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Abstract

The NavLab is a testbed for research in outdoor navigation, image understanding, and the role of
human interaction with intelligent systems; it accommodates researchers and all computing onboard. The
core of the NavLab is the vehicle controller, a multi-processor computer that controls all locomotion,
actuation and physical sensing; it interacts with a computer host and human operator to implement
varying degrees of autonomy. The chassis is a modified van with a computer-controllable, hydraulic
drivetrain. The NavLab supports a choice of sensing to accommodate many types of navigation research.
This technical report details the control computing and physical configuration of the NavLab vehicle.



1. Introduction
The NavLab is a testbed for research in outdoor navigation, image understanding, and the role of human
interaction with intelligent systems. A mobile navigation habitat, it accommodates researchers and
significant onboard computing. Applications for field navigation vehicles include mapping of hazardous
waste sites, off-road haulage, material handling at construction worksites, and exploration of planetary
surfaces.

The NavLab is a roadworthy truck modified so that humans or computers can control as occasion
demands. Because it is self-contained, it is not subject to telemetry bottlenecks, communication faults or
dependence on stationary infrastructure, and can travel to confront navigation problems of interest at any
site.

The core of the NavLab is the vehicle controller. In autonomous mode, this multi-processor computer
controls all locomotion, actuation and physical sensing. It interacts with a computer host and human
operator to implement varying degrees of autonomy. The NavLab controller queues and executes Virtual
Vehicle commands originating from a computer or human host. This command set provides high-level
motion and control primitives that mask the physical details of the vehicle, and is extensible for control of
other mobile systems.

The NavLab configuration consists of a chassis, drivetrain and shell. The chassis is a modified, cut-away
van with a computer-controllable, hydraulic drivetrain. Driver's controls allow a human monitor to override
automatic control for overland travel, setup and recovery from experimental errors. The shell houses all
onboard equipment including computers, controllers, telemetry, and internal sensors. In addition, it
provides a working area for operators, allowing research within the confines of the vehicle. Equipment
racks, monitors, lighting, air-conditioning, seating and desk space create a mobile environment for
research.

Humans can monitor and supervise the NavLab from the operator's console for setup, error recovery and
tuning. Interface modes include Virtual Vehicle instructions, joystick motion control, and direct servo
motion commands. The console also incorporates several displays to show the current states of both the
vehicle and control computer.

The NavLab supports a choice of sensing to accommodate many types of navigation research. Video
cameras provide color and intensity images for scene interpretation. NavLab vision experiments use a
single camera to analyze road edges through intensity, texture, and color segmentation. A scanning
rangefinder sweeps the surroundings with a distance-measuring laser that provides useful three-
dimensional information about the geometry and reflectivity of the environment. Laser experiments
navigate through geometric features like trees and buildings. Taken together, data of color, intensity,
range and reflectance provide a rich basis for building natural scene descriptions. Sensor information
from several sources can be fused to achieve more robust perception. A blackboard architecture
integrates the distributed processes that sense, map, plan and drive.

The NavLab represents continuing evolution in the design of navigation vehicles. Fully self-contained, it
is a milestone in mobile robotics.

This technical report details the control computing and physical configuration of the NavLab vehicle.
Information on other aspects of the NavLab, including perception modelling, planning and blackboard



architectures, can be found in articles listed in Appendix V.



2. Controller
The NavLab controller parses and implements a Virtual Vehicle instruction set. The controller is
implemented as a loosely coupled parallel processor. Commands are received via a serial link from Host
computers or an onboard console. Five axes of motion are controlled: drive, steering, pan and tilt motions
for the cameras, and a pan motion for a laser ranging device. Status of devices onboard is monitored by
a sensor subsystem that constantly polls processors dedicated to groups of sensors via a high-speed
serial bus. Status information is displayed on the console inside the vehicle and is available to the Host
computer via queries.

2.1 System Architecture
The control computing for the NavLab is based on the hierarchy shown in Figure 2-1, a system
architecture for robot modeling and planning associated with autonomous task execution in unstructured
and dynamic environments. The NavLab controller is tantamount to the lowest level of the architecture.
The need for an interface protocol between the control computing and the higher level computing forges
the virtual system, which allows the low-level control computing to mask the physical implementation
details from the higher level computing. This is accomplished through command primitives that define the
interface. Using the virtual system, many of the high-level modeling and planning functions can port
across a number of different physical systems that can be controlled with the same command primitives.
Only the lowest level control computing must deal with the physical differences of the system.

Complex systems usually defy any attempts at mathematical modeling techniques, which makes control
parameters impossible to even estimate. A set of pseudo constants, tunable from an operator's console,
adjust the parameters and gains. The NavLab maintains these constants in file structures that remain on
disk for power-up initialization. The system always starts up with default values established from the most
recent tuning of the system.

The control computing accepts commands from a host or human operator who can intervene at various
levels of control to insure safe operation during experiments. The assumption during development is that
the higher levels of computing will not succeed in all situations. The control computing thus provides a
graceful transition between computer and human control when failures occur. The hooks for human
inputs are also useful for setup and recovery during experiments.

The sensors monitored by control conrputing reflect the state and ability of the system to respond to
commands issued by the cognitive planning layers. The values of the observed parameters have fixed
maximum limits that are characterized by the physical system. These limits, however, are not static and
can move inward during certain operating conditions. Physical parameters such as heat and pressure can
diminish NavLab's mechanical ability to respond to commands. The parameter limits are dynamically
adjustable by the controller to protect the NavLab. When controlling with a powerful physical plant like the
NavLab, erroneous plans and commands have significant impact. The control computer should never
execute commands blindly, so mechanisms are needed for validating and rejecting commands, with
advisories communicated to the source of commands.

Control computing, the lowest of the three levels within the autonomous mobile system architecture,
Interacts with the physical system. The design criteria set forth for the NavLab iow-level controller include
an open-ended architecture, a virtual system interface and multiple command streams.
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Figure 2-1: The Hierarchical Layering of a System Architecture for Modeling
and Planning

2.2 Virtual Vehicle
A Virtual Vehicle is a man-machine interface that accepts conceptual commands and provides a clean
separation between the navigation host and vehicle control. This interface masks implementation details
of the physical vehicle, facilitating adaptability to future navigation testbeds.

The Host (the computing engine that does planning) communicates with the Virtual Vehicle via ASCII data
transmitted over a serial line. The communication falls into three categories:

• Commands issued by the Host
• Queries by the Host about the status of devices
• RepO'rts initiated by the Virtual Vehicle on completion of commands and in case of

emergency.

in the current implementation, the vehicle is directed along circular arcs because arcs are quickly
computed and absolute position is not critical (the arcs are being upgraded to clothoids). Because I is
not possible for a vehicle to switch between an arc of one curvature and another instantly, path transitions



are inexact. Errors are compensated for by dynamically planning arcs to reach subgoal points along the
path.

To facilitate synchronization, all drive and steering commands are initiated at the transitions between
arcs. The capability is provided to make changes to vehicle motion (e.g., curvature of the arc, vehicle
velocity) on the fly. Arcs (specified as [arclength, radius of curvature]) can be queued for sequential
implementation.

The Virtual Vehicle and Host interact as follows:
• The Host issues a new arc command before the arc in execution is completed.
• If an immediate condition is specified, the old arc is discarded and the new arc is accepted

immediately. Otherwise, the new arc is initiated at the end of the arc being executed.
• When a new arc is initiated, vehicle position is reported to the Host for use in calculating

future path plans.
• The Host incorporates the reported position in planning the next arc, thereby compensating

for deviations from the desired path.

The Virtual Vehicle instruction set and details of interfacing can be found in Appendix IV.

