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1. Introduction.

Let § = (X1, Xa,...,X,) be a set of n points in R9. The convez hull of S is the intersection of
all closed half-spaces containing $. The convex hull of a finite set is a polytope; conversely every
polytope is the convex hull of a finite set. The vertices of the polytope are called the eztreme points
of §, denoted ext S.

If the elements of § are independent but identically distributed random variates, one may study
the expected complexity of the convex hull of S. In particular, one may investigate the expected
number of vertices or facets of the convex hull. Rényi & Sulanke [12,13] studied these expectations
for uniform distributions over various convex figures in the plane as well as for the two-dimensional
normal distribution. Carnal [5] extended this study to circularly symmetric distributions in the
plane. Raynaud [11] investigated the uniform distribution in the d-dimensional ball and the d-
dimensional normal distribution. Bentley et al. [1] and later Devroye [6] examined d-dimensional
distributions in which each coordinate of each point is selected independently of the other coor-
dinates; the uniform distribution on the interior of a hypercube and the normal distribution are
examples of this class. Buchta et al. [4] investigated the uniform distribution on the surface of the
d-dimensional hypersphere.

This paper demonstrates that the expected number of extreme points is O(log? 1 n) when the
points of § are drawn from a uniform distribution on the interior of any d-dimensional polytope.
An O(log(d'l)ld/ 2) n) upper bound on the expected number of facets follows easily. We will also
see that the bound on E{|ext §|) is tight for a large class of polytopes. (Whether it is tight for all
polytopes remains an open question.) Finally, we apply this bound to the average-case analysis of
a new algorithm for identifying extreme points and constructing the convex hull. We show that
both of these tasks can be carried out in linear average time for these distributions.

“Supported by National Science Foundation Grant No. ECS-8418392.



2. Preliminaries.

X = (51: Eﬁ)

-»&a) is a point in R, we will write II(X) for the product & &z---&,.

Now

define F(d, c) to be the volume of the part of the d-dimensional unit hypercube [0,1]9 that satisfies

II{X) < c. The function F satisfies the following recurrence:

F(1,¢)

F(d,c) = c+f1F(d—l,c/z)d:|:

Lemma 1 F(d,c) = ¢ Zogicqlog’(1/c) /i

Proof. By induction on d. The basis case, d = 1, is trivial.
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We will write M, for random variate whose value is the number of extreme points among
n points randomly chosen from a polytope. The following lemma of Devroye [7] bounding the
moments of M, will be useful in bounding the number of facets and in bounding the running time
of algorithms.

Lemma 2 The pth moment of M, grows as the pth power of the mean of My, 1.e.,

E(MZ) = O((EMn)?) for p > 1.

The implicit constant in this lemma depends on p.

3. Upper Bounds.

Theorem 3 Let § = {X1,X;,...,X,} be a set of n points chosen independently from g uniform
distribution on the interior of a regular simplez of d dimensions. The ezpected cardinality of ext §
iz O(log® 1 n).

Proof. Partition the simplex into d+1 cells Cy,C;, ..., Cy corresponding to d+1 vertices Vp, V3,..., V4
of the d-simplex. A point X lies in C; if d(X,V;) < d(X,V;) for 0< 7 < d. C; is itself a polytope;
its vertices are the centers of each of the faces of the simplex to which Vi belongs. Thus each cell
has ¥gcicq (9 = 29 vertices.

It will be more convenient to work with the simplex defined by the origin and the points
(1,9,0,...,0), (0,1,0,0,...,0),.., {0,0,...,0, 1). Since such transformations do not affect the
combinatorial properties of the convex hull, we will apply an affine transformation that maps V,
to the origin and Vj,...,V,, to the other points.

It is easily verified that the vertices of (o that are centers of k-faces are mapped to points with
k coordinates of 1/(k + 1) and d — k zero coordinates.

Now suppose that X; = (£1, &, ..., £q) lies inside the cell. The hyperplanes z; = &forl1<i<d

partition the simplex into 29 pieces. If the point X is to be an extreme point, one of these pieces
must be empty.

Claim. The smallest of the 27 pieces has volume at least (1/ dII(X;).

Proof. By induction on d.



The basis case, d = 1, is easy. The volume of one piece is £1; the volume of the other is
1-6121/22 &.

