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Abstract

Vectorizing compilers that parallelize programs written in declarative languages like Fortran usually have
difficulty dealing with memory aliasing which causes the parallelism of the program te depend on input data
not available at compile time. Compilation algorithms which can handle memory aliasing involving single
levels of indirection by using sophisticated synchronization primitives have appeared recently, but we show
here that these algorithms produce speed up only for certain values of the input data, and actually
asymptotically stow down execution speed for worst case input data, We introduce a new compilation
algorithmn based on another synchronization primitive which for the same forms of memory aliasing as before
produces speedups which are always within a factor of 2 of ideal data flow execution with greedy scheduling,
cxcept that the maximumn speedup willbe limited by the underlying architecture, Extensions of the algorithm
to more complex forms of memory aliasing including multiple levels of indirection and conditionals are also

described,

1. Introduction

\’eciorizing compilers can be uscd to translate sequential code written in ordinary declarative languages like
Fortran, Pascal or C into parallel code suitable for vector processors as well as MIMD based Processors
[4, 6, 3]. Many of the underlying compilation algorithms determine instructions which can be executed in
parallel by evaluating the dependencies between the instructions [4], Tn the case of instructions referencing
memory these dependencies will depend on the address of the memory location referenced. When these
addresses depend on input data not known at compile time, it may not be possible to tell if two memory
references refer to the same memory location or are unrelated. This problem is referred to as memory aliasing
and most vectorizing compilers in such cases assume the worst forcing sequential execution of the memory
references. In some of these cases the memory references are actually provably independent, but the proof can
be quite complex [1]. Here, however, we are concerned with cases where the memory references cannot be
proven independent. Consider for example the loop in Figure 1-1 (written in *C’ like code).
int A[N},B{NY;
"read in array B[0..N-1]"";
for(i=0;iKN;i+ + )

AlB[i]] = ..

Figure 1-1:  An cxample of memory aliasing

If the values read into array B[] are all different, then the assignments to array Af] in the loop will be
independent and can be exccuted in parailel, However if the values read into array B[] have repeated values,
certain assignments in the loop wiil be to the same location and must be exccuted in sequence to produce the

correct final values. This paper assumes that the compiler does not attempt to modify the code wholesale



based on higher level semantic analysis, and restricts itself to reordering instructions in such a way as to

increase parallelism while producing the same final values in memory.

In this paper we examine compilation algorithms that allow parallel execution even in such cases. Such
algorithms can also be applied when memory references are independent but where this independence is very
hard to prove. Section 2 describes the model of the parallel architecture which forms the basis of the
compilation algorithms, Section 3 describes a compilation algorithm proposed by Zhu and Yew [8, 9] which is
capable of executing loops with memory aliasing in parallel, provided the aliased memory references are
restricted to a single level of indirection (as in Figure 1-1). It makes use of a new and sophisticated
synchronization primitive, It is shown why this algorithm only works well in the best casc when few
dependencies are encountered at run time, but produces an asymptotically worse exccution time than the
original sequential code in the worst casc when few memory references are independent. Section 4 describes a
new compilation algorithm which uses another new synchronization primitive to produce parallel code whose
performance is in some sense optimal irrespective of the actual data encountered at run time, assuming as
before that aliased memory references are restricted to a single level of indirections. The maximum
parallelism is restricted by an architecture dependent quantity, and hardware cost grows as N2 where N is the
maximum parallelism. Section 5 describes a modification of the algorithm which atlows the hardware cosf to
grow as N*log(N) but slightly sacrifices the optimality of the parallel execution, Section 6 describes an
extension of the algorithm to aliased memcry references with multiple levels of indirections. Section 7
outlines an efficient hardware implemcentation of the synchronization primitive used in these algorithms,
Section 8 concludes with a summary and a description of some remaining problems in dealing with memory

aliasing.

2. The architecture model
The architecture model which forms the basis of the vectorization/parallelization algorithms in this paper, is
illustrated in Figure 2-1. A number of logically identical processors are connected to a {possibly different)

number of memory modules, and each processor can access any memory module.