2.3 Controller Architecture
The NavLab controller is a powerful and flexible multi-processor system. A functional block diagram of
the controller is shown in Figure 2-2. A Pilot module, responsible for management and operation of the
key peripherals and I/O devices in the system, maintains direct control of all physical action and motion.
The Pilot is also responsible for system startup and synchronization and acts as the hub in a star
configuration for inter-processor communication. A Command Preprocessor manages I/O between the
controller and devices that communicate with it. The Sensor Manager controls a network of 8-bit micro-
controllers distributed throughout the vehicle to provide points of intelligent analog and digital I/O.
Accommodations are made for an Advisor to set limits on physical motion parameters based on the
perceived condition of the mechanical systems of the vehicle. The Advisor incorporates a bump detection
subsystem that signals the Pilot if immediate action is necessary.

Each module in the system contains its own operating environment for independent/parallel operation.
The operating environments are subsets of those used for system development. Code for each module is
down-loadable to permit easy modification to the system.

2.3.1 Hardware
The NavLab controller is designed as a two-tiered multi-processor system. The first tier is responsible for
the primary computing, control I/O and motfon control. It is comprised of 4 Intel 28612 processor boards
residing in a common Multibus backplane. The second tier performs remote data acquisition and control
of devices located around the vehicle using a serial network of 8-bit micro-controllers. The Sensor
Management System in the first tier is the interface between the two tiers.

2.3.1.1 Primary Computing
Processors in the first tier take advantage of the multiple bos structure of the system to increase
processing throughput. Each processor contains a local bus with enough memory resources to support
is own execution environment. Processors have bus master capabilities to access and control I/O
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Figure 2-2: Architecture of Controller

boards and shared memory spaces. Critical memory and I/O locations are controlled using a semaphore
system while bus contention is arbitrated in hardware. Interrupt lines in the Multibus backplane tie the
processors together for inter-processor communications.

Each processor is identically configured with 256 K focal ROM, 512 K local RAM, and a 256 K window to
the Multibus. The ROMs on the I/O processors only contain operating system software and a download
facility to allow loading of applications. The multiple bus structure permits a total system memory of 2.5
MB even though only 1 MB is addressable from each processor.

The controller also contains intelligent slave boards for I/O expansion and servo motor control. These
boards may be accessed by any bus master. Often, access is restricted to a specific processor to avoid
contention problems.
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2.3.1.2 Secondary Computing
The second computing tier physically distributes sensing and control of devices around the vehicle by
using nodes that consist of 8-bit microcontrollers communicating over a high-speed serial bus using a
message protocol called Bitbus. The network is controlled by a Master node that either continually polls
other nodes to read analog and digital inputs or continuously commands them with reference values. The
communication overhead makes Bitbus suitable to tasks that require high-level control and slow data
acquisition. The serial bus network is extensible to support up to 250 nodes. Further implementation
details of Bitbus can be found in Section 2.3.5.1.

2.3.2 System Software
System software for the controller is based on the iRMX 86 real-time operating system. tRMX is
configurable to customize operating environments for each processor in the system. These operating
environments are resident in ROM local to each board and are booted from reset. iRMX 86 provides
objects to support an event-driven, mufti-tasking environment.

A facility to down-load object code was developed for building and testing multiprocessor systems. A
single processor accesses the mass storage device containing object code files for downloading. This
processor, like a system server, toads object code into shared memory and signals the appropriate target
board when a valid record is available. The other processors contain consumer jobs to copy records from
shared memory to their local memory. On signal from the server processor, a consumer job releases the
server CPU to allow the local Operating System to start the jobs from the newly loaded code. Once the
application software is running, the consumer load job lies idle and waits for a signal from the server
processor to reset and begin the toad sequence again. This flexible toad facility is a valuable tool for
building and testing multiprocessor systems.



2.3-2.1 intarprocessor Communication
Processors communicate using shared memory in two different ways. Common variables are ac
by multiple processors to share state information (scratch pad communication). Messages can
written to specific memory locations on other processor boards and the receiving board is signal*
intermix. This method is often used by one board to direct processing on another board.

Scratch Pad Communication
This method is a simple solution to sharing a large amount of data between modules. Process

acqyim data (status of devices, vehicle orientation, speed, etc.) post this information to the serai

area Instead of sending the data to all modules that need them. Most shared variables are indep

of each other; hence contention problems are limited to access of the individual memory locatfons l

or write* Dependent variables (ones that must be accessed as a group) require a software semapi

provide mutual exclusion An indivisible test and set instruction provided by PUM-86 was used to

the semaphore system.

Moduli for Interprocessor Communications
Tht (yfofJuit for Interprocessor Communication (MIC) was developed to support flexible pip
cxrafmjnieaiions between tasks running on separate processor boards. MIC provides the apple
programmer with a simple set of procedure calls from which a task can queue messages contaii
board a«J task destination. MIC handles the transfer of these messages between boards.

MIC is implemented as a star architecture. All messages are sent through a central node to th
number of required interrupt lines. This scheme is well suited to the NavLab controller because
iittipfQCtssof c»rwiiinicattons are to a central node (the Pilot).

MIC was built using tools provided by iRMX including inter-task communication, dynamic m
aSocation, and FIFO queues* MIC runs as an interrupt-driven task. It responds to signal tntemij
determine the destination of a received message and then sends it to the appropriate task. iRMX sj
calls pern* asynchronous message transfers between tasks.

MIC mm designed to be compact (5 K), fast, and capable. MIC is able to dynamically allocate mas
segments to meet the toad of interprocessor communication traffic that varies from process
processor. His prtvents wasting memory ami time required by the system programmer to tune t
sfees tor wMclual boards, m e n application code is modified to change message traffic, MIC can a
to use only the necessary memory resources.

2JJ Command Proproctssor
The Command Preproassor ftoof-tmte I/O originating from two sources: the driving Host cm
•HOST? and the operator's mmmte (Console), At the lowest level, it drives the physical data 1
supporting these command streams. In the NavLab controller, RS232C serial channels are controlled
the wi i t v t i i vakiaits data integrity erf Host-originated Virtual Vehicle Interface (Wl) oorwn
packets by ctiedung format mftmrnsn, parameter count, and packet size. At the highest level 1 cH
p a t ttfcet agi^st tsSabSished Knits, The Command Preprocessor has the ability to m

e«ceed;ng the curort operating limits, but the Pilot has final authority on ccmm
Query commands issued by the Host are handled directly by the Command



The Command Preprocessor communicates primarily with the Pilot module. The other modules are
indirectly accessed through value lookups in the Scratch Pad. All commands involving action, such as
motion commands or control commands to a device managed by the Bitbus Sensor/Control Network, are
first sent through the Pilot to update its knowledge of the vehicle state affected by the controller.

The Command Preprocessor contains two separate subprocesses to service the Host and Console
concurrently. The Host Interface is responsible for maintaining communications between the controller
and the Host. The Console Interface interprets commands from the operator console keyboard. The
Console is given priority over the Host so that it is possible for the operator to override Host commands.
Commands are received as ASCII packets. The Host sends only numeric data; each command is given
an opcode. The Console allows the operator to enter commands as simple mnemonics.

Communication errors are trapped by syntactic data validation. The Command Preprocessor takes two
different actions based on the type of command it receives. For motion commands, the arguments are
validated based on the allowable ranges of vehicle motions posted in shared memory by the Advisor. If
all the arguments are acceptable, the command is passed on to the Pilot. An acknowledge message is
then sent, signaling that the command was accepted and will be executed. If for any reason the
command is found to be invalid, a disacknowledge message along with an explanation for rejection is
sent to the command initiator.

The Command Preprocessor processes query commands (e.g., heading, position). The requests are
satisfied by accessing the shared memory region where the information is updated constantly. This
method makes it unnecessary to interrupt other processes. The data is formatted and shipped to the
requestor.