The piece satisfying z; < & for all ¢ has volume II(X;). Every other piece satisfies z; > &; for
some i. The cross-section of the simplex on the hyperplane z; = ¢; is a (d — 1)-dimensional
simplex divided into 29! pieces by the (d — 1) hyperplanes z; = &; for j # i. By the in-
duction hypothesis (modified by a scaling factor), the (d — 1)-volume of each of these pieces
exceeds (1/(d — 1)))(TI(X1)/&;). Each of the d-dimensional pieces satisfying z; > &; contains
the intersection of the line z; = £; for j # ¢ with the hyperplane 2 z; = 1. This point is
(&1,---)&i~1,1 — T4 &5, Eivy - - -, €4). Thus each d-dimensional piece contains a pyramid with
base volume exceeding (1/(d — 1)1)(ITI(X1)/¢;), height 1 — 2l1<ica i, and total volume at least

(1/d)(1/(d— 1))(T1(X1)/&) (l - Li<i<d f.')- The result follows if 1 - 37, . 4 €; > &; for all points
lying in the cell. The condition surely holds for the vertices of the cell: the center of a k-face has
21<i<ai = k/(k+1) and & < 1/(k+ 1). Since the condition is linear, this guarantees that it
holds for the entire cell.

Claim. If point X; lies inside cell Co, it is an extreme point with probability less than (24 +
2) exp(—nlI(X1)).

Proof. By the previous claim, all 2¢ pieces formed at X; have volume at least (1/d)II(X;) and
thus probability content ITI(X;). At least one of these pieces must be empty if X; is an ex-
treme point. The probability that a particular piece is empty is (1 — II(X;))*! < (1 - (d +
1)79)~! exp(—nII(X;)). The probability that at least one is empty is at most 2¢ times as great, or
less than (29 4 2) exp(—nII(X})).

Now

Pr{X; € ext §}
= Pr{X;cext$§ | X; € (o}

(d+1)—¢
= fo Pr{X; € ext § | TI(X;) = y} - Pr{Il(X1) = y | X1 € Co} dy

{d+1)—¢
< / (2d + 2)8—’“’ Pr{II(Xl) =y | X, € Co} dy
0 L]
uv — fudu with u = ™™, dv =

Pr{ll(X;) < y | X1 € Co}. At the

We now apply the integration-by-parts formula [ udv

PHII(X,) = y | X1 € Co}dy, du = —ne ™ dy, and v

same time, we observe that, since Cp C [0,1]¢,

vol{z € Co | TI{z) < y}
volCq

vol{z € [0,1]¢ | II(z) < y}

volCp
= (d+1)!F(d,y)
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An examinination of first derivatives shows that the functions y log®(1/y) are all finite and increasing
in the interval (0,{d + 1)~¢]. Thus

Pr{X; cext§}
< O(1):exp(—n(d+1)9)
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= a7 1+ e ) (2% +2)(d + 1)dlog? * n + O(n~' log# 2 n).

Since the points X1, X;,..., X, are identically distributed, the expected number of extreme points
is less than

(1+e71)(2% + 2)(d + 1)dlog? ' n + O(log? ?n). O

Corollary 4 Let § = {X;, Xz,... »Xn} be a set of n points chosen independently from a uniform

distribution on the interior of a d-dimensional polytope P. The ezpected cardinality of ext § is
O(log® 1 n).

Proof. The polytope P can be partitioned into some finite number of simplices A, P, ..., 5.
Let 8§ = SN P, for 1 <1 < k. By the preceding theorem, F{|ext §i|)} = O(logd—ln). Since
ext § C Ujgicpext S, it follows immediately that E(| ext §|) = O(log?™? n). O

Corollary 5 Let § = {X1,Xz,...,Xn)} be a set of n points chosen independently from a uniform

distribution on the interior of a d-dimensional polytope P. The ezpected number of facets of the
convez hull of S is O(log(?-V4/2] ),

Proof. The result follows immediately from the preceding corollary, Lemma 2, and the Upper Bound
Theorem(3], which states that the number of facets is O(| ext §]L¢/ . O
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4. Lower Bounds.

Theorem 6 Let P be a d-dimensional polytope, and suppose that § = {X1, Xz, ..., X} is a set of
n points drawn independently from the uniform distribution over the interior of P. If P has at least
one vertex that hes in ezactly d facets, then the expected number of eztreme points among the n
points 15 n(log 1n). (Every vertex lies in at least d facets; if every vertez lies in exactly d facets,

the polytope is called simple.)

