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1 . I n t r o d u c t i o n . 

Let 5 = (Xiy X2,..., Xn) be a set of n points in R d . T h e convex hull of S is the intersection of 
all closed half-spaces containing S. The convex hull of a finite set is a polytope; conversely every 
polytope is the convex hull of a finite set. The vertices of the polytope are called the extreme points 
of S, denoted e x t S . 

If the elements of S are independent b u t identically distr ibuted random variâtes, one may study 
the expected complexity of the convex hull of S. In particular, one may investigate the expected 
number of vertices or facets of the convex hull. Rényi & Sulanke [12,13] studied these expectations 
for uniform distr ibutions over various convex figures in the plane as well as for the two-dimensional 
normal distribution. Carnal [5] extended this s tudy to circularly symmetric distributions in the 
plane. Raynaud [11] investigated the uniform distribution in the ^-dimensional ball and the d-
dimensional normal distribution. Bentley et al. [1] and later Devroye [6] examined cJ-dimensional 
distr ibutions in which each coordinate of each point is selected independently of the other coor
dinates; the uniform distr ibution on the interior of a hypercube and the normal distribution are 
examples of this class. Buchta et al. [4] investigated the uniform distribution on the surface of the 
{{-dimensional hypersphere. 

This paper demonstra tes t h a t the expected number of extreme points is Oflog^"" 1 n) when the 
points of S are drawn from a uniform distribution on the interior of any d-dimensional polytope. 
An O ^ o g ^ " 1 ) ^ / ^ n) upper bound on the expected number of facets follows easily. We will also 
see t h a t the bound on E(\ ext S\) is t ight for a large class of poly topes. (Whether it is t ight for all 
polytopes remains an open question.) Finally, we apply this bound to the average-case analysis of 
a new algori thm for identifying extreme points and constructing the convex hull. We show tha t 
bo th of these tasks can be carried out in linear average t ime for these distributions. 

•Supported by National Science Foundation Grant No. ECS-8418392. 
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2 . P r e l i m i n a r i e s . 

If X = (£1, • • • > is a point in R d , we will wri te H{X) for the product Now 
define F(dj c) t o be the volume of the pa r t of the d-dimensional uni t hypercube [0, l]d t h a t satisfies 
Tl(X) < c. T h e function F satisfies the following recurrence: 

F(l,c) = c 

F{d,c) = c + J^ F(d-l,c/x)dx 

L e m m a 1 F(d,c) = c E o < k d l o g ' ( l / c ) / t ! 

Proof. By induction on d. T h e basis case, d = 1, is trivial. 

f(<*,c) = c + £ F(d-l,c/x)dx 

n c + 3 Iog'( a 
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»•=1 

^ ( - l o g c ) ' 

= c g l o g ' ( l / c ) 

1=0 i! 

The equality (*) holds because 



• (̂S(T>-*-(TH 
We will write M n for random variate whose value is the number of extreme points among 

n points randomly chosen from a polytope. The following lemma of Devroye [7] bounding the 
moments of Mn will be useful in bounding the number of facets and in bounding the running time 
of algorithms. 

L e m m a 2 The pth moment of Mn grows as the pth power of the mean of Mn, i.e., 

E{M*) = e{{EMn)*)forp>l. 

The implicit constant in this lemma depends on p. 

3 . U p p e r B o u n d s . 

T h e o r e m 3 Let S = {-X1 . -Y2, . . . ,Xn} be a set of n points chosen independently from a uniform 
distribution on the interior of a regular simplex of d dimensions. The expected cardinality ofext S 
isOilog^n). 

Proof. Par t i t ion the simplex into d+1 cells Co, C i , . . . , Cd corresponding to ¿ + 1 vertices Vq, V i , . . . , 
of the d-simplex. A point X lies in C% if d(Jt , VJ) < Vy) for 0 < j < d. C% is itself a polytope; 
its vertices are the centers of each of the faces of the simplex to which V{ belongs. T h u s each cell 
has £o< i<d (?) = 2 d vertices. 

It will be more convenient to work with the simplex defined by the origin and the points 
( 1 , 0 , 0 , . . . , 0) , ( 0 , 1 , 0 , 0 , . . . , 0 ) , . . . , ( 0 , 0 , . . . , 0 , 1 ) . Since such transformations do not affect the 
combinatorial properties of the convex hull, we will apply an affine transformation t ha t maps Vq 
to the origin and V i , . . . , Vn to the other points. 

