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Abstract 
Vectorizing compilers that parallelize programs written in declarative languages like Fortran usually have 

difficulty dealing with memory aliasing which causes the parallelism of the program to depend on input data 

not available at compile time. Compilation algorithms which can handle memory aliasing involving single 

levels of indirection by using sophisticated synchronization primitives have appeared recently, but we show 

here that these algorithms produce speed up only for certain values of the input data, and actually 

asymptotically slow down execution speed for worst case input data. We introduce a new compilation 

algorithm based on another synchronization primitive which for the same forms of memory aliasing as before 

produces speedups which are always within a factor of 2 of ideal data flow execution with greedy scheduling, 

except that the maximum speedup willtje limited by the underlying architecture. Extensions of the algorithm 

to more complex forms of memory aliasing including multiple levels of indirection and conditionals are also 

described. 

1 . Introduction 
Vectorizing compilers can be used to translate sequential code written in ordinary declarative languages like 

Fortran, Pascal or C into parallel code suitable for vector processors as well as MIMD based processors 

[4, 6, 3]. Many of the underlying compilation algorithms determine instructions which can be executed in 

parallel by evaluating the dependencies between the instructions [4]. In the case of instructions referencing 

memory these dependencies will depend on the address of the memory location referenced. When these 

addresses depend on input data not known.at compile time, it may not be possible to tell if two memory 

references refer to the same memory location or are unrelated. This problem is referred to as memory aliasing 

and most vectorizing compilers in such cases assume the worst forcing sequential execution of the memory 

references. In some of these cases the memory references are actually provably independent, but the proof can 

be quite complex [1]. Here, however, we are concerned with cases where the memory references cannot be 

proven independent. Consider for example the loop in Figure 1-1 (written in ' C like code). 

int A[N],B[Nj; 
"read in array B[0..N-1]"; 
for( i=0; i<N;i++){ 

A[B[i]] = ...; 
} 

Figure 1-1: An example of memory aliasing 

If the values read into array B[] are all different, then the assignments to array AQ in the loop will be 

independent and can be executed in parallel. However if the values read into array HQ have repeated values, 

certain assignments in the loop will be to the same location and must be executed in sequence to produce the 

correct final values. This paper assumes that the compiler docs not attempt to modify the code wholesale 
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based on higher level semantic analysis, and restricts itself to reordering instructions in such a way as to 

increase parallelism while producing the same final values in memory. 

In this paper we examine compilation algorithms that allow parallel execution even in such cases. Such 

algorithms can also be applied when memory references are independent but where this independence is very 

hard to prove. Section 2 describes the model of the parallel architecture which forms the basis of the 

compilation algorithms. Section 3 describes a compilation algorithm proposed by Zhu and Yew [8, 9] which is 

capable of executing loops with memory aliasing in parallel, provided the aliased memory references are 

restricted to a single level of indirection (as in Figure 1-1), It makes use of a new and sophisticated 

synchronization primitive. It is shown why this algorithm only works well in the best case when few 

dependencies are encountered at run time, but produces an asymptotically worse execution time than the 

original sequential code in the worst case when few memory references are independent. Section 4 describes a 

new compilation algorithm which uses another new synchronization primitive to produce parallel code whose 

performance is in some sense optimal irrespective of the actual data encountered at run time, assuming as 

before that aliased memory references are restricted to a single level of indirections. The maximum 

parallelism is restricted by an architecture dependent quantity, and hardware cost grows as N 2 where N is the 

maximum parallelism. Section 5 describes a modification of the algorithm which allows the hardware cost to 

grow as N*log(N) but slightly sacrifices the optimality of the parallel execution. Section 6 describes an 

extension of the algorithm to aliased memory references with multiple levels of indirections. Section 7 

outlines an efficient hardware implementation of the synchronization primitive used in these algorithms. 

Section 8 concludes with a summary and a description of some remaining problems in dealing with memory 

aliasing. 

2. The architecture model 
The architecture model which forms the basis of the vectorization/parallelization algorithms in this paper, is 

illustrated in Figure 2-1. A number of logically identical processors are connected to a (possibly different) 

number of memory modules, and each processor can access any memory module. 

Memory references are assumed to be atomic and take a constant amount of time for a given architecture 

configuration, except when multiple references arc to the same memory module, in which case the references 

arc sequential!zed in some arbitrary order. As long as the processor memory network docs not suffer from the 

problem of hot spots (see for example [5]) this holds for most kinds of processor memory interconnection 

schemes. 



