
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

Learning Functions from Examples

B. K. Natarajan

CMU-RI-TR-87-19

The Robotics Institute
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

August 1987

© 1987 Carnegie Melton University

fa* '"! • /'

' 4

1987 Carnegie Mellon University

Table of Contents
1. Introduction 1
2. Problem Solving: An Example 2
3. Preliminaries 3
4. Uniformly Convergent Learning 3
5. Functions over Continuous Spaces 8
6. Two Familiar Function Families 9
7. Conclusion 13
8. Acknowledgements 13
9. References 13

Abstract

This paper concerns algorithms that "learn11 functions from examples. Functions on strings of a finite
alphabet are considered and the notion of dimensionality defined for families of such functions. Using this
notion, a theorem is proved identifying the most general conditions under which a family of functions can
be efficiently learned from examples. Turning to some familiar families: we present strong evidence
against the existence of efficient algorithms for learning the regular functions and the polynomial time
computable functions, even if the size of the encoding of the function to be learned is given. Our
arguments hinge on a new complexity measure - the constraint complexity.

1. Introduction
This paper concerns algorithms that "learn" functions from examples. In the main, it is a sequel to

the material in [Natarajan 1987] and contains the results presented in [Natarajan 1987b], The problem

has been of interest over the years to workers in artificial intelligence, pattern recognition and numerical

analysis. Specifically, we are interested in computing uniformly good approximations to an unknown

function, based on its behaviour on a few sample points. This problem is known as interpolation in

numerical analysis, pattern matching in pattern recognition and concept learning (amongst others) in

artificial intelligence. As our motivation for this study was drawn from artificial intelligence, we will use the

term "learning11 instead of the other two.

We begin with an example to motivate our work. Consider the problem of learning integral calculus.

Given a table of integrals, one has all the information theoretically required to become an expert. Yet,

worked examples and practice problems seem to be necessary before one acquires any facility over the

domain. We formalize this problem and show that unless P = NPt examples play an important role in such

learning. Our formalism covers many other domains such as learning to solve puzzles, play games etc.

We then argue that it is convenient to view our formalism as an algorithm that learns functions from

examples.

The problem of inferring Turing machines from sample computation traces has been studied before

[Biermann 1974], but issues of feasibility or correctness have not been addressed. More recently, a

general framework for uniformly convergent learning of simple concepts was proposed [Valiant 1984].

Based on this framework, some general results on learning geometric concepts and boolean functions

followed [Blumer et al. 1986, Natarajan 1987]. Within the same framework, we consider length preserving

functions on strings of a finite alphabet We define the notion of dimensionality for families of such

functions and give a general theorem that states that a family of such functfons can be efficiently teamed

if and only if it is of polynomial dimension. This is an important contribution of the paper. Our approach is

similar to the one in [Natarajan 1987] and aims at ease of understanding and intuitive appeal. Turning to

functions on continuous spaces, we extend the results on learning boolean-valued functions [Blumer et al.

1986] to general functions.

We then consider two familiar function families: the regular functions and the polynomial-time

computable functions. Since these families are not of polynomial dimension, we consider parametrized

subsets of these families, the parameter being the bound on the size of the encodings of the functfons.

We measure the encoding size as the number of states in the deterministic finite automaton computing

the function for regular functions, and as the size of the program in some admissible programming system

for the polynomial-time computable functions. We then look for teaming algorithms that run in time

poynomial in the size bound. (Summarizing the above, when attempting to learn an unknown function, is

it sufficient to know that the function is regular (or polynomial-time computable) and that it has a short

encoding, in order to learn ft efficiently?)

For the regular functions, we show that such an algorithm does not exist, unless NP « RP. Our

argument is based on an earlier result on the complexity of ordering the regular sets [Gold 1978, Angluin

1978].

For the polynomial-time computable functions, we argue that it is unlikely that such an algorithm

exists. Our argument is not reducible to the condition "unless NP=RPM, but is almost as strong, and

proceeds as follows. To start with, we introduce the interesting notion of the Constraint Complexity of a

set of examples - a measure of the information carried by the set. This is the second important

contribution of the paper. As a backdrop, we prove many interesting results with this tool, including a

short and intuitive proof of the dimensionality theorem mentioned earlier. We then argue that since the

traditional notion of Kolmogorov complexity is a special case of our notion and there are no known

algorithms for efficiently computing the polynomial-time bounded Kolmogorov complexity, it is unlikely that

we can construct one for our measure. From this we deduce that an efficient learning algorithm for the

polynomial-time functions is rather unlikely.

