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1. Introduction 

Distributed transaction facilities are increasingly recognized as providing important systems support for 

many types of reliable, distributed applications. A distributed transaction facility supports the execution of 

transactions and the implementation of permanent, abstract data objects that are shared by multiple, 

distributed applications. Examples of such data objects include general or special purpose databases, 

files, and mail queues. Examples of distributed applications that share access to such objects include 

control programs for automated teller terminals, computer aided design programs, and mail spoolers. 

A transaction is a collection of operations bracketed by two markers: BeginJTransaction and 

End__Transaction. Transactions provide failure atomicity, permanence, and serializability, all of which 

reduce the amount of attention an application programmer must pay to concurrency and failures [19, 54]. 

• Failure atomicity ensures that if a transaction's work is interrupted by a failure, any partially 
completed results will be undone. A programmer can then attempt the work again in entirety 
by reissuing the same or a similar transaction. This property simplifies the implementation of 
most replication algorithms, and makes it easier to achieve high availability. 

• Permanence guarantees that if a transaction completes successfully, the results of its 
operations will never be lost, except in the event of a catastrophe. Systems can be designed 
to reduce the risk of catastrophes to any desired probability. 

• Serializability assures that while transactions are allowed to execute concurrently, the 
results will be the same as if the transactions executed serially; other concurrently executing 
transactions cannot observe inconsistencies. Programmers are therefore free to cause 
temporary inconsistencies during the execution of a transaction knowing that their partial 
modifications will never be visible. 

When transactions contain operations on objects scattered across a distributed system, they are called 

distributed transactions. The distribution of objects on multiple processing nodes permits increased 

performance and system availability. 

Application programmers also benefit from other functions of a distributed transaction facility. Such 

facilities simplify the development, use, and management of objects (or protected subsystems) that 

persist across program invocations. Having a single transaction facility underlying a number of 

abstractions permits their combined use. For example, a computer aided design system can be built 

using a relational database management system and a transactional file system. 

Although the functions provided by a distributed transaction facility may vary somewhat, they must 
include the following: 

• Primitives for beginning, committing, and aborting transactions; 

• Communication primitives and control structures that simplify the invocation of operations on 
objects from within transactions; 
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• Synchronization, recovery, and storage manipulation primitives that permit the 
implementation of permanent abstract objects; 

• Server management primitives that support grouping collections of abstract objects into 
coherent sets of related functions; 

• Node management primitives that permit the configuration of processing nodes and their 
recovery after media failures. 

Interest in transaction processing has recently spread beyond the developers of traditional on-line 

commercial transaction processing and database systems such as CICS, IMS, TMF, R*, and 

Ingres/Star [ 2 7 , 2 8 , 2 3 , 3 4 , 3 8 ] . These systems have relatively restrictive transaction models and are 

intended for mainframes or specialized transaction processing installations. Many of these systems are 

part of database systems and require the programmer to use a particular data model to get the benefits of 

transactions. 

Researchers in the areas of distributed operating systems (e.g., Locus, Quicksilver, TABS), file 

systems (e.g., Alpine, 801) and object-oriented languages (e.g., Argus, Avalon, Garden), have been 

attempting to make transactions more generally useful [66, 22, 56, 7, 8, 35 ,26 ,50 ] . 

A major challenge driving these projects has been to embed transaction concepts within easy to use, 

general purpose programming environments, be they programming languages or operating systems. At 

Carnegie Mellon, we began to investigate transaction processing in the early 1980's [54,49] . We 

developed TABS, a distributed transaction facility, as a layer on top of the Accent Kernel [57,56] . The 

knowledge we gained from TABS, combined with advances made by our colleagues at other institutions, 

convinced us that we should undertake a methodical effort to add transaction facilities to a Unix™-like 

programming environment. 

Camelot (Carnegie Mellon Low Overhead Transaction facility), which runs on top of the Unix BSD 4.3 

compatible Mach operating system, is the result of this effort [ 44 ,52 ,58 ,55 ] . We intend Camelot to be 

machine independent, easy to use in a variety of problem domains, and efficient, even in comparison with 

highly tuned commercial on-line transaction processing systems. Through this substantial implementation 

effort, we are trying to demonstrate that support for distributed transactions can and should be embedded 

within general purpose operating systems environments. 

Furthermore, we believe that Camelot can serve as a basis for research in a variety of areas, including 

highly available systems. In our view, past research in distributed replication algorithms has lacked an 

efficient and easy to use foundation on which to experiment. For example, we intend to implement and 

use some replication algorithms that we have developed [6, 5, 25]. Camelot should also simplify the 

development of special purpose databases that support programmers and designers. 
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Broadly, Camelot supports the execution of distributed transactions, and the definition, management, 

and use of data servers, which encapsulate shared, recoverable objects. Camelot is based on the client-

server model and uses remote procedure calls (RPCs) both locally and remotely to provide 

communication among applications and servers. 

