
N O T I C E W A R N I N G C O N C E R N I N G C O P Y R I G H T RESTRICTIONS: 
The copyright law of the United States (title 17, U.S. Code) governs the making 
o f photocopies or other reproductions of copyrighted material. Any copying of this 
document without permission of its author may be prohibited by law. 



A Methodology for Hardware Verification 
Based on Logic Simulation 

Randal E. Bryant 
June 8,1987 

CMU-CS-87-128 ^ 

This research was supported by the Defense Advanced Research Projects Agency, ARPA Order Number 



A M e t h o d o l o g y f o r H a r d w a r e V e r i f i c a t i o n 

B a s e d o n L o g i c S i m u l a t i o n * 

Randal E. Bryant 
Computer Science Department 

Carnegie Mellon University 
Pittsburgh, Pennsylvania 15217 

June 8, 1987 

Abstract 

A logic simulator can prove the correctness of a digital circuit if it can be shown that 
only circuits implementing the system specification will produce a particular response 
to a sequence of simulation commands. This style of verification has advantages over 
other proof methods in being readily automated and requiring less attention to the 
low-level details of the design. It has advantages over other approaches to simulation 
in providing more reliable results, often at a comparable cost. 

This paper presents the theoretical foundations of several related approaches to 
circuit verification based on logic simulation. These approaches exploit the three-
valued modeling capability found in most logic simulators, where the third value X 
indicates a signal with unknown digital value. Although the circuit verification problem 
is NP-hard as measured in the size of the circuit description, several techniques can 
reduce the simulation complexity to a manageable level for many practical circuits. 

1 I n t r o d u c t i o n 

Logic simulators provide a valuable tool for testing the correctness of digital circuits. 
Typically, however, only a limited set of test cases is simulated, and the circuit is presumed 
correct if the simulator yields the expected results for all cases. Unfortunately, this form of 
simulation leaves the designer uncertain that all circuit design errors have been eliminated. 

*This research was supported by the Defense Advanced Research Projects Agency, ARPA Order Number 76. 4976 

1 



Stories abound of errors that remain undetected despite many hours of simulation and even 
actual circuit operation. Conventional wisdom holds that logic simulators are incapable 
of more rigorous verification. They are viewed in the same class as program debuggers— 
useful tools for informal testing, but nothing more. 

Formal verification involves proving that, under some abstract model of system operation, 
the circuit will behave as specified for all possible input sequences. A formal proof gives 
strong confidence that the circuit will function correctly. In this paper, we will show that 
a logic simulator can form the basis of a formal verifier. At first, this claim might seem 
both obvious and of little practical value, since most systems are too complex to simulate 
exhaustively. We will argue to the contrary on both points. When the circuit has potential 
for sequential behavior, even simulating all possible input patterns may fail to detect an 
error. Furthermore, verification by simulation can be made practical for a significant class 
of circuits. 

Formal verification does not guarantee that the actual circuit will operate properly. The 
assumptions made in the abstract model may not hold in the physical implementation. 
For example, most methods of verifying digital systems assume that the circuit adheres 
to a logic abstraction whereby all signals can be represented by discrete values. Without 
such an abstraction, verification would be tedious, if not impossible. Design errors that 
cause marginal, nondigital circuit behavior may not be detected by verification against 
such a model. Similar problems arise in program verification. For example, most proofs 
of program correctness abstract the finite arithmetic implemented by computers as oper
ations over the integer or real domain. A verification against such a model cannot detect 
errors due to arithmetic overflow or underflow. In discussing formal verification, we must 
remember that the level of confidence it provides is only as strong as the degree to which 
the abstract model matches actual system operation. 

1.1 Structural Approaches 

Most hardware verification methodologies [1,2,16,17,21,22,23,24] utilize structural tech
niques. In such an approach, the circuit is described hierarchically, where a component 
is defined at one level in the hierarchy as an interconnection of components defined at 
lower levels. The system specification consists of a description of the behavior of every 
component at each level of the hierarchy. Verification then involves proving that each com
ponent implements its part of the specification, assuming that its constituent components 
implement theirs. 

Structural verifiers have several noteworthy strengths. They can exploit the circuit hier
archy to reduce proof complexity, since a proof is required only for each unique circuit 
component. Many large, but highly structured circuits have been verified structurally. 
Second, they can naturally be extended to parameterized circuit descriptions, proving the 



correctness of entire families of circuits [9]. Finally, structural verifiers can apply different 
modeling abstractions according to the level in the hierarchy, such as representing signals 
at lower levels as bits and at higher levels as integers [2]. 

On the other hand, these verifiers have several shortcomings. Even when automated, they 
require the user to specify the intended behavior of each component in the circuit hierarchy. 
The verifier serves largely as a "proof checker", making sure that each component fulfills 
its specification. Many circuits are not designed to facilitate component specifications, 
and hence verification requires much tedious effort on the part of the user. Consider, for 
example, an adder circuit that utilizes carry-lookahead. Although the addition function 
is straightforward to specify, the low level details of the implementation are complex. 
Furthermore, the circuit contains many different component types and hence requires a 
lengthy specification and verification. For such a circuit, a verification method that allows 
the user to deal with the overall input-output behavior would be far preferable. 

As a second shortcoming, most structural verifiers use highly simplified models of electri
cal and timing behavior to make the proof and component specifications tractable. Most 
assume, for instance, that the circuit components operate as unidirectional logic elements 
computing outputs in response to their inputs. In actual circuits electrical behavior can 
be far more subtle, such that the behavior of a component depends on its operating envi
ronment. As an example, the direction of information flow through a CMOS transmission 
gate is determined solely by the driving capabilities of the circuitry at either end [10]. 
Clearly, any specification of such a gate must include restrictions on the environment in 
which it is placed. As a notable exception to these highly simplified models, Weise [23,24] 
has developed a verifier that proves the correctness of MOS circuits under a model that 
includes detailed electrical and timing information. His verifier automatically checks every 
environment in which components are placed for compliance with the preconditions for 
correct operation. In general, however, prospects do not look good for automating struc
tural verifiers to the point where circuits can be verified with little manual effort and with 
realistic circuit models. Formulating the proper set of assertions about each component 
requires a more sophisticated reasoning capability than will be automated in the near 
future. 

1.2 A Behavioral Approach 

This paper proposes a behavioral approach to circuit verification. In this approach, the 
verifier applies logic simulation to compute the circuit response to a series of stimuli chosen 
to detect all possible design errors. The user is freed from the tedium of proving the 
correctness of every component. Instead, the circuit is viewed at a higher level in terms of 
its desired input-output or state transition behavior. More realistic circuit models can be 
used, because only the simulator need be concerned with the modeling details. 

3 



Although this approach to hardware verification overcomes several weaknesses of structural 
verifiers, it cannot match some of their strengths. Simulation cannot exploit hierarchy very 
effectively, because the different instances of a component can have different stimuli and 
hence must all be evaluated. There is also no known way to simulate an entire class of 
circuits in a single run. Perhaps the ideal verifier would combine both styles. A hybrid 
approach would use behavioral verification to prove the correctness of a set of components 
forming some intermediate level in the circuit hierarchy. This would avoid the need to 
specify the behavior of the low level components and could employ the detailed circuit 
models required at these levels. Structural verification would then be applied to the 
hierarchical composition of the intermediate components, exploiting the regularity of their 
interconnections and their higher abstraction levels. Thus the work presented here should 
be viewed as complementing structural verification, rather than seeking to replace it. 

1.3 Overview of the Methodology 

The task of evaluating a circuit by simulating its response to a set of stimuli relates closely 
to the "machine identification" problem first described by Moore [18]. He showed that, 
in general, no finite set of stimuli could fully characterize the behavior of a sequential 
system. He suggested overcoming this problem by fixing an upper bound on the total 
number of system states. Unfortunately, for circuits of significant size, this bound is too 
high for Moore's identification algorithm to be practical. Instead, our method overcomes 
the identification problem by simulating the behavior over a three-valued domain with con
ventional Boolean values 0 and 1, plus a value X representing an undefined or uninitialized 
signal. Such a capability is found in most logic simulators [12]. In addition to supplying 
input patterns during simulation, we assume that the user can issue E R A S E commands, 
causing all state variables to be set to X. Although the power of three-valued simulation 
has been studied extensively in the context of hazard detection [6,15,25], its potential role 
in circuit verification has not been widely recognized. 

In the interest of generality and simplicity, the paper views hardware specification, circuit 
behavior, and logic simulation in a rather abstract way. The desired behavior is specified 
by a (Moore model) finite state automaton. The circuit is also a finite state automaton, 
with a particular binary coding of the states. Although this is an unconventional view 
of a circuit, we will argue its appropriateness for behavioral verification, where the focus 
is on how the circuit operates rather than how it is constructed. Circuit verification 
involves proving that the specification and circuit automata have equivalent input-output 
behavior. The simulator models the behavior of the circuit automaton, computing new 
state and output values in response to inputs supplied by the user. A mild, monotonicity 
property is imposed on the simulation of three-valued behavior to capture the notion that 
X represents an unknown or ambiguous digital value. 