2. Problem Solving: An Example
Many problems such as learning integral calculus, learning to solve puzzles, games etc can be

expressed as follows,

A problem domain D is the triplet {LMJ*} where

(a) L, the problem set, is any set of strings.

(b) M is a finite and fixed set of operators mx^jnk where each m; is a function from L to L.

(c) N is the goal predicate, a boolean-valued function on L. A problem p in L is solved if N(p) = 1.

If D were the domain of integral calculus, L would be all integrals, M a table of integrals, and N the

rule "problem is solved iff it does not contain integral signs".

A solution of any problem p is o(p), where o is any sequence of operators from M such that N(p(p))=

1. A problem solver for a domain is an algorithm that takes as input a problem and produces as output a

solution of the problem.

Our interest is to construct a meta-algorithm for any given set of domains H, that would take as input

a domain D from H and, after some pre-computaiion, behave like a problem-solver for D. We now show

that if P * NP, even the simplest of domains will not possess an efficient meta-algorithm, unless the

meta-algorithm is allowed to see solved examples for its input domains.

Example: Consider the set of domains H defined as follows: Any D ** {LMJ*} in H is such that

(a) the problem set I = {jc#yi x, y e (0,1 }* and # is a special symbol}.

(b) operator set M = [ml9 m^ m^}, where

forx,j€ {0,1 r .He {0,1}

fay.

(c) N is a boolean function constructed as follows. Let N* be a boolean function of n variables
and let p e L.

N(p) = if \p\ = n+l, strip off the # and evaluate N' on the resulting boolean vector.
= 0 otherwise.

In essence, each domain in H is characterized by the boolean function that is its goal predicate. Let
D = {LMJ*} in H and let N be a function of n variables. Now, if a is a satisfying assignment of Nt then a is
a solution to every problem of length n+l in L. If N is not satisfiable, then no problem in L has a solution.
Hence, every domain in H trivially has a problem-solver, but a meta-algorithm on H is going to have to
decide on the satisfiability of boolean formulae. Clearly, an intractable problem. On the other hand, if the
meta-algorithm is allowed to see solved examples for the input domain, then it can trivially decide whether
or not the goal predicate has a satisfying assignment, and then act accordingly. •

If the meta-algorithm is allowed to see a few examples, say pairs of the form (problem, solution), and
then be required to compute the function that maps each problem to its solution, the entire process can
be viewed as learning a good approximation to a function from examples of its behaviour. This is exactly
the problem we study below.

3. Preliminaries
Without loss of generality, let Z be the binary alphabet and £* the set of all binary strings. We

consider functions from Z* to X*. An example of a function/is a pair (xtf(x)). A learning algorithm is an
algorithm that attempts to infer a function from examples for it. The learning algorithm has at its disposal
a routine EXAMPLE, that at each call produces an example for the function to be learned. The probability
that a particular example (xj) will be produced by a call of EXAMPLE is P(x)t as given by the probability
distribution P. Also, the probability that the learned function will be queried on a particular string x is P(x).
The distribution P can be arbitrary and unknown.

We define a family of functions F to be any set of length preserving functions from £* to £ \ The

/^-subfamily Fn of a family F, is the family of functions induced by F on Zn. Specifically, if F " / j . / ^ ^v . - ,

then Fn = gv £2*."£*v» where gt is defined as follows.

undefined otherwise

4. Uniformly Convergent Learning

4.1 Learnability
Following [Valiant 1984], we say that a family of functions is tearnable if there exists a uniformly

convergent learning algorithm for it. Specifically, a family of functions F is iearnabie if there exists a
learning algorithm that

(a) takes as input integers n and A.

(b) makes polynomially many calls of EXAMPLE, both in the adjustable error parameter h and in the

problem size n. EXAMPLE produces examples of some function in Fn.

(c) For all functions / in Fn and all probability distributions P on £", with probability (l- l // i) the

algorithm outputs a function g in Fn such that

xe S
where S = {x\ W = n and/(r) * g(x)}

Furthermore, if the learning algorithm runs in time polynomial in n and h, we say that the family is

polynomial-time leamable.

