NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:

The copyright law of the United States (title 17, U.S. Code) governs the making

of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

Functional Transformations
in Al Discovery Systems

Weimin Shen
CMU-CS-87-117 , .

Computer Science Department
Carnegie-Mellon University
Pittsburgh, PA 15213

7 April 1987

Abstract

The power of scientific discovery systems [4] [5] [6] derives from two main sources: a set of heuristics that
determine when to apply a creative operator (an operator for forming new operators and concepts) in a
space that is being explored; and a set of creative operators that determine what new operators and
concepts will be created for that exploration. This paper is mainly concerned with the second issue, A
mechanism called functional transformations (FT) shows promising power in creating new and useful
creative operators during exploration. The paper discusses the definition, creation, and application of
functional transformations, and describes how the system ARE, starting with a small set of creative
operations and a srnall set of heuristics, uses FT's to create all the concepts attained by Lenat’s AM system
(51, and others as well. Besides showing a way to mect the criticisms of lack of parsimony that have heen
leveled against AM, ARE provides a route to discovery systems that are capable of “refreshing”
themselves indefinitely by continually creating new operators.

This rescarch was sponsored by the IDefense Advanced Research Projects Agency (DOD), ARPA
Order No. 4976, monitored by the Air Foree Avionics l_aboratory under contract F33615-34-K-1520.

The views and conclusions contained in this document are those of the authors and shouid not be
interpreted as representing the official policies, cither expressed or implied, of the Defense Advanced
Research Projects Agency or the US Government.

Table of Contents
1. Introduction
2. Functional ‘Transformation
3. Applying Functional Transformations
4. The ARE System
4.1. AM’s Starting Knowledge and its Creative Operations
4.2. Synthesis of Creative Operations by ARE
4.3. Comparison of ARE with AM
5. Discussion
6. Summary
7. Acknowledgements

1. Introduction

In order to discover unknown concepts, a system has to start with a certain amount of knowledge.
For example, a problem solving system may start with problem states, legal operators, and search control
knowledge. A concept learning system may start with a language describing concept instances, a language
describing concepts, and, perhaps, a domain theory.

Consider a discovery system aimed at the domain of elementary mathematics. The system’s initial
knowledge may include a variety of data structures, such as set, list; a set of primitive functions, such as
union, intersection, difference, and a set of mechanisms to create new functions and domains, such as
composition and substitution. At the outset, we wish to give the system as little knowledge as possible,
When comparing two discovery systems of comparable power, we will prefer the one that does its work
with the fewest assumptions.

The first goal of this project is to Propese a parsimonious set of primitive functions and a uniform
mechanism for discovering elementary mathematical functions. A second goal is to construct a system
capable of pursuing new discoveries without any boundary that was foreseeable when the system was
designed. A third, long-term, goal is to see to what extent such a discovery system can be independent of
particular domains of application, and how System interaction with external information (“the outside
world™) could influence the discovery process.

The function-creating mechanism discussed here is called functional transformation (FT). As we
shall see, a FT may contain functions, functional variables, and functional forms (ways to combine or
construct functions). A FT can specify the transformation from one function to another, hence can
represent relations between functions. A FT containing functional variables can also create new functions
by instantiating the variables with specific functions. Although FT is rooted in the ideas of functional
programming {2], it is not a programming language, but a functional language of functions.

Of the four remaining sections of this paper, Section 2 is an introduction to functional
transformations; Section 3 applies F1 to the discovery of elementary mathematical functions; Section 4
describes a system, ARE, for implementing FT, and comparcs it to the AM system of Lenat [5]: Scction 5

discusses FT's possible significance and some dircctions for its development in the future.

2. Functional Transformation

This section introduces the concept of functional transformation (FT) and functional transformation
systems, Since the functional transformation systems are derived from the Functional Programming
Systems defined by John Backus, interested readers may refer to [2] for some details.