The style of simulation required to prove correctness depends on the nature of the system 

4 



specification. A definite system [14,19], for which the behavior depends on only a bounded 
number of previous inputs, can be verified by straightforward "black-box" simulation. 
Black-box simulation involves simply observing the output produced by the simulated 
circuit in response to a sequence of input and E R A S E commands with no consideration 
of the internal circuit structure. Verifying the implementation of an indefinite system, 
on the other hand, requires a more implementation-specific "state transition" simulation. 
With this method, key circuit state variables are identified, and the different possible state 
transitions simulated. In either case, the verification requires little, if any, understanding 
of the detailed circuit design. 

Circuit verifiers can err in two different ways. One that rejects a correct circuit gives a 
false negative response, whereas one that accepts an incorrect circuit gives a false positive 
response. This paper is concerned mainly with avoiding false positive responses. Such a 
response has more potential for danger—it may cause a defective design to be implemented 
or put into service. Furthermore, deciding whether a simulator has produced a false 
negative response requires more detailed information about the circuit electronics and the 
simulation algorithm than can be presented in a general way. However, for the simulation 
sequences presented in this paper, a false negative response must have a particular form, 
namely the simulator will produce X on some output when 0 or 1 was expected. 

As mentioned earlier, any approach to formal verification guarantees proper circuit opera
tion only if the assumptions made in the abstract model hold in the circuit implementation. 
For the case of simulation-based verification, we must assume that the actual circuit be
haves identically to its simulation. When a circuit has been "verified" by simulation, it 
simply means that it has no errors that could be detected by simulating additional pat
terns. It is important to maintain this perspective on the problem addressed by this paper. 
It reflects a weakness intrinsic to any approach to verification and not to simulation alone. 

1.4 Contents of Paper 

This paper presents both theoretical and practical aspects of a hardware verification 
methodology based on multi-valued logic simulation. Section 2 illustrates the key ideas by 
means of several circuit examples. Section 3 gives a notation and mathematical background 
for describing system specifications, digital circuits, logic simulators, and the verification 
problem. Section 4 gives a formal characterization of the capabilities and limitations of 
black-box simulation. Section 5 shows how these limitations are overcome by state tran
sition simulation. 

Section 6 discusses methods to improve the computational efficiency of the verifier. Two 
methods are proposed to reduce the computational effort in verifying large digital systems: 
input weakening and symbolic simulation. Input weakening involves using the value X on 
an input to represent "don't care", thereby reducing the total number of patterns that need 

5 



to be simulated. Symbolic simulation involves augmenting a simulator with a symbolic 
Boolean manipulator to compute the behavior of the circuit over input patterns containing 
Boolean variables. Section 7 demonstrates a practical application of the methodology to 
the verification of a random-access memory. By exploiting input weakening, an ra-bit 
memory can be fully verified by simulating O(nlogn) patterns, even though the circuit 
has 2 n possible states. Section 8 concludes the paper with a discussion of the method. 

All circuit examples shown in this paper are designed in MOS technology. This choice 
reflects the historical background of the research as well as the belief that MOS circuits 
form a particularly difficult class for hardware verification. In particular, state can be 
stored as dynamic charge on capacitive nodes. Unlike circuits where all state is stored 
in feedback loops, there is no straightforward way to identify all state variables. In fact, 
design errors commonly introduce unintended state variables and sequential dependencies. 
The methodology presented here, however, applies to most digital technologies, with the 
caveat that circuits are assumed to operate on synchronized input data. Asynchronous 
systems seems to call for more powerful class of verification tools, such as the model checker 
of Clarke, et al [3,7], since they cannot be viewed simply as processing a single sequence 
of input data. 

This research provides two major contributions to the state of the art in circuit validation. 
First, it presents a simple, yet powerful, method of proving the correctness of digital 
hardware. Second, it provides insights into ways to better utilize a simulator even when 
only informal validation is sought. It shows that by exploiting a latent capability found 
in most logic simulators, namely three-valued modeling, more rigorous validation can be 
obtained at comparable cost. 

2 Verification Examples 

Before proceeding with the mathematical formalism, we present the main concepts via 
several circuit examples. These examples illustrate several pitfalls of simulation and how 
three-valued modeling can be exploited to overcome them. 

2.1 Definite Systems 

Consider the seemingly simple task of proving that a circuit implements a NOR logic gate. 
Figure 1 shows two proposed implementations in CMOS technology [10]. If we were to 
simulate these circuits using a simulator that can model a MOS circuit at the transistor 
level[4], the following responses would be produced when the input patterns are applied 
in the sequence shown: 

6 



Incorrect Correct 

B B 

Figure 1: Implementations of a N O R Gate in CMOS 

A B OUTi O U T 2 

0 0 1 1 
0 1 0 0 
1 1 0 0 
1 0 0 0 

The two circuits appear identical for all possible input combinations, as they would be in 
actual implementations of the circuits. However, only the second circuit is a valid NOR 
gate. The first is a two-state sequential circuit, because when A = 1 and B = 0, the 
output node is electrically isolated from all others and remains charged at its previous 
value. Due to the order in which the input combinations were applied, it just happened 
that the previous value of O U T i equaled the value a NOR gate should produce for this input 
combination. On the other hand, had this input combination been simulated immediately 
after the combination A = B = 0, the output would have been 1. 

This example illustrates a common problem in testing a circuit by simulation even when 
rigorous verification is not sought. A design error introduces an unintended sequential 
dependency in the circuit, but this error remains undetected because of the particular 
order in which the test sequences are simulated. Clearly, such a condition is not acceptable 
for formal verification. 

Suppose, on the other hand, that an E R A S E command is given before simulating each 
input combination, causing all state variables to be set to X. Such a simulation would 
produce the following results: 

7 



A B O U T i O U T 2 

0 0 
0 1 
1 1 
1 0 

1 1 
0 0 
0 0 
X 0 

The presence of an X on OUTx indicates that the output of this circuit may not be uniquely 
defined when A = 1 and B = 0 (or it could be a false negative response by a valid circuit). 
On the other hand, each input combination produces a unique response for the second 
circuit, and since the responses match those of a NOR gate, one can conclude the circuit is 
correct. This conclusion can be drawn without any further information about the structure 
of the circuit or the number of state variables. 

A combinational system such as a NOR gate is 1-definite; its output at any time depends 
only on the most recent input. The method shown above generalizes to any definite system 
specification, where the output depends only on the most recent k inputs for some constant 
k. That is, suppose for every possible input sequence of length fc, setting all state variables 
to X and then simulating the sequence yields an output equal to the desired value. One 
can then safely conclude the circuit implements the specification. 

Observe that this requirement for definiteness applies only to the system specification 
and not to the circuit being evaluated. For example, the simulator is able to detect the 
incorrect NOR gate even though the circuit itself is not definite. In particular, its output 
depends on inputs that occurred arbitrarily long ago as long as A is held at 1 and B at 0. 

2.2 Indefinite Systems 

Many sequential systems are not definite. For example, a simple 1-bit latch has an output 
dependent on an input that occurred arbitrarily long in the past as long as no new value 
is written into it (by setting its LOAD input to 1). For such a system, given any value 
A:, there will always be an input sequence of length k that does not cause the system to 
produce a unique output. When simulating this sequence following an E R A S E command, 
even a correctly designed circuit will give an X on the output. 

In Section 4 we will show that for any indefinite system, there is no way to prove that a 
circuit implements its specification by simply observing the output values resulting from 
a sequence of input patterns and E R A S E commands. This general limitation of black-box 
simulation can be illustrated using a 1-bit latch circuit. Consider a simulation sequence 
that is claimed to detect any defective latch design. Since the sequence is finite, there 
must be some value / such that the LOAD input is never held at 0 for / or more consecutive 
patterns. 

8 



DATA 

LOAD 

OUT 

OUT' 

CLEAR 

/-Bit Shift Register 

Figure 2: Latch with Booby Trap 

Consider the circuit of Figure 2 consisting of a correct latch with additional circuitry 
implementing a "booby trap". Whenever a value is written into the latch, all bits in the 
booby trap shift register are cleared to 0. The output of the shift register is EXCLUSIVE-
OR'ed with the latch output to produce the circuit output OUT' . Thus, the circuit behaves 
as a proper latch as long as the shift register output equals 0. If no further data is written, 
a 1 will shift through the register until it ultimately causes the circuit output OUT' to 
be complemented. Clearly, this circuit does not behave as a latch should. However, the 
proposed sequence does not cause enough consecutive shift operations for the defective 
circuit to behave differently from the correct one. 

