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Abstract

KR is a very efficient semantic network knowledge representation language implemented in Common
Lisp. It provides basic mechanisms for knowledge representation which include user-defined inheritance,
relations, and the usual repertoire of knowledge manipulation functions. The system is simple and
compact and does not include some of the more complex functionality often found in other knowledge
representation systems. Because of its simplicity, however, KR is highly optimized and offers good
performance. These qualities make it suitable for many applications which require a mixture of good
performance and flexible knowledge representation.



1. Introduction

The Dante Project [Giuse 86] is a broad investigation into the issue of building man-machine interfaces.
Having developed and refined user-interface techniques, we now intend to combine what we have
learned into one integrated environment: the Uniform Workstation Interface. The Uniform Workstation
Interface will provide an integrated interface system for a very heterogeneous environment of
workstations and multiprocessors connected through a local area network.

Work within the Dante Project proceeds along several dimensions. One such dimension is the
development of so-called interactions styles, i.e., the basic components that together form the Uniform
Workstation Interface. Each interaction style corresponds to a traditional user interface paradigm such as
form filling or menu selection. Another dimension is the integration of the different interaction styles into a
coherent unit. Our strategy is to achieve this goal through a common representation system that
underlies the different components of the Uniform Workstation Interface. This representation system
serves two purposes: It allows the different components to communicate with one another, and it provides
an explicit representation of the user and the computing environment.

The knowledge representation system we are developing is named KR and is described in this document.
It is implemented in Common Lisp[Steele 84] and provides compact, very efficient knowledge
representation. KR was specifically developed with interactive applications in mind, and thus good
performance was the primary design concern.

In spite of its simplicity, KR has many potential applications outside the immediate Dante environment. It
is fairly well integrated with LISP and provides a natural extension of the LISP philosophy. Because of its
efficiency, KR is ideally suited for a number of applications which require flexible representation of
knowledge but cannot afford the performance overhead often associated with full-fledged knowledge
representation systems. Moreover, KR is entirely written in portable Common Lisp and thus can be used
for a wide variety of situations.

The first section of the document presents the general principles behind the design of KR and its
relationship with similar knowledge representation systems. The following section describes the main
concepts of the system, including the notions of schema, slot, value, inheritance, and relation. The
central portion of the document describes in detail the functional interface to the system and gives a
complete specification of ail the functions that comprise the interface. The following section describes
how to load the system and presents several points about the best way to use KR to represent
knowledge. Finally, the last section presents an evaluation of the actual performance of the system.

2. The KR Philosophy

This section briefly describes the most significant design choices in KR. Such choices have a profound
effect on both the internal design of the system and on the appearance of user-level code that uses it. In
this section we will assume that the reader is familiar with at least the general concepts of knowledge
representation, and especially semantic network systems.

2-1 Structure of the System

KR is a knowledge representation system implemented in Common Lisp. It can be described as a
semantic network system, since it stores knowledge as a network of chunks of information. Such
systems are often referred to as Irame systems*.



The main feature of semantic network systems is the flexibility they provide in representing knowledge.
Unlike more traditional data-storage systems, such as for instance relational data bases, semantic
networks are built out of completely unstructured chunks. Each chunk (known as a frame or schema) can
store any arbitrary piece of information and is not in any way restricted to a particular format or data
structure. The general way to represent information is as attribute-value pairs.

A program or user is free to use a schema in any given way and to store as much information as needed
in it. Moreover, schemata1 can be modified as needed, even after they have been created. Relational
data bases, by comparison, force each chunk to be in one of a small group of possible formats, and the
format of a chunk cannot be modified after creation.

The other important property that KR shares with most semantic network systems is that certain values in
a schema can be interpreted as links to other schemata. This enables the system to support very
complex network structures, which can be freely extended and modified by application programs. KR
provides simple mechanisms that enable an application program to specify the structure of a network and
how the system should handle the existing knowledge.

2.2 Simple versus Complex

KR is a very simple knowledge representation system. Simplicity results in two desirable properties: The
system is easy to maintain and extend, and it performs fairly well. While the first property is intuitive, the
second property deserves a little explanation.

It is certainly true that fine-tuning a simple system for performance is easier than fine-tuning a complex
system. This is indeed what happened with KR, which we first implemented in a straightforward way and
then fine-tuned very extensively to achieve good performance.

A common objection to this approach, however, maintains that where a simple system fails to implement
a particular functional capability the application program must implement that capability itself. This might
conceivably introduce an overall loss of efficiency. Advocates of this objection conclude that a knowledge
representation system must implement all possible functions that will ever be required.

We believe that this argument is flawed. Our personal observation has been that it is quite difficult to
provide simultaneously the right type of extended functionality and the right performance. The crucial
problem is that system implementors often cannot anticipate exactly how the extended functionality will be
used; as a result, they have to implement it in a completely general fashion. In most situations,
unfortunately, complete generality means poor performance. Given any particular problem, system-
defined general purpose solutions are typically inferior to solutions that use problem-specific information
In some sense, system-defined general purpose solutions are equivalent to brute force algorithms, since
they have no information whatsoever about the particular problem.

The ironical consequence is that the "extended" functionality often gets bypassed completely fcr
performance reasons, and users end up implementing it differently. What was supposed to alleviate the
problem ends up making things worse: Application programmers go through the frustration of first basing
their code on system-defined functionality, then finding out that ft is too slow, and finally having to re-
implement it In an ad-hoc fashion.

KR takes an entirely different approach. It recognizes that extended functionality cannot be Implemented
efficiently without detailed knowledge of how it will be used. KR, therefore, makes it easy for an

'The plural of schema is schemata



application program to implement particular solutions, but does not try to provide a "complete" set of
solutions for all possible problems. Rather than providing a monolithic system, complete unto itself, KR
simply extends the LISP language. Functions expressible in LISP are never duplicated, and the system
only implements the lowest level of knowledge representation.

A consequence of this design choice is that the application developer must be more involved with the
details of the implementation. This seems entirely logical, however, in view of the previous
considerations: The application developer has much better knowledge of the particular problem, and can
ultimately provide a more efficient solution.

2.3 Error Handling

Most Algol- and Pascal-like programming languages perform type checking at compile time, the idea
being to catch errors as soon as possible. One could say that such systems assume that the programmer
is in error, unless proven otherwise. This idea is reasonable for novice programmers but is overly
restrictive for experienced programmers. Significant portions of most large Pascal programs, for instance,
are purely devoted to type conversions among similar objects (such as arrays of the same basic type that
simply happen to have a different number of elements).

LISP, on the other hand, takes an entirely different approach: type checking is performed at run-time.
Rather than trying to prevent errors at any cost, LISP gives the programmer more freedom and simply
informs him or her when an error does occur. To put it differently, LISP assumes that the programmer is
right unless proven otherwise.

A similar dichotomy exists in knowledge representation systems. Some systems (such as SRL [Wright
and Fox 83] and CRL [Carnegie Group 86], for instance) take the position that the programmer is wrong
unless proven otherwise. In CRL, for example, one cannot assign a value to a slot in a schema2 without
first creating the slot. Failure to do so causes an error, unless the programmer explicitly overrides the
default.

Unlike those systems, KR follows the LISP philosophy when handling errors: it assumes that what the
programmer is doing is correct, and tries to do the reasonable thing if possible. One could view this as a
simple form of "Do What I Mean" (DWIM) behavior. As an example, consider again the case where a
programmer tries to assign a value to a non-existing slot in a schema. Rather than generating an error,
KR first creates the slot and then gives it the new value. This is almost always the behavior the
programmer intended.

A consequence of this approach is that traditional patterns of usage become simplified. To continue our
example, the typical pattern for assigning a value to a slot in CRL is as follows:

• Create an empty slot;
• Assign a new value.

or (even worse in terms of performance and code legibility):
• Check to see if the slot exists;
• If not, create an empty slot;
• Assign a new value.

The complexity arises purely from the desire to prevent error messages, rather than from the problem
itself. The corresponding code in KR, on the other hand, is simply a value assignment. The programmer
can assume that if the slot is not there the system will do the right thing and create the slot before using it.

2SBQ betow for an explanation of terms §te rafee, sht and schema.



We believe that this approach is more intuitive and leads to a more natural programming style.

3. Main Concepts in KR

3.1 Schema, Slot, Value

Knowledge in KR is represented as a network of schemata. The schema data structure is the basic unit
of representation and consists of a name, a set of slots, and a set of values for each slot.

The user can assemble a network of schemata by using a schema name as the value in the slot of
another schema, which causes the two schemata to become linked. Networks that correspond to
arbitrarily complex graphs can be constructed this way.

The name of a schema is always a symbol. In particular, we recommend that users employ only
keywords as schema names. This choice makes any schema directly accessible from any Lisp package.
It also has another advantage: it reduces the possibility of conflicts. In the current implementation of KR,
slots and values are stored on the property-list of the schema name. Using keywords, which normally
have empty property-lists, makes conflicts with existing symbols much less likely.

A schema may have any number of slots, which are simply attribute-value pairs. The slot name indicates
the attribute name; the slot values (if any) indicate its values. Slot names are also symbols, and again we
recommend that keywords be used. All slots in a schema must have distinct names, but different
schemata may very well have slots with the same name.

Each slot can contain zero or more values. Values are the actual data items stored in the schema, and
may be of any Lisp type. KR provides functions to add, delete, and retrieve values from a given slot in a
schema.

The printed representation of a schema shows the schema name followed by slot/value pairs, each one
on a separate line. The whole schema is surrounded by double curly braces. Consider a schema tor-
John's pet, Fido:

{{fido
;is-a :dog :pet
:owner :John
:color :brown
:age 5

The schema is named .FIDO and contains four slots, named is-a, owner, color, and age. The slot age
contains one value, the integer 5. The slot color also contains one vafue, the keyword SRGWM. The slot
is-a contains two values, .-DOG and :PET.

3.2 Inheritance

The main function of values is to provide information about the object represented by a schema. In the
previous example, for instance, a query for Fido's age would return the value M5W.

Values can also perform another function: They can establish connections between schemata. Consider
the owner slot in the example above: if we interpret :JOHN as a schema name, than the slot tells us that



the :FiDO schema is somehow related to the :JOHN schema. Given the name of the slot, we might
reasonably assume this to mean that John owns Fido.

KR makes it possible to use such connections to perform inheritance, i.e., to control the way information
is inherited by a particular schema from some other schema to which it is connected. Inheritance allows
information to be arranged in a hierarchical fashion, with lower-level schemata inheriting most of their
general features from higher-level nodes and possibly providing local refinements or modifications. A
connection that enables inheritance of values is called a relation (see section 3.3).

3.2.1 An Example of Inheritance
The most common example of inheritance is provided by the is-a relation. If schema A is connected to
schema B by the is-a relation,3 then values that are not present in A may be inherited from B.

Consider, for instance, the :RDO schema in our previous example. If we were to ask "How many legs
does Fido have?11 we would not be able to find the correct answer by just looking at the :Fioo schema. Let
us suppose, however, that we had also defined another schema:

{{dog
: i s - a : :rnainmaLl
:owner:
: l e g s : 4}}

Since we said that Fido is-a dog, the value can be inherited from the :DOG schema through the is-a slot.
The answer would thus be "Fido has 4 legs." Inheritance is possible in this case because is-a is defined
by the system to be a relation.

3.2.2 The Role of Inheritance
Inheritance achieves three purposes: It reduces network size, it helps maintain consistency, and it allows
local knowledge to override global knowledge. That inheritance reduces network size is obvious, since
whenever a piece of information for a schema is the same as in a more general one, we need not repeat
it in the more specialized schema. In the example above, we do not say that Fido has four legs, nor that
it has a tail or that it barks. :Fioo can inherit all of these properties from the parent concept :DOG.

