influence of LFG within computational
linguistics should come as no surprise. It is. clearly, still necessary to show that
LFG does provide a framework within which the real rules of grammar can be
specified. Much of the early argument for LFG was concerned to show that it was
indeed possible, and even desirable, to replace the transformational component by
constraints on the forms associated with lexical items (Bresnan 1978, Bresnan 1982).
The reason for LFG's impact on computational linguistics is. as with the other
unification grammars, that it provides similar descriptive power to TG without
asking computationally unsolved questions about parsing and generation.

All the four unification formalisms we have looked at (DCGs. GPSG, FUG, LFG)

-24-

have been influenced by the presence of unification as a means of constraining values
without overspecifying them ahead of time; and by the existence of efficient
algorithms for parsing context free grammars. There has been some progress both in
using the formalisms for developing significant grammars for English and other
languages, and in employing the parsing and generation techniques with these
grammars. It would be premature to suggest that any of the grammars so far
developed for any natural language is anywhere near complete; or that the programs
which use the grammars we do have are anything like as efficient or robust as we
would like. The biggest single problem with all the algorithms for parsing grammars
written in these formalisms is to do with the analysis of 'unbounded depndencies" in
terms of some category such SLASH (see section 3.2.1). Joshi (1985) presents a
formalism called 'tree adjoining grammar' (TAG) which, like GPSG, is intended to
capture the same regularities as are covered by TG without extending the power of
the grammar much beyond a simple context free language. TAG deals with
unbounded dependencies in a way which does not significantly increase the
theoretical worst case time for parsing, but the discussion in (Joshi 1985) does not
present a concrete parsing algorithm, nor does it deal with the behaviour of other
features within the formalism. As such, although TAG seems to have some potential
it does not yet seem sufficiently developed to warrant detailed discussion in the
present context.

33 Processing systems

The above discussion does not exhaust the range of syntactic theories that have been
employed within computational models of language processing. It does, however,
cover the majority of purely syntactic theories which have been significantly
influenced by the computational paradigm. We will end this article with a
consideration of two further purely syntactic models for which this paradigm has
indeed been significant, but before that we must remark upon the number of
language processing systems which have attempted to deny the very existence of a
separable syntactic level. These systems frequently take as their starting point
Fillmore's 'case grammar* (Fillmore 1968). It would be inappropriate to go into
detail about the components of Fillmore's theory here, since the theory is not purely
concerned with syntax, and has anyway not undergone any radical changes as a
result of computational influences. It must, however, be noted that large numbers of
computational models of language processing have taken the view, with regard to
syntax, that purely structural rules are not of interest, and that all analysis should
be couched directly in terms of semantic features and functions (see for instance
(Hendrix 1977). Wilks (1975. 1977). Reisbeck (1978). Rieger(1975)). If these workers
are correct in their analysis, the entire area discussed in this article is an artefact of
the linguistic research community, and not something which should be studied at all.
The justification for this view is considered in article 32. Its significance for the
current discussion is manifest.

3.4 Systemic grammar

Of the remaining syntactic theories to • be considered here, systemic grammar
(Halliday 1985. Halliday/Martin 1981, Hudson 1971) is another attempt to include
some understanding of how rules encode information in a theory of grammar.
Systemic grammar is directed especially at understanding how grammatical structure
encodes not just the relations between the entities being discussed, but also the
relations between these entities and the speaker and listener, and the relations
between the speaker, the listener and the state of the discourse. Once it is realised
that structural organisation can be used to convey many things at the same time it
becomes apparent that a theory of grammar must show not just how each particular
thing is encoded, but also how different sets of encodings can be co-ordinated in the
same surface string. Halliday (1985) devotes at least as much4effort to describing
how different forms encode different relationships between clauses, and to how
syntax carries information about message structure and discourse, as to the internal
structure of a single clause. Foley and Van Valin (1984) also argue that the
function of different surface forms is to make it possible to encode different facets
of meaning simultaneously.

