
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

Distributed Transaction Processing
and The Camelot System

A l f r e d Z. S p e c t o r
J a n u a r y 1987

C M U - C S - 8 7 - 1 0 0 ,

A B S T R A C T

Tnis paper descr ibes d is t r ibuted t ransact ion p rocess ing , a techn ique used for s impl i fy ing the const ruc t ion
of rel iable d is t r ibuted sys tems. After in t roducing t ransact ion p rocess ing , the paper presents models
descr ib ing the structure of d is t r ibuted sys tems, the t ransact iona l computa t ions on t h e m , and the layered
sof tware archi tecture that supppor ts those computa t ions . T h e sof tware archi tecture mode l conta ins f ive
layers, inc luding an in termedia te layer that prov ides a c o m m o n set of usefu l funct ions for suppor t ing the
highly rel iable opera t ion of sys tem serv ices, such as data m a n a g e m e n t , file m a n a g e m e n t , and mai l . The
funct ions of this layer can be real ized in what is t e rmed a distributed transaction facility. The paper then
descr ibes one such facil i ty - Camelo t . Camelo t prov ides f lexible and high pe r fo rmance commi t
superv is ion, disk m a n a g e m e n t , and recovery mechan i sms that are usefu l for inp lement ing a w ide c lass of
sat a types , i n d u c i n g large aa tabases . it runs on the Unix-compat ib le Mach opera t ing sys tem and uses
*ne s tandard Arpanet IP commun ica t i on protocols. Present ly , Camelo t runs on RT PC's and Vaxes , but it
shou ld also run on other compute rs Including sha red -memory mul t ip rocessors .

i h l s work was suppor ted by the Defense Advanced Research Projects Agency , A R P A Order No. 4S75
moni to red by the Air Force Av ion ics Laboratory under Cont ract F33615-84 -K -1520 and the IBM
Corpora t ion .

The V iews and conc lus ions con ta ined in this documen t are those of the authors and shou ld not be
in terpreted as represent ing the off icial pol ic ies, i i ther exp ressed or impl ied, of any of the sponsor ing
agenc ies or the US gove rnmen t .

This paper is to appear as a chapter of Distributed Operating Systems: Theory and Practice, Y a k u p
Paker ,ed. , Spr inger -Ver lag , 1987.

•SB*® 8 *

i

Table of Contents
1 . Introduct ion 1
2. Distr ibuted Transact ions 1
3. Three Models 4

3 . 1 . S y s t e m M o d e l 4
3.2. C o m p u t a t i o n M o d e l 5
3.3. A r c h i t e c t u r e M o d e l 5

4. Camelot 7
4 . 1 . B a c k g r o u n d o n M a j o r C a m e l o t I m p l e m e n t a t i o n T e c h n i q u e s 9

4 . 1 . 1 . A b s t r a c t O b j e c t s 9
4.1 .2 . D i s t r i b u t i o n 10
4.1 .3 . T r a n s a c t i o n s 11
4.1 .4 . S u m m a r y of I m p l e m e n t a t i o n B a c k g r o u n d 13

4.2 . C a m e l o t F u n c t i o n s 13
4 . 2 . 1 . C o n f i g u r a t i o n M a n a g e m e n t 14
4.2 .2 . D i s k M a n a g e m e n t 14
4.2.3. R e c o v e r y M a n a g e m e n t 14
4.2.4. T r a n s a c t i o n M a n a g e m e n t 15
4.2 .5 . T h e C a m e l o t L i b r a r y 15
4.2.6. D e a d l o c k D e t e c t i o n 15
4.2.7. R e l i a b i l i t y a n d P e r f o r m a n c e E v a l u a t i o n 16
4.2.8 . M i s c e l l a n e o u s F u n c t i o n s 16

4.3. C a m e l o t I m p l e m e n t a t i o n 16
4.4. D i s c u s s i o n 19

5. Chal lenges 20

UNIVERSITY LIBRARIES
CARNcGiE-[/.i! LOii U ^ V E ^ I Y

PITTSBURGH. PEKNSYLvA^A 1:2!5

ii

L ist of F i g u r e s

Figure 3 - 1 : System Mode! 4
Figure 3-2: Five Leve! Architecture Model 6
Figure 4 - 1 : Relat ionship of Camelot to Other System Layers 8
Figure 4-2: Logical Components of Camelot 17
Figure 4-3: Processes in Camelot Release 1 19

1

1 . I n t r o d u c t i o n

Dist r ibuted compu t i ng sys tems are potent ia l ly rel iable, because their componen ts are redundant and

fail independent ly . Addi t ional ly , d is t r ibuted compu t ing sys tems potent ial ly offer very h igh th roughput for

appl icat ions that can use loose ly -coup led mul t ip rocess ing. The major cha l lenge is to real ize these

potent ia ls eff ic ient ly, and wi thout incurr ing intolerable penal t ies in complex i ty or cost. Consequent l y , there

has been great interest in genera l -purpose techn iques and pract ices for s impl i fy ing the const ruc t ion of

eff icient and robust d is t r ibuted sys tems.

Th is paper d i scusses a techn ique based on distributed transactions and descr ibes a distributed

transaction facility ca l led Camelot that suppor ts their use. Sect ion 2 def ines the concept of a t ransact ion

and prov ides a brief h istor ical perspect ive on its deve lopment . Sect ion 3 then presents three models

usefu l for descr ib ing d is t r ibuted sys tems that suppor t t ransact ion p rocess ing . Sect ion 4 adds

concre teness to this d iscuss ion by descr ib ing the goals , imp lementa t ion bases , funct ions, s t ructure, and

status of the Came lo t d is t r ibuted t ransact ion facil i ty. This paper ends wi th Sect ion 5, wh ich descr ibes

some impor tant cha l lenges in the area of d is t r ibuted t ransact ion p rocess ing .

2. D i s t r i b u t e d T r a n s a c t i o n s

T h e da tabase l i terature typical ly def ines a t ransact ion as a col lect ion of opera t ions b racke ted by two

markers : BeginTransaction and EndTransaction. A t ransact ion has three specia l proper t ies :

• Either ail or none of a t ransact ion 's operat ions are pe r fo rmed . This property is ca l led failure
atomicity,

• If a t ransac t ion comp le tes successfu l ly , the results of its operat ions wi l l never be lost, except
in the event of ca tas t rophes, wh i ch can be made arbitrari ly improbab le . This proper ty is
ca l led permanence.

• T ransac t ions are a l lowed to execute concurrent ly , but the results wi l l be the same as i; the
t ransac t ions execu ted serially in some order. Th is proper ty is usual ly ca l led ser'aiizabiiity.

Transac t ions lessen the burden on appl icat ion p rog rammers by s impl i fy ing the t reatment of fa i lures and

concur rency . Fai lure atomici ty ensures that if a t ransact ion is in ter rupted by a fai lure, its part ial results wil l

undone . Pe rmanence ensures that upda tes per fo rmed by comp le ted t ransact ions are not lost.

Serial izabi l i ty ensures that other concurrent ly execut ing t ransact ions cannot observe incons is tenc ies .

P rog rammers are therefore free to cause temporary incons is tenc ies dur ing the execut ion of a t ransact ion

know ing that their part ia l modi f icat ions wil l never be visible.

T ransac t ions were initially deve loped for cent ra l ized data m a n a g e m e n t sys tems to aid in main ta in ing

app l ica t ion-dependent consistency constraints on stored data. T ransac t ions are a very usefu l abst rac t ion,

because these cons is tency constra ints must typical ly be ma in ta ined desp i te fa i lures and wi thout

2

unnecessar i l y restr ict ing the concur rent p rocess ing of appl icat ion requests . Sys tem R is an example of

an early da tabase sys tem wi th good support for t ransact ions [As t rahan et a l . 76] .

Ex tend ing the concept of t ransact ions for use on d is t r ibuted sys tems w a s not diff icult: Distr ibuted

t ransact ions permi t opera t ions on mult iple objects that are scat tered across mult iple nodes . Though this

concept is easi ly desc r ibed , eff icient imp lementa t ions have been difficult to ach ieve. However , there are

da tabase sys tems that support d is t r ibuted t ransact ions. Berke ley 's Ingres, CCA 's S D D - 1 , and IBM's

R* [S tonebraker and Neuho ld 77 , Rothnie et a l . 80 , Wi l l iams et al. 8 1 , L indsay et a l . 84] are three early

examp les , and new products have recent ly been announced by purveyors of commerc ia l database

sof tware.

Suppor t ing d is t r ibuted p rocess ing is only one of the poss ib le ex tens ions to the t ransact ion concept .

Researchers , start ing in the late 1S70's, also looked for w a y s to increase the doma in of process ing in

wh ich d is t r ibuted t ransact ions cou ld be used . One of their goals w a s to faci l i tate the const ruct ion of *ign!y

available appl icat ions — that is, appl icat ions that cont inue to work despi te fa i lures. Increasing the

f lexibi l i ty of t ransact ions requi red ex tens ions to the t ransac t ion mode l , as wel l as new algor i thms and

arch i tectures to improved their imp lementa t ion .

Perhaps , the most fundamenta l addi t ion to the t ransact ion m o d e l " w a s the not ion that p rog rammers

shou ld be permi t ted invoke operat ions on user -def ined abstract ob jects , rather than be ing restr icted to

us ing objects of a p redef ined type, such as relat ional da tabase . Abstract objects are data or input/output

dev ices , having dist inct names , on wh ich col lect ions of operations have been de f ined . Access to an

object is permi t ted only by these operat ions. A queue object hav ing operat ions such as E n q u e u e ,

D e q u e u e , E m p t y Q u e u e is a typical data object , and a C R T display hav ing opera t ions sucn as

W r i t e L i n e , and R e a d L i n e is a typical I/O object . Th is not ion of object is s imi lar to the not ions of c lasses

in S imula [Dahl and Hoare 72] and packages in A D A [D e p a n m e n t of Defense 821.