Camelot Release 0.4(22) is operating experimentally within CMU on about one dozen machines 

including IBM RT PCs and DEC Vaxes, including a dual processor Vax 8800. (Most features are 

implemented.) We anticipate that Camelot will also run on the SUN 3, Encore Multimax, and Sequent 

21000 computers in the near future, since these three machines support Mach. We plan to make a fully 

functional Release 1.0 available to outsiders in the early Fall of 1987. 

The following section describes the hardware architecture that Camelot assumes and the software 

architecture that Camelot implements. Section 3 describes Camelot's programming library and its 

interfaces for managing servers and processing nodes. Section 4 describes the most important 

implementation techniques that Camelot uses. Section 5 briefly summarizes Camelot's internal structure. 

Section 6 describes Camelot's current performance. Section 7 concludes with a brief discussion of 

Camelot and its architecture. 

2. Hardware and Software Architecture 

Camelot assumes an underlying hardware model that consists of both processing nodes and a 

communication network, as illustrated by Figure 2 -1 . Processing nodes may have different hardware 

architectures and may be either uniprocessors or shared memory multiprocessors. Processor failures are 

assumed to be detectable, not byzantine. 

Processing nodes have three types of storage: volatile, non-volatile, and stable. Portions of objects 

reside in volatile storage when being accessed; objects reside in non-volatile storage when they have not 

been recently accessed; and stable storage is composed of memory that is assumed to retain 

information, despite failures. The contents of volatile storage are lost after a system crash, and the 

contents of non-volatile storage are lost with lower frequency, but always in a detectable way. Stable 

storage can be implemented using two non-volatile storage units on a node or using a network 

service [12,10] . 

Camelot assumes a communication network that provides datagram-oriented, inter-networked ISO 

Level 3 functions [68] such as the Arpanet IP protocol [43]. In some cases, applications using Camelot 

may need high availability, so communication networks should have sufficient redundancy to render 

network partitions unlikely. However, Camelot assumes network partitions may occur, and guarantees 

that all behavior will be serializable and failure atomic. 
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Figure 2 - 1 : Assumed Hardware 

This figure shows the components of the hardware on which Camelot runs. Stable storage and non-volatile storage, though 
pictured here as disks, may be implemented with other media, such as battery backed-up memory. Stable storage may not be local 
to a node, but rather implemented as a distributed service. 

Camelot supports a software architecture based on the client-server model [64]. Applications execute 

operations on shared local or remote data objects that are encapsulated within server processes, called 

data servers. Camelot uses RPCs to simplify operation invocations [4, 30, 51]. A transaction either 

commits, in which case all its updates appear to be atomically made, or it aborts, in which case no 

changes appear at all. Transactions may be nested within one another [46,41] . Nested transactions 

permit a transaction to spawn children that may run in parallel, but are synchronized so that the entire 

transaction still exhibits serializability. Nested transactions also are permitted to abort without causing the 

loss of the entire parent transaction's work. 

Servers encapsulate one or more data objects and export an RPC interface to clients. To implement 

operations, servers read or modify data they directly control and invoke operations on other servers. 

Servers may also begin and commit transactions. After an operation is performed, servers return a result 

to the client. (Servers storing long term data are called Resource Managers in R* and Guardians in 
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Argus [34, 35].) 
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Figure 2-2: Logical Organization of a Camelot Processing Node 

This figure illustrates the software that exists on a uniprocessor or multiprocessor Camelot node. Mach is at the lowest level. The 
Arpanet IP communication layer is logically, although not physically, layered on top of Mach. Inter-node communication, provided 
jointly by both Mach and Camelot facilities, is layered next. Camelot transactional processing support includes transaction 
coordination and recovery. The Avalon language support, though not described in this paper, will provide additional linguistic 
support for reliable systems and generates calls on Camelot and Mach. Users define servers encapsulating shared, recoverable 
objects and applications that use those objects. Applications do not internally contain long-lived data but rather use data contained 
in servers. 

The logical organization of Camelot is shown in Figure 2-2. At the base is Mach: the operating system 

kernel that implements processes, virtual memory, local synchronization, and local communication. 

Camelot uses Mach, but conceptually, it could be supported by other kernels, such as the V Kernel [9]. 

Above the kernel are the internet datagram and inter-node message communication facilities. Camelot 

directly uses internet datagrams to coordinate transaction commitment and support distributed logging. 

The message communication facility is used for implementing RPCs. The Camelot distributed transaction 

facility uses the kernel and communication facilities to implement transactions and to support data servers 

and applications. 
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3. Camelot Release 1.0 Interfaces 
There are two types of interfaces to Camelot: programming interfaces for writing applications and data 

servers, and operational interfaces for configuring processing nodes, installing data servers, and 

recovering from miscellaneous failures. The programming interfaces comes in two varieties: The 

Camelot library contains easy to use routines and macros, akin to those found in Section 3 of the UNIX 

Programmer's Reference Manual [62]. The library hides most of the complex details of building new 

Camelot applications and data servers. Underlying the library is the Camelot primitive interface, which 

uses shared-memory or message-based communication with central Mach and Camelot components. 

