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1 . I n t r o d u c t i o n 

Dist r ibuted compu t i ng sys tems are potent ia l ly rel iable, because their componen ts are redundant and 

fail independent ly . Addi t ional ly , d is t r ibuted compu t ing sys tems potent ial ly offer very h igh th roughput for 

appl icat ions that can use loose ly -coup led mul t ip rocess ing. The major cha l lenge is to real ize these 

potent ia ls eff ic ient ly, and wi thout incurr ing intolerable penal t ies in complex i ty or cost. Consequent l y , there 

has been great interest in genera l -purpose techn iques and pract ices for s impl i fy ing the const ruc t ion of 

eff icient and robust d is t r ibuted sys tems. 

Th is paper d i scusses a techn ique based on distributed transactions and descr ibes a distributed 

transaction facility ca l led Camelot that suppor ts their use. Sect ion 2 def ines the concept of a t ransact ion 

and prov ides a brief h istor ical perspect ive on its deve lopment . Sect ion 3 then presents three models 

usefu l for descr ib ing d is t r ibuted sys tems that suppor t t ransact ion p rocess ing . Sect ion 4 adds 

concre teness to this d iscuss ion by descr ib ing the goals , imp lementa t ion bases , funct ions, s t ructure, and 

status of the Came lo t d is t r ibuted t ransact ion facil i ty. This paper ends wi th Sect ion 5, wh ich descr ibes 

some impor tant cha l lenges in the area of d is t r ibuted t ransact ion p rocess ing . 

2. D i s t r i b u t e d T r a n s a c t i o n s 

T h e da tabase l i terature typical ly def ines a t ransact ion as a col lect ion of opera t ions b racke ted by two 

markers : BeginTransaction and EndTransaction. A t ransact ion has three specia l proper t ies : 

• Either ail or none of a t ransact ion 's operat ions are pe r fo rmed . This property is ca l led failure 
atomicity, 

• If a t ransac t ion comp le tes successfu l ly , the results of its operat ions wi l l never be lost, except 
in the event of ca tas t rophes, wh i ch can be made arbitrari ly improbab le . This proper ty is 
ca l led permanence. 

• T ransac t ions are a l lowed to execute concurrent ly , but the results wi l l be the same as i; the 
t ransac t ions execu ted serially in some order. Th is proper ty is usual ly ca l led ser'aiizabiiity. 

Transac t ions lessen the burden on appl icat ion p rog rammers by s impl i fy ing the t reatment of fa i lures and 

concur rency . Fai lure atomici ty ensures that if a t ransact ion is in ter rupted by a fai lure, its part ial results wil l 

undone . Pe rmanence ensures that upda tes per fo rmed by comp le ted t ransact ions are not lost. 

Serial izabi l i ty ensures that other concurrent ly execut ing t ransact ions cannot observe incons is tenc ies . 

P rog rammers are therefore free to cause temporary incons is tenc ies dur ing the execut ion of a t ransact ion 

know ing that their part ia l modi f icat ions wil l never be visible. 

T ransac t ions were initially deve loped for cent ra l ized data m a n a g e m e n t sys tems to aid in main ta in ing 

app l ica t ion-dependent consistency constraints on stored data. T ransac t ions are a very usefu l abst rac t ion, 

because these cons is tency constra ints must typical ly be ma in ta ined desp i te fa i lures and wi thout 
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unnecessar i l y restr ict ing the concur rent p rocess ing of appl icat ion requests . Sys tem R is an example of 

an early da tabase sys tem wi th good support for t ransact ions [As t rahan et a l . 76] . 

Ex tend ing the concept of t ransact ions for use on d is t r ibuted sys tems w a s not diff icult: Distr ibuted 

t ransact ions permi t opera t ions on mult iple objects that are scat tered across mult iple nodes . Though this 

concept is easi ly desc r ibed , eff icient imp lementa t ions have been difficult to ach ieve. However , there are 

da tabase sys tems that support d is t r ibuted t ransact ions. Berke ley 's Ingres, CCA 's S D D - 1 , and IBM's 

R* [S tonebraker and Neuho ld 77 , Rothnie et a l . 80 , Wi l l iams et al. 8 1 , L indsay et a l . 84] are three early 

examp les , and new products have recent ly been announced by purveyors of commerc ia l database 

sof tware. 

Suppor t ing d is t r ibuted p rocess ing is only one of the poss ib le ex tens ions to the t ransact ion concept . 

Researchers , start ing in the late 1S70's, also looked for w a y s to increase the doma in of process ing in 

wh ich d is t r ibuted t ransact ions cou ld be used . One of their goals w a s to faci l i tate the const ruct ion of *ign!y 

available appl icat ions — that is, appl icat ions that cont inue to work despi te fa i lures. Increasing the 

f lexibi l i ty of t ransact ions requi red ex tens ions to the t ransac t ion mode l , as wel l as new algor i thms and 

arch i tectures to improved their imp lementa t ion . 

Perhaps , the most fundamenta l addi t ion to the t ransact ion m o d e l " w a s the not ion that p rog rammers 

shou ld be permi t ted invoke operat ions on user -def ined abstract ob jects , rather than be ing restr icted to 

us ing objects of a p redef ined type, such as relat ional da tabase . Abstract objects are data or input/output 

dev ices , having dist inct names , on wh ich col lect ions of operations have been de f ined . Access to an 

object is permi t ted only by these operat ions. A queue object hav ing operat ions such as E n q u e u e , 

D e q u e u e , E m p t y Q u e u e is a typical data object , and a C R T display hav ing opera t ions sucn as 

W r i t e L i n e , and R e a d L i n e is a typical I/O object . Th is not ion of object is s imi lar to the not ions of c lasses 

in S imula [Dahl and Hoare 72] and packages in A D A [ D e p a n m e n t of Defense 821. 

Gray and Lomet d iscussed the .extended use of the t ransact ion mode l In two relat ively early 

papers [Gray 8 1 , Lomet 77] . in other important work , Moss and Reed at MIT deve i cped an important 

addi t ion to the t ransact ion mode l by def in ing what it means to have t ransact ions nested wi th in other 

t ransact ions [Reed 78, Moss 81] . Briefly, nested t ransact ions permi t a t ransact ion to s p a w n chi ldren 

wh ich may run in paral le l , but are synchron ized so that the t ransact ion sys tem still exhibi ts serial izabi i i ty. 