Inheritance helps maintain consistency because it allows any piece of information to be stored only once.
When a change is needed, the information is simply modified in one place. Multiple updates are
unnecessary since the change will be immediately apparent in the rest of the network.

Finally, inheritance allows local redefinition of global knowledge. A particular schema can assert a
different, local value for some piece of inherited knowledge by simply providing a local slot with the same
name and a new value. Its children would then inherit the new value, since the inheritance process stops
as soon as a value is found.

3.3 Relations

Slots like is-a that enable knowledge to be inherited from other parts of a network are called relations.
Inheritance along a relation is typically defined to proceed depth-first and may include any number of
steps (in other words, the search terminates if a value is found or if no other schema can be reached via
the relation).

3In other words, if the name of f ie schema B appears as a value in the is-a slot of schema A.



KR allows the user to define new relations as desired. This is achieved through the function
create-relatfon (see section 4.4), which performs all the necessary bookkeeping operations.

Any relation, including user-detined ones, may be declared to have an inverse link. If this is the case, KR
will automatically generate an inverse link any time the relation is used to link one schema to another
Imagine, for instance, that we defined pet-ofto be a relation having has-pet as its inverse. Writing :JOHN

in the pet-of slot of :FIDO would automatically add :FIDO to the has-pet slot of JOHN, thereby creating a
reverse link.

3.4 Link Maintenance

KR automatically maintains all the links and inverse links described above, and the application
programmer does not have to worry about them. This is probably one of the most convenient features of
the system.

Imagine, for instance, that the two schemata A and B are linked by a certain relation and inverse relation
This means that schema A will have the name of schema B as the value in one of its slots. If the program
decides to delete schema B, then, it is essential that the link from A to B also disappear. Failure to do so
would cause the reference in A to be dangling: it would be an error to try to follow the reference, since the
schema being pointed to (i.e., B) would no longer exist.

KR carefully keeps track of similar situations whenever they occur and corrects them instantly. The KR
function that deletes schema B will automatically follow all the reverse pointers and make sure that any
reference to B disappears as well.

In a similar manner, whenever the name of a schema is assigned as a value to a slot which happens to
be a relation, KR automatically creates an inverse link. This ensures that the state of the knowledge
representation system is completely consistent at any point in time, independent of the particular
sequence of operations.

4. Program Interface

The KR program interface allows a program or a user to create and modify schemata, slots, and values.
The interface is available as a set of functions defined and exported by the MKRM package. See section
5.1 for instructions on how to load KR onto your system.

4.1 Notation

In order to simplify the notation we will use the following conventions:

• The notation <ohject> indicates any Lisp object, which may or may not be a schema.

• The notation <schema> indicates that a function expects a valid schema as an argument.
An error will typically be signalled if this Is not the case.

« The notation <slot> indicates a valid slot name for a schema, i.e., a symbol (and more
specifically a keyword)-

• The rotation <schema~name> Indicates that a valid name for a schema (i.e., a keyword)
must be supplied. It is not necessary for a schema by that name to already exist.

The notation *»> w will indicate the result of evaluating a LISP form. The notation n<~>m will indicate that



two forms are equivalent, i.e., one produces exactly the same effect as the other. Finally, the LISP
comment line "; prints:11 will be used to indicate the printed output produced by evaluating a LISP
expression.

4.2 Example Schemata

The following sections use certain schemata as examples. We present here the definitions of those
schemata once and for all:

;;; Define -the : OWNER relation and its inverse, : HAS-PET.
(create-relation :owner T '(:has-pet)) ; T means inheritance is on.

(create-sehema :dog
(:is-a :mammal)
(:legs 4)>

(create-sehema :£ido
(:is-a :dog)
(:owner :john)
(:age 4.5))

(create-sehema :John
(:is-a rperson :lawyer)
(:address "13 Elm Street11))

Figure 4-1 shows all the user-defined schemata after those definitions have been executed. Relations
are indicated as an arrow going from a schema to the one it is related to.

:1s—a sdogr
;owner :John
sage 4,5

.-OWNER

is—a :relation
inverse :has-pet'

:HAS-PET

is—a :mammal
legs :4
is~a-inv :fido

:is-a :relation
:inverse :owner

:LAWYER

:is—a :person :lawyer
-.address "13 Elm Street"
:has-pet :fido

:is-a—inv riohn

Figure 4-1 : The resulting network of schemata



4.3 Predicates and Query Functions

The functions in this group give information about a schema or a slot. All functions whose name ends in
M-P" are predicates, i.e., they return a value which is simply used as a Boolean.

(SCHEMA-P object) [Function]
A predicate that returns NIL if <object> is not a valid schema, non-nil otherwise.
Examples:

(schema-p :fido) => T ; or a system-dependent non-nil value
(schema-p : waffle) => NIL

(RELATION-P object) [Mam]
A predicate that returns NIL if <object> is not a relation, or a non-nil value if it is the name of a schema
and the schema is declared to be a relation.
Examples:

(relation-p : has-pet) => T
(relation-p : color) => NIL

(IS-A-P schema 1 schema?) [Function]
A predicate that returns T if <schema1> is related to <schema2> by the is-a relation, either directly or
through an inheritance chain.
Examples:

(is-a-p :fido :dog) => T
(is-a-p :fido :mammal) => T
(is-a-p rfido :canine) ==> NIL

(HAS-SLOT-P schema slot) [FunctM
A predicate that returns T if the <schema> contains a slot named <slot>, NIL otherwise. Note that <sto!>
must be local to <schema>, and inherited slots are not considered.
Examples:

(has-slot-p :fido :is-a) => T
(has-siot-p :£ido :legs) ==> NIL ; Slot is not local

(GET-SLOTS schema) [Function
Returns a list of all the slot names in <schema>. The list only includes locaT slots and does not report
slots that might be inherited.
Example:

(get-slots rfido) —> (:AGE :OWNER :XS-A}

(GET-ALL-SLOTS schema!) {Macrc:
Returns a list of all the slot names in <schema>, including slots that are not local but may be fnherrec
through an inheritance chain.



Example:

(get-all-slots :fido) =>
(:LEGS :HAS-PET :IS-A-INV : IS -A rADDRESS :OWNER :AGE)

Note that the example above returns a somewhat surprising list of slot names for :fido (including :has-
pet). This is because we declared :owner to be an inheritance relation.

(PS object) [Function]
Prints out the current schema corresponding to <object>, if one exists, or nothing if <object> is not a valid
schema.
Example:

(ps :fido) ; prints out:

{{FIDO
AGE: 4.5
OWNER: :JOHN
I S - A : :DOG

4.4 Schema Manipulation Functions

This group includes functions that create, modify, and delete whole schemata. The function
create-relation does so implicitly, since relations are also represented by KR as schemata.

(CREATE-SCHEMA schema-name &rest slot-definitions) [Macro]
This macro creates and returns a new schema named <schema-name>. <slot-definitions>J if present, are
used to create new slots and values for the schema. Each slot definition should be a list whose CAR is
the name of a slot and whose CDR is a (possibly empty) list of values for that slot.
Note: if <schema-name> already exists, the schema is modified in place and will contain the union of its
previous slots and the slots specified by create-schema. Previous slots which are mentioned in the call
will retain whatever values they had before the operation.
Example:

(create-schema :timmy (:is-a :cat) (:age 1.5) {:color :brown :white))

(CREATE-FRESH-SCHEMA schema-name &rest slot-definitions) [Macro}
This function is similar to CREATE-SCHEMA, except that it always deletes the schema <schema-name>
(if it exists) before creating a new schema. The schema is guaranteed to include only the slots and
values specified in the call.

(COPY-SCHEMA schema) [Function]
Creates and returns a new schema which is an identical copy of <schema>. The newly created schema
is automatically given a unique name. Ail the slots in the new schema contain a copy of the values in the
corresponding slot of <schema>. Corresponding lists of values, in other words, will be equal sn the LISP
sense, but not eq.
Examples:
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(copy-schema :fido) = > T1806
(ps 'tl806) ; prints:

{{11806
AGE: 4.5
OWNER: :JOHN
IS-A: :DOG

(DELETE-SCHEMA schema-name) [Function]
Destroys the schema named by <schema-name>. Returns T if the schema was destroyed, NIL if it did
not exist.

(CREATE-RELATION schema-name inherits-p inverses) [Function]
Creates a new schema named <schema-name> and declares it to be a relation. The new relation will
have <inverses> (a list of relations) as its inverse relations. If <inherits-p> is non-nil, <schema-name> will
become a relation with inheritance, and values may be inherited through it. As a side effect, a schema
called <schema-name> is created and linked to the relation schema through an is-a link; all of the
<inverses> schemata are also linked to <schema-name>.
Example:

(create-relation :has-subsystems nil '(:parfc~of :subsystem-of))

The previous function call defines the non-inheritance relation .-HAS-SUBSYSTEMS and its two inverses,
;PART-OF and :SUBSYSTEM-OF.

4.5 Slot Manipulation Functions

This group includes functions which create, modify, and delete slots in a schema. It also includes a
convenient way to iterate a user-defined function over all the slots in a schema.

(CREATE-SIOT schema slot-name) [Functtol
Creates slot <slot-name> in <schema>. The slot will initially be empty.
Examples:

(create-slot :fido :color) = > NIL
(ps :fido) ; prints:

{{FIDO
COLOR:
ACS: 4.5
OWNER: :J0HN
IS-A: :DOG

(DELETE-SLOT schema slot-name) [Functktri
Destroys the slot named <stot-name> from <schema>. Values previously stored in the slot, if any, are
tost.



11

(DO-SLOTS schema function) [Function]
Iterates <function> over all the slots of the <schema>. The <function>, which should be a LISP function
of two arguments, is applied in turn to each of the local slots of the <schema>; the first argument is the
schema itself, and the second argument is the name of the slot. The <function> is called purely for side
effects, and DO-SLOTS simply returns NIL.
Note that the same result can be achieved with an explicit iteration over the list returned by GET-SLOTS,
but in general DO-SLOTS avoids the allocation of storage implicit in the latter.
Example:

(do-slots :fido #' (lambda (schema slot)
(format t "Slot ~S has values ~S~%"

slot (get-values schema slot))))
Slot :COLOR has values NIL
Slot :AGE has values (4.5)
Slot : OWNER has values (:JOHN)
Slot :IS-A has values (:DOG)

4.6 Value Manipulation Functions

This group includes the most commonly used KR functions, i.e., the one which retrieve or modify the
value(s) in a slot.

(GET-VALUE schema slot-name) [Macro]
Returns the first value in the slot <slot-name> from the <schema>. If the slot is empty or not present, it
returns NIL. Inheritance may be used when looking for a value.
Examples:

(get-value :fido :is-a) => :DOG
(get-value :fido :legs) => 4 ; inherit the value from :DOG
(get-value :john :is-a) => :PERSON ; first value only

A setf form is defined for GET-VALUE, so that one can write, for instance,

(setf (get-value :fido :owner) :Bill)

(GET-VALUES schema slot-name) [Macro]
Returns all the values in <slot-name> from the <schema>, as a list. If the slot is empty or not present, it
returns NIL. Inheritance may be used when looking for values.
Examples:

(get-values :fido :is-a) => (:DOG)
(get-values :john :is-a) => (:PERSON : LAWYER) ; all values

A setf form Is also defined for GET-VALUES. For instance,

(setf (get-values :fido :owner) '{.-Bill :Jill))

(GET-LOCAL-VALUES schema slot-name) [Macro]
Similar to GET-VALUES, but only local slots are examined and inheritance is never used.
Examples:
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(get-local-values :fido :is-a) => (:DOG)
(get-local-values :fido :legs) => NIL ; no inheritance

(DOVALUES (variable schema slot-name) &rest body) [Macro]
This macro lets you iterate over all the values in slot <slot-name> for the <schema>. The <body> is
repeatedly executed with <variable> bound to each value in turn. It is an error for <body> to modify the
structure of the slot.
Example:

(devalues (owner-name :£ido : owner)
(format t "Fido is a pet of -A, who lives at ~A.~%"

owner-name (get-value owner-name :ADDRESS))) ; prints:

Fido is a pet of JOHN, who lives at 13 Elm Street.