Memory references are assumed to be atomic and take a constant amount of time for a given architecture
configuration, except when multiple references are to the same memory module, in which case the references
are sequentialized in some arbitrary order. As long as the processor memory nctwork does not suffer from the
problem of hot spots (see for example [S]) this holds for most kinds of processor memory interconucction

schemes.
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Figure 2-1: Model of the shared memory architecture

3. Previous work on run time resoclution of memory aliasing
A new synchronization primitive for use in the Cedar multiprocessor was proposed by Zhu and Yew {8, 9],
and the various examples of the use of this synchronization algorithm include an algorithm to parallelize loops

with aliased memory references.

Cedar’s synchronization primitive[8] uses a synchronization word per data item. The atomic

synchronization operation is defined as follows :

if (test on key)* then

operation on data item:

operation on synchronization key;
end

The test on the synchronization key is a comparison with an integer (or no test). The operation on the key is
a simplc operation like increment, decrement, add, fetch, fetch&add, store or no action. The operation on the
data item is a read or write. If the test fails cither the process blocks until the test succeeds (indicated by a
Kleene star on the test) or the operation on key and data are not executed and return a failure code, In the

following it is assumed that the atomic synchronization operation takes a constant amount of time.

"The most gencral case of memory aliasing considered in [9] is a (nested) lovp which has memory references
whose addresses are not known at compile tiine and contains if/then/else or case constructs. Only a single
level of indirection is allowed for the aliased memory references, ic the address of cach aliascd memory
reference is known at run timse by the time the loop of interest is entered. This case is illustrated by the C
pregram segment outlined in Figure 3-1,.in which only the aliused menory references whose addresses cannot
be evaluated at compile time are shown as references to the array Af]. 'The array indices fu(i) (n=1..6) arc
input data dependent expressions that do not depend on arvay A[], such as Bif, Clil, where BflL Ch, are arvays

computed or input at run-tine, before the loop is entered. The loop index i could be a constant size vector,



allowing for nested loops.

float A[N};
for(i=0;i<N;i+ +){
- = . ARDL
o = A[R2D);
if(. A[f3(D]..

- = .. A[f®D);
}else {
) AlfS(D] = ..y

Alf6(D)] = ..

Figure 3-1: General loop with aliased memory references

If the array locations referenced by different iterations are all different the iterations could be run in parallel
(instructions within each iteration would still be executed sequentially). Zhu and Yew's compilation algorithm
attempts to optimise performance for this case. It generates synchronization instructions to go with cach array
access such that iterations can be scheduled in parallel. During an actual run the itcré_tidﬂs will execute in
parallel if and only if this is consistent with the data encountered at run time. The algorithm produces a

modified program which may be described as follows :

Repeat the following steps until all iterations have exccuted.

1. Initialize all key values of aliased memory locations to infinity.

2. In parallel exccute all aliased memory references for all iterations. However, instead of actually
performing reads or writes to the aliased memory locations, the iteration index i is stored in the
location’s synchronization key whenever it is /ess than the value already preseat. This will result in
each aliased memory location’s key containing the Jeast unexccuted iteration i which accesscs it.

3. Exccute in parallcl all {unexecuted) iterations. Exccute any particular iteration only if all aliased
memory locations accessed have rheir synchronization key equal to i (ie this iteration is the least
unexecuted iteration accessing the aliased memory locations in question).

The algorithm dynamically determines the refercnce pattern (RP) at each data dependent memory location,
determines the first entry of this RP (during step 2), and postpones (during step 3) all references that do not

occur in the same iteration as the first entry of the RP.

For the program segment in Figure 3-1 the modified code with synchronizaticn is shown in Figure 3-2.
Each location of array A[] now storcs both data as well as a synchronization key. The atomic cedar
synchronization operations are shown in the form {test:keyop,dataop}. The loop construct forall is like the

loup construct for, except that all iterations may be exccuted in parallel. There is an implicit global



synchronization after every forall, to ensure that all parallel iterations have terminated.

struct {int key;
float data;} A[N};

