NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:

The copyright law of the United States (title 17, U.S. Code) governs the making

of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

Distributed Transaction Processing
and The Camelot System

Alfred Z. Spector
January 1987

CMU-CS-87-100 y

ABSTRACT

Tnis paper azscribes distributed transaction processing, a technique used for simplifying the construction
of raliabie distributed systems. After introducing transaction processing, the paper presents models
dascribing the siructure of distributed systems, the transactional computations on them, and the layerad
scftware architecture that supppors those computations. The software architeclure model contzing five
layers, including an intermediate layer that provides a common set of useful functions for supporting the
highiy reliable operation of system services, such as data management, file management, and mail. The
functicns of this layer can be realized in what is termed a distributed transaction faciity. The papar then
‘escripes one such faciity - Camelot. Camelot provides flexible and high performance commit
Jo2rvision. Jisk management, and recovary mechanisms that are usefol for inplementing a wide ¢lass of
2 ypes. roiuding sarge catabasas. it runs on the Unix-compaticle Magh cperating system and usas
iz iP communication grotocols. Prasenily, Camelot runs on BT PC's and Vaxes, but it
omputers including shared-memory multiprocessors.,

ST &Y

i

[4¥]
wn
v
=
L
I
i
9
I
9]
1
]

n
el

S WOrk was supportad by the Defense Advanced Research Projects Agency, ARPA Order No. 4578,
Tenitored by the Air Force Avionics Laboratory under Contract F23615-84-K-1520, and the IBM

-
Corooration

& Views and conclusicns contained in this document are those of the authors and should not be
2rpreted as representing the official policies, iither expressed or implied, of any of the sponsoring
gncies or the US government.

This paper is to appear as a chagter of Distributed Operating Systems: Theory and Practice. Yakup
Paxer.ed., Springer-Verlag, 1287.

‘ wy Libravies |
Universit ‘L-:‘b{,nwarst

o™ ‘
%?t‘;‘;gﬁ:'egh PA 15213 389

Table of Contents

1. Introduction
2. Distributed Transactions
3. Three Modzls
3.1. System Mode!
3.2. Computation Mcdel
3.3. Architecture Model
4. Camelot
4.1. Background on Majotr Camelot Implementation Techniques
4.1.1. Abstract Objects
4.1.2. Distribution
4.1.3. Transactions
4.1.4. Summary of Implamentation Background
4.2. Camelot Functions
4.2.1, Configuration Managament
4.2.2. Disk Management
4.2.3. Recovery Managemant
4.2.4. Transaction Management
4,2.5. The Camelot Library
4.2.5. Deadlock Detectieon
4.2.7. Reliahility and Performance Evaluation
4.2.8. Miscellaneous Functions
4.3. Camelot Implementation
4.4, Discussion
3. Challenges

Oo~tuodbhhataa

UBIVERSITY LIBRMRIES
CARNEGIE-FZHLON URIVERSDY
PITTSRURGH, PEANSYLVANIA 10213

Figure 3-1:
Figure 3-2:
Figure 4-1:
Figure 4-2:
Figure 4-3:

List of Figures

System Modei

Five Levei Architecture Model

Relationship of Camelot to Other System Lay.rs
Logical Components of Camelot

Processes in Camelot Release 1

[{e N I o e B« I S

—t ol

1. Introduction

Distributed computing sysiems are potentially reliable, because their components are redundant and
fail independenlly. Adcitionally, districuted computing systems potentially offer very hignh throughput fer
applications that can use lecsely-coupled multiprocessing. The major challenge is to realize thaze
potentials efficiently, and without incurring intolerable penalties in compiexity or cost. Consequently, thare
has been great interest in general-purpose techniques and practices for simplifying the construction of

efficient and robust distributed systems.

This paper discusses a technique based on distributed transactions and describes a distributag
transaction facility called Camelot that supports their use. Section 2 defines the concept of & transaction
and provides a brief historical perspective on its develcpment. Section 3 then presents thres models

useful for describing distributed systems that support transaction processing. Secticn 4 adds

concreteness to this discussion by descrizing the geals, impiementation basas. funcions, struciurs, 2nc
status of the Camelot distributed transaction facility. This paper ends with Section 5, which cascrnss

some important challenges in the area of distributed transaction processing.

2. Distributed Transactions

The database literature typically defines a transaction as a collection of operations bracksied by two
markers: BeginTransaction and EndTransaction. A transaction has three special propenies:

s Either all or none of a transaction’s operaticns are performed. This property is called fafiure
atoricity.

» If a transaction completes successiully, the results of its cperations will never se iost, exczot
in the svent of catastrcphes, which can be made arbitrarily improbable. This preperty is
called permanence.

« Transactions are aiicwed o exsoute concurrently, zut the resulls will te the sams 25 i s

ransactions executed serfaliy in some order. This property is usually called ser zlizabiiity
Transactions lessen the burden on application programmers Oy simpiifying the ireaiment of fziurss ana
concurrency. Failure atomicity ensures that if a transaction is interrupted by a failure, its partial rasuits will
undone. Permanence ensures that updates performed by completed trarsactions are not iost
Serializability ensures that other concurrently exacuting transaclions cannot cbsarve ingonsisizrciss.
Programmers are therefore free to cause temporary inconsistencies during the exacution of a trarsacston

B

knowing that their partial modifications will never be visible.

Transactions were initially developed for centralized data management systems to aid in ma'ntaining

application-dependent consistency constraints on stored data. Transactions are a very usaful absiraction,

because these consistancy constrainis must typically be maintained despile failures and without

unnecessarily restricting the concurrent processing of application requeste. System R is an example of

an early database system with goed support for transactions [Astrahan et al. 78].

Extencing the concept of transactions for use on distributed systems was not difficult: Distributed
transactions permit operations on multiple objects that are scattered across muitiple nodes. Though this
concept is easily described, efficient implemantations have been difficult to achieve However, there ara
database systems that support distributed transactions. Berkaley's Ingres, CCA's SCD-1, and IBM's
R’ [Stonebraker and Neuhold 77, Rothnie et al. 80, Williams et al. 81, Lindsay et al. 84] are tnree sarly
examples, and new products have recently been announced by purveyors of commercial database

software.

Supperting districuted processing is only one of the possitle extensions to e transaction ConTEDt
Researchers, starting in the late 1970's, also locked for ways to increase the domain of processing in
which distributed transactions could be used. One of their goals was 1o jacilitate tha construction of TGy
available applications — that is, applications that continue to work despite failures. fncreasing the
flexibility of transactions required extensions fo the transaction mode!, as well as new algorithms and

architecturas 1o improved their implemertation.

Perhaps, the most fundamental addition to the transacticn mode! was the nction that programm

-
3
A
@

should be permitled invoke operations on user-defined abstract objec!s, rather than being restrictad 1o
using objects of a predefined type, such as relational database. Abstract cbjects are data or inouboutiput
devices, having distinct names, on which collections of operaticns hava been defned. Asc.
coject is permilted only by these cperaiicns. A gueue object having cperations such as Snqusue
Dequeue, EmptyQueue is a typical data object, and a CRT display having operations suzn az
WriteLine, and ReadLine is a typical ¥O object. This notion of object is similar to the rations of clasess

in Simula [Dahl and Heare 72] and packagsas in ADA [Depanment of Daisnse 821,

Gray and Lomet discussed the exienced use of the transaction mods! in two ralatively zary
rapers [Gray 81, Lomet 77 in other important work, Moss and Resd at MIT devsicces an imosiant
addition to the transaction model by defining what it means to have transaciicns nested within othsr

transactions [Reed 78, Moss 81]. Briefly, nested transactions permit a transaction t¢ spawn ¢hidran

Nested transactions also are permitted to abort without causing the loss of the entire parant transaziion's
work. Allchin, Herlihy, Schwarz, Weihi, and | also wrote about many other issues in the synchronization,
recovery and ocverall structuring of abstract objects for transaction systems [Allchin 83. RHeriihy

85, Schwarz 84, Schwarz and Spector 84, Spector and Schwarz 83, Weaihi 84].