Proof. Let Vp be a vertex lying in exactly d facets. ¥, also lies in exactly d edges. Call the other
endpoints of these edges V1,V5,...,Vy. These d +1 points define a d-simplex. Now apply an affine
transformation to P which maps V; to the origin and V; to the point de; for 1 < { < d, where ¢;
is the ith standard basis vector for R%. Let P’ be the image of P, The unit hypercube (0,1]¢ is
contained by the image of the simplex ViV;...V; and by P'.

We will now bound the probability that X; = (£, &,...,€,) is an extreme point. The hyper-
plane 3, <;<4(zi/&:) = d passes through X;. If the half-space 2i<i<d(zi/ &) < d contains none of
the points of §, then X is surely an extreme point. This hyperplane intersects the z;-axis at d¢;,
so it cuts & volume of at most d%II(X;)/d! from the polytope. Thus the probability content of the
half-space is at most

doTI(X;)

dlvol P!’
Let y = II(X;) and C = d"/d‘ vol P!, The probability that the half-space is empty is at least
fy)=(1-Cy)* 2 (1-Cy)*—e O,

Now consider the probability that X, satisfies II(X;} < y. This is at least

G(y) = !y) Z yloS (I/y)

Yol P! 05ied “ilvol Pt

The corresponding density function is

—ilog'! og’
R N )

0<i<d

=y ey s~ log(l/y)

T - : .
o<icd—1 s!vol P 0Sied tlvol P

og*(1/y)
(d - 1)!vol P!

It follows that
Pr{X; € ext s}
1
> [ Pr{X; is extreme | I1(X;) = y} - Pr{II(X,) = y} dy
0
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The expected number of extreme points is at least n times as large. {1

Corollary T The expected number of extreme points among n chosen independently from the uni-
form distribution on a d-dimensional hypercube is at least

(1-e1)2%log? 10
P :

Proof. 1t is convenient to consider the hypercube [0, 2]". We proceed as in the preceding proof, but
omit the affine transformation. The expected number of extreme points in [0, 1)¢ is as before. The
total expected number of extreme points is at least 2¢ times as large, since [0,2]¢ contains 2% such
unit hypercubes. (]

Devroye [6] computed the upper bound (2%log? ! n/(d — 1}!) + O(log%~2 n) for the case of the
hypercube. Asymptotically, these two bounds differ by a factor of

dd- 1

A= )E=1); ~ O(1) - 2.

5. Applications to Algorithms.

Suppose that n points are chosen as before, and that it is required to construct the convex hull. We
may begin by identifying the extreme points. A point is extreme if and only if there is a hyperplane
passing through it such that all the other points lie on one side. Thus we can determine whether
a given point is extreme by solving a system of n linear inequalities in 4 unknowns in O(n) time
using the linear programming algorithm of Megiddo[9], and all extreme points can be identified in
O(n?) time in the worst case by solving n such systems.

This running time can be improved to O(n) in the average case by applying the randomizing
divide-and-conquer technique of Bentley & Shamos. (2] We randomly divide the n points into two
sets of n/2 points, apply the technique recursively to the subproblems to find the extreme points
of each of the two subsets, then merge the two sets of extreme points by solving systems of linear
inequalities as before. In the expected case, the subsets will have few extreme points, so there will
be only a few small systems of inequalities in the merge step.
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The average-case running time of this algorithm satisfies
T(n) < 2T(n/2) + E(M?),

or, by Lemma 2,
T(n) < 27(n/2) + O(log n)*¢-1),

or T(n) = O(n). The convex hull can then be constructed from the extreme points in O(n) expected
time using any polynomial-time algorithm. It is easily verified that the worst-case running time is
increased by only a small constant factor.

An alternative method to achieve linear average time is to identify the extreme points by ap-
plying the Bentley-Shamos technique with any polynomial-time convex-hull algorithm.

If O(n) processors are available, the two subproblems can be attacked independently by different
processors. Also, the merging step can be carried out in O{(logn)?~!) expected time, since a
separate processor can be assigned to each of the expected O((log n)?~?) systems of O((log n)¢1)
inequalities. In this case, the expected running time satisfies the recurrence

T(n) < T(n/2) + O((log n)*"?)
or T(n) < O((logn)?).
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