Figure 2-1: Model of the shared memory architecture 

3. Previous work on run time resolution of memory aliasing 
A new synchronization primitive for use in the Cedar multiprocessor was proposed by Zhu and Yew [8, 9], 

and the various examples of the use of this synchronization algorithm include an algorithm to parallelize loops 

with aliased memory references. 

Cedar's synchronization primitive [8] uses a synchronization word per data item. The atomic 

synchronization operation is defined as follows : 

if (test on key)* then 
operation on data item; 
operation on synchronization key; 

end 

The test on the synchronization key is a comparison with an integer (or no test). The operation on the key is 

a simple operation like increment, decrement, add, fetch, fetch&add, store or no action. The operation on the 

data item is a read or write. If the test fails either the process blocks until the test succeeds (indicated by a 

Kleene star on the test) or the operation on key and data are not executed and return a failure code. In the 

following it is assumed that the atomic synchronization operation takes a constant amount of time. 

The most general case of memory aliasing considered in [9] is a (nested) loop which has memory references 

whose addresses are not known at compile time and contains if/thcn/else or case constructs. Only a single 

level of indirection is allowed for the aliased memory references, ie the address of each aliased memory 

reference is known at run time by the time the loop of interest is entered. This case is illustrated by the C 

program segment outlined in Figure 3-1, .in which only the aliased memory references whose addresses cannot 

be evaluated at compile time are shown as references to the array A[], The array indices f/i(i) (n = 1..6) are 

input data dependent expressions that do not depend on army A[], such as H[i], Qi], where B[], C[], are arrays 

computed or input at run-time, before the loop is entered. The loop index i could be a constant size vector, 
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allowing for nested loops. 

float A[N]; 
for ( i=0;KN;i++){ 

... = . . . A[fi(i)] : 

... = ...A[f2(i)l; 
if(...A[f3(i)]...){ 

... = ...A[f4(i)]; 
} else { 

A[f5(0] = 
} 
A[m>] = 

} 

Figure 3-1: General loop with aliased memory references 

If the array locations referenced by different iterations are all different the iterations could be run in parallel 

(instructions within each iteration would still be executed sequentially). Zhu and Yew's compilation algorithm 

attempts to optimise performance for this case. It generates synchronization instructions to go with each array 

access such that iterations can be scheduled in parallel. During an actual run the iterations will execute in 

parallel if and only if this is consistent with the data encountered at run time. The algorithm produces a 

modified program which may be described as follows : 

Repeat the following steps until all iterations have executed. 

1. Initialize all key values of aliased memory locations to infinity. 

2. In parallel execute all aliased memory references for all iterations. However, instead of actually 
performing reads or writes to the aliased memory locations, the iteration index i is stored in the 
location's synchronization key whenever it is less than the value already present. This will result in 
each aliased memory location's key containing the least unexecuted iteration i which accesses it. 

3. Execute in parallel all (unexecuted) iterations. Execute any particular iteration only if all aliased 
memory locations accessed have their synchronization key equal to i (ie this iteration is the least 
unexecuted iteration accessing the aliased memory locations in question). 

The algorithm dynamically determines the reference pattern (RP) at each data dependent memory location, 

determines the first entry of this RP (during step 2), and postpones (during step 3) all references that do not 

occur in the same iteration as the first entry of the RP. 

For the program segment in Figure 3-1 the modified code with synchronization is shown in Figure 3-2. 

Each location of array A[] now stores both data as well as a synchronization key. The atomic cedar 

synchronization operations are shown in the form {tcst:kcyop,dataop}. The loop construct forall is like the 

loop construct for, except that all iterations may be executed in parallel. There is an implicit global 
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synchronization after every forall, to ensure that all parallel iterations have terminated. 

struct {int key; 
float data;} A[N]; 

