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Abstract

Complex vision systems are usualy quite dow, requiring tens of seconds or minutes of computer time for each
image. As the complexity and experimental nature of the system increases, the speed is especidly low, since all
components of the system must be optimized if the system is to show good performance. The FIDO system, a stereo
visgon system for contralling a robot vehicle, has existed for a number of years and has been implemented on a
number of different computers. These computers have ranged from a DEC KL 10 to the current implementation on
the Warp machine, a 100 Million Floating-point Operations Per Seconds (MFLOPS) systalic array machine. FIDO
has shown an enormous range in speed; its ancestor took 15 minutes per step, while the Warp implementation takes
less than 5 seconds per step. Moreover, while early versions of FIDO moved in dow, start-and-stop steps, FIDO
now runs continuoudly a 100 mm/second. We review the history of the FIDO system, discuss its implementation
on different computers, and concentrate on its current Warp implementation.




1. Introduction

Sophisticated vision algorithms are usually disappointingly slow when they are put together into a complete
system. This is especially true of systems created for research purposes, since speed is usually not a primary
concern and much effort must be spent on working out ideas in a user-friendly environment, which is not conducive
to high speed algorithms. However, even in a research environment, reasonable speed is desirable. One reason for
this is that it is difficult to debug an algorithm that takes minutes to compute one meaningful result; not many
debugging runs can be made in a day. Another reason is the difficulty of using the algorithm in a non-simulated
environment, for example to control an actual robot vehicle; if the algorithm takes minutes to run for each step, it is
not practical to debug given time constraints imposed by the physical environment. Finally, it is not possible to
integrate an algorithm into a working vision system, which may use multiple sources of inputs, if the speed of one
algorithm is much lower than the others.

One sophisticated vision system that has received much attention over the years, and which continues to be
developed, is the FIDO (Find Instead of Destroy Objects) vision system. FIDO is a stereo vision navigation system
used for the control of robot vehicles; it includes a stereo vision module, a path planner, and a motion generator.
This system is descended from work done by Moravec at Stanford [Moravec 80]. After Moravec came to Carnegie
Mellon in 1980, work was done by Thorpe and Matthies [Thorpe 84; Matthies 84], who gave the system its name.
More recently, work has been continued by the authors of the present paper, as well as others. This vision system is
unusual in its longevity and in the range of speed over its span of development: Moravec’s original algorithm,
which was heavily optimized (though different in many important ways from the FIDO algorithm), took 15 minutes
to make a single step while running on an unloaded DEC KL10; the Vax 780 implementation ran at 35 seconds per
step; the Sun 3 implementation presently at Camegie Mellon takes 8.5 seconds per step; and the current Warp
implementation takes 4.8 seconds per step. This is a factor of 190 in improvement.

We will begin by describing the Warp system, on which the current implementation of FIDO runs, and how it is
programmed. Then we will review the history of the system that became FIDO, and how the different parts of FIDO
were implemented on Warp. Finally, an evaluation of the Warp/FIDO system is given and a brief description of
future implementations.

2. The Warp System

2.1. Warp Hardware .

A discussion of the Warp hardward is necessary in order to fully understand the Warp implementation of FIDO.
This discussion is greatly abbreviated; more detail is available elsewhere [Kung and Menzilcioglu 84]. The Warp
machine has three components: the Warp processor armray, or simply Warp, the interface unit, and the host, as
depicted in Figure 2-1.

All of the work on FIDO on Warp so far has been done using the demonstration and prototype Warp machines,
which are wire-wrapped machines built according to Camegie Mellon’s design (the demonstration machine was
built by Camegie Mellon; prototypes were built by General Electric and Honeywell). The wirewrapped machine has
been superseded by an improved production Warp machine [Annaratone et al. 87], built using printed circuit boards
by General Electric. The machine described here is the wire-wrapped machine.

The Warp processor array is a programmable, one-dimensional systolic array, in which all the cells, called Warp
cells, are identical. Each cell is a complete computer, with computational units and local data and program memory,
except that address genperation is normally done on the interface umit, so that addresses, along with data, flow
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through the array. Each cell contains two floating-point units: one multiplier and one ALU, each of whichcan i
deliver up to 5 MELOPS. The peak processing rate is 10 MFLOPS per cellL A 4 K-word memory is provided for
resident and temporary data storage.