Less obviously, even attempts to expose the booby trap by giving E R A S E commands or 
by giving input sequences containing X's will fail to distinguish the correct latch from 
the circuit of Figure 2. Unlike the NOR gate example, any action that would cause the 
simulator to produce output X for the incorrect circuit would also cause it to produce 
output X for the good circuit. Thus, the proposed simulation sequence cannot distinguish 
between a correct circuit and this incorrect one. This argument holds for any simulation 
sequence by making / sufficiently large. 

To verify indefinite systems, more information is required about the circuit state variables 
and their relation to the states of the system specification. However, in the spirit of black-
box simulation, we would like to minimize the amount of detail about the circuit structure 
that the user must provide. To achieve this goal, assertions about the state variables 
and how they are transformed by the input values are expressed in a notation similar to 
the Floyd-Hoare assertion method of program verification [8,11]. Each assertion is then 
verified by a short simulation sequence. 

9 



DATA Q • 

Latch OUT 

LOAD 

Figure 3: Latch Circuit 

A circuit assertion, denoted by an equation of the form P { I } N A O, consists of 4 
predicates over the circuit input, output, and state variables. Predicate P specifies a 
precondition on the state variables, J an action on the input variables, N a postcondition 
on the state variables, and O a postcondition on the output variables. Each predicate is 
the logical conjunction of terms of the form v = 1 or v = 0, where v is circuit variable. A 
circuit assertion can be interpreted as a statement that for any circuit state satisfying P 
and for any action satisfying I , the new circuit state will satisfy iV, and the output will 
satisfy O. 

As an example, consider an implementation of the 1-bit latch illustrated in Figure 3. 
No internal details of the circuit are shown except that the bit is stored in a feedback 
path containing two electrical nodes Q and (J. The following assertions specify the state 
transition behavior of the circuit where a ranges over 0 and 1: 

Q = a A Q = -ia J LOAD = 0 | Q = a A Q = - i a A OUT = a 
The first equation asserts that a write operation sets the state of a latch, while the second 
asserts that the latch state does not change as long as no new data is written. In both 
cases the value of OUT should equal that of Q. 

Given an assertion P { I } N AO, its verification by simulation involves the following steps. 
An ERASE command is given to set all state variables to X. For each term v = a in P 
(respectively J), state variable v (resp. input variable v) is set to a. All input variables not 
occurring in / are set to X. The simulator then computes the resulting output and new 
state. For each term v = a in N (respectively O), state variable v (resp. output variable 
v) is tested for equality with a. If all of these tests hold, then the assertion is proved. 

For example, consider the latch circuit of Figure 3, and the faulty circuit formed by adding 
the booby trap of Figure 2 to it. Simulating the four sequences specified by the assertions 

true \ DATA = a A LOAD = l > Q = a A < J = - « a A OUT = a 

10 



would yield the following results: 

Initial Values Results 
Q Q DATA LOAD Q Q O U T OUT' 
X X 0 1 0 1 0 0 
X X 1 1 1 0 1 1 
0 1 X 0 0 1 0 X 
1 0 X 0 1 0 1 X 

The defective circuit passes the first two tests when new data is written, because this 
causes the shift register to be cleared. For the final two tests, however, all state variables 
with the exception of Q and Q are initialized to X. The shift register output will remain 
at A , causing an X to appear on OUT' and the tests to fail. 

3 Mathematical Formulation 

The examples of the previous section illustrate the main ideas of our verification method
ology. We will now proceed with a more formal presentation, showing that these ideas 
apply to general classes of circuits. This section develops a mathematical abstraction of 
logic circuits, simulators, and the verification problem. 

3.1 Nota t ion 

We adopt a notation that represents the system input, output, and state values as vectors. 
The history of inputs applied to a system is denoted by a sequence of vectors. 

p: the number of system inputs. 

B: { 0 , 1 } , the Boolean domain. 

Bn: { ( x i , . . . , x n } \ x { £ 1?}, Boolean vectors of size n. 

$j : all length / sequences with elements in Bp. 

$ : UO<J<OO $h all finite sequences with elements in Bp. 

T: { 0 , t h e ternary domain, partially ordered X < 1 and X < 0. 

Tn'- { ( s i j . . . , 3 n ) | Z T € T } , ternary vectors of size n, partially ordered x < y if 
£T < y% for all 1 < i < n. 

11 



all length / sequences with elements in Tp. 

Uo</<oo all finite sequences with elements in T p , partially ordered 
[Sij..., a8] < [ 6 1 , . . . , bt] if s < t and a,_t- < &t_t- for all 0 < i < s. 

e: the empty sequence. 

a • /?: the concatenation of sequences a and /3. 

3.2 Information Ordering 

The partial ordering X < 0 and X < 1 orders values by their "information content." That 
is, X indicates an absence of information while 0 and 1 represent specific, fully-defined 
values. When speaking of domains ordered by information content values a and b are 
said to be "consistent" if either a < b or 6 < a, and "inconsistent" otherwise. Value a is 
"weaker" than 6 if a < 6, i.e., a < b and a ^ 6. 

The information ordering is extended to vectors and vector sequences by adopting the 
convention that one value is less than another if the elements of the first are consistent 
with those of the second, but the first contains less information. More precisely, for vectors 
in T n , one vector is less than or equal to another if each element of the first is less than or 
equal to each element of the second. For sequences a,/? G ^ , a is less than or equal to /3 
if the elements of a are less than or equal to the corresponding final elements of 0. That 
is, the history given by a is consistent with the most recent history given by /3, but may 
contain less information. The motive for this convention on the ordering of different length 
sequences will become clear when we study the monotonicity properties of the simulator. 
As a special case, sequences of Boolean vectors, a,/? G are ordered a < (3 when a is a 
suffix of /3. 

Def in i t ion 1 For partially ordered sets Di, D2 a monotonic function g:D\ —> D2 satisfies 

a<b => g(a) < g(b) 

for all a,6 G D\. Similarly, a monotonic function with multiple arguments satisfies this 
property for each argument. 

For any program that processes data ordered by information content, such as a logic 
simulator, monotonicity expresses an important property. Suppose the program is given 
a stimulus containing incomplete information, e.g., having some inputs equal to X. If 
the program obeys monotonicity, it will produce a response consistent with but possibly 
weaker than the response it would produce given a stronger stimulus. 

12 



Def in i t ion 2 For partially ordered sets Dx and D2 with subsets D[ and D'2, respectively, 
a monotonic extension of function f: D[ —• D'2 is a function g: Di —> D2 such that g is 
monotonic and f(a) = g(a) for all a G D[. Similarly, a monotonic extension of a multiple 
argument function must satisfy these properties for each argument. 

As an example, the OR function can be extended monotonically from the Boolean to the 
ternary domain in several different ways, including the following: 

A V I = 
1, a = 1 or b = 1 
0, a = 0 and 6 = 0 (jj 
X, else. 

Other extensions yield X when a = 1 and 6 = X or vice-versa. These more pessimistic 
extensions are still monotonic but would tend to cause false negative results. 

3.3 S y s t e m Specification 

The system to be implemented has p inputs and m outputs, each of which may equal 0 or 
1. Hence the system may be described as a finite automaton with input alphabet Bp and 
output alphabet Bm. 

Def in i t ion 3 A system specification M is a triple (Q, Next, Out) with 

Q: a finite set of states, 

Next: the next state function Next: Q X Bp —• Q, and 

Out: the output function Out: Q —> Bm. 

Function Next must be a surjection, that is, for every q G Q, there must be a q1 G Q and 
a G Bp such that q = Next(q', a). 

A system with a surjective next state function cannot have any unreachable states. This 
restriction is imposed for technical reasons but should not limit the class of actual systems 
under consideration, because there would be no reliable way to put the system in a state 
that cannot be reached by any sequence of state transitions. This restriction is much 
milder than the strong connectivity property assumed by Moore [18]. 

The function Next is extended to input sequences to yield the state after all inputs have 
been applied, i.e., to a function Next:Q X $ —> Q defined recursively as 

Next(q,e) = q 

Next(q,a-x) = Next (Next (q, a ) , x). 

13 



P r o p o s i t i o n 1 For any k > 0, The extended function Next: Q x —• Q is a surjection. 

Proof: By induction on k and the surjectivity of Next when applied to single inputs. 

• 

The function FinalOut: Q x $ - ^ Bm is defined to yield the final output after a sequence 
of inputs has been applied, i.e., 

FinalOut(q, a) = Out(Next(q,a)). 

P r o p o s i t i o n 2 

Next (q, a • (3) = Next (Next (q, a), ¡3) 

and 
FinalOut(q, a • /3) = FinalOut(Next(q, a), /3) 

Proof: By induction on the length of /3. 