/ * mark all iterations as unexecuted */ 
int D[N],done = 0; 
foral l( i=0;KN;i++)D[i] = 0; 

while(!done){ 
/ * initialize keys */ 

forall(i=0;i<N;i++) A[i].key = INFINITY; 
/ * locate least unexecuted iteration accessing each location of AQ */ 

forall(i=0;i<N;i + + ) if(!D[i]){ 
{KA[fl(i)].key : A[fl(i)].key = i; } 
{KA[f2(i)].key : A[f2(i)].key = i ; } 
{i<A[f3(i)].key : A[f3(i)].key = i; } 
{i<A[f4(i)].key : A[f4(i)].key = i ; } 
{KA[f5(i)].key : A[f5(i)].key = i; } 
{KA[f6(i)].key : A[f6(i)].key = i; } 

} 
/ * execute iterations accessing only valid locations */ 

done = 1; 
forall(i = 0 ; K N ; i + + ) if(!D[i]){ 

if(A[fl(i].key = = i && 
A[f2(ij.key = = i && 
A[f3(fj.key = = i && 
A[f4(iJ.key = = i && 
A[f5(i].key = = i && 
A[f6(ij.kcy = - i){ 

DPI = i; 
"Same loop body as in Figure 3-1 with A[n] -> A[n].data" 

} else done = 0; 
} 

} 

Figure 3-2: Cedar synchronization key applied to Figure 3-1 

In the best case scenario the three forall loops will be executed once and die whole operation takes constant 

time (assuming a sufficient number of processors and memory banks). 

A typical execution is shown in Figure 3-3, assuming the loop iterations range from 1. . 8 and die index of 

array A[] ranges from 0..9. For simplicity it is assumed diat fl = f2 = f3 = f4 = f5so only two distinct input data 

dependent index sets (fl and f6) are shown. 

Three iterations of the outer loop arc required in this example. 
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ITERATION 

1 
INDEX DATA 

fl(1) f6(1) 
EXECUTION 

Passl Pass2 Pass3 

1 0 6 X 

eg 3 7 X 

3 3 4 X 

4 8 4 X 

6 0 1 X 

6 9 S X 

7 2 5 X 

8 2 1 X 

INDEX 
n 

REFERENCE 
PATTERN 
(n.f) 

A[n].key 
Passl Pass2 Pass3 

0 l.fl 5.f1 1 5 

1 5.f6 8.f6 5 5 8 

2 7.fl 8.fl 7 7 8 

3 2.fl 3.fl 2 3 

4 3.f6 4.f6 3 3 4 

5 6.f6 7.f6 6 7 

6 l.f6 1 

7 2.f6 2 2 

8 4.fl 4 4 4 

9 6.f 1 6 

Figure 3-3: Execution of the program in Figure 3-2 

However the worst case execution time can be 0 (N 2 ) , which is asymptotically worse than the sequential 

execution time O(N) even with unlimited number of processors and memory banks. If all references are to the 

same array location only one iteration will be executed each time the three forall loops above are executed. 

Moreover each such step will take (ignoring constant factors) O(N) time since during the first step all stores 

will be to the same location and get sequentialized by the memory system. 

If the architecture model is modified to take into account the possibility of a recombining network [5], 

multiple references to the same location can get combined reducing execution time to O(NlogN) 1 . However, 

apart from the hardware cost of such a network, it precludes the use of low latency networks like the 

Hypercube or Crossbar as well as the use of dynamic routing algorithms which allow data to be routed around 

congested nodes. A software implementation of recombining networks as suggested in [7] will not work since 

the memory references that need recombining are not known at compile time. 

Another potential problem with the above shared memory synch ionization primitive is the excessive 

number of expensive shared memory accesses that can occur in implementing the indivisible synchronization 

operation. One solution suggested in [9] is to have a smart memory controller, which can recognize the 

synchronized memory requests and perform the indivisible comparison test and tag and data update without 

using up bandwidth between processor and shared memory. This still does not solve the problem of busy 

waiting. This case is supposed to be handled by the processor repeatedly requesting the synchronized access 

until it succeeds, which can increase the cost of synchronized memory access due to memory contention to 

ITianks to Prof. Allan Fisher for pointing this out. 
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several times the value of a normal access. An implementation which can handle this busy waiting with 

constant overhead is described later. 

4. A new algorithm to resolve memory aliasing 
This section describes a new synchronization primitive and compilation algorithm that allows run time 

resolution of aliased memory references. The technique differs from that described by Zhu and Yew 

(ZhuYew84) in that both the best case, worst case and intermediate case performance is within a factor of 2 of 

data flow execution with greedy scheduling, subject to the restriction that the maximum parallelism is limited 

by a constant which depends on architectural parameters including the number of bits in the tag. 