The Command Preprocessor also maintains the display on the operator console onboard the NavLab.
The screen is divided into three parts:

1. Display — A window displays vehicle data. The operator can select between 5 different
displays:

• Sensor data shown in graphical form (vertical bars).
• Sensor data shown In alphanumeric form.
• Status of switches controlled by the controller shown in alphanumeric form.
• Command packets between controller and the Host.
• A help screen that explains how the operator can control the vehicle by using the

Virtual Vehicle instruction set.

2. Command line - Allows the operator to:
• Enter Virtual Vehicle commands.
• Enter software joystick commands.
• Turn on/off switches controlled by the Bitbus network.

3. Information area - A window is reserved for special messages that may be sent by any
process in the controller.

2.3.4 Pilot
The Pilot's main function is controlling or initiating ail physical action and motion control The Pilot also
plays the central role in inter-processor communications by acting as the hub in a star configuration. All
commands altering the state of the vehicle are filtered through the Pilot, eliminating contention and state
ambiguity problems potential to systems altered by rmiltiple Independent processes. For the generalized



to

case, the Pilot module would occupy several processor boards and handle manipulation as well as
Jocomotor control.

The Pilot is composed of a hierarchy of concurrent processes (tasks), each of which is dedicated to
maintaining a specific subset of state variables and initiating all actions affecting those variables. At the
lowest level, each axis of motion has an individual driver process associated with it that formats motor-
controller specific command strings, performs I/O exchanges with the motor-controller board, and
maintains the current values of all pertinent variables for that axis in local memory. The axis drivers at
this level have no notion of the physical configuration of the overall system. Coordination of motions is
handled by higher-level processes.

Action requests can be submitted to the Pilot by the Command Preprocessor at any time. On receipt of

such a request, the Pilot returns an acknowledge/disacknowledge message to the Command

Preprocessor indicating whether it can execute the command. If the received command can be executed,

it is decoded and forwarded to the appropriate subprocess for handling. Depending on the type of action

requested, this process may then

• direct motions (via the appropriate axis drivers)
• read or set parallel I/O lines (for example, to select a different transmission gear)
• update the values of some state variables.

Because individual processes each have a specific run-time priority, critical commands (e.g., "STOP")
always obtain control of the CPU, even if a tower-priority command is still in progress. Also, because task
scheduling is event-driven rather than time-shared, high-priority processes always run uninterrupted, Le.f
in constant time.

A special set of tasks within the Pilot maintains and processes a queue of arcs specifying a path for the
vehicle. These arcs are executed continuously and a position report is issued to the Command
Preprocessor on completion of each arc. Velocity and acceleration parameters can be updated at arty
time during execution of an arc; in addition, one value for each of these variables may be queued to p
into effect with the beginning of the next arc execution.

The Plot has the final responsibility for command acceptance or rejection, command queue management,
and implementing established equations to achieve requested arc trajectories, implementation details of
the vehicle am masked by the Pilot.

The NavLab incorporates braking as well as forward and reverse propulsion in a single, bi-directional
hydrostatic drive. For the generalized vehicle case, the Pilot would coordinate brake/throttle control to

achieve velocity and position objectives. At the servo level, motion is controlled by motion control boar*

commanded by the Pilot. Emergency stop conditions are signaled to the Pilot by a critical Interrupt line

controlled by a planned Health Preservation module with bump detection facilities. On assertion of tfts

line, the Pilot is responsible for graceful shutdown, leaving the vehicle ready for recovery actions issued
from the operator's console. Because only the Pilot controls the motion, it is always aware of the current
motion state.

Finally, a few background processes perform such functions as maintaining the system dock and

calculating position coordinates based on sensor measurements.
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2.3.5 Sensor/Device Management System
Apart from the five main axes of motion, there are numerous sensors that must be monitored and devices
that must be activated. The Sensor/Device Management System manages two classes of sensors. The
first class is characterized by sensors and devices that need not be monitored/controlled frequently. For
example, a sensor might be dedicated to monitoring hydraulic fluid temperature; while this information is
important, it is not essential that it be updated more frequently than once in several seconds. Another
class of sensors is that group of devices that must be monitored frequently. An example is a process that
must analyze data from inertial devices and post these results in shared memory several times a second.

2.3,5.1 Bitbus System
The Bitbus System is a highly flexible and expandable data acquisition and control system. By taking
advantage of the Bitbus distributed control architecture, the Distributed System supports analog status
sensors and digital I/O channels using microcontrollers distributed on a serial network. Nodes on this
network transfer data to the Bitbus Server module using the Bitbus message passing protocol. The Bitbus
nodes are programmable to meet a wide range of sensor and control configurations. Data returned to the
Bitbus server are conditioned and scaled at the Bitbus node, reducing computational requirements of the
Bitbus server.

The primary responsibility of the Bitbus server is to acquire and move sensor data to shared memory
locations recognized by other modules in the controller. When the Pilot sends an action command
request, the server must format messages to control any devices supported by a Bitbus node. In support
of these functions, the server must also handle node initialization, self-monitoring, and fault recovery for
the Bitbus network. The chief advantage of using a Bitbus network is the modular expandability and
flexibility that is inherent to the Bitbus architecture. Complex inter-processor message passing facilities
are included in the architecture, relieving the programmer of much responsibility.

In simple systems with limited I/O points, the Distributed System could be replaced with a single board
computer equipped with the appropriate I/O expansion modules. An effort should be made to keep I/O
operations local to the processor to avoid consuming bus bandwidth. With either implementation
scenario, the update rates of shared variables should be adjustable to control the bus access frequency
of the Distributed System for tuning purposes.

The Bitbus network provides a distributed control structure to service the first class of sensors. A list of
sensors and devices on this network can be found in Section 2.5.2.

The Bitbus network is based on a master (Bitbus server) and slave (Bitbus nodes) concept (Figure 2-4).
Nodes provide the connection between the sensors/devices and the central Bitbus Server. Because each
node operates independently, fast data acquisition can be achieved by distributing the work load among
many nodes. Nodes can also be programmed to perform control tasks by reacting immediately to critical
conditions as they arise.

The Bitbus Server, one process on the Sensor Management Module, initializes the network and monitors
status. Because the nodes cannot initiate communications, the Server must continuously poll each node
for output data. When the Server receives a message from a node, ft posts the relevant information in
shared memory for reference by other processes. When some high-level process needs to control a
Bitbus node, a message is sent to the Server. This message is then broadcast on the network where it is
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trapped and processed by the addressed node.

2.3.5.2 Fast Sensor Monitoring

The Sensor Management system also maintains processes to monitor those devices that must be

serviced at a high frequency. At present, the only such device envisioned is an Inertia! Navigation

System antfcipated to report position and orientation data about 10 times/sec. The incoming data is

parsed and posted in shared memory. Other devices that need to be monitored constantly can be added

to the controller simply by allocating a process to them. This method is preferable to the Bftbus method

when data must be accessed frequently and must be made available to the entire system quickly.

2.4 Motion Control
Of the 5 axes of motion, only drive and steering can be controlled both manually and automatically. The

other three motions of pan and t i l are only used in automatic operation. Figure 2-5 (a) shows the

configuration during manual operation. AH axes of motion on the NavLab are physically controlled by

G a l DMC-200 series motor controllers. These controllers were chosen for:

• Multibus compatibility
• multiple modes of control (position, velocity, torque)
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• coordinated motion of two or more axes (DMC-200 only)
• programmable acceleration and slew rates
• status, position, and error reporting.

A digital phase lead control law with adjustable gain, pole and zero provides a stable closed-loop system
for a wide range of plant dynamics. The motor controllers communicate with the Pilot subsystem through
Multibus I/O ports for data as well as handshake exchange.

