
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.



Implementation and Performance
of a Complex Vision System
on a Systolic Array Machine

Ed Chine, Jill D« Crisman, Gudrun J. Klinker, and Jon A. Webb

CMU-RI-TR-87-16 3

The Robotics Institute
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

June 1987

Copyright © 1987 Carnegie Mellon University

This research was supported in part by Defense Advanced Research Projects Agency (DoD), monitored by the Air
Force Avionics Laboratory tinder Contract F33615-84-K-152Q, and Naval Electronic Systems Command under
Contract NG0G39-85-C-0I34, in part under ARPA Order number 5352, monitored by the U.S. Army Engineer
Topographic Laboratories under Contract DACA76-85-C-G0Q2, and in part by the Office of Naval Research under
Contracts 1W0014-8G-C-0236, MR 048-659, and MGQG!4~85-K-G152, NR SDRJ-QGX



Table of Contents
1. Introduction 1
2. The Warp System 1

2.1. Warp Hardware 1
2.2. Warp Software 2

3. FIDO 3

3.1. History of FIDO 3
3*2- FIDO Algorithm 4

4. Implementation of FIDO on Warp 4
5. FIDO on the Demonstration System 5

5.1. Image Pyramid Generation 5

5.1.1. Mapping the Algorithm onto Warp 5
5.1.2. Microcode Timing of the Pyramid Generation Algorithm €

5.2. Interest Operator 7

5.2.1. Mapping the Algorithm on Warp 8
5.2.2. Microcode Timing of the Interest Operator 8

53. Image Pyramid Correlation •
5.3.1. Mapping the Algorithm onto Warp 1*
5.3.2. Microcode Timing of the Correlation Algorithm W

5.4. Performance of the Vision Modules **
6. FIDO on the Prototype Warp System 11

6.1. Analysis of FIDO Performance on the Prototype 12

6.1.1. Pick New Features *?
6.1.2. Correlation modules ^r

7. Algorithm-level Parallelism in FIDO £f
8. Using the Production Machine *^
9. Summary



11

List of Figures
Figure 2-1: Warp host
Figure 5-1: Image Pyramid
Figure 5-2: Calculation of the interest operator
Figure 5-3: Correlation Over an Image Pyramid
Figure 7-1: Planned FIDO loop with parallelism

2
6
7
9

14



Il l

List of Tables
Table 5-1: Demonstration Timings
Table 6-1: FIDO Module Times
Table 6-2: 'Pick New Features' Times
Table 6-3: Times for Correlation Modules
Table 7-1: FIDO Module Times

11
12
12
13
15



Abstract

Complex vision systems are usually quite slow, requiring tens of seconds or minutes of computer time for each
image. As the complexity and experimental nature of the system increases, the speed is especially low, since all
components of the system must be optimized if the system is to show good performance. The FIDO system, a stereo
vision system for controlling a robot vehicle, has existed for a number of years and has been implemented on a
number of different computers. These computers have ranged from a DEC KL10 to the current implementation on
the Warp machine, a 100 Million Floating-point Operations Per Seconds (MFLOPS) systolic array machine. FIDO
has shown an enormous range in speed; its ancestor took 15 minutes per step, while the Warp implementation takes
less than 5 seconds per step. Moreover, while early versions of FIDO moved in slow, start-and-stop steps, FIDO
now runs continuously at 100 mm/second. We review the history of the FIDO system, discuss its implementation
on different computers, and concentrate on its current Warp implementation.



1. Introduction
Sophisticated vision algorithms are usually disappointingly slow when they are put together into a complete

system. This is especially true of systems created for research purposes, since speed is usually not a primary
concern and much effort must be spent on working out ideas in a user-friendly environment, which is not conducive
to high speed algorithms. However, even in a research environment, reasonable speed is desirable. One reason for
this is that it is difficult to debug an algorithm that takes minutes to compute one meaningful result; not many
debugging runs can be made in a day. Another reason is the difficulty of using the algorithm in a non-simulated
environment, for example to control an actual robot vehicle; if the algorithm takes minutes to run for each step, it is
not practical to debug given time constraints imposed by the physical environment Finally, it is not possible to
integrate an algorithm into a working vision system, which may use multiple sources of inputs, if the speed of one
algorithm is much lower than the others.

One sophisticated vision system that has received much attention over the years, and which continues to be
developed, is the FIDO (Find /nstead of Destroy Objects) vision system. FIDO is a stereo vision navigation system
used for the control of robot vehicles; it includes a stereo vision module, a path planner, and a motion generator.
This system is descended from work done by Moravec at Stanford [Moravec 80]. After Moravec came to Carnegie
Mellon in 1980, work was done by Thorpe and MattMes [TTioipe 84; MattMes 84], who gave the system its name.
More recently, work has been continued by the authors of the present paper, as well as others. This vision system is
unusual in its longevity and in the range of speed over its span of development: Moravec's original algorithm,
which was heavily optimized (though different in many important ways from the FIDO algorithm), took 15 minutes
to make a single step while running on an unloaded DEC KL10; the Vax 780 implementation ran at 35 seconds per
step; the Sun 3 implementation presently at Carnegie Mellon takes 8,5 seconds per step; and the current Warp
implementation takes 4.8 seconds per step. This is a factor of 190 in improvement

We will begin by describing the Warp system, on which the current implementation of FIDO runs, and how it is
programmed. Then we will review the history of the system that became FIDO, and how the different parts of FIDO
were implemented on Warp, Finally, an evaluation of the Waip/FIDO system is given and a brief description of
future implementations.

2. The Warp System

2.L Warp Hardware
A discussion of the Warp hardwanl is necessary in order to fully understand the Waip implementation of FIDO.

This discussion is greatly abbreviated; more detail is available elsewhere [Kung and Menzilcioglu 84]. The Waip
machine has three components: the Waip processor array, or simply Waip, the interface unit, and the host, as
depicted m Figure 2-1.