Related implementation work has focused on developing wha* we call a distributed fransaction facility
and compatible linguistic constructs for accessing it. We define a distributed tranzaction facility as a
distriputed collection of components that supports the execution of transactions and the implementation of
shared abstract data objects on which operations can be performed. Although there is rcom for diversity
in the exact functions of a distributed transaction facility, it must make it easy to begin and end
transactions, to call operations on objects from within transactions. and to implement abstract objects that
have correct synchronization and recovery properties. By providing a common set of synchrorization and
recovery mechanisms, such a facility can lead to implementations of separate abstractions that permit
their combined use. For example, a compuler aided design system might be built using a transactional

database management system and a transactionat file system.

Among the most well-known implementation work, Liskov and her greup at MIT developed the ~Argus
language and runtime system [Liskov 82, Liskov and Scheifler 83, Liskov 84]. Al Georgia Tech, a group
has worked on developing the Clouds operating system with support for distributed transactions [Allchin
and McKendry 83]. Tandem's TMF is an example of a commercial system supporting distribytad
ransaction processing [Helland 83). Recent work on transactional file systems, for example at UCLA,

can also support reliable and available distributed applications [Weinstein et a. 85}t

At Carnegie Mellon University, my ceileagues ang | developed TABS, which is a prototype distributed
transaction tacility [Spector et al. 85a, Spector et al. 85b). We are are now daveicping the production-
oriented Camelot {Carnegie Mellon Low Qverhead Transaction) facility [Spector et al 85, CMU 871, which
is described below. To recuce further the amount of effort required to construct raliable ¢istringted
systems, Heriihy and Wing and their colleagues are deveicping the Avalon language facilities — a
collection of constructs that will use Camelot and provide linguistic support for reliable
applications [Herlihy and Wing 86]. Avalon comprisas runtime lisraries and extensicns to C**, Cemmon
Lisp. and ADA, which ‘ogether autcmatically genarate the necessary cals ¢n lowsr-izval

components {Herlihy and Wing 85). This work on Camelot and Avalon is baged uocn our callsgtive

LTl

experignce with TABS and Argus.

To summarize, the goal of this research and development is to simplify the construction of refania
distributed applications that access shared cbjects by providing facilities for supporting gistribytad
transactions and appropriate interiaces to them. The transaction facilities nead to be efficient, gasily
managed, flexible enough to support a wide collaction of abstract types including large databases, and,

preferably, useful on heterogeneous hardware in large network environments. The following sections
should help concretize these noticns.

"This section contains but a pariiai list of related work, Due apolsgy is made to researchers whase work has been omitied.

3. Three Models

This section presents three broadly applicable models that are useful for describing distributed systems
that support lransaction proccessing: The system mode! descroes underlying assumpticns about the
hardware, storage, and network. The computation mode! describes system operalion as a collection of
distributed transactions. The architecture model describes a five-tiered software organization for a
distributed system supporting transactions.

3.1. System Model

There is substantial agreement on the underlying system mode! for distributed procassing, which
contains processing nodes and a communication network as Figure 3-1 illustrates. Processing nodas are
tail-fast and include uniprocessecrs or shared memory multiprocesscrs of many types. Processing nodas

are generally assumed to have independent failure modaes.

Volatile Storage Velatile Storage
frocesssr oroz| Proc| Proz Prec

Figure 3-1: System Model

This figure shows the components of the system medel. Stable storage and non-volatile storage, though pictured as disks, could 2e
implemented with other media, such as battery backed-up memory.

Storage on processing nodes comprises volalile storage — where portions of obiects reside whan thay
are being accessed, nen-velatile storage — where objects reside when they have not been accessed
recently, and stable storage — memory that is assumed to retain information despite failures. The
contents of volatile storage are lost after a system crash, and the contents of non-volatiie storage are lost
with lower frequency, but always in a delectable way. Stable storage can be implemented using tw
non-velatile storage units on a nede or using a network service [Danieis et al. 86] as described in Section
4.2.3.

The system model's communication network provides datagram-criented, internetwarked QOS! Level 2
functions [Zimmermann 82] such as the Arpanet |P protecol [Postel 82]. In other words, ihe network
comprises both local and long-hau! components and permits processes to send datagrams having a fixed
maximum size. Some lccal area networks may specially support multicast or broadcast, and the network
protocels are assumed to suppert these features for reasons of efficiency. Because applications using
the system may need high availability, communication nstworks should have sufficiant redundancy to
render network partitions unlikely. Network partitions can ronetheless occur, so higher levels ¢f the
system must take measures to protect themsaives against the erronaous computations or incongistancies

[

that could result.

3.2. Computaticn Model

The computatich model comprises applications that perform processing by exscuting cperations on
user-defined cata objects within distributed transactions. A transaction either commiis, in which case all

its updales appear to be atomically made, or it abems, in which case no changes appear a! zall.

Transactions may be nested as described above.

Data objects may be distributed across the network and are encagsulated within protaection domains
that (1) expert only operations that maka-up the defined interiace and {2) guarantas that the inveker has
sufficient access rights. Data objects may be nested. This computation mcdel applies to many sygizms.

including R", Argus, TABS, and Cameiot.

3.3. Architecture Model
The architectural mode! describes how processing on a node is organized: that is, it describes how ia
realize the computation model on the system modsl. 1t is structured in five logical levels, as shown in

Figure 3-2. As one might hope, few calls proceed from lower levals to upper levels. {The fevels reterred

to in this model are distinct from the OSI levels, and subsume functions in OS5l levels 4 to 7.)

At the base in Level 1 is the operating system kernel that impiements processes, local synchronization,

and local communication. Example kernels include the V and Accent kernels [Cheriton 84, Rashid and

Robertson 81]. Levei 2, the subject of a recent paper [Spector 88, provides session and gatagram-baszd
inter-node communication using the network support as defined in the system model. The Mach

operating system provides functions in both Levels 1 and 2 [Accetta et al. 86, Rashid 86).

Above the communication level is the distributed transaction facility, Level 3. Level 3 suppors failure
atomicity and permanence, and was described in Section 2. The distributed transaction facility builds

upen the process, synchronization, and communication facilities of Levels 1 and 2.

Level 5: Applications

Level 4: Data Cbjects

Level 3: Distributed Transactiosn Facility

Level 2:; Inter-Nods Communication

Lewvel 1: Operating Systam Kernal

<

Figure 3-2: Five Level Architecture Model

This figure illustrates the five system levels. The kernel level crovides processes and ! Wer-process cammunizaten, Tn
ccmmunication level provides inter-node communication. The cistributed transacton faciizy provides comp icn
ransaction processing on distributed cbjects. Shared data objects are mainiained in Level 4 using sysiem-sunoied itrary rautines
or the runtime runtime support of a programming language. The applications that use the sharsd da‘a coecis gre in Lavei 3

Abstract objects may be grouped into a subsystem, and there may be muitiple sunsysiams within tha

Data Object Leve! (Level 4j. The abstract objects, such as datahase managers or mail systems, uss 1h2

distributed transaction facility so that they may be accessead within transactions.

