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Abstract 
We argue and demonstrate that the security domain naturally lends itself to pictorial representations of 

security constraints. Our formal model of security is based on an access matrix that traditionally has been 
used to indicate which users have access to which files, e.g., in operating systems. Our formal visual 
notation borrows from and extends Harel's statechart ideas, which are based on graphs and Venn 
diagrams. We present a tour of our visual language's salient features and give examples from the security 
domain to illustrate the expressiveness of our notation. 

1. Introduction 
Computer security is a central problem in the practical use of operating systems. We view the question of 
computer security as follows. We envision a group of users who deploy processes to access (read, write, 
modify, delete, etc.) files. We consider computer security from the perspective of file system protection: 
which users are allowed to access which files? The computer security literature discusses specific 
instances of security structures. An issue that has not been properly addressed is the specification of 
general security structures. 

In this paper we present a visual language for expressing security concerns. Diagrams are a natural way 
of showing security relationships between users and data; for example, we use diagrams when we draw 
organizational charts, when we describe groups of people who are sharing work on a project, and when 
we present structures of tasks and subtasks. For a large site, the security structures are too complicated 
to be comprehended at once—diagrams and abstraction techniques give us a way of presenting the 
material at various levels of detail. Moreover, our language reflects the dynamic nature of security; the 
system allows one to express straightforwardly and easily the accumulation, deletion, and modification of 
privileges. 

We have designed our language to be a formal representation of security concerns, to provide methods 
of abstraction for representing those portions of the language relevant to a particular user, to enumerate 
methods of tracking the dynamic nature of security schemes, and to reflect low-level operating system 
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concerns in the language's type information. 

1.1. Model of Security 
In our model of security, we are concerned with those patterns of security that can be represented in an 
access matrix: can a given process access a given file? We want to present security information visually 
in a way that can be directly understood, can be easily changed, and can support a variety of operating 
system dependent protection mechanisms. 

Butler Lampson introduced the access matrix structure to represent security relationships [11]. The 
access matrix has two axes: a list of users and special processes, and a list of files. An intersection 
between two items on the axes encodes access rights, such as the ability for a user to read or modify a 
file. By using a row-based or column-based sparse matrix representation of this structure, one obtains a 
capability list mechanism, in which processes are marked with the files they can access, or access control 
list mechanism, in which files are marked with the processes that can access them. Several operating 
systems have directly implemented these mechanisms [10,16,13]. The matrix representation is a low-
level description of protection. Experience has shown that manipulation of matrices and other derived 
structures is difficult since users must mentally compile high-level needs into a bit-matrix format. 

Since the semantic model may be simply thought of as an access matrix, or more generally a graph, it 
lends itself naturally to a visual representation. Moreover, for complicated security schemes a visual 
representation can highlight exactly the subgraphs of interest, e.g., the write-access subgraph or the 
graph restricted to some subset of processes and some subset of files. The viewer is not burdened with 
irrelevant detail. For example, if one were interested in knowing to which files a particular student has 
write access, it is of not necessary to display the entire write access matrix or to display that student's 
other access relations. 

1.2. Visualization of Security and Its Uses 
One could regard the visualization of the access matrix as "syntax" and the access matrix itself as 
"semantics." However, the "syntax" we propose is rich enough to be considered a language in itself, a 
visual language. It contains primitive entities, operations on these entities, and ways to construct 
pictures, which are more complex entities. Pictures are ideal for showing subset and dependency 
relations, precisely the two kinds of relations of interest in security. Furthermore, our pictures are 
completely formal; they consist of Venn diagrams and graphs, which are well-defined mathematical 
objects. 

Our work can be used to display existing protection structures. In this format, the viewer receives a visual 
presentation of the security structure and can easily determine whether a given file is appropriately 
protected. 

Our work can be used to create protection structures. The protection structures, written in a visual 
high-level language, can be compiled onto a variety of specific file system structures. This allows us to 
specify security independently from operating system dependent details. Some operating systems 
provide fully general protection and can support any valid diagram we might draw. Other systems have 
specific limitations, which can be reflected in our system though the use of typing. Since our system can 
specify security for a variety of operating systems, it is a natural candidate for supporting security 



concerns over a heterogeneous environment of systems. 

Our work can be used to communicate protection structures. Since our diagrams have a mathematically 
precise meaning, they are a valid formal description of protection structures. Non-visual formalisms 
require detailed set-theoretic structures to specify security considerations. The resulting text tends to be 
difficult to understand and easy to misinterpret [2]. Diagrams are easy to read; they are as appropriate for 
informal communication as for formal presentation of material. 