As address patterns are typically data-independent and common to all the cells inlow level vision agorithms, full. | =
address generation capability is factored out of the cell architecture and providedin theinterface unit Addressesare .3
generated by the interface unit and propagated from cell to cell, together with the control signals. In addition to . .
generating addresses, the interface unit passes data and results between the host and the Warp array, possbly -
performing some data conversions in theprocess. o

Tiehost consists of several processors: The "master" controlling the Warp array is a Sun workstation which can
ran Unix to pmvide a convenient programming environment and provide compatibility with other Carnegie Meikn
vision research programs. Data transfer to and from the Warp array, and control of vision peripherals such as
cameras and frame buffers, isprovided by an "external host" (physically external to the Sun) which communicate *
with the SUE through a VME bus repeater. Hie external host consists of three "standalone processors': two of
them, called "cluster processors," are used for sending and receiving data during a computation (they can exchange -
roles as needed) and the third one, called "support processor," is used for controlling peripherals and executings -
runtimelibrary. Hieruntimelibrary allows event sequencing and processing of interrupts from Warp.

2L2. Warp Software

"The development of programming tools that manage the Warp system efficiently requires the integration wé&
extmmim of state-of-the-art tecfaoigjies tod flutter advancesin compiler technology.




A badsc runtime library has been written for the host as a first atempt a handling the system level
issues [Annaratone 85]. The library has mechanisms for alocating memory on the externa host and sequencing
events on the Magter, standalone processors, and Warp array as well as mechanisms for running the Waip array and
usng peripheral devices.

A compiler exigts for alanguage called "W2," a Pascd-like language in which al the underlying paralelism in
the hogt and within each cdll is hidden [Gross and Lam 86; Bruegge et d. 87]. Only the pardldism between the
cdls is seen by the user and must be managed explicitly. An asynchronous send/receive protocol is supported for
communication between the cells.

3.FIDO

3.1. Higory of FIDO

The predecessor to FIDO was the Stanford Cart developed by Moravec at Stanford University starting in 1973.
The Cat was avison-guided vehicle that could navigate through aworid containing obstacles. The vehicle moved
in a series of one meter steps. At the end of each step, pictures were taken to determine the Carfs paosition by
tracking known obstacles in the scene.

The Stanford Cart dgorithm and the FIDO algorithm contain the same steps.  First obstacles areidentified in one
image, usng afeature detector. Then obstacles in one image are matched with obstacles inthe other images. The
three-dimensiond positions of the obstacles can be now be calculated by using atriangulation technique. Next the
mation of the vehicle is planned and executed. After obstacles are found in the new set of images, they ae
compared to the previous set of obstacles to determine the relative vehicle motion.

The performance of the Stanford Cart algorithm was limited largely by unreliable hardware. For example, each
image was digitized 24 times in order to obtain at least one good image, and binocular vison was abandoned in
favor of a stereo dgorithm that used nine images for greater robustness. The mation of the cart was not accurate, so
much time had to be spent determining the cart's exact position after amove. Even with careful optimization, the
program needed 15 minutes per step on an unloaded DEC KL10. Despite its dow speed, the Stanford Cart had
severd successful indoor runs and a successful outdoor runin 1980.

Thorpe and Maithies developed FIDO, starting with smplifications to the Stanford Cart dgorithm due to better
hardware. Thorpe and Maithies also experimented with the various modules to give a stientific basis to some
heurigticdly chosen parameters. In addition, some modules (for example, the path planner) were re-implemented
using fager dgorithms. With dl of these changes, FIDO was able to ran in the laboratory, on the Neptune robot on
aVax/7%$0,ataspeedof 30 seconds per half meter step, a speedup of 30 overtfae Stanford Can More than 80% of
this time was spent running basic vision routines such as image reduction, correlation, and the interest operator.

Crisman began work on FIDO in May 1985. As pat of the Carnegie Melon Strategic Compiling Visiao
Project [Kanade and Thorpe 85] FIDO was moved to a Sun Workstation (curontly a Sao 3v In addition* Gasman
began a generd cleaning of the FIDO code, which had become quite cluttered with unused and egpesdieDt& | code*
Severd improvements were implemented to increase the speed of HDO, indudisc optimizing the display imitaxa
ami using arcsin the motion generator. The code was aso adjugted to ran m, the new outdoor robot; Tenagptoar. In
an dtempt to take advantage of much more accurate motion expected fowl Teuag"koi; the module in FHX) that
determined position by obstacle tracking was removed. This aso increased the speed of the agorittan*




3.2. FIDO Algorithm

FIDO performs the following steps. First, it takes two pictures of its environment. It then tries to locate all of the
obstacles that it knows about in the new pictures. Then it checks to see if there are any other obstacles present that it
had not been able to see before. It plans a path to its goal around all of the old and new obstacles. Then it moves
one meter along the planned path and stops to re-investigate its environment. This repeats until the goal position is
reached.