(DO-ALL-VALUES (variable schema slot-name) &rest body) [Macro]
This is similar to DOVALUES, except that in this case when inheritance is used to find the slot. In this
case, all the parents of the <schema> are explored, whereas DOVALUES would stop whenever a parent
with the slot is reached. The difference is only important when <schema> has multiple parents.

(SET-VALUE schema slot-name object} [Function
Causes slot <slot-name> in <schema> to contain <object> as its single value. Note that

(set-value s slot value) <==> (setf (get-value s slot) value)

because of the setf form described above.
Example:

(set-value rfido :color :brown) => (rbrown)
(ps rfido) ; prints:

{{FIDO
COLOR: :BROWN
AGE: 4.5
OHMER: :JOHH
IS-A: :DOG
H

(SET-VALUES schema sbt-name object-list) [Functi&i
Causes slot <slot-name> in <schema> to contain the values specified by <object-Iist>.
Note that

(set-values s slot values) <=> (setf (get-values s slot) values)

Examples:

{set-values :£ido :owner r(:peter :paul :mary))

(APPEND-VALUE schema slot-name objectl [Functtr1

Adds one more value, <object>s to the end of the list of values in <sk>t-name>. The new value will appear
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last in the values returned by GET-VALUES.
Examples:

(append-value :fido -.color :white) ; and now
{{FIDO

COLOR: :BROWN :WHITE
AGE: 4 . 5
OWNER: :JOHN
I S - A : :DOG

(DELETE-VALUE-N schema slot-name position) [Function]
Deletes the n-th value from a slot. <position>, a 0-based integer, indicates which value should be deleted
from slot <slot-name> in the <schema>. <position> must be between 0 and the position of the last value
in the slot.
Example:

(delete-value-xx :fido :color 1) ; and now
{{FIDO
COLOR: : BROWN
AGE: 4.5
OWNER: :JOHN
IS-A: :DOG

5. Using the System

5.1 How to Load KR

Until the Dante software is made a part of the official distribution system, you will have to load KR by
hand. The easiest method to accomplish this is to execute the following expression from within LISP:

(unless (get :dante-modules :kr)
(setf (lisp::search-list ffkr:tf)

' ("/ . ./herbie/usr/dante/kr/release/codefl))
(load "1cr:dante-loadertl))

Like all Dante subsystems, KR follows a special convention that lets an application program determine
whether the subsystem is already loaded. After loading KR, the special keyword :dante-modules will
have its :kr property set to a non-nil value. The typical way to check for this is shown in the expression
above.

The system defines a package of its own, namely the WKRW package. All the function names described in
the Program Interface section of this document are exported from the KR package, and all you need to do
is to add the following line to your program:

(use-package HKR")
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5.2 Internal Representation

This section briefly describes the internal representation for schemata, slots, and values. Only
information that may be useful at the application-program level is presented here. Such information can
be considered a part of the extemal contract of the KR system, and application programs can safely rely
on the details presented here.

Schemata are simply represented as symbols. No special information is attached to a symbol to indicate
that it is a KR schema.

Slots are represented as part of the P-list of a symbol. In particular, each slot corresponds directly to an
entry in the P-list. Application programs should never depend on this particular implementation, and
should not modify the P-list of a symbol to modify slot information.

Values are represented as a list which is the value of an entry in the P-list. A slot with one value is
represented as a list of one element. Values are always internally stored in the same order as shown by
the PS function. A list of values is always a simple list, and it contains no additional information
whatsoever. Consequently, all the ordinary LISP list-manipulation functions can be used on lists of
values. Moreover, the list returned by GET-VALUES is always guaranteed to be EQ to the list of values
internally stored in the schema.

5.3 Style Notes

5.3.1 List Representation
The fact that sett forms are defined for the two access functions get-value and get-values makes it
possible to obtain quite a few interesting combinations while keeping the functional interface to KR very
simple. This is a typical example of how following the LISP philosophy can greatly simplify the external
interface of a knowledge representation system.

The operation of adding a new value to the front of a slot, for instance, does not require a special KR
function. One simply writes:

(push value (get-values schema slot))

Similarly, in order to add a value to a slot only if it is not already there, one simply writes one of the
following (depending on whether a special test function is required):

(pushnew value (ge t -va lues schema Slot))
or

(pushnew value (ge t -va lues schema slot) : t e s t i' some-test-function)

As another example, no special function is needed to eliminate the first value from a slot. One simply
writes:

(pop (get -va lmes schema slot))

Other commonly-used KR idioms also arise from the fact that values are stored as lists. To find out how
many values are in a slot, for instance* one uses the function LENGTH:

(length (get-values schema Slot))

To search for a given value in a slot, one can use the functions FIND, POSITION, MEMBER, or any of the
variations provided by Common Lisp.
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5.3.2 Add ing and Delet ing Values
One should not use destructive LISP functions to add or delete values from a slot, even though those
functions might "work" in some cases. We recommend that the KR access functions (such as SET-VALUE

and SET-VALUES, or the SETF methods for GET-VALUE and GET-VALUES) be used in all cases to achieve the
same effect.

The reason to avoid direct destructive operations is that such operations may leave the system in an
inconsistent state when the slot being operated upon is a relation. Remember that slots that happen to
be relations must be handled specially because of the reverse links. Strictly speaking, this only applies to
symbols, but we prefer to simply state the following rule of thumb: Do not use destructive operations to
alter the contents of a slot

5.4 Usage Hints

5.4.1 Inheritance Relations
KR allows you to freely define new relations that perform inheritance. As a general rule, however, we
recommend that you consider carefully whether such relations are really required for your application.
Two problems can arise from excessive usage of inheritance relations:

• Poor performance.

• Confusion.

Inheritance relations may affect the system's performance since they turn what is normally a simple
hierarchical network into a tangled graph. Every time a slot is accessed and a value is not present locally,
KR may have to proceed up the hierarchy following several relations, instead of just the is-a relation.
There are clearly cases when this is justified by the additional functionality, however, and one should
evaluate advantages and disadvantages of the choice on a case-by-case basis.

The second factor, i.e., confusion, is somewhat less intuitive. We will refer back to the example in section
4.3 to illustrate this point. That example is repeated here for convenience:

(get-all-slots :fido) =>
(:LEGS :HAS-PET :IS-A-INV :XS-A :ADDRESS :OWNER :AGE)

Remember that we had linked :FIDO to JOHN via the owner slot, and we had declared owner to be an
inheritance relation. Getting the list of all slots, then, returned surprising things like has-pet, even though
:FIDO is a dog and thus is not supposed to have any pets. What happened is that the owner relation
opened up all the slots in :JOHN for inheritance, and thus :RDO was suddenly endowed with all the
properties that would normally only belong to a person. If JOHN had had a salary slot and a
languages-spoken slot, those would also have been inherited by :RDo!

Again, there are cases when user-defined inheritance relations are quite useful. An example occurs
when a network is used to represent a situation with multiple hierarchies. In such cases it is natural to
define inheritance relations to support the multiple hierarchies, rather than writing special-purpose code to
do the same thing.

5.4.2 The is-A Hierarchy
The IS-A hierarchy constitutes the most natural way to structure a network hierarchically. There are
cases, however, where we feel that using the IS-A hierarchy is not appropriate because of stylistic or
performance reasons. The most typical example is when the IS-A hierarchy is used to express minor or
insignificant differences among certain schemata* In such situations it might be more appropriate to use a
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separate slot to express the difference.

As an illustration of this point we will use an example from the Chinese Tutor [Giuse 87], an intelligent
language tutor for beginner-level Chinese which uses KR to represent all of its internal data structures. A
particular entity of the Chinese language is a glyph, i.e., the printed or written representation of a
character. Glyphs are represented in the program as KR schemata.

As it turns out, different types of glyphs exist in Chinese (in particular, the complex form and the simplified
form of a Chinese character correspond to different glyphs). The very first version of the Chinese Tutor
used the is-a hierarchy to differentiate among the different types of glyphs, so that the original structure of
the network looked like the one shown in figure 5-1.

: RADICAL

}G4 I )G5 I )G6 I JQl

Figure 5-1: The original IS-A hierarchy for glyphs

Note, in particular, how some glyphs appeared two levels below the :GLYPH schema, whereas others
appeared three levels below because of the peculiar position of the :SIMPLE-AND-COMPLEX schema. This
solution was not ideal. The is-a hierarchy was used to represent essentially minor semantical differences,
rather than a true hierarchical structure. As a consequence, a common set of operations became
unnecessarily complicated and expensive. These operations all followed the same pattern, i.e., they
needed to access all the glyphs in the system independent of those minor semantical differences.
Keeping track of all the glyphs was difficult because they could appear in several subtrees and possibly at
different levels in the hierarchy.

The second version of the system eliminated the problem by making all the glyphs immediate children of
the -.GLYPH schema. This is illustrated in figure 5-2.

Keeping track of all the glyphs, then, simply became a matter of looking into the is-a-inv slot of the :GLYPH
schema. The minor differences among glyphs are now encoded in a different slot, which does not serve
any hierarchical function, The slight increase in space for the extra slot is more than justified in view of
better performance and much cleaner code*
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:CHINESE-OBJECT

.-RADICAL

:type
: SIMPLE

:type
:COMPLEX

:type
:SIMPLE-AND-COMPLEX

Figure 5-2: The new IS-A hierarchy for glyphs

6. Performance of the KR System

This section presents a simple evaluation the performance of the KR system. These figures were
collected on an IBM RT running CMU Common Lisp under the Mach operating system. The RT used to
obtain these figures had 10 Mbytes of central memory.

All figures refer to compiled code and are expressed in microseconds per function call. Statistics were
collected from within Lisp by executing each function call within a tight loop for a given number of times
and timing the loop. A few microseconds should be subtracted from each number to eliminate the loop
overhead; 3 or 4 microseconds is probably a reasonable factor.

6.1 Value Access and Modification

GET-VALUE:

GET-VALUE with 1 level of inheritance:

GET-VALUE with 2 levels of inheritance:

GET-VALUE with 3 levels of inheritance:

GET-VALUES:

GET-VALUES with 1 level of inheritance:

GET-VALUES with 2 levels of inheritance:

GET-VALUES with 3 levels of inheritance:

GET-LOCAL-VALUES:

SET-VALUE:

SET-VALUES:

40.5

142.3

208.2

328.7

40.0

137.1

239.0

327.1

10.6

94.4

127.8
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6.2 Predicates

RELATION-P: 11.1

HAS-SLOT-P: 100.8

SCHEMA-P: 29.1

IS-A-P: 75.7

6.3 Discussion

The figures above indicate that KR performs quite well. To put those figures in perspective, consider that
an empty function call and return in the same environment takes about 14 microseconds. The time to
execute the simplest and most commonly used access functions, GET-VALUE and GET-VALUES, is of the
order of 3 function calls.

It is also worth mentioning that none of the functions in the tables above allocate any memory at all. This
eliminates a common cause of inefficiency, namely, the allocation of temporary storage ("garbage") which
has to be eliminated later on.

St is somewhat difficult to provide fair comparisons with other existing knowledge representation systems.
Such comparisons are always prone to criticism unless all conditions are absolutely identical, which is
difficult to obtain. Just as one point in the spectrum, however, we will mention that the corresponding
execution times for CRL running on a Symbolics 3640 Lisp Machine are significantly longer than the ones
reported above. Considering that Common Lisp benchmarks typically perform 1.2 to 2.2 times better on a
Symbolics than on RT/PC, we might conclude that the above functions in KR are anywhere between 7
and 13 times faster than in CRL. Significantly, it appears that the most expensive functions (such as
functions involving inheritance) are even more efficient, relatively speaking, than the simpler ones.