• 

3.4 Circuit Mode l 

A circuit is also a finite automaton but with states encoded by 3 Boolean variables. 

Def in i t ion 4 A circuit C is a triple {s, next, out) with 

s: the number of state variables, 

next: the next state function next: Bs x Bp —> Bs, and 

out: the output function out: B* —> Bm. 

This definition of a circuit differs significantly from that assumed by other verifiers. 
Whereas structural verifiers describe a circuit as a set of interconnected elements, our 
abstraction ignores the physical structure altogether. Instead, it views a circuit at the 
level seen by the user of a logic simulator. That is, the program, rather than the user, is 
responsible for determining the behavior of the circuit given its structure. This level of 
detail suffices for the paper, because our goal in verification is only to ensure that the user 
uncovers any design errors that can be detected by the simulator. 

14 



Def in i t ion 5 Circuit C implements specification M when there exists a relation £ C 
Q x Bs (for "encodes") satisfying: 

1. For every q G Q there exists a z E Bs for which q £ z. 

2. For any q G Q and z E B* 

q £ z ==>- Out(q) = out(z), 

8. For any qeQ, ze B8, and x G Bp

} 

q £ z ==> Next(q,x) £ next(z,x). 

By this definition, the circuit automaton must "cover" the input-output behavior of the 
specification. That is, for any initial state of the specification, there must be an initial 
circuit state, such that the two automata would yield identical outputs for any subse
quent input sequence. However, there may be circuit states that do not correspond to 
any specification states, such as those involving invalid combinations of state variables. 
Furthermore, neither automata need be reduced—several circuit states may correspond to 
a single specification state and vice-versa. 

3.5 Simulator 

For a circuit C = (s,next,out), the simulator maintains state variables z G T 5 , and com
putes the behavior according to functions nextiT* x Tp T* and out:T* —> T m , which 
are arbitrary monotonic extensions of the corresponding circuit functions. The simula
tor implements five commands, although for black-box simulation only the first three are 
allowed. 

E R A S E : causes the simulator to set zt- to X for 1 < i < s. 

C Y C L E ( x ) : causes the simulator to set z to next(z, x). 

O U T P U T : causes the simulator to print out(z). 

S E T ( i , 6): causes the simulator to set z{ to 6 for b G T. 

OBSERVE^' ) : causes the simulator to print z t-. 

15 



3.6 Simulation Experiment 

Def in i t ion 6 A simulation experiment consists of a sequence of simulation commands 
beginning with E R A S E , as well as a procedure by which the user decides whether the outcome 
is acceptable. The decision procedure can depend only on the values produced by O U T P U T 

and O B S E R V E commands. 

Def in i t ion 7 An experiment is effective for specification M when the simulation of a 
circuit C can be judged acceptable only if C implements M. 

This condition requires that the verification method cannot produce any false positive 
responses. 

Def in i t ion 8 An experiment is nontrivial when the simulator produces an acceptable out
come for some circuit (s, next, out) and monotonic extensions of next and out. 

This condition is imposed to eliminate the otherwise effective test of rejecting all circuits. 

4 Black-Box Simulation 

With black-box simulation, the user is limited to the simulation commands E R A S E , C Y 

C L E , and O U T P U T . N O direct observation or modification of the simulator state z is 
permitted. This section identifies the class of systems that can be verified by black-box 
simulation. 

Define the function SimState: ^ —• T* as the state of the simulator after giving an E R A S E 

command followed by a series of C Y C L E commands. More precisely 

SimState(e) = X8 

SimState(a • x) = next(SimState(a), x) 

where Xs denotes a vector of size 6 with each element equal to X. 

Similarly, define the function SimOut: \P —• Tm as the result that would be printed by an 
O U T P U T command following the simulation of some input sequence, i.e., 

SimOut(a) = out(SimState(a)). 

A black-box simulation experiment can be viewed as a decision procedure that either 
accepts or rejects a circuit based on the values of SimOut(a) for any finite number of 
sequences a 6 $ . 

16 



4.1 Definite Systems 

Def in i t ion 9 For any k>0, specification M is k-definite if 

FinalOut(qua) = FinalOut(q2,a) 

for any a £ and any <ft, q2 £ Q, 

Def in i t ion 10 A specification is definite if it is k-definite for any k. Otherwise it is 
indefinite. 

This class of sequential systems was first identified by Kleene [13]. Since that time, various 
definitions have appeared, viewing sequential systems either as recognizers [19] or trans
ducers [14]. Our definition most closely matches that of Kohavi [14]. However, he defines 
a A:-definite system as one for which any input sequence of length k places the system in 
a unique state, whereas we only require the sequence to cause a unique output. If the 
specification automaton is in reduced form, the two definitions are equivalent. 

P r o p o s i t i o n 3 A k-definite specification is also l-definite for any I > k. 

Proof: Any sequence in $ j is of the form /? • a where /3 £ and a £ For any states 
9 i , ? 2 € Q, let q[ = Next(qu0) and q'2 = Next(q2,/3). By Proposition 2 and the fact that 
the specification is fc-definite: 

FinalOut(qu /?•<*) = FinalOut(q[, a) = FinalOut(q'2, a) = FinalOut(q2, (3 • a) 

• 

4.2 Monotonic i ty Propert ies 

In this section we will prove several properties of the logic simulator that follow from the 
monotonicity of the simulator functions next and out. As shall be seen, monotonicity pro
vides the primary mechanism by which one can guarantee properties of a circuit knowing 
only its response during simulation. 

L e m m a 1 The functions SimState and SimOut are monotonic. 

Proof: We will prove by induction on the length of a that for any a, 0 £ * for which 
a < /?, we have SimState(a) < SimState((3). First, if a = 6, then SimState(a) = Xs 

17 



and this vector is less than or equal to any other state vector. Otherwise, if a has nonzero 
—* 

length and a < /?, then a must be of the form a! • a and (3 must be of the form /3' • 6 where 
a1 < (31 and a < b. Assuming, by induction, that SimState(a') < SimState((3') and given 
that next is monotonic, we get 

SimState(a) = next(SimState(af),a) < nex^SimStateffl),!)) = SimState(/3). 

The monotonicity of SimOut follows from the fact that both out and SimState are mono-
tonic, because a composition of monotonic functions is also monotonic. 
• 
The monotonicity of SimState and SimOut show how the E R A S E command and the three-
valued modeling enhances the power of the simulator. If an E R A S E command followed by 
a sequence of C Y C L E commands causes the simulator to produce a 0 or 1 on some output 
or state variable, then this sequence of inputs must also cause the circuit to produce the 
same output or state regardless of the initial state. As a special case of this lemma, if 
sequence a' is a suffix of a, then SimOut(a') < SimOut(a), i.e., the simulation of the 
shorter sequence yields an output consistent with, but possibly weaker than, the output 
produced for the longer one. 

L e m m a 2 For any k>0, if SimOut(a) = FinalOut(q,a) for all a G and all q G Q, 
then the simulated circuit C implements specification M. 

Proof: For any a G let 
Qa = {Next{q',a)\q' G Q} 

and 
Z* = {ze Bs\SimState(a) < z) 

That is Qa denotes the set of possible states for the specification automaton following 
input sequence a, while Za denotes the set of possible circuit states consistent with the 
state of the simulator after simulating the sequence a following an E R A S E command. By 
the monotonicity of out, we must have that for z G Za 

SimOut(a) = out(SimState(a)) < out(z). 

For those sequences a that occur in the condition of the lemma, SimOut(a) is maximal, 
i.e., SimOut(a) G 2? m , in which case we can conclude that out(z) = SimOut(a) for all 
ze za. 

Define £ as 

£ = U { ( ? ^ 1 | ? G Q a , 2 G ^ } . 

We must show that £ satisfies the three properties of Definition 5. 
18 



First, given that Next is surjective for input sequences of length k (Proposition 1), every 
state q must be in set Qa for some a G The set Za cannot be empty, and hence q £ z 
for some z. 

Second, if q £ z, we must have q = Next(q',oc) and SimState(a) < z for some q1 G Q and 
some a G From the condition of the lemma it follows that 

Out(q) = FinalOut(q'\a) = 5 i m O u i ( a ) = o u £ ( i ) . 

Finally, suppose q £ z, i.e., for some a = [ a i , . . . , a*] we have q € Qa and SimState(a) < z. 
Consider any x G J 5 P , and let 7 = [ a l 5 . . . , ak, x] and f3 = [ a 2 , . . . , a*, x]. By definition, 
Next(q,x) G Since (3 < 7 (/? is a suffix of 7 ) , and both SimState and next are 
monotonic 

SimState((3) < SimState(i) = n€xt(S'tm5tate(a),x) < next(z,x) 

Therefore next(z,x) G ^ by the definition of Zp and hence Next(q,x) £ next(z,x). 
• 

This lemma provides the key to proving that a simulator can verify that a circuit imple
ments a fc-definite specification by simulating it for all input sequences of length k. 