A functional transformation system consists of objects, functions, functional variables and a fixed set
of combining forms called functional Jorms. All the functions are of one type: they map objects into
objects and always take a single argument. All the functional variables are variables that can have
functions as their values. The functional forms are the sole means, using simple definitions, of building
new functions from existing ones. A functional transformation (FT) is defined as a formula of functional
forms containing functions as well as some functional variables. We give as an example of the functional

transformation systems the following:

1. A set O of objects; an object is either an element or a sequence of elements, where an element
is either a capital English letter, a positive number, or a special symbol | meaning
“undefined”. Some examples of objectsare: 1, T,5<ABL<AQ O D>;

2. A set F of functions f that map objects into objects; e.g. add, id (identity), distr (distribute-
from-right), diszi (distribute-from-left), 2nd %

3. A set of functional forms; these are used to combine existing functions, or objects, to form new
functions in F; for example, consider five such functional forms:

a. Compose (0): means (fog):x = f; (g x);

b. Construct ([- - -]): means[f;,f"]:xsq;:x. Y N3 0s

. Apply-to-all (&): means &f:<x1' e X =S <f:x1. S f:x");

d. Reduce(/). means/f:x = if x=<x> then X,
ifx=<x1. oo X2 and w1 thenf:(xl. /f:(xz. coer X0
otherwise |_;

e. Invert(~): means ~f:<x>=f"1ix.

4. A set of functional variables, notated by /v, whose values are functions.

5. An operation, Def, that permits new functions to be defined in terms of old oncs, and assigns a

]Nolation <.....> means a sequence of cbjects.

?’['his function returns the second compement of its argument.

name to each: e.g. Defl double = addo{id id).

6. An operation, application(’); e.g.
add<22> =4;
d:XD <2 = <D <D
distl: (<A B> CC D>> = (A4 B> C><<A B> D>
&2nd o distr:<<4 B><C D>>
&2nd:(distr:<<A B> <C D))
= &2nd:XA<C D> <B<CC D>
= 2nd: A <C D>>, 2nd:¢B <C D>>>
= KC D><C D).

H

In the functional transformation system defined above, we can define new functions such as

“double”. For Def double= addolid,id], we have
double: x = (addo[id, id]): x
= add:([id, id):x)
=qadd < id'x, id:x >
= add <x,x>,
which is exactly what we mean by “double”.

Notice that a functional transformation is a formula of functional forms containing functions as well
as some functional variables. Thus, a functional transformation can be used as a tool for specifying
relations between functions. For example, for the function pair (add double), the functional
transformation flvo[id.id] expresses the transformation from add w0 double, since, instantiating the
functional variable fIv by add, we get the function addo[id,id}, which is equivalent to double as we showed
before.

The interesting aspects of functional transformations lie not only in its ability to specify relations
between functions, but also in its usefulness for creating new functions. For example, if we apply the
above transformation to the function multiply rather than add, we then build the new function square.
Similarly, applying the transformation to the function subtract, we get the function zero, Figure 2-1 lists
some cxamples of applications of the transformation Svolid,id],

The table in Figure 2-1 illustrates the application of FT. Notice that every function pair in the table
is generated by the same transformation. Thus, if we were given any one of the pairs we could find the

functional transformation that relates its mainbers (sce Scction 4.2), replace the given function in the

transformation by a functional variable, and then use the new FI' to create new functions from cxisting

Given . FT flvolid id] creates

+ double
x square
- Ze10
exclusive-or false
set-union identity
set-intersect identity

Figure 2-1: Some applications of FT flvo [id,id)
ones. Using this idea, we have applied FT to the discovery of elementary mathematical functions, as we

shall now demonstrate.

3. Applying Functional Transformations

Applying FT to the task of discovering functions, we find that, with the aid of 2 small set of primitive
functions together with a few functional transformations, we can discover all the comtnon functions in
elementary mathematics. Such functions as addition, subtraction, multiplication, division, exponentiation,
and logarithm can be constructed using only four functional transformations derived from the relations
between simple functions in set theory. For example, the same FT that transforms Bag-union3 to
Cross-product*also transforms addition to multiplication and multiplication to exponentiation; the FT
from Bag-union to Identity constructs double from addition and square from multiplication; the FT from
Bag-union to Bag-difference constructs subtraction from addition, half from double, division from
multiplication, square-root from square and logarithm from exponentiation, Moreover, repeated use of
these functional transformations can yield additional useful functions, such as xx.xxx, and so or, although
these are not as well known as the others, We have tried to capture these phenomena in Figure 3-1.