/* mark all iterations as unexecuted */
int D[N],done = 0;
forall{i=0;i<N;i+ +) DJ[i] = 0;

while(!done){
/* initialize keys */
forall(i=0;iKN;i+ +) Afilkey = INFINITY;
/* locate least unexccuted iteration accessing cach location of A[] */
forall(i=0;iKN;i+ +) if(D{D{
{iKA[f1(i)).key : Alfl(D)}key = i;
{iKA[f2(i)}.key : A[f2(D)}key = i;
{iA[f3()l key : Alf3(i)).key = 1;
{i<A[f4(D)).key : A[f4(i).key = i;
{iKA[f5()] key : A[f5(i).key = i;
{i<A[f6()].key : A[f6(i)).key = i;
}
/* execute iterations accessing only valid locations */
done = 1;
forall(i=0;iKN;i+ +) if(!D[iD{
iA[FL(i L key = = i &&
Alf2(i).key = = i &&
Alfiilkey == i &&
Alfd(ikey == i &&
Affs(iLkey == i &&
AG(] key = = ){
Dfi] = 1;
"Same loop body as in Figure 3-1 with A[n] -> A{n].data™
} else done = O3
}
I3

Figure 3-2: Cedar synchronization key applied to Figure 3-1

In the best case scenario the three forall loops will be executed once and the whole operation takes constant

time (assuming a sufficient number of processors and memory hanks).

A typical exccution is shown in Figure 3-3, assuming the loop iterations range from 1 .. 8 and the index of

array A[] ranges from 0..9. For simplicity it is assumed that fl=R=B=f4={5 so only two distinct input data

dependent index scts (£l and 16) are shown,

Three iterations of the outer loop are required in this cxample,
L2



ITERATION INDEX DATA EXECUTION mhpex | RoREREACE Afn].key
1 f1(1) 6(1) Passl Pass2 Passd n {n.f) Passl Passe Pass3
1 0 6 X ¢ |1.f1 611 1 5
2 3 7 X 1 |s.t6 8.6 5 5 8
3 3 s X z |7.71 811 7 7 8
a 8 4 X 3 |z.r1a.n1 ) 3
5 0 1 X 4 |a.re a.fs 3 3 a
6 9 5 X 5 |e.t5 7.6 8 7
7 2 5 X 5 |1.rs 1
8 2 1 X 1 |2.18 2 2
g8 |a.r1 4 4 4
9 |e.n 6

Figure 3-3: Execution of the program in Figure 3-2

Howcever the worst case exccution time can be O(Nz), which is asymptotically worse than the scquential
exccution time Q(N) even with unlimited number of processors and memary banks. If all references are to the
same array location only one iteration will be executed cach time the three forall loops above are exccuted.
Moreover each such step will take (ignoring constant factors) O(N) time since during the first step all stores

will be to the same location and get sequentialized by the memory system,

If the architecture model is modified 1o take into account the possibility of a recombining network [5],
muitiple references to the same location can get combined reducing exccution time to O(NlngN)1 . However,
apart from the hardware cost of such a nctwork, it precludes the use of low latency networks like the
Hypercube or Crossbar as weil as the use of dynamic routing algorithms which allow data to be routed around
congested nodes. A software implementation of recombining networks as suggested in [7] will not work since

the memory references that need recombining are not known at compile time.

Another potential problem with the above shared memory synchronization primitive is the excessive
number of expensive shared memory accesses that can occur in implementing the indivisible synchronization
operation. One solution suggested in [9] is to have a smart memary controller, which can recognize the
synchronized memory requests and perform the indivisible comparison test and tag and data update without
using up bandwidth between processor and shared memory. This still docs not solve the problem of busy
waiting, This case is supposed to be handled by the processor repeatedly requesting the synchronized access

until it succeeds, which can increase the cost of synchronized memory access due to memory cortention to

-

l'l'l‘l:;.nks 1o Prof, Allan Fisher for pointing this out.



scveral times the value of a normal access. An implementation which can handle this busy waiting with

constant overhead is described later. -

4. A new algorithm to resolve memory aliasing

This section describes a new synchronization primitive and compilation algorithm that allows run time
resolution of aliased memory references. The technique differs from that described by Zhu and Yew
(ZhuYcew84) in that both the best case, worst case and intermediate case performance is within a factor of 2 of
data flow execution with greedy scheduling, subject to the restriction that the maximum parallelism is limited

by a constant which depends on architectural parameters including the number of bits in the tag,

