
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

F u n c t i o n a l T r a n s f o r m a t i o n s
in Al D i s c o v e r y S y s t e m s

Weimin Shen

CMU-CS-87-117 , }

Computer Science Department
Carnegie-Mellon University

Pittsburgh, PA 15213
7 April 1987

Abstract

The power of scientific discovery systems [4] [5] [6] derives from two main sources: a set of heuristics that
determine when to apply a creative operator (an operator for forming new operators and concepts) in a
space that is being explored; and a set of creative operators that determine what new operators and
concepts will be created for that exploration. This paper is mainly concerned with the second issue. A
mechanism called Junctional transformations (FT) shows promising power in creating new and useful
creative operators during exploration. The paper discusses the definition, creation, and application of
functional transformations, and describes how the system ARE, starting with a small set of creative
operations and a small set of heuristics, uses F T s to create all the concepts attained by Lenat's AM system
[5], and others as well. Besides showing a way to meet the criticisms of lack of parsimony that have been

leveled against AM, ARE provides a route to discovery systems that are capable of "refreshing"
themselves indefinitely by continually creating new operators.

n A x i 1 S W H S s p o n s o r e d ^ Defense Advanced Research Projects Agency (DOD) ARPA
Order No. 4976, monitored by the Air Force Avionics Laboratory under contract F 3 3 ^ 4 ^ W 2 0

The views and conclusions contained in this document arc those of the authors and should not ho ssrzzr*—- —• •* - -----

Table of Contents
1. Introduction
2. Functional Transformation
3. Applying Functional Transformations
4. The ARE System

4.1. AM's Starting Knowledge and its Creative Operations
4.2. Synthesis of Creative Operations by ARE
4.3. Comparison of ARE with AM

5. Discussion
6. Summary
7. Acknowledgements

1. Introduction

In order to discover unknown concepts, a system has to start with a certain amount of knowledge.

For example, a problem solving system may start with problem states, legal operators, and search control

knowledge. A concept learning system may start with a language describing concept instances, a language

describing concepts, and, perhaps, a domain theory.

Consider a discovery system aimed at the domain of elementary mathematics. The system's initial

knowledge may include a variety of data structures, such as set, list] a set of primitive functions, such as

union, intersection, difference; and a set of mechanisms to create new functions and domains, such as

composition and substitution. At the outset, we wish to give the system as little knowledge as possible.

When comparing two discovery systems of comparable power, we will prefer the one that does its work

with the fewest assumptions.

The first goal of this project is to propose a parsimonious set of primitive functions and a uniform

mechanism for discovering elementary mathematical functions. A second goal is to construct a system

capable of pursuing new discoveries without any boundary that was foreseeable when the system was

designed. A third, long-term, goal is to see to what extent such a discovery system can be independent of

particular domains of application, and how system interaction with external information ("the outside

world") could influence the discovery process.

The function-creating mechanism discussed here is called Junctional transformation (FT). As we

shall see, a FT may contain functions, functional variables, and functional forms (ways to combine or

construct functions). A FT can specify the transformation from one function to another, hence can

represent relations between functions. A FT containing functional variables can also create new functions

by instantiating the variables with specific functions. Although FT is rooted in the ideas of functional

programming [2], it is not a programming language, but a functional language of functions.

Of the four remaining sections of this paper, Section 2 is an introduction to functional

transformations; Section 3 applies FT to the discovery of elementary mathematical functions; Section 4

describes a system, ARE, for implementing FT, and compares it to the AM system of Lcnat [5]; Section 5

discusses FTs possible significance and some directions for its development in the future.

1

2. Functional Transformation

This section introduces the concept of functional transformation (FT) and functional transformation

systems. Since the functional transformation systems are derived from the Functional Programming

Systems defined by John Backus, interested readers may refer to [2] for some details.