In Level 5, applications use the distributed transaction facility to begin, commit, and atort transactions
and to execute operations on objects implemented within Level 4. Example applications includs a

banking terminal system and an interactive interiace to a catabase manager.

The language support used by Levels 4 and 5 does not fil entirely within any level. Rather it naturally
consists of one or more translators, which are external to this medel, and runtime support that may raside
in Levels 4 and 5. Of course, the language makes calls on facilities provided by the three lowest levels.

For example, synchronization is typically implemented by runtime support within Lavel 4 objects, while the

coordination of transaction commits is handied in Level 3, and the transmission of inter-node messagss is

handled in Level 2.

This architecture, which provides a single distributed transaction facility, has two benefits over
traditional architectures that may combine Levels 3, 4, and 5: First, because many of the cemponents that
suppctt fransacticns are standardized and moved lower into the system hierarchy, there is the potential 1o
implement them more efficiently. Seceond, the architecture provides a common noticn of transactions and
data sbjects for all objects and applications in the system. As mentioned in Saction 2, this Dermits maore
uniform access to data. it allows an application, for example, to update transacticnally a relational
database containing indexing information, a file containing image data, and a higrarchical datzhase

containing performance records.

Having characterized the system, computational, and architectural structuras of distributed transaction
Srocessing, (1S Now ERDICpriale lo 9xEMNNe @ zaticular impizmentation — the Tameic: o

transaction {aciity.

4. Camelot

Camelot provides flexible and efficiant support tor distributed transactions on a wida variety of usar-
cefined objects such as databases, files, massage queves, and 1'C obiects. Clients of the Camslnt
facllity encapsulate objects within server srocesses, which then exacute aperations in responss o ramota

crocedure calis. Cameot's featurss inciuga the iclicwing:

« Compatibility wi , !), v 4,
Unix* Y-compatibiz operazing sys:er“. fﬁashio 38l Mach's Jnix-compaitily makes Camals:
c

cment tools ara avaliztie. :v1a\,hs

easier (o use and ensures that goed program deve!
sucf*r*r fer sr*ar~d memory $E58 Si

+ Compatibiiity with Arpane
oeth of ‘which arz tuit ontn
large distributed processing :

. Machine-]ndeperdent implementation. Cam ‘
uniprocessers and multiprocessors that Mach SuCpons. Firexample, Camaiot is dovel
on IEM BT PC's, put tested fraguantly on DEZ Alier
dependancies hava been added.

(D
W
3
L
=
(&1
M
[N
o
c
o
o)
2
o
5
[£7]

cVaxes o ensurs that no rmaghine

» Powerful functions. Camelct suppors functions that are sufficient ‘or many difierant
abstract types. For exampie, Camelot supports both blocking and nen-Giocking commit
protocols, nested transactions as in Argus, and permits shared. recoverable objacts to be

accessed in virtual memory. (Section 4.2 describes Camelot's functions in more datail.)

» Efficient implementation. Camelot is designed to reduce the overhead of executing
transactions. For exampig, shared memory reduces the use of message passing; multiple
threads of control increases paralielism; and a comman log reduces the number of

synchronous stable storage writes. (Section 4.3 describes Camelot's implementation in more
detail.)

» Careful software engineering and documentation. Camelot is being coded in C in
conformance with careful coding stancards [Thompscn 88]. This increases Camelot's
portability and mairtainabiiity and reduces the likefihood of bugs. The internal and external
system interfaces are specified in the Camelot Interface Specification [Spector et al 83],
which is then processed to generate Camealot code. A manual basad on the specification is
nearly complete [CMU 87].

Figure 4-1 shows the relaticnship of Camelot to Avalon and Mach and descrines how the componants
fit into the architecture modal.

~ _eval I

- Laval 2
-

~ A

— Lewval 3

=1 - . b T o - ™ mem b b P
Figurg 3.1 Reglizticrshin of Jamast ar

—~
~ LS
FRW

[{}]

T Lavers

]

Y3l

‘Aagh execuias on uniorecessor and multorocessar mardware and suppens the functions of Level 1 of the architectura modal,
2, or the inter-node communication level, is iogically tayer on oo of Mach. Cameiot suppors distituied rarsaction
JLevel 3 lungtions) and inciudes several speciaiized adcitions ‘¢ the communicatien fayer. Avaion provides limguist

zccessing Camelst and Mach, and '3 not & numbzarad evel o) he archilecture macel Users Jefne sariers encansy
Javel 43 and app sta. Teampes of servers arz mai repositories, diswitutes

Jaabase managers.

4.1. Background on Major Camelot Implementation Technigues

This section identifies many of the algorithms and paracigms that Cameiot uses for supporting
distributed transactions on abstract objects. The section focuses on issu-s in absiract objects,

distribution, and transaction processing.

4.1.1. Abstract Objects

Many models exist for implementing the abstract objects of Lave! 4 in the architecture medel. In one
model, objects are encapsulated in protected subsystems and accessed by protected procedure calls or
capability mechanisms [Saltzer 74, Fabry 74]. Camelot uses another model, called the clientserver
model, as a basis for implementing abstract otjects [Watson 81]. Servers encapstilate one or more data
objects. They accept request messages that specify operatichs and a specific object. To implement
operations, they read or modify data they directly control and invoke cperations on other servers, After an
operation is perfermad, servers send a respense message containing the resul. Servers :hat

ercapsuiate data cbiec!s are called Data Serversin Camelct, Resource Managersin B and Guargizn

&y

Message transmission mechanisms and server organizations differ among implementations tas

<L
|83

upon the client’server model. Inthese aspects, Camelot is substantiaily influenced by the Mach cperatin

4
Sadind

[{9]

system on which it was developed [Rashid 88]. Mach provides heavyweight processas with 32-bit virtual
address spaces and suppors messagas addressed addressed to perts. Many procasses may have send
rights to a port, but only one has receive rights. Send rights and receive rights can be fransmitiad in
MESSages zicng with ardinary data. Large guantities of data are sficiantiv conveyad ostwasn orocssaas
on the same machine via copy-on-write mapping inlo the address space of the racini
message medel differs from that of Unix 4.2 [Joy et al. 83] and the V Kernel [Chariton 84] in that

messages are woed seguences of data which can contain per capatiities, and that large messages can

ne programming effert associatad with packing and urpacking messages is reducad in Camra
through the use of a remote procedure call facility called Matchmaker [Jones et al. 85]. (We use tha tarm
remole procadure call to apply to both intra-node and inter-neds communication.) Matchmaker's input is
a syntactic dzfiniticn of procedure headars specified in a Pascal-ike fashion. Its cutputs are clien! and
server stubs that pack and unpack massages, and dispatch to the appropriate procedures on the server

side.

=2 ®ie

Servers that never wait while processing an cperation can be crganized as a loop that recaives z
request message, dispaiches to exacute the operation, and sends a response message. Unfcrtunately,

servers may wait for many reasons: to synchronize with cther operations, to execute a remoie operation

10

or system call, or to page-fault. For such servers, there must be multiple threads of contrei within a

server, or eise the server will pause or deadleck when it need not.