As a final point of comparison we will mention that the time to access a slot in a Common Lisp structure in
the same environment is 10.9 microseconds. Compared to this, the corresponding function in KR (i.e.,
GET-VALUE) is 3.7 times slower. Given that access to Common Lisp structures is very highly optimized in
Lisp, it seems that the performance penalty for using KR is amply justified by the much greater flexibility
offered by the system.

7. Summary

KR is a simple, very efficient knowledge representation system for Common Lisp. It implements the basic
paradigm of semantic network systems and offers such features as inheritance, user-defined relations,
and user-defined inheritance.

The main emphasis of the system is on efficiency. Unlike many semantic network knowledge
representation systems, KR does not try to provide a monolithic system, but rather aims at extending the
Common Lisp philosophy in a natural way. The system is highly optimized and provides a solid1 substrate
upon which application programs can build more elaborate knowledge manipulation algorithms. The
program interface to the system consists of a small number of carefully tuned functions; these functions
are easy to understand and to use.

Because it adopts the fundamental LISP philosophy, KR fits in very naturally with Common Lisp based
application programs* Because of its simplicity, the system is quite small and entirely portable. We feel
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that these characteristic make it a useful knowledge representation language, and one whose range of
applicability extends well beyond the original environment it was developed for.
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Abstract

The NavLab is a testbed for research in outdoor navigation, image understanding, and the role of
human interaction with intelligent systems; it accommodates researchers and all computing onboard. The
core of the NavLab is the vehicle controller, a multi-processor computer that controls all locomotion,
actuation and physical sensing; it interacts with a computer host and human operator to implement
varying degrees of autonomy. The chassis is a modified van with a computer-controllable, hydraulic
drrvetrain. The NavLab supports a choice of sensing to accommodate many types of navigation research.
This technical report details the control computing and physical configuration of the NavLab vehicle.



1. Introduction
The NavLab is a testbed for research in outdoor navigation, image understanding, and the role of human
interaction with intelligent systems. A mobile navigation habitat, it accommodates researchers and
significant onboard computing. Applications for field navigation vehicles include mapping of hazardous
waste sites, off-road haulage, material handling at construction worksites, and exploration of planetary
surfaces.

The NavLab is a roadworthy truck modified so that humans or computers can control as occasion
demands. Because it is self-contained, it is not subject to telemetry bottlenecks, communication faults or
dependence on stationary infrastructure, and can travel to confront navigation problems of interest at any
site.

The core of the NavLab is the vehicle controller. In autonomous mode, this multi-processor computer
controls all locomotion, actuation and physical sensing. It interacts with a computer host and human
operator to implement varying degrees of autonomy. The NavLab controller queues and executes Virtual
Vehicle commands originating from a computer or human host. This command set provides high-level
motion and control primitives that mask the physical details of the vehicle, and is extensible for control of
other mobile systems.

The NavLab configuration consists of a chassis, drivetrain and shell. The chassis is a modified, cut-away
van with a computer-controllable, hydraulic drivetrain. Driver's controls allow a human monftor to override
automatic control for overland travel, setup and recovery from experimental errors. The shell houses all
onboard equipment including computers, controllers, telemetry, and internal sensors. In addition, it
provides a working area for operators, allowing research within the confines of the vehicle. Equipment
racks, monitors, lighting, air-conditioning, seating and desk space create a mobile environment for
research.

Humans can monitor and supervise the NavLab from the operator's console for setup, error recovery and
tuning. Interface modes include Virtual Vehicle instructions, joystick motion control, and direct servo
motion commands. The console also incorporates several displays to show the current states of both the
vehicle and control computer.

The NavLab supports a choice of sensing to accommodate many types of navigation research. Video
cameras provide color and intensity images for scene interpretation. NavLab vision experiments use a
single camera to analyze road edges through intensity, texture, and color segmentation. A scanning
rangefinder sweeps the surroundings with a distance-measuring laser that provides useful three-
dimensional information about the geometry and reflectivity of the environment. Laser experiments
navigate through geometric features like trees and buildings. Taken together, data of color, intensity,
range and reflectance provide a rich basis for building natural scene descriptions. Sensor information
from several sources can be fused to achieve more robust perception. A blackboard architecture
integrates the distributed processes that sense, map, plan and drive.

The NavLab represents continuing evolution in the design of navigation vehicles. Fully self-contained, i
is a milestone in mobile robotics.

This technical report details the control computing and physical configuration of the NavLab vehicle.
Information on other aspects of the NavLab, Including perception, modeling, planning and blackboard



architectures, can be found in articles listed in Appendix V.
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Figure 2-1: The Hierarchical Layering of a System Architecture for Modeling
and Planning

2.2 Virtual Vehicle
A Virtual Vehicle is a man-machine interface that accepts conceptual commands and provides a cfean
separation between the navigation host and vehicle control. This interface masks implementation details
of the physical vehicle, facilitating adaptability to future navigation testbeds.

The Host (the computing engine that does planning) communicates with the Virtual Vehicle via ASCII data
transmitted over a serial line. The communication falls into three categories:

• Commands issued by the Host
• Queries by the Host about the status of devices
• Reports initiated by the Virtual Vehicle on completion of commands and in case of

emergency.

In the current Implementation, the vehicle is directed along circular arcs because arcs are

computed and absolute position is not critical (the arcs are being upgraded to clothokjs). Because i is

not possible for a vehicle to switch between an arc of one curvature and another instantly, path transitions



are inexact. Errors are compensated for by dynamically planning arcs to reach subgoal points along the
path.

To facilitate synchronization, all drive and steering commands are initiated at the transitions between
arcs. The capability is provided to make changes to vehicle motion (e.g., curvature of the arc, vehicle
velocity) on the fly. Arcs (specified as [arclength, radius of curvature]) can be queued for sequential
implementation.

The Virtual Vehicle and Host interact as follows:
• The Host issues a new arc command before the arc in execution is completed.
• If an immediate condition is specified, the old arc is discarded and the new arc is accepted

immediately. Otherwise, the new arc is initiated at the end of the arc being executed.
• When a new arc is initiated, vehicle position is reported to the Host for use in calculating

future path plans.
• The Host incorporates the reported position in planning the next arc, thereby compensating

for deviations from the desired path.

The Virtual Vehicle instruction set and details of interfacing can be found in Appendix IV.

2.3 Controller Architecture
The NavLab controller is a powerful and flexible multi-processor system. A functional block diagram of
the controller is shown in Figure 2-2. A Pilot module, responsible for management and operation of the
key peripherals and I/O devices in the system, maintains direct control of all physical action and motion.
The Pilot is also responsible for system startup and synchronization and acts as the hub in a star
configuration for inter-processor communication. A Command Preprocessor manages I/O between the
controller and devices that communicate with it. The Sensor Manager controls a network of 8-bit micro-
controllers distributed throughout the vehicle to provide points of intelligent analog and digital I/O.
Accommodations are made for an Advisor to set limits on physical motion parameters based on the
perceived condition of the mechanical systems of the vehicle. The Advisor incorporates a bump detection
subsystem that signals the Pilot if immediate action is necessary.

Each module in the system contains its own operating environment for independent/parallel operation.
The operating environments are subsets of those used for system development. Code for each module is
down-loadable to permit easy modification to the system.

2.3.1 Hardware
The NavLab controller is designed as a two-tiered multi-processor system. The first tier is responsible for
the primary computing, control I/O and motion control. It is comprised of 4 Intel 28612 processor boards
residing in a common Multibus backplane. The second tier performs remote data acquisition and control
of devices located around the vehicle using a serial network of 8-bit micro-controllers. The Sensor
Management System in the first tier is the interface between the two tiers.

2.3.1.1 Primary Computing
Processors in the first tier take advantage of the multiple bus structure of the system to increase
processing throughput. Each processor contains a local bus with enough memory resources to support
its own execution environment. Processors have bus master capabilities to access and control I/O
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boards and shared memory spaces. Critical memory and I/O locations are controlled using a semaphore
system while bus contention is arbitrated in hardware. Interrupt lines in the Multibus backplane tie the
processors together for inter-processor communications.

Each processor is identically configured with 256 K local ROM, 512 K local RAM, and a 256 K window to
the Multibus. The ROMs on the I/O processors only contain operating system software and a downtoad
facility to allow loading of applications. The multiple bus structure permits a total system memory of 2.5
MB even though only 1 MB is addressable from each processor.

The controller also contains intelligent slave boards for I/O expansion and servo motor control These
boards may be accessed by any bus master. Often, access is restricted to a specific processor to avoid
contention problems.
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Figure 2-3: Hardware Configuration

2.3.1.2 Secondary Computing
The second computing tier physically distributes sensing and control of devices around the vehicle by
using nodes that consist of 8-bit microcontrollers communicating over a high-speed serial bus using a
message protocol called Bitbus. The network is controlled by a Master node that either continually polls
other nodes to read analog and digital inputs or continuously commands them with reference values. The
communication overhead makes Bitbus suitable to tasks that require high-level control and slow data
acquisition. The serial bus network is extensible to support up to 250 nodes. Further implementation
details of Bitbus can be found in Section 2.3.5.1.

2.3.2 System Software
System software for the controller is based on the iRMX 86 real-time operating system. iRMX is
configurable to customize operating environments for each processor in the system. These operating
environments are resident in ROM local to each board and are booted from reset. iRMX 86 provides
objects to support an event-driven, mufti-tasking environment.

A facility to down-load object code was developed for building and testing multiprocessor systems. A
single processor accesses the mass storage device containing object axle files for downloading. This
processor, like a system server, toads object axle into shared memory and signals the appropriate target
board when a valid record is available. The other processors contain consumer jobs to copy records from
shared memory to their local memory. On signal from the server processor, a consumer job releases the
server CPU to allow the local Operating System to start the jobs from the newly loaded code. Once the
application software is running, the consumer toad job lies idle and wafts for a signal from the server
processor to reset and begin the toad sequence again. This flexible toad facility is a valuable tool for
building and testing multiprocessor systems.
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2.3.2.1 Interprocessor Communication

Processors communicate using shared memory in two different ways. Common variables are accessed
by multiple processors to share state information (scratch pad communication). Messages can also be
written to specific memory locations on other processor boards and the receiving board is signaled by an
interrupt. This method is often used by one board to direct processing on another board.

Scratch Pad Communication

This method is a simple solution to sharing a large amount of data between modules. Processes that
acquire data (status of devices, vehicle orientation, speed, etc.) post this information to the scratch pad
area instead of sending the data to all modules that need them. Most shared variables are independent
of each other; hence contention problems are limited to access of the individual memory locations to read
or write. Dependent variables (ones that must be accessed as a group) require a software semaphore to
provide mutual exclusion. An indivisible test and set instruction provided by PL/M-86 was used to create
the semaphore system.

Module for Interprocessor Communications

The Module for Interprocessor Communication (MIC) was developed to support flexible pipelined
communications between tasks running on separate processor boards. MIC provides the applications
programmer with a simple set of procedure calls from which a task can queue messages containing a
board and task destination. MIC handles the transfer of these messages between boards.

MIC is implemented as a star architecture. All messages are sent through a central node to limit the
number of required interrupt lines. This scheme is well suited to the NavLab controller because most
interprocessor communications are to a central node (the Pilot).

MIC was built using tools provided by iRMX including inter-task communication, dynamic memory
allocation, and FIFO queues. MIC runs as an interrupt-driven task. It responds to signal interrupts to
determine the destination of a received message and then sends it to the appropriate task. iRMX system
calls permit asynchronous message transfers between tasks.

MIC was designed to be compact (5 K), fast, and capable. MIC is able to dynamically allocate message
segments to meet the load of interprocessor communication traffic that varies from processor to
processor. This prevents wasting memory and time required by the system programmer to tune buffer
sizes for Individual boards. When application code is modified to change message traffic, MIC can adjust
to use only the necessary memory resources.