Functional transformation can do more than just constructing elementary mathematical functions in
a parsimonious way. It can also be used to expand the domain of numbers, following a path that

somewhat imitates the history of the subject’s development. A FT applied o a particular function, may

3Bag is a set allowing duplicated elements, and Bag-union appends two bags together.

4(.'ms.v—produrr:((.4 BICI22) = CCADCADCRIDCB 2D,

o Key: A, B, C, D are FTs'.
+2 and *: are functions that

take only two arguments,

Ot ()

Sub¥titution

Bag-Union2

Cross-Product Bag-Union

B

Figure 3-1: The FTs among elementary mathematics functions
define only a partial function, which does not have values in the domain of the argument for all values of
the argument. For example, subtraction, which can be obtained by applying the FT inverr to addition,
docs not always produce a natural number (a positive integer): and division, obtained by applying invert to
multiplication, docs not always produce an integer. Similarly, square root, the inverse of squaring, may

not produce a value in the domain of the rationals; while taking a square root of a negative number will

not produce a value in the domain of the reals, When a FT defines a partial function in this way, this

signals that a new set of objects is needed to extend the range of the function and complete it.’

4. The ARE System

ARE is an implementation of the functional transformations that works in AM's domain, that is, it
can discover new functions and concepts in the domain of elementary mathematics. The use of FT's
makes possible the elimination of the numerous special-purpose creative operations employed by AM,
allowing these operations to be defined in terms of a few general ones. In this section, we will review
briefly AM’s initial knowledge base, and especially the set of creative operations with which it was
provided. We will then illustrate how ARE creates these special-purpose operations, thus providing a

more parsimonious foundation for AM. Finally, we will present a running trace of the ARE system.

4.1. AM’s Starting Knowledge and its Creative Operatlons

AM is a computer program written by Douglas Lenat [5] [7] that discovers concepts in elementary
mathematics and set theory. Searching in a space of mathematical concepts, it seeks to define and evaluate
interesting concepts under the guidance of a set of heuristics. The system is data-driven, and its main
control structure is an agenda of tasks with priorities.

As its search control knowledge, AM starts with about 241 heuristics spread throughout the whole
initial concept network. As its creative operators, it has a set of 11 operators coded in schemas and
heuristics. By creative operations we mean the operations that can actually create new concepts. So
set-union is not a creative operation while coalesce® is.

Among AM’s creative operations, some are used only for special purposes. For instance, the creative
operation Parallel-Join2 is so powerful that it creates the multiplication operation in just one step: the
creative operation Canonize, which is implemented as a group of heuristics, creates the crucial concept
number but the operation is never uscful again. As an overview of AM’s starting knowledge, we list AM’s

initial creative operations in Figure 4-1, but we will examine only onc of them, Coalesce, more closely.

5This research is currently under invesligation.

(’I'his operalion will be discussed shortly,

» } Key: OP* are creative operators.
Compose .
SRAC Coalesce

Canonize *
Inverted-opP
ParaITeleeplacez .wec = Para1121—Rep1ace *
Repeat? : " " Repeat .
Para1lg1-Jo1n2 Parallel-Jdoin

Operation Invert .
Rest..r"ir.‘t spec
Projectl T ———u___ Identit
Project2 whac \
Last-eloment
First-element
All-but-last
All1-but-first

axampl

Member spec
Insert woes On set, bag, 1?st. and Oset.
Dalete — On set, bag, 1ist, and Oset.
Intarsect On set, bag, 1ist, and Oset.
Union ::z On set, bag, list, and Oset.
Difference ~—— —— On set, bag, list, and Oset.

Figure 4-1: AM's initial operations
The operation Coalesce is very powerful. It is essential to most of the new concepts created by AM”,
Its actual implementation contains several heuristics, but the main idea is:
IF fi AXA— B
THEN defineg: A— B as gx)= flx,x).
It says that if a function ftakes a pair of A’s as arguments, then it is often worth the time and energy to
define g(x) = f{x,x). Some of the contributions of this heuristic are shown in Figure 4-2,
From our point of view, Coalesce is not an essential creative operation, since it can be synthesized by
the FT technique from simpler primitive functions, as we will see later. Other creative operations in AM
that we can dispense with in ARE are: C, anonize, Parallel-Replace?, Repear?, Parallel-Join2, and

Parallel-Join. We list all such nonessential creative operators in AM and their possible FT constructions in

7Ax shown in a run trace in [5).