Nes ted t ransact ions also are permi t ted to abort wi thout caus ing the loss of the entire parent t ransact ion 's 

work . Al lch in, Herl ihy, Schwarz , We ih l , and I also wro te about many other issues in the synchron iza t ion , 

recovery and overal l s t ructur ing of abstract ob jec ts for t ransact ion sys tems [Al lchin 8 3 : Herl ihy 

85, Schwarz 84, Schwarz and Spector 84, Spector and Schwarz 83 , Weih l 84 ] . 
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Re la ted imp lemen ta t i on wo rk has focused on deve lop ing what w e call a distributed transaction facility 

and compat ib le l inguist ic const ructs for access ing it. W e def ine a d is t r ibuted t ransac t ion facil ity as a 

d is t r ibuted col lect ion of componen t s that suppor ts the execut ion of t ransact ions and the implementa t ion of 

shared abstract da ta ob jects on w h i c h operat ions can be pe r fo rmed . A l t hough there is room for diversity 

in the exact func t ions of a d is t r ibuted t ransact ion faci l i ty, it must make it easy to beg in and end 

t ransac t ions , to cal l opera t ions on objects f rom wi th in t ransact ions , and to imp lement abstract objects that 

have correct synchron iza t ion and recovery proper t ies. By prov id ing a c o m m o n set of synchron izat ion and 

recovery m e c h a n i s m s , such a facil i ty can lead to imp lementa t ions of separa te abst ract ions that permit 

their c o m b i n e d use . For examp le , a computer a ided des ign sys tem might be built us ing a t ransact ional 

da tabase m a n a g e m e n t sys tem and a t ransact ional file sys tem. 

A m o n g the most we l l - known imp lementa t ion work , L iskov and her g roup at MIT deve loped the Argus 

language and runt ime sys tem [L iskov 82 , Liskov and Schei f ler 83 , L iskov 84] . At Georg ia Tech , a group 

has w o r k e d on deve lop ing the C louds operat ing sys tem wi th support for d is t r ibuted t ransact ions [Al lchin 

and McKendry 83 ] . T a n d e m ' s T M F is an examp le of a commerc ia l sys tem suppor t ing distr ibuted 

t ransac t ion p rocess ing [He l land 85]. Recent wo rk on t ransact iona l fi le sys tems, for examp le at UCLA, 

can also support rel iable and avai lable d ist r ibuted appl icat ions [Weinste in et al. 8 5 ] . 1 

At Carneg ie Mel lon Universi ty, my co l leagues .and I deve loped T A B S , wh ich is a pro to type distr ibuted 

t ransac t ion facil i ty [Spector -e t al. 85a, Spector et al. 85b ] . W e are are now deve lop ing the product ion-

or ien ted Came lo t (Carnegie Mel lon Lew Overhead Transact ion) facil i ty [Spector et al 86, C M U 87].. wh ich 

is descr ibed be low. To reduce further the amount of effort required to construct rel iable d ist r ibuted 

sys tems , Her l ihy and Wing and their co l leagues are deve lop ing the Ava lon language facil i t ies — a 

co l lect ion of cons t ruc ts that wi l l use Camelo t and prov ide l inguist ic suppor t for rel iable 

appl icat ions [Her l ihy and Wing 86] . Ava lon compr ises runt ime l ibraries and extens ions to C A + , C o m m o n 

Lisp, and ADA, wh i ch together automat ical ly genera te the necessary cal ls on lower- level 

c o m p o n e n t s [Her l ihy and Wing 85] . Th is work on Camelo t and Ava lon is based upon our col lect ive 

exper ience wi th T A B S and Argus. 

To summar i ze , the goa l of this research and deve lopmen t is to simpl i fy the cons t ruc t ion of rel iable 

d is t r ibuted appl icat ions that access shared objects by prov id ing faci l i t ies for suppor t ing dist r ibuted 

t ransact ions and appropr ia te inter faces to them. The t ransac t ion faci l i t ies need to be eff icient, easi ly 

m a n a g e d , f lexible e n o u g h to support a w ide col lect ion of abst ract t ypes inc luding large da tabases , and , 

preferably , usefu l o n he te rogeneous hardware in large ne twork env i ronments . The fo l lowing sect ions 

shou ld help concret ize these not ions. 

1This section conta.ns but a partial list of related work. Due apology is made to researchers whose work has been omitted. 
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3. T h r e e M o d e l s 

This sect ion p resents three broadly appl icable mode ls that are useful for descr ib ing distr ibuted sys tems 

that suppor t t ransact ion p rocess ing : The system model descr ibes under ly ing assumpt ions about the 

ha rdware , s to rage, and network. The computation model descr ibes sys tem opera t ion as a col lect ion of 

d is t r ibuted t ransac t ions . T h e architecture model descr ibes a f ive- t iered sof tware organizat ion for a 

d is t r ibuted sys tem suppor t ing t ransact ions. 

3 . 1 . System Model 

There is substant ia l ag reement on the under ly ing sys tem mode l for d is t r ibuted process ing , wh ich 

conta ins p rocess ing nodes and a commun ica t i on network as Figure 3-1 i l lustrates. Process ing nodes are 

fai l-fast and include un ip rocessors or shared m e m o r y mul t iprocessors of many types . Process ing nodes 

are genera l ly a s s u m e d to have independent fai lure modes . 

F i g u r e 3 - 1 : Sys tem Mode l 

This figure shows the components of the system model. Stable storage and non-volatile storage, though pictured as disks, ccuid be 
implemented with other media, such as battery backed-up memory. 
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Storage o n p rocess ing nodes compr i ses volat i le s torage — where por t ions of objects reside w h e n they 

are be ing accessed , non-volat i le s torage — w h e r e objects reside w h e n they have not been accessed 

recent ly, and stable s torage — m e m o r y that is a s s u m e d to retain in format ion despi te fai lures. The 

conten ts of volat i le s torage are lost after a sys tem c rash , and the contents of non-volat i le s torage are lost 

w i th lower f requency , but a lways in a detec tab le way. Stable s torage can be imp lemented us ing two 

non-volat i le s torage uni ts on a node or us ing a network serv ice [Danie ls et al. 86] as descr ibed in Sect ion 

4 .2 .3 . 

The s y s t e m mode l ' s commun ica t i on network prov ides da tagram-or ien ted , in ternetworked OS ! Level 3 

funct ions [ Z i m m e r m a n n 82] such as the Arpanet IP protocol [Poste! 82] . In other words , the network 

compr i ses bo th local and long-haul c o m p o n e n t s and permi ts p rocesses to send da tagrams hav ing a f ixed 

m a x i m u m size. S o m e local area ne tworks may special ly suppor t mult icast or broadcast , and the network 

protocols are a s s u m e d to support these fea tures for reasons of ef f ic iency. Because appl icat ions us ing 

the sys tem may need high avai labi l i ty, commun ica t i on networks shouid have suff icient redundancy to 

render network part i t ions unl ikely. Network part i t ions can nonethe less occur , so higher levels of the 

sys tem must take measu res to protect t hemse lves against the e r roneous computa t ions or incons is tenc ies 

that cou ld result. 

3.2. Computa t ion Model 

The computa t ion mode l compr ises appl icat ions that per fo rm process ing by execut ing operat ions on 

user -de f ined da ta ob jects wi th in d is t r ibuted t ransact ions . A t ransac t ion ei ther commits, in wh i ch case al! 

its upda tes appear to be atomical ly m a d e , or it aborts, in wh ich case no changes appear at all. 

T ransac t ions may be nested as descr ibed above . 