Gray and Lomet d iscussed the .extended use of the t ransact ion mode l In two relat ively early

papers [Gray 8 1 , Lomet 77] . in other important work , Moss and Reed at MIT deve i cped an important

addi t ion to the t ransact ion mode l by def in ing what it means to have t ransact ions nested wi th in other

t ransact ions [Reed 78, Moss 81] . Briefly, nested t ransact ions permi t a t ransact ion to s p a w n chi ldren

wh ich may run in paral le l , but are synchron ized so that the t ransact ion sys tem still exhibi ts serial izabi i i ty.

Nes ted t ransact ions also are permi t ted to abort wi thout caus ing the loss of the entire parent t ransact ion 's

work . Al lch in, Herl ihy, Schwarz , We ih l , and I also wro te about many other issues in the synchron iza t ion ,

recovery and overal l s t ructur ing of abstract ob jec ts for t ransact ion sys tems [Al lchin 8 3 : Herl ihy

85, Schwarz 84, Schwarz and Spector 84, Spector and Schwarz 83 , Weih l 84] .

3

Re la ted imp lemen ta t i on wo rk has focused on deve lop ing what w e call a distributed transaction facility

and compat ib le l inguist ic const ructs for access ing it. W e def ine a d is t r ibuted t ransac t ion facil ity as a

d is t r ibuted col lect ion of componen t s that suppor ts the execut ion of t ransact ions and the implementa t ion of

shared abstract da ta ob jects on w h i c h operat ions can be pe r fo rmed . A l t hough there is room for diversity

in the exact func t ions of a d is t r ibuted t ransact ion faci l i ty, it must make it easy to beg in and end

t ransac t ions , to cal l opera t ions on objects f rom wi th in t ransact ions , and to imp lement abstract objects that

have correct synchron iza t ion and recovery proper t ies. By prov id ing a c o m m o n set of synchron izat ion and

recovery m e c h a n i s m s , such a facil i ty can lead to imp lementa t ions of separa te abst ract ions that permit

their c o m b i n e d use . For examp le , a computer a ided des ign sys tem might be built us ing a t ransact ional

da tabase m a n a g e m e n t sys tem and a t ransact ional file sys tem.

A m o n g the most we l l - known imp lementa t ion work , L iskov and her g roup at MIT deve loped the Argus

language and runt ime sys tem [L iskov 82 , Liskov and Schei f ler 83 , L iskov 84] . At Georg ia Tech , a group

has w o r k e d on deve lop ing the C louds operat ing sys tem wi th support for d is t r ibuted t ransact ions [Al lchin

and McKendry 83] . T a n d e m ' s T M F is an examp le of a commerc ia l sys tem suppor t ing distr ibuted

t ransac t ion p rocess ing [He l land 85]. Recent wo rk on t ransact iona l fi le sys tems, for examp le at UCLA,

can also support rel iable and avai lable d ist r ibuted appl icat ions [Weinste in et al. 8 5] . 1

At Carneg ie Mel lon Universi ty, my co l leagues .and I deve loped T A B S , wh ich is a pro to type distr ibuted

t ransac t ion facil i ty [Spector -e t al. 85a, Spector et al. 85b] . W e are are now deve lop ing the product ion-

or ien ted Came lo t (Carnegie Mel lon Lew Overhead Transact ion) facil i ty [Spector et al 86, C M U 87].. wh ich

is descr ibed be low. To reduce further the amount of effort required to construct rel iable d ist r ibuted

sys tems , Her l ihy and Wing and their co l leagues are deve lop ing the Ava lon language facil i t ies — a

co l lect ion of cons t ruc ts that wi l l use Camelo t and prov ide l inguist ic suppor t for rel iable

appl icat ions [Her l ihy and Wing 86] . Ava lon compr ises runt ime l ibraries and extens ions to C A + , C o m m o n

Lisp, and ADA, wh i ch together automat ical ly genera te the necessary cal ls on lower- level

c o m p o n e n t s [Her l ihy and Wing 85] . Th is work on Camelo t and Ava lon is based upon our col lect ive

exper ience wi th T A B S and Argus.

To summar i ze , the goa l of this research and deve lopmen t is to simpl i fy the cons t ruc t ion of rel iable

d is t r ibuted appl icat ions that access shared objects by prov id ing faci l i t ies for suppor t ing dist r ibuted

t ransact ions and appropr ia te inter faces to them. The t ransac t ion faci l i t ies need to be eff icient, easi ly

m a n a g e d , f lexible e n o u g h to support a w ide col lect ion of abst ract t ypes inc luding large da tabases , and ,

preferably , usefu l o n he te rogeneous hardware in large ne twork env i ronments . The fo l lowing sect ions

shou ld help concret ize these not ions.

1This section conta.ns but a partial list of related work. Due apology is made to researchers whose work has been omitted.

4

3. T h r e e M o d e l s

This sect ion p resents three broadly appl icable mode ls that are useful for descr ib ing distr ibuted sys tems

that suppor t t ransact ion p rocess ing : The system model descr ibes under ly ing assumpt ions about the

ha rdware , s to rage, and network. The computation model descr ibes sys tem opera t ion as a col lect ion of

d is t r ibuted t ransac t ions . T h e architecture model descr ibes a f ive- t iered sof tware organizat ion for a

d is t r ibuted sys tem suppor t ing t ransact ions.

3 . 1 . System Model

There is substant ia l ag reement on the under ly ing sys tem mode l for d is t r ibuted process ing , wh ich

conta ins p rocess ing nodes and a commun ica t i on network as Figure 3-1 i l lustrates. Process ing nodes are

fai l-fast and include un ip rocessors or shared m e m o r y mul t iprocessors of many types . Process ing nodes

are genera l ly a s s u m e d to have independent fai lure modes .

F i g u r e 3 - 1 : Sys tem Mode l

This figure shows the components of the system model. Stable storage and non-volatile storage, though pictured as disks, ccuid be
implemented with other media, such as battery backed-up memory.

5

Storage o n p rocess ing nodes compr i ses volat i le s torage — where por t ions of objects reside w h e n they

are be ing accessed , non-volat i le s torage — w h e r e objects reside w h e n they have not been accessed

recent ly, and stable s torage — m e m o r y that is a s s u m e d to retain in format ion despi te fai lures. The

conten ts of volat i le s torage are lost after a sys tem c rash , and the contents of non-volat i le s torage are lost

w i th lower f requency , but a lways in a detec tab le way. Stable s torage can be imp lemented us ing two

non-volat i le s torage uni ts on a node or us ing a network serv ice [Danie ls et al. 86] as descr ibed in Sect ion

4 .2 .3 .

The s y s t e m mode l ' s commun ica t i on network prov ides da tagram-or ien ted , in ternetworked OS ! Level 3

funct ions [Z i m m e r m a n n 82] such as the Arpanet IP protocol [Poste! 82] . In other words , the network

compr i ses bo th local and long-haul c o m p o n e n t s and permi ts p rocesses to send da tagrams hav ing a f ixed

m a x i m u m size. S o m e local area ne tworks may special ly suppor t mult icast or broadcast , and the network

protocols are a s s u m e d to support these fea tures for reasons of ef f ic iency. Because appl icat ions us ing

the sys tem may need high avai labi l i ty, commun ica t i on networks shouid have suff icient redundancy to

render network part i t ions unl ikely. Network part i t ions can nonethe less occur , so higher levels of the

sys tem must take measu res to protect t hemse lves against the e r roneous computa t ions or incons is tenc ies

that cou ld result.

3.2. Computa t ion Model

The computa t ion mode l compr ises appl icat ions that per fo rm process ing by execut ing operat ions on

user -de f ined da ta ob jects wi th in d is t r ibuted t ransact ions . A t ransac t ion ei ther commits, in wh i ch case al!

its upda tes appear to be atomical ly m a d e , or it aborts, in wh ich case no changes appear at all.

T ransac t ions may be nested as descr ibed above .

Data ob jects may be dist r ibuted across the network and are encapsu la ted wi th in protect ion doma ins

that (1) export only opera t ions that make -up the def ined interface and (2) guaran tee that the invcker has

suff icient access r ights. Data objects may be nes ted . This computa t ion mode l appl ies to many sys tems,

including Ff, A rgus , T A B S , and Cameio t .

3.3. Archi tecture Model

The archi tectura l mode l descr ibes how p rocess ing on a node is o rgan i zed ; that is, it descr ibes how to

real ize the compu ta t i on mode l o n the sys tem mode l . It is s t ruc tured in f ive logical levels, as s h o w n in

Figure 3-2. As one might hope, few cal ls p roceed f rom lower levels to upper levels. (The levels referred

to in this mode l are dist inct f rom the OSI levels, and s u b s u m e funct ions in OSI levels 4 to 7.)

At the base in Level 1 is the operat ing sys tem kernel that imp lements p rocesses , local synchron iza t ion ,

and local c o m m u n i c a t i o n . Example kernels include the V and Accent kerne ls [Cher i ton 84 , Rash id and

6

Rober tson 81] . Level 2, the subject of a recent paper [Spector 86] , p rov ides sess ion and da tag ram-based

in ter-node commun i ca t i on us ing the network support as de f ined in the sys tem mode l . The Mach

opera t ing sys tem prov ides funct ions in both Levels 1 and 2 [Accet ta et al. 86 , Rash id 86] .