Each data word in memory may be associated with a multibit synchronization tag. The synchrorization

primitive is defined by the following indivisible operation sequence:

1. Wait until tag bits specified by a mask are 0 at the memory location of interest.
2. Perform memory reference.

3. Modify tag bits by adding a specified signed number to the tag.

This is similar to the scmantics of the synchronization primiiive of Zhu and Yew [8], except that the tag test
and tag modification are simpler and more restricted. During the pc}-iod (if fmy) that the memory reference
hias to wait the process performing the memory reference may cither block or receive an error code. In the
following compitation algorithms it is assumed that the blocking mode of synchronization is being used. In
the following cxamples synchronized memory references will be represented as follows ; {mask : location, key
increment}. Thus {0: A[3],4}, means that the read/write of tocation A[3] proceeds unconditionally, and is
followed by incrementing the synchronization key of the same location by 4. It is assumed that al memory
references are indivisible and atomic ie each processor waits until all previous references are acknowledged,
before initiating thie next request, and the changes to memory locations are effective simultaneously wrt all

Processors.

The first synchronization algorithm will be illustrated using the example used previously in Figure 3-1, As
before the addresses of the memory references arc assumed not to be modified atter the loop is entered. The
algorithm produces a modified program which may be described as follows (initial and final synchronization

key values are always zcro, no initialization is normally required). :



Synchronization algorithm 1
Repeat until all loop iterations are executed :

1. Perform a data flow analysis of all aliased memory references in the next k (usually 4-16)
iterations. This is done in parallel by unconditionally incrementing the synchronization key of all
aliascd memory locations involved. The value of k and the increment is determined at compile
time as explained later. In the casc of conditionals and case statements all branches are executed.

2. Execute the k iterations in parallel (ic schedule them ignoring the dependencies due to aliased
memory references), Each aliased memory reference will be replaced by a synchronized reference
whose mask value is chosen so that the reference blocks until all preceding reads & writes to the
same location have exccuted, and decrements the synchronization key by the same value used as
an increment during step 1 above. In the case of conditionals and case statements aliased memory
references in the branches not taken must also be executed, but in such a way that only the
synchronization key is modified.

The value of the increment/decrement used for a particular synchronized memory reference and the value

of the mask used in step 2 above is determined {at compile time or at loop entry) as follows.

First, a worst case reference pattern (RP) for a single iteration is obtained which is simply the sequence of
aliased reads and writes that would occur during sequential execution. In the case of conditionals or case
statements the sequence is modified as if a/f branches had becn executed in some (arbitrary) order. In Fig 3-1
this RP is R,R,R,R, W W  where the subscripts refer to the corresponding index set subscript (eg R,
corresponds to Aff3()]). The combined RP of a number of consccutive iterations is obtained by
concatenating the RP’s of the individual iterations. Bits arc now allocated to cach write in the RP from left to
write, Each write is allocated a bit field which can kecp a count of the preceding consccutive reads and the
write, which requircs [logz(No-of-reads + 2)} bits. In the above example there would be a 3 bit field and a 1
bit field allocated for each itcration. The number of bits in the synchronization key determines the number of
iterations (the value of k in step 1 above) that can be parallelized. In this case with a 32 bitkey k = 32/4 = 8.

Fhe allocation of bits in the synchronization key is illustrated in Figure 4-1 (a).

The increment in step 1 (= decrement in siep 2) for any aliased memory reference simply corresponds to
incrementing the corresponding bit ficld by 1. Thus Rl,112,1{3,114 and Ws of the 3" iteration would be
allocated bits 8-10 (counting bits from 0}, and the increment for cach of these references would be 256 (28).

The synchronization key at an array location encodes the actual RP encountered at run time at that array
location. If the RP of iterations 1 to 8 for a particular array location at run time was R, W in iteration 1, R,

R, in iteration 3, and W, in iteration 4, the synchronization key after step 1 would be as shown in Figure 4-1

(b).
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Figure 4-1: Sync. key for algorithm 1 and cxample in Figure 3-1

The mask value for reads in step 2, simply enables the bit fields of al! previous writes. Thus the mask for

reads R, to R, of the 3% jterations would be bits 0-7 or 255.