A functional transformation system consists of objects, Junctions, Junctional variables and a fixed set

of combining forms called Junctional forms. All the functions are of one type: they map objects into

objects and always take a single argument. All the functional variables are variables that can have

functions as their values. The functional forms are the sole means, using simple definitions, of building

new functions from existing ones. A Junctional transformation (FT) is defined as a formula of functional

forms containing functions as well as some functional variables. We give as an example of the functional

transformation systems the following:

1. A set O of objects', an object is either an element or a sequence of elements, where an element
is either a capital English letter, a positive number, or a special symbol J_ meaning
"undefined". Some examples of objects are: j _ , T, 5, <A B>\ <A <2 C> D>;

2. A set F of functions f that map objects into objects; e.g. add, id (identity), distr (distribute-
from-right), distl (distribute-from-left), 2nd1',

3. A set of functional forms', these are used to combine existing functions, or objects, to form new
functions in F; for example, consider five such functional forms:

a. Compose (o): means (/og) :x~/ : (g :x) ;

b. Construct ([•••©• means [/J, ... tff^:x=<fl:xf • • • ,/„:*>;

c. Apply-to-all (&): means &/:<x1 x>=<f\xl, • • • >fx>\

d. Reduce (/): means /f\x = if > then xv

if x=<x. x > and ri>l then/ :<x , / / : < x , . . . , x »,
otherwise J_;

e. Invert(~): means~f:<x>=f~ l:x.

4. A set of Junctional variables, notated by "y7v", whose values are functions.

5. An operation, Def, that permits new functions to be defined in terms of old ones, and assigns a

d o t a t i o n < > means a sequence of objects.

^fhis function returns the second component of its argument

2

name to each: e.g. Def double = addo[id,id\.

6. An operation, application^, e.g.
add:<2 2> = 4;
id:<D <2» = <D <2»,
distl:«A B> <C D» = «<A B> C> «A B> D»\
&2ndo distr:«A B> <C D»

= &2nd:(distr:«A BXC D»)
= &2nd:<A <C D» <B <C D»>
= <2nd:<A <C D», 2nd:<B <C D»>
= «CDXCD».

In the functional transformation system defined above, we can define new functions such as
"double". For Def double= addo[idtid\, we have

double: x = (addo[id, id\):x
= add\{[id%id\\x)
= add:< id\xt id:x>
= add:<x,x>,

which is exactly what we mean by "double".

Notice that a Junctional transformation is a formula of functional forms containing functions as well

as some functional variables. Thus, a functional transformation can be used as a tool for specifying

relations between functions. For example, for the function pair (add, double), the functional

transformation flvo[id,id\ expresses the transformation from add to double, since, instantiating the

functional variable Jlv by add, we get the function addo[idJd\, which is equivalent to double as we showed

before.

The interesting aspects of functional transformations lie not only in its ability to specify relations

between functions, but also in its usefulness for creating new functions. For example, if we apply the

above transformation to the function multiply rather than add, we then build the new function square.

Similarly, applying the transformation to the function subtract, we get the function zero. Figure 2-1 lists

some examples of applications of the transformation flvo[id,id\.

The table in Figure 2-1 illustrates the application of FT. Notice that every function pair in the table

is generated by the same transformation. ITius, if wc were given any one of the pairs we could find the

functional transformation that relates its members (sec Section 4.2), replace the given function in the

transformation by a functional variable, and then use the new FY to create new functions from existing

3

Given FTflvo [id,id\ creates

+
x

double
square
zero

exclusive-or
set-union
set-intersect

false
identity
identity

Figure 2-1: Some applications of FT flvo[id,id\

ones. Using this idea, we have applied FT to the discovery of elementary mathematical functions, as we

shall now demonstrate.

3. Applying Functional Transformations

Applying FT to the task of discovering functions, we find that, with the aid of a small set of primitive

functions together with a few functional transformations, we can discover all the common functions in

elementary mathematics. Such functions as addition, subtraction, multiplication, division, exponentiation,

and logarithm can be constructed using only four functional transformations derived from the relations

between simple functions in set theory. For example, the same FT that transforms Bag-union* to

Cross-producfialso transforms addition to multiplication and multiplication to exponentiation; the FT

from Bag-union to Identity constructs double from addition and square from multiplication; the FT from

Bag-union to Bag-difference constructs subtraction from addition, half from double, division from

multiplication, square-root from square and logarithm from exponentiation. Moreover, repeated use of

these functional transformations can yield additional useful functions, such as x ,x , and so on, although

these are not as well known as the others. We have tried to capture these phenomena in Figure 3-1.