L e m m a 3 / / circuit C implements specification M then for all a G ^ and all (3 G $ such 
that a < (3: 

SimOut(a) < FinalOut(q, (3) 
for all qEQ. 

Proof: We will prove by induction on the length of (3 that for some z G B* such that 
Next(q,(3) £ z, we have SimState((3) < z. Given this, we can infer by the monotonicity 
of SimOut and out, and by condition 2 of Definition 5 that 

SimOut(a) < SimOut(P) = out(SimState((3)) < out(z) = FinalOut(q,(3). 

To prove the induction hypothesis, for (3 = e, we have that SimState((3) = Xs and 
hence the hypothesis holds trivially. Now suppose that (3 is of the form (3 = /?' • 6, that 
Next(q,t3*) £ z \ and SimState((3') < z'. By definition 

Next(q,(3) = Next(Next(q,(3l),b) 

and therefore by condition 3 of Definition 5 

Next(q,(3) £ next(z',b). 

19 



By the monotonicity of next 

SimState((3) = next(SimState((3'),b) < next(z',b) 

Hence, if we let z = next(z\b) the induction hypothesis will hold. 
• 

This lemma implies that if the specification has states qi and q2 for which FinalOut(qu a) ^ 
FinalOut(q2y a ) , for some sequence a, then some element of SimOut(a) must equal X 
even for a correctly designed circuit. This property is used in designing a booby trap for 
an indefinite system. 

4.3 Expressive Power 

We are now ready to prove a main result of this paper, characterizing the capabilities and 
limitations of black-box simulation. 

T h e o r e m 1 There exists an effective, nontrivial, black-box simulation experiment for spec
ification M if and only if M is definite. 

Proof: First, suppose M is A:-definite for some value k. Consider the simulation experiment 
consisting of executing the sequence of commands required to compute SimOut(a) for each 
a G and accepting the circuit if SimOut(a) = FinalOut(q, a) for all a and any choice 
of q G Q (in a A:-definite specification, the choice of initial state makes no difference.) 
Lemma 2 shows that this experiment is effective. 

Furthermore, the circuit illustrated in Figure 4, consisting of a p-bit wide, fc-bit long shift 
register to store the most recent k inputs plus logic to compute the circuit outputs can 
pass this experiment. A similar structure was proposed by Kleene [13] to implement an 
arbitrary definite system. More precisely, let s = p • k and define next as 

Partition z into a sequence of vectors . . . , !&] where % = (z( t _i) .p+i, . . . , Zi.p) and define 
out as 

out(z) = FinalOut(q, [zi,..., z^]) 

for any choice of q € Q. These functions are extended monotonically by defining next(z, x) 
according to Equation 2 and letting out be any monotonic extension. It can be seen that for 
any sequence a = [ a l 5 . . . , a*] G we have SimState^1yp+j(a) = atjJ-, the jth element of 
vector at«, and hence SimOut(a) = FinalOut(q, a). Therefore, the simulation experiment 
is nontrivial. 

20 



out 
2 2 Zi 

y 

zp-k 

x2 

Xi 

Zp-k-p+2 

Zip 

O 

6 V zp+2 6 
Zi 

s 6 u ZP+1 
6 

Zl 

Figure 4: Universal Implementation of a A;-Definite System 

Next, suppose M is not fc-definite for any value of fc. We use an adversary argument to 
show that no nontrivial, black-box experiment for this specification can also be effective. 
Assume that there is some nontrivial simulation experiment in which fewer than k C Y C L E 
commands occur without an intervening E R A S E command, for some value k. Since the ex
periment is nontrivial, there must be a circuit C = (s,next, out) and monotonic extensions 
of next and out that produce an acceptable result for the experiment. We will construct a 
circuit C = (s', next', out') that does not implement M. However, we can define monotonic 
extensions of next' and out' such that by defining SimOut' in a manner analogous to the 
definition of SimOut, we have SimOut'(a) = SimOut(a) for any sequence a (E ^i, for 
which / < k. The simulation experiment cannot possibly distinguish C from C and hence is 
not effective. This argument holds for any value of A:, showing that there is no finite upper 
bound on the length of a simulation experiment that can distinguish a correct circuit from 
a defective one when the specified system is indefinite. 

Circuit C is constructed as illustrated in Figure 5 by taking circuit C and adding extra 
logic to implement a "booby trap", i.e., logic that will not affect the output value until a 
specific input sequence of length k occurs. Designing such a booby trap is no easy task, 
because any state variables used by the trap will be set to X whenever the user gives an 
E R A S E command. For an improper design this could cause C to produce an X on its 
output under conditions when C would not. Similarly, the user might attempt to expose 
any traps by presenting inputs with some elements equal to X. 

21 



I H 

{yi,---,ym-l) 

Z9+1 Z3+2 Zs+k 

Figure 5: Circuit with Booby Trap 

For the design of C , let (3 = [Si,...,S*] G be some sequence such that M has states 
9I? 92 £ Q for which FinalOut(qi, /?) FinalOut(q2,(3). Such a sequence must exist or else 
M would be A;-definite. Assume for simplicity, that output m differs for these two cases, 
relabeling the outputs if required. The trap consists of a shift register, where each shift 
element sets its output to its input value when the circuit input matches the corresponding 
element of /? and clears the output to 0 otherwise. Consequently, input sequence (3 will 
cause a 1 to propagate through the shift register, forcing output m to 1 when it reaches 
the end. Any input sequence a ^ /3 of length less than or equal to k will cause the shift 
register to produce 0, leaving the circuit output unchanged. The behavior of the circuit for 
input sequences a < /3 will depend on the initial state, and hence under such conditions 
SimOut'm(a) = X. However, it can be shown using Lemma 3 that under these conditions 
SimOutm(a) = X as well. 

The detailed design of circuit C is rather involved and hence is given in Appendix A rather 
than here. It is also shown that for any / < k, any a G ^ j , and any i such that 1 < i < m: 

SimOut'^a) = 1, % = m and a = (3 
SimOuti(a), else 

Hence C cannot be distinguished from C for any input sequence of length less than k. 
On the other hand, since FinalOutm(qi, (3) ^ FinalOutm(q2, /3), we must have either 
SimOut'm((3) ^ FinalOutm(qu/3) or SimOut'm(j3) % FinalOutm(q2,(3) and hence by 
Lemma 3, C cannot implement M. 

• 

22 



5 State Transition Simulation 

To verify circuits implementing a more general class than definite systems, the results of 
the previous section imply that a capability beyond black-box simulation is required. At 
the opposite extreme, if the user were to completely specify the relation £ , we could check 
that it satisfies the conditions of Definition 5 by exhaustively simulating all states and 
transitions. This approach would work for any class of systems and circuits. In practice, 
however, it cannot be applied to circuits of significant size, because the complexity of 
completely specifying and checking the relation £ would be overwhelming. Exhaustive 
simulation, however, provides a basis for developing other simulation methods that over
come the deficiencies of black-box simulation. It shows that any circuit can be verified if 
we introduce sufficient detail about the circuit structure into the verification method. 

5.1 The Assert ion Method 

We would prefer to introduce as little information as possible about the circuit structure 
into the verification. Toward this goal we will develop a notation similar to the Floyd-Hoare 
assertion method of program verification, along with an associated simulation methodology 
for testing assertions. 

Def in i t ion 1 1 A circuit assertion is a set of four predicates: 

P(z): a precondition on the state variables, P:B* —• {true, false}. 

I(x): a condition on the input variables, I:BP —• {true, false}. 

N(z): a postcondition on the state variables, N:B8 —• {true, false}. 

0(y): a postcondition on the output variables, 0:Bm —• {true, false}. 

A circuit assertion is denoted by an equation of the form the form P{ I }N A O. 

Def in i t ion 1 2 A circuit satisfies assertion P{ I }N A O if N[next(x,z)\ and 
0[out(next(x,z))] hold for all zE Bs and x e Bp such that P(z) and I(x) hold. 

Given a set of circuit assertions, verifying a circuit requires two proofs—that any circuit 
satisfying the set of assertions must implement the specification, and that the circuit under 
consideration satisfies these assertions. Proving the adequacy of a set of assertions involves 
showing that they cover every transition in the specification automaton. At the present 

23 



stage of this research, the set of assertions and a proof of their adequacy must be generated 
manually. Although this places additional burden on the user, experience has shown that 
far less manual effort is required than with structural verifiers. 

5.2 Testing Assertions by Simulation 

Once a set of assertions has been devised, a simulator can verify that a particular circuit 
satisfies them. First, we must structure the assertions in a particular way. 