The mask value for writes enables the same bits as reads plus all but the LSB of the write’s own bit ficld.
Thus the mask for W, of the 3" iterations would be bits 0-9 or 1023,

The above rules for gencrating masks and increments ensure that in step 2 a read is blocked until all

possible preceding writes (and consecutive reads preceding them) have actually executed, and that a write is

blocked until all possible preceding reads and writes have exccuted. [f one of these preceding reads/writes

corresponds to a different address, the synchronization key in question will not be incremented during step 1,

and so will appear to have already been executed in step 2. Each increment in step 1, will be matched by a

corresponding decrement in step 2, so that the key values are restored to zero after all references have

cexecuted.

The sequence of mask and sync values assumed at the memory location in Figurc 4-1 (b}, during step 2 of

the algorithm is shown in Figure 4-1 (c).

-
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The result of applying the algorithm to the loop in Figure 3-1 is shown in Figure 4-2, The keyword forail
again refers to a parallel for loop, with implicit synchronization on its termination. The values of mask and

increments are represented compactly by macros mask(n) and incr(n) defined as :

¢ mask(n) = mask with n LSB’s enabled.

e incr{n) = 2%

float A[N];
for(i=0;iKN;i+ =8}
forall{(j=0;j<8 && i+KN:j+ +){/*step 1 %/
{0: A[F1(E+ )] incr(j*4)};
{0:A[f2(i 4+ D] incr(j*4)};
{0:A[f3(i+ Dlincr(i*4)};
{0:A[f4(i+ )] incr(*4)};
{0: A[f5(i+ )} incr(j*4)};
{0: A[f6(i 4 })).incr(3*4 4+ 3)};
} .
forafl(j=0;j<8 && i+j<N;j+ +){/*step 2 */
we = o {mask(G*4) A[F1(+ )], -incr(5*4)};
v = . Imask(G4)Y: A[2(i+))),-incr(G*4)}; B
if(...{mask(j*4): A[f3(i +))],-incrG*4)}.. )
v = .. fmask G4y ALAG + ) -incr(*4)};
{mask(3*4 + 23 A[f5G +7)],-incr(j*4)}
} else {
{mask{i*4): A[f4(i+])],-incr(j*4)};
{mask(j*4+ 2):A[f5(i+ ) -incr(G*4)} = ...
} .
{mask(j*4+ ): Alfo(i +§)],-incr(G*4+3)} = ..}
¥
}

Figure 4-2:  Algorithm 1 applied to exampie in Figure 3-1

Note that instructions within an iteration may themsclves be scheduled in parailel, ignoring the
dependencics between aliased memory references, since these are enforced by the synchronization mask in
the same way within an iteration as between iterations. Thus cach iteration may be scheduled on more than

onc processor, or on a pipelined processor with overlapped instruction execution.

The performance of this compilation algorithm will be compared to that of data flow exccution with a
greedy scheduling algorithm, The performance of the latter is obtained for any input data sct, by doing a
post-mortem analysis of the execution, and obtaining the actual dependency graph for the instructions. The
instructions arc then scheduled to be executed as soon as all previous dependent instructions have executed
(the greedy scheduling algorithmy). The exccution time (eg on a data flow machine) of this schedule given

infinite hardware will be optimal, except that when muitiple rcads to the same location are scheduled at the
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same time, the underlying hardware will perform the reads in some arbitrary order which may not be the
optimal order, ie the most time critical read may not be performed first. In such cases the performance can
range from the optimal value to some sub-optimal value. The following lemma shows that the performance of
the compilation algorithm described in this section, will lic somewhere within this range, if a constant factor
of 2 is ignored, and subject to the restriction that the maximum parallelism is restricted by the number of tag

bits which determines the maximum number of iterations k that can be executed in parallel.