All of the woik on FIDO on Warp so far has been done using the demonstration and prototype Waip machines,
which are wire-wrapped machines built according to Carnegie Mellon's design (the demonstration machine was
built by Carnegie Mellon; prototypes were built by General Electric and Honeywell). The wirewrapped machine has
been superseded by an improved production Waip machine [Annaratone et aL 87], built using printed circuit boards
by General Electric. The machine described here is the wire-wrapped machine.

The Waip processor array is a programmable, one-dimensional systolic array, in which all the cells* caHed Waip
cells, are identical. Each ceU is a complete computer, with computational units and local data and program memoiy,
except that address generation is normally done cm the interface unit, so that addresses, along with data, flow



Master Processor - Workstation
UNIX 4.2

P: processor

M: memory

S: switch

I: graphics input

0: graphics output

Figure 2-1: Warp host

through the array. Each cell contains two floating-point units: one multiplier and one ALU, each of which can
deliver up to 5 MELOPS. The peak processing rate is 10 MFLOPS per celL A 4 K-word memory is provided for
resident and temporary data storage.

As address patterns are typically data-independent and common to all the cells in low level vision algorithms, full
address generation capability is factored out of the cell architecture and provided in the interface unit Addresses are
generated by the interface unit and propagated from cell to cell, together with the control signals. In addition to

generating addresses, the interface unit passes data and results between the host and the Warp array, possibly
performing some data conversions in the process.

Tie host consists of several processors: The "master" controlling the Warp array is a Sun workstation which can
ran Unix to pmvide a convenient programming environment and provide compatibility with other Carnegie Meikm

vision research programs. Data transfer to and from the Warp array, and control of vision peripherals such as
cameras and frame buffers, is provided by an "external host" (physically external to the Sun) which communicate
with the SUE through a VME bus repeater. Hie external host consists of three "standalone processors": two of
them, called "cluster processors," are used for sending and receiving data during a computation (they can exchange
roles as needed) and the third one, called "support processor," is used for controlling peripherals and executing s
runtime library. Hie runtime library allows event sequencing and processing of interrupts from Warp.

2L2. W a r p Software

"The development of programming tools that manage the Warp system efficiently requires the integration w&

extmmm of state-of-the-art tecfaoiqiies tod flutter advances in compiler technology.



A basic runtime library has been written for the host as a first attempt at handling the system level
issues [Annaratone 85]. The library has mechanisms for allocating memory on the external host and sequencing
events on the Master, standalone processors, and Warp array as well as mechanisms for running the Waip array and
using peripheral devices.

A compiler exists for a language called "W2," a Pascal-like language in which all the underlying parallelism in
the host and within each cell is hidden [Gross and Lam 86; Bruegge et al. 87]. Only the parallelism between the
cells is seen by the user and must be managed explicitly. An asynchronous send/receive protocol is supported for
communication between the cells.

3. FIDO

3.1. History of FIDO
The predecessor to FIDO was the Stanford Cart developed by Moravec at Stanford University starting in 1973.

The Cart was a vision-guided vehicle that could navigate through a worid containing obstacles. The vehicle moved
in a series of one meter steps. At the end of each step, pictures were taken to determine the Carfs position by
tracking known obstacles in the scene.

The Stanford Cart algorithm and the FIDO algorithm contain the same steps. First obstacles are identified in one
image, using a feature detector. Then obstacles in one image are matched with obstacles in the other images. The
three-dimensional positions of the obstacles can be now be calculated by using a triangulation technique. Next the
motion of the vehicle is planned and executed. After obstacles are found in the new set of images, they aie
compared to the previous set of obstacles to determine the relative vehicle motion.

The performance of the Stanford Cart algorithm was limited largely by unreliable hardware. For example, each
image was digitized 24 times in order to obtain at least one good image, and binocular vision was abandoned in
favor of a stereo algorithm that used nine images for greater robustness. The motion of the cart was not accurate, so
much time had to be spent determining the cart's exact position after a move. Even with careful optimization, the
program needed 15 minutes per step on an unloaded DEC KL10. Despite its slow speed, the Stanford Cart had
several successful indoor runs and a successful outdoor run in 1980.

Thorpe and Matthies developed FIDO, starting with simplifications to the Stanford Cart algorithm due to better
hardware. Thorpe and Matthies also experimented with the various modules to give a scientific basis to some
heuristically chosen parameters. In addition, some modules (for example, the path planner) were re-implemented
using faster algorithms. With all of these changes, FIDO was able to ran in the laboratory, on the Neptune robot on
aVax/7$0,ataspeedof 30 seconds per half meter step, a speedup of 30 overtfae Stanford Can More than 80% of
this time was spent running basic vision routines such as image reduction, correlation, and the interest operator.

Crisman began work on FIDO in May 1985. As part of the Carnegie Melon Strategic Compiling Visiao
Project [Kanade and Thorpe 85] FIDO was moved to a Sun Workstation (curontly a Sao 3)v In addition* Gasman
began a general cleaning of the FIDO code, which had become quite cluttered with unused and egpeaaieDt&I code*
Several improvements were implemented to increase the speed of HDO, indudisc optimizing the display imitaxa
ami using arcs in the motion generator. The code was also adjusted to ran m, the new outdoor robot; Tenagptoar. In
an attempt to take advantage of much more accurate motion expected fowl Teuag^koi; the module in FHX) that
determined position by obstacle tracking was removed. This also increased the speed of the algorittan*



32. FIDO Algorithm
FIDO performs the following steps. Hist, it takes two pictures of its environment It then tries to locate all of the

obstacles that it knows about in the new pictures. Then it checks to see if there are any other obstacles present that it
had not been able to see before. It plans a path to its goal around all of the old and new obstacles. Then it moves
one meter along the planned path and stops to re-investigate its environment This repeats until the goal position is
readied.