Given Coalesce creates

+ double

X square
set-union identity
set-intersect identity
compaose self-compose

Figure 4-2: Some contributions of Coalesce

Figure 4-3.
AM'’s operator FT construction
Coalesce Jivo[id, id)
Canonize fivo&e&ceonstant— T
Parallel-Replace2 &flvodistr
Repeat2 /(flvo[1stolst, 2nd] o distr)
Parallel-Join2 Bag— uniono & flvodistr
Parallel-Join Bag— uniono&flv

Figure 4-3; AM's nonessential creative operators and their FT constructions

4.2. Synthesis of Creative Operations by ARE

Like AM, the ARE system represents concepts by schemata, and employs an agenda mechanism
with tasks as its control structure. However, ARE has far fewer heuristics needed (at present 23} for
controlling the search process. ARE has only 6 creative operations initially, five of them are implemented
as functional forms as listed in section 2. They are: Compose o;, Construct [fl' o S L Invert ~; Reduce /;
and Apply-io-all &. The sixth creative operation, Substitution, implemented by heuristics, can create new
functions by replacing an old function’s domain or range with new ones. Figure 4-4 shows the entire initial
concept hicrarchy of ARE,

There are several terms in Figure 4-4 that need explanation. Constant-tis a function that turns every
element in its argument into the constant T, e.g. Constant-t:<D <F><> = <T T T, Um'onz is the same as
function Union cxcept it takes only arguments with two components. The function distr (dist!) means
distribute from right (left), taking two objects and combining the second (first) object with every element

of the first (sccond) one. For example, distr:<<X YO <A B2 = «X <A B2 <Y <A BX>). Finally, the data

anything

concept heuristics

object FT aclive

structure atom predicate function
bag constant-t aqual primitive
substitute
insert {of bag, set)
set Tist union {of ba? set)
1ntersect bag, se

t
identity distl distr different Eof hag. set}
unfons(of bag, set)

ord-1ist

Figure 4-4: ARE's initial concept hierarchy
structure Bag is a set that allows duplicate elements, or in other words, an unordered list,

The heart of the ARE system is its means for creating useful creative operations with which new
mathematical concepts can be constructed. This is accomplished by searching for functional
transformations among the interesting function pajrs8 in set theory, such as (Bag-Union Bag-Difference),
and (Bag-Union Cross-Product). Depending on the number of primitive functions and the number of
functional forms, the search space for a transformation would be a huge one. At present, the system
employs a best-first search approach to control the search. A depth-first search might not be suitable in
this situation, because there is no way to specify maximum depth of search, This paper will not discuss the
criteria for choosing the next node from which to search; the criterion problem has not yet been cxplored,
and the present criterion is very crude. To illustrate the synthesis procedure, let us consider how ARE
creates the Coalesce operation by searching from the FT that transforms the function /ntersect into
Identity.

When given the function pair: /ntersect, the base function, and Identizy, the target function, ARE

starts a gencrate and test process. The farget function need not have an algorithm but it is required to have

81\1 present. the way we choose these pairs is very ad hoc.

FT? _
Intersect = Identity

[flv, f1v]

[unton. t1v] | | [4d. 1v] | [/v] [-y | [v]

/v @ [1d.1d) | [v e s, 07 | [s11v @ [14.10] |

Legend:

Iintarsectc[w.mj—l FT Hypothesis

Figure 4-5: The search tree for FT “Coalesce”

a set of positive examples for testing FT hypotheses. New hypotheses are generated according to the
properties of the base and target, then the hypotheses are tested against the examples of the target
function. If a hypothesis, which includes the base function as one of its components, matches all the
exampies of the target, the search is terminated. For example, in Figure 4-5, the search is terminated after
the test of Intersecto [id, id), since this hypothesis is satisfied by all the examples of function Identity and it
contains the base function Interseci. The hypothesis is then generalized by replacing the base function
with a functional variable. The generalized hypothesis is then returned as the transformation from
Intersect to Identity, namely flvo[id, id]. This functional transformation is equivalent to AM’s powerful
operation, Coalesce.