Lemma 1: The exccution time of each outer iteration produced by algorithm 1 is within a factor
of 2 of the performance range of data flow execution with a greedy scheduling algorithm, if there
are no conditionals or case statements in the loop. Memory bank collisions are ignored (ie assume
infinite number of memory banks), and simultancous references to the same memory locations are
assumcd to be sequentialized in some arbitrary order by the memory.

Proof: The execution of memory references in step 2 of the transformed program corresponds
precisely to data flow execution : writes wait for preceding reads and writes to complete, and reads
wait for preceding writes to complete. The fact that reads also wait for some preceding reads to
complete does not cffect the possible performance range, since memory references to the same
location are sequentialized by the memory anyway. The execution time of step 2 therefore lies in
the specified range. The execution of step 1 contains the same number of synchronized memory
references as step 2, and can be scheduled in parallel, so that its execution time cannot exceed the
upper limit of range for step 2. Hence the total time is within a factor of 2 of the specifted
performance range.

In the worst case all references are to the same location, so all the bit fields of that location's tag are set to
the number of R/W operations in each R™W sequence, In the first exccution cycle all but the reads of the first
R'W sequence will block, while these reads will get sequentialized in some arbitrary order. After that the
write of the same sequence will unblock followed by the reads of the next sequence and so on. Sequential
cxecution will result. Since step 1 (setting up the keys) will also get sequentialized, the total time taken wiil be

within twice the sequential execution time,

This algorithm works correctly even in the presence of conditionals and case statements, but now the
exccution time is within a factor of 2 of optimal only in the best casc {when all data dependent memory
references map to different locations). This is because all branches of the conditionals must be executed in
step 2 and step 1, and unless the data dependent memory references in Jalse branches all map to locations that
are different from all other data dependent locations, their execution canaot be overlapped with that of the
true branch actually taken and other itcfa_tions. If the test of the branch or case statement does not depend on
an aliased memory reference (though the bodies of the branches contain aliased memuory references), the
algorithm can be modified, so that only the true branches are exccuted, both in step 1, and step 2. In this case

the above lemma still holds.



12

5. Increasing the maximum parallelism ,

A major drawback of algorithm 1 is that only a small number of iterations (in the example above k=8) can
be executed in parallel. This puts an upper bound on the parallelism that can be exploited, To increase this
upper bound the number of tag bits per data word and (of course} the number of processors must be
increased proportionately, so that the hardware cost is O(N?‘) where N is the desired maximum parallelism,

This is generally unacceptable for large N.

Algorithm 1 can be modified by overlapping the execution of step 1 and step 2. If step 2 takes more time
than step 1 to execute (which is likely since the code is unlikely to consist entirely of aliased memory
references) step 1 can execute several outer iterations ahead of the earlicst outer iteration of step 2. In general
if step 2 takes K times the time to execute as step 1, the upper bound on the parallelism increases from k
iterations to (K + 1)*k iterations, This is illustrated in the time diagram of Figure 5-1. Since all instruction in
step 1 can be scheduled in parallel, K is simply the number of sequential machine instructions in one
iteration. | :

TIME

N
/s

1..k | STERY STEPZ

k+l ., 2k STEP) STEPZ

2k+1 .. 3k STEP Y STEP2
Jk+l .. 4k STEP Y STEP2
dk+1 .. 6k STEP1 STEP2
ITERATTIONS

Figure 5-1: Time diagram of algorithm 2

To ensure that the synchronization keys from overlapped sets of iterations do not get mixed up, step 1 of
any particular set of k iterations only begins exccuting after step 1 of the previous set has finished exccuting
(as indicated in the figure). Furthermore during step 1, a synchronization key should only be modificd if one

of the following holds:

1. The synchronization key is zero. This guarantees that there is no outstanding memory references
to this location from any previous set of iterations.

2. The synchronization key is not zero, but it is known that its current value was set by the current
set of k iterations. This guarantces that some previous memory reference from this set of k
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iterations has already verified (recursively) that there are no outstanding memory references to
this location from any previous set of iterations,

For this to work the synchronization key must itself be tagged by the set of itcrations which last modified it. -~
Since the number of sets of iterations simultaneously active is usually a small number, only a few bits are

required for this tag. Thus 6 bits would be sufficient to uniquely identify upto 64 sets of overlapped iterations.