1.3. Small Example 
Here is a sample visual specification we would draw: 

employees 

managers. 

non-managers 

Read 

Write 

admin 

salary 

(1) 
In this example, there are two types of employees, managers and non-managers, and certain 
administrative files that deal with salaries. All employees have read access to administrative files. Some, 
but not all, managers have write access to the salary files. No non-manager has any kind of access to 
salary files. 

This paper presents a tour of our visual language to give a flavor of the language's salient features. In 
Section 2, we begin with a description of the primitive entities, followed by the type system, abstraction 
mechanisms, and operations on primitives. In Section 3, noting that ambiguity may arise in our pictures, 
we present a method for detecting ambiguity. In Section 4, we depict two non-trivial security schemes to 
illustrate the expressiveness of our notation. We close with some final remarks and ideas for further 
work. 

2. Visual Language 

2.1. Visual Entitles: Boxes, Arrows, and Pictures 
We borrow Harel's notation for higraphs [6] and statecharts [7, 8] for our visual language. We begin with 
the following three primitive entities: boxes, positive arrows, and negative arrows. 

A box: 



represents a group of objects, e.g., people, processes, or files. A is the name of the group. A box can 
contain other boxes, so a group in general can contain groups of objects as well as just objects: 

(3) 
Objects in a box need not be of the same type, as in the case when a group contains groups and simple 
objects. We say more about types in the next section. 

A (positive) arrow: ^ 
B 

(4) 
indicates that all objects in A have access to all objects in B. 

A negative arrow. 

(5) 
indicates that no object in A has access to any object in B. We allow arrows to be optionally labeled with 
the name(s) of all or some of the access right(s). An unlabeled arrow denotes the existence of some type 
of access. 

By rule, all groups of interest must be explicitly named and "boxed." (We relax this rule when we discuss 
abstraction in Section 2.3.) Thus, if box A2 is in box A1 and there is of interest an access right of some 
object in A1 not in A2, then one must create and name a box, say A3, such that: 

A1 

(6) 

From these primitive entities we draw pictures by creating boxes and arrows. A picture has the following 
meaning: For all objects a € A, b € B, if there exists a positive (negative) arrow from A to B, then a has 
(negative) access rights to b. The label on the arrow indicates the type of access objects of A have to 
objects of B. The absence of an arrow indicates an implicit negative right. 

Negative arrows provide us with the capability of explicitly expressing negative rights. A has access to 
everything in B that is not in C: 
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A has access to everything in B except for that which is in C but not in D: 

We can also use negative arrows to express exceptions to general rules. In Section 3, we discuss how to 
determine which arrow governs a specific access when multiple arrows are drawn in a picture. 

2.2. Type Definitions 
In order to give types to objects and groups of objects, we supply the following built-in types and type 
constructors: Nil, Atom, Array, Record, and Union. These types resemble those found in conventional 
programming languages, but we express them visually. Arrays, Records, and Unions take parameter lists 
of arbitrary length, where we allow two kinds of parameters: value (for now, just integers) and type (e.g., 
to construct arrays of arbitrary type). Users can define their own types using these built-in types and type 
constructors. 

We visually define the built-in types, type constructors, and user-defined types as follows. An optional 
label appearing outside a box names the type of the object. 

Nil: The only object of the Nil type is the empty, unnamed box. It is typically used as the basis of 
recursive type definitions as well as a "place-filler" for union types. 

Nil 

(9) 

Atom: An atomic object has a value that cannot be further decomposed. It is used for objects that might 
have integer, character, or string values. The name appearing inside an atomic object is the value of the 
object. 

Atom 

(10) 

Array[n](pv p j : An array object is an ordered, homogeneous collection of objects, n is a required 
parameter denoting the number of objects in the array; the p, are optional value and type parameters. For 
example, a one-dimensional array of three objects of type 7 would be defined as: 

Array [3] (T) 

(11) 



6 

A two-dimensional array of some anonymous type made up of types T and U would be defined as an 
array of arrays: 

Array [n] (m,T,u)  

Array [m] (Ttu) 

(12) 

Record(pr, pm)\ A record object is a heterogeneous collection of objects. The p{ are optional 
parameters used to define values or types of the objects in the collection. If all pf are type parameters, 
and all internal boxes are named, we would have the standard record notion of programming languages, 
where tags (appearing inside the boxes as names) are the field names of the components of the record. 
We use dotted lines to separate the objects in the box, a notational convention for Cartesian product 
adopted from Harers statechart formalism. For example, here is a three-component record, where the 
second component's tag name is "user": 