Idcally, once a new FT is created, the system should apply it to all the functions that are analogous to
the base function, but at present this analogy test is not fully implemented. So ARE blindly applies a
newly created FT to every existing function. In a run, ARE can create all the creative operations that AM

generated, and can produce new functions and concepts as AM did. Figure 4-6 itlustrates the main thread

10

of ARE’s running trace. For comparison, Figure 4-7° shows AM’s,

PN Key: dotted paths ars
PRIME : implementad as
R i AN did.
l" “
(,’;;;:;;;;\ DOUBLETON
._“

FT§ T2 e

| FT CONSTRUCTTOAS |

search (EQUAL, SAME-SIZE) yields:

FT1: * f @ &&constant-T",

search (BAG-UNION, BAG-DIFF) yields:

FT2: = wt =,

BAG-UNION search (INTERSECT, IDENTITY) yields:
: FT3: "t 8 [1d, 1d] -.

/"'—\ search (UNIONZ, UNION) yields:
SAME-SIZE

FTd4: = se »,

generalize-racursiva search (UNION, CROSS-PRODUCT) yialds:
BAG FTE: " f @ &distr @ dist? ~.

EQUAL

BAG-GF-Ts
{NUMBER)

Figure 4-6: The main thread of ARE's running trace
Notice that in Figure 4-6 and Figure 4-7, concepts are in small capitals and those invented by the
systems are circled. SAME-SIZE is a function that returns true whenever its two arguments have the
same number of components, e.g.
SAME-SIZEXXD F><X J>> = Tand
SAME-SIZE:XD S F>XX > = O,

Fridited from [1) and 5]

11

G-UNION
p Tel-jow2

STRUCTURES PROJ1
(_INV-ADD
'Ia @@
inveri
ADD D /\]_x)
merg in rt invert
ADD21 ADD2Z) 20X x?
W ode coafesce coal

J\(

ADD2 L. TIMES2 coa' esce
strictign \\
lel-Jxin2 OMPQSE
BAG-UNION * "'l \ ¢

PROJ2
BAGS

generalize-redursive Key:

A1l concepts are in CAPITALS
A1 concepts invented by AM are circled
EQUAL Al creative operators are 1n lower case

Figure 4-7: A typical running thread of AM

4.3, Comparison of ARE with AM

The similarities and differences between ARE and AM can now be summarized. Both systems use
schemas to represent mathematical concepts, but represent heuristics differently. ARE has a uniform
representation of heuristics as schemas, AM’s heuristics are coded directly in LISP (Lenat's later system
EURISKO [6] overcomes this problem). Both AM and ARE use heuristics to control the best-first search,
implemented by an agenda with tasks, but they are quite different in the degree to which they rely on
initial knowledge, cspecially creative operations. AM is provided with some powerful ereative operations
that ARE is able to create, using the FI' mechanism, from a much more parsimonious sct of primitivcs.

Since ARE synthesizes creative operations that are more general than those of AM, ARE can create some

12

elementary mathematics operations that AM did not generate, such as Jogarithm, x* and Ackermann

function.

5. Discussion

When applying the functional transformation technique t the discovery of elementary
mathematical functions, we notice that there are two search spaces involved: the space of domain concepts
(including domain functions), and the space of creative operators. This is very similar to the concept
Jormation systems postulated by Simon and Lea [8]. To induce rules they use a space of instances and a
space of rules. Problem solving can be viewed as a search through the spaces, with the search in one space
guided by information available in the other. Under their framework, the space of creative operators in
ARE corresponds to the rule space, and the space of domain concepts corresponds to the instance space.
Search in the space of creative operators is triggered whenever an interesting function pair emerges from
the space of domain concepts; search in the space of domain concepts is facilitated whenever a new
creative operator is created in the space of creative operators. The ARE system differs from Simon and
Lea’s concept formation systems only in the fact that a creative operator is automatically consistent with
the instances in the space of domain concepts, because it creates them.