Each data word in memory may be associated with a multibit synchronization tag. The synchronization 

primitive is defined by the following indivisible operation sequence: 

1. Wait until tag bits specified by a mask are 0 at the memory location of interest. 

2. Perform memory reference. 

3. Modify tag bits by adding a specified signed number to the tag. 

This is similar to the semantics of the synchronization primitive of Zhu and Yew [8], except that the tag test 

and tag modification are simpler and more restricted. During the period (if any) that the memory reference 

has to wait the process performing the memory reference may either block or receive an error code. In the 

following compilation algorithms it is assumed that the blocking mode of synchronization is being used. In 

the following examples synchronized memory references will be represented as follows: {mask : location, key 

increment}. Thus {0: A[3],4}, means that the read/write of location A[3] proceeds unconditionally, and is 

followed by incrementing the synchronization key of the same location by 4. It is assumed that all memory 

references are indivisible and atomic ie each processor waits until all previous references are acknowledged, 

before initiating the next request, and the changes to memory locations are effective simultaneously wrt all 

processors. 

The first synchronization algorithm will be illustrated using the example used previously in Figure 3-1. As 

before the addresses of the memory references are assumed not to be modified after the loop is entered. The 

algorithm produces a modified program which may be described as follows (initial and final synchronization 

key values are always zero, no initialization is normally required).: 
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Synchronization algorithm 1 
Repeat until all loop iterations arc executed: 

1. Perform a data flow analysis of all aliased memory references in the next k (usually 4-16) 
iterations. This is done in parallel by unconditionally incrementing the synchronization key of all 
aliased memory locations involved. The value of k and the increment is determined at compile 
time as explained later. In the case of conditionals and case statements all branches are executed. 

2. Execute the k iterations in parallel (ie schedule them ignoring the dependencies due to aliased 
memory references). Each aliased memory reference will be replaced by a synchronized reference 
whose mask value is chosen so that the reference blocks until all preceding reads & writes to the 
same location have executed, and decrements the synchronization key by the same value used as 
an increment during step 1 above. In the case of conditionals and case statements aliased memory 
references in the branches not taken must also be executed, but in such a way that only the 
synchronization key is modified. 

The value of the increment/decrement used for a particular synchronized memory reference and the value 

of the mask used in step 2 above is determined (at compile time or at loop entry) as follows. 

First, a worst case reference pattern (RP) for a single iteration is obtained which is simply the sequence of 

aliased reads and writes that would occur during sequential execution. In the case of conditionals or case 

statements the sequence is modified as if all branches had been executed in some (arbitrary) order. In Fig 3-1 

this RP is R ] R 2 R 3 R 4 W 5 W 6 where the subscripts refer to the corresponding index set subscript (eg R 3 

corresponds to A[f3(i)]). The combined RP of a number of consecutive iterations is obtained by 

concatenating the R F s of the individual iterations. Bits are now allocated to each write in the RP from left to 

write. Each write is allocated a bit field which can keep a count of the preceding consecutive reads and the 

write, which requires [log2(No-of-reads + 2)] bits. In the above example there would be a 3 bit field and a 1 

bit field allocated for each iteration. The number of bits in the synchronization key determines the number of 

iterations (the value of k in step 1 above) that can be parallelized. In this case with a 32 bit key k = 32/4 = 8. 

The allocation of bits in the synchronization key is illustrated in Figure 4-1 (a). 

The increment in step 1 ( = decrement in step 2) for any aliased memory reference simply corresponds to 

incrementing the corresponding bit field by 1. Thus R 1 ,R 2 ,R 3 ,R 4 and \V 5 of die 3 r d iteration would be 

allocated bits 8-10 (counting bits from 0), and the increment for each of these references would be 256 (2 ). 

The synchronization key at an array location encodes the actual RP encountered at run time at that array 

location. If the RP of iterations 1 to 8 for a particular array location at run time was Rj W 5 in iteration 1, R 2 

R 3 in iteration 3, and W 6 in iteration 4, the synchronization key after step 1 would be as shown in Figure 4-1 

(b). 