These components jointly manage processes, recoverable storage, transactions, and recovery. We 

anticipate that most programmers will use the Camelot library, and the following section describes it. 

Sections 3.2 describes Camelot's operational interfaces, and Section 3.3 contains fragmentary examples 

to demonstrate the use of Camelot. 

3.1. The Camelot Library 
The Camelot library permits programmers to rapidly implement data servers and applications. For 

servers, it provides a common message handling framework and standard processing functions for 

system messages (e.g., for performing recovery and participating in commit protocols). Thus, the task of 

writing a server is essentially reduced to writing procedures for the operations supported by the server. 

The library also provides several categories of support primitives to help a programmer write these 

procedures. Transaction management primitives provide the ability to initiate and abort nested and top 

level transactions. Data declaration primitives create static recoverable objects. Data access routines 

permit reading and writing recoverable objects, and automatically perform the logging of modifications. 

Locking routines maintain the serializability of transactions. Lock inheritance among families of nested 

transactions is handled automatically. The library also provides primitives to make calling remote 

procedures almost as easy as local ones. 

The Camelot library balances ease of use, performance, and flexibility concerns while remaining 

compatible with normal C programming practices. In total, the Camelot library contains about thirty 

routines and macros. 

Applications that execute transactions and perform operations on data servers use most of the Camelot 

library except for the primitives dealing with the declaration, modification, and synchronization of 

recoverable objects. 

Sections 3.1.1 to 3.1.5 detail the macros and routines in the Release 1.0 Camelot Library. 
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3 . 1 . 1 . Init ial izing a n d Terminat ing Appl icat ions a n d Servers 

The Camelot library provides two routines to initialize the operation of a data server. The first, 

Camiib_initiaiizeServer, establishes communication with various lower-level Camelot system 

components, cooperates with them to recover the state of a server after a crash, initializes threads of 

control to handle system messages (e.g., during two-phase commit), and potentially registers the name of 

the server in a network-wide name service. The three arguments to camiibjinitiaiizeserver are a 

procedure that will be executed as a transaction the first time the server is ever started (to initialize its 

recoverable storage); the name of the server; and a boolean that specifies whether that name should be 

registered with the name service. A server does not register its name if it wants to limit the clients that 

can access it. 

The second data server initialization routine is called camiib_Serve. The first of its five arguments 

specifies the name of a procedure that dispatches incoming RPCs to particular internal procedures. (This 

procedure is automatically generated by the Mach Interface Generator (MIG) RPC compiler [29].) The 

next three arguments, which are typically null, specify procedures to be called when a transaction has 

committed (CommitProc), after a transaction has aborted (AbortProc), or before a transaction votes 

whether to prepare to commit (PrepareProc). The library passes each of these procedures a 

transaction identifier and expects PrepareProc to return a boolean value. This value permits 

programmer-supplied logic to contribute to the prepare decision. The fifth and final argument specifies 

the maximum number of concurrently executing operations (multiprogramming level) that the Camelot 

library will allow. 

The camiibjrerminateserver (message) routine causes a server to exit and print a message to 

the Camelot error log explaining the reason for the exit. 

Applications initialize themselves with a procedure called camiib_initiaiizeAppi. This procedure 

takes a single argument, which is the name of the application, and returns a boolean value indicating 

whether or not Camelot is running. If Camelot is running, the application can use all the Camelot facilities 

except those in Section 3.1.4. If Camelot is not running, the application will be limited to invoking 

operations on servers. Each operation is then executed within the server as a new top-level transaction 

and committed locally by the server before the operation returns. 

3.1.2. Dec lar ing a n d Us ing Recoverab le Objects 

Recoverable objects may be declared within a server by enclosing any legal C object declaration 

between the DECLARE_RECOVERABLE_OBJECTS and END_RECOVERABLE_DECLARATIONS macros. 

The REC macro is used to access recoverable objects. The MODIFY macro is used to update objects and 

is the analogue of the C assignment operator for recoverable objects. For example, the following assigns 
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10 to the recoverable integer count. 

MODIFY(REC(count), 10) 

The MODIFY macro has the side effect of spooling log data to stable storage, so recoverable objects 

can be recovered automatically after transaction aborts, node failures, or media failures. (See Section 

4.3.) However, the programmer has the responsibility of ensuring that there be at most one concurrent 

writer to any logged object, because Camelot Release 1.0 uses value logging for recovery. 

Camelot Release 1.0 provides four locking calls as a simple basis for doing 2-phase locking [13, 3]. 