What we think is important in ARE is not the use of two search spaces, but the parsimonious nature
of the primitives. In fact, they constitute a set that is closely related to the primitives for the class of
primitive recursive functions [3]. In primitive recursive function theory the only two creative operators are:
the composition rule and the recursive rule. In ARE, the function forms compose and construct can be
thought of as equivalent to the composition rule; appiy-fo-all and reduce can be considered as together
possessing most of the power of the recursion rule.

The functional transformation technique is related to a standard Al technique: macro-operators. But
they are differcnt in two aspects. Firstly, macro-operators are only formed by composition, where FTs
gencralize this to the other functional forms. Secondly, the macro-operator technique does not deal with
creative operations. Therefore a macro-opcrator can be used to achieve certain state quickly, but cannot

be used to create new operations. In contrast, a I'T' is a template for creating many different macro-

13

operators because instantiating a FT with different existing operators will produce new and different
operators.

Functiconal transformation also captures some properties of human discovery by analogy. For
example, if one discovers the transformation from addition to multiplication, he will most likely try the
transformation on anything analogous to addition, Although to define this analogy precisely is a difficult
task, we could consider any functions analogical to each other if they have the same structure, or the same
primitives, or the same number of components. In the example above, multiplication can be one of the
functions analogous to addition because they have the same structure. Then, applying the transformation

to multiplication produces exponentiation.

6. Summary

It is crucial for a discovery system to have a productive set of creative operators as well as an
effective set of heuristics to control the search. Although both sets can be treated as assumptions, we
prefer to use as few assumptions as possible while preserving a system’s original power. This paper
proposes a functional transformation mechanism as a tool to create new creative operators during
exploration, thereby making the search for new concepts more productive while based on fewer built-in
creative operators. We have implemented a system called ARE to apply the FT technique to the same
tasks explored by AM and the results are promising. Besides showing a way to meet the criticisms of lack
of parsimony that have been leveled against AM, the ARE system provides a route to discovery systems
that are capable of “refreshing” themselves indefinitely by continually creating new operators.

Several important questions have emerged during this research. One is whether the FT technique
can be applied to domains other than mathematics. Others include how to locate an interesting function
pair in order to find a useful FT, and how to define “analogy” more precisely so that a FT can produce

meaningful functions efficiently.

14

7. Acknowledgements

Herbert A. Simon has provided numerous suggestions and valuable advice throughout the course of
this work. I gratefully acknowledge the suggestion of Tom Mitchell that it would be interesting to apply
the FT mechanism to AM'’s tasks, a suggestion that led to the implementation of the system ARE. Many
of my colleagues helped me to clarify the ideas presented in this paper: Hans Tallis, Peter Highnam,

Deepak Kulkarni, Murray Campbell, Jill Fain and David Steier,

15

[1]

(2]

B3]

4]

5]

[6]

[7]

(8]

References

Barr, A, & Feigenbaum, E.A,, {editors),
The Handbook of Artificial Intelligence.
William Kaufmann, Inc., 1982.

Backus, John.
Can Programming be Liberated from the von Neumann Style?
Communications of the ACM 21(8):613-641, August, 1978,

Davis, M.D., & Weyuker, E.J.
Computability, Complexity, and Languages.
Academic Press, Inc,, 1983,

Haase, K. W.
Discovery Systems.
Al Memo 898, MIT Al Lab, April, 1986,

Lenat, Douglas.

AM: an AI Approach to Discovery in Mathematics as Heuristic Search,

PhD thesis, Computer Science Department, Stanford University, July, 1976.
Memo AIM-286 Report No. STAN-CS-76-570.

Lenat, Douglas.

EURISKO: a Program that Learns New Heuristics and Domain Concepts,
Artificial Intelligence 21:61-98, 1983,

Michalski, R., Carbonell, J,, & Mitchell, T. (editors).
Machine Learning: An Artificial Intelligence Approach.
Tioga Publishing Company, 1983.

Simon, HA., & Lea, G.

Problem Solving and Rule Induction: A Unified View.
Knowledge and Cognition.

Erlbaum, Hillsdale, N.J., 1974, Chapter 5.

16