BITS/FIELD --> il a ila ila ila ila ila ila 
ITERATION — > a ,7 6 5 4 3 i 

(a) ALLOCATION OF SYNCHRONIZATION KEY BITS 

FIELD VALUE --> 
ITERATION --> 

"73 d o ll 0 d Q d ? d 2 
3 7 6 5 4 l 

(b) SYNCHRONIZATION KEY VALUE « x8022 

KEY i REFERENCE/ITERATION 
VALUE j MASK/INCREMENT ^ 

(c) EXECUTION SEQUENCE 

Figure 4-1: Sync, key for algorithm 1 and example in Figure 3-1 

The mask value for reads in step 2, simply enables the bit fields of all previous writes. Thus the mask for 

reads R x to R 4 of the 3 r d iterations would be bits 0-7 or 255. 

The mask value for writes enables the same bits as reads plus all but the LSB of the write's own bit field. 

Tims the mask for W 5 of the 3 r d iterations would be bits 0-9 or 1023. 

The above rules for generating masks and increments ensure that in step 2 a read is blocked until all 

possible preceding writes (and consecutive reads preceding them) have actually executed, and that a write is 

blocked until all possible preceding reads and writes have executed. If one of these preceding reads/writes 

corresponds to a different address, the synchronization key in question will not be incremented during step 1, 

and so will appear to have already been executed in step 2. Each increment in step 1, will be matched by a 

corresponding decrement in step 2, so that the key values are restored to zero after all references have 

executed. 

The sequence of mask and sync values assumed at the memory location in Figure 4-1 (b), during step 2 of 

the algorithm is shown in Figure 4-1 (c). 
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The result of applying the algorithm to the loop in Figure 3-1 is shown in Figure 4-2. The keyword forall 

again refers to a parallel for loop, with implicit synchronization on its termination. The values of mask and 

increments are represented compactly by macros mask(n) and incr(n) defined as : 

• mask(n) = mask with n LSB's enabled. 

• incr(n) = 2 n . 

float A[N]; 
for( i=0;KN;i+=8){ 

forall(j=0;j<8 && i+j<N;j+ + ) { / * step 1 */ 
{0:A[fl(i+j)],incr(j*4)}; 
{0:A[f2(i+J)],incr(j*4)}; 
{0:A[f3(i+j)].incrO*4)}; 
{0:A[f4(i+j)],mcrG*4)}; 
{0:A[f5(i+j)],incr(j*4)}; 
{0:A[f6(i+j)],incr(j*4+3)}; 

} 
forall(j=0;j<8 && i+j<N;j+ + ) { / * step 2 */ 

... = ... {maskG*4):A[fl(i+j)],-incrG*4)}; 

... = ... [maskG*4):A[f2(i+j)],-incrGM)}; ~ -
ift...{maskG*4):A[f3(i+j)],-incrGM)}...){ 

... = ... {maskG*4):A[f4(i+j)],-incrGM)}; 
{mask(j*4+2):A[f5(i +j)],-incr(j*4)} 

} else { 
{maskG*4):A[f4(i+j)],-incrG*4)}; 

{maskG*4+2):A[5(i+j)],-incrG*4)} = 
} 
{maskO*4+3):A[fb '(i+j)],-incrG*4+3)} = 

} 

} 
Figure 4-2: Algorithm 1 applied to example in Figure 3-1 

Note that instructions within an iteration may themselves be scheduled in parallel, ignoring the 

dependencies between aliased memory references, since these are enforced by the synchronization mask in 

the same way within an iteration as between iterations. Thus each iteration may be scheduled on more than 

one processor, or on a pipelined processor with overlapped instruction execution. 

The performance of this compilation algorithm will be compared to that of data flow execution with a 

greedy scheduling algorithm. The performance of the latter is obtained for any input data set, by doing a 

post-mortem analysis of the execution, and obtaining the actual dependency graph for the instructions. The 

instructions arc then scheduled to be executed as soon as all previous dependent instnictions have executed 

(die greedy scheduling algorithm). The execution time (eg on a data flow machine) of Uiis schedule given 

infinite hardware will be optimal, except that when multiple reads to the same location are scheduled at the 
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same time, the underlying hardware will perform the reads in some arbitrary order which may not be die 

optimal order, ie the most time critical read may not be performed first. In such cases the performance can 

range from the optimal value to some sub-optimal value. The following lemma shows that the performance of 

the compilation algorithm described in this section, will lie somewhere within this range, if a constant factor 

of 2 is ignored, and subject to the restriction that the maximum parallelism is restricted by the number of tag 

bits which determines the maximum number of iterations k that can be executed in parallel. 