To clarify the algorithm, the following terminology will be used. An obstacle is an identified location in the
three-dimensional world where the vehicle is unable to pass. A feature is the two-dimensional appearance of the
obstacle in the image. FIDO considers only point features. This assumes that physical objects will have enough
features in the image to be correctly bounded in three-dimeosiooal space.

Below is a more detailed description of the FIDO algorithm.
• Digitize: Two 512x512 images, called the left and right images, are taken from identical cameras with

known relative positions. The right image from the previous image pair is saved f or the reacquire step.

• Reduce: Reduce the two 512x512 images to create an image pyramid as shown in Hguie 5-1.

• Reacquire: Find the curraatly known features from the old right image pyramid in tfae new right image
pyramid, using pyramid correlation as explained in Section 53.

• Match Features: Match features from the previous step betweea tibe new right and new left image
pyramid, using pyramid corraktioR The fawdimeosiooal position of the features aie then calculated.

• Catalog: The catalog is a list of obstacles known lo HDO. This fonns a simple m^p describing the
environment surrounding the vehicle. The new objects that mt discovered by the reacqme aod
matching steps are added to the map. Pievioissiy found otwfcades that ahonld be sera but aie not are
•discarded, to eliminate spurious obstacles.

• Plan a path: Man a path from the vehicle's caneat paritioa to Us destnadioa that s r a i all of the
obstacles.

• Move: Move one step towari tbe destination* along the path.

• Pick new features: Use tbe interest opemtor to Sad new *%ie»BitHig** p w i s i t the HM§& , These
features are added to the feataes matched m the Macn Feaatrts siep.

•Mmch mew features: Bod ttie oew feature* nor. ±e new rigbt i m p , in ffat nwr fell image* using

4 . ImpleQHsiitatioii of FEDQ 00
Xa tbe summer of 1984, Dew, Chang, Mitthief sod TTxapc destpacd a new venae© of ibe HDQ system to ma on

Wnp t wtadi wts ttseo in to ioitiil c^»pi pbase. They Mrailieit die most & ^ ©otBiroing puts of FIDO to be tbe
major vMm alpHiiMis (cmaiMimh i*a»tf ^ws^w, «rf nxbictioci)« wtecfa were c « » t o ^ lo be suitable for

m t spfcrfic anvy such ss W«p« They i « t o ^ ^ FIDO 10 ran c» 1
based « an e t r iydca^ Ibe

wm iatwdii»§editohctbt mm4meaimdin section 2.1* largely far ressons of piqgnmnnafaility.

Once fle initial dadigtt w » ck»»» imii«ioa^iaQ of F ^ ^ on Warp jxoo&eded
• Step l^lm^kmBat i B tfavw vtaai modijlGt of F © 0 for the Wtrp army, providiiig t p

demoortiatiOB ptofcsui to ^ ^ that tdbe imjdaiicauttoQ works, Ttes was done by Kttnker usag W»p
m t e x o ^ on a d^noottnlion W«p system.

^Rctmpfe»«ii tbe visic» moduks oa to powitfpe Waip sysw».. This was done by Clune using
At tix s ^ c tinMu exploit tbe external toft to overlap computanoQ 00 the Waip «my with

and f ^ - p « ^ « i n g of tbe data in tbe duster pmctsmm, actaevmg more paraDelism.



The steps above use the most powerful part of Warp-the Warp processor array-to speed up the FIDO system.
However, it is also possible to use Waip's external host to exploit algorithm-level parallelism and get further
speedup. This approach can sometimes give a large speedup in the system, since in some cases significant portions
of the code can be run in parallel with the rest of the system, effectively executing that code for free. Therefore, we
formulated Step 3: Make efficient use of the multiprocessor host system. To some extent, this step has already been
accomplished, but theie is still room for exploiting algorithm-level parallelism in FIDO, as we shall discuss later.

Section 5 describes the initial implementation of the vision modules on Warp using microcode (Step 1). Section 6
describes the current implementation of FIDO on Warp in W2 (Steps 2 and 3).

5, FIDO on the Demonstration System
FIDO was first implemented on the Warp demonstration system, which included a Sun 2, an interface unit, and

two Warp cells. In addition to being the first woik on FIDO on Warp, this step showed in the demonstration system
that Warp can be used for vision applications. Moreover, it allowed us to test algorithm decomposition techniques
and to test the Warp hardware with realistic algorithms. Once the initial implementation was done, it was ported to
the ten-cell prototype system and modified to use the cluster processors for input and output This implementation
was then superseded by new software, as discussed in the next section. Here we describe the vision modules in
FIDO in detail and give their timings on the demonstration system and first prototype implementation.

5.1. Image Pyramid Generation
The image pyramid used in FIDO consists of 7 levels, starting with a 512x512 image at levelxl and ending with

an 8 x 8 image at level xly as shown in Figure 5-1. Areas of 2x2 pixels are replaced by one pixel in the next higher
level of the pyramid. The new pixel value is computed by averaging over a window in the higher resolution image
to produce a one pixel result in the Iowa* resolution image. The simplest averaging is to take a 2x2 pixel area and
average it to one pixeL The initial implementation on the Waip array used overlapping 4x4 windows, which gave
slightly better results than 2x2 windows.

5.1.1. Mapping the Algorithm onto Warp
The pyramid generation algorithm has been implemented in Waip microcode in a systolic scheme, as suggested

by Kung for convolution-type algorithms [Kung 84].

Hie pyramid generation algorithm was planned to fit the ten cell Waip array. The algorithm lequiied the
processors to accumulate and noenalize 16 pixels in a 4x4 window to produce one reduced pixel value. This was
mapped onto the Waip array as nine modules, with the fiist eight each adding two new pixel values to the
accumulated partial sum, and the ninth module normalizing the result. The second, fourth and sixth module also
stand the partial lesols nodi the necessaiy pixels from the next row underiying the 4x4 window had anived at the
module. The tmw 'data and ttep'artMr^ultswttettwQsaittogetter to the iiext module.