Data ob jects may be dist r ibuted across the network and are encapsu la ted wi th in protect ion doma ins 

that (1) export only opera t ions that make -up the def ined interface and (2) guaran tee that the invcker has 

suff icient access r ights. Data objects may be nes ted . This computa t ion mode l appl ies to many sys tems, 

including Ff, A rgus , T A B S , and Cameio t . 

3.3. Archi tecture Model 

The archi tectura l mode l descr ibes how p rocess ing on a node is o rgan i zed ; that is, it descr ibes how to 

real ize the compu ta t i on mode l o n the sys tem mode l . It is s t ruc tured in f ive logical levels, as s h o w n in 

Figure 3-2. As one might hope, few cal ls p roceed f rom lower levels to upper levels. (The levels referred 

to in this mode l are dist inct f rom the OSI levels, and s u b s u m e funct ions in OSI levels 4 to 7.) 

At the base in Level 1 is the operat ing sys tem kernel that imp lements p rocesses , local synchron iza t ion , 

and local c o m m u n i c a t i o n . Example kernels include the V and Accent kerne ls [Cher i ton 84 , Rash id and 
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Rober tson 81 ] . Level 2, the subject of a recent paper [Spector 86 ] , p rov ides sess ion and da tag ram-based 

in ter-node commun i ca t i on us ing the network support as de f ined in the sys tem mode l . The Mach 

opera t ing sys tem prov ides funct ions in both Levels 1 and 2 [Accet ta et al. 86 , Rash id 86] . 

Above the commun ica t i on level is the d is t r ibuted t ransact ion faci l i ty, Level 3. Level 3 suppor ts fai lure 

atomic i ty a n d pe rmanence , and w a s descr ibed in Sect ion 2. T h e d is t r ibuted t ransact ion facil ity bui lds 

upon the p rocess , synchron iza t ion , and commun ica t i on faci l i t ies of Leve ls 1 and 2. 

Level 5: Applications 

Level 4 : Data Objects 

Level 3: Distributed Transaction Fa c i I i t y 

Level 2 : Inter-Node Communication 

Level 1 : Operating System Kernel 

F i g u r e 3 -2 : Five Level Arch i tecture Mode l 

This figure illustrates the five system levels. The kernel level provides processes and inter-process communication. The 
communication level provides inter-node communication. The distributed transaction facility provides complete succor: for 
transaction processing on distributed objects. Shared data objects are maintained in Level 4 using system-suppiled library routines 
or the runtime runtime support of a programming language. The applications that use the shared data oo.ects are in Level 5. 

Abst rac t ob jects may be g rouped into a subsys tem, and there may be mult ip le subsys tems wi th in the 

Data Object Level (Level 4). The abstract ob jects , such as da tabase managers or mai l sys tems, use the 

d is t r ibuted t ransact ion facil i ty so that they may be accessed wi th in t ransac t ions . 

In Level 5, appl icat ions use the d is t r ibuted t ransact ion facil i ty to beg in , commi t , and abort t ransact ions 

and to execute operat ions on objects imp lemented wi th in Level 4. Example appl icat ions include a 

bank ing te rmina l sys tem and an interact ive interface to a da tabase manager . 

The language support used by Levels 4 and 5 does not fit ent i rely w i th in any level . Rather it natural ly 

cons is ts of one or more t ranslators, w h i c h are external to this mode l , and runt ime suppor t that may reside 

in Levels 4 and 5. Of course, the language makes cal ls on faci l i t ies p rov ided by the three lowest levels. 

For examp le , synchron iza t ion is typical ly imp lemented by runt ime support w i th in Level 4 ob jec ts , wh i le the 
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coord ina t ion of t ransact ion commi ts is hand led in Level 3, and the t ransmiss ion of i n t t r -node messages is 

hand led in Level 2. 

Th is arch i tec ture, wh i ch prov ides a single d is t r ibuted t ransact ion faci l i ty, has two benef i ts over 

t radi t ional arch i tec tures that may comb ine Levels 3, 4 , and 5: First, because many of the componen ts that 

suppor t t ransact ions are s tandard ized and moved lower into the sys tem hierarchy, there is the potent ia l to 

imp lement t hem more eff iciently. Second , the archi tecture prov ides a c o m m o n not ion of t ransact ions and 

da ta objects for all ob jects and appl icat ions in the sys tem. As ment ioned in Sect ion 2, this permi ts more 

un i fo rm access to data. It a l lows an appl icat ion, for examp le , to update t r ansac t i ona l ^ a relat ional 

da tabase conta in ing indexing in format ion, a file conta in ing image data, and a hierarchical da tabase 

conta in ing pe r fo rmance records. 

Hav ing charac ter ized the sys tem, computa t iona l , and archi tectural s t ructures of d is t r ibuted t ransact ion 

processing., it is now appropr iate to examine a part icular imp lementa t ion — the Cameic t d istr ibuted 

t ransact ion facil i ty. 

4. C a m e l o t 

Came lo t p rov ides f lexible and eff icient suppor t for d is t r ibuted t ransact ions on a w ide var iety of user-

def ined ob jects such as da tabases , f i les, message queues , and I/O ob jects . Cl ients of the Camelo t 

facil i ty encapsu la te objects wi th in sen/er p rocesses , wh ich then execute operat ions in response to remote 

procedure cal ls. Came 'o i ' s features include the fo l lowing: 

• C o m p a t i b i l i t y w i t h s t a n d a r d o p e r a t i n g s y s t e m s . C a m e lot runs on Mach , a Berke ley 4.3 
U n i x ' ^ - c o m p a t i b l e opera t ing sys tem [Rash id 36] . Mach 's Unix-compat ib i l i ty makes Came lo t 
easier to use and ensures that g o o d p rogram deve lopmen t tools are avai lab le. Mach 's 
suppor t for shared memory , message pass ing, and mul t ip rocessors makes Came ic t mere 
erficient and f lexible. 

* C o m p a t i b i l i t y w i t h A r p a n e t p r o t o c o l s . Came ! o£ uses da tag rams and M 
both of wh ich are buiit on the star-card Arpanet P network layer ; ° o s t e l 82 ; . 
large d is t r ibuted process ing exper iments . 

• M a c h i n e - i n d e p e n d e n t i m p l e m e n t a t i o n . Came ic t is in tended to run on all the 
un ip rocessors and mul t ip rocessors that Mach suppor ts . For example , Came lo t Is deve loped 
on IBM RT PC's , but tested f requent ly on DEC Mic roVaxes to ensure that no mach ine 
dependenc ies have been added . 

• P o w e r f u l f u n c t i o n s . Cameic t suppor ts funct ions that are suff icient for many di f ferent 
abstract types. For example , Came ic t suppor ts both b lock ing and non-b lock ing commi t 
p ro toco ls , nested t ransact ions as in Argus , and permi ts sha red , recoverable ob jects to be 
a c c e s s e d in vir tual memory . (Sect ion 4.2 descr ibes Camelo t ' s funct ions in more detai l .) 
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• E f f i c i e n t i m p l e m e n t a t i o n . Camelo t is des igned to reduce the ove rhead of execut ing 
t ransact ions. For examp le , shared memory reduces the use of message pass ing ; mult iple 
th reads of cont ro l increases para l le l ism; and a c o m m o n log reduces the number of 
synchronous stable s torage wr i tes . (Sect ion 4.3 descr ibes Camelo t ' s imp lementa t ion in more 
detail .) 