Above the commun ica t i on level is the d is t r ibuted t ransact ion faci l i ty, Level 3. Level 3 suppor ts fai lure

atomic i ty a n d pe rmanence , and w a s descr ibed in Sect ion 2. T h e d is t r ibuted t ransact ion facil ity bui lds

upon the p rocess , synchron iza t ion , and commun ica t i on faci l i t ies of Leve ls 1 and 2.

Level 5: Applications

Level 4 : Data Objects

Level 3: Distributed Transaction Fa c i I i t y

Level 2 : Inter-Node Communication

Level 1 : Operating System Kernel

F i g u r e 3 -2 : Five Level Arch i tecture Mode l

This figure illustrates the five system levels. The kernel level provides processes and inter-process communication. The
communication level provides inter-node communication. The distributed transaction facility provides complete succor: for
transaction processing on distributed objects. Shared data objects are maintained in Level 4 using system-suppiled library routines
or the runtime runtime support of a programming language. The applications that use the shared data oo.ects are in Level 5.

Abst rac t ob jects may be g rouped into a subsys tem, and there may be mult ip le subsys tems wi th in the

Data Object Level (Level 4). The abstract ob jects , such as da tabase managers or mai l sys tems, use the

d is t r ibuted t ransact ion facil i ty so that they may be accessed wi th in t ransac t ions .

In Level 5, appl icat ions use the d is t r ibuted t ransact ion facil i ty to beg in , commi t , and abort t ransact ions

and to execute operat ions on objects imp lemented wi th in Level 4. Example appl icat ions include a

bank ing te rmina l sys tem and an interact ive interface to a da tabase manager .

The language support used by Levels 4 and 5 does not fit ent i rely w i th in any level . Rather it natural ly

cons is ts of one or more t ranslators, w h i c h are external to this mode l , and runt ime suppor t that may reside

in Levels 4 and 5. Of course, the language makes cal ls on faci l i t ies p rov ided by the three lowest levels.

For examp le , synchron iza t ion is typical ly imp lemented by runt ime support w i th in Level 4 ob jec ts , wh i le the

7

coord ina t ion of t ransact ion commi ts is hand led in Level 3, and the t ransmiss ion of i n t t r -node messages is

hand led in Level 2.

Th is arch i tec ture, wh i ch prov ides a single d is t r ibuted t ransact ion faci l i ty, has two benef i ts over

t radi t ional arch i tec tures that may comb ine Levels 3, 4 , and 5: First, because many of the componen ts that

suppor t t ransact ions are s tandard ized and moved lower into the sys tem hierarchy, there is the potent ia l to

imp lement t hem more eff iciently. Second , the archi tecture prov ides a c o m m o n not ion of t ransact ions and

da ta objects for all ob jects and appl icat ions in the sys tem. As ment ioned in Sect ion 2, this permi ts more

un i fo rm access to data. It a l lows an appl icat ion, for examp le , to update t r ansac t i ona l ^ a relat ional

da tabase conta in ing indexing in format ion, a file conta in ing image data, and a hierarchical da tabase

conta in ing pe r fo rmance records.

Hav ing charac ter ized the sys tem, computa t iona l , and archi tectural s t ructures of d is t r ibuted t ransact ion

processing., it is now appropr iate to examine a part icular imp lementa t ion — the Cameic t d istr ibuted

t ransact ion facil i ty.

4. C a m e l o t

Came lo t p rov ides f lexible and eff icient suppor t for d is t r ibuted t ransact ions on a w ide var iety of user-

def ined ob jects such as da tabases , f i les, message queues , and I/O ob jects . Cl ients of the Camelo t

facil i ty encapsu la te objects wi th in sen/er p rocesses , wh ich then execute operat ions in response to remote

procedure cal ls. Came 'o i ' s features include the fo l lowing:

• C o m p a t i b i l i t y w i t h s t a n d a r d o p e r a t i n g s y s t e m s . C a m e lot runs on Mach , a Berke ley 4.3
U n i x ' ^ - c o m p a t i b l e opera t ing sys tem [Rash id 36] . Mach 's Unix-compat ib i l i ty makes Came lo t
easier to use and ensures that g o o d p rogram deve lopmen t tools are avai lab le. Mach 's
suppor t for shared memory , message pass ing, and mul t ip rocessors makes Came ic t mere
erficient and f lexible.

* C o m p a t i b i l i t y w i t h A r p a n e t p r o t o c o l s . Came ! o£ uses da tag rams and M
both of wh ich are buiit on the star-card Arpanet P network layer ; ° o s t e l 82 ; .
large d is t r ibuted process ing exper iments .

• M a c h i n e - i n d e p e n d e n t i m p l e m e n t a t i o n . Came ic t is in tended to run on all the
un ip rocessors and mul t ip rocessors that Mach suppor ts . For example , Came lo t Is deve loped
on IBM RT PC's , but tested f requent ly on DEC Mic roVaxes to ensure that no mach ine
dependenc ies have been added .

• P o w e r f u l f u n c t i o n s . Cameic t suppor ts funct ions that are suff icient for many di f ferent
abstract types. For example , Came ic t suppor ts both b lock ing and non-b lock ing commi t
p ro toco ls , nested t ransact ions as in Argus , and permi ts sha red , recoverable ob jects to be
a c c e s s e d in vir tual memory . (Sect ion 4.2 descr ibes Camelo t ' s funct ions in more detai l .)

8

• E f f i c i e n t i m p l e m e n t a t i o n . Camelo t is des igned to reduce the ove rhead of execut ing
t ransact ions. For examp le , shared memory reduces the use of message pass ing ; mult iple
th reads of cont ro l increases para l le l ism; and a c o m m o n log reduces the number of
synchronous stable s torage wr i tes . (Sect ion 4.3 descr ibes Camelo t ' s imp lementa t ion in more
detail .)

• C a r e f u l s o f t w a r e e n g i n e e r i n g a n d d o c u m e n t a t i o n . Camelo t is be ing coded in C in
con fo rmance wi th carefu l cod ing s tandards [T h o m p s o n 86] . Th is increases Camelo t ' s
portabi l i ty and mainta inabi l i ty and reduces the l ikel ihood of bugs . The internal and external
sys tem inter faces are spec i f ied in the Camelo t Interface Speci f icat ion [Spector et al 86] ,
wh i ch is then p rocessed to genera te Came lo t code . A manua l based o n the speci f icat ion is
nearly comple te [C M U 87] .

F igure 4-1 shows the re lat ionship of Camelo t to Ava lon and M a c h and descr ibes how the componen ts

fit into the archi tecture mode l .

V

c
•n

_ j « . — r p

Various Servers -ncaosulatir.c Objects
1 1 1 " I

Camelct Distributed Transaction Facility

^ o mm u r. t C a t i. c n
Mach Inter-node
Communication

AR?A:;^C I? layer

Mach, Unix-compatible Operating System

— Level 4

— Level 3

~~ e *-r ̂ 1 1

r Level 1

F i g u r e 4 - 1 : Relat ionship of C a m e i c i to Other Sys tem Layers

Mach executes on uniprocessor and multiprocessor, hardware and supports the functions of Level 1 of the architecture mode!. Level
2, or the inter-node communication level, is logically layer on too of Mach. Cameioi supports distributed transaction processina
iLevel 3 functions; and includes several specialized additions to the communication layer. Avalon provides linguistic sucocrt for
accessing Camelot and Mach. and :s not a numbered level or the architecture model. Users define servers encapsulating ooiocts
(Level 4) and applications (Level 5} that use those objects. Examples of sen/ers are mail repositories, distributee file systems ano
database managers.

9

4 . 1 . Background on Major Camelot Implementat ion Techniques

This sect ion ident i f ies many of the a lgor i thms and pa rad igms that Camelo t uses for suppor t ing

d is t r ibuted t ransact ions on abstract ob jects . The sect ion focuses on issues in abstract ob jects ,

d is t r ibut ion, and t ransac t ion p rocess ing .

4 . 1 . 1 . A b s t r a c t O b j e c t s

Many mode ls exist for imp lement ing the abstract objects of Level 4 in the archi tecture mode l . In one

mode l , ob jec ts are encapsu la ted in pro tec ted subsys tems and accessed by protected procedure cal ls or

capabi l i ty mechan i sms [Sal tzer 74, Fabry 74] . Camelo t uses another mode l , cal led the client/server

mode l , as a basis for imp lement ing abstract objects [Wa tson 31] . Servers encapsu la te one or more data

ob jec ts . They accept request messages that speci fy opera t ions and a speci f ic object. To imp lement

opera t ions , they read or modify data they direct ly contro l and invoke cpera t ions on other servers. After an

opera t ion is pe r fo rmed , s e r / e r s send a response m e s s a g e conta in ing the result. Servers that

encapsu la te data ob jects are cal led Data Ser/ers in Came ic t , Resource Managers in R" and Guardians in

A rgus .

Message t ransmiss ion mechan i sms and server o rgan iza t ions differ a m o n g imp lementa t ions based

upon the c l ient /server mode l . In these aspects , Camelo t is substant ia l ly in f luenced by the Mach opera t ing

sys tem on wh ich it w a s deve loped [Rash id 86] . M a c h prov ides heavywe igh t p rocesses wi th 32-bi t v ir tual

address spaces and suppor ts messages addressed add ressed to ports. Many p rocesses may have send

rights to a pert, but on ly one has receive rights. Send r ights and receive rights can be t ransmi t ted in

messages along wi th ord inary data. Large quant i t ies of da ta are eff iciently c o n v e y e d be tween proce

on the same mach ine via copy-on-wr i te mapp ing into the address space of the recipient p rocess

message mode l dif fers f rom that of Unix 4.2 [Joy et al . 83] and the V Kerne l [Cher i ton 84] in that

messages are typed sequences of data wh ich can conta in port capabi l i t ies, and that large messages can

t ransmi t ted wi th near ly constant ove rhead .