The modified algorithm (algorithm 2) can thus be described as follows.

algorithm 2

Break down the iterations of the loop into successive sets of k iterations, where k is determined as in
algorithm 1. Attempt to execute K of these sets in parallel (K is determined at compile time by the number of
processors available : there must be enough to exccute K*k iterations in parallel), by using a {logzK] bit tag on

each synchronization key, and executing each set T in the range 1 .. N/k2 as follows :

1. Wait for step 1 of set (T-1} as well as step 2 of set (T-K) to complete execution by using some
additional explicit synchronization. Then exccute step 1 of set T as in the case of algorithm 1, but
add a test to cach synchronized memory reference which tests that the synchronization key is
either zero, or that the synchronization key’s tag is equal to T. Also sct the key’s tag to T after each
reference.

2. Proceed with step 2 as in algorithm 1.

In general the size of the synchronization key will grow as O(logN) where N is the maximum parallelism,
resulting in a total hardware cost of O(NlogN). This bound holds in the range k < N {= k*(K+1). (For
larger values of N hardware cost again grows as O(N?). The main drawback of this technique is that
successive sets of iterations can only be overlapped if none of their aliased memory references are dependent.
This is not as bad as it seems since whenever two sets of iterations have memory references that are dependent
the corresponding references must be executed sequentially anyway, However the above lemma about
performance optimnality may no longer be valid in general. Note that it is still valid for both the best case and

the worst casc (and for a number of interinediate cases).

6. Memory aliasing with mulitiple indirection

So far it has been assumed that the addresses of all aliased memory refercnces were known when the loop
was entered. The algorithm can be generalized to handle less restrictive cases in which the address of a
niemory refercnce is modified during the exccution of the luop. It is possible to define the indirection level of

an aliased memory reference as (one more than) the longest sequence of indirection which may be involved

?'This range need not be known at compile time
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from loop entry to determine the final address c_)f the atiased memory reference. Thus the following loop has

alevel of indirection of 2 assuming that the arrays F1[] and F2[] are already defined on loop entry:
int A[N].B[N),F1[N],F2[N};

for(i=0:i<KN:i+ +){

B{F1ji]] = ..., /* firstindirection */

A[B[F2[il} = ... /*second indirection if F2[i] = F1[j] for any j{=1*/
) :

The maximum level of indirection need not be defined at compile time as iilustrated by the following loop:
int A[N],F[NJ;

'f:c.)r(i: 0:iKN:i++ )
) A[A[F]] = ...

In this case the maximum level of indirection is N which may not be known at compile time. The following
extenston to algorithm 1 (which can also be applied to algorithm 2) requires that the maximum level of

indirection (L) be known at compile time:

algorithm 3

The algorithm gencrates the two basic steps of algorithm 1, but repeated for each level of indirection, for a
total of 2*L steps. In the first pair of steps only aliased memory references whose levet of indirection is 1 are
executed, and in the second pair of steps only aliased memory references whose level of indirection is 2 are
exccuted, and so on. By the time aliased memory references of any particular level of indirection are tackled,
their addresses have already becn determined in the previous step. Instructions that do not involve memory
aliasing, arc executed in the earliest possible instance of step 2, as determined by their dependence on other

instructions that do involve aliased memory references.

Note that as before each step gencrated is applied in parailet to a set of iterations determined by the
synchronization key size. Thus the best case performance is O(L) which is optimal. The worst case
performance is within a factor of 2 of the sequential execution time since each aliased memory reference is
replaced by two synchronized rcfcrcncés.. It is not known at this time if the performance is also optimal for

intermediate cases as in the case of algorithm 1.
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7.Hardware implementation
It is possible to implement the above synchronization primitive with negligible ﬂmn time overhead, by
having the memory controller perform the several operations that make up the indivisible synchronization
primitive. The latency of synchronized memory references will be larger since the memory controller has to
make two access to memory, one for the date and one for the key but the increase is no more than a factor of
2. The load on the processor memory connection is slightly higher for synchronized refercnces than for
. normal references since the synchronization mask and increment values must be provided in addition to the
address. However because of the simple format of the mask and increment valucs, they can both be encoded
as the bit offsets tnvolved, which for 32 bit keys takes 5+5 = 10 bits. Even with an additional 6 bit tag
(required in algorithm 2) 16 bits should suffice,