Camiib_Lock obtains a shared or exclusive lock on a lock specified by a lock name, which is a 32-bit 

quantity. camiib_Lock does not return control to the caller until the lock is obtained. 

Camiib__TryLock obtains the lock if ft is available, but always immediately returns a boolean indicating 

whether or not the specified lock was obtained. Camiib_Lockstatus returns the status of a lock 

without waiting, but does not attempt to acquire the lock. camiib_uniock allows a transaction to 

prematurely return a lock. This procedure must be used with extreme caution, as misuse can cause 

behavior that is non-serializable and non-failure atomic. The LOCKJJAME macro coerces any 32-bit 

quantity into a lock name. 

3.1.3. Calling Servers 
The SERVER_CALL macro invokes operations on remote or local servers. The macro's first argument 

is the name of the server to call. The second argument returns a code indicating whether the remote 

procedure call succeeded. The third argument specifies the remote procedure and its parameters. The 

parameters to every remote procedure are preceded by the keywords NOARGS or ARGS , which are 

syntactic sugar that hides a communication port and a transaction identifier from the programmer. 

(NOARGS is used in the unlikely event the remote procedure has no arguments.) For example, 

SERVER_CALL("testserver", retCode, record_write(ARGS index, value)) 
invokes the procedure record_write at the server "testserver", with arguments index and value and 

return code retcode. 

The server name in the server_caii macro has small amount of syntax associated with it: 

Server_Name := <identifier> | <identifier>@<domain_name> I 
<identifier>@* 

In all instances, the identifier must refer to a string that a server has previously passed to 

camiib_initiaiizeServer. In the first alternative, the server is assumed to be on the same node as 

the caller. In the second, the server is assumed to located on the node with the specified Arpanet domain 

name. In the third alternative, the asterisk specifies that a broadcast should be done on the local 

subnetwork to locate the server. 
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A default timeout of 60 seconds is associated with RPCs. If the SERVER-CALL is executed within a 

transaction and a timeout occurs, the innermost transaction aborts and execution continues after the end 

of the aborted transaction. If a timeout occurs when the SERVER_CALL has been called by an application 

outside the scope of a transaction, it returns a timeout return code to the user. The library also provides a 

SERVER_CALL_2 macro, which is an alternate form that takes an additional, user-specified timeout value. 

3.1.4. Us ing Transac t ions 

Camelot provides a number of primitives for beginning, committing, and aborting transactions. The 

BEGINJTRANSACTION and ENDJTRANS ACT ION (status) macros enclose arbitrary C code (including 

local and remote procedure calls), which is then executed as a single transaction. The status variable 

indicates if a transaction committed or aborted. (Mach, Camelot, the RPC compiler, and the server 

supply different classes of error codes in the abort case.) Nested transactions result if 

BEGIN_TRANS ACT ION ... END_TRANS ACT ION blocks are dynamically nested. To initiate a nested top-

level transaction, Camelot provides BEGIN JTOP_LEVEL_TRANS ACT ION 
ENDJTOP_LEVELJTRANSACTION macros. 

Camelot's lower level components provide flexibility in specifying the type of recovery and commit 

protocol to be used. In particular, Camelot allows programmers to specify whether a transaction will 

modify few or many pages of data (See Section 4.3.), and whether the commit protocol should be fast or 

non-blocking. (See Section 4.5.) The BEGIN_TRANSACTION_2 (transType) 

END_TRANSACTION_2 (commitProtocol, status) macros permit these more specialized options to 

be used. 

Applications or servers can voluntarily abort transactions by invoking 

Camlib__AbortTransaction (Status) or Camlib_AbortTopLevelTransaction (Status). After 

a Camiib_AbortTransaction call occurs, the transaction initiator continues execution following the 

innermost dynamically enclosing ENDJTRANSACTION or END_TOP_LEVEL_TRANSACTION . After a 

Camiib_AbortTopLeveiTransaction call occurs, the initiator of the innermost top level transaction 

will continue execution after the end of the transaction. Note that a sudden change in the flow of control 

can happen as the result of a failure of another (possibly remote) participant aborting the transaction or a 

network or node failure; therefore, programmers can not assume that code between 

BEGIN_JTRANS ACT ION and ENDJTRANSACTION will always execute in its entirety. However, the failure 

atomicity properties of Camelot will automatically undo any partially completed updates to recoverable 

storage and release the appropriate locks. 

THISJTID returns an transaction identifier specifying the currently executing transaction. The identifier 

may be used, for example, to implement lock managers having more functions than the built-in Camelot 
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lock manager. 

3.1.5. Para l le l ism 

Camelot permits parallel top-level transactions to be invoked with the 

camiib_concurrentTopLeveiTrans routine. This call takes a single procedural argument, and 

executes that procedure within a concurrent top-level transaction. A variant, 

Camiib_ConcurrentTopLeveiTrans2, takes two additional arguments that specify the recovery 

technique and commit protocols. 