Functional transformation can do more than just constructing elementary mathematical functions in

a parsimonious way. It can also be used to expand the domain of numbers, following a path that

somewhat imitates the history of the subject's development. A FT applied to a particular function, may

Bag is a set allowing duplicated elements, and Bag-union appends two bags together.

Cross-product:«A B> <1 2» = «A 1> <A 2> <B 1> <B 2».

4

Key: A , B, C, D a r e F T s ' .

+2 and *2 a r e f u n c t i o n s t h a t
t a k e o n l y two a r g u m e n t s .

Figure 3-1: The FTs among elementary mathematics functions

define only a partial function, which docs not have values in the domain of the argument for all values of

the argument. For example, subtraction, which can be obtained by applying the FT invert to addition,

docs not always produce a natural number (a positive integer); and division, obtained by applying invert to

multiplication, docs not always produce an integer. Similarly, square root, the inverse of squaring, may

not produce a value in the domain of the radonals; while taking a square root of a negative number will

not produce a value in the domain of the reals. When a FT defines a partial function in this way, this

signals that a new set of objects is needed to extend the range of the function and complete it. 5

4. The ARE System

ARE is an implementation of the functional transformations that works in AM's domain, that is, it

can discover new functions and concepts in the domain of elementary mathematics. The use of F T s

makes possible the elimination of the numerous special-purpose creative operations employed by AM,

allowing these operations to be defined in terms of a few general ones. In this section, we will review

briefly AM's initial knowledge base, and especially the set of creative operations with which it was

provided. We will then illustrate how ARE creates these special-purpose operations, thus providing a

more parsimonious foundation for AM. Finally, we will present a running trace of the ARE system.

4 . 1 . A M ' s S tar t ing K n o w l e d g e a n d its C r e a t i v e O p e r a t i o n s

AM is a computer program written by Douglas Lenat [5] [7] that discovers concepts in elementary

mathematics and set theory. Searching in a space of mathematical concepts, it seeks to define and evaluate

interesting concepts under the guidance of a set of heuristics. The system is data-driven, and its main

control structure is an agenda of tasks with priorities.

As its search control knowledge, AM starts with about 241 heuristics spread throughout the whole

initial concept network. As its creative operators, it has a set of 11 operators coded in schemas and

heuristics. By creative operations we mean the operations that can actually create new concepts. So

set-union is not a creative operation while coalesce6 is.

Among AM's creative operations, some are used only for special purposes. For instance, the creative

operation Parallel-Join! is so powerful that it creates the multiplication operation in just one step; the

creative operation Canonize, which is implemented as a group of heuristics, creates the crucial concept

number but the operation is never useful again. As an overview of AM's starting knowledge, we list AM's

initial creative operations in Figure 4-1, but we will examine only one of them, Coalesce, more closely.

5 This research is currently under investigation,

kfriis operation will be discussed shortly.

6

spec

3

O p e r a t i o n

examp1

Compose *
C o a l e s c e
C a n o n i z e *
I n v e r t e d - O P

P a r a l l e l j - R e p l a c e Z

Key: OP* are c r e a t i v e o p e r a t o r s .

spec

Repeat2 ~
P a r a l l e i - J o i n 2
I n v e r t
R e s t r i c t *
P r o j e c t l
P r o j e c t 2

L a s t - e l e m e n t

F i r s t - e l e m e n t

A l l - b u t - l a s t

A l l - b u t - f i r s t

Member

I n s e r t

D e l e t e

I n t e r s e c t

Un ion

spec

D i f f e r e n c e

spec

spec

spec

spec

spec

spec

spec

P a r a l l e l - R e p l a c e
Repeat*

P a r a l l e l - J o i n *

I d e n t i t y

On s e t , b a g , l i s t , and O s e t .

On s e t , b a g , l i s t , and O s e t .