Lemma 1: The execution time of each outer iteration produced by algorithm 1 is within a factor 
of 2 of the performance range of data flow execution with a greedy scheduling algorithm, if there 
are no conditionals or case statements in the loop. Memory bank collisions are ignored (ie assume 
infinite number of memory banks), and simultaneous references to die same memory locations are 
assumed to be sequentialized in some arbitrary order by the memory. 

Proof: The execution of memory references in step 2 of the transformed program corresponds 
precisely to data flow execution : writes wait for preceding reads and writes to complete, and reads 
wait for preceding writes to complete. The fact that reads also wait for some preceding reads to 
complete does not effect the possible performance range, since memory references to the same 
location are sequentialized by the memory anyway. The execution time of step 2 therefore lies in 
the specified range. The execution of step 1 contains the same number of synchronized memory 
references as step 2, and can be scheduled in parallel, so that its execution time cannot exceed the 
upper limit of range for step 2. Hence the total time is within a factor of 2 of the specified 
performance range. 

In the worst case all references are to the same location, so all the bit fields of that location's tag are set to 

the number of R/W operations in each R*W sequence. In the first execution cycle all but the reads of the first 

R*W sequence will block, while these reads will get sequentialized in some arbitrary order. After that the 

write of the same sequence will unblock followed by the reads of the next sequence and so on. Sequential 

execution will result. Since step 1 (setting up the keys) will also get sequentialized, the total time taken will be 

within tv/ice the sequential execution time. 

This algorithm works corrccdy even in the presence of conditionals and case statements, but now the 

execution time is within a factor of 2 of optimal only in the best case (when all data dependent memory 

references map to different locations). This is because all branches of the conditionals must be executed in 

step 2 and step 1, and unless die data dependent memory references in false branches all map to locations that 

are different from all other data dependent locations, their execution cannot be overlapped with that of the 

true branch actually taken and other iterations. If the test of the branch or case statement does not depend on 

an aliased memory reference (though the bodies of the branches contain aliased memory references), the 

algorithm can be modified, so that only the tnie branches are executed, both in step 1, and step 2. In this case 

the above lemma still holds. 

s 
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5. Increasing the maximum parallelism 
A major drawback of algorithm 1 is that only a small number of iterations (in the example above k = 8) can 

be executed in parallel. This puts an upper bound on the parallelism that can be exploited. To increase this 

upper bound the number of tag bits per data word and (of course) the number of processors must be 

increased proportionately, so that the hardware cost is 0 ( N 2 ) where N is the desired maximum parallelism. 

This is generally unacceptable for large N. 

Algorithm 1 can be modified by overlapping the execution of step 1 and step 2. If step 2 takes more time 

than step 1 to execute (which is likely since the code is unlikely to consist entirely of aliased memory 

references) step 1 can execute several outer iterations ahead of the earliest outer iteration of step 2. In general 

if step 2 takes K times the time to execute as step 1, the upper bound on the parallelism increases from k 

iterations to (K + l)*k iterations. This is illustrated in the time diagram of Figure 5-1. Since all instruction in 

step 1 can be scheduled in parallel, K is simply the number of sequential machine instructions in one 

iteration. 

TIME 

l..k STEPH STEP2 

k+1 .. 2k STEP1 STEP2 

2k+l 

3k+l 

3k 

4k 

STEPU STEP2 

STEP lj STEP2 

4k+l .. 6k STEP1 STEP2 

ITERATIONS 

Figure 5-1: Time diagram of algorithm 2 

To ensure that the synchronization keys from overlapped sets of iterations do not get mixed up, step 1 of 

any particular set of k iterations only begins executing after step 1 of the previous set has finished executing 

(as indicated in the figure). Furthermore during step 1, a synchronization key should only be modified if one 

of the following holds: 

1. The synchronization key is zero. This guarantees that there is no outstanding memory references 
to this location from any previous set of iterations. 

2. The synchronization key is not zero, but it is known that its current value was set by the current 
set of k iterations. This guarantees that some previous memory reference from this set of k 
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iterations has already verified (recursively) that there are no outstanding memory references to 
this location from any previous set of iterations. 