I t is easily verified t h a t the vertices of Co t h a t are centers of fc-faces are mapped to points with 
k coordinates of l/(k + 1) and d — k zero coordinates. 

Now suppose t h a t X\ = (£1, £ 2 , • • •, id) lies inside the cell. The hyperplanes X{ = & for 1 < t < d 
part i t ion the simplex into 2d pieces. If the point X\ is to be an extreme point , one of these pieces 
must be empty. 

C l a i m . The smallest of the 2d pieces has volume a t least ( l / d ! ) I I ( X i ) . 

Proof. By induction on d. 
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T h e basis case, d = 1, is easy. T h e volume of one piece is £1; the volume of the other is 
l - £ i > l / 2 > £ i . 

T h e piece satisfying xt- < & for all t has volume I I ( X i ) . Every other piece satisfies xt- > & for 
some i. The cross-section of the simplex on the hyperplane xt- = & is a (d — l)-dimensional 
simplex divided into 2d~x pieces by the (d - 1) hyperplanes XJ = ^ for j ^ t. By the in
duction hypothesis (modified by a scaling factor), the (d — l)-volume of each of these pieces 
exceeds l ) ! ) ( I I ( X i ) / £ t ) . Each of the d-dimensional pieces satisfying xt- > & contains 
the intersection of the line Xj = £j for j ^ t with the hyperplane £ x y = 1. This point is 

• • • j 1 — fi> • • • * €d)- Thus each d-dimensional piece contains a pyramid with 
base volume exceeding (l/(d - l ) ! ) ( I I ( J£ i ) /&) , height 1 - *52i<i<d$i> and to ta l volume a t least 

l ) ! ) (n(Xi) /e . ) ( l - Ei<i<d & ) . The result follows if 1 - £ > & for all points 
lying in the cell. T h e condition surely holds for the vertices of the cell: the center of a A:-face has 
12i<j<d€j = + 1) a n c * & < 1/(^ + 1)- Since the condition is linear, this guarantees t h a t it 
holds for the entire cell. 

C l a i m . If point X\ lies inside cell Co, it is an extreme point with probabili ty less t han (2d + 
2 ) e x p ( - n n ( X i ) ) . 

Proof. By the previous claim, all 2d pieces formed a t X\ have volume a t least ( l / d ! ) I I (X i ) and 
thus probability content H(X\). A t least one of these pieces must be empty if X\ is an ex
treme point. The probability tha t a part icular piece is empty is (1 — II(Xi)) n ~~ 1 < (1 — (d + 
i)~d)~x exp(—nll (Xi) ) . T h e probability t h a t a t least one is empty is a t most 2d t imes as great, or 
less than (2d + 2) e x p ( - n I I ( X i ) ) . 

Now 

P r { X i € e x t S } 

= PT{Xxeext$ \XteCo} 

= / P r { X i € ext S | n ( X i ) = y} • P r { n ( X i ) = y\XteCo} dy 
Jo 

< [ { d + 1 ) ( 2 d + 2 ) e - n " P r { n ( X 1 ) = y | X 1 e C o } r f y 

We now apply the integration-by-parts formula / udv = uu — fvdu with u = e~nv, dv = 
P f { n ( X x ) = y | Xt € C 0 } d y , du = -ne-nvdy, and v = Pr{II(.Xi) < y | Xx 6 Co}. At the 
same t ime, we observe tha t , since Co C [0, l]d, 

vol{x € Co 1 II(z) < y} 
volCo 

< v o K x g t O . l ^ l n C x ) < y }  
— vol Co 
= (d+l)\F(d,y) 

0<««J 

T h u s 

Pr{Xi € ext 5 } 
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< ( 2 d + 2 ) ( r f + l ) ! ,-nV y W ( i / y ) 
0<»«i t! 

+n (2 d + 2 ) (d+l)! f 
Jo 

(d+i) -d 

0<t«i 

V=(d+l)-d 

V=0 

y W ( i / y ) 
»! 

dy. 