Because title demonstration Waip system consisted of only two cells whan the micro-programmed version of the
pyiamM generation algorithm was iraplenicoted and tested* we had to face the problem of mapping nine conceptual,
algorithmic mocfeaies onto two physical ceBs, Has was achieved by having the first cell ran the first four modules
and the second eel ran the lonaiiMng five modules. Each cell switched between consecutive modules whenever
eight new partial results wett produced. Thus* the pixels were processed in batches of sixteen at a time. Two extra
pixels had to be sent with each batch* doe to the OTeritpping kernel



(8x8)

(16x16)

x5 (32x32)

x4 (64x64)

X3 (128x128)

x2 (256x256)

xl (512x512)

i Image Pyramid

5JUL Microcode Timing of the Pyramid Generation Algorithm
Since the entire processing in each module consisted of adding two numbers and passing Item on, each module

needed two processing cycles to perform its task cm a given pair of input pixels. The modules amid thus start to'
operate- en a new window position every two cycles. Accordingly, the modules could perform their tasks as fast as
the data coma be sent to the cells. On an image with mxn pixels, the mm modules thus needed essentially
MXM cycles to neckice an mxm image into an ~x~ image* plus a few initial cycles for startup. To gei^rate the

described image pynnud, consisting of seven levels* this evolved to J ^ j —x~ cycles, wbicii is

341401
1365358 c y d # a

^0.07 seconds
- 0.27

on 9 cells
oa 2 cells

A ampler sequential algoriiiin {with noiHnreil^ppifls ledactioa wiatows) toe* about one so:<wi cm a Vax/780.
Nine W«p eels tbos pfcmcM a speedup of 14, wbicb is idatiTOly analL TIB W«p impIanaEMicm of the
pyramid genostioo algodttaQQ was consmimcaiicm kt«»ave: it used the adder effectively only half of the time (in
every mber row), It dM not use the nmMpieis at t i (except for a ixxmatizatioo). Eadi Waip cell was u»d as a 2.5
MFLOPS mtdrijK, for 25 MELQPS fitmi the array. TMs expMm the relatively small speed-up of the pyramid



generation algorithm. Note that adding more cells would not increase the speed since this would not reduce the
communication requirement.

5JL Interest Operator
"Interesting points*' are those points which can be localized well in different pictures (for example comers). The

image intensities change rapidly in all directions for a point that is "interesting."

j-2 j-1 j

Averaging in the
left diagonal direction
for pixel (i,j)

j-2 j-1 j

Averaging in the
vertical direction
for pixel (i,j)

j-2 j-1 j

i - 2

Averaging in the
right diagonal direction
for pixel (i,j)

i - 2

i - 1

i

mmm

mmm

j - 2

mmmm

j - 1 J
1 1

Averaging in the
horizontal direction
for pixel (i,j)

Figure 5-2: Calculation of the inieiest operator

Interesting points axe found using an interest operator, which is largely unchanged from Moravec's Stanford Cait
wade. The interest operator takes squared pixel differences around a pixel in the vertical, horizontal and both
diagonal directions and acoimiilates Item (separately for each direction) in the 3 x3 neighboihood of the cuirent
pixel [Tfaoipe 84; Dew aud Chang 84], as shown in Figure 5-2. For the current pixel to be an interesting point, all
four accumulated differences must be large. Their minimum gives the interest value of the current pixel. The
intere^ values ire locally maximized in one bandied subimages that are arranged in a 10 x 10 grid. The maxima of
all subimages am stored in a list of decreasing interest values. This gives a set of points, distributed across the
image, which am be localized in the image for matching.

CMy the fiist pact of this algorithm, computing the acoimuiated squared pixel differences in all four directions for
every pbaslv wt$ ffltpiemeiited in miciocGcte on the Warp anay. In the demonstration system, processing stopped
here. Later, we sfnpkmei^ed the minimization, maximization and list processing on the duster output processor.



5.2.1. Mapping the Algorithm on Warp
The interest operator does not have a good partitioning into modules with similar timings. We thus did not try to

implement it in a systolic scheme, as was described for the pyramid generation algorithm in the previous section.
Instead, we used the input partitioning model [Kung and Webb 86] in which not the algorithm, but the data is
divided into equally sized parts. In this scheme, each cell performs the complete algorithm on a portion of the data.
Anmxn image is divided into c vertical stripes to be processed on c different cells. For the interest operator, the
stripes had to overlap by 4 pixels, due to the width of the operator window. Thus, every cell ran on m- (f-1+4)

pixels. The systolic communication facilities were then used like a "bus": each cell received data from the previous
cell and sent it to the next celL The host sent the data interleaved such that each cell could use every c**1 pixel for
itself. At the beginning of every new iteration, c new pixels were sent over the "bus." The offset between
programs that ran on neighboring cells was two cycles such that each cell started a new iteration exactly when a new
pixel arrived.

Note that, since the programming scheme of the interest operator was organized around partitioning the data and
not the algorithm, this algorithm could be easily adapted to run on any number cells. In the demonstration system,
the algorithm ran on two Warp cells, computing the interest value for every pixel of a 256x256-sized image (level
x2 of the right image pyramid) in two parallel vertical stripes each consisting of 256 x 132 pixels. It was a matter of
changing a few constants that indicated the wMth of the vertical stripes to provide a version that ran on ten cells,
when tihe ten cell Warp became available. The ten cell version divided the image into ten vertical stripes, each
consisting of 256 x 30 pixels.

The algorithm iterated on a sequence of two steps:
L Get the next pixel, compute the difference between the new pixel ami its neighbors in four directions,

and square the differences.

2. Add the squared differences to the partially computed interest values of the nine pixels whose 3 x 3
windows overlap at the current pixel.