2.3,3 Command Preprocessor
The Command Preprocessor front-ends I/O originating from two sources: the driving Host computer

(Host) and the operator's console (Console). At the lowest level, it drives the physical data Erics

supporting these command streams. In the NavLab controller, RS232C serial channels are controlled. M

the next level, it validates data integrity of Host-originated Virtual Vehicle Interface (Wl) command

packets by checking format correctness, parameter count, and packet size. At the highest level i checfe

parameter values against established limits. The Command Preprocessor has the ability to rejefi

commands exceeding the current operating limits, but the Pilot has final authority on commanc

acceptance. Query commands issued by the Host are handled directly by the Command Preprocessor

without Pilot involvement.



The Command Preprocessor communicates primarily with the Pilot module. The other modules are
indirectly accessed through value lookups in the Scratch Pad. All commands involving action, such as
motion commands or control commands to a device managed by the Bitbus Sensor/Control Network, are
first sent through the Pilot to update its knowledge of the vehicle state affected by the controller.

The Command Preprocessor contains two separate subprocesses to service the Host and Console
concurrently. The Host Interface is responsible for maintaining communications between the controller
and the Host. The Console Interface interprets commands from the operator console keyboard. The
Console is given priority over the Host so that it is possible for the operator to override Host commands.
Commands are received as ASCII packets. The Host sends only numeric data; each command is given
an opcode. The Console allows the operator to enter commands as simple mnemonics.

Communication errors are trapped by syntactic data validation. The Command Preprocessor takes two
different actions based on the type of command it receives. For motion commands, the arguments are
validated based on the allowable ranges of vehicle motions posted in shared memory by the Advisor. If
all the arguments are acceptable, the command is passed on to the Pilot. An acknowledge message is
then sent, signaling that the command was accepted and will be executed. If for any reason the
command is found to be invalid, a disacknowledge message along with an explanation for rejection is
sent to the command initiator.

The Command Preprocessor processes query commands (e.g., heading, position). The requests are
satisfied by accessing the shared memory region where the information is updated constantly. This
method makes it unnecessary to interrupt other processes. The data is formatted and shipped to the
requestor.

The Command Preprocessor also maintains the display on the operator console onboard the NavLab.
The screen is divided into three parts:

1. Display - A window displays vehicle data. The operator can select between 5 different
displays:

• Sensor data shown in graphical form (vertfcalbars).
• Sensor data shown in alphanumeric form.
• Status of switches controlled by the controller shown in alphanumeric form.
• Command packets between controller and the Host.
• A help screen that explains how the operator can control the vehicle by using the

Virtual Vehicle instruction set.

2. Command line - Allows the operator to:
• Enter Virtual Vehicle commands.
• Enter software joystick commands.
• Turn on/off switches controlled by the Bitbus network.

3. Information area - A window is reserved for special messages that may be sent by any
process in the controller.

2.3.4 Pilot
The Pilot's main function is controlling or initiating all physical action and motion control. The Pilot also
plays the central role In inter-processor communications by acting as the hub In a star configuration. All
commands altering the state of the vehicle are filtered through the Pilot, eliminating contention and state
ambiguity problems potential to systems altered by multiple independent processes. For the generalized
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case, the Pilot module would occupy several processor boards and handle manipulation as well as

locomotor control.

The Pilot is composed of a hierarchy of concurrent processes (tasks), each of which is dedicated to
maintaining a specific subset of state variables and initiating all actions affecting those variables. At the
lowest level, each axis of motion has an individual driver process associated with it that formats motor-
controller specific command strings, performs I/O exchanges with the motor-controller board, and
maintains the current values of all pertinent variables for that axis in local memory. The axis drivers at
this level have no notion of the physical configuration of the overall system. Coordination of motions is
handled by higher-level processes.

Action requests can be submitted to the Pilot by the Command Preprocessor at any time. On receipt of

such a request, the Pilot returns an acknowledge/disacknowledge message to the Command

Preprocessor indicating whether it can execute the command; If the received command can be executed,

it is decoded and forwarded to the appropriate subprocess for handling. Depending on the type of action

requested, this process may then

• direct motions (via the appropriate axis drivers)
• read or set parallel I/O lines (for example, to select a different transmission gear)
• update the values of some state variables.

Because individual processes each have a specific run-time priority, critical commands (e.g., "STOP")

always obtain control of the CPU, even if a lower-priority command is still in progress. Also, because task

scheduling is event-driven rather than time-shared, high-priority processes always run uninterrupted, i.e.,

in constant time.

A special set of tasks within the Pilot maintains and processes a queue of arcs specifying a path for the
vehicle. These arcs are executed continuously and a position report is issued to the Command
Preprocessor on completion of each arc. Velocity and acceleration parameters can be updated at any
time during execution of an arc; in addition, one value for each of these variables may be queued to go
into effect with the beginning of the next arc execution.

The Pilot has the final responsibility for command acceptance or rejection, command queue management
and implementing established equations to achieve requested arc trajectories. Implementation details of
the vehicle are masked by the Pilot.

The NavLab incorporates braking as well as forward and reverse propulsion in a single, bi-directional
hydrostatic drive. For the generalized vehicle case, the Pilot would coordinate brake/throttle control to
achieve velocity and position objectives. At the servo level, motion is controlled by motion control beards
commanded by the Pilot. Emergency stop conditions are signaled to the Pilot by a critical interrupt ine
controlled by a planned Health Preservation module with bump detection facilities. On assertion of this
line, the Pilot is responsible for graceful shutdown, leaving the vehicle ready for recovery actions issue:
from the operator's console. Because only the Pilot controls the motion, it is always aware of the w i
•motion state.

Finally, a few background processes perform such functions as maintaining the system cioci &re

calculating position coordinates based on sensor measurements.
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2.3.5 Sensor/Device Management System
Apart from the five main axes of motion, there are numerous sensors that must be monitored and devices
that must be activated. The Sensor/Device Management System manages two classes of sensors. The
first class is characterized by sensors and devices that need not be monitored/controlled frequently. For
example, a sensor might be dedicated to monitoring hydraulic fluid temperature; while this information is
important, it is not essential that it be updated more frequently than once in several seconds. Another
class of sensors is that group of devices that must be monitored frequently. An example is a process that
must analyze data from inertia! devices and post these results in shared memory several times a second.

2.3.5.1 BItbus System
The Bitbus System is a highly flexible and expandable data acquisition and control system. By taking
advantage of the Bitbus distributed control architecture, the Distributed System supports analog status
sensors and digital I/O channels using microcontrollers distributed on a serial network. Nodes on this
network transfer data to the Bitbus Server module using the Bitbus message passing protocol. The Bitbus
nodes are programmable to meet a wide range of sensor and control configurations. Data returned to the
Bitbus server are conditioned and scaled at the Bitbus node, reducing computational requirements of the
Bitbus server.

The primary responsibility of the Bitbus server is to acquire and move sensor data to shared memory
locations recognized by other modules in the controller. When the Pilot sends an action command
request, the server must format messages to control any devices supported by a Bitbus node. In support
of these functions, the server must also handle node initialization, self-monitoring, and fault recovery for
the Bitbus network. The chief advantage of using a Bitbus network is the modular expandability and
flexibility that is inherent to the Bitbus architecture. Complex inter-processor message passing facilities
are included in the architecture, relieving the programmer of much responsibility.

In simple systems with limited I/O points, the Distributed System could be replaced with a single board
computer equipped with the appropriate I/O expansion modules. An effort should be made to keep I/O
operations local to the processor to avoid consuming bus bandwidth. With either implementation
scenario, the update rates of shared variables should be adjustable to control the bus access frequency
of the Distributed System fortuning purposes.

The Bitbus network provides a distributed control structure to service the first class of sensors. A list of
sensors and devices on this network can be found in Section 2.5.2.

The Bitbus network is based on a master (Bitbus server) and slave {Bitbus nodes) concept (Figure 2-4).
Nodes provide the connection between the sensors/devices and the central Bitbus Server. Because each
node operates independently, fast data acquisition can be achieved by distributing the work load among
many nodes. Nodes can also be programmed to perform control tasks by reacting immediately to critical
conditions as they arise.

The Bitbus Server, one process on the Sensor Management Module, initializes the network and monitors
status. Because the nodes cannot initiate communications, the Server must continuously poll each node
for output data. When the Server receives a message from a node, ft posts the relevant information in
shared memory for reference by other processes. When some high-level process needs to control a
Bitbus node, a message is sent to the Server. This message Is then broadcast on the network where it Is
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Figure 2-4: Bitbus Server

trapped and processed by the addressed node.

2.3.5.2 Fast Sensor Monitoring

The Sensor Management system also maintains processes to monitor those devices that must be
serviced at a high frequency. At present, the only such device envisioned is an Inertial Navigation
System anticipated to report position and orientation data about 10 times/sec. The incoming data is
parsed and posted in shared memory. Other devices that need to be monitored constantly can be added
to the controller simply by allocating a process to them. This method is preferable to the Bitbus method
when data must be accessed frequently and must be made available to the entire system quickly.

2.4 Motion Control
Of the 5 axes of motion, only drive and steering can be controlled both manually and automatically. The
other three motions of pan and tilt are only used in automatic operation. Figure 2-5 (a) shows the

configuration during manual operation. All axes of motion on the NavLab are physically controlled by
Gail DMC-200 series motor controllers. These controllers were chosen for:

• Multibus oompatbiHy
• muftipie modes of control (position, velocity, torque)
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• coordinated motion of two or more axes (DMC-200 only)
• programmable acceleration and slew rates
• status, position, and error reporting.

A digital phase lead control law with adjustable gain, pole and zero provides a stable closed-loop system
for a wide range of plant dynamics. The motor controllers communicate with the Pilot subsystem through
Multibus I/O ports for data as well as handshake exchange.

Single axis Galil DMC-201 controllers are used for steering, drive, and laser-ranging pan motions, while a
DMC-200 two-axis unit is used for the camera pan and tilt (Figure 2-5 [b]). Each controller is software-
calibrated at power-up to match the dynamics of the controlled axis. Thus, motor controller boards can be
interchanged simply by selection of appropriate I/O addresses via jumpers.

Dash Panel Control
The vehicle operates manually to simplify transport to and from test sites. Manual operation doesn't
require any computing or generator power. The electronic components active during manual operation
are powered by the NavLab's 12 V system.

Emergency ^top Aujo/Manual

0_0

E H

Brake Speed
Pedal Control

Pedal

Figure 2-6: Dash Panel Layout

A human interface is incorporated for safe and easy use by drivers of standard automobiles. Figure 2-6

shows illuminated pushbutton controls mounted within reach of the driver.

• High, Neutral, & Low: allow the operator to choose gears. Because switching directly from
one gear to another produces an unsafe lurching of the vehicle, a hardware logic function
allows switching only by first selecting Neutral.

• Forward, Reverse: select the direction in which the vehicle moves.
• Auto/Manual: a puH-push switch that switches between manual and automatic control.
• Emergency Stop: disables autonomous locomotion and brings the vehicle to a rapid,

controlled stop. Servo-Jock of steering is disabled; steering is returned to manual control.
• Brake Pedal: as in commercial cruise control systems, a light touch of the brake pedal brings
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the vehicle back under manual control.
• Speed Control Pedal: activates a 20K ohm potentiometer to produce a voltage proportional

to the angle of deflection of the pedal.
• Throttle Control: this dial sets the vehicle engine RPM as detailed in Section 4.2.1.1.
• HE: this switch turns on/off the heat exchanger fan for the hydraulic system.
• HP, LP: These lamps are lit when the dirty oil filters in the high and low pressure hydraulic

systems indicate an alarm.