• C a r e f u l s o f t w a r e e n g i n e e r i n g a n d d o c u m e n t a t i o n . Camelo t is be ing coded in C in 
con fo rmance wi th carefu l cod ing s tandards [ T h o m p s o n 86 ] . Th is increases Camelo t ' s 
portabi l i ty and mainta inabi l i ty and reduces the l ikel ihood of bugs . The internal and external 
sys tem inter faces are spec i f ied in the Camelo t Interface Speci f icat ion [Spector et al 86] , 
wh i ch is then p rocessed to genera te Came lo t code . A manua l based o n the speci f icat ion is 
nearly comple te [ C M U 87] . 

F igure 4-1 shows the re lat ionship of Camelo t to Ava lon and M a c h and descr ibes how the componen ts 

fit into the archi tecture mode l . 

V 

c 
•n 

_ j « . — r p 

Various Servers -ncaosulatir.c Objects 
1 1 1 " I 

Camelct Distributed Transaction Facility 

^ o mm u r. t C a t i. c n 
Mach Inter-node 
Communication 

AR?A:;^C I? layer 

Mach, Unix-compatible Operating System 

— Level 4 

— Level 3 

~~ e *-r ̂ 1 1 

r Level 1 

F i g u r e 4 - 1 : Relat ionship of C a m e i c i to Other Sys tem Layers 

Mach executes on uniprocessor and multiprocessor, hardware and supports the functions of Level 1 of the architecture mode!. Level 
2, or the inter-node communication level, is logically layer on too of Mach. Cameioi supports distributed transaction processina 
iLevel 3 functions; and includes several specialized additions to the communication layer. Avalon provides linguistic sucocrt for 
accessing Camelot and Mach. and :s not a numbered level or the architecture model. Users define servers encapsulating ooiocts 
(Level 4) and applications (Level 5} that use those objects. Examples of sen/ers are mail repositories, distributee file systems ano 
database managers. 



9 

4 . 1 . Background on Major Camelot Implementat ion Techniques 

This sect ion ident i f ies many of the a lgor i thms and pa rad igms that Camelo t uses for suppor t ing 

d is t r ibuted t ransact ions on abstract ob jects . The sect ion focuses on issues in abstract ob jects , 

d is t r ibut ion, and t ransac t ion p rocess ing . 

4 . 1 . 1 . A b s t r a c t O b j e c t s 

Many mode ls exist for imp lement ing the abstract objects of Level 4 in the archi tecture mode l . In one 

mode l , ob jec ts are encapsu la ted in pro tec ted subsys tems and accessed by protected procedure cal ls or 

capabi l i ty mechan i sms [Sal tzer 74, Fabry 74] . Camelo t uses another mode l , cal led the client/server 

mode l , as a basis for imp lement ing abstract objects [Wa tson 31] . Servers encapsu la te one or more data 

ob jec ts . They accept request messages that speci fy opera t ions and a speci f ic object. To imp lement 

opera t ions , they read or modify data they direct ly contro l and invoke cpera t ions on other servers. After an 

opera t ion is pe r fo rmed , s e r / e r s send a response m e s s a g e conta in ing the result. Servers that 

encapsu la te data ob jects are cal led Data Ser/ers in Came ic t , Resource Managers in R" and Guardians in 

A rgus . 

Message t ransmiss ion mechan i sms and server o rgan iza t ions differ a m o n g imp lementa t ions based 

upon the c l ient /server mode l . In these aspects , Camelo t is substant ia l ly in f luenced by the Mach opera t ing 

sys tem on wh ich it w a s deve loped [Rash id 86] . M a c h prov ides heavywe igh t p rocesses wi th 32-bi t v ir tual 

address spaces and suppor ts messages addressed add ressed to ports. Many p rocesses may have send 

rights to a pert, but on ly one has receive rights. Send r ights and receive rights can be t ransmi t ted in 

messages along wi th ord inary data. Large quant i t ies of da ta are eff iciently c o n v e y e d be tween proce 

on the same mach ine via copy-on-wr i te mapp ing into the address space of the recipient p rocess 

message mode l dif fers f rom that of Unix 4.2 [Joy et al . 83] and the V Kerne l [Cher i ton 84] in that 

messages are typed sequences of data wh ich can conta in port capabi l i t ies, and that large messages can 

t ransmi t ted wi th near ly constant ove rhead . 

This 

T h e p rog ramming effort assoc ia ted wi th pack ing and unpack ing messages is reduced 

th rough the use of a remote procedure call facil i ty ca i led Matchmaker [Jones et al. 85 ] . (We use the term 

remote procedure caillo apply to both int ra-node and in ter -ncde communica t ion . ) Ma tchmaker ' s input is 

a syntact ic def in i t ion of p rocedure headers speci f ied in a Pascal- l ike fash ion. Its outputs are client and 

server .s tubs that pack and unpack messages , and d ispatch to the appropr ia te p rocedures on the server 

s ide. 

S e r / e r s that never wait whi le p rocess ing an opera t ion can be o rgan ized as a loop that receives a 

request message , d ispa tches to execute the opera t ion , and sends a response m e s s a g e . Unfor tunate ly , 

servers may wai t for many reasons: to synchron ize wi th o ther opera t ions , to execu te a remote opera t ion 
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or sys tem cal l , or to page-faul t . For such servers , there must be mult ip le th reads of contro l wi th in a 

server, or else the server wi l l pause or dead lock w h e n it need not. 

O n e imp lementa t ion approach for servers is to have mult ip le l ightweight p rocesses wi th in a s ingle 

server process. Page- fau l ts still cause all l ightweight p rocesses to be suspended , but a l ightweight 

p rocess swi tch can occur w h e n a server w o u l d o therwise wai t . Ano ther approach is to al locate 

independent ly schedu lab le th reads of cont ro l that share access to data . Wi th th is approach , a s e r / e r is a 

c lass of re lated p rocesses — in the S imu la sense of the w o r d "c lass." Th is techn ique is suppor ted by 

M a c h and used in Came lo t [Cooper 86 ] . The topic of server o rgan iza t ion has been cieariy d iscussed by 

L iskov and Herl ihy [L iskov and Herl ihy 83] . 

Before leaving the topic of abstract ob jects , it is necessary to d iscuss how objects can be n a m e d . 

Certa in ly, a port to a server and a logical object identifier that d is t ingu ishes b e t w e e n the var ious objects 

imp lemented by that server are suff icient to name an object . The d issemina t ion of these names can be 

done in many w a y s . A c o m m o n me thod is for sen/ers to register ob jec ts w i th a wel l known server 

p rocess on their node, of ten cal led a name server, and for the name s e r / e r to return one or more ports, in 

response to name lookup requests. N a m e servers can coopera te w i th each ether to prov ide t ransparent 

naming across a network . 