Record (T,U,V) 

i • u 
user 

(13) 

Union(p t, pj: A union object is one whose type may be one of many types, each of which is 
specified in the union type definition. Unions correspond to variant records found in typical programming 
languages. As for records, tags for typed objects are optional, and the p, are optional parameters. 
Unions can be used to define enumeration types (all objects would be atoms with different values). A 
union can be used to extend the meaning of type variables; when a union type is passed as a parameter 
it can be instantiated to one of several specific type variables. Here, we define a type that is a union of an 
atom whose value is "Alice," an atom whose value is "Bob," and an array: 

Union (Atom, Atom, Array [n] (T)) 

Atom Atom  

p U i c e j ^Bob j 

Array [n] (T) 
T • (14) 

User-defined: From the above types and type constructors, users can define their own types by equating 
a user-given (abstract) type name to a previously-defined type, which serves as the representation type. 
For example, consider an n-ary tree whose nodes store objects of type T: 

Tree (n.T) - Union (n.T) 

Record (n,T) 

(15) 
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Parameters can be either manifest constants (e.g., "3" if it is an integer parameter, or "Array" if it is a type 
parameter), bound variables (e.g, n or T), or a 'free" variable. All bound variables and parameters are 
local to the object defined. Hence if a variable n occurs multiple times in a single object, it must assume 
the same value each time. If it appears in two different objects or two recursively distinct instances of the 
same object, its value need not be the same. As an escape from the restriction on bound variables, we 
can use 'free" variables, in particular the special symbol"?" for an integer parameter and"??" for a type 
parameter. Thus, to create a different n-ary tree, one whose leaves are arrays of arbitrary dimension of 
objects of type T, we would draw: _ . M , , _ 1 / K Tree (n,T)«Union (n,T) 

Array [?] (T) Tree (n,T) 

y (16) 
If we were to use a variable such as m for ?, then we would force the arrays at the leaves of the tree to be 
of the same size, m. 

In order to use a type definition, the user instantiates parameters and optionally binds an instantiated 
structure to a user-supplied name. For example, in order to create a binary tree of depth five, the above 
tree definition would be selected five times with n instantiated to 2 each time. 

2.3. Abstraction Mechanisms 
We provide means to abstract from boxes and arrows. We depict abstraction from boxes as follows: 

B 

(17) 
denoting that A has access to some, but not all objects in B. Notice that this abstraction mechanism lets 
us redraw Figure (8) as: 

(18) 
such that A has access to everything in B except for some (but not all) objects in B, or even as: 

(19) 
such that some object in A has access to some object in B. 

A cable is an abstraction from a set of arrows between boxes. Suppose we have the following picture: 
Read 

(20) 
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We abstract from the particular access relations to get simply: 

; . \ v \ W \ \ \ \ \ \ v V \ \ V 

(21) 
Associated with each cable is a connection structure that defines the specific arrows associated with that 
cable. In Section 4, we see an application of cables. Just as we have two kinds of arrows, we have two 
kinds of cables (positive and negative) where a positive cable abstracts from a set of positive arrows, and 
similarly for negative cables. 

2.4. Operations on Pictures 
We provide four operations to group and flatten pictures. The first two do not change the semantics, i.e., 
the underlying access rights matrix, but only its visual presentation. Below, we show the effect of each 
operation by showing "before" (on the left) and "after" (on the right) pictures. 

Merge coallesces boxes into one bigger box (note the introduction of a new box named C): 

• • 
(22) 

Merging does not affect access rights. It does, however, possibly affect the visualization of the access 
rights in that redundant arrows are detected and merged. That is, if there exists some Z such that Z —» A 
and Z B, then the two arrows pointing to A and B are removed and only Z —• C is displayed. The 
analogous effect occurs for all arrows emanating from A and B (e.g., if A and B are groups of processes, 
not files). 

Partition is just the opposite of merge (note the elimination of the box C): 

(23) 
Again, access rights remain unchanged: all arrows pointing to or from A and B remain the same. The 
visualization may change by copying arrows: If there exists some Z such that Z — » C , then copies of that 
arrow are made such that the two arrows Z —» A and Z —» B are displayed. Unlike for merge, blind 
copying can lead to conflicts, which we resolve by overriding the copies with the originals. For example, 
suppose Z —> C, and Z H A; upon removing C , a straightforward copy would conflict with the original 
negative right. We adopt the following sticky convention such that the original (explicit) right sticks, i.e., Z 
x-> A, thereby overriding the blind copy. Analogous effects are defined for all arrows emanating from C. 
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The following two operations perform grouping and flattening of pictures, but change the underlying 
access rights as well. Add inserts a box into another box: 

Here, ail access rights to or from A abide by our sticky convention; however, we furthermore inherit rights 
that B has since A is simply now a part of B. That is, if Z —> B and there is no Z x-> A then Z —> A. No 
visual change occurs to reflect this semantic change. However, some visual change may occur since 
redundant arrows are checked and discarded. That is, if originally Z —> A and Z -» B, then after 
performing the add, only Z —» B is displayed. 