The real problem is implementing the semantics of the blocked synchronized memory references
efficiently. Blocking of syhchronizcd memory references can be implemented by using spin locking, This is
the approach assumed in the case of the Cedar synchronization key [8]. However spin locking can be
expensive in terms of processor to memory bandwidth consumed, slowing down the response of other
memory references, and can invalidate the assumption of constant cost of memory references. For the kinds
of synchronization algorithms described in [9), as well as the new synchronization algorithins described above,
close to worst casc performance can degrade dramatically, since in that case large number of synchronized

references are blocked simultaneously, and get unblocked sequentiaily.

Iniplementations of blocking (also known as busy waiting) without spin locking have been suggested in
{2] as part of a cache coherence scheme. When a processor tries to access a locked memory location its
snooping cache is employed to track all memory traffic until the location is unlocked by some other processor,
This technique however docs not work without a broadcast bus interconnection between processors and

memory and thercfore cannot be applicd to a scalable multiprocessor architecture.

The following scheme does not require a broadcast bus, and is based on the memory controller keeping
track of blocked processors and metnory traffic that might unblock processors. This scheme will work if the
blocking condition is always a function of memory locations controlled by the same memory controtler. This
is the case for the synchronization primitives introduced here, since the blocking condition is only a function
of the synchronization key (plus tag), which can casily be arranged to always be in the same memory block as
the corresponding data item. Each memory controller has a small associative table (F igure 7-1). The
associative table has one entry for each possible blocked memory reference. The total table size should equal
the number of processors. Whenever the ;':ontrollcr determinces that a synchronized memory reference shoutd
cause a processor to block it indefiuitely withholds the acknowledge from that processor (which is effectively

blocked since is cannot distinguish this case from network congestion or other network delay) and stores the
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address of the location accessed as well as the synchironization condition in the associative table. Every time a
successful synchronized memory reference causes a synchronization key to be modified the memory
controller does an associative lookup using the reference’s address and new key, to sce if any blocked
processor’s synchronization condition is true, and if so executes the delayed memory reference and finally
acknowledges it. The simple form of the test on the synchronization key in the new synchronization primitive
(test if a particular field is 0, or a small tag field matches a given value for algorithm 2) makes the associative

table easy to implement using custom VLSL

ASSOCIATIVE MEMORY

ADDRESS MASK INCREMENT PID
PE
/!
N
CONTROLLER * RAM
vi.§1
NV

PROCESSOR-MEMORY NETWORK
Figure 7-1: A mcmory controller handling busy wait

One drawback of this scheme is that is does not scale well in the asymptotic sense : The total hardware cost
per memory module is proportional to the number of processors. Since the number of memory modules
should also be proportional to the number of processors, the total cost grows as the square of the number of
processors. However in practice the size of the associative memory should not dominate the cost of the
memory medule, unless the number of processors starts exceeding about 1k, so this is a realistic concern only
if there are actually programs that have parallclism in excess of 1k and this parallclism all depends on atiased

memory references.
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8. Conclusion

This paper has described a number of compilation algorithms which are able to parallelize loops that
contain aliased memeory references, in such a way that performance is within a factor of 2 of optimum both for
best case and worst case input data. The algorithms can handle aliased memory references in conditional
statements though if the conditional test itself depends on an aliased memory reference, the worst case
performance deteriorates somewhat. Multiple levels of indirection in aliased memory references can be
handled provided the number of levels of indirections is a compile time constant. The synchronization
primitive required was shown to have a hardware implementation that satisfied the timing assumptions made

in the performance analysis,

This paper has not addressed the issue of instruction scheduling which becomes an impaortant problem
when the parallelism in the architecture is less than the potential parallelism encountered in the program. The
problem is similar to the scheduling problems encountered in data flow machines under similar conditions.
Since many actual processor memory networks are pipelined, it is also necessary to consider how the
synchronization algorithms can te modified to accomodate muitiple outstanding memory references from the

Same processor.
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