One implementation approach for servers is to have multiple lightweight processes within a single
server process. Page-faults still cause all lightweight processes 1o be suspended, but a lightweight
process switch can occur when a server would otherwise wait. Ancther approach is to aliccate
independently schedulable threads of controi that share access to data. With this approach, a ssrveris a
class of related processes — in the Simula sense of the word "class.” This technique is supported by
Mach and used in Camelet [Cooper 86]. The topic of server organization has been clearly discussed by
Liskov and Heriihy [Liskov and Herlihy 83].

Before leaving the tepic of abstract otbjects, it is necessary to discuss how objecis can bs named.
Certainly, a port 1o a server and a fegical cbject identifier that distinguishes between the various ohiec!s
implementad by that server are sufficient to name an object. The dissemination of tnzse namas ~2m ba
done in many ways. A common method is for servers to register objects with a well known sarver
process on their node, often called a name server, and for the name server to return one or more o
response to name lookup requests. Name servers can ccoperate with each cther o provide transparent

naming across a network.

4.1.2. Distribution ‘

Replicated and partitioned distributed otjects within Level 4 of the architecture mcdei are ‘s
mplement using the client’server model. For example, there may be meany servers that can rsssond
iwwantically tc operations on a replicated objact. Hewaver, servers must confain :na raplicarsn or
partitioning lcgic. Tne Camelot project hypeothesizes that the availabliity of trarsaction suzcord

sutstantially simplifies the maintenance of distributed and replicated ohjects.

Transparant inter-ncde message passing can simpily access {0 remote semvars. in ine Lozan
snvironmani, internode communicalion is achieved by interposing a pair of fracasizs salas
communication managers, between the sender of a meszage and s intended recinient on 3 +
node [Rashid and Robertson 81). The communication manager supplies the sender with a oozl conto
use for messages addressed to the remote process. Together with its counterpart at ihe remots reds.

the communication manager implements the mapping between the local port used by the sander 2na the

corresponding remote port belonging to the targst process, providing transparent communication.

11

4.1.3. Transactions

Cameiot provides features to support all the standard notions of transactions, but does not require that
objects enforce serializability, failure atomicity, or permananca. Transactions are permitted to interfere
with each other and to show the effects of failure — if this is useful. That is, Camelot provides basic
facifities for supporting many different types of objects and lets implementors choose how they want to
use them. {A programming language, such as Avalon, can also restrict the ways in which the Camelot

facilities are used.)

Many techniques exist for synchronizing the execution of transactions. Locking, optimistic, timestamp,
and many hybrid schemes are frequently ciscussed; many cof these are surveyed by Bernstein and
Goodman [Bernstein and Goodman 81]. We have chosen to support twoc compatible types of
synchrenization in Camelot: locking and hybrid atomicity [Data 83, Herliny 85]. Hybrid atomicity has
features of both timestamps and locking, and requires a Lamport ciock facility [Lampert 78] from Camelot
and substantial support frem Avalon [Herlihy and Wing 86]. Since both types of synchronization are
implemented primarily by servers (within Level 4}, implementations can be tallorad to provide the highest
concurrency. For example, with {ype-specific locking, implementors can obtain increased concurrency by

detining type-specific iock modes and lock protocols [Korth 83, Schwarz and Spector 84, Schwarz 84].

Both locking and hybrid atomicity may delay transaction execution, even ¥ that delay leads to a
deadlock. Some systems implement local and distributed deadlock datactors that identify and break
cycles of waiting transactions [Obermarck 82, Lindsay et al. 84]. However, Camelot Release 1, like many

other systems, relies on time-cuts, which are explicitly st by systam ysers [Tandam 82].

Recovery in Camelot is based upon writz-ahead logging, rather than shadew paging [Lorie 77, Gray
78, Lindsay et al. 79, Gray =t al. 81, Lampscn 81, Haarder and Reuter 83, Schwarz 84]. It assumzs ihe
storage hierarchy defined in the systam modai, above.

in recevery iechniques based upon writs-ansad logging, statie siorage comtains an agpend-snly

sequence of records. These records may contain a rzdo compenent, tha! permits the sifests of
committed transactions to be redong and possibly an undo component that permits the effacts of ahored
transactions to be undone. Updates to data objects are made by moditying a reprasantation of the ohject
residing in volatite storage and by spcoiing one or more records to the log. Logging is called "write-
ahead" because iog records must be safely stored (forced) to stabie storage befors transactions commit,
and before the volatile representation of an object is copied to non-volatile storage. Because of this
strategy, there are log records in stable storage for all the changes that have baen made to non-volatile
storage, and for aill committed transactions. Thus, the log can be used to recover from aborted

transactions, system crashes and non-volatile storage failures.

12

The advantages of writz-ahead log;ing over other schemes have been discussed glsewhers and
include the potential for increased concurrency, reduced IO activity at commit time, and contiguous
allocation of cbjects on secondary storage [Gray et al. 81, Traiger 82, Reuter 84]. All objects in Camelot

Release 1 use one of two co-existing write-ahead logging techniques and share a common log.

The simpler technique is called old value/new value logging, in which the undo and redo portions of a
leg record contain the cld and new values of an object’s representation. During recovery after node or
server crashes, objects are reset to their most recently committed values during a one pass scan that
begins at the last log record written and proceeds backward. If this value logging algorithm is used, only
one transaction at a time may modify any individually logged compenent of an object that is to be failure

atomic and permanent.

The other technigue is called new va/ue logging, in which log records contain anly a redo component.
New value legging requires l2ss iog space bul results in increasead paging for long running transactions.
This is because pages cannot be written back to their home location until a transaction completes,
Camelot assumes that the invoker of a transaction will know if the transacticn will be short and wil specify

that new value logging should be usad.

Release 2 of Camelot will also provide another write-ahead log-based recovery technigue called
operation (or transition) logging. With it, dala servers write log records contafning the names of
operations and encugh information 1o invoke them. Operations are redene or undone, as necessary,
during recovery processing to restors the correct state of objects. Operation basad recovery can garmit a
greater degrae of concurrency than the value based recovery, and may require less log spacs o be

written. Its disadvantage is complaxity.

The Camslot recovery algorithms are similar 1o other previcusly published write-anead log-based

-

72}, in panicular those of Scnwarz [Schwarz 84). Howsver, th

'

algerithms [Gray 78, Lingsay 2! ai.
Deen extendad to support abers of nested transactions, new valus recovery, and the iegging of arbitrary

regions of memory,

Both value and operaticn logging algorithms require that pariodic system checkpoints be taken.
Checkpoints serve to reduce the amount of log data that must be available for crash racovery and shorten
the time tc recover after a crash [Haerder and Reuter 83]. At checkpoint time, a list of the pages currently
in volatile storage and the status of currently active transactions are writien to the log. Camelot also
pericdically forces certain pages in volatile storage to non-volatile storage and may abort long running to
lessen the amcunt of log that must be rapidly accessible. To reduce the cost of recovering from disk

tailures, Camelot infrequently dumps the contents of non-volatile storage into an off-line archive.

13

Recently, researchers have begun to discuss high performaice recovery impiementations that
integrate virtual memory management with the recovery subsystem and uss higher performance stable
storage devices [Traiger 82, Banatre et al. 83, Stonebraker 84, Diel ot al, 84, Eppinger and Spsctor 85].
Camelot integrates virtual memory management with recovery and ensures that the necessary log

records are written to stable storage before pages are written 1o their home iccation.