An examinination of first derivatives shows tha t the functions y log*(l/y) are all finite and increasing 
in the interval (0, (d + l)~d]. Thus 

P r p f i € e x t $ } 

< 0(l).exp(-n(d+l)-d) 

+ n (2 ' + 2 ) ( r f + l ) ! ( l / » ) £ [ 1 / n

e - n v d y 

r ^ . w * ! •'O 0<««i 

log'fl /•(*•!)• 

0<.«i " ' V * 
< 0 ( l ) . e x p ( - n ( < i + ! ) - < * ) 

+ »(2« + 2 ) ( < * + l ) ! £ l2^/ ( d + 1 )-\ e-nv d y 

+ n(2« + 2)(<*+!)!(!/„) £ ^[z^ 
0<««J 

+ n(2 ( i + 2 ) (d+l)! £ 1^ 
0<»«( '* 

- ( n y + l ) e - n v 

l/n 

+ n - ^ l - c " 1 ) (2 < ' + 2)(d+ l)dlog4"1 n + OCn" 1 log*" 2 n) 
+ n - 1 ( 2 c " 1 ) ( 2 < i + 2)(d + l id log-*- 1 n + Oin-1 l o g 4 " 2 n ) 

= n - ^ l + e - 1 ) ( 2 d + 2)(d + l ^ l o g * " 1 n + 0 ( n - x log*" 2 n ) . 

Since the points X\, X*,..., Xn are identically distributed, the expected number of extreme points 
is less t h a n 

(1 + c " 1 ) ( 2 < i + 2){d + l ) d l o g < ' - 1 n + 0 ( l o g d - 2 n ) . • 

C o r o l l a r y 4 Let S = {X\,Xz,...,Xn} be a set of n points chosen independently from a uniform 
distribution on the interior of a d-dimensional polytope P. The expected cardinality of ext S is 
O O o g ^ n ) . 

Proof. T h e polytope P can be part i t ioned into some finite number of simplices Pi, Pi, Pk. 
Let Si = S n Pi for 1 < i < k. By the preceding theorem, £ ( | e x t $ , | ) = 0 ( l o g d _ 1 n ) . Since 
ext $ C Ui< i<kext Si, it follows immediately t h a t E(\ ext S\) = 0 ( l o g < , _ 1 n ) . • 

C o r o l l a r y 5 Let S = {-Xi, X2, • • . , Xn} be a set of n points chosen independently from a uniform 
distribution on the interior of a d-dimensional polytope P. The expected number of facets of the 
convex hull ofS is 0 ( W " " 1 ) L < , / 8 J n). 

Proof. T h e result follows immediately from the preceding corollary, Lemma 2, and the Upper Bound 
Theorem[3], which s ta tes t h a t the number of facets is 0(\ ext 5 | ^ / 2 J ) . • 
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4 . L o w e r B o u n d s . 

T h e o r e m 6 Let P be a d-dimensional polytope, and suppose that S = {Xi, X^... ,-Xn} is a set of 
n points drawn independently from the uniform distribution over the interior of P. If P has at least 
one vertex that lies in exactly d facets, then the expected number of extreme points among the n 
points is f) ( l o g 4 - 1 n ) . (Every vertex lies in a t least d facets; if every vertex lies in exactly d facets, 
the polytope is called simple.) 

Proof Let Vb be a vertex lying in exactly d facets. Vq also lies in exactly d edges. Call the other 
endpoints of these edges Vi, V 2 , . . . , V^. These d+1 points define a J-simplex. Now apply an affine 
transformation to P which maps Vq to the origin and Vi to the point rfct- for 1 < i < dy where et-
is the i t h s tandard basis vector for Let P1 be the image of P. The uni t hypercube [0, l]d is 
contained by the image of the simplex V1V2 . . . V^ and by P9. 

We will now bound the probability t h a t X\ = (£1, £2, • • • > £d) is an extreme point . T h e hyper-
plane 52i<i<dixi/f€i) == d passes through X\. If the half-space E i < i < d ( £ t / 6 ) ^ d contains none of 
the points of 5 , then X\ is surely an extreme point. This hyperplane intersects the x t -axis a t 
so it cuts a volume of a t most ddTl(Xi)/d\ from the polytope. Thus the probability content of the 
half-space is a t most 

ddn(Xx) 
d\wo\Pr 

Let y = H{Xi) and C = dd/d\vo\P'. The probability tha t the half-space is empty is a t least 
/ ( y ) = ( l - Cy)n~x > (1 - Cy)n -> e-Cn*. 