We need the following definitions as well.

A function/is consistent with a set of examples S if (r j) e S implies fix) = y.

An ordering On of a sub-family Fn is an inclusive, onto mapping from sets of examples to Fn.

Specifically,

(b) inclusive: For any S Q £^cZn, if there exists/ e Fn consistent with S, then On(S) is defined
and Is consistent with S.

(c) onto: For all/ in Fn, there exists S c X^xX11 such that On(S) =/.

An ordering O of a family F is a sequence of sub-orderings Ov O2r»>Onr... such that On is an ordering

of Fm, the ^sub-famify of F. An oideimg O fe a polynomial-time ordering if there exists a polynomial Ufa)

such that each sub-onjtering Oi of 0 runs in time 7{rt) on irifXits erf length n.

The iviafff? erf an ordering 0 of a sub-family Fn fe the lea^ Weger w sucrfi that for al l / in FR there exists

a set S of w or fewer examples for which 0(5) —/»

The dimension of a sub-family FK is the least integer d for which there exists an ordering of FR of

width d. A family F is of dimension £(/*) if there exists an ordering O of F such that for all n, the

^sub-ordering on of O orders ^ in width D(n) or less. If D(n) is a polynomial in n, F is said to be of

polynomial dimension and 0 of polynomial width.

A set & of examples is shattered by a family F if for any S2 c S there exists/ e F such that/is

consistent with St but not consistent with any non-trivial subset of S-Sv

Remark If I F J ^ 2* for some *, then the dimensfon of Fm z kf(2n).

We are TOW ready for our first result.

Lamms 1: Let Fm be a subfamily of dimension d. Then there exists a set s of 4 exanrples that is

shattered by Fm«

Proof: Let O be an ordering for Fn. We first modify O to obtain O1 as follows.

function oHGiset of examples)
Let Cx, C2,...,C,V.. be sets of examples in
increasing size and in some canonical order.
for cl9 C2,».do

if <9(C£) is consistent with G
then return 0CC,).

od
end

It is easy to see Ol is an ordering for Fn as well. Pick a function/in Fn such that

V S: Ol(S) =/implies LSI > d.
Let S be a set such that/= 0(5). Now LSI £ d. Suppose there exists a set Sx <z S such that any g in Fn

consistent with sx is also consistent with some non-trivial subset of SSV Then, Ol(S{) = o\S2) for some

Sx c S2 c 5. Modify O1 to <92 as follows.

Ol{G) otherwise.

Now o2 is also an ordering of Fn except that there is now a set 52, LS2I < LSI such that O 2 ^) =/. We can

repeat this process for other functions in FH, eventually reducing the width of the ordering. Since the

width cannot be reduced below d, there must be some set of size d or greater that is shattered by Fn.

Which implies that there is a set of size d shattered by Fn. Hence the lemma. •

Corollary \FH\ > 2* for some k implies that 3 S9 LSI > k/(2n) that is shattered by FH. •

We are now ready for our main theorem.

Theorem 1: A family of functions F is learnable if and only if it is of polynomial dimension.

Proof: (If) Let O be an ordering for F of width D(n), where D(n) is some polynomial in n. The

following is a learning algorithm forF.

Algorithm 1

Input: n9 h.

begin
Call EXAMPLE 2feiCD(»)+l) times.
Let S be the set of examples obtained.
Output O(S).

end

Algorithm 1 is correct as reasoned below. Let fin Fn he the function to be learned, le9 the function
for which EXAMPLE provides examples and let P be the probabilfty distribution on Zn. For any g in Fn,

define the residue r of g as follows.

where Sg*{xlg(x)*
Lei Cfbe the set given by

C/» {glf 6 FKcmdrt > Hh)

i.e., C; is the set of functions in FH that differ from the function to be learned with probability exceeding

(l/«) The probability that Algorithm 1 outputs a function from Cf should be bounded by (i/h). The

probability that m cafls of EXAMPLE wiH produce examples all consistent with some particular function In

Cis bounded by (1-lfKf. Now,

Hence the prebablfiy that m calls of EXAMPLE will produce examples all consistent with any one function

m Cfis bounded by 22mm§t\l-t/k^ Therefore, I m satisfies

and Algorithm 1 calls EXAMPLE m times, Algorithm 1 will be within the allowable error with'

probability. Simplify ing, we get

m > ACbD(ii) + %(«))»

which is satisfied for« * 2fot{£)(n)+l) as in Algorithm 1. Hence, Algorithm 1 learns F and since nty ,fe

pcJynomial in «, F is leamable.