Within each of the two steps, the code was optimized using software pipelining to use all facilities, such as the
multiplier and adder, of the cell simultaneously. For ease of programming, no optimization was organized between
the steps. This made the inoennost loop 65 cycles long, whereas the ideal algorithm would have needed only 40
cycles.

Hie algorithm must store the most recent two rows of pixels and the most recent three rows of partial interest

values. TiM8*(2+34>pr|+4pixelswerest^^ For the given memory size

of 40% K worts* a maximal row width of H = 2 5 6 columns per cell could be allowed

&2JL Mtancoie Timing «f the Interest Operator

The tateest operrtw ma in (w-l).«f |1+4>65+21)+30 + c-(f?|+4) cycles. For a 256x256 image, the

algorithm takes

502935 cycles ~ 0.10 saconds on 10 cells
2193549 cycles - 0.44 seconds on 2 cells

The seqaeatlal algorithm ran in about 2,65 seconds cm a Vax/780. Ten Warp cells provided a speed-up factor of
26JL The adder was the most used resource of the interest operator. It was used in 40 out of 65 cycles of tie
ioDsnnost loop. The multiplier was baiely used (4 multiplications in 65 cycles). The algorithm thus used each eel

as i 3.4 MELQP macMae, The addition of more cells would greatly improve the speed. In the described
impfciwiiaiica, each cell needed a new pixel evay 65 cycles. This, maximally 65 cells could have teen used m
panic! befene the interest operator bad become I/O limited. It would then have needed 0(mxn) cycles to compute



the results.

53. Image Pyramid Correlation
For a given pair of images and a given list of interesting points in one image, the correlation algorithm is used to

find the corresponding points in the other image. The search for the most likely corresponding points of the
interesting points is perfoimed on the image pyramids, starting at the highest level (x7:& x 8 image). At each level, a
4x4 template around the current interesting point is taken and correlated with an 8 x 8 search area in the other image
pyramid at the same level. The best matching position of the template in the search area determines the position of
the search area in the next lower, more detailed, pyramid level [Moravec 80], as shown in Figure 5-3.

new image old image

search windows
(8x8—windows)

templates
(4x4—windows)

Figure 5-3: Correlation Over an Image Pyramid

Psetsdo-nomalized correlation is used, as given by this formula [Dew and Chang 84]:

£,>•<) iJ-0 i\>0

where t$j demies tfae template element at position (i,/), and
image.

denotes pixel at position (i+JJ+wi) in tfae

In tfae mici0-i»t>gminni«i version of the algorithm, Warp was used to find tfae optimal cauelatiofis of all features
far mm pwm pyramid level at a time. Hist* all templates of a pyramid levd. were sent Tlie cells stored tfae
templates tad computed their means and variances. Then tfae search areas of that levd were given to tfae Warp array
in the same sequence is tbe templates. Tfae cells coneiated tbe concent template with tbe auneo! search area aixl
seat the »iMatitHi lesults for every template position to the output cluster. Tbe cluster processor torn found the
optimal position of etch template within its search WHXIQW and detennined tbe search aieas for tbe next lower level.
Tbe process was then repeated for tbe next lower pynmM level [Dew MM! Chang 84].



10

5 J . I . Mapping the Algorithm onto Warp
The correlation algorithm was implemented in a systolic programming scheme, as for the pyramid generation

algorithm. It was designed as nine modules. Each of the first eight modules covered two template elements. The
algorithm was designed so that initially, each module received the template elements and stored the respective
template elements of each template. The mean and the variance of all templates were computed and stored in the
ninth module. Then, in the correlation phase, each module got the pixels of the search areas and the partial sums Sv

S2> and St from its left neighbor and updated the partial sums before it sent them to its right neighbor with the next
pair of pixels. As in the case of data pyramid generation, the second, fourth and sixth module stored the derived
partial results until the pixels of the next row, underlying the current window position, arrived. The ninth module
combined the partial sums and the mean and variance of the current template into a correlation value that denoted
how well the template fitted the data in the search aiea at the current position.

In the demonstration system, the correlation algorithm ran on two cells. The first four modules ran on the first
cell, the other five modules ran on the second cell. For every pair of pixels, six additions and four multiplications
had to be performed in the first eight modules. In the ninth module, one addition, two subtractions, three
multiplications, and two divisions had to be executed Thus, the adder was the most used resource for the first eight
modules (used six times per module run), whereas the multiplier was used most in the last module (five times, so
thai it was not the bottleneck). It was possible to achieve the optimal speed for the first eight modules, Le: start a
new module run every six cycles, keeping the adder busy all the time. When the modules were run on two cells,
however, the ninth module had to share the resources of the second cell with the fifth through eighth module. Since
the microcode of the ninth module was very different from the microcode of the other modules (heterogeneous
modules), it was impossible to schedule the facilities of the second cell such that one resource was used in every
cycle: the ninth module required that the innermost correlation loop be augmented by twelve cycles (i.e.: two extra
module rans).

53 J2. Microcode Timing of the Correlation Algorithm

The nine modules needed r- [(6m2+ 18)-n+113] cycles for n templates and search areas, with each search area

being of size mxm, on r resolutions. In FIDO's case,/i=50,m=8, and r=7. The algorithm thus ran in

141491 cycles -0.03 seconds on 9 cells
848946 cycles -0.16 seconds on 2 cells

The secpteotial algorithm took about 23 seconds on a Vax/780. Nine cells thus provided a speed-q> factor of 78.
This was a much higher speed-up than that adrieved by the pyramid generation algorithm and the interest operator
because the multiplier was used in every cycle and the adder was used in every other cycle. Each cell thus ran beie
as 7.5 MFLOP a machine. The ccmmimtcation facilities weie also used in every other cycle. Therefore, the
eofielatloii algorithm was a faiiiy well balanced algorithm. The maximum speed-up would have been reached if 18
ceUs had been used (dot to communication requirements).