On s e t , b a g , l i s t , and O s e t .

On s e t , b a g , l i s t , and O s e t .

On s e t , b a g , l i s t , and O s e t .

Figure 4-1: AM's initial operations

The operation Coalesce is very powerful. It is essential to most of the new concepts created by AM 7 ,

Its actual implementation contains several heuristics, but the main idea is:

IF / : AxA->B

THEN defineg: A->B as g(x)~f(x,x).

It says that if a function / takes a pair of A's as arguments, then it is often worth the time and energy to

define g(x) = f(x,x). Some of the contributions of this heuristic are shown in Figure 4-2.

From our point of view, Coalesce is not an essential creative operation, since it can be synthesized by

the FT technique from simpler primitive functions, as we will see later. Other creative operations in AM

that we can dispense with in ARE are: Canonize, Parallel-Replace2, Repeat!, Parallel-Join2, and

Parallel-Join. Wc list all such nonessential creative operators in AM and their possible FT constructions in

As shown in a run (race in [5].

7

Given Coalesce creates

+
X
set-union
set-intersect
compose

double
square
identity
identity
self-compose

Figure 4-3.

Figure 4-2: Some contributions of Coalesce

AM's operator FT construction

Coalesce
Canonize
Parallel'Replace2
Repeat2
Parallel-Join2
Parallel-Join

flvo[id, id\
flvoSc&constant- T
Scflvodistr
/(/7vo[l5/ol$/, 2nd\ o distr)
Bag— uniono&flvodistr
Bag— uniono&flv

Figure 4-3: AM's nonessential creative operators and their FT constructions

4 . 2 . S y n t h e s i s of C r e a t i v e O p e r a t i o n s by A R E

Like AM, the ARE system represents concepts by schemata, and employs an agenda mechanism

with tasks as its control structure. However, ARE has far fewer heuristics needed (at present 23) for

controlling the search process. ARE has only 6 creative operations initially, five of them are implemented

as functional forms as listed in section 2. They are: Compose o; Construct \fv . . . /J; Invert ~; Reduce /;

and Apply to-all &. The sixth creative operation, Substitution, implemented by heuristics, can create new

functions by replacing an old function's domain or range with new ones. Figure 4-4 shows the entire initial

concept hierarchy of ARE.

There are several terms in Figure 4-4 that need explanation. Constant-t is a function that turns every

element in its argument into the constant T, e.g. Constant-t:<D <F> <» = <TTT>. Union2 is the same as

function Union except it takes only arguments with two components. ITie function distr (distl) means

distribute from right (left), taking two objects and combining the second (first) object with every element

of the first (second) one. For example, distr:«X Y> <A B» = «X <A B» <Y <A B»>. Finally, the data

8

anyth ing

s t r u c t u r e atom

s u b s t i t u t e
set

I d e n t i t y d l s t l d l s t r

I n s e r t (of bag, s e t)
union (of bag. s e t)
I n t e r s e c t (o f b a g / s e t)
d i f f e r e n t (of bag, s e t)
u n 1 o n 2 (o f bag, s e t)

o r d - 1 1 s t

Figure 4-4: ARE's initial concept hierarchy

structure Bag is a set that allows duplicate elements, or in other words, an unordered list

The heart of the ARE system is its means for creating useful creative operations with which new

mathematical concepts can be constructed. This is accomplished by searching for functional

transformations among the interesting function pairs 8 in set theory, such as (Bag-Union Bag-Difference),

and (Bag-Union Cross-Product). Depending on the number of primitive functions and the number of

functional forms, the search space for a transformation would be a huge one. At present, the system

employs a best-first search approach to control the search. A depth-first search might not be suitable in

this situation, because there is no way to specify maximum depth of search. This paper will not discuss the

criteria for choosing the next node from which to search; the criterion problem has not yet been explored,

and the present criterion is very crude. To illustrate the synthesis procedure, let us consider how ARE

creates the Coalesce operation by searching from the FT that transforms the function Intersect into

Identity.