To clarify the algorithm, the following terminology will be used. An obstacle is an identified location in the
three-dimensional world where the vehicle is unable to pass. A feature is the two-dimensional appearance of the
obstacle in the image. FIDO considers only point features. This assumes that physical objects will have enough
features in the image to be correctly bounded in three-dimensional space.

Below is a more detailed description of the FIDO algorithm.
o Digitize: Two 512x512 images, called the left and right images, are taken from identical cameras with
known relative positions. The right image from the previous image pair is saved for the reacquire step.
® Reduce: Reduce the two 512x 512 images to create an image pyramid as shown in Figure 5-1.
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The steps above use the most powerful part of Warp —the Warp processor array —to speed up the FIDO system.
However, it is also possible to use Warp’s external host to exploit algorithm-level parallelism and get further
speedup. This approach can sometimes give a large speedup in the system, since in some cases significant portions
of the code can be run in parallel with the rest of the system, effectively executing that code for free. Therefore, we
formulated Step 3: Make efficient use of the multiprocessor host system. To some extent, this step has already been
accomplished, but there is still room for exploiting algorithm-level parallelism in FIDO, as we shall discuss later.

Section 5 describes the initial implementation of the vision modules on Warp using microcode (Step 1). Section 6
describes the current implementation of FIDO on Warp in W2 (Steps 2 and 3).

5. FIDO on the Demonstration System

FIDO was first implemented on the Warp demonstration system, which included a Sun 2, an interface unit, and
two Warp cells. In addition to being the first work on FIDO on Warp, this step showed in the demonstration system
that Warp can be used for vision applications. Moreover, it allowed us to test algorithm decomposition techniques
and to test the Warp hardware with realistic algorithms. Once the initial implementation was done, it was ported to
the ten-cell prototype system and modified to use the cluster processors for input and output. This implementation
was then superseded by new software, as discussed in the next section. Here we describe the vision modules in
FIDO in detail and give their timings on the demonstration system and first prototype implementation.

5.1. Image Pyramid Generation
The image pyramid used in FIDO consists of 7 levels, starting with a 512 x 512 image at level x1 and ending with

an 8 x 8 image at level x7, as shown in Figure 5-1. Areas of 22 pixels are replaced by one pixel in the next higher
level of the pyramid. The new pixel value is computed by averaging over a window in the higher resolution image
to produce a one pixel result in the lower resolution image. The simplest averaging is to take a 2x2 pixel area and
average it to one pixel. The initial implementation on the Warp array used overlapping 4 x4 windows, which gave
slightly better results than 2 x2 windows. '
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5.1.2. Microcode Timing of the Pyramid Generation Algori
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needed two processing cycles to perform its task on a given pair of input pixels. The modules could thus start to
operate on a new window position every two cycles. Accordingly, the modules could perform their tasks as fast as
the data could be sent to the cells. On an image with mXxn pixels, the nine modules thus needed essentially
mxn cychsmmmmxuhnageimum-x-mngc,pimafewmdcycmfmsmmlp To generate the

described image pyramid, consisting of seven levels, this evolved to ¥ o, >12x 12 cycles, which is

1777
341401 cycles ~ 0.07 seconds on 9 cells
1365358 cycles ~ 0.27 seconds on 2 cells

A simpler sequential algorithm (with non-overlapping reduction windows) took about one second on a Vax/780.
Nine Warp cells thus provided a speed-up of 14, which is relatively small. The Warp implementation of the
pyramid generation algorithm was communication intensive: it used the adder effectively only half of the time (in
every other row). It did not use the multipliers at all (except for 2 normalization). Each Warp cell was used as a 2.5
MFLOPS machine, for 25 MFLOPS from the amray. This explains the relatively small speed-up of the pyramid




generation algorithm. Note that adding more cells would not increase the speed since this would not reduce the
communication requirement.