Systemic grammar is presented in terms of sets of choices to be made by the
speaker and recognised by the hearer. Since different choice sets encode different
aspects of what is being said, and yet may constrain the form or order of the same
words in the output string, the generation or analysis of a particular string may
involve problem solving along a number of dimensions. The first, and best known,
computational system to use a systemic grammar as its syntactic component is
Winograd's SHRDLU system (Winograd 1972). The grammar used in this system was
indeed couched at least partly in terms of choice sets, encoded in a special
programming language called PROGRAMMAR. Winograd argued strongly in favour of
the approach embodied in systemic grammar, namely that grammar carries more
information than just the propositional content and mood (i.e. whether a clause is
declarative, imperative, a question, or whatever) and that the rules of the grammar
should show how different choices contribute to different aspects of meaning. Within
Winograd's system, the extra representational power of systemic grammar is used
within his theory of 'procedural semantics' (discussed in articles 34 and 38) to
allow the semantic component to build into its representations aspects of the
function of the input text which are easily extracted from systemic analyses of its
structure. There is here, as in FUG. a close connection between the semantic theory
chosen for a particular computer implementation and the syntactic theory chosen to
support the implementation. Similarly in recent work on language generation
(McDonald 1983, Patten 1985) and participation in connected discourse (Sidner 1983,
Webber 1983) it is argued that the topics addressed by systemic grammar must be
dealt with if computer processing of language is to progress beyond the
comprehension of simple isolated sentences. As soon as we start trying to deal with
extended texts, either understanding them or generating them, it becomes apparent
that syntactic choices do more than just carry propositional content and mood. One
of the major messages of computational linguistics for syntactic theory is that the

-26-

theory must be sensitive to facets of language beyond merely distributional facts
about structure, and even beyond facts about the interpretation of sentences in
isolation. The notions which systemic grammar is concerned with are becoming more
and more important to computational linguistics, though the existing presentations of
the theory tend to be rather informal (though comprehensive) and hence in need of
considerable reworking before they can actually be used.

3.4.I. Deterministic parsing

We end by considering a theory (Marcus 1980) whose intent is to show that a
number of syntactic universals follow directly from the computational properties of
a specific parsing algorithm. This strategy is perhaps the most clear-cut way in
which computational theories might be used for the development of syntactic theory
- if a linguistic property can be shown to be an inevitable consequence of a
particular parsing strategy then the parsing strategy can be taken as a tentative
explanation of the property. Marcus presents a parser which has been carefully
constructed so that it can delay making decisions about the type or function of the
syntactic structure it is working on until it has enough information to make the
right decision. The initial motivation for constructing the parser in this way is the
folk-psychological observation that people report a difference between easy to
understand sentences and 'garden paths' like the notorious the horse raced past the
barn fell, for which most people who can understand it all report that they were
conscious of having to re-parse it.

Marcus' strategy is to define an architecture for a parsing engine, which is offered as
a model of the human parsing mechanism; to develop a particular grammar, in the
form of a set of conditionraction rules, which is offered as a subset of the grammar
of English, to show that the architecture is at least plausible; and then to argue that
a number of Ross' constraints on transformations would be inevitable if this were in
fact the architecture which was used. The details of this parser, which is closely
related to a class of parsing algorithms known as LL(K) and LR(K) parsers, are
discussed in chapter 37. The most significant thing from the point of view of the
current article is that the grammar Marcus develops is written in as a set of
condition:action rules. This is inevitable, since his predictions about difficulty of
parsing are derived precisely from considerations about the amount of storage space
available and hence the relative difficulty of delaying a decision on which rule to
apply. It unfortunately makes it almost impossible to tell exactly what can be dealt
with and what cannot, just as was the case for Riesbeck's conceptual analyser - the
details of what can and cannot be parsed by a particular grammar written for
Marcus' architecture depends on the detailed timing of when items appear in the
various temporary workspaces, which can only be investigated by trying it out. This
matters more for Marcus than for Riesbeck. Marcus explicitly wants to show that
his program deals with the same range of phenomena as other systems, but that his
seldom makes mistakes about how the analysis should proceed. It does build purely
structural descriptions, but since the grammar is implicit in the dynamic behaviour