When given the function pair: Intersect, the base function, and Identity, the target function, ARE

starts a generate and test process. The target function need not have an algorithm but it is required to have

At present, the way we choose these pairs is very ad hoc.

9

Figure 4-5: The search tree for FT "Coalesce"

a set of positive examples for testing FT hypotheses. New hypotheses are generated according to the

properties of the base and target, then the hypotheses are tested against the examples of the target

function. If a hypothesis, which includes the base function as one of its components, matches all the

examples of the target, the search is terminated. For example, in Figure 4-5, the search is terminated after

the test of Intersect o [id, id\, since this hypothesis is satisfied by all the examples of function Identity and it

contains the base function Intersect. The hypothesis is then generalized by replacing the base function

with a functional variable. The generalized hypothesis is then returned as the transformation from

Intersect to Identity, namely flvo[id, id\. This functional transformation is equivalent to AM's powerful

operation, Coalesce.

Ideally, once a new FT is created, the system should apply it to all the functions that arc analogous to

the base function, but at present this analogy test is not fully implemented. So ARE blindly applies a

newly created FT to every existing function. In a run, ARE can create all the creative operations that AM

generated, and can produce new functions and concepts as AM did. Figure 4-6 illustrates the main thread

10

of ARE's running trace. For comparison, Figure 4-7 9 shows AM's.

Key: d o t t e d paths are
Implemented as
AM d i d .

g e n e r a j 1 z e - r e c u r s 1 v e

EQUAL

FT CONSTRUCTIONS

search (EQUAL, SAME-SIZE) y i e l d s :

FT1: " f 8 &&constant -T" .

search (BAG-UNION, BAG-DIFF) y i e l d s :

FT2: " ~f " .

search (INTERSECT, IDENTITY) y i e l d s :

FT3: M f 0 [1d, 1d] " .

search (UNION2, UNION) y i e l d s :

FT4: " /f H .

search (UNION, CROSS-PRODUCT) y i e l d s :

FT5: H f 9 &d1str 9 d l s t l "»

Figure 4-6: The main thread of ARE's running trace

Notice that in Figure 4-6 and Figure 4-7, concepts are in small capitals and those invented by the

systems are circled. SAME-SIZE is a function that returns true whenever its two arguments have the

same number of components, e.g.

SAME-SIZE:«D FXX J» = Tand

SAME-SIZE:«D S FXX J» = O.

Edited from [l]and[5J.

11

Figure 4-7: A typical running thread of AM

4 . 3 . C o m p a r i s o n of A R E with A M

The similarities and differences between ARE and AM can now be summarized. Both systems use

schemas to represent mathematical concepts, but represent heuristics differently. ARE has a uniform

representation of heuristics as schemas, AM's heuristics are coded directly in LISP (Lenat's later system

EURISKO [6] overcomes this problem). Both AM and ARE use heuristics to control the best-first search,

implemented by an agenda with tasks, but they are quite different in the degree to which they rely on

initial knowledge, especially creative operations. AM is provided with some powerful creative operations

that ARE is able to create, using the Fr mechanism, from a much more parsimonious set of primitives.

Since ARE synthesizes creative operations that arc more general than those of AM, ARE can create some

12

elementary mathematics operations that AM did not generate, such as logarithm, xx and Ackermann

function.

5. Discussion

When applying the functional transformation technique to the discovery of elementary

mathematical functions, we notice that there are two search spaces involved: the space of domain concepts

(including domain functions), and the space of creative operators. This is very similar to the concept

formation systems postulated by Simon and Lea [8]. To induce rules they use a space of instances and a

space of rules. Problem solving can be viewed as a search through the spaces, with the search in one space

guided by information available in the other. Under their framework, the space of creative operators in

ARE corresponds to the rule space, and the space of domain concepts corresponds to the instance space.

Search in the space of creative operators is triggered whenever an interesting function pair emerges from

the space of domain concepts; search in the space of domain concepts is facilitated whenever a new

creative operator is created in the space of creative operators. The ARE system differs from Simon and

Lea's concept formation systems only in the fact that a creative operator is automatically consistent with

the instances in the space of domain concepts, because it creates them.