There are two constructs for beginning nested transactions. The first is a COBEGIN ... COEND form: 

COBEGIN 
TRANS(proclf argx, status1) ; 
TRANS(proc2, arg2, status2) ; 

TRANS(procn, arg n / statusn) ; 
COEND 

Each procedure, proci, is invoked as a nested transaction and is passed an integer argument arg r 

The parent is joined when all the children have committed or aborted, and status; then contains the status 

of the I t h transaction. Note that this form creates a collection of top-level transactions if it is called outside 

the scope of a transaction. 

The COFOR form of this provides a looping structure to establish concurrently executing nested 

transactions: 

COFOR(loopVarf initVal, finalVal) 
TRANS(proc, arg, status); 

COEND 

Some servers and applications may need multiple threads of control within a single transaction, though 

such programs must guard against unwanted concurrency anomalies. The following two forms are 

analogous to the COBEGIN and COFOR forms, but do not begin nested transactions: 

THREAD_COBEGIN 
THREAD(proc1, argx) ; 
THREAD(proc2, arg2) ; 

THREAD(procn, argn) ; 
THREAD^COEND 

THREAD_COFOR(loopVar, initVal, finalVal) 
TRANS(proc, arg); 

COEND 
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3.1.6. Observations 

The Camelot library does not hide transaction processing notions from programmers, but it does make 

them easy to use. Recoverable objects blend well into the standard C object space, but server 

programmers must use the special primitives REC, MODIFY , and Camiib_Lock to access them. While 

we could have built locking into the REC or MODIFY calls, we did not believe we should restrict the locking 

options available to the programmer. 

Programmers are not required to use the system-supplied unique transaction identifier, which is 

common to all threads running within a single transaction. Should they wish to use it, the THIS_TID 
macro makes it available. The same applies to the procedural arguments to the camiib_serve call. 

For example, the CommitProc is useful to implement hybrid atomicity [24], but its use is not required with 

locking. 

This flexibility is an important characteristic of the Camelot library. Simple servers are easy to write 

and they should have high performance. However, the library permits more complex implementation 

techniques to be used for more complex servers. In Weihl's terminology, the Camelot library supports 

both explicit and implicit approaches to server development [65]. The explicit techniques are the ones 

that provide the flexibility. 

3.2. Operational Interfaces 
Before Camelot can be used, it is necessary to configure a node with appropriate raw disks for 

Camelot's recoverable storage and a log, if local logging is being used. The newf s program on Mach, 

which also comes with BSD 4.3 Unix [62], is used for this purpose. 

When starting Camelot for the first time, Camelot will prompt for this information: the type and location 

of the log (local simplex, local duplex, or distributed); the size of the log if it is local; the location of node's 

archive dump server; and the location and size of the recoverable storage. Recoverable storage is 

permitted to span multiple raw disk partitions. When restarting Camelot, the previous configuration values 

are used, unless the -config flag is used to request changes to Camelot's configuration. Careful 

procedures must be followed for changing sensitive parameters, such as log location. To change a log, 

Camelot must have been previously shut down cleanly, so that it can be recovered from the new (empty) 

log. 

Once Camelot is started, Camelot uses a distinguished Camelot data server, called the node server, to 

determine which data servers should be restarted, and what recoverable storage they are using. A 

special application, called the node configuration application (NICA), permits authorized users create, 

delete, start, restart, and crash one or more servers. The NCA also permits these users to specify disk 
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quotas for servers, the maximum recovery time that Camelot should take to recover from a node failure, 

and the preferable times of the day for taking archival dumps. Finally, the NCA provides commands for 

authorizing and deauthorizing users, and for showing a node's current configuration. All commands in the 

NCA are implemented in the node server as transactions. 

3.3. Examples 

The first step in developing a data server is to specify its RPC interfaces. As an example, MIG accepts 

the following interface definition for a procedure that takes an index and a 32-byte record as input 

parameters: 

•define SIZE_OF_SMALL 32 
type small_record_t = array[SIZE_OF_SMALL] of 

<MSG_TYPE_UNSTRUCTURED , 8) ; 

camelotroutine record_write( 
port : port_t; 
tid : tid_t; 
index : int ; 
value : small_record_t); 

The port and tid arguments are required by Mach. They must be omitted in the SERVER_CALL macro, 

and are ignored in the body of the data server's record_write procedure, below. 