Def in i t ion 1 3 A nonvoid predicate P:Bn —• {true, false} is convex if whenever P(a) 
and P(b) hold for vectors a and 6, then P(c) holds for any vector c for which a G {a t-,6 t} 
for 1 < i < n. 

A convex predicate can be expressed by a formula of the form P(u) = L\ A L 2 A . . . A Lk 
where each Lt- is a literal of the form Uj = 0 or uy = 1. In general, any assertion can be 
rewritten as a set of assertions containing only convex predicates. 

Def in i t ion 1 4 For convex predicate P(u) defined over elements of Bn

} the vector uP G Tn 

is defined as 
( 1, P ( o ) = > a , = l 

[uP]i = I 0, P(a) =• at- = 0 
[ X, else 

For a predicate expressed as a conjunction of literals, the corresponding vector is obtained 
by setting each element appearing in a literal to its specified value, and all other elements 
to X. This vector is analogous to the cubical representation of a product term in a Boolean 
expression [20]. 

P r o p o s i t i o n 4 For convex predicate P{u) and vector a G Bn

y P(a) if and only if up < a. 

Proof: First, assume that P{a) holds. For the vectors to be ordered uP ^ a, there must 
be at least one element i such that [up]i = ""a,-. This, however, would violate Definition 
14, and hence up < a. 

On the other hand, assume up < a for some a G Bn. Let b G Bn be a vector such that 
P(b) holds. The following procedure constructs a sequence of vectors fe0,?1,... , 6 n , such 
that 6 = 6°, a = 6 n , and P{b%) holds for 0 < i < n. From this we can conclude that P(a) 
holds. For 1 < i < n each element j of vector 6* defined as 

24 



The proof that each vector b% satisfies P(b%) proceeds by induction on i. Since 6° = 6 it 
clearly holds for the basis case. Assuming 61""1 satisfies P (& 1 _ 1 ) , observe that 6*""1 ^ b% 

only if di = -^b\~l and [up]i = X. There must be some vector d£ Bn such that P(d) and 
di = "^frp1, or else [up]i would equal 6J"1. By convexity, P(6*) must hold, because each 
element of 6* equals an element of d or an element of 6 t ~ 1 . 
• 

This result shows that a convex predicate can be represented by a single cube. 

T h e o r e m 2 For convex predicates P, I, N, and O if Z~N < next(zp,xj) and yo < 
out(next(zpjXi)) for any monotonic extension of circuit functions next and out, then the 
circuit satisfies assertion P{ I }N A O. 

Proof: Suppose ZN < next(zp,xj). By Proposition 4, any vector z € B* for which P(z) 
holds must satisfy zp < z. Similarly, any vector x G Bp for which I(x) holds must satisfy 
£j < x. Therefore, the monotonicity of next implies that 

Z~N < next(zp, xj) < next(z, x) 

and N[next(x,z)\ holds by Proposition 4. 

Similarly, when yo < out(next(zp, xj)) the monotonicity of next and out imply that 

yo < out(next(zp,Xj)) < out (next (z,x)) 
and hence 0[out(next(x,z))\ holds. 
• 

This theorem indicates a straightforward procedure to test that a circuit satisfies an as
sertion with convex predicates. Following an ERASE command, use SET commands to set 
all state variables for which [zp]i ^ X to the appropriate values. Then give the command 
CYCLE(x/) to simulate the prescribed action. Finally, use OBSERVE commands to check 
that Z{ = [zN]i for all i such that [zs\% i1 X, and an OUTPUT command to check that 
yo < out(z). 

6 Performance Considerations 

Up to this point, we have considered only whether verifying a circuit by simulation was 
at all possible. The resulting verification methods were not at all efficient. For example, 
brute force application of black-box simulation to verify a A:-definite system with m inputs 
requires simulating 2km patterns. Clearly, this is practical only for small values of k and m. 
In general, the circuit verification problem is NP-hard as measured in the size of the circuit 
and the specification. However, several techniques reduce the complexity to manageable 
levels for a large class of circuits. 

25 



6.1 Input Weakening 

The logic value X can be used to indicate a "don't care" (or more properly "shouldn't 
care") condition when the circuit behavior being tested should not depend on that par
ticular input. This allows us to simulate the effects of a number of Boolean sequences 
with a single ternary sequence, leading at times to a dramatic reduction in the simulation 
complexity. This technique is called "input weakening", because it involves reducing the 
information content of the simulation sequences. Monotonicity guarantees that if the re
sulting response on some output is 0 or 1, then all stronger sequences would give the same 
response. 

For example, consider a A;-bit long, 1-bit wide shift register. Brute force, black-box simu
lation requires simulating 2k patterns of the form [ a i , a 2 , . . . ,a*] , each time checking that 
the final output equals a\. Since the output of the shift register should depend only on the 
first value in the sequence, we can set the input to X for the remainder of the simulation. 
This reduces the number of simulation sequences to two: [1, X , . . . , X] and [0, X , . . . , X]9 

without compromising the rigor of the simulation. Generalizing this to a shift register of 
width m, a total of 2m sequences, each of length A:, suffices, consisting of a pair to test 
each bit of the data word. Compared to the ad hoc methods most designers use to validate 
shift registers (e.g., simulate a randomly chosen input sequence), the proposed method 
provides better results at a comparable cost. 

To develop this idea formally, we define a covering set as a set of ternary sequences that 
include all possible Boolean sequences of a given length. 

Def in i t ion 15 A set A C ^ is a covering set for if to every /? G there corresponds 
some a € A such that a < /3. 

T h e o r e m 3 For a covering set A of if SimOut(a) = FinalOut(q, (3) for all a G A, 
all (3 G $jb such that OL < (3, and all q G Q, then the simulated circuit C implements 
specification M. 

Proof: By the monotonicity of SimOut, if a < /?, then SimOut(a) < SimOut((3). How
ever, the assumption that SimOut(a) = FinalOut(q,(3) implies that SimOut(a) G B m , 
and hence SimOut(f3) = FinalOut(q,(3). Thus, the conditions required by Lemma 2 hold, 
and C implements M. 
• 
Input weakening can also be applied in transition simulation. In fact the simulation se
quences arising from the assertion method already utilize this technique. If convex predi
cate P places no conditions on element i of a vector, then corresponding variable is set to 
X in the simulation. 

26 



6.2 Symbolic Simulation 

At times we cannot avoid the complexity caused by the large number of possible input 
combinations that might be applied to a circuit, all of which might be relevant to the values 
of the outputs. For these cases, we propose symbolic simulation to reduce the number of 
patterns simulated. A symbolic simulator [5] resembles a conventional logic simulator, 
except that the input sequences can contain Boolean variables in addition to the constants 
1 and 0. During simulation the values of the circuit state and output are Boolean functions 
of the variables occurring in the input sequence. A symbolic simulator represents and 
manipulates these functions explicitly. The worst-case behavior of such a program gives 
no better performance than exhaustive simulation by a conventional simulator. However, 
good Boolean manipulation algorithms often lead to far better results. To implement 
the verification methodologies described in this paper, a symbolic simulator must be able 
to manipulate functions over the three-valued domain {0 ,1 , X}. The symbolic simulator 
MOSSYM [5] solves this problem by representing every circuit variable by a pair of Boolean 
functions, generalizing the encoding of three possible values by two bits. 

A symbolic simulator can verify an m-input, fc-definite system by simulating a single 
sequence of length k, with each input pattern consisting of m Boolean variables to represent 
all possible input values. The resulting output functions will be symbolic representations of 
the circuit outputs for every possible input sequence of length k. These can then be tested 
for equivalence with functions generated from the system specification. As an example of 
verification by symbolic simulation, the above-mentioned shift register would be verified 
by simulating the sequence of variables [ a i , a 2 , . . . , a * ] and testing the final output for 
equivalence with the function a\. Efficient symbolic manipulation will exploit the fact that 
the variables shifting through the register do not interact. Hence a symbolic simulator can 
automatically take advantage of the same properties that allow input weakening. Symbolic 
simulation can also handle cases for which input weakening does not apply. For example, 
MOSSYM was able to verify a 16-bit nMOS adder using less than 10 minutes of CPU time on a 
Digital Equipment Corporation VAX-11/780. In contrast, its more traditional counterpart 
MOSSIM II [4] would require an estimated 648 years using exhaustive black-box simulation. 

The capabilities of symbolic simulator can also be exploited in verifying indefinite systems. 
Rather than testing a large number of assertions with predicates containing terms of the 
form v = 0 or v = 1, the program would test a smaller set of assertions containing 
predicates of the form v = a where a is a symbolic variable. That is, a symbolic simulator 
can test assertions having the form of universally quantified formulas rather than single 
propositions. Furthermore, it does not require the predicates to be convex. 