4 .1 .2 . D i s t r i b u t i o n 

Repl icated and par t i t ioned dist r ibuted objects wi th in Leve l 4 of the arch i tecture mode l are feasib le to 

imp lement us ing the c l ient /server mode l . For examp le , there may be many sen/ers that can respond 

ident ical ly to opera t ions on a repl icated object . However , servers must con ta in the rep l i ca ron or 

part i t ioning logic. The Camelo t project hypothes izes that the . avai labi l i ty of t ransact ion support 

substant ia l ly s impl i f ies the ma in tenance of d is t r ibuted and repl icated ob jects . 

Transparent in ter-node message pass ing can simpli fy access to remote sen/ers . in the v a c n 

env i ronment , in ter-node commun ica t ion is ach ieved by interposing a pair of p rocesses , cal led 

commun ica t i on managers , be tween the sender of a message and its i n tended recipient on a r s m a e 

node [Rash id and Rober tson 81] . The commun ica t i on manager suppl ies the sender w i th a local p e n to 

use for messages addressed to the remote p rocess . Toge ther w i th its counterpar t at the remote node, 

the commun ica t i on manage r imp lements the mapp ing be tween the local port used by the sender a r c the 

co r respond ing remote port be long ing to the target p rocess , prov id ing t ransparent commun ica t i on . 
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4 .1 .3 . T r a n s a c t i o n s 

Came lo t p rov ides fea tures to support all the s tandard not ions of t ransact ions, but does not require that 

ob jects enforce ser ial izabi l i ty, fai lure atomic i ty , or pe rmanence . T ransac t ions are permi t ted to interfere 

w i th each o ther a n d to show the effects of fa i lure — if this is usefu l . Tha t is, Camelot provides basic 

faci l i t ies for suppor t ing many different types of objects and lets imp iemento rs choose how they want to 

use t h e m . (A p r o g r a m m i n g language, such as Ava lon , can also restrict the w a y s in wh ich the Camelo t 

faci l i t ies are used.) 

Many techn iques exist for synchron iz ing the execut ion of t ransac t ions . Lock ing , opt imist ic, t imes tamp, 

and many hybr id s c h e m e s are f requent ly d i scussed ; many of these are su rveyed by Bernste in and 

G o o d m a n [Berns te in and G o o d m a n 81] . W e have chosen to support two compat ib le types of 

synchron iza t ion in Came lo t : locking and hybr id atomici ty [Date 83 , Her l ihy 85 ] . Hybr id atomici ty has 

features of both t imes tamps and locking, and requires a Lampor t c lock faci l i ty [Lampor t 78] f rom Camelo t 

and substant ia l suppor t f rom Ava ion [Herl ihy and Wing 86] . S ince both types of synchron izat ion are 

imp lemen ted pr imar i ly by servers (within Level 4) , imp lementa t ions can be ta i lored to provide the highest 

concur rency . For examp le , w i th type-specific lock ing, imp iementors can ob ta in increased concur rency by 

def in ing type-spec i f ic lock modes and lock protocols [Korth 83, Schwarz and Spec tor 84, Schwarz 84] . 

Both lock ing and hybr id atomici ty may de lay t ransact ion execut ion , even if that delay leads to a 

dead lock . S o m e sys tems imp lement local and dist r ibuted dead lock detec tors that identify and break 

cycles of wa i t ing t ransact ions [Obermarck 82, L indsay et a l . 84] . However , Camelo t Release 1, like many 

other sys tems, rel ies on t ime-outs , wh ich are explicit ly set by sys tem users [ T a n d e m 82] . 

Recovery in Came lo t is based upon write-ahead logging, rather than shadow paging [Lorie 77, Gray 

78, L indsay et al. 79 , Gray et al. 8 1 , Lampson 8 1 , Haerder and Reuter 83, Schwarz 34] . It assumes the 

s torage h ierarchy de f ined in the sys tem mode l , above . 

in recovery techn iques based upon wr i te -ahead logging, stabie s torage conta ins an append-on ly 

sequence of records. These records may conta in a redo componen t , that permi ts the effects of 

commi t t ed t ransac t ions to be redone and possib ly an undo componen t that permi ts the effects of abor ted 

t ransact ions to be undone . Updates to data ob jects are made by modi fy ing a representa t ion of the object 

resid ing in volat i le s torage and by spool ing one or more records to the log. Logg ing is ca l led "wr i te-

a h e a d " because log records must be safely s tored (forced) to stable s torage before t ransact ions commi t , 

and before the volat i le representat ion of an object is cop ied to non-volat i le s to rage. Because of this 

s t rategy, there are log records in stable s torage for all the changes that have been made to non-volat i le 

s torage, and for all commi t ted t ransact ions. Thus , the log can be used to recover f r om abor ted 

t ransact ions , sys tem c rashes and non-volat i le s torage fai lures. 
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T h e advan tages of w r i t e -ahead logging over other s chemes have been d iscussed e lsewhere and 

inc lude the potent ia l for inc reased concur rency , reduced I/O activi ty at commi t t ime, and cont iguous 

a l locat ion of objects on secondary s torage [Gray et a l . 8 1 , Tra iger 82 , Reuter 84] . All objects in Camelo t 

Re lease 1 use one of two co-ex is t ing wr i te -ahead logging techn iques and share a c o m m o n log. 

T h e s imp ler techn ique is ca l led old value/new value logg ing, in wh i ch the undo and redo por t ions of a 

log record conta in the o ld and new va lues of an object 's representa t ion . Dur ing recovery after node or 

server c rashes , ob jects are reset to their most recent ly commi t t ed va lues dur ing a one pass scan that 

beg ins at the last log record wr i t ten and p roceeds backward . If th is va lue logg ing a lgor i thm is used , only 

one t ransact ion at a t ime may modi fy any individual ly logged c o m p o n e n t of an object that is to be fai lure 

a tomic and pe rmanen t . 

T h e o ther techn ique is ca l led new value logging, in wh i ch log records conta in only a redo componen t . 

New value logging requires less log space but results in inc reased pag ing for long running t ransact ions. 

Th is is because pages cannot be wr i t ten back to their home locat ion unti l a t ransact ion comple tes . 

Came lo t a s s u m e s that the Invoker of a t ransact ion wi l l know if the t ransac t ion wi l l be short and wil l specify 

that new va lue logging shou ld be used . 

Re lease 2 of Camelo t wi l l also prov ide another wr i te -ahead log-based recovery techn ique cal led 

operation (or transition) logg ing. Wi th it, data servers wr i te log records conta in ing the names of 

opera t ions and enough in format ion to invoke t h e m . Opera t ions are redone or undone , as necessary , 

dur ing recovery process ing to restore the correct state of ob jects . Opera t ion based recove r / can permit a 

greater degree of concur rency than the value based recovery, and may require less log space to be 

wr i t ten . Its d isadvan tage is complex i ty . 