The following is an example of a server's declaration of a recoverable array of 32 byte records: 

typedef 
struct { 

char data[32] ; 
} small_record__t; 

DECLARE_RECOVERABLE_OBJECTS 

small_record_t small_record_array [ARRAY__SIZE] ; 

END_RECOVERABLE_DECLARATIONS 

A typical main program for a simple server contains calls on camiib_mitiaiizeServer and 

Camiib_serve. The former procedure instructs the Camelot library to call the procedure array_init 
the first time the server is ever started within a transaction. The FALSE and "testserver" parameters 

cause the server to be registered with the name server under the name "testserver". The latter procedure 

specifies that the MIG generated routine, smaii_record_array_server be used to process requests 

to execute remote procedures. The maximum multiprogramming level for client requests is specified at 

10. 
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main () 
{ 

extern boolean_t small_record__array__server () ; 

Camlib_InitializeServer(array_init, FALSE, "testserver"); 
Camlib_Serve (small_record_array_server, NULL, NULL, NULL, 10) ; 

} 

The record__write procedure executes in the server and is automatically called in response to the 

appropriate RPC. It takes an index and 32-character record and writes the record in the specified position 

in a recoverable array. 

int record_write (port,- tid, index, value) 
port_t port; tid_t tid; /* System Parameters (ignored) */ int index; 
small__record_t value; 
{ 

/* If index is out of bounds, return an error code */ 
if (index < 0 I I index >« ARRAY_SIZE) 

return (INDEXJDUT_0F_B0UNDS) ; 

Camlib_Lock (LOCK_NAME (small__record_array [index]) , 
LOCK_MODE_WRITE); 

MODIFY(REC(small_record_array[index])f value); 
return(0); 

To install the server testserver, the NCA is used. After logging in, a user issues the addserver 
command to add the server to the database and specifies that the server be limited to using twenty 

8192-byte chunks of disk space for recoverable storage. Then, the user uses the startserver to start 

it executing. (The text in bold is computer output.) 

% nca 
login: azs 
Password: camelot 

connected users: azs 

nca> addserver 
server id (0 for next available:) o 
owner: admin 
auto restart [y,n]: n 
Command line: /usr/azs/bin/testserver 
segment id (0 for next available:) o 
quota (in chunks, each chunk is 8192 bytes:) 20 

server: 5 owner: admin auto-restart: no 
segment: 5 quota: 163840 bytes 
cmdline: /usr/azs/bin/testserver 

nca> startserver 
server id: 5 

Server 5 being started. 
nca> q 
% 

To use the server, one may write a procedure do_transaction, which begins a transaction and 
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executes an RPC specifying the record_write procedure. The syntax Htestserver@wales" indicates 

the remote procedure invocation is done to "testserver at the Arpanet site "wales". 

boolean do_transaction(index, value) 
int index; 
small_record_t value; 
{ 

int rc; 
status_t status; 
BEGINJTRANSACTION 

SERVER_CALL("testserver@wales", rc, 
record__write (ARGS index, value)) ; 

END_TRANSACTION(status); 
if (Status != COMMITTED) 
{ 

printf("Transaction failed.\n"); 
return(FALSE); 

1 
} 
return(TRUE); 

} 

4. Essential Camelot Implementation Techniques 
Camelot uses a number of techniques to support high performance distributed transaction processing. 

These are used to implement data server and application tasks, communication, inter-transaction 

synchronization, recoverable storage, stable storage, and transactions. 

4.1. Task and Communication Structures 
Under Unix, a process is both a basic unit of resource allocation and protection and a single thread of 

control. When multiple threads of control are needed within one process, they must be run as coroutines. 

The Mach kernel supports Unix-like processes, which are called tasks. However, each task provides an 

execution environment for any number of threads. The threads within a task are scheduled 

independently by the kernel, and share all of that task's resources. In addition, each task can share 

certain areas of memory with other tasks. Camelot makes use of both tasks, threads, and shared 

memory between tasks: 

• Camelot applications, data servers, and internal system components are multi-threaded 
using the facilities of Mach and the C thread management library [11]. Multi-threading 
permits real parallelism and the effective use of multiprocessors, at the programming 
expense of requiring careful synchronization. (The Camelot library locking calls automatically 
do this synchronization for data servers.) Importantly, multi-threading permits the overlap of 
processing and disk I/O. The latter is a traditional problem in many Unix systems due to their 
synchronous I/O interfaces. 

• Each data server shares a separate region of memory with Camelot. The region is treated 
as a very efficient message queue, where data servers can place requests for asynchronous 
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processing by Camelot. Shared memory substantially reduces local message passing 
overheads. For example, all log records written by data servers are written to this shared 
memory area, and processed by Camelot only when necessary. 

Mach supports messages that are arbitrarily long vectors of typed information, addressed to ports [45]. 

Many tasks may have send rights to a port, but only one has receive rights. Mach messages are the 

basis for RPCs issued to either local or remotely located tasks. As mentioned above, MIG is used to 

generate the client and server stubs. 

Finally, Mach provides a UDP datagram interface. This interface is used for intemode communication 

for transaction commitment, as described below. 

4.2. Inter-Transaction Synchronization 

Camelot supports two compatible types of synchronization: locking and hybrid atomicity [13, 24]. The 

Camelot library directly supports locking. Hybrid atomicity has features of both timestamps and locking, 

and requires direct use of the primitive Camelot interface. 