Although a symbolic simulator gives the user a far more abstract view of circuit behavior, 
it has no fundamental power beyond that of an ordinary logic simulator. Any information 
that symbolic simulation provides could also be obtained by exhaustively simulating the 
set of patterns generated by enumerating all combinations of 0 and 1 for the Boolean 

27 



A D D R q 

A D D R m _ i 

WRITE 

DIN 

D O U T 

Expanded View of Cell i 

Figure 6: Static RAM Circuit 

variables. 

7 Memory Verification Example 

To demonstrate the methodology on a more significant task for hardware verification, 
consider the static random-access memory (RAM) illustrated in Figure 6. The assertions 
required to verify this circuit will be presented in a series of steps, each introducing new 
notation and discussing the reasoning behind it. Despite these extensions to the notation, 
the underlying principle remains that of state transition simulation. 

This circuit holds n = 2 m bits, where each memory cell i , such that 0 < i < n, consists of a 
feedback path containing electrical nodes Bt- and Bt- along with a pair of access transistors 
[10]. As a shorthand, the predicate Store(i,v) expresses the fact that value v G {0 ,1 } is 
stored in memory cell i: 

Store(i,v) = Bi = v A Bi = - iv. 

The input lines ADDRy, for 0 < j < m , select a particular memory cell. When WRITE = 1, 
the value of DIN is written into the selected memory cell. As shorthand, this operation is 
expressed by a predicate 

Write(i, v) = WRITE = 1 A DIN = v A V(0 < k < m ^ A D D R * = ik] 

where indicates the A;th bit in the binary representation of i . When WRITE = 0, the 
value stored in the selected memory cell is produced as output on D O U T . This operation 

28 



is expressed by the predicate 

Read(i) = WRITE = 0 A V(0 < k < m ) [ A D D R J k = ik). 

Although few additional details of the circuit design are needed for verification, correct 
circuit operation depends on the fact that the control lines W O R D r equal 0 when the circuit 
is quiescent, for 0 < r < y/n.1 Without this property, the access transistors for more than 
one cell in a column could be turned on, causing undesirable interactions. This fact is 
formulated as a system invariant 

Inv = V(0 < r < V ^ ) [ W O R D r = 0]. 

The invariance of this condition is expressed by a single assertion: 

true | true j Inv 

That is, following any memory operation, the word lines will return to a quiescent con
dition. Once the assertion has been established, the invariant Inv can be assumed as a 
precondition in all other assertions. Most circuits require some form of system invariant 
expressing conditions about the control logic that can be assumed true at the beginning 
of every input cycle. Devising the invariant requires a combination of analysis and ex
perimentation. An insufficient system invariant will become immediately apparent during 
subsequent simulations, because output or state variables that should have Boolean values 
will equal X. 

The remaining assertions simply express the operation of a memory. First, for all v 6 { 0 , 1 } 
and for all i such that 0 < i < n, an assertion states that writing v into location i must 
cause v to be stored in cell i: 

Inv | Write(i,v) } Store(i,v). 

Second, for all v £ { 0 , 1 } and for all i and j such that 0 < t , j < n and i ^ j 9 an assertion 
states that writing into location j does not affect the value in cell i: 

Inv A Store(i,v) { Write(j\X) } Store(i,v). (3) 

Third, for all v 6 { 0 , 1 } and for all i such that 0 < i < n, an assertion states that reading 
location i causes its value to appear on the output: 

Inv A Store(i,v) { Read(i) } D O U T = v. 

Finally, for all v G { 0 , 1 } and for all i such that 0 < % < n, an assertion states that reading 
a value from any location should have no effect on the value stored in location i: 

Inv A Store(i,v) { WRITE = 0 } Store(i,v). (4) 

29 



The above equations represent a total of 2n 2 + 6n + 1 assertions. The number can be 
further reduced by exploiting input weakening for the cases covered by Equation 3. That 
is, for an address i with bit representation (i*o,..., *' m _i), all addresses j such that j ^ i are 
covered by vectors of the form ( X , . . . , X, -»1**, X , . . . , X) for 0 < k < m. Thus, Equation 3 
can be replaced by the following set of assertions for v € { 0 , 1 } , 0 < i < n, and 0 < k < m: 

Inv A Store(i,v) { WRITE = 1 A ADDR* = - n * } Store(i,v). (5) 

This reduces the total number of assertions to 2ralogn + 6n + l . In practice, many memory 
circuits would yield false negative responses for some of the assertions of Equations 4 and 
5. The simulation of an assertion that causes the word line of a memory cell to be set to X 
would most likely corrupt the value stored in the cell. With more care, however, a set of 
assertions can be devised that avoid this problem while maintaining the O(nlogn) bound 
on the total number of patterns to be simulated. 

Considering that even a minimal validation of a memory circuit requires simulating fi(n) 
patterns (e.g., read and write every memory location), simulating 0(n log n) patterns seems 
a very reasonable price to pay for rigorous verification. The efficiency of this verification 
results from an extreme form of input (and state variable) weakening. The verification 
isolates each memory location, proving that it can be written and read properly, and that 
operations on other memory locations do not corrupt its stored value. During each test, 
those memory locations not under consideration are set to X . Should the circuit contain 
an undesirable pattern sensitivity, at least one of the tests will fail with an output or state 
variable equal to X that should equal 0 or 1. 

Devising a simulation sequence to verify this memory requires paying a significant amount 
of attention to the details of the circuit design, especially when trying to minimize the num
ber of assertions. In contrast to black-box simulation, the resulting simulation sequence 
is highly circuit dependent. Compare this effort, however, to that required by other ver
ifiers. For structural verification the user would be required to specify the operation of 
all aspects of the circuit including the address decoders, bit lines, sense amps, and control 
logic. These specifications would require a circuit model that can express such effects as 
bidirectional transistor behavior, ratioed circuits, and precharged logic. By comparison, 
behavioral verification seems quite straightforward. 

8 Discussion 

This paper has outlined a method for applying three-valued logic simulation to the task of 
hardware verification. Complex circuits can be rigorously verified given only information 
about the desired input-output behavior, and possibly some information about the circuit 
state variables. 

Multi-valued modeling provides the fundamental mechanism by which a circuit can be 

30 



verified knowing little about its internal structure. The requirements placed on the simu
lator to support verification are fairly mild. Most contemporary logic simulators provide 
a value X to avoid the need to find an initial Boolean state of the circuit that does not 
cause oscillations [12]. Although an explicit E R A S E command may not be provided, it 
can easily be implemented, or the same result can be obtained by simply restarting the 
program. The monotonicity requirement simply expresses the desirable property that in 
the presence of X values, the simulator should not set an output or state variable to 0 
or 1, when this would not have occurred had some of the X's been 0 or 1 instead. Any 
reasonable implementation satisfies this. 

The resulting simulation sequences, however, differ greatly from those commonly used 
by circuit designers during informal validation. In particular, the state of the circuit is 
frequently set to all X's so that any accidental sequential dependencies will be detected. 
During most sequences, only a small number of state or input variables are set to Boolean 
values, and attention is focused on the effect these values have on the output or new 
circuit state. Any accidental dependencies on other state or input variables will manifest 
themselves as X's on output or state variables that are expected to have Boolean values. 
Most logic simulators have not been designed for this style of simulation. Many use 
pessimistic methods of computing the effect of X values, causing them to produce X's 
where it can be shown that the true results should be Boolean values. Such a simulator 
provides too dull a tool for formal circuit verification, giving many false negative responses. 
With greater care, however, simulators can be designed to provide more accurate and 
efficient modeling of X's . 

This methodology demonstrates several worthwhile simulation practices that could be ap
plied even when formal verification is not sought. For example, typical simulation runs 
consist of many pattern sequences where the behavior of the circuit should not depend on 
the relative ordering of these sequences. Preceding each pattern sequence by an E R A S E 
command would help uncover any accidental pattern sensitivities. As the memory verifi
cation example showed, a simulator can uncover more potential errors if the user can focus 
on small regions of the circuit at a time, setting to X those input and state variables that 
should not affect the behavior in this region. A common practice followed by circuit de
signers today is to simulate an enormous number of patterns, possibly consuming weeks of 
CPU time, hoping that brute force will uncover any error. By following a more disciplined 
methodology, shorter simulation runs could be devised that yield more reliable results. 

A Design of Circuit C 

This appendix documents the design of a circuit that cannot be distinguished from a 
circuit that implements specification M for any simulation sequence of length less than fc, 
as required in the proof of Theorem 1. We assume in this design that (3 is some sequence 

. . . , & * ] € such that FinalOutm(qu/3) ^ FinalOutm(q2, (3) for two states qu q2 G Q. 