If a conflict arises, e.g., Z —> B and Z x-> A, then the user is asked to resolve the conflict. Visually, the 
user is shown the possible choices and asked to choose the appropriate access right. 

Sub is the opposite of add: 

s H Q 
l l V \ ) (25) 

Again, following our sticky convention, all access rights to A remain with A upon pulling it out of 
B. Furthermore, any arrows to or from B get copied for A. As with add, conflicts are resolved explicitly by 
the user. 

3. Ambiguity 
The presence of negative arrows and the rules for drawing pictures allow a user to input ambiguous 
pictures. For example, in this picture, we explicitly declare that a user A both has and does not have 
access to a file B: 

(26) 

Ambiguous situations can arise as a result of the hierarchical structure of our system as well. Does A2 
have access to B2? 

f A 1 > 

(27) 

Another source of ambiguity occurs from conflicts arising from intersections between groups. Does A 
have access to D? 

(28) 
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We need to give a rule for declaring when a picture is ambiguous, and an efficient algorithm for detecting 
ambiguity. We base our definition of ambiguity on the following guideline: When determining whether a 
user A can access a file B we find the set P of groups containing A and the set Q of groups containing 
B. The elements of P form a partially ordered set, as do the elements of O. Let a > a' denote that a 
contains a' in a group, and let ai> a' denote that a does not contain a* in a group. Consider the set of 
arrows X governing the particular access type from items in P to items in O. Here are the pictures for the 
three scenarios above: / O Q x 

(^o) 
(26) (27) 

B 

A1 B1 

A2* B2 
D (29) 

For each element x e X let tail(x) be the element in P from which x emerges and let head(x) be the 
element in Oto which x points. The conflicting setoi the arrow x is the set of all arrows y * x satisfying: 

1. head(y) i> head(x), 
2. tail(y) i> tail(y), or 

3. head(y) > head(x) A tail(y) - tail(x) 

For example in the picture below, the conflicting set of arrows for x is {y, *}. 
w 

(30) 

If there is an arrow x e X with an empty conflicting set (called a least common arroW), then that arrow 
governs the rule of access for A and B. Hence the following picture is not ambiguous: 

(31) 

Also, if there is an arrow x such that all the items in its conflicting set all agree with x, then that arrow 
governs the rule of access for A and B. For example, in the following picture there is no least common 
arrow; however A is still allowed to access B. 
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To check for conflicting sets is an Ofn2) algorithm [15], where n is the number of arrows. 

A detected ambiguity can be handled in one of two ways: 
1. We can generate a "compile-time" type error such that the ambiguous picture is not 

syntactically well-formed; or 
2. We can inform the user that an ambiguous picture exists and ask him or her to resolve the 

ambiguity explicitly, i.e., choose the intended meaning. 
In our prototype, we have chosen the first alternative. After more experimentation, we may decide to 
allow both, letting the user decide at system start-up time which is to be used. 

4. Two (Non-trivial) Examples 

4.1. Vice 
Andrew, the campus-wide network of workstations at Carnegie Melton University, is supported by a 
distributed file system called "Vice" [14]. Vice uses access-control lists to determine access rights to 
files. Entries on an access list are Users, who are typically people, and Groups, which are collections of 
users and other groups. The protected entities in Vice are directories, and all files within a directory have 
the same protection status. There are six kinds of access a directory may give: Read, List, Insert 
(create), Write (modify), Delete, and Admin (to change access rights of a directory). The rights 
possessed by a user on a protected object are the union of the rights specified for all groups that the user 
belongs to, either directly or indirectly. Vice also supports negative rights; the union of all the negative 
rights specified for a user is subtracted from his or her positive rights. 

Vice intentionally separated Insert from Write rights because of mail directories. Everyone should be able 
to send mail to anyone (i.e., insert a file into a mail directory), but only the owner of the mail directory 
should be allowed to modify any files once inserted. Notice that Alice as well as all administrators have 
Admin rights. 