Since both types of synchronization are implemented above the level of Camelot system components, 

implementations may be tailored to provide the highest concurrency. For example, with type-specific 

locking, server implementors can obtain increased concurrency by defining type-specific lock modes and 

lock protocols [31 , 49]. 

Both locking and hybrid atomicity may delay transaction execution, even if that delay leads to a 

deadlock. Some systems implement local and distributed deadlock detectors that identify and break 

cycles of waiting transactions [42,34] . Although future releases of Camelot will include a deadlock 

detector, Camelot Release 1.0, like many other systems, relies on time-outs. In Camelot, time-outs occur 

when RPC responses are delayed. 

4.3. Recoverable Storage 

Recovery in Camelot is based upon write-ahead logging [37,18, 33, 20, 2 1 , 48]. This technique uses 

an append-only sequence of records in stable storage. These records may contain a redo component 

that permits the effects of committed transactions to be redone, and possibly an undo component that 

permits the effects of aborted transactions to be undone. Updates to data objects are made by modifying 

a representation of the object residing in volatile storage and by spooling one or more records to the log. 

The Camelot library's Modif y_ob ject call automatically formats log records, and spools them to stable 

storage by writing them in a shared memory queue. 

Logging is called ' ,write-aheadM because log records must be safely written (forced) to stable storage 
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before transactions commit, and before the volatile representation of an object is copied to non-volatile 

storage. Because of this strategy, there are log records in stable storage for all the changes that have 

been made to non-volatile storage, and for all committed transactions. Thus, the log can be used to 

recover from aborted transactions, system crashes, and non-volatile storage failures. However, because 

log records are rarely forced, the cost of logging during forward processing is low. For example, many 

transactions have to do only one log force on each site on which they execute. 

Other advantages of write-ahead logging over other schemes have been discussed elsewhere, and 

include the potential for increased concurrency, reduced I/O activity at commit t ime, and contiguous 

allocation of objects on secondary storage [20, 61,47] . All objects in Camelot Release 1.0 share a 

common log and use one of two write-ahead logging techniques: old value/new value logging or new 

value logging. 

The simpler technique is called old value/new value logging, in which the undo and redo portions of a 

log record contain the old and new values of an object's representation. During recovery after node or 

server crashes, objects are reset to their most recently committed values during a one pass scan that 

begins at the last log record written and proceeds backward. If value logging is used, only one 

transaction at a time may modify any individually logged component of an object, assuming failure 

atomicity and permanence is desired. 

The other technique is called new value logging, in which log records contain only a redo component. 

New value logging requires less log space than old value/new value logging, but it requires that pages not 

be written back to their home location on disk until the modifying transaction completes. This can result in 

double paging should the kernel need to temporarily write these pages to paging store. Camelot 

assumes that the transaction invoker knows if the transaction will modify few pages and, in such cases, 

will specify that new value logging should be used. 

The Camelot recovery algorithms are similar to other previously published write-ahead log-based 

algorithms [18,33] , particularly those of Schwarz [48], However, they have been extended to support 

aborts of nested transactions, new value recovery, and the logging of arbitrary regions of memory. 

Periodically, Camelot initiates node-wide checkpoints. Checkpoints reduce the amount of log data that 

must be available for crash recovery and shorten the time to recover after a crash [21]. At checkpoint 

t ime, a list of the pages currently in volatile storage and the status of currently active transactions are 

written to the log. Camelot also periodically forces certain (hot) pages in volatile storage to non-volatile 

storage and may abort long running transactions to lessen the amount of log that must be rapidly 

accessible. To reduce the cost of recovering from disk failures, Camelot infrequently dumps the contents 

of non-volatile storage into an off-line archive. Camelot takes fuzzy dumps of recoverable storage, so it 
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does not have to stop all processing while this is going on. 

One unusual aspect of Camelot and its predecessor system, TABS, is the integration of virtual memory 

management with recoverable storage. References to this may be found in [61 , 60 ,14 ,16 , 59]. Camelot 

permits a data server to map large (up to 2 4 8 bytes) regions of recoverable storage into a data server 1. 

Camelot then automatically ensures that the write-ahead log protocol is followed. Furthermore, Camelot 

automatically recovers the state of recoverable storage following transaction aborts, node failures, or 

media failures. Using the Camelot library, the storage for recoverable objects is allocated automatically in 

response to the Declare^Recoverabie_pb jects declaration. 

For efficiency, Camelot allocates recoverable storage in large contiguous chunks on Mach raw disk 

partitions, and demand pages to those partitions. Should a server have knowledge of page access 

patterns, there are primitives in the Camelot primitive interface to permit data servers to prefetch or 

disgard pages. These primitives are useful for sequential scans in a relational database, for example. 