The most important component of a trancaction facility not yel discussed is. the one that oversees
initiating, ccmmiting, and aborting transactions. Commit algorithms vary in their eificiency and
robustness {Lindsay et al. 79, Dwork and Skeen 83]. Camelot's algorithms are both instances of star-
shaped star-shaped commit protocols, in which the initiator of the cutermost top-level transaction serves
as coordinator for all nodes in the transaction. One algorithm is based on the standard 2-phase commit
protocol. 1tis efficient, but has fatlure modes in which nodes participating in a distributed transaction must
restrict access to some data untii other nodes recover from a crash or a network parntition is eliminatad,
Camelot also provides a hybrid pretoce!, which is a cross between 3-phase and byzantine commit

protocols, to reduce the likelihood that access to data will be blocked.

and implementation of facilities for supperting nesting. These facilities Iimit the concurrency anomalies
that can occur within a single transaction that has multiple threads of control and permit portions of a

transaction to abort independently. Camelot supports nested transactions as in Argus.

4.1.4. Summary of lmplementation Background

Tne major peints of this development can be tersely summarized: Camelot supports transactions =n
abstract objects. Objects are implementad within server processes, and operations on ghjects ars
invoked via messages with a remote procedure call facility. Inter-node communication uses both
sessions and datagrams. Inter-transaction synchronization s done via locking or hybrid atemicity, with
time-outs used {0 resolve deadlock (in Release 1). Write-ahead logging is the basis of recovery and
fransaction commit is done via either a blocking or nen-biocking commit grotocol. Camelet sUppers e

Argus nested trancaction model.

4.2. Camelot Functions

As mentioned, the most basic building blocks for reliable distributed applications are provided by Mach,
its communication facilities, and the Matchmaker RPC stub generator [Cooper 86, Jones et al. 85]. These
building blocks include processes, threads of controi within processes, shared memory between

processes, and massage passing.

14

Camelot provides furctions for system configuration, recovery, disk management, transaction
management, deacdlock detection, and reliability/performance evaluation. Simple lock-basad
synchronizaticn mechanisms are provided in the Camelot libraries. (Avalen's runtima support is required
to use Hybrid Atomicity.) These functions are specified in the Camelot Interface Specification and Guids
to the Cameiot Systemn [Specior et al 88, CMU 87). Certain more advanced functions will be acded to
Camelot for Release 2.

4.2.1. Configuration Management

Camelot supports the dynamic allecation and dealiocation of both new data servers and the
recoverable storage in which data servers store long-lived objects. Camelot maintains configuration data
so that it can restart the appropriate data servers after a crash and reatiach them to ‘heir recoverable

storage. These configuration data are stored in recoverabie storage and updated transactionally.

4.2.2. Disk Management

Camelot provides data servers with up to 28 bytes of recoverable storage. With the cooparation of
Mach, Camelot permits data servers te map that storage into their address space, though datz sarvers
must call Camelot to remap their address space when they overflow 32-bit addressas. To simpiify the
allocation of contiguous regions of disk space, Camelot assumes that all allocation and deallocation
requests are coarse {e.g., in megabytes). D.ata servers are respensible for doing thelr own microscapic

storage management.

So that operations on data in recoverable storage can be undone or redone aftsr failuras, Carmaelcs
provides data servers with logging services for recording modifications to objects. Camelot avtcmaiicaily
coordinates paging of recoverable storage to maintain the write-ahead log invarant [Eppinger ang

Spector 85).

4.2.3. Recovery Management

Camelot's recovery functions include transaction abor, and server, node, and mediz-failyr

[48)
1
[§F)
(%)
[&]
U

7o suppert these functions, Camelot Relgase 1 provides the two forms of write-ahezd valua {elotelialy

mentioned above.

Camelot writes log data to locally duplexed storage or lo storage that is repiicated on a coliaction of
dedicated network log servers {Daniels et al. 86]. In some environments, the use cf a sharaed network
logging facility could have survivability, operational, performance, and cost advantages. Survivability is
likely to be better for a replicated logging facility because it can tolerate the destruction of one or more
entire processing nodes. Operational advantages accrue because it is easier to manage high volumes of
log data at a small number of logging nodes, rather than at all transaction processing nodes.

Pertormance might be better because shared facilities can have faster hardware than could be aficrded

15

for each processing node. Finally, providing a shared netwark logging facility would be less costly than

dedicating duplexed disks to each processing node, particularly in workstation environments.

4.2.4, Transaction Management

Camelot provides faciiities for beginning new top-level and nested transactions and for committing and
aborting them. Two options exist for commit: Blocking commit may result in data that remains locked until
a coordinator is restarted or a network is repaired. Non-bloc.ng commit, though more expensive in the
normal case, reduces the likelihood that a node’s data will remain locked until another node or network
partition is repaired. In addition to these standard transaction management functions, Camelct provides
an inquiry facility for determining the status of a transacticn. The Camelot library and Avalon use this to

support lock inheritance.

4.2.5. The Camelot Library

The Camelot library comprises routings and macros that allow a user to implement data sarvers and
applications.? For servers, it provides a common message handling framework and standard precassing
tunctions for system messages. Thus, the task of writing a server is reduced to writing procecuras fsr the

cperations supported by the server.

The library provides several categories of support routines to facilifate the task of writing these
procedures. Transaction contrc! routines provide the abilily 0 initiate and abort nestad and top level
transacticns. Data manipulation roulines permit the creation and modification of siatic recoveratie

objects. Locking routines maintain the serializability of transactions. (Lock inheritance amarg ‘amiiie

of

[§2)

subtransactions is hanaled aulomaticaily.) Critical sections contrel concurrent access o locai abjacts. A

macro facilitates remote procedure calls to other servers.

Applications use a subset of the litrary facilities. In panicular, they uss the transaction coniral routines

and server access macro.

4.2.6. Deadlock Cetection

Clients of Camelot Release 1 must depend on time-out to datect deaclocks. Release 2 will incorporate
a deadiock detector and export interfaces for servers to repert their local knowledge of wait-ior graphs.
We anlicipate that implementing deadicck detection for arbitrary abstract types in a large network
environment like the Arpanet will be dilficuit.

2The functicns of the Camelot tibrary are subsumed by Avalon's more ambitious linguistic support.

18

Figure 4-3 shows the seven precesses in Release 1 of Camelot: master control. cisk managar,

communication manager, racovery manager, transaction manager, node server, and nocs configuraticn
application.®

= Master Control. Thi. process restarts Camelot after a node failure.,

» Disk Manager. The disk manager allocates and deallocates recoverable storage, accepis
and writes log records locally, and enforces the write-ahead log invariant. For log records
that are to be written 1o the disiributed logging service, the disk manager works with
dedicated servers on the network. Additionally, the disk manager writes pages to/from ths
disk when Mach needs 10 service page faulls on recoverable storage or to clean primary
memory. Finally, it perferms checkpoints to limit the amount of work during recovery and
works closely with the recovery manager when failures are being processed.