Now consider the probability tha t X\ satisfies TL(X{) < y. This is a t least 

r ( s = F(d,y) = ^ ylog'(l/y) 

The corresponding density function is 

9 i y ) ~ o h A «™ip' + ~ ^ p F ) 

= v - W ( i / y ) v W(i/y) 
n ^ t i\vo\P' ¿ 1 , ilvolP' 

0<t«t—l 0<t«t 

log^Hl/y) {d- l ) ! v o l P ' 

I t follows t h a t 

P r { X i G ext 5 } 

> f1 Pi{Xi is extreme | I I (Xi ) = y} • Pr{n(JTi) = y} dy 
Jo 

> C f{.y)g{y)dy 
Jo 

L 0 (d-l)\volP' y 
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~ ( d - l ) ! v o l W 0

 V 

l o g ^ n \-e~Cny' l/n 

~ (d- l)\volP' [ Cn 
0 

^ ( l - e ^ l o g ^ n 
~ C{d-l)\{yo\P')n 
^ {l-e-c)d\\ogd-xn 

d*(d-l)\n 

^ ( l - e ^ l o g ^ n 
d*-*n 

The expected number of extreme points is at least n times as large. • 

C o r o l l a r y 7 The expected number of extreme points among n chosen independently from the uni
form distribution on a d-dimensional hypercube is at least 

( l - e - y i o g ^ n 

Proof I t is convenient to consider the hypercube [0,2] d . We proceed as in the preceding proof, bu t 
omit the affine transformation. T h e expected number of extreme points in [0, l]d is as before. The 
to ta l expected number of extreme points is a t least 2d t imes as large, since [0,2] d contains 2d such 
unit hypercubes. • 

Devroye [6] computed the upper bound ^log"*- 1 n/{d - 1)!) + OClog"*-2 n) for the case of the 
hypercube. Asymptotically, these two bounds differ by a factor of 

5 . A p p l i c a t i o n s t o A l g o r i t h m s . 

Suppose t h a t n points are chosen as before, and tha t it is required to construct the convex hull. We 
may begin by identifying the extreme points. A point is extreme if and only if there is a hyperplane 
passing through it such t h a t all the other points lie on one side. Thus we can determine whether 
a given point is extreme by solving a system of n linear inequalities in d unknowns in 0(n) t ime 
using the linear programming algorithm of Megiddo[9], and all extreme points can be identified in 
0 ( n 2 ) t ime in the worst case by solving n such systems. 

This running t ime can be improved to O(n) in the average case by applying the randomizing 
divide-and-conquer technique of Bentley & Shamos. [2] We randomly divide the n points into two 
sets of n / 2 points , apply the technique recursively to the subproblems to find the extreme points 
of each of the two subsets, then merge the two sets of extreme points by solving systems of linear 
inequalities as before. In the expected case, the subsets will have few extreme points, so there will 
be only a few small systems of inequalities in the merge step. 
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The average-case running t ime of this algorithm satisfies 

T(n)<2T(n/2) + E(MZ), 

or, by Lemma 2, 
T (n ) < 2 T ( n / 2 ) + O ( l o g n ) 2 ^ 1 ) , 

or T(n ) = O ( n ) . The convex hull can then be constructed from the extreme points in 0(n) expected 
t ime using any polynomial-time algorithm. It is easily verified t h a t the worst-case running t ime is 
increased by only a small constant factor. 

An al ternat ive method to achieve linear average t ime is to identify the extreme points by ap
plying the Bentley-Shamos technique with any polynomial-time convex-hull algorithm. 

If O(n) processors are available, the two subproblems can be at tacked independently by different 
processors. Also, the merging step can be carried out in 0 ( ( l o g n ) d - 1 ) expected t ime, since a 
separate processor can be assigned to each of the expected 0((logn)d~l) systems of 0 ( ( l o g n ) d - 1 ) 
inequalities. In this case, the expected running t ime satisfies the recurrence 

T ( n ) < T ( n / 2 ) + 0 ( ( l o g n ) ^ 

or T(n ) < 0({logn)d). 
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