T h e Camelo t recovery a lgor i thms are similar to other prev ious ly pub l i shed wr i te -ahead log-based 

a lgor i thms [Gray 78, L indsay et ai . 79], in part icular those of Schwarz [Schwarz 84] . However , they have 

been ex tended to support aborts of nested t ransact ions, new va lue recovery, and the legging of arbitrary 

regions of memory . 

Bo th va lue and opera t ion logging a lgor i thms require that per iodic sys tem checkpoints be taken . 

Checkpo in ts serve to reduce the amount of log data that must be avai lab le for c rash recovery and shor ten 

the t ime to recover after a crash [Haerder and Reuter 83] . At checkpo in t t ime, a list of the pages current ly 

in volat i le s torage and the status of current ly act ive t ransact ions are wr i t ten to the log. Came lo t also 

per iodical ly forces certa in pages in volat i le s torage to non-volat i le s torage and may abort long running to 

lessen the amount of log that must be rapidly accessib le. To reduce the cost of recover ing f rom disk 

fa i lures, Came lo t infrequent ly dumps the contents of non-volat i le s to rage into an off- l ine arch ive. 
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Recent ly , researchers have begun to d iscuss high pe r fo rmance recovery imp lementa t ions that 

in tegrate vir tual memory m a n a g e m e n t wi th the recovery s u b s y s t e m and use higher per fo rmance stable 

s to rage dev ices [Tra iger 82 , Banat re et a l . 83 , S tonebraker 8 4 , Diel et a l . 84 , Eppinger and Spec tor 85] . 

Came lo t in tegrates vir tual m e m o r y m a n a g e m e n t wi th recovery and ensures that the necessary log 

records are wr i t ten to stable s torage before pages are wr i t ten to their home locat ion. 

T h e most impor tant componen t of a t ransact ion facil i ty not yet d iscussed is the one that oversees 

ini t iat ing, commi t i ng , and abor t ing t ransact ions. Commi t a lgor i thms vary in their ef f ic iency and 

robus tness [L indsay et al. 79 , Dwork and Skeen 83] . Camelo t ' s a lgor i thms are both ins tances of star-

shaped s ta r -shaped commi t pro toco ls , in w h i c h the init iator of the outermost top- level t ransact ion serves 

as coord ina tor for all nodes in the t ransact ion. One a lgor i thm is based on the s tandard 2-phase commi t 

p ro toco l . It is eff icient, but has fai lure modes in wh ich nodes part ic ipat ing in a d is t r ibuted t ransac t ion must 

restrict access to some data unti l o ther nodes recover f rom a crash or a network part i t ion is e l iminated. 

Camelo t also prov ides a hybr id pro toco l , wh ich is a cross be tween 3-phase and byzant ine commi t 

pro toco ls , to reduce the l ikel ihood that access to data wil l be b locked . 

T h e increased interest in bu i ld ing nes ted abstract ions us ing t ransact ions has led to the invest igat ion 

and imp lementa t ion of faci l i t ies for suppor t ing nest ing. T h e s e faci l i t ies limit the concur rency anomal ies 

that can occur w i th in a s ingle t ransac t ion that has mult iple th reads of control and permi t por t ions of a 

t ransac t ion to abort independent ly . Camelo t suppor ts nested t ransact ions as in Argus . 

4 .1 .4 . S u m m a r y o f I m p l e m e n t a t i o n B a c k g r o u n d 

T h e major points of this deve lopmen t can be tersely s u m m a r i z e d : Camelo t suppor ts t ransac t ions on 

abstract objects. Objects are imp lemen ted wi th in server p rocesses , and operat ions on objects are 

invoked via messages wi th a remote procedure cal l facil i ty. Inter-node commun ica t i on uses both 

sess ions and da tag rams . Inter- t ransact ion synchron izat ion is d o n e v ia locking or hybr id atomici ty, wi th 

t ime-outs used to resolve dead lock (in Re lease 1). Wr i te -ahead logging is the basis of recovery and 

t ransac t ion commi t is done via ei ther a b lock ing or non-b iock ing commi t protoco l . Camelo t suppor ts the 

Argus nes ted t ransact ion mode l . 

4 . 2 . Camelot Funct ions 

As men t ioned , the most basic bui ld ing b locks for rel iable d is t r ibuted appl icat ions are p rov ided by Mach , 

its commun ica t i on faci l i t ies, and the Ma tchmake r RPC stub genera to r [Cooper 86 , Jones et al . 85 ] . These 

bui ld ing blocks include p rocesses , threads of control w i th in p rocesses , shared memory be tween 

p rocesses , and message pass ing . 
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Came lo t prov ides funct ions for sys tem conf igura t ion , recovery, d isk managemen t , t ransact ion 

m a n a g e m e n t , dead lock detec t ion , and re l iab i l i ty /per formance eva luat ion. S imple lock-based 

synchron iza t ion m e c h a n i s m s are p rov ided in the Camelo t l ibrar ies. (Avalon 's runt ime suppor t is required 

to use Hybr id Atomici ty.) T h e s e funct ions are spec i f ied in the Camelo t Interface Speci f icat ion and Guide 

to the Camelo t Sys tem [Spector et al 86, C M U 87] . Cer ta in more advanced funct ions wil l be added to 

Came lo t for Re lease 2. 

4 . 2 . 1 . C o n f i g u r a t i o n M a n a g e m e n t 

Came lo t suppor ts the dynamic al locat ion and dea l locat ion of both new data servers and the 

recoverab le storage in wh i ch data servers store long- l ived ob jec ts . Camelo t mainta ins conf igurat ion data 

so that it can restart the appropr ia te data servers after a c rash and reat tach t h e m to their recoverab le 

s torage. These conf igurat ion data are stored in recoverab le s torage and upda ted t r ansac t i ona l ^ . 

4 .2 .2 . D i s k M a n a g e m e n t 

Came lo t prov ides data servers w i th up to 2 4 8 by tes of recoverab le s torage. Wi th the coopera t ion of 

M a c h , Came lo t permi ts da ta servers to map that s torage into their address space , t hough data servers 

must call Camelo t to remap their address space w h e n they over f low 32-bit addresses . To simpli fy the 

al locat ion of con t iguous regions of disk space, Came lo t assumes that all a l locat ion and deal locat ion 

requests are coarse (e.g. , in megaby tes) . Data servers are responsib le for do ing their o w n microscopic 

s torage managemen t . 

So that operat ions on da ta in recoverable s torage can be undone or redone after fa i lures. Camelot 

prov ides data servers w i th logg ing serv ices for record ing modi f icat ions to ob jects . Camelo t automat ical ly 

coord ina tes pag ing of recoverab le s torage to main ta in the wr i te -ahead log invar iant [Eppinger and 

Spector 85] . 

4 .2 .3 . R e c o v e r y M a n a g e m e n t 

Camelo t ' s recovery funct ions include t ransact ion abort , and server, node, and media- fa i lure recovery. 

To support these funct ions, Came lo t Release 1 prov ides the two fo rms of w r i t e -ahead va iue logging 

ment ioned above. 