» Communication Manager. The communication manager forwards inter-node Mach
messages, and provides the logical and physical clock services. [n addition, it knows the
format of messages and keeps a list of 2l the nodes that are involved in 5 garicuiar
transaction. This iniormation is provided to ths tranzaction manager for use auring ccmmit or
abort processing. Finaily, the communication manager provides a name service that creates
communication channels 10 named servers, ({The transaction manager and digtributad

logging service use IP datagrams, thereby bypassing the communication manager.)

» Hecovery Manager. The recovery manager is responsible for transaction stor, server
recovery, node recovery, and media-failure recovery. Server and node recovery respectiveiy
raguire one and two backward passes over the log.

» Transaction Manager. The transacticn manager coordinates the initiation, commit. and
abort of local and distributed transactions. It fully supports nested transactions.

* Node Server. The node server is the repository of configuration data necessary for
restarting the node. it stores is data in recoverable storage and is recovered pefora other
servers.

» Node Configuration Application. Th2 node configuration application permits Czreict's
human users to update data in the node sarver and to ¢rash and restart servers.

The crganization of Camelet is simiiar to that of TARS and R'. Structurally, Camelot ¢iffers from TASS

i

in the use of threads, shared memory interfaces, and the combination of logging and disk managament

=

the same process. Many low-level algcrithms and protocels have also been changed to impreve
performance and provide added functions. Camalot differs from R in its graater use of message Dassing
and support for common recovery faciiities for servers. Of course, the functions of the two systems are

quite different; transactions in R are intended primarily to support a particular relational database system.

3Cameliot Reiease 2 will use additicnal processes to suppart deadlock detection and reiiability and periarmance evaiuation

19

® 09
Racoveranlsa
Processes
Node
Server
Tran
Cam=loz

Mach Hernel

Figure 4-3: Procassss in Camaict Ralease

This figure snows the Mach kernel and the processes thai are nseced o exagcuie dislribited tranzacions
a part of Camelot, and a Camelot data server because it is tha recos.tory af essential configuration caa.
appiications use !ne facilives ¢f Cameiot a=d Mach. The noce configuration appiicatcr permits Loz ¢
ncce’s configuraticn.

4.4. Discussion

As of January 1887, Camelot Release 1 was stilf teing ceded though enough \zbout 25.0¢ lines of C)
was functioning to commil and abort iocal transactions. Though many piecss ware st miesing {2.2..
support for stable storage and distribution), Avalon deveiopers could bagin thair implementation work.
Before we add to the basic set of Camelo! Release 1 functicns, others will be encouraged to port

abstractions to Camelet and provide fescback on iis functionality and performance.

Performance is a very important system goal. Experience with TARS and vary prefiminary

performance numbers make us beiieve thal we will be able to execute roughly 20 non-paging write

20

iransactions’secc 1 on an RT PC or MicroVax workstation. Perhaps, it is worthwhile to summarize why

the Camelot/Mach combination should have performance that even datahase imalementors wiil like:

« Mach's support for multiple threads of conirol per process permit efficient server
organizations and the use of multiprocessors.

» Disk I/C should be efficient, because Camelot allocates recoverable storage contiguously on
disk, and because Mach permits it o be mapped into a server's memory. Also, servers that
know disk 1/O patterns, such as database managers, can influence the page replacement
algorithms by providing hints for prefetching or prewriting.

+ Recovery acds little overhead to normal processing because Camelot uses write-ahead

logging with a common leg. Though Camelot Release 1 has cnly value-tegging, operation-
logging will be provided in Release 2.

« Camelot has an efficient, datagram-based, lwo-phase commit protocol in addition to its non-
blocking commit protocel. Even without delaying commits t5 reduce og forces {"group
commit”}, transactions reguire cniy one leg force per node per transaction. Cameiot requires
just three datagrams per nods per transaction in its star-shaped commit protoco!, because
final acknowiecgments are piggy-backed on future communication. Camalot also has the
usual oplimizations for read-only transactions.

» Camelot does not implement the synchronization needed to preserve seriaiizability, This
synchronization is ieft to servers (and/or Avalon}, which can apply semantic knowledge to
provide higher concurrency or o recuce locking overhead.

5. Challenges

viany commercial iransaction processing appiications aiready use distnbuted tramsacions. W ny m

algerithms and apglications will benefit from them whan genearal-pLrpose, high persrmance fransactis

=

facilities are available. For example, there have been promising applications built on beth TABS 2

3
Q

Argus that ceuld be very useiul in preduction anvironmsents, Also, thars 2re g plainora of unimo!

~
bl T 'l_.’.IIwP:

I3
o0
3
(L
o8

distrivuted replication techniques that depend upon transactions to maintain invarianis on tre

replicas.

The challenges lie in constructing facilities that have high periormance, yet are easy to use and
operate within familiar computing environments. The performance challenge is clear due to the obvious
complexity of implementing commit protocols, siable storage, madia recovery, etc. There are also
concurrency control botlienecks that could beceme problematical. However, there are many good
algorithms to use, and the structure of distributed transaction processing seems sufficiently well
understood to permit clean implementations.

Ease of use and operational chaflenges are equally important. For many applications, a distributad

transaction facility must run on all the ncdes of a large distributed systam. Thus, it should be instailed

21

along with the coperating system and require minimal, if any, cperator intervention. Taking dumes,
managing log space, reconfiguring nades, and adding and removing servers should be nearly autematic
or 2t least easy to do. Programmers should also find it straightferward to uss the facitity. The Argus and
Avalon languages, or carefully defined library suppon such as that in the Camelot library can substantiaily
reduce programming complexity, but it remains to be seen how successful these efforts will be for large

systems.

Camelot is intended to meel many of these challenges and to help demonstrate that transaction
facilities can be sulficiently efficient and easy to use for a wide range of distributed pregrams. However,

there are additional challenges not addressed by Camelot.

Suppert for heterogenecus networks and operating systems would add much to the utility of
transaction precessing. Even with all the standardization efforts that are unceraay, it would still desirable
o suppont distributed transactions running on multiple types of sysiems and networks: for exampls, 1
would be useful if Camelot/Mach workstations could particicate in transactions with existing data on
370/MVS mainframes. Technically, this is possible, but it is difficult to perlorm the needed protecol

transiations efficiently.

Perhaps the most important challenge is 1o construct the transactional aostract objects that are neadad
to make distributed transaction faciiities really useful: mall systems, speciaiized databases. file systems,
window managers, and gueuing systems. While the avaiiability of transactions make thesz objacts easiar

to imgiement, they are still complex — particularly if they requirz replication. Reconciling the transaciional

semantics of new objects with the non-transactional objects tha they raplace is also difficult. (This cou

(1.

De a particuiarly tough problem with the Unix file system.)

In spite of these challenges, distributed transaction facilities shou'd become mora pravalent. Cngoing

. e pem b e s e 3y ot
NOTR IR INg 723earch and com

|

1ercial sphieres, aided by everfasiar nardware will contirue to imgrove

1

iheir pedormance and usability.

«

Acknowiedgments

P thank Jeff Eppinger, who thoroughly read and critiqued this paper, and my colleaguss on the Camelot
and Avalon Projects for their contributions to the systems that | have dascribed.

22

Refarences

[Accetta et al. 88] Mike Accetla, Robert Baron, William Bolosky, David Golub, Richard Rashid, Avadis
Tevanian, Michael Young. Mach: A New Kernel Foundation for UNIX Development. In
Proceedings of Summer Usenix. July, 18886,

[Allchin 83] James E. Allchin. An Architecture for Reliable Distributed Systems. PhD thesis, Gecrgia
institute of Technology, September, 1583.