By default, when the vehicle is powered up, it is put into manual mode, neutral gear, and forward
direction. It is necessary to provide the ability to override the autonomous mode in a fast but controlled
manner if an emergency develops. To ensure reliable operation, manual override is a hardwired
electronic circuit with sealed electromagnetic relays instead of sequential logic gates. This design proved
to be immune to the noise and power fluctuations common to automotive electrical systems. Because
this circuitry is essential to vehicle locomotion, it is powered by the vehicle 12 V system rather than the
generator.

An electronic ramp/hold circuit in series with the foot pedal provides adjustable limits on acceleration and
deceleration and ensures that abrupt movements of the foot pedal do not cause the vehicle to lurch. This
feature was included both for safety and ease of driving. A second ramp/hold unit ensures a smooth
deceleration in case of an emergency stop.

2.4.2 Steering Control
The steering control system consists of a computer-controlled DC servo motor linked to the steering
column by a toothed belt. A single axis motor controller (DMC-201) uses feedback from an optical
1200-line incremental encoder mounted directly on the motor shaft to maintain tight position control over
the steering wheel. A servo-amplifier converts the +/-10V control signal from the motor controller to drive
the DC motor with up to 11 amps of continuous current. At maximum speed, the steering mechanism can
be moved between its two extreme positions in 2 seconds.

Feedback is obtained from an encoder on the motor shaft that is mated to the steering wheel, which is
always turned a specified amount. Differences between intended and achieved radius occur due to
linkage non-linearities and factors such as friction between the road and the wheels, grade of the road,
vehicle speed, and speed with which the steering wheel is turned.

Limit switches on the steering linkage are hardwired inputs to the controller board and provide both a
safety stop to protect the steering mechanism and a reference point for roughly calibrating the steering
control system to a known position on power-up or system reset.

Z4.3 Drive
A single axis motor controller services the drive system. The voltage (-10V to 10V) produced by the
motor controller is converted to a current signal (-100mA to 100mA) by an amplifier that directly operates
a hydraulic servo valve to set the speed of the hydraulic motor. Acceleration of the vehicle is limited by a
ramp/hold circuit, mentioned in Section 2.4.1, in effect providing a low pass filter to the input signal An
optical 300-line incremental encoder mounted on the hydraulic motor shaft provides feedback to the
motor controller. Because the transmission is downstream of the hydraulic motor (i.e., between the motor
and the driveshaft)s the encoder pulses must be interpreted differently for high and tow gears.
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2.5 Sensors/Devices
At present the controller features for handling sensors are not fully implemented. 7
expansion are proposed for the near future. An Inertia! Navigation System will be incorporal
continuous position and orientation information. A Bitbus network will be used to monito
devices distributed around the vehicle.

23.1 bwrtfal Navigation
An Inertia! Navigation System (INS) to be deployed on the NavLab will receive distance data
will provide posifon and inclination data along the axes specified as output. The INS c
heading on is own and provides updates of position and heading.

The following information will be obtained from the INS:
1. True heading of the vehicle - 0.5 degree resolution.
2, Rate of change of heading ~ 0.5 degs/sec resolution.
3. X, Y, Z position in on - 1 0 cm resolution. This will allow movement on a 100 km2 grid
4, Roi and pitch inclination - 0.5 degree resolution.

Performance criteria include:
• Dead Reckoning Capability: Speeds along the direction of travel of up to 60 knVhour; ti

spe§ds (change of orientation) of up to 40 degrees/sec.
• Accuracy: Maximum long trade error: 1% of distance traveled. Maximum cross track

0.1 degree/hour.
• Updates: Must be able to handle the accuracy requirements above with updates comix

once an hour or once In 5km.
• Mtetssty of Stopping: Must rot need more than 5 minutes for the vehicle to be coop

stationary on power-up or on recaJfcration.

At present a device thai uses three mechanical gyroscopes and requires an odometer irp
considered A second device being considered is a strap-down system that uses ring laser g
This is much more accurate than the first and does not require odometer input.

Z52 Stnaofg/Dtvices on Bitbus Network

The following is a 1st of mmm and devices that are monitored and controlled by the Bftbu
S o n cycle time indicates the period at which each of the sensors fs monitored. Temperatun
d ^ r t t s ctrtIsraeli, Pressure ynfts are poorxfe/sq. inch.

Scan Cyda Minimum vt^yjrmym

Oil
tagia* Coola»t
Mtar&ab Gibia

Pretture Trmsduoirt
Oil

System (input)
(output)

30 sec
30 sec
30 sec
30 sec
30 sec

10 sec
10 sec
10 sec

0 deg
0 deg
-10 deg
-10 deg
0 degs

psi
psi
psi

175 deg
150 deg
40 deg
40 deg
100 degs

60 psi
3000 psi
3000 psi
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Voltages & Currents
Battery Voltage
RPH
GAS Level
Low Level Reservoir
Swash Plate Angle

Switch Settings
Transmission Gear State
Generators (2)
Heat Exchanger

30 sec 0 V 15 V
2
60
60
1

1
1
1

sec
sec
sec
sec

sec
sec
sec

0 V
0 V
0 V
-10 V

5 V
5 V
5 V
10 V
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3. Vehicle Shell
NavLab's foundation is a 1985 General Motors Vandura cutaway chassis chosen as a commercial base
to simplify development. As acquired, the vehicle consisted of a chassis, a drivetrain and a cab. A
custom shell was constructed to house the onboard AC power generation, power distribution, control and
computing equipment. Space for operators is provided, allowing research activity within the confines of
the vehicle. The original configuration also included a 350 ci V-8, cruise control, an automatic
transmission, dual rear wheels, power steering, power brakes and a 33 gal fuel tank.

3.1 Exterior Design
The shell was custom-built with particular attention paid to strength requirements, anticipating needs for
extensibility. The roof and cab support air-conditioning, antennas, sensors, and working personnel. The
floor of the shell supports about 2000 kg. The shell is dimensioned so that researchers can stand inside;
five equipment racks are housed side by side along one side of the vehicle. Figure 3-1 shows a rear and
side view of the vehicle.

The shell is made entirely of steel. Heavy gauge was used on the front and back walls while lighter
gauges were used along the side walls and roof. A metallic blue paint protects the entire shell. There are
compartments for the generators and power-related equipment. Louvered metal doors provide outside
access; there is no access to these compartments from inside the vehicle to keep fumes from entering the
shell.

A wiring port in the floor behind the driver's seat allows wiring from the underside to enter the vehicle.
Another access vent in the shell above the passenger compartment enables wiring from cameras and
range sensors to enter the vehicle.

3.2 Interior Design
Figure 3-2 shows a topdown view of the NavLab. The cab has two seats, one for a driver and one for a
passenger. A console located between the two seats allows the operator to control and monitor the
transmission. A research area behind the cab contains computing, sensing, and control equipment, as
well as space for two researchers.

Five equipment racks are boated on the left side. A desk area extending the length of the research area
is located opposite the racks across the aisle. Three video monitors mounted above the desk area can
swivel to a desired viewing position.

Along the rear edge of the desktop an outlet strip provides power for the various terminals and test
equipment. Boft-down inserts with elastic straps prevent computer equipment from sliding on the desktop

when the vehicle is moving.

Cabling between devices passes through cable trays mounted close to the ceiling. The tray design

securely holds video and communication cables but allows for easy removal or addition. Track-mounted

fights above the desk area provide independently aimed illumination.

In addition to the two seats in the cab, a swivel seat, centered in the desk area, is mounted on the waS of

a generator compartment. Extra removable seats can be mounted in the aisle for more researchers.
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Side View

General Navlab Specs
Total Weight: 5449kg
Minimum Turning Radius: 750 cm
Center of Gravity: (112cm, 244cm)

(x,y,) with rear comer on the
driver's side as the origin.

Rear View

Figure 3-1: Side and Rear View of the Vehicle
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550 cm

Figure 3-2: Irrterior Layout of Vehicle

3.2.1 Cooling

Hie heat generated by power conditioning, lighting, and electronics would damage some of
experimental compiling. Thus in addition to the air conditioning provided on the van, a standard r
mounted recreational vehicle air conditioner provides cooling.
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Fiber insulation between the shell and interior panels also provides protection from the heat. Insulation
inside and outside the shell helps control interior climate. Underfloor insulation keeps heat from the
hydrostats and exhaust from entering the interior. Flat sheets of fiberglass covered with thin gauge
aluminum are inserted in floor areas between frame members. High temperature silicon-based insulation
covered with heavy gauge aluminum foil covers exhaust pipes.
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4. Locomotion

4.1 Steering

Figure 4-1 shows a front and side view of the NavLab steering mechanism.
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HYDRO
MOTOR DRIVESHAFT

CLUTCH
DIFFERENTIAL

REAR WHEEL

Figure 4-2: Schematic of Vehicle Drivetrain

displacement of the pump (proportional to the signal from the footpedal) determines the speed at which
the hydraulic motor moves. The motor in turn powers a two-speed transmission which operates at either
a 4:1 (low gear) or 1:1 (high gear) ratio, turning the driveshaft connected to the vehicle differential. Figure
4-2 shows a schematic of the drivetrain.

The configuration described above makes control of vehicle motion simpler than if the vehicle
transmission and brakes had to be controlled to produce desired velocity. The standard braking system is
intact but is only used in case of emergency because the analog signal to the hydraulic pump controls
both accelerations and decelerations.

4.2.1 Vehicle Engine
The standard 350 ci V-8 engine is the main source of driving power. The following modifications were
made:

• An electrically actuated clutch was installed to couple the vehicle engine to the hydraulic
pump. The clutch is disengaged to isolate it from the engine when the engine is being
started.

• The alternator was upgraded to a 120 amp dual output unit to satisfy the additional
requirements of the two-battery, 12 volt system onboard.

• One stock emission control air pump was substituted by a hydraulic power takeoff unit. It is
driven from the crankshaft end and shares a stock V-belt with the power steering pump.

• An engine oil cooler was installed to reduce oil deterioration caused by the constant high
engine temperature.
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4.2.1.1 Engine RPM Control

An engine RPM control keeps the vehicle engine running at a determined range of RPM irrespective of
grade and speed. A magnetic pickup on the output shaft of the engine provides feedback to a specialized
controller that maintains a constant RPM by moving an actuator linked to the engine carburetor. Figure
4-2 shows a schematic of the mechanism.

CARBURETOR

RPM
SET&

DISPLAY

RPM
FEEDBACK

MAGNETIC PICKUP

Figure 4-3: Mechanism for Engine RPM Control

4.2.2 Hydraulic Pump
The output of the engine drives a hydraulic pump through a flexible coupling. The pump is suspended
from a frame crossmember with rubber shock mounts to allow movement with the engine.

The pump, a Sunstrand axial piston pump, is equipped with an electronic displacement control valve thai
alters the angle of an intemal swashplate between 0 and 18 degrees, depending on an input signal that
varies from -10 to 10 V. Negative voltages cause the pump to turn in the reverse direction. At 0 volts She
pump has a ho Wing torque to keep the vehicle stationary. At 10 V the displacement is maximum
corresponding to maximum driving speed.

Hydraulic fluid is supplied to the pump from the reservoir by an integral charge pump to replace the fluJs
pumped to the motor while an equal amount of surplus hot oil is drained from the pump case and passed
through the main heat exchanger.

4JL3 Hydraulic Motor
Hydraulic power from the pomp is transmitted to a matching fixed displacement motor attached direeifytc

the transmission. High-pressure flexible hose couples the motor and pump. Because the motor is affceo

displacement type, i always turns the same amount for every unit volume of fluid pumped in, resoling *n

an RPM of the motor that is directly proportional to the input signal of the pump.

A 10 micron filter cleans the return leg of the high pressure system. An additional crossmember supptrts
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the hydrostatic motor. The motor unit has an SAE standard shaft mounted to- a mating flange on the

driveshaft's forward universal joint yoke.