Camelo t wr i tes log da ta to local ly dup lexed s torage or to s torage that is rep l icated on a col lect ion of 

ded ica ted network log servers [Danie ls et al. 86] . In some env i ronments , the use of a shared network 

logging facil ity cou ld have survivabi l i ty, operat iona l , pe r fo rmance , and cost advan tages . Survivabi l i ty is 

l ikely to be better for a repl icated logging facil ity because it can tolerate the dest ruc t ion of one or more 

entire p rocess ing nodes. Opera t iona l advantages accrue because it is easier to m a n a g e h igh vo lumes of 

log data at a smal l number of logging nodes , rather than at all t ransac t ion p rocess ing nodes. 

Per fo rmance might be bet ter because shared faci l i t ies can have faster hardware than cou ld be af forded 



15 

for each p rocess ing node . Final ly, prov id ing a sha red network logging facil i ty w o u l d be less cost ly than 

ded ica t ing dup lexed d isks to each process ing node , part icular ly in works ta t ion env i ronments . 

4 .2 .4 . T r a n s a c t i o n M a n a g e m e n t 

Camelo t prov ides faci l i t ies for beg inn ing new top- level and nested t ransact ions and for commi t t ing and 

abor t ing t h e m . T w o opt ions exist for commi t : Blocking commi t may result in data that remains locked until 

a coord inator is restar ted or a network is repa i red. Non-bloc'r.ing commi t , though more expens ive in the 

normal case , reduces the l ikel ihood that a node 's da ta wil l remain locked unti l another node or network 

part i t ion is repa i red , in addi t ion to these s tandard t ransact ion managemen t func t ions , Camelo t prov ides 

an inquiry faci l i ty for de te rmin ing the status of a t ransac t ion . The Camelot l ibrary and Ava lon use this to 

support lock inher i tance. 

4 .2 .5 . T h e C a m e l o t L i b r a r y 

The Camelo t l ibrary compr i ses rout ines and macros that al low a user to imp lement data se r /e r s and 

app l i ca t ions . 2 For servers , it prov ides a c o m m o n message hand l ing f ramework and s tandard process ing 

funct ions for sys tem messages . Thus , the task of wr i t ing a s e r / e r is reduced to wr i t ing procedures for the 

operat ions suppor ted by the server. 

The l ibrary prov ides severa l categor ies of suppor t rout ines to faci l i tate the task of wr i t ing these 

procedures . T ransac t ion contro l rout ines provide the abil ity to initiate and abort nested and top level 

t ransact ions. Data manipu la t ion rout ines permi t the c reat ion and modi f icat ion of static recoverable 

objects . Lock ing rout ines mainta in the serial izabi l i ty of t ransact ions. (Lock inher i tance a m o n g famil ies of 

subt ransact ions is hand led automatical ly.) Cri t ical sect ions contro l concurrent access to iocai objects. A 

macro faci l i tates remote procedure calls to other servers. 

Appl icat ions use a subset of the l ibrary faci l i t ies. In part icular , they use the t ransact ion control rout ines 

and server access macro . 

4 .2 .6 . D e a d l o c k D e t e c t i o n 

Cl ients of Camelo t Re lease 1 must depend on t ime-out to detect dead locks . Re lease 2 will incorporate 

a dead lock detector and export interfaces for servers to report their iocai know ledge of wai t - for g raphs. 

W e ant ic ipate that imp lement ing dead lock detect ion for arbitrary abstract t ypes in a large network 

env i ronment like the Arpane t wil l be diff icult. 

2 The functions of the Camelot library are,subsumed by Avalon's more ambitious linguistic support. 
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Figure 4-3 shows the seven p rocesses in Re lease 1 of Camelo t : master contro l , disk manager , 

commun ica t i on manager , recovery manager , t ransac t ion manager , node server, and node conf igurat ion 

app l i ca t i on . 3 

• M a s t e r C o n t r o l . T h i : p rocess restarts Camelo t after a node fa i lure. 

• D i s k M a n a g e r . The disk manager a l locates and deal locates recoverab le s torage, accepts 
and wr i tes log records locally, and enforces the wr i te -ahead log invar iant. For log records 
that are to be wr i t ten to the d is t r ibuted logging serv ice, the d isk manager works wi th 
ded ica ted sen/ers on the network. Addi t ional ly , the disk manager wr i tes pages to / f rom the 
disk w h e n M a c h needs to serv ice page faults on recoverable s torage or to c lean pr imary 
memory . Final ly, it per forms checkpo in ts to limit the amount of work dur ing recovery and 
wo rks c losely w i th the recovery manager w h e n fai lures are be ing p rocessed . 

• C o m m u n i c a t i o n M a n a g e r . The commun ica t i on manager fo rwards inter-node M a c h 
m e s s a g e s , and prov ides the logical and phys ica l c lock serv ices. In add i t ion , it knows the 
fo rmat of m e s s a g e s and keeps a list of all the nodes that are invo lved in a part icular 
t ransac t ion . Th is in format ion is prov ided to the t ransact ion manager for use dur ing commi t or 
abort p rocess ing . Finally, the commun ica t i on manager prov ides a name service that creates 
commun ica t i on channe ls to n a m e d servers . (The t ransact ion manage r and d ist r ibuted 
logging serv ice use IP da tagrams, thereby bypass ing the commun ica t i on manager . ) 

• R e c o v e r y M a n a g e r . T h e recovery manage r is responsib le for t ransact ion abort, s e r / e r 
recovery , node recovery, and media- fa i lure recovery. Server and node recovery respect ively 
require one and two backward passes over the log. 

• T r a n s a c t i o n M a n a g e r . The t ransact ion manager coord inates the ini t iat ion, commit., and 
abort of local and d is t r ibuted t ransact ions. It fully suppor ts nested t ransac t ions . 

• N o d e S e r v e r . The node s e r / e r is the reposi tory of conf igurat ion da ta necessary for 
restart ing the node. It stores its data in recoverable storage and is recovered before other 
servers . 

• N o d e C o n f i g u r a t i o n A p p l i c a t i o n . The node conf igurat ion appl icat ion permi ts Camelo t s 

h u m a n users to update data in the node server and to c rash and restart servers . 

The organ izat ion of Camelo t is simi lar to that of T A B S and R \ Structural ly , Camelo t differs f rom T A B S 

in the use of th reads, shared memory inter faces, and the combina t ion of logg ing and disk m a n a g e m e n t in 

the same process . Many low- level a lgor i thms and protocols have also b e e n c h a n g e d to improve 

per fo rmance and prov ide added funct ions. Came lo t differs f rom R* in its greater use of message pass ing 

and suppor t for c o m m o n recovery facil i t ies for servers. Of course, the funct ions of the two sys tems are 

quite di f ferent; t ransact ions in R* are in tended pr imari ly to support a par t icu lar re lat ional da tabase sys tem. 