5.2. Interest Operator
““Interesting points’’ are those points which can be localized well in different pictures (for example corners). The

image intensities change rapidly in all directions for a point that is *‘interesting.”
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Figure 5-2: Calculation of the interest operator

Interesting points are found using an interest operator, which is largely unchanged from Moravec’s Stanford Cart
work. The interest operator takes squared pixel differences around a pixel in the vertical, horizontal and both
diagonal directions and accumulates them (separately for each direction) in the 3 x3 neighborhood of the current
pixel [Thorpe 84; Dew and Chang 84], as shown in Figure 5-2. For the current pixel to be an interesting point, all
four accumulated differences must be large. Their minimum gives the interest value of the current pixel. The
interest values are locally maximized in one bundred subimages that are arranged in a 10x 10 grid. The maxima of
all subimages are stored in a list of decreasing interest values. This gives a set of points, distributed across the
image, which can be localized in the image for matching.

Only the first part of this algorithm, computing the accumulated squared pixel differences in all four directions for
every pixel, was implemented in microcode on the Warp array. In the demonstration system, processing stopped
bere. Later, we implemented the minimization, maximization and list processing on the cluster output processor.




5.2.1. Mapping the Algorithm on Warp
The interest operator does not have a good partitioning into modules with similar timings. We thus did not try to

implement it in a systolic scheme, as was described for the pyramid generation algorithm in the previous section.
Instead, we used the input partitioning model [Kung and Webb 86] in which not the algorithm, but the data is
divided into equally sized parts. In this scheme, each cell performs the complete algorithm on a portion of the data.
An mxn image is divided into ¢ vertical stripes to be processed on c¢ different cells. For the interest operator, the
stripes had to overlap by 4 pixels, due to the width of the operator window. Thus, every cell ran on m- (F§1+4)

pixels. The systolic communication facilities were then used like a ‘‘bus’’: each cell received data from the previous
cell and sent it to the next cell. The host sent the data interleaved such that each cell could use every ct pixel for
itself. At the beginning of every new iteration, ¢ new pixels were sent over the ‘‘bus.”” The offset between
programs that ran on neighboring cells was two cycles such that each cell started a new iteration exactly when a new

pixel arrived.

Note that, since the programming scheme of the interest operator was organized around partitioning the data and
not the algorithm, this algorithm could be easily adapted to run on any number cells. In the demonstration system,
the algorithm ran on two Warp cells, computing the interest value for every pixel of a 256 x256-sized image (level
x2 of the right image pyramid) in two parallel vertical stripes each consisting of 256 x 132 pixels. It was a matter of
changing a few constants that indicated the width of the vertical stripes to provide a version that ran on ten cells,
when the ten cell Warp became available. The ten cell version divided the image into ten vertical stripes, each

consisting of 256 x 30 pixels.

The algorithm iterated on a sequence of two steps:
1. Get the next pixel, compute the difference between the new pixel and its neighbors in four directions,
and square the differences.
2. Add the squared differences to the partially computed interest values of the nine pixels whose 3x3
windows overlap at the current pixel.
Within each of the two steps, the code was optimized using software pipelining to use all facilities, such as the
multiplier and adder, of the cell simultaneously. For ease of programming, no optimization was organized between
the steps. This made the innermost loop 65 cycles long, whereas the ideal algorithm would have needed only 40

cycles.

The algorithm must store the most recent two rows of pixels and the most recent three rows of partial interest
values. Thus,(2+3~4)—f;}+4pixe!swcmsmmdind:elocal memory of each Warp cell. For the given memory size

of 4096 K words, a maximal row width of n=256 columns per cell could be allowed.

5.2.2. Microcode Timing of the Interest Operator
The interest operator ran in (m-l)-(d’g'f+4>65+21)+3o + c-(r;]+4) cycles. For a 256x256 image, the

algorithm takes
502935 cycles ~ 0.10 seconds on 10 cells
2193549 cycles ~ 0.44 seconds on 2 cells

The sequeatial algorithm ran in about 2.65 seconds on a Vax/780. Ten Warp cells provided a speed-up factor of
26.5. The adder was the most used resource of the interest operator. It was used in 40 out of 65 cycles of the
innermost loop. The multiplier was barely used (4 multiplications in 65 cycles). The algorithm thus used each cell
as a 34 MFLOP machine. The addition of more cells would greatly improve the speed. In the described
implementation, each cell needed a new pixel every 65 cycles. Thus, maximally 65 cells could have been used in
parallel before the interest operator had become /O limited. It would then have needed O(mx n) cycles to compute




the results.