Single axis Galil DMC-201 controllers are used for steering, drive, and laser-ranging pan motions, while a
DMC-200 two-axis unit is used for the camera pan and tift (Figure 2-5 [b]). Each controller is software-
calibrated at power-up to match the dynamics of the controlled axis. Thus, motor controller boards can be
interchanged simply by selection of appropriate I/O addresses via jumpers.

2.4.1 Dash Panel Control
The vehicle operates manually to simplify transport to and from test sites. Manual operation doesnt
require any computing or generator power. The electronic components active during manual operation
are powered by the NavLab's 12 V system.

Emergency ^Slop Aujo/Manual

0 0

Brake Speed
Pedal Control

Pedal

Figure 2-6: Dash Panef Layout

A luman interface is incorporated for safe and easy use by drivers of standard automobiles. Figure 2-6
shows illuminated pushbutton controls mounted within reach of the driver.

• High, Neutral, & Low: allow the operator to choose gears. Because switching directly from
one gear to another produces an unsafe lurching of the vehicle, a hardware logic function
allows switching only by first selecting Neutral.

• Forward, Reverse: select the direction in which the vehicle moves.
• Auto/Manual: a pufti>ush switch that switches between manual and automatic control
• Emergency Stop: disables autonomous locomotion and brings the vehicle to a rapid,

controlled stop. Servo-lock of steering is disabled; steering Is returned to manual control.
• Brake Pedal: as In •commercial cruise control systems, a light touch of the brake pedal brills
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the vehicle back under manual control.
• Speed Control Pedal: activates a 20K ohm potentiometer to produce a voltage proportional

to the angle of deflection of the pedal.
• Throttle Control: this dial sets the vehicle engine RPM as detailed in Section 4.2.1.1.
• HE: this switch turns on/off the heat exchanger fan for the hydraulic system.
• HP, LP: These lamps are lit when the dirty oil filters in the high and low pressure hydraulic

systems indicate an alarm.

By default, when the vehicle is powered up, it is put into manual mode, neutral gear, and forward
direction. It is necessary to provide the ability to override the autonomous mode in a fast but controlled
manner if an emergency develops. To ensure reliable operation, manual override is a hardwired
electronic circuit with sealed electromagnetic relays instead of sequential logic gates. This design proved
to be immune to the noise and power fluctuations common to automotive electrical systems. Because
this circuitry is essential to vehicle locomotion, it is powered by the vehicle 12 V system rather than the
generator.

An electronic ramp/hold circuit in series with the foot pedal provides adjustable limits on acceleration and
deceleration and ensures that abrupt movements of the foot pedal do not cause the vehicle to lurch. This
feature was included both for safety and ease of driving. A second ramp/hold unit ensures a smooth
deceleration in case of an emergency stop.

2,4.2 Steering Control
The steering control system consists of a computer-controlled DC servo motor linked to the steering
column by a toothed belt. A single axis motor controller (DMC-201) uses feedback from an optical
1200-line incremental encoder mounted directly on the motor shaft to maintain tight position control over
the steering wheel. A servo-amplifier converts the +/-10V control signal from the motor controller to drive
the DC motor with up to 11 amps of continuous current. At maximum speed, the steering mechanism can
be moved between its two extreme positions in 2 seconds.

Feedback is obtained from an encoder on the motor shaft that is mated to the steering wheel, which is
always turned a specified amount. Differences between intended and achieved radius occur due to
linkage non-linearities and factors such as friction between the road and the wheels, grade of the road,
vehicle speed, and speed with which the steering wheel is turned.

Limit switches on the steering linkage are hardwired inputs to the controller board and provide both a
safety stop to protect the steering mechanism and a reference point for roughly calibrating the steering
control system to a known position on power-up or system reset.

Z4.3 Drive
A single axis motor controller services the drive system. The voltage (-10V to 10V) produced by the
motor controller is converted to a current signal (-100mA to 100mA) by an amplifier that directly operates
a hydraulic servo valve to set the speed of the hydraulic motor. Acceleration of the vehicle is limited by a
ramp/hold circuit, mentioned in Section 2.4.1, in effect providing a low pass filter to the input signal. An
optical 300-line incremental encoder mounted on the hydraulic motor shaft provides feedback to the
motor controller. Because the transmission is downstream of the hydraulic motor (i.e., between the motor
ami the driveshaft), the encoder pulses must be interpreted differently for high and tow gears.
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2.5 Sensors/Devices
At present, the controller features for handling sensors are not fully implemented. Two fronts of
expansion are proposed for the near future. An Inertia! Navigation System will be incorporated to provide
continuous position and orientation information. A Bitbus network will be used to monitor and control
devices distributed around the vehicle.

2.5.1 Inertia! Navigation
An Inertia! Navigation System (INS) to be deployed on the NavLab will receive distance data as input and
will provide position and inclination data along the axes specified as output. The INS detects initial
heading on its own and provides updates of position and heading.

The following information will be obtained from the INS:
1. True heading of the vehicle - 0.5 degree resolution.
2. Rate of change of heading - 0.5 degs/sec resolution.
3. X, Y, Z position in cm - 10 cm resolution. This will allow movement on a 100 km2 grid.
4. Roll and pitch inclination - 0.5 degree resolution.

Performance criteria include:

• Dead Reckoning Capability: Speeds along the direction of travel of up to 60 km/hour; turning
speeds (change of orientation) of up to 40 degrees/sec.

• Accuracy: Maximum long track error: 1 % of distance traveled. Maximum cross track error:
0.1 degree/hour.

• Updates: Must be able to handle the accuracy requirements above with updates coming only
once an hour or once in 5km.

• Necessity of Stopping: Must not need more than 5 minutes for the vehicle to be completely
stationary on power-up or on recaltoration.

At present a device that uses three mechanical gyroscopes and requires an odometer input is being
considered. A second device being considered is a strap-down system that uses ring laser gyroscopes.
This is much more accurate than the first and does not require odometer input.

2,5,2 Sensors/Devices on Bitbus Network
The following is a list of sensors and devices that are monitored and controlled by the Bitbus netwcft.
Scan cycle time indicates the period at which each of the sensors is monitored. Temperature units are
degrees centigrade. Pressure units are pounds/sq. inch.

Sensor
Thermocouples
Engine Oil
Engine Coolant
NavLab Cabin
NavLab External
Hydraulic Reservoir

Pressure Transducers
Engine Oil
Hi-pressure System (input)
Hi-pressure System (output)

Scan Cvel

30
30
30
30
30

10
10
10

sec
sec
BBC

mmc
sec

sec
sec
sec

0 deg
0 deg
-10 deg
-10 deg
0 dags

0 psi
0 psi
0 psi

175 deg
150 dag
40 deg
40 deg
100 dags

60 psi
3000 psi
3000 psi
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Voltages & Currents
Battery Voltage
RPM
GAS Level
Low Level Reservoir
Swash Plate Angle

Switch Settings
Transmission Gear State
Generators (2)
Heat Exchanger

30
2
60
€0

sec
sec
sec
sec

0
0
0
0

V
V
V
V

15 V
5 V
5 V
5 V

1 sec

1 sec
1 sec
1 sec

-10 V 10 V
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3. Vehicle Shell
NavLab's foundation is a 1985 General Motors Vandura cutaway chassis chosen as a commercial base
to simplify development. As acquired, the vehicle consisted of a chassis, a drivetrain and a cab. A
custom shell was constructed to house the onboard AC power generation, power distribution, control and
computing equipment. Space for operators is provided, allowing research activity within the confines of
the vehicle. The original configuration also included a 350 ci V-8, cruise control, an automatic
transmission, dual rear wheels, power steering, power brakes and a 33 gal fuel tank.

3.1 Exterior Design
The shell was custom-built with particular attention paid to strength requirements, anticipating needs for
extensibility. The roof and cab support air-conditioning, antennas, sensors, and working personnel. The
floor of the shell supports about 2000 kg. The shell is dimensioned so that researchers can stand inside;
five equipment racks are housed side by side along one side of the vehicle. Figure 3-1 shows a rear and
side view of the vehicle.