(only If) Let F be of 84i}»r-|XilyrK)rrtal dirronsion I>(w) and let A claim to be a learning algorithm for F.

Lei A call EXAMPLE (tthf times on input n* A. Pk* n9 A such that

Ltrwra 1, llwre exists a fit! S of £>{») examples that is shattered by Fn. Place the uniform probat%

S

« 0 otherwise

tn S ami run A m it. Now, on any « • (RA)*cafe of EXAMPLE, A will see at most m elements of s. lMSt

6e She if! of e*anpiet seen. LM | be the function output by A and let/ be the function to be learned.

S^m % ft st»ffitf§d by F# ttw§ at teaM {2*^ posstoiiles for / that are consistent with the exampim

%mn by A On each element of flWf,), i wi dKfer wlh at least half the possibilities for/. Therefem, f t

foul number of dffeitaoes ottr al the possibles for/ fe at least (2^(d-m)/2), ami the average i

»-*i,12 This t ^ r ^ nuit ba mslned or exctec^J on at least one possibility for/ Hence, them axfcto

-a *«,?clion/!or which t i t lummn g output 'by A always differs from/on at least (d-m)/2 of the elements of

1/2 - U ^

mom than ttteaftywabie. Hence A does not learn f.

fiotvtpMes our proof *

#§ presert I rtwurct botundtd versfon of Theorem 1. Theorem 2 concerns tiw

knifes mtybt tmaled similarly.

Theorem 2: A family of functions F is polynomial time learnable if and only if F has a polynomial-

time ordering of polynomial width.

Proof: Straightforward extension of Theorem 1. •

Remarks The results presented in [Blumer et al. 1986, Natarajan 1987] concern learning sets from

samples of their elements. It is easy to see that sets are encodabie as boolean-valued functions and

hence can be treated as a special case of our theorem. Conversely, a function from {0,1 }n to {0,1 }n can

be viewed as a combination of n boolean-valued functions on {0,1}", and hence learning functions can be

viewed as a special case of learning sets.

In our development, we used a discrete metric to measure the distance between two functions on an

input string - two functions agreed on a string or did not. It is worth mention that our arguments carry

through for any standard metric.

The following is a resource bounded, weak form of Theorem 1.

Theorem 2: A family of functions F is polynomial time learnable (1) if F has an ordering of

polynomial width computable in polynomial time. (2) only if F has an ordering of polynomial width

computable in random-polynomial time.

Proof: Straightforward extension of Theorem 1. •

4.2 Properties of the Dimension
For any family of functions F, let dim(F) denote the dimension of F. Let A and B be two families of

functions such that dirn(A\dim(B) £ 1.

Lemma 2: If C * A n B\ then dim(Q < min(<Um(Ay, dm(BJ).

Proof: Immediate. •

Let A and B be two families from xx -» Yx and X2 -» Y2 respectively. Then C = AxB is the family of

functions from Xt x x2 -» Yt x Y2 such that each function in C is the product of some two functions in A

and B. i.e

C=[axbkt € A,b € B]
where ax bis defined as follows:

For all (xlt x£ e XjX^,

Lemma 3: If C=A xBt then dim(Q & dim{A)jftm(B)

Proof: Straightforward. •

: If C = A u B then dim(Q

Proof: Without loss of generality, let dim(A) z dim(B). Combine the minimum width orderings OA% OB

for A and B to obtain an ordering Oc for C as follows,

function Oc ($: set of examples)

begin
if LSI < dim(A)

then return oA(S)
else return OB(S)

end

Clearly, Oc is an ordering for C of width <Hm(A) + l . •

Lemma 5: Let A= {av *2, ..At>.^} be a family of {0,l}-valued functions and let A be the family

{ f l j ^ . -^-—J where a£ = 1-^-. Then, dim(A) = dim(A)t

Proof: Immediate- •

5. Functions over Continuous Spaces

5.1 Leamabfllty
As our results are derived using information theoretic methods, it is impossible to extend them

directly to continuous spaces where each example can be of infinite length. On the other hand, the results

in [Biumer et a! 1986] for teaming boolean-valued functions are obtained using some classical results in

probability theory and are valid over continuous spaces. Hence, we will concentrate our efforts on

extending their results to arbitrary functions.