This

T h e p rog ramming effort assoc ia ted wi th pack ing and unpack ing messages is reduced

th rough the use of a remote procedure call facil i ty ca i led Matchmaker [Jones et al. 85] . (We use the term

remote procedure caillo apply to both int ra-node and in ter -ncde communica t ion .) Ma tchmaker ' s input is

a syntact ic def in i t ion of p rocedure headers speci f ied in a Pascal- l ike fash ion. Its outputs are client and

server .s tubs that pack and unpack messages , and d ispatch to the appropr ia te p rocedures on the server

s ide.

S e r / e r s that never wait whi le p rocess ing an opera t ion can be o rgan ized as a loop that receives a

request message , d ispa tches to execute the opera t ion , and sends a response m e s s a g e . Unfor tunate ly ,

servers may wai t for many reasons: to synchron ize wi th o ther opera t ions , to execu te a remote opera t ion

10

or sys tem cal l , or to page-faul t . For such servers , there must be mult ip le th reads of contro l wi th in a

server, or else the server wi l l pause or dead lock w h e n it need not.

O n e imp lementa t ion approach for servers is to have mult ip le l ightweight p rocesses wi th in a s ingle

server process. Page- fau l ts still cause all l ightweight p rocesses to be suspended , but a l ightweight

p rocess swi tch can occur w h e n a server w o u l d o therwise wai t . Ano ther approach is to al locate

independent ly schedu lab le th reads of cont ro l that share access to data . Wi th th is approach , a s e r / e r is a

c lass of re lated p rocesses — in the S imu la sense of the w o r d "c lass." Th is techn ique is suppor ted by

M a c h and used in Came lo t [Cooper 86] . The topic of server o rgan iza t ion has been cieariy d iscussed by

L iskov and Herl ihy [L iskov and Herl ihy 83] .

Before leaving the topic of abstract ob jects , it is necessary to d iscuss how objects can be n a m e d .

Certa in ly, a port to a server and a logical object identifier that d is t ingu ishes b e t w e e n the var ious objects

imp lemented by that server are suff icient to name an object . The d issemina t ion of these names can be

done in many w a y s . A c o m m o n me thod is for sen/ers to register ob jec ts w i th a wel l known server

p rocess on their node, of ten cal led a name server, and for the name s e r / e r to return one or more ports, in

response to name lookup requests. N a m e servers can coopera te w i th each ether to prov ide t ransparent

naming across a network .

4 .1 .2 . D i s t r i b u t i o n

Repl icated and par t i t ioned dist r ibuted objects wi th in Leve l 4 of the arch i tecture mode l are feasib le to

imp lement us ing the c l ient /server mode l . For examp le , there may be many sen/ers that can respond

ident ical ly to opera t ions on a repl icated object . However , servers must con ta in the rep l i ca ron or

part i t ioning logic. The Camelo t project hypothes izes that the . avai labi l i ty of t ransact ion support

substant ia l ly s impl i f ies the ma in tenance of d is t r ibuted and repl icated ob jects .

Transparent in ter-node message pass ing can simpli fy access to remote sen/ers . in the v a c n

env i ronment , in ter-node commun ica t ion is ach ieved by interposing a pair of p rocesses , cal led

commun ica t i on managers , be tween the sender of a message and its i n tended recipient on a r s m a e

node [Rash id and Rober tson 81] . The commun ica t i on manager suppl ies the sender w i th a local p e n to

use for messages addressed to the remote p rocess . Toge ther w i th its counterpar t at the remote node,

the commun ica t i on manage r imp lements the mapp ing be tween the local port used by the sender a r c the

co r respond ing remote port be long ing to the target p rocess , prov id ing t ransparent commun ica t i on .

11

4 .1 .3 . T r a n s a c t i o n s

Came lo t p rov ides fea tures to support all the s tandard not ions of t ransact ions, but does not require that

ob jects enforce ser ial izabi l i ty, fai lure atomic i ty , or pe rmanence . T ransac t ions are permi t ted to interfere

w i th each o ther a n d to show the effects of fa i lure — if this is usefu l . Tha t is, Camelot provides basic

faci l i t ies for suppor t ing many different types of objects and lets imp iemento rs choose how they want to

use t h e m . (A p r o g r a m m i n g language, such as Ava lon , can also restrict the w a y s in wh ich the Camelo t

faci l i t ies are used.)

Many techn iques exist for synchron iz ing the execut ion of t ransac t ions . Lock ing , opt imist ic, t imes tamp,

and many hybr id s c h e m e s are f requent ly d i scussed ; many of these are su rveyed by Bernste in and

G o o d m a n [Berns te in and G o o d m a n 81] . W e have chosen to support two compat ib le types of

synchron iza t ion in Came lo t : locking and hybr id atomici ty [Date 83 , Her l ihy 85] . Hybr id atomici ty has

features of both t imes tamps and locking, and requires a Lampor t c lock faci l i ty [Lampor t 78] f rom Camelo t

and substant ia l suppor t f rom Ava ion [Herl ihy and Wing 86] . S ince both types of synchron izat ion are

imp lemen ted pr imar i ly by servers (within Level 4) , imp lementa t ions can be ta i lored to provide the highest

concur rency . For examp le , w i th type-specific lock ing, imp iementors can ob ta in increased concur rency by

def in ing type-spec i f ic lock modes and lock protocols [Korth 83, Schwarz and Spec tor 84, Schwarz 84] .

Both lock ing and hybr id atomici ty may de lay t ransact ion execut ion , even if that delay leads to a

dead lock . S o m e sys tems imp lement local and dist r ibuted dead lock detec tors that identify and break

cycles of wa i t ing t ransact ions [Obermarck 82, L indsay et a l . 84] . However , Camelo t Release 1, like many

other sys tems, rel ies on t ime-outs , wh ich are explicit ly set by sys tem users [T a n d e m 82] .

Recovery in Came lo t is based upon write-ahead logging, rather than shadow paging [Lorie 77, Gray

78, L indsay et al. 79 , Gray et al. 8 1 , Lampson 8 1 , Haerder and Reuter 83, Schwarz 34] . It assumes the

s torage h ierarchy de f ined in the sys tem mode l , above .

in recovery techn iques based upon wr i te -ahead logging, stabie s torage conta ins an append-on ly

sequence of records. These records may conta in a redo componen t , that permi ts the effects of

commi t t ed t ransac t ions to be redone and possib ly an undo componen t that permi ts the effects of abor ted

t ransact ions to be undone . Updates to data ob jects are made by modi fy ing a representa t ion of the object

resid ing in volat i le s torage and by spool ing one or more records to the log. Logg ing is ca l led "wr i te-

a h e a d " because log records must be safely s tored (forced) to stable s torage before t ransact ions commi t ,

and before the volat i le representat ion of an object is cop ied to non-volat i le s to rage. Because of this

s t rategy, there are log records in stable s torage for all the changes that have been made to non-volat i le

s torage, and for all commi t ted t ransact ions. Thus , the log can be used to recover f r om abor ted

t ransact ions , sys tem c rashes and non-volat i le s torage fai lures.

12

T h e advan tages of w r i t e -ahead logging over other s chemes have been d iscussed e lsewhere and

inc lude the potent ia l for inc reased concur rency , reduced I/O activi ty at commi t t ime, and cont iguous

a l locat ion of objects on secondary s torage [Gray et a l . 8 1 , Tra iger 82 , Reuter 84] . All objects in Camelo t

Re lease 1 use one of two co-ex is t ing wr i te -ahead logging techn iques and share a c o m m o n log.

T h e s imp ler techn ique is ca l led old value/new value logg ing, in wh i ch the undo and redo por t ions of a

log record conta in the o ld and new va lues of an object 's representa t ion . Dur ing recovery after node or

server c rashes , ob jects are reset to their most recent ly commi t t ed va lues dur ing a one pass scan that

beg ins at the last log record wr i t ten and p roceeds backward . If th is va lue logg ing a lgor i thm is used , only

one t ransact ion at a t ime may modi fy any individual ly logged c o m p o n e n t of an object that is to be fai lure

a tomic and pe rmanen t .

T h e o ther techn ique is ca l led new value logging, in wh i ch log records conta in only a redo componen t .

New value logging requires less log space but results in inc reased pag ing for long running t ransact ions.

Th is is because pages cannot be wr i t ten back to their home locat ion unti l a t ransact ion comple tes .

Came lo t a s s u m e s that the Invoker of a t ransact ion wi l l know if the t ransac t ion wi l l be short and wil l specify

that new va lue logging shou ld be used .

Re lease 2 of Camelo t wi l l also prov ide another wr i te -ahead log-based recovery techn ique cal led

operation (or transition) logg ing. Wi th it, data servers wr i te log records conta in ing the names of

opera t ions and enough in format ion to invoke t h e m . Opera t ions are redone or undone , as necessary ,

dur ing recovery process ing to restore the correct state of ob jects . Opera t ion based recove r / can permit a

greater degree of concur rency than the value based recovery, and may require less log space to be

wr i t ten . Its d isadvan tage is complex i ty .

T h e Camelo t recovery a lgor i thms are similar to other prev ious ly pub l i shed wr i te -ahead log-based

a lgor i thms [Gray 78, L indsay et ai . 79], in part icular those of Schwarz [Schwarz 84] . However , they have

been ex tended to support aborts of nested t ransact ions, new va lue recovery, and the legging of arbitrary

regions of memory .