5 A Performance ®f the Vision Modules

Holes far the three vision mcxMes aie shown in Table 5-L The speedup (optimal and actual) of a Sun 2 with
Wiip over a San 2 without Wiip is also shown for each module. As mentioned above, only the two cell system was
available at this time. In addition, the system software wts not fully toned so that it took approximately 03 seconds
to c t i etch Waxp module.

Most iatetestmg is the speedup of the pyimnid genexttioti module m Warp, It actually takes longer to run cm the
Waip than cm the Sun alooe. This is because the data low between the clusters aod Warp is unbalanced Very time



11

Table 5-1: Demonstration Timings

Function

1 pyramid generation

2 pyramid generations

Interest Op

Correlation

Vax/780

0.5 sec

1.0 sec

2.7 sec

2.3 sec

Sun 2

3.2

6.4

13.0

14.0

System

Clusters

0.7

0.8

-

Two Cell Warp:
optimal

0.3

0.6

0.4

0.2

Two Cell Waip:
actual

18.0

36.0

0.9

3.0

Speedup

Maximum
(Warp vs. Sun 2)

11

11

33

70

Actual

0.2

0.2

14.0

4.7

consuming manipulations were required to order the data correcdy for Waip in this implementation, but the actual
pyramid generation on the Warp array is not computationally intensive. The array is virtually starved for data. This
is a case where the ordering of data is too complex for Waip (specifically the clusters). A more efficient
implementation is for the cluster processors to semi the pixels in the order it is stored in memory so that data can
flow rapidly into the array, and have the Warp array handle the data reordering itself.

The interest operator and correlation functions did not perform at the optimal speeds either, although they are
faster than the comparable Sun functions. If the startup times for the Warp implementations is subtracted (the
overhead for startup is much less in the prototype and production Waip machines), the actual times are close to
optimal times as shown in Table 5-1.

6. FIDO on the Prototype Warp System
The hardware completely changed from the demonstration system to the prototype system described in Section 2.

The number of cells in the Warp array increased from two to ten. Just as important for system performance, the
master was upgraded from a Sun 2 to a Sun 3 with the MC68881 floating point hardware, and the external host
became available. These changes markedly improved the performance of the system.

In addition* the software environment changed radically. Previously, all of the vision modules for the
demonstration system were coded directly in microcode, a tedious task. With the prototype system, the W2
compiler became available, greatly simplifying the programmer's task.

We completely reimplemented the vision modules as a result of these changes:

• Pyramid generation: This module was reimplemented as a C program to be run on the clusters, since
very little computation is done here. This made it possible to do the two pyramid generations in parallel
uring the two duster processors. In this implementation non-overlapping 2 x 2 windows were used
instead of the overlapping 4 x 4 windows in the Warp implementation, to simplify the computation.

• Interest operator: This module was reimplemeiited in W2, without significant change in the algorithm.

• Correlation; This module was originally written as a systolic program, but could not be itimplemented
in this way because the prototype W2 compiler allowed only homogeneous code. Instead, it was
implemented using input partitioning, as in the interest operator.

In addition, preprocessing and postprocessing of the data in modules that send data to the Waip array was
implemented as C programs to be ran oa the dusters, winch send and iecetve.data directly to the Waip may. These
C programs replaced the standard oompQer-geaexaied modules, which tramfemed data to the W s p array from
memory. Use of the clustere in this way exploited some of the parallelism available in the Waip system.



12

6.1. Analysis of FIDO Performance on the Prototype
The reimplementation of FIDO led to a total system time for one step of 4,8 seconds, which is a large speedup

over the original time, but still relatively small compared to the time on a Sun 3 alone (8.5 seconds). Here we
analyze how we got this speedup and identify the parts for the system that allow a further increase in performance.

Table-6-1: FIDO Module Times

Module

Function

Reduce Images

Reacquire Features

Match Features

Catalog Features

Plan a Path

Pick New Features

Match New Features

3-D Calculation

TOTAL TIME

System

Vax/780 (sec)

4.8

13

7.8

0.1

3.1

2.1

7.8

N/A

39

Sun 3 (sec)

0.9

1.6

1.6

0.1

0.7

1.6

1.6

0.4

8.5

Sun 3
w/Warp (sec)

0.8

0.6

0.6

0.1

0.7

0.5

0.6

0.9

4.8

6.1.1. Pick New Features
'Pick New Features' includes die interest operator function. The actual time for this function to execute is about

0.1 seconds, the same as estimated in Section 4 for the ten cell implementation Some of the rest of time is spent
starting the Waip array (about 25 milliseconds). However, most of the time is spent in post processing. After the
interest operator has been run, some sorting ami selecting is done from the resulting data. This is done on one of the
duster processors, which is about 28% slower tfaan the Sun 3 processor, becanse of a slower clock rate. The effect
of this post processing is shown in Table 6-2.

TaWe6-2: TOck New Features* Times

Function

1 Interest Op.

Soiling

TOTAL TIME

System

Sim 3 (sec)

1.3

0.3

1.6

Waip

0.1

0.4

0.5

The fanciest opeittQc is sped up by t factor of 10, from mm second to 0*1 seconds. This leaves only the sorting
and selecting, which was abort one-quarter of the tone of the origiml fimcticm, but which is 80% of the time in the
Warp impfamrataticA The total speedup is approximately toee»



13

6.1.2. Correlation modules
All of the modules that use the correlation function (e.g. 'Match Features') have less than a factor of three

speedup, compared to a Sun 3 alone. A breakdown of the times for Warp is shown in Table 6-3.

Table 6-3: Times for Correlation Modules

Function

Setup

Startup

Correlation

TOTAL TIME

Time (sec)

0.3

0.2

0.1

0.6

As with the interest operator, the implementation of the correlation function on the Warp array reduces its execution
time, formerly a large component of the total, to a small factor, and the small amount of time needed to process data
for the Warp array on the cluster processors dominates the total. This time included the following:

• Waip startup overhead of 25 ms. In one step, correlation is called seven times, for a total overhead of
approximately 0.2 seconds.