As in [Biumer et at. 1986], we define the Vapnik-Chervonenkis dimension d^F) of a family F as

follows.

For any set of examples St define the set UpiS) as the set of all subsets of S obtained by intersecting

5 with the functions in F. i.e

Hp(S) = {Rt R c 5, and 3/e / such that/agrees with S on R and disagrees with S on S-R.

If TLpQS) = 25, we say that F shatters 5. dJ^F) is the smallest integer d such that no set of cardinally d*l is

shattered by F.

Since we no longer need the notion of a sub-family, we modify our definition of learnability

accordingly- In particular, a family of functions F is ieamable if there exists an algorithm that
(a) takes as input an integer A,

(b) makes potynomiaiiy many calls of EXAMPLE, polynomial in the adjustable error parameter A.

(c) as in the earlier definftion of teamabiity.

Wih these definitions in hand, we can state the following theorem.

Theorem 3; For any finite alphabet I , a family of functions from X* to 2T is Ieamable if and only l i f e

finite Vapnik-Chervonenkis dimension.

Proof: The proof of this theorem is similar to the proof of the corresponding theorem for boolean

valued functions [Blumer et al. 1986]. •

5.2 Properties of the Dimension
Lemmas 2, 3, and 5 stand in their present form for the Vapnik-Chervonenkis dimension as well.

Lemma 4 needs to be rewritten as follows.

Lemma 4': If C=A uB then dvc(C) < dvc(A}+dvc(B).

Proof: Let dvc(A) = dA and dvc(B) = dB. Let S be any set of examples such that \S\-s > dA +dB. Since

Hence,
in^S)! < \UA(S)\ + \UB(S)\
By Lemma 1 of [Vapnik and Chervonenkis 1971],

0
and

dB

Hence

5(0
(0+ 1 (0

<2 J .

Hence C canrK>t shatter S if IS\ > dA +dB implying that d^iQ ^ dA +dB as claimed. •

5. Two Familiar Function Families
We now turn our attention to two familiar function families - regular sets and the polynomial-time

computable functions. Our interest here is to construct learning algorithms for these families. Since

these families are of exponential dimension, we modify our definition of learnability to be meaningful in

this context. The motivation behind our definition is as follows. Suppose that we are trying to team an

unknown function from examples and are told only that the function is regular (or computable in

polynomial time) and Is accepted by an deterministic finite automaton of d states (has an encoding of

length d). Is this Information sufficient to enable us to efficiently learn the function?

Let F be a family of functions with a measure on the size of the encodings for each function in the

family. For any integer d% let f/9 f2
d

f..ff*~. be the functions in F of size d. Then, for any n, the

10

nth-subfamily Fn
d of F with respect to d is the set of functions g^-Si— where

= undefined otherwise

The family F is learnable if there exists an algorithm A that
(a) takes as input: problem size n, error parameter h and output size d.

(b) runs in time polynomial in nr hf d. EXAMPLE provides examples for some function in Fn
d.

(c) for all functions/in Fd and all probability distributions F on IT, with probability (l-l//z) the
algorithm outputs a function g in Fd such that

V P(x) < l/h
xeS

where 5 = {x\ bd = n andf(x) * g(x)}

We say that A learns F.

From Theorem 2 we know that in order to construct a learning algorithm for F in the above sense, we

only need construct an efficient ordering for Ft i.e, given a set S of examples for some function in Fd, we

should be able to efficiently compute a function in Fd consistent with 5.

6.1 Regular Functions
We extend the notion of regular sets to that of regular functions, by considering Mealy machines

[Hopcroft & Ullman 1979] instead of accept/reject finite automata. Specifically, we associate a character

of the alphabet with transition of the automaton and this character is output each time that transition s

completed. The function value for a string is the output obtained by running the automaton on the string.

Our regular functions are from V to Z* and are length preserving.