The shell is made entirely of steel. Heavy gauge was used on the front and back walls while lighter
gauges were used along the side walls and roof. A metallic blue paint protects the entire shell. There are
compartments for the generators and power-related equipment. Louvered metal doors provide outside
access; there is no access to these compartments from inside the vehicle to keep fumes from entering the
shell

A wiring port in the floor behind the driver's seat allows wiring from the underside to enter the vehicle.
Another access vent in the shell above the passenger compartment enables wiring from cameras arc!
range sensors to enter the vehicle.

3.2 Interior Design
Figure 3-2 shows a topdown view of the NavLab. The cab has two seats, one for a driver and one for a
passenger. A console located between the two seats allows the operator to control and monitor the
transmission. A research area behind the cab contains computing, sensing, and control equipment, as
well as space for two researchers.

Five equipment racks are located on the left side. A desk area extending the length of the research area
is located opposite the racks across the aisle. Three video monitors mounted above the desk area car
swivel to a desired viewing position.

Along the rear edge of the desktop an outlet strip provides power for the various terminals and test

equipment. Bolt-down inserts with elastic straps prevent computer equipment from sliding on the desktop

when the vehicle is moving.

Cabling between devices passes through cable trays mounted close to the ceiling. The tray design

securely holds video and communication cables but allows for easy removal or addition. Track-moynfed

lights above the desk area provide independently aimed illumination.

In addition to the two seats in the cabs a swivel seat, centered In the desk area, is mounted on the wail ̂

a generator compartment Extra removable seats can be mounted In the aisle for more researchers.
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Side View

General Navlab Specs
Total Weight: 5449kg
Minimum Turning Radios: 750 cm
Center of Gravity: (112cm, 244cm)

(x,y,) with rear corner on the
driver's side as the origin.

Rear View

Figure 3-1: Side and Rear View of the Vehicle
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550 cm

127 cm

Figure 3-2: Interior Layout of Vehfcle

3.2.1 Cooling
The heat generated by power conditioning, lighting, and electronics would damage some of the
experimental computing. Thus in addition to the air conditioning provided on the van, a standard nx^
mounted recreational vehicle air conditioner provides cooling,,
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Fiber insulation between the shell and interior panels also provides protection from the heat. Insulation
inside and outside the shell helps control interior climate. Underfloor insulation keeps heat from the
hydrostats and exhaust from entering the interior. Flat sheets of fiberglass covered with thin gauge
aluminum are inserted in floor areas between frame members. High temperature silicon-based insulation
covered with heavy gauge aluminum foil covers exhaust pipes.
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4. Locomotion
Steering and drive motions coordinate to drive the NavLab through planned trajectories. Both axes of

motion are controlled by analog signals issued by the controller while in automatic mode or through

manual controls.

4.1'Steering
Figure 4-1 shows a front and side view of the NavLab steering mechanism.

Toothed belt couples motor

Steering Wheel

DC Servo
Motor

Optically tneoded
DC servomotor

SIDE VIEW FRONT VIEW

Figure 4-1: Steering Adaptation

The original linkage and steering column are driven by a DC servomotor mounted below the steering
column. The motor is connected to the steering column shaft via a precision toothed belt; two toothed
pulleys provide a gear reduction of 5 to 1. This configuration provides high enough torque to turn the
steering shaft but tow enough for the operator to overpower the steering motor in an emergency. A
special hub ties all the steering elements together and a safety enclosure houses the moving parts. Uml
switches at the extremes of steering travel prevent command error from damaging the system.

4.2 Drive
A hydraulic pump and motor combination comprises NavLab drive. This hydrostatic combination was
selected because it provides precise control of position, speed and acceleration. Hydrostatic equipment
also has a long history of smooth control and finely adjustable response.

Drive power comes from the main vehicle engine. Engine RPM is limited by a governor to prevent
overdriving the attached hydraulic pump. Pump output is controlled by an analog signal.1 T*«

tThis signai originates from either a foot pedal that replaces the standard gas pedal or a drive ccmtroier, dependfog or
the weMcte is in manual or automatic mode.
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HYDRO
MOTOR C/D DRIVESHAFT

CLUTCH
DIFFERENTIAL

REAR WHEEL

Figure 4-2: Schematic of Vehicle Drivetrain

displacement of the pump (proportional to the signal from the footpedal) determines the speed at which
the hydraulic motor moves. The motor in turn powers a two-speed transmission which operates at either
a 4:1 (low gear) or 1:1 (high gear) ratio, turning the driveshaft connected to the vehicle differential. Figure
4-2 shows a schematic of the drivetrain.

The configuration described above makes control of vehicle motion simpler than if the vehicle
transmission and brakes had to be controlled to produce desired velocity. The standard braking system is
intact but is only used in case of emergency because the analog signal to the hydraulic pump controls
both accelerations and decelerations.

4.2.1 Vehicle Engine
The standard 350 ci V-8 engine is the main source of driving power. The following modifications were
made:

• An electrically actuated clutch was installed to couple the vehicle engine to the hydraulic
pump. The clutch is disengaged to isolate it from the engine when the engine is being
started.

• The alternator was upgraded to a 120 amp dual output unit to satisfy the additional
requirements of the two-battery, 12 volt system onboard.

• One stock emission control air pump was substituted by a hydraulic power takeoff unit. It is
driven from the crankshaft end and shares a stock V-belt with the power steering pump.

• An engine oil cooler was installed to reduce oil deterioration caused by the constant high
engine temperature.
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4.2.1.1 Engine RPM Control

An engine RPM control keeps the vehicle engine running at a determined range of RPM irrespective of
grade and speed. A magnetic pickup on the output shaft of the engine provides feedback to a specialized
controller that maintains a constant RPM by moving an actuator linked to the engine carburetor Figure
4-2 shows a schematic of the mechanism.

CARBURETOR

RPM
SET&

DISPLAY

RPM
FEEDBACK

MAGNETIC HCKUP

Figure 4-3: Mechanism for Engine RPM Control

4.2J2 Hydraulic Pump
The output of the engine drives a hydraulic pump through a flexible coupling. The pump is suspended

from a frame crossmember with rubber shock mounts to allow movement with the engine.

The pump, a Sunstrand axial piston pump, is equipped with an eiectronto displacement control valve that
alters the angle of an internal swashplate between 0 and 18 degrees, depending on an input signal that
varies from -10 to 10 V. Negative voltages cause the pump to turn in the reverse direction. At 0 volts the
pump has a holding torque to keep the vehicle stationary. At 10 V the displacement is maximum,
corresponding to maximum driving speed.

Hydraulic fluid is supplied to the pump from the reservoir by an integral charge pump to replace the fluid
pumped to the motor while an equal amount of surplus hot oil is drained from the pump case and passed
through the main heat exchanger.

4.2.3 Hydraulic Motor
Hydraulic power from the pump is transmitted to a matching fixed displacement motor attached directly to

the transmission. High-pressure flexbie hose couples the motor and pump. Because the motor Is a fixed

displacement type, ft always turns the same amount for every unit volume of fluid pumped in, resulting ir

an RPM of the motor that is directly proportional to the input signal of the pump.

A 10 micron filter cleans the return leg of the high pressure system. An additional crossmember supports
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the hydrostatic motor. The motor unit has an SAE standard shaft mounted ta a mating flange on the

driveshaft's forward universal joint yoke.