• Rearranging data for Warp. Complex addressing is needed to send the image patches from the different
pyramid levels to Warp.

• Because of restrictions in the piratotype W2 compiler, a fixed number of features must be processed in
every correlation, which is set to fifty in this case, although the average number of features in a
correlation is approximately half that.

7. Algorithm-level Parallelism in FIDO
It is possible to exploit algorithm-level parallelism in FIDO, as shown in Figure 7-1. Pyramid generation, which

takes a large amount of time since it must access every pixel of the original image, can be executed in parallel with
calculation of the three-dimensional coordinates of the image features. Similarly, finding new features can be done
in parallel with cataloging and path planning and execution. FIDO does not yet take advantage of these sources of
parallelism, bmt our analysis of FIDO so far allows us to make predictions of performance once these approaches
have been exploited.

These predictiQas are shown in Table 7-1* compared with the times on the conenl FIDO system. We see thai
pyramid generation and cataloging and path planning and execution are done for free. This reduces the total time
for FIDO firam 4.8 seconds to 3.2 seconds, wMch is a speedup of 2.6 ova: the Sun 3 version.

8. Using the Production Machine
Gcoeial Electric has now manQfactiixQd a production version of the Warp machine, as mentioned eariier. This

snaclniie design wag Influenced by our experiences with the prototype system, including our experioioes with FIDO.
We tave nude a umber of modifications to this system, which will improve the perfonnaace on FIDO:

• Symm overheads reduced. Overhead for startup of a Waip program is now 5 m3Iisea»d£f down from
25 mMm:Qmi& cm the prototype. Tim will substantially reduce the overhead of calling a Wop
program with t fest execution time. For example* this should reduce the startup oveihead in coodatum
from ^rapdmately 0*2 seconds to 35 ms.

Heterogeneous cmie. In the comse of mpkmeotmg FIDO, we originally implemented the pyramid



14

Figure 7-1: Plamed FIDO loop with parallelism

generation and oooelatioas ftsoetioiB systolically, tben ^implemented Item using input partitioning
whet* we iBfrogiammed Aon using W2. This was due to a restriction in the prototype machine thai

2 h i
p y p

nude it impossible for W2 to support heterogeneous code in a general way. This restriction has now
been removed, and we are fine to ranqriemeot these modules systolicaily.

» Varmbk loop torad*. The prototype W2 compiles" ueqmred thst all loop bounds be known at execution
time. In MIX), this meant that the correlation function always processed fifty features, although the
werage nsefiil umber was twenty-five. This implied a doubling of tie execution time on Warp, and,
even owro apnfiootiy* a doubling of the time for the host to prepare data to be sent to Warp.
Alowmg variable loop bounds in the W2 compiler should therfoie eliminate approximately 02
seconds,

»Mwefkxikk programming model The prediction Waip machine supports programs with variable
awatfao time, and mates use of tbe ievra» path in the Waip array (therfore, global communication
mmg the eels that does Dot pa» through the host) more efficient This means that FIDO can be
leorgsobed to do e ^ a mcMe ecKflpotation cm Waip, eUmintting host ovei

• Hardware mpmwemem* Tim fattdwue of tbe prata'tticm Waip machine includes these enhancements:
* Direct &wncl»ff» awimtmct&QQ with the Waip tsxay, A q>ecial purpose board has been



15

Table 7-1: FIDO Module Times

Module

Function

Reduce Images

Reacquiie Features

Match Features

Catalog Features

PlanaPath

Pick New Features

Match New Features

3-D Calculation

TOTALTIME

System

Sun 3
w/Waip (sec)

0.8

0.6

0.6

0.1

0.7

0.5

0.6

0.9

4.8

Sun 3
w/Warp
parallel

(est) (sec)

-

0.6

0.6

-

-

0.5

0.6

0.9

3.2

constructed that allows direct transfer of data from the framebuffer to the Warp array, bypassing
the cluster processors. This will allow reimplementation of the pyramid generation step on the
Warp array, with each pyramid generation taking approximately 60 ms.

»Faster cluster processors. The clusters are being upgraded to use microprocessors with a fasier
clock.

* DMA from the host The new processors also support DMA from the host to the Waip array,
eliminating asignificant bottleneck in feeding data from the host to the Waip array.

9. Summary
We have discussed the history of the FIDO algorithm, and its gradual increase in speed over a period of some 13

yeais-staiting from. Moravec's work on its piedecessor at Stanford, through the current implementation on Warp.
Over this period of time, three thin^ have influenced its speed:

• The reliability of the sensing and motor control devices available. With better digitizers, the matching
was more reliable, which Wiped Thorpe reduce the number of images needed for reliable matching.
With better motor control, Gasman could completely eliminate the motion parallax step from FIDO.
This accounts for about one order of magnitude increase in speed, but much more than this in terms of
pfogrmoming simplicity and ease of use.

• The speed of the computer hardware. This effect has been masked by the willingness of different
resetithecs to carefully optimize axle for greatest speed: Moravec unwound loops into arrays for
maximum speed* for example, and KMnker programmed by hand a machine for wMch compiling was
considered a significant; research project Also, tfae execution times for eariy versions of HDO were
Dover obtained routinely, but only in demonstration ram when everyone else could be removed from the
system, wfaicfa was a agmficmt cooxpiiting resource for many people. Execution times for more recent
vcwoos of HDO are from mow or less routine inns, when only a few if any people woe
Ina»vraieii€«d by the tee to get the best time possible. Moreover, the effect of different
wiiproveeieiiis in hardware varies: (he mem sodden speedup in FIDO was due not to the introduction of
Waip, wMcfa xequned receding programs, but doe to the replacement of a Sun 2 by a Sun 3 workstation.