JOameiot Reiease 2 will use additional processes to support deadlock detection and reliability and performance evaluation. 
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F i g u r e 4 -3 : Processes in Cameic t Re lease 1 

This figure snows the Mach kerne! and the processes that are needed to execute distributed tran«ar;;n« s T S O S _ N 

a part of Camelot, and a Camelot data server because it is the repository of essential configuration cata C ^ e ^ d a ^ e - e ^ s 7 - a 
applications use the facilities of Cameiot and Mach. The node confiauration application permits : . s ^ ~ r 0 * x ™ ; ~ 8 T- P ,_Vl w . r ' n 

nodes configuration. " 

4.4. D iscussion 

As of January 1987, Camelo t Re lease 1 w a s still being coded though e n o u g h -about 25,00 lines of C) 

w a s func t ion ing to commi t and abort local t ransact ions. T h o u g h m a n y p ieces were still miss ing (e.g. , 

support for stable s torage and distr ibut ion), Ava lon deve lopers cou ld beg in their imp lementa t ion work . 

Before w e add to the basic set of Came lo t Re lease 1 funct ions, o thers wil l be encouraged to port 

abst ract ions to Camelo t and prov ide feedback on its funct ional i ty and pe r fo rmance . 

Per fo rmance is a very important sys tem goa l . Exper ience w i th T A B S and very pre l iminary 

pe r fo rmance numbers make us bel ieve that w e wil l be able to execu te roughly 20 non-pag ing wr i te 
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t ransac t ions /seco: d on an RT PC or MicroVax works ta t ion . Perhaps , it is wor thwh i le to summar ize why 

the C a m e l o t / M a c h comb ina t ion shou ld have per fo rmance that even da tabase imp lementors wi l l l ike: 

• Mach ' s support for mult ip le th reads of contro l per p rocess permit eff icient server 
o rgan iza t ions and the use of mu l t ip rocessors . 

• Disk I/O should be eff icient, because Camelo t a l locates recoverable storage cont iguous ly on 
disk, and because Mach permi ts it to be m a p p e d into a server 's memory . A lso, servers that 
know disk I/O pat terns, such as da tabase managers , can inf luence the page rep lacement 
a lgor i thms by prov id ing hints for pre fe tch ing or prewr i t ing. 

• Recovery adds little ove rhead to norma l p rocess ing because Camelo t uses wr i te -ahead 
logg ing wi th a c o m m o n log. T h o u g h Camelo t Release 1 has only va lue- logg ing, operat ion-
logging wil l be prov ided in Re lease 2. 

• Came lo t has an eff icient, da tag ram-based , two-phase commi t protocol in addi t ion to its non-
b lock ing commi t pro toco l . Even wi thout de lay ing commi t s to reduce log fo rces ("group 
commi t " ) , t ransact ions require only one leg force per node per t ransact ion. Came io t requires 
just three da tagrams per node per t ransact ion in its s ta r -shaped commi t pro toco l , because 
f inal acknow ledgmen ts are p iggy -backed on future commun ica t i on . Camelo t also has the 
usua l opt imizat ions for read-only t ransact ions. 

• Came lo t does not imp lement the synchron iza t ion needed to preserve seriai izabi l i ty. Th is 
synchron iza t ion is left to servers (and/or Ava lon) , wh ich can apply semant ic know ledge to 
prov ide higher concur rency or to reduce locking ove rhead . 

5. C h a l l e n g e s 

Many commerc ia l t ransact ion p rocess ing appl icat ions a l ready use dist r ibuted t ransact ions. Many more 

a lgor i thms and appl icat ions wil l benef i t f rom t hem w h e n genera l -purpose , h igh pe r fo rmance t ransact ion 

faci l i t ies are avai lable. For example , there have been promis ing appl icat ions built on both T A B S and 

Argus that cou ld be very usefu l in product ion env i ronments . A lso, there are a p lethora of u m m p i e m e n i e d 

d is t r ibuted repl icat ion techn iques that depend upon t ransact ions to mainta in invar iants on the under ly ing 

repl icas. 

The cha l lenges lie in const ruc t ing facil i t ies that have h igh pe r fo rmance , yet are easy to use and 

opera te wi th in famil iar compu t ing env i ronments . The per fo rmance cha l lenge is c lear due to the obv ious 

complex i ty of imp lement ing commi t protocols , stable s torage, med ia recovery, etc. The re are also 

concur rency control bot t lenecks that cou ld b e c o m e prob lemat ica l . However , there are many g o o d 

a lgor i thms to use, and the st ructure of d is t r ibuted t ransact ion p rocess ing seems suff ic ient ly we l l 

unders tood to permit c lean imp lementa t ions . 

Ease of use and operat iona l cha l lenges are equal ly impor tant . For many appl icat ions, a d is t r ibuted 

t ransact ion facility must run on all the nodes of a large d is t r ibuted sys tem. T h u s , it shou ld be instal led 
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a long wi th the opera t ing sys tem and require m in ima l , if any, operator in tervent ion. Tak ing dumps , 

m a n a g i n g log space , reconf igur ing nodes , and add ing and remov ing servers shou ld be near ly automat ic 

or at least easy to do. P r o g r a m m e r s shou ld also f ind it s t ra ight forward to use the faci l i ty. T h e Argus and 

Ava lon languages , or carefu l ly de f ined library support such as that in the Camelo t l ibrary can substant ial ly 

reduce p rog ramming complex i ty , but it remains to be seen h e w successfu l these efforts wi l l be for large 

sys tems. 

Came lo t is in tended to meet many of these cha l lenges and to help demons t ra te that t ransact ion 

faci l i t ies can be suff ic ient ly eff icient and easy to use for a w ide range of d is t r ibuted p rog rams . However , 

there are addi t ional cha l lenges not addressed by Camelo t . 

Suppor t for he te rogeneous networks and operat ing sys tems wou ld add m u c h to the utility of 

t ransac t ion p rocess ing . Even w i th all the s tandard izat ion efforts that are u n d e r l a y , it w o u l d still desirable 

to suppor t d is t r ibuted t ransact ions running on mult iple types of sys tems and ne tworks ; for example , ii 

wou id be usefu l if C a m e l o t / M a c h works ta t ions cou ld par t ic ipate in t ransact ions wi th exist ing data on 

3 7 0 / M V S ma in f rames . Techn ica l ly , this is poss ib le , but it is diff icult to per fo rm the needed protocol 

t rans la t ions eff iciently. 

Perhaps the most impor tant cha l lenge is to construct the t ransact iona l abstract ob jects that are needed 

to make dist r ibuted t ransact ion faci l i t ies really usefu l : mail sys tems , specia l ized da tabases , file sys tems, 

w i n d o w managers , and queu ing sys tems. Whi le the avai labi l i ty of t ransact ions make these ob jects easier 

to imp lement , they are still comp lex — part icular ly if they require repl icat ion. Reconc i l ing the t ransact ional 

semant ics of new objects w i th the non- t ransact iona l ob jects that they replace is also diff icult. (This couic 

be a part icular ly tough p rob lem wi th the Unix file system.) 

In spite of these cha l lenges , d is t r ibuted t ransact ion facil i t ies shou ld become more preva lent . Ongo ing 

work in the research and commerc ia l spheres , a ided by ever- faster hardware wi l l cont inue to improve 

their pe r fo rmance and usabi l i ty. 
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