4.2.4 Transmission
The Funk transmission, an electrically shifted two-speed gear box installed between the hydraulic motor
and the driveshaft, is bolted to a reinforced frame member. It is mechanically coupled to the motor on the
input side and to the driveshaft on the output side. The transmission provides a ratio of 3.950:1 in low
gear and 1.0441:1 in high gear. Low gear supports low-speed experimentation (0-20 km/h); high gear
(0-40 km/h) transports the vehicle along public roads in manual mode. The gear is selected electronically
by applying a voltage to one of two solenoids on the transmission; if neither solenoid is activated, the
transmission is in neutral gear. It is necessary to shift into neutral when changing from one gear to
another.

A flow-through lubrication and charge system was added to the transmission to circulate hydraulic fluid.
The fluid is returned to the reservoir through a low-pressure filter.

4.2.5 Reservoir, Heat Exchanger, and Fi l ters

A reservoir holds about 80 liters of hydraulic fluid. Because seals and bearing surfaces are sensitive to
temperature and contamination of the hydraulic fluid, oil returned to the reservoir must be allowed enough
time to de-aerate and cool. Heat is removed by passing oil from the pump case drain through a heat
exchanger. Cooled oil is directed back to the reservoir. Dirt in the oil is filtered at two points: in the return
leg of the high-pressure system and between the transmission and the reservoir.

A series of valves assist in the cooling and circulation of working fluid. A shuttle valve and a low pressure
bleed-off valve act together to allow a small portion of the working fluid to circulate through the oil cooler
and reservoir. A make-up pump replenishes the fluid that is removed via a bleed-off valve.

The reservoir is equipped with a thermistor and a level gauge to relay tank status to the vehicle controller

4.2*6 Hydrostat Sensor and Control System

Figure 4-5 shows the sensing and control system associated with the hydraulic drive system. All the

components are located on the underside of the vehicle so all lines enter the vehicle through a wiring port

in the floor behind the driver's seat.

Control lines include:
1. Hydrostatic pump displacement: This line controls the swash plate angle in the pump

regulating the displacement of hydraulic fluid to the motor.
2. Gear selection: This line controls the gear (high or low) of the transmission.
3. Heat exchanger fan control: This tine controls the on/off state of a fan that cools the

hydraulic ftsid.

Sensors include:
1. Dirty filter sensors: one dirty filter sensor is installed in each of the high- and low-pressure

legs of the hydraulic system. These sensors trigger an alarm when they become clogged.
2. Pressure transducers: These read system pressure at input and output of the hydraulic

motor.
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3. Reservoir sensors: These measure fluid level and temperature of hydraulic fluid in the
reservoir.

4. Motor encoder feedback: An optical encoder mounted on the shaft of the hydraulic motor
provides feedback to the drive controller.

5. Steering limit switches: Limit switches are installed on the steering mechanism to signal an
alarm if the wheels are cranked beyond acceptable limits.



29

5. Electrical System
All the electrical power needed by the NavLab is available onboard the vehicle. Electrical power can,
however, be brought in from a shore power plug while the vehicle is in a fixed location. Power is
distributed such that the generators are not needed to drive the NavLab manually.

5.1 AC Power

RACK 5 RACK 4 RACK 3 RACK 2 RACK1

AirCond.

Warpl host

Warp2host

Warpl cluster

Warp2 cluster

Sun 3/180

UPS

Load
Centers

Disk Drives
580MB

Sun 3/180

UPS

Video Amps
Video Patch

Camera
Controller

Sun 3/180

UPS

Air Conditioning—

Lights —

Desk Strip —

Generator (20KW) O

Controller

Servo
Amplifiers

ERIM
processor

—Monitor Strip

Shore
Power

Figure 5-1: Wiring Schematic for AC Power

Figure 5-1 shows a schematic of the AC power system onboard the NavLab.

5.1.1 Generators
The generator supplies 100 VAC power to the variety of devices on the NavLab. The generator resides in
a compartment accessible only from the outside of the vehicle, insuring the separation of noxious fumes
from the interior.

Two compartments house an engine that is hydrauticafly coupled to a hydraulic generator unit in the
forward compartment. This arrangement allows a single source of power up to 20 KW. Fuel to supply the
engine comes from the vehicle fuel lines and the electrical power to start the generator Is supplied by the
vehicle 12 VDC system. The unit can be stopped and started by a panel switch.
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5.1.2 Shore Power
The Navlab can plug into power from a building when stationary, alleviating constant generator
operation. An extension cord from a nearby power outlet (220 VAC 50A) mates to a 220 VAC single-
phase plug mounted in the outside center compartment.

5.1.3 Power Conditioning
Because variations in load and temperature affect generator power output, the power from the generators
must be be conditioned to protect sensitive machinery from spikes and brownouts. This is done by
passing power through Uninterruptable Power Supplies (UPS). These devices not only condition the
power from the generators but also provide full-toad backup for up to 15 minutes, even if the generators
or shore power are shut down, allowing a graceful system shutdown if power fails. Three UPS devices
provide a total of 6KW of conditioned power, which-will more than suffice for a complete configuration of
computing equipment. The lights, air conditioner, video monitors, and servo-amplifiers do not receive
conditioned power because they are much less prone to f luctuatfons in generator output.

5.2 DC Power
Because many of the devices onboard use DC power, the standard vehicle 12 V system was extended by
adding an extra battery and replacing the alternator with a dual output 120 amp unit that charges both
batteries.

Figure 5-2 shows a wiring schematic for the DC power system. The original battery powers:
1. Vehicle ignition - starting power for the engine;
2. Dash panel - all switches on the dash panel;
3. Interior lights - overhead lights in the research area;
4. Control electronics - the input voltage to two power supplies. One converts the 12 V into

-12 V and the other converts 12 V to 5 V. Each power supply has a limit of 3 amps.

The second battery provides:
1. starting power for the generators;
2. power for generator compartment lights;
3. power to run the hydraulic fluid cooler fan.

An additional 28V power supply is mounted in the equipment racks. This takes an input from the 110 AC
system and produces up to 30 amps of current, most of which is used by an ERIM laser scanner. The
inertial navigation device will operate on the same power supply.
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Figure 5-2: Wiriog Schematic for DC Power
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6. Telemetry
Telemetry to the vehicle was thought to be useful where environmental sensitivity, location, or size of
computing equipment precludes installation onboard the NavLab. This feature has not yet found use in
practice. NavLab telemetry provides control and monitoring from a remote site, allowing stationary
computers to be used in navigation experiments.

ANTENNA

«

UHFANTBOU

RADIO
MODEM

Reports,
AckAowUdges

RFStgnai

Control
Commands Video Stiwd

FRAME
BUFPE2.

COMPUTER

REMOTE SITE

Figure 6-1: Telemetry Configuration of NavLab

The scenario in Figure 6-1 shows the closed loop set-up of a vehicle experiment where computing might

be distributed offboard. The camera outputs a video signal that is broadcast over a UHF frequency and

picked up by an antenna and receiver located on the Carnegie Mellon campus. The receiver provides the

video signal to a frame buffer within the computer that processes the image. The signal is digitized and

then analyzed. Commands to the vehicle are sent over a serial line to a wireless modem. A radio

modem on the vehicle picks up this signal and feeds it to the controller.

6.1 High Bandwidth Transmission
An experimental radio license obtained from the FCC covers several broadcast frequencies* The license

covers 2 UHF television channels, a full duplex radio link, and a 2 MHz microwave Or*.

The video signal is transmitted on the video transmitter while range data are transmitted over an aural

sideband of one UHF channel. Because transmission rates can be as high as 56 K baud, the other aural

sidebands not currently in use could serve several other data transmission needs.

6.2 Low Bandwidth Transmission
Two sets of 1200 baud radio modems are used for simple, low-bandwidth digital communication. These

devices provide a transparent RS-232 connectfon between computers and facilitate sending commands

to and from an offboard machine and the NavLab controller.
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6.3 Cellular Phone
Separation of vehicle from stationary base facilities involves not only communication over distance for the
machines but also for humans. For this reason, a cellular phone using existing mobile communications
networks within the city has been installed.
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7. Perceptive Sensing and Computing
A variety of sensors can be mounted on the NavLab depending on the type of research being conducted.
Vision, laser ranging, and sonar ranging are the most popular sensing modes. More details of sensors
and computing can be found in articles listed in Appendix V.