Bo th va lue and opera t ion logging a lgor i thms require that per iodic sys tem checkpoints be taken .

Checkpo in ts serve to reduce the amount of log data that must be avai lab le for c rash recovery and shor ten

the t ime to recover after a crash [Haerder and Reuter 83] . At checkpo in t t ime, a list of the pages current ly

in volat i le s torage and the status of current ly act ive t ransact ions are wr i t ten to the log. Came lo t also

per iodical ly forces certa in pages in volat i le s torage to non-volat i le s torage and may abort long running to

lessen the amount of log that must be rapidly accessib le. To reduce the cost of recover ing f rom disk

fa i lures, Came lo t infrequent ly dumps the contents of non-volat i le s to rage into an off- l ine arch ive.

13

Recent ly , researchers have begun to d iscuss high pe r fo rmance recovery imp lementa t ions that

in tegrate vir tual memory m a n a g e m e n t wi th the recovery s u b s y s t e m and use higher per fo rmance stable

s to rage dev ices [Tra iger 82 , Banat re et a l . 83 , S tonebraker 8 4 , Diel et a l . 84 , Eppinger and Spec tor 85] .

Came lo t in tegrates vir tual m e m o r y m a n a g e m e n t wi th recovery and ensures that the necessary log

records are wr i t ten to stable s torage before pages are wr i t ten to their home locat ion.

T h e most impor tant componen t of a t ransact ion facil i ty not yet d iscussed is the one that oversees

ini t iat ing, commi t i ng , and abor t ing t ransact ions. Commi t a lgor i thms vary in their ef f ic iency and

robus tness [L indsay et al. 79 , Dwork and Skeen 83] . Camelo t ' s a lgor i thms are both ins tances of star-

shaped s ta r -shaped commi t pro toco ls , in w h i c h the init iator of the outermost top- level t ransact ion serves

as coord ina tor for all nodes in the t ransact ion. One a lgor i thm is based on the s tandard 2-phase commi t

p ro toco l . It is eff icient, but has fai lure modes in wh ich nodes part ic ipat ing in a d is t r ibuted t ransac t ion must

restrict access to some data unti l o ther nodes recover f rom a crash or a network part i t ion is e l iminated.

Camelo t also prov ides a hybr id pro toco l , wh ich is a cross be tween 3-phase and byzant ine commi t

pro toco ls , to reduce the l ikel ihood that access to data wil l be b locked .

T h e increased interest in bu i ld ing nes ted abstract ions us ing t ransact ions has led to the invest igat ion

and imp lementa t ion of faci l i t ies for suppor t ing nest ing. T h e s e faci l i t ies limit the concur rency anomal ies

that can occur w i th in a s ingle t ransac t ion that has mult iple th reads of control and permi t por t ions of a

t ransac t ion to abort independent ly . Camelo t suppor ts nested t ransact ions as in Argus .

4 .1 .4 . S u m m a r y o f I m p l e m e n t a t i o n B a c k g r o u n d

T h e major points of this deve lopmen t can be tersely s u m m a r i z e d : Camelo t suppor ts t ransac t ions on

abstract objects. Objects are imp lemen ted wi th in server p rocesses , and operat ions on objects are

invoked via messages wi th a remote procedure cal l facil i ty. Inter-node commun ica t i on uses both

sess ions and da tag rams . Inter- t ransact ion synchron izat ion is d o n e v ia locking or hybr id atomici ty, wi th

t ime-outs used to resolve dead lock (in Re lease 1). Wr i te -ahead logging is the basis of recovery and

t ransac t ion commi t is done via ei ther a b lock ing or non-b iock ing commi t protoco l . Camelo t suppor ts the

Argus nes ted t ransact ion mode l .

4 . 2 . Camelot Funct ions

As men t ioned , the most basic bui ld ing b locks for rel iable d is t r ibuted appl icat ions are p rov ided by Mach ,

its commun ica t i on faci l i t ies, and the Ma tchmake r RPC stub genera to r [Cooper 86 , Jones et al . 85] . These

bui ld ing blocks include p rocesses , threads of control w i th in p rocesses , shared memory be tween

p rocesses , and message pass ing .

14

Came lo t prov ides funct ions for sys tem conf igura t ion , recovery, d isk managemen t , t ransact ion

m a n a g e m e n t , dead lock detec t ion , and re l iab i l i ty /per formance eva luat ion. S imple lock-based

synchron iza t ion m e c h a n i s m s are p rov ided in the Camelo t l ibrar ies. (Avalon 's runt ime suppor t is required

to use Hybr id Atomici ty.) T h e s e funct ions are spec i f ied in the Camelo t Interface Speci f icat ion and Guide

to the Camelo t Sys tem [Spector et al 86, C M U 87] . Cer ta in more advanced funct ions wil l be added to

Came lo t for Re lease 2.

4 . 2 . 1 . C o n f i g u r a t i o n M a n a g e m e n t

Came lo t suppor ts the dynamic al locat ion and dea l locat ion of both new data servers and the

recoverab le storage in wh i ch data servers store long- l ived ob jec ts . Camelo t mainta ins conf igurat ion data

so that it can restart the appropr ia te data servers after a c rash and reat tach t h e m to their recoverab le

s torage. These conf igurat ion data are stored in recoverab le s torage and upda ted t r ansac t i ona l ^ .

4 .2 .2 . D i s k M a n a g e m e n t

Came lo t prov ides data servers w i th up to 2 4 8 by tes of recoverab le s torage. Wi th the coopera t ion of

M a c h , Came lo t permi ts da ta servers to map that s torage into their address space , t hough data servers

must call Camelo t to remap their address space w h e n they over f low 32-bit addresses . To simpli fy the

al locat ion of con t iguous regions of disk space, Came lo t assumes that all a l locat ion and deal locat ion

requests are coarse (e.g. , in megaby tes) . Data servers are responsib le for do ing their o w n microscopic

s torage managemen t .

So that operat ions on da ta in recoverable s torage can be undone or redone after fa i lures. Camelot

prov ides data servers w i th logg ing serv ices for record ing modi f icat ions to ob jects . Camelo t automat ical ly

coord ina tes pag ing of recoverab le s torage to main ta in the wr i te -ahead log invar iant [Eppinger and

Spector 85] .

4 .2 .3 . R e c o v e r y M a n a g e m e n t

Camelo t ' s recovery funct ions include t ransact ion abort , and server, node, and media- fa i lure recovery.

To support these funct ions, Came lo t Release 1 prov ides the two fo rms of w r i t e -ahead va iue logging

ment ioned above.

Camelo t wr i tes log da ta to local ly dup lexed s torage or to s torage that is rep l icated on a col lect ion of

ded ica ted network log servers [Danie ls et al. 86] . In some env i ronments , the use of a shared network

logging facil ity cou ld have survivabi l i ty, operat iona l , pe r fo rmance , and cost advan tages . Survivabi l i ty is

l ikely to be better for a repl icated logging facil ity because it can tolerate the dest ruc t ion of one or more

entire p rocess ing nodes. Opera t iona l advantages accrue because it is easier to m a n a g e h igh vo lumes of

log data at a smal l number of logging nodes , rather than at all t ransac t ion p rocess ing nodes.

Per fo rmance might be bet ter because shared faci l i t ies can have faster hardware than cou ld be af forded

15

for each p rocess ing node . Final ly, prov id ing a sha red network logging facil i ty w o u l d be less cost ly than

ded ica t ing dup lexed d isks to each process ing node , part icular ly in works ta t ion env i ronments .

4 .2 .4 . T r a n s a c t i o n M a n a g e m e n t

Camelo t prov ides faci l i t ies for beg inn ing new top- level and nested t ransact ions and for commi t t ing and

abor t ing t h e m . T w o opt ions exist for commi t : Blocking commi t may result in data that remains locked until

a coord inator is restar ted or a network is repa i red. Non-bloc'r.ing commi t , though more expens ive in the

normal case , reduces the l ikel ihood that a node 's da ta wil l remain locked unti l another node or network

part i t ion is repa i red , in addi t ion to these s tandard t ransact ion managemen t func t ions , Camelo t prov ides

an inquiry faci l i ty for de te rmin ing the status of a t ransac t ion . The Camelot l ibrary and Ava lon use this to

support lock inher i tance.

4 .2 .5 . T h e C a m e l o t L i b r a r y

The Camelo t l ibrary compr i ses rout ines and macros that al low a user to imp lement data se r /e r s and

app l i ca t ions . 2 For servers , it prov ides a c o m m o n message hand l ing f ramework and s tandard process ing

funct ions for sys tem messages . Thus , the task of wr i t ing a s e r / e r is reduced to wr i t ing procedures for the

operat ions suppor ted by the server.

The l ibrary prov ides severa l categor ies of suppor t rout ines to faci l i tate the task of wr i t ing these

procedures . T ransac t ion contro l rout ines provide the abil ity to initiate and abort nested and top level

t ransact ions. Data manipu la t ion rout ines permi t the c reat ion and modi f icat ion of static recoverable

objects . Lock ing rout ines mainta in the serial izabi l i ty of t ransact ions. (Lock inher i tance a m o n g famil ies of

subt ransact ions is hand led automatical ly.) Cri t ical sect ions contro l concurrent access to iocai objects. A

macro faci l i tates remote procedure calls to other servers.

Appl icat ions use a subset of the l ibrary faci l i t ies. In part icular , they use the t ransact ion control rout ines

and server access macro .