We now consider the issue of efficiently ordering the regular sets. Define the encoding size of a

regular function to be the size of the minimal automaton that computes the function. We need to answer

the following question: given a set of examples S and an integer d, find a deterministic finite automaton of

size dt consistent with S. This is equivalent to finding the minimal deterministic finite automaton consistent

with the given set of examples. Unfortunately, this problem is NP-compiete as shown by [Gold 1978;

Angiufn 1978]. Consequently, we conclude that it is unlikely that the regular functions are leamable as

claimed below.

Claim: If the regular functions are learnable as defined above, then P«RP.

Proof: ff the regular functions were leamable, then we could order them in random polynomial time.

But9 as reported In [Gold 1978J, ordering the regular functions is an NP-complete problem. Hence the

claim. •

6.2 The Polynomial-time Computable Functions
We consider the family erf al length preserving, polynomial-time computable functions. To develop

some tools for oyr arguments, we first look at the family of all computable functions.

11

Consider the problem of ordering the computable functions. Let the encoding size of a function be

the size of the shortest program computing the function in some admissible programming system, say the

Turing machine system. We need to be able to compute: given a set of examples S and an integer d%

find a program of size d consistent with S - a problem that is equivalent to computing the minimal program

consistent with S. This leads us naturally to the notion of the constraint complexity G(S) of a set S of

examples.

G(S) = wind3z, \z\=dand V (xj)e S:Mu(zjc)=y

where Mu is the universal program. In words, G{S) is the size of the shortest program consistent with S.
Contrast this with the definition of the Kolmogorov complexity of a string x, [Hartmanis 1983].

K(x) = min d3z, \zUdandMu{z) = x.

If S is a set of examples for a function/ G(S) aims at measuring the amount of information about/carried
by S. This is brought out in the following propositions.

Proposition 1: For any string x
w, x)) < K(x) < G((Ow,x)) +log(bd).

Proposition 2: If S is a set of examples for a program p, then,
G(S) < \jA
G(S) < K(p) +c

where c is a small constant.

Proposition 2 tells us that the information carried by a set of examples is bounded by the shortest
descriptton for the program generating the examples. Extend the notation G(S) to G(J) where / is a
function, as follows: G(f) is the length of the smallest program consistent with any set of examples for/,
i.e., G(j) is the length of the shortest program computing/

Proposition 3: Let/, g be two functions on IP. Then/and g differ on at least \G(fy-G(g)\/2n strings.

Proof: Without toss of generality, let G(f) < G(g) and let / and g differ on fewer than
strings. If pf is the minimal program for/, construct a program pg for g by simply tagging on a table of
differences to pf The length of this tag is at most 2n(G(fy-G(g))fln = G(f)-G(g) and hence pg is a program
for g that is storter than G(g). A contradiction arxJ hence the proposition. •

To illustrate the power of the notion of constraint complexity, we prove the following version of the
only if part of Theorem 1.

Theorem V: Let F be a family of functions and let Fn be of dinisension z>(n). Then, no algorithm

that calls EXAMPLE T(n) times where lim nT(n)/D(n) = 0, can learn F.

Proof: Let A te a ieamirg a^jritfim for F calling EXAMPLE T(m) times, whem firn n!tn)/D(w) = 0.

Pld< n such that 2nT{n)*\A\<k:D(n). Sirce Fm fe of dimension D{m), W\ > 2P& and hence there exists a

12

function/in Fn such that G(J) £ D(n)$>T(n). But, for any set S of T(n) examples for/, G(S) < 2nT(n) and

hence any function g output by A is such that G(g) < G(S) +IAI < 2nT(n) +\A\<&D(n). By Proposition 3, g

differs from/on too many strings, and hence A cannot learn F for the uniform distribution on Zn. •

As the reader might expect, the constraint complexity of sets of examples is badly noncomputable,

displaying many of the strong properties of Kolmogorov complexity.

Proposition 4: The set [SIS is a set of examples and G($) > LSI/2} is immune, i.e., there exists no

computable set that enjoys an infinite intersection with the above set.

Proof: Similar to the corresponding result for Kolmogorov complexity. See [Natarajan 1985] for

example. •

Returning to the realm of polynomial-time computable functions, we introduce the time-bounded

constraint complexity. For a set of examples S and time bound T(n),

GT(n\S) = nan d3 z, bW and V (xj)€ S: MjW>(zjc) = y,

where M/W is the T(n) time bounded universal program. Hence, to order the functions computable in

T(n) time, we need to able to compute GTW(iS) for any set S of examples. Unfortunately, the best

algorithm known is

Propositions: GT^n\S) is computable in ron-deterministic time LStTXlSl).