• The resourcefulness of the researcher, A researcher can get more use out of a computer system by



16

placing constraints on calculations to reduce processing. For example, Thorpe and Matthies were able
to increase the reliability of FIDO, while reducing the number of images needed, by adding more
constraints in the stereo matching. This has accounted for about one order of magnitude improvement
in speed. Note that the usefulness of constraints depends on the reliability of the underlying hardware
(e.g. sensors) and that any improvement in computational speed of a program can be used to perform
more experiments or incorporate other functions into the program.

Waip's potential in the implementation of FIDO is due to several factors, which reflect not only on the design of

Waip but also on other special-puipose machines:
1. The Waip array woiks well for the majority of the computation in FIDO, namely low-level vision

computations. Working either in microcode or W2, we never had problems with the Waip anay not
having enough effective computation power. However, while low-level vision computations form the
majority of the computation of FIDO, simply speeding them up is not enough for good speedup of the
FIDO system as a whole.

2. The external host is the weakest part of the Waip system. TMs was known when the host was
designed; it was deteimined once we decided to use industiy-standaid processors and buses, instead of
building our own. In our early versions of FIDO on Warp, this kept us from realizing full use of the
Waip array, because of the constraints in rearranging data on the external host.

3. The programmability of the Waip anay allowed us to modify our algorithms and programming models
to aeeomodate a regular data pattern from the host This is important even in the latest versions of the
host, which have faster processors and higher data rate, but which can use DMA, which requires a
regular address pattern. This flexibility is the main reason we have been able to observe the predicted
perfonnanee of algorithms in actual Warp runs.

4. W2 makes it possible to experiment with different algorithms, in the context of a research system such
as FIDO, while getting good use of the powerful Waip anay. As we program more and more of FIDO
on the production Warp machine, programmability is essential, especially as it allows us to make use
of mare complex programming models thai use the powerful Waip array more and require less
intervention by the relatively weak host

5. Although the computing power of the external host is small compared to the Warp array, its
programmability, and its dose integration with the master and the Warp array, makes it an important
part of the Waip system. Irregular operations can be mapped onto it as part of pie- and post-
processing of data from Waip. Also, it can sometimes perform memory access-intensive but not
compute-intensive computations as well as or better than the Waip array, which can also allow the
Waip anay to be used for something else in the meantime.

Acknowledgments

The Waip grop, a luge and growing group at Carnegie Melon and General Electric, has contributed to tMs work
by the deagB, jaxgiemeotatioa, and maintenance of the Waip machine and associated software. Research in robot
1 ocomotion cannot progress without reliable mobile robots, the design, implementation, and maintenance of which is
a difficult problGi© in itself; we tie therefore indebted to the Mobile Robots Lab at Carnegie Mellon for Nepteoe,
aod tte FWU lUtot ia C b r a We have also benefited

from the lesearefa attributions of the Image UateistaiKfiEg Systems group at Carnegie Mellon.



17

References

[Annaratone 85] M. Annaratone.
Warp Host Software Requirements and Deliverables
Carnegie Mellon Department of Computer Science, 1985.

[Annaratone et al. 87]
Annaratone, M., Amould, E., Cohn, R., Gross, T., Kung, H.T., Lam, M., Menzilcioglu, O.,
Sarocky, K., Senko, I, and Webb, L
Warp Architecture: From Prototype to Production.
In Proceedings of the 1987 National Computer Conference, AHPS, 1987.

[Bruegge et al. 87]Bruegge, B., Chang, C, Cohn, R., Gross, T., Lam, M., lieu, P., Noaman, A. and Yam, D.
The Waip Programming Environment.
In Proceedings of the 1987 National Computer Conference. AHPS, 1987.

[Dew and Chang 84]
Dew, P. and Chang, CJEL
Passive Navigation by a Robot on the CMU Warp Machine.
Aug, 1984.
Internal report, Department of Computer Science, Camegie-Mellon University, Aug. 1984.

[Gross and Lam 86]
Gross, T. and Lam, M.
Compilation for a High-performance Systolic Array.
In Proceedings of the SIGPLAN 86 Symposium on Compiler Construction. ACM SigPlan, June,

1986.

[Kanade and Thorpe 85]
T. Kanade and C. Thorpe with contributions from CMU SCVision Project Staff.
CMU Strategic Computing Vision Project Report: 1984 to 1985.
Technical Report CMU-RI-TR-86-2, Camegie-Mellon University, The Robotics Institute,

Pittsburgh, PA 15213, November, 1985.

[Kung84] Kung,HLT.
Systolic Algorithms for the CMU Warp Processor.
In Proceedings of the Seventh International Conference on Pattern Recognition* pages 570-577.

International Association for Pattern Recognition, 1984.

pTipig and Menzilcioglu 84]
Kung, BLT. and Menzilcioglu, O.
Warp: A Programmable Systolic Array Processor.
In Proceedings qfSPIE Symposium, Vol. 495, Real-Time Signal Processing VII\ pages 130-136.

Society of Photo-Optical Instrumentation Engineers, August, 1984.

[Kung and Webb 86]
Kung, H. T. and Webb, J. A.
Mapping Image Processing Operations onto a linear Systolic Machine.
Distributed Computing l(4):246-257,1986.

fMaitbies 84] LJEL Mattfaks, C.E. Thorpe.
Experience with visual robot navigation.
In Proc. IEEE OCEANS'84 Conf, pages 594-7. IEEE, September, 1984,

[McApiioe et al. 82]
G. McApline* W. J. McLain* and G. B. Fddkamp.
Controller smooths dam flow tewigii multiprocessor systems.
Electronic Design :45~49» August, 1982.



18

[MomvecSO] Moravec,H.
Otoacte Avoidance and Navigation in the Real World by a Seeing Robot Rover.
Technical Report CMU-RI-TR-3, Camegie-Mellon University Robotics Institute, September,

1980.

flboipc 84] Thoipe, GE.
FIDO: Vision and Navigation for a Robot Rover.
PhD thesis, Can^gie-Mellon University, December, 1984.