Insert 

people 

admin 

nonadmin 

Alice 

Admin 

Write 
l l l l l U U U U U U U U U U U T T T f l 3 

/usr/Alice/mail 

(33) 
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The recursive membership of groups allows one to depict the following group relations as well as some of 
their access rights to a single user's directory. We show just the Read rights for simplicity: 

Here, faculty and secretaries are all staff members; some students are teaching assistants (T.A.'s) and 
some secretaries take courses. Everyone has access to Alice's public files; T.A.'s have access to the 
course-related files of Alice's main directory. All faculty, but no students, except some who are 
secretaries, have access to Alice's semi-private files. Only Alice has access to her personal files. We 
expect that a viewer would not in fact wish to see in its entirety the above picture (which itself is only a 
piece of a larger one), but only a small piece of it, e.g., to find out if any secretary has access to any of 
Alice's coursework files. 

4.2. Bell-LaPadula 
The Bell-LaPadula model of security was introduced to protect against accidental release of data, the 
so-called "confinement problem" [1,9]. The confinement problem addresses the prevention of 
information from leaking from a secure object to a less secure object. It has become the basis of the US 
Defense Department's standards for computer security [4]. Several implementation projects have 
attempted to insert the Bell-LaPadula security model into existing operating systems and to verify formally 
the correctness of their specifications [2,5,12]. One difficult part of this task is to form a precise 
specification of the security conditions. With our tools we can directly and visually specify these 
conditions. 

In the Bell-LaPadula model, all objects in the operating system are labeled with a security classification 
from 1 to n. Users are allowed to read only those files with security classifications equal or less than their 
own; to prevent leaks they are allowed to modify and write only those files with security classifications 
equal or greater than their own. For example, suppose n»3. Security classifications might correspond to 
'lop secret", "secret", and "public." A user at the "secret" security classification could read files which 
were "secret" or "public" and he or she could write or modify files which were 'lop secret" or "secret." 
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Here is a picture of the Bell-LaPadula security classification when n*3: 
r 

A (users) 

A1 (top secret) 

A2 (secret) 

A3 (public) 

(35) 

We can use our data structure tools to capture the underlying idea by creating two arrays of dimension n: 

Users - Array [n] (Secrecy) Files - Array [n] (Secrecy) 

(36) 

We can then specify the cable connecting the two arrays: 

Users Files 

K \ \ \ \ v \ \ \ \ > | 

BL Function 

i > j 

v i < j * J 
(37) 

An advantage of this method is that it can be naturally extended to treat orthogonal concerns 
simultaneously. For example, Biba suggested broadening the Bell-LaPadula model to capture the notion 
of integrity [3]. In this extended model we give each file two classifications: security and trustworthiness. 
Below the horizontal groups represent one classification, say security, and the vertical ones represent the 
other: 

B 

: 

( ] 

(38) 
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Users are allowed to read only those files with trustworthiness classification equal or greater than their 
own; they can modify and write only those files with trustworthiness classification equal or less than their 
own. It is trivial to extend our picture to simultaneously exactly specify both confinement and integrity 
concerns over file systems. 

5. Remarks and Further Work 
We are pleased with our application of a visual language for specifying security constraints, especially 
since not only do we use a formal underlying semantic model (an access matrix), but we also use a 
formal notation (based on HarePs statecharts). Our language extends Harel's by the use of negative 
arrows, type definitions, and abstraction. Also, in this paper we have only shown one level of access 
where a user or process has access to a file. Our language more generally supports multiple levels, e.g., 
A has access to B which has access to C. This allows us to capture a typical operating system scenario 
where a user has access to an executable file, which itself when run has access to other files, which may 
themselves not even be accessible by the user. 

We are continuing to refine our language design, especially with respect to parameterization. Currently, 
we allow only value and type parameters to our type constructors. We intend to pursue the possibility of 
allowing relations (e.g., arrows or access rights) as parameters as well. We are also formalizing the 
language extensions, in particular, the meanings of visual type definition and use, and of cables. We are 
in the process of implementing our language to support several operating system environments and 
expect further refinements to occur as we gain experience with user reactions to our system. In 
particular, letting the user have more control over resolving ambiguities may lead for a more flexible 
system, but may also lead to situations that should never arise. 

This work is not only an investigation of visual programming techniques, but also addresses a practical 
concern. In particular, we plan to test our language in real environments such as Andrew. By using our 
system, engineers can focus their attention on small number of high-level security requirements instead of 
a large number of low-level system-dependent details. Our visual specification language is a novel and 
powerful tool for addressing security. 
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