4 .2 .6 . D e a d l o c k D e t e c t i o n

Cl ients of Camelo t Re lease 1 must depend on t ime-out to detect dead locks . Re lease 2 will incorporate

a dead lock detector and export interfaces for servers to report their iocai know ledge of wai t - for g raphs.

W e ant ic ipate that imp lement ing dead lock detect ion for arbitrary abstract t ypes in a large network

env i ronment like the Arpane t wil l be diff icult.

2 The functions of the Camelot library are,subsumed by Avalon's more ambitious linguistic support.

18

Figure 4-3 shows the seven p rocesses in Re lease 1 of Camelo t : master contro l , disk manager ,

commun ica t i on manager , recovery manager , t ransac t ion manager , node server, and node conf igurat ion

app l i ca t i on . 3

• M a s t e r C o n t r o l . T h i : p rocess restarts Camelo t after a node fa i lure.

• D i s k M a n a g e r . The disk manager a l locates and deal locates recoverab le s torage, accepts
and wr i tes log records locally, and enforces the wr i te -ahead log invar iant. For log records
that are to be wr i t ten to the d is t r ibuted logging serv ice, the d isk manager works wi th
ded ica ted sen/ers on the network. Addi t ional ly , the disk manager wr i tes pages to / f rom the
disk w h e n M a c h needs to serv ice page faults on recoverable s torage or to c lean pr imary
memory . Final ly, it per forms checkpo in ts to limit the amount of work dur ing recovery and
wo rks c losely w i th the recovery manager w h e n fai lures are be ing p rocessed .

• C o m m u n i c a t i o n M a n a g e r . The commun ica t i on manager fo rwards inter-node M a c h
m e s s a g e s , and prov ides the logical and phys ica l c lock serv ices. In add i t ion , it knows the
fo rmat of m e s s a g e s and keeps a list of all the nodes that are invo lved in a part icular
t ransac t ion . Th is in format ion is prov ided to the t ransact ion manager for use dur ing commi t or
abort p rocess ing . Finally, the commun ica t i on manager prov ides a name service that creates
commun ica t i on channe ls to n a m e d servers . (The t ransact ion manage r and d ist r ibuted
logging serv ice use IP da tagrams, thereby bypass ing the commun ica t i on manager .)

• R e c o v e r y M a n a g e r . T h e recovery manage r is responsib le for t ransact ion abort, s e r / e r
recovery , node recovery, and media- fa i lure recovery. Server and node recovery respect ively
require one and two backward passes over the log.

• T r a n s a c t i o n M a n a g e r . The t ransact ion manager coord inates the ini t iat ion, commit., and
abort of local and d is t r ibuted t ransact ions. It fully suppor ts nested t ransac t ions .

• N o d e S e r v e r . The node s e r / e r is the reposi tory of conf igurat ion da ta necessary for
restart ing the node. It stores its data in recoverable storage and is recovered before other
servers .

• N o d e C o n f i g u r a t i o n A p p l i c a t i o n . The node conf igurat ion appl icat ion permi ts Camelo t s

h u m a n users to update data in the node server and to c rash and restart servers .

The organ izat ion of Camelo t is simi lar to that of T A B S and R \ Structural ly , Camelo t differs f rom T A B S

in the use of th reads, shared memory inter faces, and the combina t ion of logg ing and disk m a n a g e m e n t in

the same process . Many low- level a lgor i thms and protocols have also b e e n c h a n g e d to improve

per fo rmance and prov ide added funct ions. Came lo t differs f rom R* in its greater use of message pass ing

and suppor t for c o m m o n recovery facil i t ies for servers. Of course, the funct ions of the two sys tems are

quite di f ferent; t ransact ions in R* are in tended pr imari ly to support a par t icu lar re lat ional da tabase sys tem.

JOameiot Reiease 2 will use additional processes to support deadlock detection and reliability and performance evaluation.

19

Nccie
Conf icr .

Aool i (

Data
Server

© © ©

© O

Application]

Data
Server

Node
Server

Recovery
Manager

Transaction
Manace r

Disk Comraun ication
Man

Master

Mach Kernel

Recoverable
Processes

vs-em
:ornconenis

F i g u r e 4 -3 : Processes in Cameic t Re lease 1

This figure snows the Mach kerne! and the processes that are needed to execute distributed tran«ar;;n« s T S O S _ N

a part of Camelot, and a Camelot data server because it is the repository of essential configuration cata C ^ e ^ d a ^ e - e ^ s 7 - a
applications use the facilities of Cameiot and Mach. The node confiauration application permits : . s ^ ~ r 0 * x ™ ; ~ 8 T- P ,_Vl w . r ' n

nodes configuration. "

4.4. D iscussion

As of January 1987, Camelo t Re lease 1 w a s still being coded though e n o u g h -about 25,00 lines of C)

w a s func t ion ing to commi t and abort local t ransact ions. T h o u g h m a n y p ieces were still miss ing (e.g. ,

support for stable s torage and distr ibut ion), Ava lon deve lopers cou ld beg in their imp lementa t ion work .

Before w e add to the basic set of Came lo t Re lease 1 funct ions, o thers wil l be encouraged to port

abst ract ions to Camelo t and prov ide feedback on its funct ional i ty and pe r fo rmance .

Per fo rmance is a very important sys tem goa l . Exper ience w i th T A B S and very pre l iminary

pe r fo rmance numbers make us bel ieve that w e wil l be able to execu te roughly 20 non-pag ing wr i te

20

t ransac t ions /seco: d on an RT PC or MicroVax works ta t ion . Perhaps , it is wor thwh i le to summar ize why

the C a m e l o t / M a c h comb ina t ion shou ld have per fo rmance that even da tabase imp lementors wi l l l ike:

• Mach ' s support for mult ip le th reads of contro l per p rocess permit eff icient server
o rgan iza t ions and the use of mu l t ip rocessors .

• Disk I/O should be eff icient, because Camelo t a l locates recoverable storage cont iguous ly on
disk, and because Mach permi ts it to be m a p p e d into a server 's memory . A lso, servers that
know disk I/O pat terns, such as da tabase managers , can inf luence the page rep lacement
a lgor i thms by prov id ing hints for pre fe tch ing or prewr i t ing.

• Recovery adds little ove rhead to norma l p rocess ing because Camelo t uses wr i te -ahead
logg ing wi th a c o m m o n log. T h o u g h Camelo t Release 1 has only va lue- logg ing, operat ion-
logging wil l be prov ided in Re lease 2.

• Came lo t has an eff icient, da tag ram-based , two-phase commi t protocol in addi t ion to its non-
b lock ing commi t pro toco l . Even wi thout de lay ing commi t s to reduce log fo rces ("group
commi t ") , t ransact ions require only one leg force per node per t ransact ion. Came io t requires
just three da tagrams per node per t ransact ion in its s ta r -shaped commi t pro toco l , because
f inal acknow ledgmen ts are p iggy -backed on future commun ica t i on . Camelo t also has the
usua l opt imizat ions for read-only t ransact ions.

• Came lo t does not imp lement the synchron iza t ion needed to preserve seriai izabi l i ty. Th is
synchron iza t ion is left to servers (and/or Ava lon) , wh ich can apply semant ic know ledge to
prov ide higher concur rency or to reduce locking ove rhead .

5. C h a l l e n g e s

Many commerc ia l t ransact ion p rocess ing appl icat ions a l ready use dist r ibuted t ransact ions. Many more

a lgor i thms and appl icat ions wil l benef i t f rom t hem w h e n genera l -purpose , h igh pe r fo rmance t ransact ion

faci l i t ies are avai lable. For example , there have been promis ing appl icat ions built on both T A B S and

Argus that cou ld be very usefu l in product ion env i ronments . A lso, there are a p lethora of u m m p i e m e n i e d

d is t r ibuted repl icat ion techn iques that depend upon t ransact ions to mainta in invar iants on the under ly ing

repl icas.

The cha l lenges lie in const ruc t ing facil i t ies that have h igh pe r fo rmance , yet are easy to use and

opera te wi th in famil iar compu t ing env i ronments . The per fo rmance cha l lenge is c lear due to the obv ious

complex i ty of imp lement ing commi t protocols , stable s torage, med ia recovery, etc. The re are also

concur rency control bot t lenecks that cou ld b e c o m e prob lemat ica l . However , there are many g o o d

a lgor i thms to use, and the st ructure of d is t r ibuted t ransact ion p rocess ing seems suff ic ient ly we l l

unders tood to permit c lean imp lementa t ions .

Ease of use and operat iona l cha l lenges are equal ly impor tant . For many appl icat ions, a d is t r ibuted

t ransact ion facility must run on all the nodes of a large d is t r ibuted sys tem. T h u s , it shou ld be instal led

21

a long wi th the opera t ing sys tem and require m in ima l , if any, operator in tervent ion. Tak ing dumps ,

m a n a g i n g log space , reconf igur ing nodes , and add ing and remov ing servers shou ld be near ly automat ic

or at least easy to do. P r o g r a m m e r s shou ld also f ind it s t ra ight forward to use the faci l i ty. T h e Argus and

Ava lon languages , or carefu l ly de f ined library support such as that in the Camelo t l ibrary can substant ial ly

reduce p rog ramming complex i ty , but it remains to be seen h e w successfu l these efforts wi l l be for large

sys tems.

Came lo t is in tended to meet many of these cha l lenges and to help demons t ra te that t ransact ion

faci l i t ies can be suff ic ient ly eff icient and easy to use for a w ide range of d is t r ibuted p rog rams . However ,

there are addi t ional cha l lenges not addressed by Camelo t .