[Allchin and McKendry 83] James £. Alichin, Mantin S. McKendry. Facilities for Supporting Atomicity in

Operating Systems. Technical Report GIT-CS-83/1, Gecrgia Institute of Tschnology, January,
1983.

[Astrahan et al. 78] M. M. Astrahan, M. W. Blasgen, D. D. Chamberlin, K. P. Eswaran, J. N. Gray,
P. P. Griffiths, W. F. King, R. A, Lorie, P. R. McJones, J. W. Mehl, G. R. Putzolu, |. L. Traiger,
B. W. Wade, and V. Watson. System R: A Relaticna! Approach to Database Management.
ACM Transactions on Database Systems 1(2), June, 1978,

[Banatre et al. 83] J. P. Banatre, M. Banaire, F. Ployette. Construction of a Distributad System
Supporting Atomic Transactions. |n Preceedings of the Third Symposium on Reliability in
Distributed Softwarg and Datebass Systems. 1EEE, Octcher, 1383,

[Bernstain and Goodman 81] Philip A. Barnstein, Nathan Goodman. Caoncurrency Controi in Bistriouted
Database Systems. ACM Computing Surveys 13{2):185-221, June, 1581,

[Bloch 88] Joshua J. Bloch. A Practicai, Efficient Approach to Replication of Aostrast Dala Chjscts.
November, 1585, Carnegie Mellon Thesis Proposal.

[Cheriton 84] David R. Cheriton. The V Kernei: A Software Base for Distributed Systems. IEEE
Software 1(2):186-213, April, 1984,

[CMU 87] The Guide to the Camelot Distributed Transaction Facility: Ralease 1 Pittsburgh, PA, 1887,
Under development. .

[Cooper 86] Eric C. Cooper. C Threads. June, 1886. Carnegie Mellon Internal Mamo.

[Dahl and Hoare 72] O.J. Bahl, C. A R. Hoare. Hierarchicai Program Structuras. 'n C. A R, Heoare
(ecitor), A.P.1.C. Studies in Data Processing. Volume 8 Siruciured Programming, chanter
pages 173-220.Academic Prass, London and New York, 1872

Cad

[Canieis et al. 88] Dean S. Daniels. Alired Z. Spector, Dean Thompsen. Distributed Looang for

Transaction Prccessing. Techrical Report CMU-CS-88-103, Carmegia-\iziion University oup
19286.

[Date 83] C.J. Date. The System Programming Serias: An lnirogduction io Dararzse Syaiems Yerime
2. Addison-Wesley, Reading, MA, 1283,

[Department of Defense 82] Reference Manual or the Ada Fregramming Language July 1982 editicn,
Department of Detense, Ada Joint Program Office, Washington, OC, 1582

Management Facilities of an Opsarating System Kernel, In Sigmod 84, pagss 55-56. June,
1584.

[Dwork and Skeen 83] Cynthia Dwork, Dale Skeen. The Inherent Caost of Nonblocking Commitment. In
Proceedings of the Second Annual Sympesium on Principies of Distributec Computing. pages
1-11. ACM, August, 1883.

(Eppinger and Specter 85] Jeffrey L. Eppinger, Alfred Z. Specter. Virtual Memcry Managamant for
Recoverable Objects in the TABS Prototype. Technical Report CMU-CS-85-163, Carnegie-
Mellon University, December, 1935.

23

[Fabry 74] R. S. Fabry. Capability-Based Addressing. Communications of the ACM 17{7):403-411, July,
1674.

[Gray 78] <ames N. Gray. Nctes on Database Operating Systems. in R. Bayer, R. M. Graham,
G. Seegrnuller (editors), Leciure Notes in Computer Science. Volume 60 Operating Systams -
An Advarced Ccurse, pages 393-481.Springer-Verlag, 1978, Also available as Technica;
Report RJ2188, iBM Research Laboratory, San Jose, California, 1578,

[Gray B1] James N. Gray. The Transaction Concept: Virtues and Limitations. In Proceedings c¢f the
Very Large Database Conference, pages 144-154, September, 1881,

[Gray et al. 81] James N. Gray, et al. The Recovery Manager of the System R Database Manager.
ACM Compulting Surveys 13{2):223-242, June, 1981.

[Haerder and Reuter 83] Theo Haerder, Andreas Reuter. Principles of Transaction-Oriented Database
Recovery. ACM Computing Surveys 15(4):287-318, December, 1983,

[Helland 85] Pat Helland. Transacticn Monitcring Facility. Database Engineering 8(2):9-18, June, 1£85.

[Herliny 85] Maurice P. Herlihy. Availability vs. atomicity: concurrency control for replicated data.
Technical Report CMU-CS-25-108, Carnegie-Melion University, February, 1985,

[Herlihy and ‘Wing 88] M. P. Herlihy, J. M. Wing. Avalon: Languags Support for Relizbhle Distributad
Systermns. Technical Report CMU-CS-86-167, Carnegie Mellon University, November, 16385,

[Jones et al. 85] Michael B. Jones, Richard F. Rashid, Mary R. Thompson. Matchmakar. An Interizce
Specification Language for Distributad Processing. in Proceedings of the Twelfth Annual
Sympesium on Principies of Programming Languages, pages 225-235. ACM, January, 1335.

[Joy et al. 83] William Joy, Eric Cooper, Robert Fabry, Samuel Lefiler. Kirk McKusick, David Mosher. 4.2
BSD System Interface Overview. Technical Report CSRG TR/S, University of California
Berkeley, July, 1883.

[Korth 83] Henry F. Korth. Locking Primitives in a Database Systam. Journal of the ACM 30(1),55-73,
January, 1983,

[Lamport 78] Leslie Lampont. Time, Clocks, and the Ordering of Events in a Distributed System.
Communications of the ACM 21{7;:558-555, July, 1578.

[Lampson 81] Butler W. Lampson. Atomic Transactions. tn G. Geos and J. Hartmanis (editors}, Leciure
Notes in Computer Science. Volume 105: Disiributed Systems - Architecture and
Impiementation: An Advanced Ccourse, chapter 11, . pages 245-265 . Springer-Verlag, 1581,

Lindsay et al. 79] Bruce G. Lindsay, et al. Notes on Disiributad Datzbases. Technical Raport RJ2571,
\B8M Research Lahoratory, San Jose, California, July, 1978, Aiso appears in Droffen and Pogle
\editers), Distributed Databasas, Cambridge University Press, 18380,

(Lindsay et ai. 84] Bruce G. Lindsay, Laura M. Haas, C. Mohan. Paul F. Wilms, Robert A Yost,
Computation and Communication in R*: A Distributed Database Manager. ACM Transaciicns on
Computer Systems 2(1):24-38, February, 1984.

fLiskov 82] Barbara Liskov. On Linguistic Support for Distributed Programs. IEEE Transactions on
Software Engineering SE-8(3):202-210, May, 1382.

[Liskov 84] Barbara Liskov. Overview of the Argus Language and System. Programming Methedology

Group Memo 40, Massachuselts institute of Technology Laboratory for Computer Science,
February, 1984.