5.3. Image Pyramid Correlation

For a given pair of images and a given list of interesting points in one image, the correlation algorithm is used to
find the corresponding points in the other image. The search for the most likely corresponding points of the
interesting points is performed on the image pyramids, starting at the highest level (x7:8 x 8 image). At each level, a
4 x4 template around the current interesting point is taken and correlated with an 8 x 8 search area in the other image
pyramid at the same level. The best matching position of the template in the search area determines the position of
the search area in the next lower, more detailed, pyramid level [Moravec 80], as shown in Figure 5-3.

new image old image
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search windows templates
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Figure 5-3: Correlation Over an Image Pyramid

Psendo-normalized correlation is used, as given by this formula [Dew and Chang 84]:
S—~t S

CORRy ==
t,,+(5,—57)/16

3 3 3
with S, = Loy So= Ty o), S,= .., .

1 i;o i+, j+m 2 i?—o i+, j+m t .éo ij i+l , j+m
where t denotes the template element at position (i,j), and Im’ﬁm denotes pixel at position (i+l,j+m) in the

In the micro-programmed version of the algorithm, Warp was used to find the optimal correlations of all features
for one given pyramid level at a time. First, all templates of a pyramid level were sent. The cells stored the
templates and computed their means and variances. Then the search areas of that level were given to the Warp array
in the same sequence as the templates. The cells correlated the current template with the current search area and
sent the correlation results for every template position to the output cluster. The cluster processor then found the
optimal position of each template within its search window and determined the search areas for the next lower level.
The process was then repeated for the next lower pyramid level [Dew and Chang 84].
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5.3.1. Mapping the Algorithm onto Warp

The correlation algorithm was implemented in a systolic programming scheme, as for the pyramid generation
algorithm. It was designed as nine modules. Each of the first eight modules covered two template elements. The
algorithm was designed so that initially, each module received the template elements and stored the respective
template elements of each template. The mean and the variance of all templates were computed and stored in the
pinth module. Then, in the correlation phase, each module got the pixels of the search areas and the partial sums §,
S,, and §, from its left neighbor and updated the partial sums before it sent them to its right neighbor with the next
pair of pixels. As in the case of data pyramid generation, the second, fourth and sixth module stored the derived
partial results until the pixels of the next row, underlying the current window position, arrived. The ninth module
combined the partial sums and the mean and variance of the current template into a correlation value that denoted
how well the template fitted the data in the search area at the current position.

In the demonstration system, the correlation algorithm ran on two cells. The first four modules ran on the first
cell, the other five modules ran on the second cell. For every pair of pixels, six additions and four multiplications
had to be performed in the first eight modules. In the ninth module, one addition, two subtractions, three
multiplications, and two divisions had to be executed. Thus, the adder was the most used resource for the first eight
modules (used six times per module run), whereas the multiplier was used most in the last module (five times, so
that it was not the bottleneck). It was possible to achieve the optimal speed for the first eight modules, i.e: start a
new module run every six cycles, keeping the adder busy all the time. When the modules were run on two cells,
however, the ninth module had to share the resources of the second cell with the fifth through eighth module. Since
the microcode of the ninth module was very different from the microcode of the other modules (heterogeneous
modules), it was impossible to schedule the facilities of the second cell such that one resource was used in every
cycle: the ninth module required that the innermost correlation loop be augmented by twelve cycles (i.e.: two extra
module runs).

5.3.2. Microcode Timing of the Correlation Algorithm
The nine modules needed r- [(6m?+18)-n+113] cycles for n templates and search areas, with each search area
being of size mxm, on rresolutions. In FIDO’s case, n=50, m=8, and r=7. The algorithm thns ran in

141491 cycles ~ 0.03 seconds on 9 cells
848946 cycles ~ 0.16 seconds on 2 cells

The sequential algorithm took about 2.3 seconds on a Vax/780. Nine cells thus provided a speed-up factor of 78.
This was a much higher speed-up than that achieved by the pyramid generation algorithm and the interest operator
because the multiplier was used in every cycle and the adder was used in every other cycle. Each cell thus ran here
w?.im:lmm lheomnmnmcmmfamhwwmalsousedmcveryothercyck Therefore, the

wnwmz . The maximum speed-up would have been reached if 18

equi ements ),_

Performance of the Vision Modules
Times for the three vision modules are shown in Table 5-1. The speedup (optimal and actual) of a Sun 2 with
Warp over a Sun 2 without Warp is also shown for each module. As mentioned above, only the two cell system was
available at this time. In addition, the system software was not fully tuned so that it took approximately 0.3 seconds
to call each Warp module.