Suppor t for he te rogeneous networks and operat ing sys tems wou ld add m u c h to the utility of

t ransac t ion p rocess ing . Even w i th all the s tandard izat ion efforts that are u n d e r l a y , it w o u l d still desirable

to suppor t d is t r ibuted t ransact ions running on mult iple types of sys tems and ne tworks ; for example , ii

wou id be usefu l if C a m e l o t / M a c h works ta t ions cou ld par t ic ipate in t ransact ions wi th exist ing data on

3 7 0 / M V S ma in f rames . Techn ica l ly , this is poss ib le , but it is diff icult to per fo rm the needed protocol

t rans la t ions eff iciently.

Perhaps the most impor tant cha l lenge is to construct the t ransact iona l abstract ob jects that are needed

to make dist r ibuted t ransact ion faci l i t ies really usefu l : mail sys tems , specia l ized da tabases , file sys tems,

w i n d o w managers , and queu ing sys tems. Whi le the avai labi l i ty of t ransact ions make these ob jects easier

to imp lement , they are still comp lex — part icular ly if they require repl icat ion. Reconc i l ing the t ransact ional

semant ics of new objects w i th the non- t ransact iona l ob jects that they replace is also diff icult. (This couic

be a part icular ly tough p rob lem wi th the Unix file system.)

In spite of these cha l lenges , d is t r ibuted t ransact ion facil i t ies shou ld become more preva lent . Ongo ing

work in the research and commerc ia l spheres , a ided by ever- faster hardware wi l l cont inue to improve

their pe r fo rmance and usabi l i ty.

A c k n o w l e d g m e n t s

I thank Jeff Eppinger , w h o thorough ly read and cr i t iqued this paper , and my co l leagues on the Camelo t

and Ava lon Projects for their contr ibut ions to the sys tems that ! have descr ibed .

22

References

[Accet ta et a l . 86] Mike Accet ta , Robert Ba ron , Wi l l iam Bolosky, Dav id Go lub , R ichard Rash id , Avari is
T e v a n i a n , Michae l Y o u n g . M a c h : A N e w Kerne i Foundat ion for UNIX Deve lopment . In
Proceedings of Summer Usenix. July, 1986.

[Al lchin 83] J a m e s E. A l lch in . An Architecture for Reliable Distributed Systems. PhD thesis , Georg ia
Inst i tute of Techno logy , September , 1983.

[Al lchin and McKend ry 83] J a m e s E. A l lch in , Mar t in S. McKendry . Facilities for Supporting Atomicity in
Operating Systems. Techn ica l Report G I T - C S - 8 3 / 1 , Georg ia Institute of Techno logy , January ,
1983.

[As t rahan et a l . 76] M. M. As t rahan , M. W. B lasgen , D. D. Chamber l i n , K. P. Eswaran , J . N. Gray,
P. P. Gri f f i ths, W. F. K ing, R. A. Lor ie, P. R. McJones , J . W. Mehl , G. R. Putzo lu , I. L. Traiger,
B. W. W a d e , and V. Wa tson . Sys tem R: A Relat ional App roach to Database Managemen t .
ACM Transactions on Database Systems 1 (2), June, 1976.

[Banatre et a l . 83] J . P. Banat re , M. Banat re , F. Ployet te. Const ruc t ion of a Dist r ibuted Sys tem
Suppor t ing A tomic Transac t ions . In Proceedings of the Third Symposium on Reliability in
Distributed Software and Database Systems. IEEE, October , 1983.

[Bernste in and G o o d m a n 81] Phil ip A. Bernste in , Na than G o o d m a n . Concur rency Contro l in Distr ibuted
Database Sys tems . ACM Computing Surveys 13 (2) :185 -221 , June, 1 9 8 1 .

[B loch 86] Joshua J . B loch . A Pract ical , Eff icient App roach to Repl icat ion of Abstract Data Objects .
November , 1986. Carneg ie Mel lon Thes is Proposa l .

[Cher i ton 84] Dav id R. Cher i ton . The V Kerne l : A Sof tware Base for Distr ibuted Sys tems . IEEE
Software 1 (2) :186-213, Apr i l , 1984.

[CMU 87] The Guide to the Camelot Distributed Transaction Facility: Release 1 P i t tsburgh, PA, 1987.
Under deve lopmen t .

[Cooper 86] Eric C. Cooper . C Threads . June, 1986. Carneg ie Mel lon Internal M e m o .

[Dahl and Hoare 72] O.J . Dahl , C. A. R. Hoare . Hierarchical P rog ram Structures. In C. A. R. Hoare
(editor) , A.P.I.C. Studies in Data Processing. Vo lume 8: Structured Programming, chapter 3
pages 175-220 .Academic Press, London and New York, 1972.

[Danie ls et al . 86] Dean S. Danie ls , Al f red Z. Spector , Dean T h o m p s o n . Distributed Logging for
Transaction Processing. Techn ica l Report C M U - C S - 8 5 - 1 0 5 , Carneg ie -Me l lon Universi ty. June .
1936.

[Date 33] C. J . Date. The System Programming Series: An Introduction to Database Systems Volume
2. Add ison -Wes ley , Read ing , MA, 1983.

[Depar tment of Defense 82] Reference Manual for the Ada Programming Language July 1982 edit ion,
Depar tment of Defense, A d a Joint P rog ram Off ice, Wash ing ton , DC, 1982.

[Diei et a l . 84] Hans Diel , Gera ld Kre iss ig, Norbet Lenz, Michae l Scheib le , Bernd Schoener . Data
M a n a g e m e n t Facil i t ies of an Operat ing Sys tem Kerne i . In Sigmod '84, p a c e s 58-59 . June ,
1984.

[Dwork and Skeen 83] Cynth ia Dwork, Dale Skeen . T h e Inherent Cost of N o n l o c k i n g Commi tmen t , in
Proceedings of the Second Annual Symposium on Principles of Distributed Computing, paces
1-11. A C M , Augus t , 1983.

[Eppinger and Spec to r 85] Jeffrey L. Eppinger, A l f red Z. Spector . Virtual Memory Management for
Recoverable Objects in the TABS Prototype. Techn ica l Report C M U - C S - 8 5 - 1 6 3 , Carneg ie -
Mel lon Universi ty, December , 1985.

23

[Fabry 74] R. S. Fabry. Capab i l i t y -Based Address ing . Communications of the ACM 17 (7) :403 -411 , July,
1974 .

[Gray 78] J a m e s N. Gray. Notes o n Database Opera t ing Sys tems. In R. Bayer , R. M. G r a h a m ,
G. Seegmu l le r (edi tors), Lecture Notes in Computer Science. V o l u m e 60 : Operating Systems -
An Advanced Course, pages 393-481 .Spr inger -Ver lag, 1978. A lso avai lable as Techn ica l
Repor t RJ2188 , IBM Research Labora tory , San Jose , Cal i forn ia, 1978.

[Gray 81] J a m e s N. Gray. T h e Transac t ion Concep t : V i r tues and L imi tat ions. In Proceedings of the
Very Large Database Conference, pages 144-154. Sep tember , 1 9 8 1 .

[Gray et al . 81] J a m e s N. Gray, et al. The Recovery Manager of the Sys tem R Database Manager .
ACM Computing Surveys 13(2) :223-242, June , 1 9 8 1 .

[Haerder and Reuter 83] T h e o Haerder , And reas Reuter. Pr inc ip les of T ransac t ion-Or ien ted Database
Recovery . ACM Computing Surveys 15(4) :287-318, December , 1983.

[He l land 85] Pat He l land . T ransac t ion Moni tor ing Facil ity. Database Engineering 8 (2) :9-18, June , 1985.

[Her l ihy 85] Maur ice P. Herl ihy. Availability vs. atomicity: concurrency control for replicated data.
Techn ica l Report C M U - C S - 8 5 - 1 0 8 , Carneg ie -Me l lon Universi ty, February , 1935.

[Her l ihy and W ing 86] M. P. Her l ihy, J . M. W ing . Avalon: Language Support for Reliable Distributed
Systems. Techn ica l Report C M U - C S - 8 6 - 1 6 7 , Carneg ie Mel lon Universi ty, November , 1986.

[Jones et al. 85] Michae l B. Jones , Richard F. Rash id , Mary R. T h o m p s o n . Ma tchmaker : An Interface
Spec i f ica t ion Language for Distr ibuted Process ing, in Proceedings of the Twelfth Annual
Symposium on Principles of Programming Languages, pages 225-235 . A C M , January , 1935.

[Joy et a l . 83] Wi l l iam Joy, Eric Cooper , Robert Fabry, Samue l Leffier, Kirk McKus ick , David Mosher . 4.2
BSD System Interface Oven/iew. Techn ica l Report C S R G TR/5 , Universi ty of Cal i forn ia
Berke ley, July, 1983.

[Kor th 83] Henry F. Kor th . Lock ing Pr imit ives in a Da tabase Sys tem. Journal of the ACM 30(1):55-79,
January , 1983.

[Lampor t 78] Lesl ie Lampor t . T ime, C locks, and the Order ing of Events in a Distr ibuted Sys tem.
Communications of the ACM 21 {7):55Q-565, July, 1978.

[L a m p s o n 81] But ler W. Lampson . A tomic Transac t ions . In G. Goos and J . Har tman is (edi tors), Lecture
Notes in Computer Science. Vo lume 105: Distributed Systems - Architecture and
implementation: An Advanced Course, chapter 1 1 , , pages 245-265 .Spr inger -Ver lag , 1 9 8 1 .

[L indsay et al. 79] Bruce G. L indsay, et al. Notes on Distributed Databases. Techn ica l Report R J 2 5 7 1 ,
IBM Research Laboratory, San Jose , Cal i fornia. July, 1979. Also appears in Drof fen and Poole
(edi tors), Distributed Databases, Cambr idge Universi ty Press, 1980.