[Liskov and Herliny 83) Barbara Liskov, Maurice Herlihy. Issues in Process and Communication
Structure for Distributed Programs. In Proceedings of the Third Symposiurm on Reliability in
Distributed Software and Database Systems. October, 1683,

24

[Liskov and Scheifler 83] Barbara H. Liskov, Robert W. Scheifler. Guardians and Actions: Linguistic
Support for Robust, Distributed Programs. ACM Transactions on Proegramming Languages and
Systems 5{3):381-404, July, 1983.

[Lomet 77] David B. Lomet. Process Structuring, Synchronization, and Recevery Using Atomic Actions.
ACM SIGPLAN Notices 12(3), March, 1977.

[Lorie 77] Raymend A. Lorie. Physical Integrity in a Large Segmented Database. ACM Transaciions on
Database Systemns 2(1):91-104, March, 1877,

[Moss 81] J. Eliot B. Moss. Nested Transactions: An Approach to Reliable Distributed Cornpulirg. PhD
thesis, Massachusetts Institute of Technology, April, 1981.

[Obermarck 82] Ron Cbermarck. Distributed Deadlock Detection Algorithm. ACM Transactions on
Database Systems 7(2):187-208, June, 1982.

[Postel 82] Jonathan B. Postel. Internetwork Proiccol Approaches. In Paul E. Green, Jr. (editor),
Computer Network Architectures and Protocals, chapter 18, pages 511-526.Plenum Presg, 1832,

[Rashic 86] Richard F. Rashid. Threads of a New System. Unix Review 4(8):37-49, August, 1G85,

[Rashid and Robertson 81] Richard Rashid, George Robertson. Accent: A Communication Oriartad
Network Cperating System Kemel. In Proceedings of the Eighth S ymposium on Operanng
System Frinciples, pages 64-75. ACM, December, 1581,

[Reed 78] David P. Reed. Naming and Synchronization in a Decentralized Computer System. PhD
thesis, Massachusetts Instituts of Technology, September, 1878.

[Reuter 84] Andreas Reuter. Performance Analysis of Recovery Techniques. ACM Transacicns cn
Database Systems 9{4):526-559, December, 1684,

[Rothnie et al. 80] J. B. Rothnie Jr., P. A Bernstein, S. Fox, N, Goodman, M. Hammer, T. A. Landar
C. Reeve, D. W. Shipman, and E. Wong. Intreciuction to a System for Distributed D
{SDD-1). ACM Transactions on Daiabase Systems 5{1):1-17, March, 1880.

(Saltzer 74] Jerome H, Saltzer. Protection and the Contral of Information in Multics. Communicatons of
the ACM17(7), July, 1974,

[Schwarz 84] Peter M. Schwarz. Transactions on Typed Objects. PhD thesis. Carnegie-Meilon
University, December, 1884. Availatle as Technicai Report CMU-CS-84-166, Carnsgia-tislion
University.

[Schwarz and Spector 84] Pster M. Schwarz, Alfred Z. Spector. Synchronizing Shared Atstrac: Tysss.
ACM Transactions on Computer Systems 2{3):222-250, August, 1984, Also availabie =
Technical Report CMU-CS-83-163. Camegie-Mellon University, Novemzer 1883,

3

[Spector 86] Alfred Z. Spactor. Communication Suppert in Operating Systems tor Distriputad
Transactions. in Proc. IBM Eurcoean Networking Institute 1888, July, 1986. Also avaiat's as
Technical Report CMU-CS-85-165, Carnegie-Mellon University, November 1988,

[Specicr and Schwarz 83] Alfred Z. Spector, Peter M. Schwarz. Transactions: A Censtruct far Raiizhis
Distributed Computing. Operating Systems Review 17(2):18-35, April, 1683. Also avai'atie as
Technical Report CMU-CS-82-143, Carnegie-Melion University, January 1983,

[Spector et al 88] Alfred Z. Specior, Dan Duchamp, Jetfrey L. Eppinger, Sherri G. Menaes, Daan
S. Thempson. The Camelot Interface Specification. September, 1986, Cameiot Working
Memo 2.

25

[Spectc 2t al. 83a] Aifred Z. Spector, Jacob Butcher, Dean S. Daniels, Dariel J. Duchamp. Jefirey
L. Eppirger, Charles E. Fineman, Abdelsalam Heddaya, Peter M. Schwarz. Support {or
Distributed Transactions in the TABS Prototype. /EEE Transactions on Software Engineering
S-11(8):520-530, June, 1885, Also available in Proceedings of the Fourth Symposivm on
Refiability in Distributed Software and Database Systems, Silver Springs, Maryland, [EEE,
October, 1584 and as Technical Report CMU-CS-84-122, Carnegie-Mellon University, July,
1284,

[Spector et al. 85b] Alfred Z. Spector, Dean S. Daniels, Danial J. Duchamp, Jeffrey L. Eppinger, Randy
Pausch. Distributed Transactions for Reliable Systems. In FProceedings of the Tenth
Symposium on Operating System Principies, pages 127-146. ACM, December, 1885. Also
available in Concurrency Conirel and Reliability in Distributed Systers, Van Nostrand Reinhold
Company, New York, and as Technicai Report CMU-CS-85-117, Carnegie-Mellon University,
September 1985.

[Stonebraker 84} Michael Stonebraker. Virtual Memory Transaction Management. Operating Systems
Reaview 18(2):3-156, April, 1584,

[Stonebraker and Neuhold 77] M. Stonabraker and E. Neuhold. A Distributed Data Bass Varsion of
INGRES. In Proceadings of the Sscond Berkeley Workshop on Distriputad Data Managermant
and Compulsr Notworks. pagss 13-35. Lawrencs Serkelay Lab, University of Callfornia.
Berksley, California, May, 1877

Tandem 82} ENCOMPASS Distributed Data Management ysierm Tandem Corputers. ing., Cupsrine.
California, 1382.

[Thompson &8] Dean Thompson. Cecing Standards for Camelor, Juneg, 1888, Camsiot Werking Llem
1.

[Traiger 82] Irving L. Traiger. Virtual Memory Management for Database Systems. Operating Systemns
Review 16(4):26-48, Cctober, 1982, Also availadle as Technica! Report RJ3488 iBM Ressarch
Laboratery, San Jose, California, May, 1832,

[Watson 81] R.W. Watson. Distributed systam architectura mocel, In B, Lampson {aditors), Lagiure
land ~ :

; ; I3 PPN YA oo (o Fripas { s - - Pty -y
Notsg in Comguter Science. Volume 105; Distributes S¥siems - Arcnilsoiurs and

i : mEmm e A LT T Py by -~ o - T i >
impiementalion: an Advances Cowrse, chaptar 2, pages 15-23 Soc gar-y2erag, 198

[Weinl 84] Wiiam E. Weini. Specificarcn and Implemeriation of Atcmic Dara T.o£5. PhD thasis,
Massachuselts institute of Tacnnciogy, March, 184,

[(Weinsteln et al. 851 Maithew J. YWainziein, Thomas W. Pacs, Jr. Sran £ Livezay Gargic
Trarsacticns ang Synat :
Lun o

Temh Symposiur | -

Willlams et al. 811 R Williamrs, at al. 37 An Ovenvisw of ;e Arcrie “eszarch Raoon
RJ3225, IBM Ressarcn Lageraiory, San Josa, Calfornia 21

(Zimmermann 82] Hubent Zimmermann. A Standard Network Mocel 1n Paul €. Graen, Jr {adiicr!,
Computer Network Architecturas and Prolocois, chapter 2, pages 33-54.Plenum ress, 1232