interesting is the speedup of the pyramid generation module on Warp. It actually takes longer to run on the
Warp than on the Sun alope. This is because the data flow between the clusters and Warp is unbalanced. Very time
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Table 5-1: Demonstration Timings

Function System Speedup
Two Cell Warp: Two Cell Warp: Maximum
Vax/780 Sun2  Clusters  optimal actual (Warp vs. Sun 2) Actual
1 pyramid generation 0.5 sec 3.2 0.7 0.3 18.0 11 0.2
2 pyramid generations 1.0 sec 6.4 0.8 0.6 36.0 11 0.2
Interest Op 2.7 sec 13.0 - 0.4 0.9 33 14.0
Correlation 2.3 sec 14.0 - 0.2 3.0 70 4.7

consuming manipulations were required to order the data correctly for Warp in this implementation, but the actual
pyramid generation on the Warp array is not computationally intensive. The array is virtually starved for data. This
is a case where the ordering of data is too complex for Warp (specifically the clusters). A more efficient
implementation is for the cluster processors to send the pixels in the order it is stored in memory so that data can
flow rapidly into the array, and have the Warp array handle the data reordering itself.

The interest operator and correlation functions did not perform at the optimal speeds either, although they are
faster than the comparable Sun functions. If the startup times for the Warp implementations is subtracted (the
overbead for startup is much less in the prototype and production Warp machines), the actual times are close to
optimal times as shown in Table 5-1.

6. FIDO on the Prototype Warp System

The hardware completely changed from the demonstration system to the prototype system described in Section 2.
The number of cells in the Warp array increased from two to ten. Just as important for system performance, the
master was upgraded from a Sun 2 to a Sun 3 with the MC68881 floating point hardware, and the external host
became available. These changes markedly improved the performance of the system.

In addition, the software environment changed radically. Previously, all of the vision modules for the
demonstration system were coded directly in microcode, a tedious task. With the prototype system, the W2
compiler became available, greatly simplifying the programmer’s task.

We completely reimplemented the vision modules as a result of these changes:

® Pyramid generation: This module was reimplemented as a C program to be run on the clusters, since
very little computation is done here. This made it possible to do the two pyramid generations in parallel
using the two cluster processors. In this implementation non-overlapping 2x2 windows were used
instead of the overlapping 4 x 4 windows in the Warp implementation, to simplify the computation.

o Interest operator: This module was reimplemented in W2, without significant change in the algorithm.

e Correlation: This module was originally written as a systolic program, but could not be reimplemented
in this way because the prototype W2 compiler allowed only homogeneous code. Instead, it was
implemented using input partitioning, as in the interest operator.

In addition, preprocessing and postprocessing of the data in modules that send data to the Warp array was
implemented as C programs to be run on the clusters, which send and receive data directly to the Warp array. These
C programs replaced the standard compiler-generated modules, which transferred data to the Warp array from
memory. Use of the clusters in this way exploited some of the parallelism available in the Warp system.
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6.1. Analysis of FIDO Performance on the Prototype

The reimplementation of FIDO led to a total system time for one step of 4.8 seconds, which is a large speedup
over the original time, but still relatively small compared to the time on a Sun 3 alone (8.5 seconds). Here we
analyze how we got this speedup and identify the parts for the system that allow a further increase in performance.

Table 6-1: FIDO Module Times

Module System
Sun 3
Function Vax/780 (sec) Sun 3 (sec) w/Warp (sec)
Reduce Images 4.8 0.9 0.8
Reacquire Features 13 1.6 0.6
Match Features 7.8 1.6 0.6
Catalog Features 0.1 0.1 0.1
Plan a Path 3.1 0.7 0.7
Pick New Features 2.1 1.6 0.5
Match New Features 7.8 1.6 0.6
3-D Calculation N/A 04 09
TOTAL TIME 39 85 438

6.1.1. Pick New Features

‘Pick New Features’ includes the interest operator function. The actual time for this function to execute is about
0.1 seconds, the same as estimated in Section 4 for the ten cell implementation. Some of the rest of time is spent
starting the Warp array (about 25 milliseconds). However, most of the time is spent in post processing. After the
interest operator has been run, some sorting and selecting is done from the resulting data. This is done on one of the
cluster processors, which is about 28% slower than the Sun 3 processor, because of a slower clock rate. The effect
of this post processing is shown in Table 6-2.