4.2.4 Transmission
The Funk transmission, an electrically shifted two-speed gear box installed between the hydraulic motor
and the driveshaft, is bolted to a reinforced frame member. It is mechanically coupled to the motor on the
input side and to the driveshaft on the output side. The transmission provides a ratio of 3.950:1 in low
gear and 1.0441:1 in high gear. Low gear supports low-speed experimentation (0-20 km/h); high gear
(0-40 km/h) transports the vehicle along public roads in manual mode. The gear is selected electronically
by applying a voltage to one of two solenoids on the transmission; if neither solenoid is activated, the
transmission is in neutral gear. It is necessary to shift into neutral when changing from one gear to
another.

A flow-through lubrication and charge system was added to the transmission to circulate hydraulic fluid.
The fluid is returned to the reservoir through a tow-pressure filter.

4.2.5 Reservoir, Heat Exchanger, and Filters
A reservoir holds about 80 liters of hydraulic fluid. Because seals and bearing surfaces are sensitive to
temperature and contamination of the hydraulic fluid, oil returned to the reservoir must be allowed enough
time to de-aerate and cool. Heat is removed by passing oil from the pump case drain through a heat
exchanger. Cooled oil is directed back to the reservoir. Dirt in the oil is filtered at two points: in the return
leg of the high-pressure system and between the transmission and the reservoir.

A series of valves assist in the cooling and circulation of working fluid. A shuttle valve and a low pressure
bleed-off valve act together to allow a small portion of the working fluid to drculate through the oil cooler
and reservoir. A make-up pump replenishes the fluid that is removed via a bleed-off valve.

The reservoir is equipped with a thermistor and a level gauge to relay tank status to the vehicle controller.

4.2.6 Hydrostat Sensor and Control System
Figure 4-5 shows the sensing and control system associated with the hydraulic drive system. All the
components am located on the underside of the vehicle so all lines enter the vehicle through a wiring port

in the f hot behind the driver's seat

Control Hues include:
1, Hydrostatic pump displacement: This line controls the swash plate angle in the pump

regulating the displacement of hydraulic fluid to the motor.
2, Gear selection: This line controls the gear (high or tow) of the transmission.
3, Beat exchanger fan control: This line controls the on/off state of a fan that cools the

hydraulic fluid.

Sensors incUto:
1. Dirty fitter sensors: one dirty filter sensor is installed in each of the high- and tow-pressure

legs of the hydraulic system. These sensors trigger an alarm when they become clogged.
2, Pressure transducers: These read system pressure at input and output of the hydraulic

motet
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Figure 4-5: Hydrostat Sensor and' Control Lines
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3. Reservoir sensors: These measure fluid level and temperature of hydraulic fluid in the
reservoir.

4. Motor encoder feedback: An optical encoder mounted on the shaft of the hydraulic motor
provides feedback to the drive controller.

5. Steering limit switches: Limit switches are installed on the steering mechanism to signal an
alarm if the wheels are cranked beyond acceptable limits.
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5. Electrical System
All the electrical power needed by the NavLab is available onboard the vehicle. Electrical power cant

however, be brought in from a shore power plug while the vehicle is in a fixed location. Power is
distributed such that the generators are not needed to drive the NavLab manually.

5.1 AC Power

RACK 5

AirCond.

Warpl host

Warp2host

Waipl cluster

RACK 4 RACK3

Warp2 chister

Sun 3/180

UPS

Load
Centers

Disk Drives
580MB

Sun 3/180

UPS

RACK 2

Video Amps
Video Patch

Camera,
Coniroller

Sun 3/180

UPS

Air Conditioning—

lights —

Desk Strip-

Generator (20KW)

RACK1

Controller

Servo
Amplifiers

ERIM
processor

—Monitor Strip

O O-
Shore
Power

Figure 5-1: Wiring Schematic for AC Power

Figure 5-1 shows a schematic of the AC power system onboard the NavLab.

5.1.1 Generators
The generator supplies 100 VAC power to the variety of devices on the NavLab. The generator resides In
a compartment accessible only from the outside of the vehicle, insuring the separation of noxious fumes
from the interior.

Two compartments house an engine that is hydrauKcaKy coupled to a hydraulic generator unit in the
forward compartment. This arrangement allows a single source of power up to 20 KW. Fuel to supply the
engine comes from the vehicle fuel lines and the electrical power to start the generator Is supplied by the
vehicle 12 VDC system. The unit can be stopped and started by a panel switch.
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5.1.2 Shore Power
The NavLab can plug into power from a building when stationary, alleviating constant generator

operation. An extension cord from a nearby power outlet (220 VAC 50A) mates to a 220 VAC single-

phase plug mounted in the outside center compartment.

5.1.3 Power Condi t ion ing

Because variations in load and temperature affect generator power output, the power from the generators
must be be conditioned to protect sensitive machinery from spikes and brown-outs. This is done by
passing power through Uninterruptable Power Supplies (UPS). These devices not only condition the
power from the generators but also provide full-load backup for up to 15 minutes, even if the generators
or shore power are shut down, allowing a graceful system shutdown if power fails. Three UPS devices
provide a total of 6KW of conditioned power, which-will more than suffice for a complete configuration of
computing equipment. The lights, air conditioner, video monitors, and servo-amplifiers do not receive
conditioned power because they are much less prone to fluctuations in generator output.

5.2 DC Power
Because many of the devices onboard use DC power, the standard vehicle 12 V system was extended by

adding an extra battery and replacing the alternator with a dual output 120 amp unit that charges both

batteries.

Figure 5-2 shows a wiring schematic for the DC power system. The original battery powers:
1. Vehicle ignition - starting power for the engine;
2. Dash panel - all switches on the dash panel;
3. Interior lights - overhead lights in the research area;
4. Control electronics - the input voltage to two power supplies. One converts the 12 V into

-12 V and the other converts 12 V to 5 V. Each power supply has a limit of 3 amps.

The second battery provides:

1- starting power for the generators;
2. power for generator compartment lights;
3. power to run the hydraulic fluid cooler fan.

An additional 28V power supply is mounted in the equipment racks. This takes an input from the 110 AC
system and produces up to 30 amps of current, most of which is used by an ERIM laser scanner. The
inertia! navigation device will operate on the same power supply.
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To ignitkxr Dual Output
120 Amp
Alternator

Controller
Rack

Figure 5-2: Wiring Schematic for DC Power
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6. Telemetry
Telemetry to the vehicle was thought to be useful where environmental sensitivity, location, or size of
computing equipment precludes installation onboard the NavLab. This feature has not yet found use in
practice. NavLab telemetry provides control and monitoring from a remote site, allowing stationary
computers to be used in navigation experiments.

UHF ANTENNA

RADIO
MODEM

Reports,
Acknowledges

RF Signed

Control
Comma/Kb

FRAME
BUFFER

COMPUTER

REMOTE SITE

Figure 6-1: Telemetry Configuration of NavLab

The scenario in Figure 6-1 shows the ctosed loop set-up of a vehicle experiment where computing might
be distributed offboard. The camera outputs a video signal that is broadcast over a UHF frequency and
picked up by an antenna and receiver located on the Carnegie Mellon campus. The receiver provides the
video signal to a frame buffer within the computer that processes the image. The signal is digitized and
then analyzed. Commands to the vehicle are sent over a serial line to a wireless modem. A radio
modem on the vehicle picks up this signal and feeds it to the controller.

6.1 High Bandwidth Transmission
An experimental radio license obtained from the FCC covers several broadcast frequencies. The license
covers 2 UHF television channels, a full duplex radio link, and a 2 MHz microwave link.

The video signal is transmitted on the video transmitter while range data are transmitted over an aural
sideband of one UHF channel. Because transmission rates can be as high as 56 K baud, the other aural
sidebands not currently in use could serve several other data transmission needs.

6.2 Low Bandwidth Transmission
Two sets of 1200 baud radio modems are used for simple, low-bandwidth digital communication. These
devices provide a transparent RS-232 connection between computers and facilitate sending commands
to and from an offboaid machine and the NavLab controller.
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6.3 Cellular Phone
Separation of vehicle from stationary base facilities involves not only communication over distance for the
machines but also for humans. For this reason, a cellular phone using existing mobile communications
networks within the city has been installed.
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7. Perceptive Sensing and Computing
A variety of sensors can be mounted on the Navlab depending on the type of research being conducted.
Vision, laser ranging, and sonar ranging are the most popular sensing modes. More details of sensors
and computing can be found in articles listed in Appendix V.

7.1 Video
Cameras provide a standard RS-170 video image to the frame buffer. Vision processing transforms this
image into a scene description to support navigation.

Typically, a single camera mounted in the front of the vehicle provides a wide-angle view of the scene.
Some vision algorithms, however, call for a stereo pair of cameras. Broadcast-quality cameras that
provide red-green-blue color signals are used. Remote control units allow control over camera functions
like gain, color balance, and iris size. Presently, camera focus and zoom must be controlled manually.

7.2 Laser Ranging
Laser ranging is useful in areas where vision algorithms fail ~ in detecting depth discontinuities in scenes
where the edges are not obvious and in those scenes that have uneven lighting because of shadows,
Whereas the camera is a passive instrument, the laser rangefinder is an active device that emits a beam
in a raster fashion and captures the reflection to provide two types of information - distance and
reflectance. The data are then analyzed to provide a scene description. Laser ranging provides a direct
3-D description of the scene while vision requires more expensive computation to extract this information.
Range readings are particularly useful because they are not affected by ambient light.

The current laser ranging device, manufactured by ERIM, provides a 256x64x8 bit depth map. The
scanner output is processed by a Motorola M68000 processor and sent to a Sun computer dedicated to
ranging.

7.3 Pan and Tilt Mechanism
Vision and ranging sensors can be mounted in various configurations. Most configurations call for two

independent pan motions - one for the laser scanner and another for the cameras. Tit is needed for
both the laser scanner and cameras.

Pan and tilt design reflects a need to accurately position sensors over a large viewing range. Less than 4
seconds Is required to view 180 degrees.

Cameras are mounted on rigid 5 cm diameter aluminum poles 2 meters long mounted horizontal
through a worm drive gearset with a hollow bore. The gearset provides a 50:1 ratio and is driven by a DC

blushed servo motor. An 800 line encoder provides feedback for the t i l motion

7.4 Computing Configuration for Sensing
Figyre 7-2 shows configuration of computing for simple, perceptive sensing. Much mom complex setups
are conwnofi Each sensor cx>mim)nly requires its own workstation or specialized processor. Anotfw
computer runs the blackboard system that integrates perception, modeling, and planning.
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Figure 7-1: Pan and Tilt Mechanism
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Figure 7-2: Typical Architecture
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I. Modifications to Vehicle
The chassis was originally rated for 10,000 lbs. gross vehicle weight. The final vehicle weight was
established as 12,000 lbs., thus necessitating a more robust suspension. In order to achieve the
necessary load rating the front coil springs were upgraded and two extra leaves were added to the rear
springs, increasing the gross vehicle weight by 2400 lbs. Heavy duty gas/oil shock absorbers were
installed to minimize a slight tendency to pitch due to the extra weight. In addition, the original equipment
tires were exchanged for Goodyear radials with a higher load and all-weather rating.