-27-

of the rule set it is still virtually impossible to see which examples it does cover
correctly and which it does not. This work has considerable implications for
linguistic theory, in its attempt to show that phenomena which might otherwise be
hard to explain follow from computational properties of the parsing mechanism. It
has also led to a number of computational models of language acquisition, e.g.
(Berwick 1985), which are not open to the criticisms offered by Wexler and
Culicover. It does, however, require a new method of assessment, given the difficulty
noted above of predicting its coverage of linguistic phenomena. It should also be
noted that recent developments in TG have argued that some of Ross* constraints on
transformations should be seen as side effects of rules in other parts of the grammar
(such as case filters and binding rules). The relationship between developments in TG
and changes in Marcus* theory is not clear.

4 Literature (selected)
•

Akmajian, Adrian/Heny, Frank (1975): An introduction to the principles of
transformational grammar. Englewood Cliffs, New Jersey.
Appelt. Douglas E. (1985): Planning English sentences. Cambridge.
Becker, Joseph D. (1975): The phrasal lexicon. In: Theoretical advances in natural
language processing 1. Cambridge, Mass., 70-73.
Berwick, Robert C. (1985): The acquisition of syntactic knowledge. Cambridge, Mass.
Boguraev. Branimir K. (1979): Automatic resolution of linguistic ambiguities.
Technical report 11, University of Cambridge Computer Laboratory.
Bresnan, Joan W. (1978): A realistic transformational grammar. In: Linguistic theory
and psychological reality. Halle, M./Bresnan, J.W./Miller, G.A., eds., Cambridge,
Mass.. 1-58.
Bresnan, Joan W./Kaplan, Ron (1982): Lexical functional grammar; a formal system
for grammatical representation. In: The mental representation of grammatical relations.
Bresnan, J.W,. ed. Cambridge, Mass.
Charniak, Eugene/McDermott, Drew V. (1985): Introduction to artificial intelligence.
Reading, Mass.
Chomsky. Noam (1965): Aspects of the theory of syntax. Cambridge, Mass.
Chomsky. Noam (1981): Lectures in government and binding. Dordrecht.
Chomsky, Noam/Lasnik, Howard (1977): Filters and control, Linguistic Inquiry 5.
425-504.
Dowty. David R./Wall Robert/Peters, Stanley (1981): Introduction to Montague
semantics. Dordrecht.
Fillmore, Charles J. (1968): The case for case. In: Universals in linguistic theory.
Bach. E./Harms, R.T.. eds.. New York. 1-90. ,
Foley, William A./Van Valin, Robert D. (1984): Functional syntax and universal
grammar. Cambridge.
Friedman, Joyce (1969): Directed random generation of sentences. In: Communications
of the Association for Computing Machinery 12, 40-46.