Proof: Since G(5) < (IS + c) for some constant c, simply guess a string of that length and verify

consistency with S. •

if T(n) were a polynomial in n, Grw(5) is computable in non-deterministic polynomial time, NP. As

argued below, we do not know if we can push ft into random polynomial time RPt or deterministic

polynomial time P.

Proposition 6: If l%n) is a polynomial, G1^ is computable in NP, but not known to be in P or up.

Proof: From Proposition 1 and the fact that tils not known whether polynomial-time Kolmogorov

complexly is in RP or P. •

In the light of the above, we cannot give a deterministic polynomial time ordering for the polynomial-

time computable functions. In fad, we cannot even offer a randomized polyrK>miaI-time algorithm

Consequently, we cannot give a deterministic polynomial-time learning atoflorithm for the poyromlal-time

computable functions, indeed, ft seems unlikely that such an algorithm exists. We can, however, give a

nQfi~detenjticiistic polynomial-time algorithm as follows.

13

Algorithm 2

input: problem size n, error parameter h,
output size d and time bound nk.

begin
Call EXAMPLE dh times. Guess a string of length d
and verify that Mu

n (d,) is consistent with the
examples seen.
If so, output the string.

end

7. Conclusion
This paper concerns algorithms that learn functions from examples. We considered length

preserving functions on strings of a finite alphabet and defined the notion of dimensionality for families of

such functions. Using this notion, we proved a general theorem that identifies the conditions under which

a family of such functions can be efficiently learned. This theorem was extended to functions on

continuous spaces by generalizing the notion of the Vapnik-Chervonenkis dimension introduced in

[Blumer et a! 1986]. We then considered the families of regular functions and the polynomial time

computable functions. We showed that efficient algorithms for learning the regular functions do not exist.

We also argued that it is unlikely that efficient algorithms exist for the polynomial-time computable

functions. In doing so, we introduced the notion of the constraint complexity of a set of examples, a

notion that is not only intuitively pleasing, but a useful tool as well.

8. Acknowledgements
I thank T.M. Mitchell for giving freely of his time.

9. References
Angluin, D, (1978) "On the Complexity of Minimum Inference of Regular Sets", Information and Control,

39, pp337-350.

Biermann, A.W., (1974), "On the Inference of Turing Machines from Sample Confutations*, Artificial

Intelligence, voI3, pp181-198.

Biermann, A.W., and Feldman, J.A., (1972) MOn the Synthesis of Finite State Machines from Samples of

their Behavior", IEEE Transactions on Computers June, pp592-596.

Biumer A., Ehrenfeucht, A., Haussler D., & Warmuth, M., (1986), "Classifying Leamable Geometric

Concepts with the Vapnik-Chervonenkis Dimension", ACM Symposium on Theory of Computing,

pp273-282.

14

Gold, E.M., (1978), "Complexity of Automaton Identification from Given Data", Information and Control,

37, pp302~320.

Hartmanis, J., (1983), "Generalized Koimogorov Complexity", IEEE Symposium on Foundations of

Computer Science.

Hopcroft, J.E., and Ullman, J.D., -Introduction to Automata Theory, Languages and Computation",

Addison-Wesley, 1979.

Mitchell, T.M., Keller, R.M., and Kedar-Cabelli, ST., (1980), "Explanation Based Generalization: A

Unifying View11, Machine Learning, Vol 1, No 1, January.

Natarajan, B.K., (1985) The Homogenous Capture of Random Strings", Cornell U. CS Tech. Report.

Natarajan, B.K., (1987) "On Learning Boolean Functions", ACM Symposium on Theory of Computing,

PP296-304.

Natarajan, B.K., (1987b), Machine Learning Lecture, Dept. of Computer Science, Carnegie-Mellon

University.

Valiant, L.G., (1984) "A Theory of the Learnable", ACM Symposium on Theory of Computing, pp436-445.

Vapnik, V.N., and Chervonenkts, A.YA., (1971), "On the Uniform Convergence of Relative Frequencies of

Events to their Probabilities", Theory of Probability and its Applications, vol16, No. 2, pp264-280.