Modifications to the frame were minimized to preserve strength and stiffness. However, in order to mount
some of the larger hydrostatic components alterations had to be made. The main forward crossbeam,
transmission rear support beam and surrounding floor were completely removed. The crossbeam was
replaced by a box section which bridges the hydrostatic pump. A channel section was added as support
for the pump and also provides additional frame strength.
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II. Power Budget
NavLab AC power requirements have risen steadily since the first integration to accommodate the WARP
computing system, air conditioning, and uninterrruptible power supplies (UPS). Power is currently
provided by a 20.0 kW generator. The power budget is as follows:

CIRCUIT PEAK AMP DRAW PEAK WATTAGE FUSE

Main No. 1 9()

Coleman Air Conditioner 17.5
Lights (4 / 100 w) 3.6
Monitor Strip (5 / 80 w) 3.6
PMI Amplifier 18.2
Desk Strip (10 / 60 v) 5.5
Sola UPS <600 w output) 7.0

Intel Controller Computer 11.4

Behlman UPS (2000 w output) 27.0
Sun Vision Host Computer 12. 0
Disk Drives 6.3

Development Circuit 15. 0

Main No. 2 ^0

McLean Midwest Air Conditioner 14.0
Behlman UPS (2000 w output) 27.0

Sun WARP Host Computer 12. 0
Disk Drives 6.3
VME WARP Control Cage 9.0

Behlman UPS (2000 w output) 27.0
WARP Power 16.4

Video 4.5
Srim Laser Scanner 2.7
Development Circuit 15.0

10,000

1,930
400
400

2,000
600
750

1,250

3,000
1,320

700
1,650

10,000

1,540
3,000
1,320
700

1,000

3,000
1,800

500
300

1,650

100

20
5
5

20
10
10
*

40
*
*
20

100

20
40
*
*
*

40
*

5
5

20



38

III. Weight and Center of Gravity Budget
Location in (x,y) is given with left (driver's side) rear comer as the origin. Positive y is toward the cab,
positive x toward the passenger side. The shell is 241cm wide (x) and 343cm long (y).

Item: Location (cm, cm) Weight (kg)

79.4
79.4

81.€
81. €
81.6
81.6
81.6

22.7
45.4
13.6

117.9
117.9
52.2

100.7
18.1
31.8
2.3

14.1
14.1
18.1
68.0

27.2
6.8

9.5
26.3
11.8
5.0

119.7
18.1
18.1
2.3
4.5

Driver
Passenger
Empty Rack £ 10kg

hardware

Signal Wiring
Power Wiring
Insulation

Passenger side
Generator

Air Conditioner
Power Conditioner
Breaker Panel
Table Top
Monitor Shelf
Sony Monitors

Seat
Operator
Tf* m i n a 1 s

Sun
Wyse

Marlite
back wall
left
right
front

Gas Tank
Shore Power Switch

Shore Power Plug
Track Lights

Hydraulic Equipment;
Funk
Eesenroir
Sunstrand Pump
Sunstrand Motor
Fall Filter
Dowty Tandem 2wsp &

Charge Pump Motor
Heat Sxehanger & Fan

63,368
152,368

Sir 34
51,103
51,171
51,240
51,309

203, 58
203,285
117,200
224,171
201, 8
201,171
216,170
208,279
208,165
132,157
132,157

201,216
201,102

122, 0
0,171

241,171
122,343
135, 97
198,135
198,183
198,152
185,178

109,287
201,272
122,373
i9f330
51,333

135,203
53, 51

124.7
136.0
132.9
74.4
11.3

5.9
24. 9
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Rack lj

Total

Rack 2j

Total

Rack 3;

Total

Rack 4j

Total

Rack 5,

Total

" UPS
2 Amplifiers,
1 Transformer,
3 Power Supplies
Intel Chassis
Patch Panel £
Control Circuitry

Tables

" Video

42,287

ERIM Power Supply

Sun
UPS

Sun

Empty

Pan <& Tilt

Total

Shell

2 1135 Motors
2 Turntables
1 Tilt Gearing
1 Aluminum Rod.
2 JVC's
ERIM
PMI motor
56 C Coupling
Bracketing
lower mount
upper mount

Van Bodr
front axle
rear axle

42,226

42,165

42,104

42, 43

121,447

121,171

101,427
101,109

54.4

0.0

8.9
26.3
22.7

4.5
5.0

34.0
4.5
4.5

18.1
45.4

174.0

1153

1120

Overall:
Carter of Gravity: 112,244 Weight Total: 5449kg
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IV. Implementation of the Virtual Vehicle Instruction Set

Protocol
A simple high-level handshaking protocol has been designed for RS-232 communication between the
Virtual Vehicle and any host computer issuing commands to the vehicle. It provides a means of
exchanging commands and status information with a reasonable level of reliability and optional error
recovery. The motivation for this is that errors in communication should be detected and acted upon
without interfering with normal operations of host or Virtual Vehicle. By adhering more or less strictly to
the protocol, the relative importance and subsequent computational overhead of error-free communication
can be chosen at will and may be varied dynamically.

Messages between Virtual Vehicle and host are of the following form:

<length><packet IDXopcode> [<argument !>/ . . /<argument n>/ ] <CR>

The individual fields of a packet are defined as follows:

<length> 2 characters wide. Contains the total number of ASCII characters in the packet,
including the length field itself. Length is represented in decimal, so messages are
limited to 99 characters.

<packet I D > 3 characters wide. Unique identifier to be used as reference to the packet in
subsequent protocol transactions. Can be any combination of printable ASCII
characters (20H - 7FH), although numeric values (30H through 39H) will be used
most frequently. See description below for usage and purpose of this field.

<opcode> 2 characters wide. Represents, in decimal, the numeric index of the command to be
acted upon by the Virtual Vehicle. This implies a range of 0 through 99 for possible
opcodes.

<argnments> Zero or more numeric arguments, of variable width. Arguments aire terminated by a
slash (T). Leading zeroes are allowed. All arguments must be integer values.

<CR> Carriage Return (ODH) character indicates end-of-packet Must follow immediately
after the last argument-terminating slash, or after the opcode in the case of zero
arguments. The <CR> is NOT considered part of the packet, so it is not included in
the <length> field.

The following rules define the handshake between two devices. They should be followed closely to
achieve maximum communication reliability. However, as is indicated in the appropriate paragraphs,
error checking is done at the discretion of the receiving device.

• For every packet to be sent. Hie seeding device generates a unique 3-character packet ID
code. Tills can be done, for example, by incrementally numbering packets or by encoding the
current system time. Random generation of codes is discouraged, since this theoretically
allows duplicate packet IDfs. Using the full range of 96 symbols in each of the 3 character
positions yields a range of 884,738 unique ID codes, which is in excess of the anticipated
number of messages exchanged during a typical mission of the Virtual Vehicle.

• Packets are prefixed with the length of the packet and terminated by the end-of-packet
character <CR>. Hie receiving device should check the actual length of the received packet
against the <iengtfa> field to ensure integrity of each packet.

• Each packet received may be further validated by ensuring that

• the opcode is vaiid,

• the number of arguments is correct for the given opcode, and

• the arguments are wihin allowable limits. These limits may change dynamically as a
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function of, for example, vehicle speed or road conditions.

• If none of the above error conditions are detected, the receiving device returns an ACK
message to the sender, indicating that the message was received correctly and the
appropriate action, if any, is being performed. The ACK message uses the same packet ID
as that of the message being acknowledged.

• In case of an error, the receiving device must return a NAK message to the sender to
indicate that the packet was rejected and no command is being executed. As its only
argument, the NAK message contains an error code indicating the reason for rejecting the
packet. A NAK message also has the same packet ID code as the message in question.

• Upon receiving a NAK as reply to a message, a device has the option of retransmitting the
offending message (with new packet ID), logging the error, ignoring it, or taking any other
action that might be appropriate. By the same token, while expecting a NAK or ACK in
response to a transmitted message, a device may choose to time out, wait forever, or take
other appropriate action. These conventions provide for very flexible operation that allows
critical system operations to continue even in case of protocol errors. In dealing with these
situations, the Virtual Vehicle will adhere to the following conventions:

• NAK or ACK messages are always generated and sent in response to data messages
received by the Wl. At this point, handshake for the current message is considered
complete; i.e., no further action is expected.

• Unexpected NAK or ACK messages (i.e., those referring to an unknown or previously
acknowledged packet ID) are ignored. However, the error is togged and/or announced
at the W system console.

• If a NAK is received as response to a message originated by the W, the message
may or may not be retransmitted repeatedly (with a new packet ID), depending on the
type of message and reason for rejection.

•If neither NAK nor ACK is received by the W within a certain timeout period
(configurable parameter, typically on the order of seconds), the error condition is
togged and/or announced at the W system console. After this, the W still expects a
response to the packet in question, but no further action is taken and subsequent
messages are treated as If no error had occurred.

Commands issued by Host/Console
Mnemonic Opcode Meaning Arguments

NAK 00 Negative Acknowledge cc/
cc=s 00 : Packet length error

01 : Bum. of Args error
02 : Not ready for cad
03 : Illegal Opcode
IX : X r th argument below

current sdLnissuEZE limit
fl < X < §)

2X = Xf tli argument above
current ^»^«T™* l imit
f l < X < 9}

AOC
ABO
STO
STA
TRA

01
02
03
04
05

Acknowledge
Abort Motion
Stop/Suspend Motion
Startup
Travel 1/r/i/

1
r
i

:arc length
: radius of cunr*
: 1 = immediate



42

CHP OS Change Position t/y/h/

$m
SVL

11
12

Set time to zero
Set Velocity

x :
y :
h :

v/i/

SAC

SPl

ST1

8T1

ISR

INF
POS

PHI

Til
sra
ROZ,
tXJt

13 Set Acceleration a/i/

A x pos.
A y pos.
A heading

v : velocity
i : 1 — immediate

14

15

16

17

18

21
22
23
24
25
2$
27
23
2$
3«J
31
32
33
34
35
3€

Set Pan 1

Set Tilt 1

Set Pan 2

Set Tilt 2

Set Steering Rate

Get Vehicle Info
Get position
Get Vehicle Tine
Get Vehicle Velocity
Get Vehicle Ace,
Get Pan Angle 1
Get Tilt Angle 1
Get Pan Angle 2
Get Tilt Angle 2
Get Steering Rate
Get Roll
Get Roll Rate
Get Pitch
Get Pitch Rate
Get Beading Rate
Get Status

P/

t/

P/

t /

s /

a : acceleration
i : 1 = immediate

p : pan angle

t : tilt angle

p : pan angle

t : tilt angle

s : steering rate
(0-99 %)

XI?

Reeponeee from Virtu* Vehicle
;:pc:-da Meaning

§§ ~ ~ negative Acknowledge

d /

d : device number

Arguments

00
01
02
03
IX

2X

ACX §1
51

Packet length e r ro r
Num. of Args e r ro r
Hot ready for rwf
I l l e g a l Opcode
X' th argua^nt below
current minimum l imi t
(1 < X < 9)

X' th argument above
current lym̂H nm-nT* l imi t
(1 < X < 9)

g
Vehicle ia£o
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RVP 52 Vehicle position

RVT
R7V
RVA
RP1
RT1
RP2
RT2
RSR
RKL
RRR
RPT
RPR
RHR
RST

53
54
55
56
57
58
59
60
61
62
63
64
65
£€

Vehicle Time
Vehicle Vel,
Vehicle Ace.
Pan angle 1
Tilt Angle 1
Pan angle 2
Tilt Angle 2
Steering Rate
Roll
Roll Rate
Pitch
Pitch Rate
Heading Rate
Report Status

ADN 80 Arcdone

1
w
h
g
m
X

y
s

: length
: width
: height
: weight
; minimum turning radius
: X of C.G
• Y of C.G
0 = wheel steer
1 = skid steer

x/y/h/t/
x :
y =
h :
t :

t/
v/t/
a/t/
p/t/
t/t/
p/t/
t/t/
s/t/
r/t/
r/t/
p/t/
P/t/
h/t/
d/s/t/

d :
s :

x position
y position
heading
time

device number
status code

id/x/y/h/t/
id

h :
t :

: arc ID code
' : Pos. at end of arc
heading at ̂ nd of arc
time at end of arc

Note: AH distance units are cm, time units are msecs, velocity units are cm/s, acceleratton units are cm/s2

and angle units are half degrees. Weight units are kilograms.