Table 6-2: ‘Pick New Features’ Times

Function System

| Sun 3 (sec) Warp
Interest Op. 1.3 0.1
Sorting 0.3 04

TOTAL TIME 1.6 0.5

The interest operator is sped up by a factor of 10, from one second to 0.1 seconds. This leaves only the sorting
and selecting, which was about one-guarter of the time of the original function, but which is 80% of the time in the
Warp implementation. The total speedup is approximately three.
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6.1.2. Correlation modules
All of the modules that use the correlation function (e.g. 'Match Features) have less than a factor of three
speedup, compared to aSun 3 done. A breskdown of the times for Warp is shownin Table 6-3.

Table6-3: Times for Corrdation Modules

Function Time (seC)
Setup 03
Startup 0.2
Correlation 01
TOTAL TIME 0.6

Aswith the interest operator, the implementation of the correlation function on the Warp array reduces its execution
time, formerly alarge component of the total, to asmall factor, and the small amount of time needed to process data
for the Warp array on the cluster processors dominatesthe total. Thistimeincluded the following:
» Waip startup overhead of 25 ms. In one step, correlation is caled seven times, for atota overhead of
gpproximately 0.2 seconds.
* Rearranging data for Warp. Complex addressing is needed to send the image patches from the different
pyramid levelsto Warp.

* Because of redtrictions in the piratotype W2 compiler, afixed number of features must be processed in
every correation, which is set to fifty in this case, adthough the average number of fedures in a
correlation is gpproximately half that.

7. Algorithm-level Parallelismin FIDO

Itis possible to exploit agorithm-level paralelismin FIDO, as shownin Figure 7-1. Pyramid generetion, which
takes alarge amount of time since it must access every pixel of the origina image, can be executed in pardld with
cdculaion of the three-dimensional coordinates of the image features. Similarly, finding new features can be done
in parale with cataloging and path planning and execution. FIDO does not yet take advantage of these sources of
pardldism, bmt our analyss of FIDO so far alows us to make predictions of performance once these approaches
have been exploited. .

These predictiQas are shown in Table 7-1* compared with the times on the conenl FIDO sysem. We see thai
pyramid generation and cataloging and path planning and execution are done for free. This reduces the tota time
for FIDOfiram4.8 seconds to 3.2 seconds, wMch is a speedup of 2.6 ova: the Sun 3 version.

8. Usng the Production Machine

Gceoeid Electric has now manQfediixQd a production version of the Warp machine, as mentioned eariier. This
snadniie design wag Influenced by our experiences with the prototype system, including our experioioeswith FIDO.
We tave nude aumber of modifications to this system, which will improve the perfonnaace on FIDO:

» Symm overheads reduced. Overhead for startup of aWaip program is now 5 m3lisea»d£; down from
25 mMm:Qmi& cm the prototype. Tim will substantialy reduce the overhead of cdling a Wop
program with t fest execution time. For example* this should reduce the startup oveihead in coodattim
from ~rapdmately 02 secondsto 35 ms.

& Heterogeneous cmie.  In the comse of ‘mpkmeotmg FIDO, we origindly implemented the pyramid
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mndenmgmn’bkﬁmmmmm rogeneous code in a general way. This restriction has now
mwd,mﬁwemhemmxplmemmmmodulwsysmlmmy
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time. In FIDO, this meant that the comrelation function always processed fifty features, although the

> useful numbe; wmmmﬁva. This implied a doubling of the execution time on Warp, and,
‘ .:dwbhgafthenmefmthehosttopmpmdmmbesemmwm
AmmwupbmﬁsmmeWZmpﬂerm&dmﬂfomehm approximately 0.2

uumﬁgﬁbk ) mming model. The production Warp machine supports programs with variable

ﬁm&mdm&smaf&emmpﬂhmmewmmy(marfm,globalwmmumm

mu&em&ﬁmdwsnmmﬂnmghﬂ:eho&)mcfﬁm This means that FIDO can be

reorganized to do even more computation on Warp, eliminating host overhead altogether.

* Hardware improvements. The hardware of the production Warp machine includes these enbancements:
* Direct framebuffer communication with the Warp armay. A special purpose board has been




15

Table7-1: FIDO Module Times

Module System
un3
w/Warp
Sun 3 parald
Function w/Waip (sec) (est) (sec)
Reduce Images 0.8 -
Reacquiie Features 06 0.6
Match Features 0.6 0.6
Catalog Festures 0.1 -
PlanaPath 0.7 -
Pick New Features 05 05
Match New Festures 0.6 0.6
3-D Calculation 0.9 09
TOTALTIME 4.8 32

congructed that alows direct transfer of data from the framebuffer to the Warp array, bypassng
the cluster processors.  This will alow reimplementation of the pyramid generation step on the
Warp array, with each pyramid generation taking approximately 60 ms.

whager cluster processors. The clusters are being upgraded to use microprocessors with afaser
clock.