31 



Let s1 = s + k. We will define monotonic versions of the functions next1 and out1 to be 
used by the simulator directly. The circuit functions are then defined by restricting the 
arguments to be Boolean values. Referring to Figure 5 the shift register elements in the 
booby trap each have two sets of inputs: a single data input t and a set of control inputs 
a. For vector b€ Bp, define the function of a shift register element 8pT x Tp —• T as 

t, a = b 
0, a ^ 6 o r f = 0 

{ X, a< b and t ^ 0 
(6) 

That is, the input data is shifted to the output when the control inputs match those given 
by vector 6. The output is cleared to 0 when at least one control input differs from the 

—* 

corresponding element of 6 but does not equal X. To satisfy monotonicity, we adopt the 
convention that whenever a < b the output equals 0 only if the data input equals 0, i.e., 
it does not matter whether the input is shifted or the output is cleared, and equals X 
otherwise. 

The next state function for circuit C is defined as 

next\(z, x) = 

The output function is defined as 

nexti((zu.. i < s 
5 f i ( l , £ ) , ¿ = 5 + 1 

[ 5 & , _ . t e - i > s + 2<i<s + k 
(7) 

out'(£,£) = ( ouUdzu... z8),x), \< 
tV ' [ zs+k V outm((zu...,za),x), 1 = 

m 
m 

(8) 

where the V is extended monotonically as in Equation 1. 

To prove that circuit C behaves as claimed, we require the following property about the 
value produced by the shift register for a given input sequence. 

L e m m a 4 For any I < k and any a 6 ty, 

f 1, cc = (3 
SimState'l+k(a) = I 0, a £ /3 

( X, a</3 

Proof: We will show by induction on » that for any /, * such that 1 < / < i < k, if we 
consider any sequence a € \Pj then 

{ 1, a = [b\,...bi] 
0, a £ [&!,...&.] (9) 

X, a<[b\,...bi] 
32 



The statement of the lemma then holds by letting i = k. 

First, suppose i = 1, in which case either a = e whereby a < [bi] and SimState^+^a) = X , 
or a = [Si] for some Si 6 T p , whereby SimState'a+1(a) = 5y ( l , 5 i ) . Comparing equation 
6 with £ = 1 to equation 9 we see that the desired condition holds. 

Now assume that equation 9 holds for some value i. Let a = a1 • aj+i be a sequence where 
a1 & \Pj and / < i. Consider the ways a can relate to the sequence [&i, . . . , 6 f-+ 1] in Equation 
9. 

Equality can hold only if / = i and both a! = [6i, . . . ,6»] and a/+i = 6 t- + 1 . Combining 
equations 6, 7, and 9 for this case we get 

SxmStat^M{a) = 6lw{SimState\^a'),aM) = 6 t+i) = 1. 

Incomparability, i.e., a ^ [ 6 1 ? . . . , 6f+ x] can hold only if either a f + 1 ^ 6 t + 1 or a' ^ [ 6 , . . . , &,•]. 
In the first case we have 

SimState'8+i+1(a) = S^iSirnState'^ia1)^^) = <%,+l(*, a , + 1 ) = 0. 

In the second case we have 

SimState'8+i+1{a) = S^SimState'^a')^^ = (0, a ^ ) = 0. 

The sequences may be ordered a < [bl9..., 6 t + 1 ] only if either a' < [ 6 , . . . , 6 t] and a 2 + 1 < 
6t'+i i m which case 

5 Z M 5 W J + 1 . + 1 ( a ) = ^ + 1 ( 5 t m 5 t e t e l + f . ( a , ) , a i + 1 ) = 6 ^ (X, a , + 1 ) = X, 

or a' = [ 6 , . . . , b{] and a j + 1 < 6 t + 1 in which case 

SimState9^M{a) = S^SimState^ia1),^) = 5 ^ ( 1 , a , + 1 ) = X. 

Finally, the sequences cannot be ordered a > [bu..., 6 t + 1 ] , because / < z, and [bl9...9 bi+1] 
is maximal. 

• 

L e m m a 5 For any l<k,anyae and any i such that 1 < i < m : 

1? i = j 
SimOuti(a), else 

SimOut'iia) = ( _ . . * = m and a = 0 

ofr°ot> t'/f1 C a S T S " T , ^ ' = m ^ " < * t h i s r e S u l t f o l l o w s f r o m definition of out and from Lemma 4. For « < (3, Lemma 4 tells us that the shift register output 

33 



will equal X. However, given that circuit C implements specification .M, Lemma 3 shows 
that both SimOutm(a) < FinalOutm(qu/?) and SimOutm(a) < FinalOutm(q2,/3). Since 
these two values are unequal, we must have 

SimOutm(a) = SimOut'm(a) = X. 

• 

References 

[l] Barrow, H. G. Proving the correctness of digital hardware designs. VLSI Design V, 7 
(July 1984), 64-77. 

[2] Barrow, H. G. VERIFY: a program for proving correctness of digital hardware designs. 
Artificial Intelligence 24 (1984), 437-491. 

[3] Browne, M. C., Clarke, E. M., Dill, D. L., and Mishra, B. Automatic verification of 
sequential circuits using temporal logic. IEEE Transactions on Computers C-S5, 12 
(Dec. 1986), 1035-1044. 

[4] Bryant, R. E. A switch-level model and simulator for M O S digital systems. IEEE 
Transactions on Computers CSS, 2 (Feb. 1984), 160-177. 

[5] Bryant, R. E. Symbolic verification of MOS circuits. 1985 Chapel Hill Conference on 
VLSI, Fuchs, H., Ed. Computer Science Press, Rockville, MD, 1985, 419-438. 

[6] Brzozowski, J. A., and Yoeli, M. On a ternary model of gate networks. IEEE Trans
actions on Computers C-28, 3 (March 1979), 178-183. 

[7] Dill, D. L., and Clarke, E. M. Automatic verification of asynchronous circuits using 
temporal logic. IEE Proceedings 1SS, Pt. E, 5 (Sept. 1986), 276-282. 

[8] Floyd, R. W. "Assigning meanings to programs," Proc. Symp. in Applied Mathemat
ics, 19—Mathematical Aspects of Computer Science, Schwartz, J. T., Ed. AMS, 1967, 
19-32. 

[9] German, S. M., and Wang, Y. Formal verification of parameterized hardware designs. 
Int. Conf. on Computer Design, IEEE, 1985, 549-552. 

[10] Glasser, L. A., and Dobberpuhl, D. W. The Design and Analysis of VLSI Circuits, 
Addison-Wesley, Reading, MA, 1985. 

[11] Hoare, C. A. R. An axiomatic basis for computer programming. Comm. ACM 12 
(1969), 576-580. 

34 



[12] Jephson, J. S., McQuarrie, R. P., and Vogelsberg, R. E. A three-level design verifica
tion system. IBM Systems Journal 8, 3 (1969), 178-188. 

[13] Kleene, S. C. Representation of events in nerve nets and finite automata. Automata 
Studies, Shannon, C. E., and McCarthy, J., Ed. Princeton University Press, Princeton, 
NJ, 1956, 3-41. 

[14] Kohavi, Z. Switching and Finite Automata Theory, McGraw-Hill, New York, 1970. 

[15] Lengauer, T., and Näher, S. An analysis of ternary simulation as a tool for race 
detection. Integration, the VLSI Journal 4, 4 (Dec. 1986), 309-330. 

[16] Milne, G. J. CIRCAL: a calculus for circuit description. Integration 1, 2&3 (Oct. 1983) 
121-160. 

[17] Milne, G. J. A model for hardware description and verification. 21st Design Automa
tion Conference, ACM and IEEE, 1984. 

[18] Moore, E. F. Gedanken-experiments on sequential machines. Automata Studies, Shan
non C. E., and McCarthy, J., Ed. Princeton University Press, Princeton, NJ, 1956, 
129-153. 

[19] Perles M., Rabin M. O., and Shamir E. The theory of definite automata. IEEE Trans
actions on Electronic Computers EC-12, 6 (June, 1963), 233-243. 

[20] Roth, J. P. Computer Logic, Testing, and Verification, Computer Science Press, 
Rockville, MD, 1980. 

21] Shostak, R. E. Verification of VLSI designs. Proceedings of the Third Caltech Con
ference on VLSI, Bryant, R., Ed. Computer Science Press, Rockville, MD, 1983, 
185-206. 

22] Wagner, T. J. Hardware Verification. Ph.D. Thesis, Dept. Comp. Sei., Stanford Univ., 
1977. 

23] Weise, D. Automatic Formal Verification of Synchronous MOS VLSI Designs. Ph.D. 
Thesis, Dept. Elec. Eng. and Comp. Sei., Massachusetts Inst, of Tech., 1986. 

24] Weise, D. Verifying MOS circuits, 24th Design Automation Conference, ACM and 
IEEE, 1987. 

25] Yoeli, M., and Rinon, S. Application of ternary algebra to the study of static hazards, 
J. ACM 11, 1 (Jan. 1964), 84-97. 

35 