[L indsay et al. 84] Bruce G. L indsay, Laura M. Haas , C. M o h a n , Paul F. Wi lms, Robert A. Yost .
Compu ta t i on and Commun ica t i on in R*: A Distr ibuted Da tabase Manager . ACM Transactions on
Computer Systems 2(1) :24-38, February, 1984.

[L iskov 82] Barbara Liskov. O n Linguist ic Suppor t for Dist r ibuted Programs. IEEE Transactions on
Software Engineering SE-8(3) :203-210 , May, 1932.

[L iskov 84] Barbara Liskov. Overview of the Argus Language and System. P rog ramming Methodo logy
G r o u p M e m o 40, Massachuse t ts Institute of Techno logy Labora tory for Compu te r Sc ience ,
February , 1984.

[L iskov and Her l ihy 83] Barbara Liskov, Maur ice Herl ihy. issues in Process and Commun ica t i on
St ructure for Distr ibuted Programs. In Proceedings of the Third Symposium on Reliability in
Distributed Software and Database Systems. October , 1983.

24

[L iskov a n d Schei f ler 83] Barbara H. L iskov, Rober t W. Schei f ler . Guard ians and Ac t ions : Linguist ic
Suppor t for Robust , Dist r ibuted Programs. ACM Transactions on Programming Languages and
Systems 5 (3) :381-404, July, 1983.

[Lomet 77] David B. Lomet . Process Structur ing, Synchron iza t ion , and Recovery Us ing Atomic Act ions.
ACM SIGPLAN Notices 12(3), March , 1977.

[Lorie 77] R a y m o n d A. Lor ie. Physica l Integrity in a Large S e g m e n t e d Database . ACM Transactions on
Database Systems 2(1):91 -104, March , 1977.

[Moss 81] J . Eliot B. Moss . Nested Transactions: An Approach to Reliable Distributed Computing. PhD
thes is , Massachuse t t s Institute of Techno logy , Apr i l , 1 9 8 1 .

[Obermarck 82] Ron Obermarck . Distr ibuted Deadlock Detect ion A lgor i thm. ACM Transactions on
Database Systems 7 (2) :187-208, June , 1982.

[Poste l 82] Jona than B. Poste l . In ternetwork Protocol Approaches . In Paul E. G reen , Jr. (editor),
Computer Network Architectures and Protocols, chapter 18, pages 511 -526 .P lenum Press, 1932.

[Rash id 86] Richard F. Rash id . Threads of a New Sys tem. Unix Review 4(8):37'-49, Augus t , 1986.

[Rash id and Rober tson 81] Richard Rashid , George Rober tson . Accent : A Commun ica t i on Or iented
Ne twork Operat ing Sys tem Kernel . In Proceedings of the Eighth Symposium on Operating
System Principles, pages 64-75. A C M , December , 1 9 8 1 .

[Reed 78] Dav id P. Reed. Naming and Synchronization in a Decentralized Computer System. PhD
thes is , Massachuse t t s Institute of Techno logy , Sep tember , 1978.

[Reuter 84] Andreas Reuter. Per formance Analys is of Recovery Techn iques . ACM Transactions on
Database Systems 9 (4) :526-559, December , 1984.

[Rothnie et ai. 80] J . B. Rothnie Jr., P. A. Bernste in , S. Fox, N. G o o d m a n , M. Hammer , T. A. Landers ,
C. Reeve , D. W. Sh ipman , and E. W o n g . Introduct ion to a S y s t e m for Dist r ibuted Databases
(SDD-1) . ACM Transactions on Database Systems 5(1):1 -17, March , 1980.

[Sal tzer 74] Je rome H. Sal tzer. Protect ion and the Contro l of In format ion in Mult ics. Communications of
the ACMM{7), July, 1974.

[Schwarz 84] Peter M. Schwarz . Transactions on Typed Objects. PhD thes is , Carneg ie -Me l lon
Univers i ty , December , 1984. Avai lable as Techn ica l Report C M U - C S - 8 4 - 1 6 6 , Carneg ie -Me l lon
Univers i ty .

[Schwarz and Spector 84] Peter M. Schwarz , Al f red Z. Spector . Synchron iz ing Sha red Abstract Types .
ACM Transactions on Computer Systems 2 (3) :223-250, August , 1984. Also avai lable as
Techn ica l Report C M U - C S - 8 3 - 1 6 3 , Carneg ie-Mel lon Univers i ty , N o v e m b e r 1983.

[Spector 86] Al f red Z. Spector . Commun ica t ion Suppor t in Opera t ing Sys tems for Dist r ibuted
T ransac t ions . In Proc. IBM European Networking Institute 1986. July, 1986. Also avai lable as
Techn ica l Report C M U - C S - 8 5 - 1 6 5 , Carneg ie -Me l lon Univers i ty , N o v e m b e r 1986.

[Specter and Schwarz 83] A l f red Z. Spector , Peter M. Schwarz . T ransac t ions : A Const ruc t for Rel iable
Dis t r ibuted Compu t i ng . Operating Systems Review 17(2) :18-35, Apr i l , 1983. Also avai lable as
Techn ica l Report CMU-CS-82 -143 , Carneg ie -Mel lon Univers i ty , January 1983.

[Spector et al 86] A l f red Z. Spector , Dan Duchamp, Jeffrey L. Eppinger , Sherr i G. M e n e e s , Dean
S . T h o m p s o n . The Camelo t Interface Spec i f ica t ion. Sep tember , 1986. Came lo t Work ing
M e m o 2.

25

[Specter ot al. 85a] A l f red 2 . Spector , Jacob Butcher , Dean S. Danie ls , Danie l J . D u c h a m p ; Jef frey
L. Eppinger , Char les E. F ineman , Abde l sa lam Heddaya , Peter M. Schwarz . Suppor t for
Dist r ibuted Transac t ions in the T A B S Prototype. IEEE Transactions on Software Engineering
SE-11(6) :520-530 , June , 1985. Also avai lable in Proceed ings of the Fourth S y m p o s i u m on
Reliabi l i ty in Dist r ibuted Sof tware and Database Sys tems, Si lver Spr ings , Mary land , IEEE,
October , 1984 and as Techn ica l Report C M U - C S - 8 4 - 1 3 2 , Carneg ie -Me l lon Universi ty, July,
1984.

[Spector et al. 85b] Al f red Z. Spector , Dean S. Danie ls , Daniel J . D u c h a m p , Jeffrey L. Eppinger, Randy
Pausch . Dist r ibuted Transac t ions for Rel iable Sys tems . In Proceedings of the Tenth
Symposium on Operating System Principles, pages 127-146. A C M , December , 1985. Also
avai lable in Concurrency Control and Reliability in Distributed Systems, V a n Nos t rand Reinhold
C o m p a n y , New York, and as Techn ica l Report C M U - C S - 8 5 - 1 1 7 , Carneg ie -Me l lon Universi ty,
Sep tember 1985.

[S tonebraker 84] Michae l Stonebraker . Vir tual Memory Transac t ion Managemen t . Operating Systems
/ ?ewew18 (2) : 8 -16 , Apr i l , 1984.

[S tonebraker and Neuho ld 77] M. S tonebraker and E. Neuho ld . A Distr ibuted Data Base Vers ion of
I N G R E S , in Proceedings of the Second Berkeley Workshop on Distributed Data Management
and Computer Networks, pages 19-33. Lawrence Berkeley Lab, Universi ty of Cal i forn ia.
Berke ley, Cal i forn ia, May. 1977.

[T a n d e m 82] ENCOMPASS Distributed Data Management System T a n d e m Compu te rs , Inc., Cupert ino
Cal i forn ia, 1982.

[T h o m p s o n 36] Dean T h o m p s o n . Coding Standards for Came lo i . June, 1986. Camelo t Work ing M e m
1.

[Tra iger 32] Irving L. Traiger. Virtual Memory M a n a g e m e n t for Database Sys tems. Operating Systems
f t e w e w 1 6 (4) : 2 6 - 4 8 , October , 1932. Also avai lable as Techn ica l Report RJ3489 IBM Research
Laboratory , S a n J o s e ; Cal i fornia, May, 1932.

[Wa tson 31] R.W. W a t s o n . Dist r ibuted sys tem archi tecture mode l , in B.W. L a m p s o n (edi tors), Lecture
Notes in Computer Science. Vo lume 105: Distributee Systems - Architecture and
implementation: An Advancec Course, chapter 2, , paces 10-43.Spr inger -Ver lag , 193"!.

[Weih l 84] Wi l l iam E. Weih l . Specification and Implementation of Atomic Data Types. PhD thesis ,
Massachuse t t s Institute of Techno logy , March , 1984.

[Weinste in et al . 85] Mat thew J . We ins tem, T h o m a s W. Page, Jr.. Brian K, L ivezey, Gera ld J . Pccek .
Transac t ions and Synchron iza t ion in a Dist r ibuted Opera t ing Sys tem. In Proceedings ofi*e
Tenth Symposium on Operating System Principles, pages 115-125. A C M , December , 1935.

[Wi l l iams et al. 81] R. Wi i l iams, et a!. FT: An Overview of the Architecture. IBM Research Report
RJ3325 , IBM Research Laboratory , San Jose . Cal i fornia. December , 1 9 8 1 .

[Z i m m e r m a n n 82] Huber t Z i m m e r m a n n . A Standard Network Mode l . In Paul E. Green , Jr. (editor; .
Computer Network Architectures and Protocols, chapter 2, pages 33 -54 .P lenum Press, 1982.