For this to work the synchronization key must itself be tagged by the set of iterations which last modified it. ~ -

Since the number of sets of iterations simultaneously active is usually a small number, only a few bits are 

required for this tag. Thus 6 bits would be sufficient to uniquely identify upto 64 sets of overlapped iterations. 

The modified algorithm (algorithm 2) can thus be described as follows, 

algorithm 2 

Break down the iterations of the loop into successive sets of k iterations, where k is determined as in 

algorithm 1. Attempt to execute K of these sets in parallel (K is determined at compile time by the number of 

processors available : there must be enough to execute K*k iterations in parallel), by using a [log2K] bit tag on 

each synchronization key, and executing each set T in the range 1.. N /k as follows: 

1. Wait for step 1 of set (T-l) as well as step 2 of set (T-K) to complete execution by using some 
additional explicit synchronization. Then execute step 1 of set T as in the case of algorithm 1, but 
add a test to each synchronized memory reference which tests that the synchronization key is 
either zero, or that the synchronization key's tag is equal to T. Also set the key's tag to T after each 
reference. 

2. Proceed with step 2 as in algorithm 1. 

In general the size of the synchronization .key will grow as O(logN) where N is the maximum parallelism, 

resulting in a total hardware cost of O(NlogN). This bound holds in the range k < N <= k*(K + l) . (For 

larger values of N hardware cost again grows as 0(N 2 ) ) . The main drawback of this technique is that 

successive sets of iterations can only be overlapped if none of their aliased memory references are dependent. 

This is not as bad as it seems since whenever two sets of iterations have memory references that are dependent 

the corresponding references must be executed sequentially anyway. However the above lemma about 

performance optimally may no longer be valid in general. Note that it is still valid for both die best case and 

die worst case (and for a number of intermediate cases). 

6 , Memory aliasing with multiple indirection 
So far it has been assumed that the addresses of all aliased memory references were known when the loop 

was entered. The algorithm can be generalized to handle less restrictive cases in which the address of a 

memory reference is modified during the execution of the loop. It is possible to define die indirection level of 

an aliased memory reference as (one more than) the longest sequence of indirection which may be involved 

This range need not be known at compile time * 
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from loop entry to determine the final address of die aliased memory reference. Thus die following loop has 

a level of indirection of 2 assuming that die arrays Fl[] and F2[] are already defined on loop entry: 

intA[N],B[N],Fl[N],F2[N]; 

for( i=0; i<N;i++){ 
B[Fl[i]] = / * first indirection V 
A[B[F2[i]] = ...; / * second indirection if F2[i] = Fl[j] for any j< = i V 

} 

The maximum level of indirection need not be defined at compile time as illustrated by the following loop: 

int A[N],F[N]; 

for( i=0; i<N;i++){ 
A[A[F[i]] = ...; 

} 

In this case the maximum level of indirection is N which may not be known at compile time. The following 

extension to algorithm 1 (which can also be applied to algorithm 2) requires that the maximum level of 

indirection (L) be known at compile time: 

algorithm 3 
The algorithm generates the two basic steps of algoridim 1, but repeated for each level of indirection, for a 

total of 2*L steps. In the first pair of steps only aliased memory references whose level of indirection is 1 are 

executed, and in the second pair of steps only aliased memory references whose level of indirection is 2 are 

executed, and so on. By die time aliased memory references of any particular level of indirection are tackled, 

their addresses have already been determined in the previous step. Instructions tiiat do not involve memory 

aliasing, are executed in the earliest possible instance of step 2, as determined by their dependence on other 

instructions that do involve aliased memory references. 

Note that as before each step generated is applied in parallel to a set of iterations determined by the 

synchronization key size. Thus the best case performance is O(L) which is optimal. The worst case 

performance is within a factor of 2 of the sequential execution time since each aliased memory reference is 

replaced by two synchronized references. It is not known at this time if the performance is also optimal for 

intermediate cases as in the case of algoridim 1. 
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7. Hardware implementation 
It is possible to implement the above synchronization primitive with negligible run time overhead, by 

having the memory controller perform the several operations that make up the indivisible synchronization 

primitive. The latency of synchronized memory references will be larger since the memory controller has to 

make two access to memory, one for the date and one for the key but the increase is no more than a factor of 

2. The load on the processor memory connection is slightly higher for synchronized references than for 

normal references since the synchronization mask and increment values must be provided in addition to the 

address. However because of the simple format of the mask and increment values, they can both be encoded 

as the bit offsets Involved, which for 32 bit keys takes 54-5 = 10 bits. Even with an additional 6 bit tag 

(required in algorithm 2) 16 bits should suffice. 