7.1 Video
Cameras provide a standard RS-170 video image to the frame buffer. Vision processing transforms this
image into a scene description to support navigation.

Typically, a single camera mounted in the front of the vehicle provides a wide-angle view of the scene.
Some vision algorithms, however, call for a stereo pair of cameras. Broadcast-quality cameras that
provide red-green-blue color signals are used. Remote control units allow control over camera functions
like gain, color balance, and iris size. Presently, camera focus and zoom must be controlled manually.

7.2 Laser Ranging
Laser ranging is useful in areas where vision algorithms fail - in detecting depth discontinuities in scenes
where the edges are not obvious and in those scenes that have uneven lighting because of shadows.
Whereas the camera is a passive instrument, the laser rangefinder is an active device that emits a beam
in a raster fashion and captures the reflection to provide two types of information - distance and
reflectance. The data are then analyzed to provide a scene description. Laser ranging provides a direct
3-D description of the scene while vision requires more expensive computation to extract this information.
Range readings are particularly useful because they are not affected by ambient light.

The current laser ranging device, manufactured by ERIM, provides a 256x64x8 bit depth map. The
scanner output is processed by a Motorola M68000 processor and sent to a Sun computer dedicated to
ranging.

7.3 Pan and Tilt Mechanism
Vision and ranging sensors can be mounted in various configurations. Most configurations cal for two
independent pan motions - one for the laser scanner and another for the cameras. Hit is needed for
both the laser scanner and cameras.

Pan and tilt design reflects a need to accurately position sensors over a large viewing range. Less than 4
seconds is required to view 180 degrees.

Cameras are mounted on rigid 5 cm diameter aluminum poles 2 meters long mounted horizontally

through a worm drive gearset with a hollow bore. The gearset provides a 50:1 ratio and is driven by a DC

brushed servo motor. An 800 line encoder provides feedback for the tilt motion.

7.4 Computing Configuration for Sensing
Figure 7-2 shows configuration of computing for simple, perceptive sensing. Much more complex setups

are common. Each sensor commonly requires i s own workstation or specialized processor. Another

computer runs the blackboard system that integrates perception, modeling, and planning.
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I. Modifications to Vehicle
The chassis was originally rated for 10,000 lbs. gross vehicle weight. The final vehicle weight was
established as 12,000 lbs., thus necessitating a more robust suspension. In order to achieve the
necessary load rating the front coil springs were upgraded and two extra leaves were added to the rear
springs, increasing the gross vehicle weight by 2400 lbs. Heavy duty gas/oil shock absorbers were
installed to minimize a slight tendency to pitch due to the extra weight. In addition, the original equipment
tires were exchanged for Goodyear radials with a higher load and all-weather rating.

Modifications to the frame were minimized to preserve strength and stiffness. However, in order to mount
some of the larger hydrostatic components afterations had to be made. The main forward crossbeam,
transmission rear support beam and surrounding floor were completely removed. The crossbeam was
replaced by a box section which bridges the hydrostatic pump. A channel section was added as support
for the pump and also provides additional frame strength.
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II. Power Budget
NavLab AC power requirements have risen steadily since the first integration to accommodate the WARP
computing system, air conditioning, and uninterruptible power supplies (UPS). Power is currently
provided by a 20.0 kW generator The power budget is as follows:
CIRCUIT PEA:

Main No. 1

Coleman Air Conditioner
Lights (4 / 100 w)
Monitor Strip (5 / 80 w)
PMX Amplifier
Desk Strip (10 / 60 w)
Sola UPS (€00 w output)

Intel Controller Computer

Behlman UPS (2000 w output)
Sun Vision Host Computer
Disk Drives

Development Circuit

Main No. 2

McLean Midwest Air Conditioner
Behlman UPS (2000 w output)

Sun WARP Host Computer
Disk Drives
VME WARP Control Cage

Behlman UPS (2000 w output)
HARP Power

Video
Brim Laser Scanner
Development Circuit

MP DRAW

90

17.5
3.6
3.6

18.2
5.5
7.0

11.4

27.0
12.0
6.3

15.0

90

14.0
27.0
12.0
6.3
9.0

27.0
16.4

4.5
2.7
15.0

PEAK WATTAGE

10,000

1,930
400
400

2, 000
600
750

1,250

3,000
1,320
700

1,650

10,000

1,540
3,000
1,320

700
1,000

3,000
1,800

500
300

1,650

FUS

100

20
5
5
20
10
10

40

*
20

100

20
40
*
*
*

40
*

5
5

20



38

III. Weight and Center of Gravity Budget
Location in (xty) is given with left (driver's side) rear corner as the origin. Positive y is toward the cab,
positive x toward the passenger side. The shell is 241cm wide (x) and 343cm tong (y).

Item: Location (cm, cm) Weight (kg)

79.4
79.4

81.6
81.6
81.6
81.6
81.6

22.7
45.4
13.6

117.9
117.9
52.2

100.7
18.1
31.8
2.3
14.1
14.1
18.1
€8.0

27.2
6.8

9.5
26.3
11.8
5.0

119.7
18.1
18.1
2.3
4.5

Driver
Passenger
Empty Rack £ 10kg

hardware

Signal Wiring
Power Wiring
Insulation

Passenq-er side
Generator

Air Conditioner
Power Conditioner
Breaker Panel
Table Top
Monitor Shelf
Sony Monitors

Seat
Operator

Sun
Wyse

Marlite
back wall
left
right
front

Gas Tank
Shore Power Switch

Shore Power Piisg
Track Lights

Hydraulic Equipment:
Frank
Reservoir
Sunstrand Ptmp
Sunstrand Motor
Pall Filter
Dowty Tandem Ftxnp &

Charge Pimp Motor
H#jft1fc Svchancffftr Ur Kan

€3,368
152,368

51, 34
51,103
51,171
51,240
51,309

203, 58
203,285
117,200
224,171
201, 8
201,171
216,170
208,279
208,165
132,157
132,157

201,216
201,102

122, 0
0,171

241,171
122,343
135, 97
198,135
198,183
198,152
185,178

109,287
201,272
122,373
89f330
51,333

135,203
53, 51

124.7
136.0
132,9
74.4
11.3

5.9
24.9
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54

122

68

. 0

. 4

. 5

. 0
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Rack 1:
UPS 54.4
2 Amplifiers,
1 Transformer,
3 Power Supplies

Intel Chassis
Patch Panel &
Control Circuitry

Tables
42,287

Video 22.7
ERIM Power Supply 24.0

42,226 46.7

42,165

42,104 68.0

Empty
42, 43 0.0

Tilt
2 1135 Motors 8.9
2 Turntables 26.3
1 Tilt Gearing 22,7
1 Aluminum Rod 4.5
2 JVC's 5.0
ERXM 34.0
PMX motor 4.5
56 C Coupling 4.5
Bracketing
lower mount 18.1
upper mount 45.4

Total 121,447 174.0

Shell 121,171 1153

Van Body
front axle 101,427 1120
rear axle 101,109 649

Overall:
• of Gravity: 112,244 Weight Total: 5449kg
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IV. Implementation of the Virtual Vehicle Instruction Set

Protocol
A simple high-level handshaking protocol has been designed for RS-232 communication between the
Virtual Vehicle and any host computer issuing commands to the vehicle. It provides a means of
exchanging commands and status information with a reasonable level of reliability and optional error
recovery. The motivation for this is that errors in communication should be detected and acted upon
without interfering with normal operations of host or Virtual Vehicle. By adhering more or less strictly to
the protocol, the relative importance and subsequent computational overhead of error-free communication
can be chosen at will and may be varied dynamically.