Gazdar, Gerald/Klein, Ewan/Pullum. Geoffrey K./Sag. Ivan.A (1985): Generalised
phrase structure grammar. Oxford.
Halliday, M.A.K. (1985): An introduction to functional grammar. London.
Halliday. M.A.K./Martin. James R. (1981): Readings in systemic linguistics. London.
Hendrix. Gary G. (1977): The LIFER manual: a guide to building practical natural
language interfaces. Technical note 138. Artificial Intelligence Center, SRI
International.
Hudson, Richard A. (1971): English complex sentences: an introduction to systemic
grammar. Amsterdam.
Hudson, Richard A. (1984): Word grammar. Oxford.
Joshi. Aravind (1985): Tree adjoining grammars. In: Natural language parsing.
Dowty, D.R./Karttunen L./Zwicky A.M., eds.. Cambridge, 206-250.
Kay, Martin (1985): Parsing in functional unification grammar. In: Natural language
parsing. Dowty, D.R./Karttunen L./Zwicky A.M.. eds., Cambridge, 251-278.
Marcus, Mitch P. (1980): A theory of syntactic recognition for natural language.
Cambridge. Mass.
McDonald, David D. (1983): Natural language generation as a computational
problem: an introduction. In: Computational models of discourse. Brady,
J.M./Berwick, R.C., tds., Cambridge. Mass., 209-264.
Montague, Richard (1974): Formal philosophy. New Haven.
Muraki, Kazunori/Ichiyama, Shunji/Fukumochi, Yasutomo (1985): Augmented
dependency grammar: a simple interface between the grammar rule and the
knowledge. In: Proceedings of 2nd European conference on computational linguistics,
198-205.
Patten. Terry (1985): A problem solving approach to generating text from systemic
grammars. In: Proceedings of 2nd European conference on computational linguistics,
251-257.
Pereira, Fernando C.N/Warren, David H.D. (1980): Definite clause grammars for
language analysis-a survey of the formalism and a comparison with augmented
transition networks. In: Artificial Intelligence 13(13), 231-278.
Petrick. Stanley (1973): Transformational analysis. In: Natural language processing.
Rustin. R.. ed.. New York. 27-41.
Radford. Andrew (1981): Transformation syntax, Cambridge.
Ramsay. Allan M. (1985 a): On efficient context switching. In: The computer journal
28(4). 375-378.
Ramsay. Allan M. (1985 b): Effective parsing with generalised phrase structure
grammar. In: Proceedings of 2nd European conference on computational linguistics, 57-
61.
Rich, Elaine (1983): Artificial Intelligence. New York.
Rieger. Charles (1975): Conceptual memory and inference. In: Conceptual information
processing. Schank. R.C., ed.. New York, 157-288.

Riesbeck. Christopher K. (1978): An expectation-driven production system for natural
language understanding. In: Pattern directed inference systems. Waterman,
D.AYHayes-Roth. R.. eds., New York. 399-414.
Robinson. J.A (1965): A machine-oriented logic based on the resolution principle. In:
Journal of the Association of Computing Machinery. 12(1). 23-41.
Ross, John R. (1986): Infinite syntax, Cambridge. Mass.
Schank. Roger C. (1975): The primitive ACTs of conceptual dependency. In:
Theoretical advances in natural language processing 1, 38-41.
Schank. Roger C./Riesbeck Christopher K. (1981): Inside computer understanding: five
programs plus miniatures. New Jersey.
Sidner. Candice L. (1983): Focusing in the comprehension of definite anaphora. In:
Computational models of discourse. Brady. J.M./Berwick. R.C., eds.. Cambridge. Mass.,
267-328.
Simmons. Robert F. (1973): Semantic networks: their computation and use for
understanding English sentences. In: Computer models of thought and language.
Schank. R.C./Colby. K.M.. eds.. San Francisco. 63-113.
Thomson. Henry (1982): Handling metarules in a parser for GPSG. Department of
Artificial Intelligence Report 175. University of Edinburgh.
Webber. Bonnie L. (1983): So what can we talk about now? In: Computational
models of discourse. Brady, J.M./Berwick. R.C., eds., Cambridge. Mass.. 331-370.
Weizenbaum. Joseph P. (1966): ELIZA. In: Communications of the Association for
Computing Machinery 9, 36-45.
Wexler, Kenneth/Culicover. Peter W. (1980): Formal principles of language acquisition,
Cambridge. Mass.
Wilensky, Robert (1978): Why John married Mary: understanding stories involving
recurring goals. In: Cognitive Science 2. 235-366.
Wilks. Yorick (1975): A preferential, pattern-seeking semantics for natural language
inference. In: Artificial Intelligence 6, 53-74.
Wilks, Yorick (1977): Time flies like an arrow. In: New Scientist 76. 696-698.
Winograd. Terry (1972): Understanding natural language. New York.
Winograd. Terry (1982): Language as a cognitive process. Reading. Mass.
Woods. William A. (1970): Transition network grammars for natural language
analysis. In: Communications of the Association for Computing Machinery 13. 591-606.
Woods. William A. (1973): Progress in natural language understanding: an application
to lunar geology. In: Proceedings of the American federation of information processing
societies conference 42. 441-450.
Woods. William A. (1975): SPEECHLIS: an experimental prototype for speech
understanding research. In: IEEE transactions on acoustics, speech and signal
processing 23(1), 2-10.