The real problem is implementing the semantics of the blocked synchronized memory references 

efficiently. Blocking of synchronized memory references can be implemented by using spin locking. This is 

the approach assumed in the case of the Cedar synchronization key [8]. However spin locking can be 

expensive in terms of processor to memory bandwidth consumed, slowing down die response of other 

memory references, and can invalidate the assumption of constant cost of memory references. For the kinds 

of synchronization algorithms described in [9], as well as the new synchronization algorithms described above, 

close to worst case performance can degrade dramatically, since in that case large number of synchronized 

references are blocked simultaneously, and get unblocked sequentially. 

Implementations of blocking (also known as busy waiting) without spin locking have been suggested in 

[2] as part of a cache coherence scheme. When a processor tries to access a locked memory location its 

snooping cache is employed to track all memory traffic until the location is unlocked by some other processor. 

This technique however does not work without a broadcast bus interconnection between processors and 

memory and therefore cannot be applied to a scalable multiprocessor architecture. 

The following scheme does not require a broadcast bus, and is based on the memory controller keeping 

track of blocked processors and memory traffic that might unblock processors. This scheme will work if the 

blocking condition is always a function of memory locations controlled by the same memory controller. This 

is the case for the synchronization primitives introduced here, since the blocking condition is only a function 

of the synchronization key (plus tag), which can easily be arranged to always be in the same memory block as 

the corresponding data item. Each memory controller has a small associative table (Figure 7-1). The 

associative table has one entry for each possible blocked memory reference. The total table size should equal 

the number of processors. Whenever the controller determines that a synchronized memory reference should 

cause a processor to block it indefinitely withholds the acknowledge from that processor (which is effectively 

blocked since is cannot distinguish diis case from network congestion or other network delay) and stores the 
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address of die location accessed as well as the synchronization condition in the associative table. Every time a 

successful synchronized memory reference causes a synchronization key to be modified the memory 

controller does an associative lookup using die reference's address and new key, to see if any blocked 

processor's synchronization condition is true, and if so executes the delayed memory reference and finally 

acknowledges it. The simple form of the test on the synchronization key in the new synchronization primitive 

(test if a particular field is 0, or a small tag field matches a given value for algorithm 2) makes the associative 

table easy to implement using custom VLSI. 

ASSOCIATIVE MEMORY 
ADDRESS MASK 

~7K 

INCREMENT 

"TFT 

PID 

"7T\" 

PE 

CONTROLLER 

7 T V 

\ 

/ 
/ 
\ 

\ 
VLSI 

RAM 

PROCESSOR-MEMORY NETWORK 

Figure 7-1: A memory controller handling busy wait 

One drawback of this scheme is that is does not scale well in the asymptotic sense : The total hardware cost 

per memory module is proportional to the number of processors. Since die number of memory modules 

should also be proportional to the number of processors, die total cost grows as the square of the number of 

processors. However in practice the size of die associative memory should not dominate the cost of the 

memory module, unless the number of processors starts exceeding about lk, so this is a realistic concern only 

if there arc actually programs that have parallelism in excess of lk and tiiis parallelism all depends on aliased 

memory references. 



17 

8. Conclusion 
This paper has described a number of compilation algorithms which are able to parallelize loops that 

contain aliased memory references, in such a way that performance is within a factor of 2 of optimum both for 

best case and worst case input data. The algorithms can handle aliased memory references in conditional 

statements though if the condidonal test itself depends on an aliased memory reference, the worst case 

performance deteriorates somewhat. Multiple levels of indirection in aliased memory references can be 

handled provided the number of levels of indirections is a compile time constant. The synchronization 

primitive required was shown to have a hardware implementation that satisfied the timing assumptions made 

in the performance analysis. 

This paper has not addressed the issue of instruction scheduling which becomes an important problem 

when the parallelism in the architecture is less than the potential parallelism encountered in the program. The 

problem is similar to the scheduling problems encountered in data flow machines under similar conditions. 

Since many actual processor memory networks are pipelined, it is also necessary to consider how the 

synchronization algorithms can be modified to accomodate multiple outstanding memory references from die 

same processor. 
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