What we think is important in ARE is not the use of two search spaces, but the parsimonious nature

of the primitives. In fact, they constitute a set that is closely related to the primitives for the class of

primitive recursive functions [3]. In primitive recursive function theory the only two creative operators are:

the composition rule and the recursive rule. In ARE, the function forms compose and construct can be

thought of as equivalent to the composition rule; applyto-all and reduce can be considered as together

possessing most of the power of the recursion rule.

The functional transformation technique is related to a standard AI technique: macro-operators. But

they are different in two aspects. Firstly, macro-operators arc only formed by composition, where FTs

generalize this to die other functional forms. Secondly, the macro-operator technique docs not deal with

creative operations. Therefore a macro-operator can be used to achieve certain state quickly, but cannot

be used to create new operations. In contrast, a FT is a template for creating many different macro-

13

operators because instantiating a FT with different existing operators will produce new and different

operators.

Functional transformation also captures some properties of human discovery by analogy. For

example, if one discovers the transformation from addition to multiplication, he will most likely try the

transformation on anything analogous to addition. Although to define this analogy precisely is a difficult

task, we could consider any functions analogical to each other if they have the same structure, or the same

primitives, or the same number of components. In the example above, multiplication can be one of the

functions analogous to addition because they have the same structure. Then, applying the transformation

to multiplication produces exponentiation.

6. Summary

It is crucial for a discovery system to have a productive set of creative operators as well as an

effective set of heuristics to control the search. Although both sets can be treated as assumptions, we

prefer to use as few assumptions as possible while preserving a system's original power. This paper

proposes a functional transformation mechanism as a tool to create new creative operators during

exploration, thereby making the search for new concepts more productive while based on fewer built-in

creative operators. We have implemented a system called ARE to apply the FT technique to the same

tasks explored by AM and the results are promising. Besides showing a way to meet the criticisms of lack

of parsimony that have been leveled against AM, the ARE system provides a route to discovery systems

that are capable of "refreshing" themselves indefinitely by continually creating new operators.

Several important questions have emerged during this research. One is whether the FT technique

can be applied to domains other than mathematics. Others include how to locate an interesting function

pair in order to find a useful FT, and how to define "analogy" more precisely so that a FT can produce

meaningful functions efficiently.

14

7. Acknowledgements

Herbert A. Simon has provided numerous suggestions and valuable advice throughout the course of

this work. I gratefully acknowledge the suggestion of Tom Mitchell that it would be interesting to apply

the FT mechanism to AM's tasks, a suggestion that led to the implementation of the system ARE. Many

of my colleagues helped me to clarify the ideas presented in this paper: Hans Tallis, Peter Highnam,

Deepak Kulkarni, Murray Campbell, Jill Fain and David Steier.

15

References

[1] Barr, A., & Feigenbaum, E.A., (editors).
The Handbook of Artificial Intelligence.
William Kaufmann, Inc., 1982.

[2] Backus, John.
Can Programming be Liberated from the von Neumann Style?
Communications of the y4CA/21(8):613-641, August, 1978.

[3] Davis, M.D., & Weyuker, EJ.
Computability, Complexity, and Languages.
Academic Press, Inc., 1983.

[4] Haase, K.W.
Discovery Systems.
AI Memo 898, MIT AI Lab, April, 1986.

[5] Lenat, Douglas.
AM: an AI Approach to Discovery in Mathematics as Heuristic Search.
PhD thesis, Computer Science Department, Stanford University, July, 1976.
Memo AIM-286 Report No. STAN-CS-76-570.

[6] Lenat, Douglas.
EURISKO: a Program that Learns New Heuristics and Domain Concepts.
Artificial Intelligence 21:61-98,1983.

[7] Michalski, R., Carbonell, J., & Mitchell, T. (editors).
Machine Learning: An Artificial Intelligence Approach.
Tioga Publishing Company, 1983.

[8] Simon, H.A., & Lea, G.
Problem Solving and Rule Induction: A Unified View.
Knowledge and Cognition.
Erlbaum, Hillsdale, N.J., 1974, Chapter 5.

16