+« DMA from the host The new processors aso support DMA from the host to the Waip array,
diminating asignificant bottleneck in feeding data from the host to the Waip array.

9. Summary

We have discussed the history of the FIDO agorithm, and its gradual increase in speed over aperiod of some 13
yeais-staiting from. Moravec's work on its piedecessor at Stanford, through the current implementation on Warp.
Over this period of time, three thin” have influenced its speed:

* Thereliability of the sensing and motor control devices available. With better digitizers, the matching
was more reliable, which Wiped Thorpe reduce the number of images needed for reliable matching.
With better motor control, Gasman could completely eiminate the motion parallax step from FIDO.
This accounts for about one order of magnitude increase in speed, but much more than this in terms of
pfogrmoming simplicity and ease of use.

* The speed of the computer hardware. This effect has been masked by the willingness of different
resetithecs to carefully optimize axle for greatest speed: Moravec unwound loops into arrays for
maximum spesdt* for example, and KMnker programmed by hand a machine for wMch compiling was
consdered a sgnificant; research project Also, tfae execution times for eariy versons of HDO were
Dove obtained routinely, but only in demonstration ram when everyone el se could be removed from the
system, widdfia was a agnificmt cooxpiiting resource for many people. Execution times for more recent
vewoos of HDO are from mow or less routine inns, when only a few if any people woe
Ina»vraieii€«d by the tee to get the best time possble. Moreover, the effect of different
Wiiprovedidiis in hardware varies. (he mem sodden speedup in FIDO was due not to the introduction of
Waip, wMda xequned receding programs, but doe to the replacement of a Sun 2 by aSun 3 workdtation.

* The resourcefulness of the researcher, A researcher can get more use out of a computer system by
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placing constraints on calculations to reduce processing. For example, Thorpe and Matthies were able
to increase the reliability of FIDO, while reducing the number of images needed, by adding more
constraints in the stereo matching. This has accounted for about one order of magnitude improvement
in speed. Note that the usefulness of constraints depends on the reliability of the underlying hardware
(e.g. sensors) and that any improvement in computational speed of a program can be used to perform
more experiments or incorporate other functions into the program.

Warp’s potential in the implementation of FIDO is due to several factors, which reflect not only on the design of

Warp but also on other special-purpose machines:

1. The Warp array works well for the majority of the computation in FIDO, namely low-level vision
computations. Working either in microcode or W2, we never had problems with the Warp array not ]
having enough effective computation power. However, while low-level vision computations form the
majority of the computation of FIDO, simply speeding them up is not enough for good speedup of the
FIDQO system as a whole.

2. The external host is the weakest part of the Warp system. This was known when the host was
designed; it was determined once we decided to use industry-standard processors and buses, instead of
building our own. In our early versions of FIDO on Warp, this kept us from realizing full use of the
Warp array, because of the constraints in rearranging data on the external host.

3. The programmability of the Warp array allowed us to modify our algorithms and programming models ]
to accomodate a regular data pattern from the host. This is important even in the latest versions of the
host, which have faster processors and higher data rate, but which can use DMA, which requires a 1
regular address pattern. This flexibility is the main reason we have been able to observe the predicted
performance of algorithms in actual Warp runs.

4. W2 makes it possible to experiment with different algorithms, in the context of a research system such
as FIDO, while getting good use of the powerful Warp array. As we program more and more of FIDO
on the production Warp machine, programmability is essential, especially as it allows us to make use
of more eomplexpmgrammmgmodelsdxatusethepowerﬁﬂme array more and require less

intervention byﬂlerelanvdyweakhost.

5. Although the computing power of the extemnal host is small compared to the Warp array, its
programmability, and its close integration with the master and the Warp array, makes it an important
part of the Warp system. Imregular operations can be mapped onto it as part of pre- and post-
pmmmng&fdmﬁanmp Also, it can sometimes perform memory access-intensive but not

mpute-intensive as well as or better than the Warp array, which can also allow the .
memymbemedforsmmhangelsemthemmmne. ;

The Warp gr ~ammmmwmmmﬂm buted to this
sgbirn e entation MW@@WWWM associate
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