Messages between Virtual Vehicle and host are of the following form:

<length><packet IDXopcode> [<argtunent 1>/ . . /<argument n>/]<CR>

The individual fields of a packet are defined as follows:

<iength> 2 characters wide. Contains the total number of ASCII characters in the packet,
including the length field itself. Length is represented in decimal, so messages are
limited to 99 characters.

<packet I D > 3 characters wide. Unique identifier to be used as reference to the packet in
subsequent protocol transactions. Can be any combination of printable ASCII
characters (20H - 7FH), although numeric values (30H through 39H) will be used
most frequently. See description below for usage and purpose of this field.

<opcode> 2 characters wide. Represents, in decimal, the numeric index of the command to be
acted upon by the Virtual Vehicle. This implies a range of 0 through 99 for possible
opcodes.

<arguments> Zero or more numeric arguments, of variable width. Arguments are terminated by a
slash (T). Leading zeroes are allowed. All arguments must be integer values.

<CR> Carriage Return (ODH) character indicates end-of-packet. Must follow immediately
after the last argument-terminating slash, or after the opcode in the case of zero
arguments. The <CR> is NOT considered part of the packet, so it is not included in
the < length> field.

The following rules define the handshake between two devices. They should be followed closely to
achieve maximum communication reliability. However, as is indicated in the appropriate paragraphs,
error checking is done at the discretion of the receiving device.

• For every packet to be sent, the sending device generates a unique 3-character packet ID
code. This can be dones for example, by incrementally numbering packets or by encoding the
current system time. Random generatbn of codes is discouraged, since this theoretically
allows duplicate packet ID'S. Using the full range of 96 symbols in each of the 3 character
positions yields a range of 884,736 unique ID codes, which is in excess of the anticipated
number of messages exchanged during a typical mission of the Virtual Vehicle.

• Packets are prefixed with the length of the packet and terminated by the end-of-packet
character <CR>- The receiving device should check the actual length of the received packet
against the < iength> field to ensure integrity of each packet.

• Each packet received may be further validated by ensuring that

• the opcode is valid,

• the number of arguments Is correct for the given opcode, and

• the arguments are wihin allowable limits. These limits may change dynamically as a
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function of, for example, vehicle speed or road conditions.

• If none of the above error conditions are detected, the receiving device returns an ACK
message to the sender, indicating that the message was received correctly and the
appropriate action, if any, is being performed. The ACK message uses the same packet ID
as that of the message being acknowledged.

• In case of an error, the receiving device must return a NAK message to the sender to
indicate that the packet was rejected and no command is being executed. As its only
argument, the NAK message contains an error code indicating the reason for rejecting the
packet. A NAK message also has the same packet ID code as the message in question.

• Upon receiving a NAK as reply to a message, a device has the option of retransmitting the
offending message (with new packet ID), logging the error, ignoring it, or taking any other
action that might be appropriate. By the same token, while expecting a NAK or ACK in
response to a transmitted message, a device may choose to time out, wait forever, or take
other appropriate action. These conventions provide for very flexible operation that allows
critical system operations to continue even in case of protocol errors. In dealing with these
situations, the Virtual Vehicle will adhere to the following conventions:

• NAK or ACK messages are always generated and sent in response to data messages
received by the W l . At this point, handshake for the current message is considered
complete; i.e., no further action is expected.

• Unexpected NAK or ACK messages (i.e., those referring to an unknown or previously
acknowledged packet ID) are ignored. However, the error is logged and/or announced
at the W system console.

• If a NAK is received as response to a message originated by the W, the message
may or may not be retransmitted repeatedly (with a new packet ID), depending on the
type of message and reason for rejection.

• If neither NAK nor ACK is received by the W within a certain timeout period
(configurable parameter, typically on the order of seconds), the error condition is
logged and/or announced at the W system console. After this, the W still expects a
response to the packet in question, but no further action is taken and subsequent
messages are treated as if no error had occurred.

Commands issued by Host/Console
Mnemonic Opcode Meaning Arguments

ACK
ABO'
STO
STA
TRA

00

01
02
03
04
05

Negative Acknowledge

Acknowledge
Abort Motion
Stop/Suspend Motion
Startup
Travel

cc/
cc= 00

01
02
03
IX

2X

1/r/i/
1 :
r :
1 :

: Packet length error
: Num. of Args error
: Hot ready for cad
: Illegal Opcode
: X'th argument below

(1 < X < 9)
= X'th. argument above

/*TiY»Y'**n+> m a n H m u m litfi-i*-

{1 < X < 9)

arc length
radius of csirr.
1 = imaadiate
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CHP 06 Change Position

STM
SVL

SAC

SP1

ST1

SP2

ST1

SSR

INF
POS
TIM
VEI*
ACC
PN1
TL1
PH2
TL1
STR
ROL
RLR
PIT
PTR
HDR
B£P

11
12

13

14

15

16

17

18

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
3€

Set time to zero
Set Velocity

Set Acceleration

Set Pan 1

Set Tilt 1

Set Pan 2

Set Tilt 2

Set Steering Rate

Get Vehicle Info
Get position
Get Vehicle Time
Get Vehicle Velocity
Get Vehicle Ace.
Get Pan Angle 1
Get Tilt Angle 1
Get Pan Angle 2
Get Tilt Angle 2
Get Steering Rate
Get Roll
Get Roll Rate
Get Pitch
Get Pitch Rate
Get Heading Rate
Get Status

X

y
h

v/i/
V

i
a/i/

P/

t/

P/

t/

s/

d/

a
i

P

t

P

t

s

: A x pos.
: A y pos.
: A heading

: velocity
: 1 = immediate

: acceleration
: 1 a immediate

: pan angle

: tilt angle

: pan angle

: tilt angle

: steering rate
(0-99 %)

d : device rramber

Responses from Virtual Vehicle
Mosiaonic Opcode Meaning Arguments

HAK 00 Negative Acknowledge

ACTC 01
51

Acknowledge
Vehicle Info

cc/
cc* 00 : Packet length error

01 : Hum. of Axgs error
02 : Hot ready for ensd
03 : Illegal Opcode
IX : X'th argument below

c u r r e n t ttiTn'iTiwTm l i m i t

(1 < X < 9)
2X « x'th argument above

c u r r e n t tnanfi TfriTwi l i m i t

(1 < X < 9)

1/w/b/g/m/x/y/s/
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KVP

RVT
R W
EVA
RP1
RT1
RP2
RT2
RSR
RRL
RRR
RPT
RPR
RHR
RST

ADN

52

53
54
55
56
57
58
59
€0
61
62
63
64
65
66

80

Vehicle position

Vehicle Time
Vehicle Vel.
Vehicle Ace.
Pan angle 1
Tilt Angle 1
Pan angle 2
Tilt Angle 2
Steering Rate
Roll
Roll Rate
Pitch
Pitch Rate
Heading Rate
Report Status

Arcdone

1
w
h
g
xa.
X

y •
a :

: length
: width
: height
: weight
• minimum turning radius
X of C.G
y of c.G
0 = wheel steer
1 = skid steer

x/y/h/t/
x :
y =
h :
t :

t/
v/t/
a/t/
p/t/
t/t/
p/t/
t/t/
s/t/
r/t/
r/t/
P/t/
P/t/
h/t/
d/s/t/

d :
s :

x position
y position
heading
time

device number
status code

id/x/y/h/t/
id : arc XD code
x,y : Pos. at end of arc
h :
t :

heading at end of arc
time at end of arc

Note: All distance units are cm, time units are msecs, velocity units are cm/s, acceleration units are cm/s2

and angle units are half degrees. Weight units are kilograms.

t l i i i ^ i ^ ':'"'"iV ':'"J""i't'
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