To implement recoverable storage in virtual memory, Camelot uses the Mach external pager 

interface [67]. Using this interface, Mach permits a task external to the kernel to manage the backing 

storage of certain regions of virtual memory. In the case of Camelot, this task backs recoverable storage 

and writes log records to stable storage. 

4.4. Stable Storage 

Camelot writes log records to simplexed or duplexed disks locally, or to a remotely located log service. 

The distributed log service replicates log records on a collection of dedicated network log servers [12]. 

Each remote log server implements replicas of multiple logs and therefore supports multiple Camelot 

nodes. Because the log servers use uninterruptiable power and every log is replicated on multiple 

servers, records can be forced to stable storage by writing them to two or more log servers. It is never 

necessary to wait for the servers to write the records to disks. 

The distributed logging service uses special purpose UDP protocols to read and write log records. To 

reduce communication delays, log servers are expected to run on the same local area network as their 

clients. A form of weighted voting [17] is used as the replication technique. However, all voting can be 

done at node start-up time because a log is logically used by only a single client at a time. Hence, a log 

read can be directed to a single log server. 

inteSL°amel0t K b r a r y C U r r e n , ' y ^ * ~ 10 3 few « ^ bu< *• *V ' - i t can be achieved using «he primitive Camelo, 
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While local logging is simpler to implement, it requires relatively large amounts of disk s p a c e - a 

potentially high cost in certain environments. In addition to reducing the need for local disk space, the 

use of a shared network logging facilities may also have survivability, operational, and performance 

advantages. Survivability is likely to be better for a replicated logging facility because it can tolerate the 

destruction of one or more entire processing nodes. Operational advantages accrue because it is easier 

to manage high volumes of log data at a small number of logging nodes, rather than at all transaction 

processing nodes. Performance could be better in some instances because the shared facilities can have 

faster hardware than could be afforded for each processing node. 

4.5. Transaction Management 
Camelot system facilities support the library commands that initiate, commit, and abort top-level and 

nested transactions. Two options exist for commit: blocking commit and non-blocking commit. Blocking 

commit may result in data that remains locked until the coordinator is restarted or a network is repaired. 

Non-blocking commit, though more expensive in the normal case, reduces the likelihood that a node's 

data will remain locked until another node or network partition is repaired. In addition to these standard 

transaction management functions, Camelot provides an inquiry facility for determining a transaction's 

status. This is used to support locking in nested transactions. 

Supporting distributed commitment requires both communication and stable storage transitions. For 

performance, the transaction manager communicates exclusively with UDP datagrams. In the case of 

blocking commit, Camelot forces only one log record per transaction per node used in the transaction, 

and sends only three datagrams per transaction per node. The non-blocking commit algorithms are 

roughly twice as expensive. All the usual read-only optimizations are implemented [40], and nested 

transaction commit does not require any network communication. Additionally, Camelot supports 

group-commit, which slightly delays the commitment of a transaction so that groups of log records can be 

forced at once. This reduces contention on high latency logging devices, like disks. 

4.6. Other Techniques 
Camelot Release 1.0 provides a logical clock [32] and Release 2.0 will provide a synchronized real­

time clock. These clocks are useful not only for supporting hybrid atomicity, but other distributed 

algorithms, for example replication using optimistic timestamps [5]. Camelot also extends the Mach 

naming service to support multiple servers with the same name. This is useful to support replicated 

objects. 
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5. Camelot Internal Structure 

Some functions, such as locking, are performed primarily within the Camelot library. However, many 

functions require support from central Mach or Camelot components. Figure 5-1 shows the seven tasks 

in Release 1.0 of Camelot. The Camelot tasks are the master control task, disk manager, communication 

manager, recovery manager, transaction manager, node server, and NCA. 

• The master control task restarts Camelot after a node failure and interprets all 
(re)configuration commands. It also funnels error and debugging output from Camelot 
processes, data servers, and applications to a single error log. 

• The disk manager is a Mach external pager that allocates and deallocates recoverable 
storage writes log records, and enforces the write-ahead log invariant. Additionally, the disk 
manager writes pages to/from the disk when Mach needs to service page faults on 
recoverable storage or to clean primary memory. It performs checkpoints to limit the amount 
of work during recovery and works closely with the recovery manager when failures are being 
processed. It periodically initiates the writing of hot pages, also to ensure faster recovery. 

• The communication manager forwards inter-node Mach messages and provides Camelot's 
logical clock services. In addition, it keeps a list of all the nodes that are involved in a 
particular transaction. This information is provided to the transaction manager for use during 
commit or abort processing. It maintains information to aid in detecting orphans. Finally, the 
communication manager provides a name service. (The transaction manager and distributed 
logging service use UDP datagrams for efficiency; they bypass the communication manager.) 

• The recovery manager is responsible for transaction abort, server recovery, node recovery, 
and media-failure recovery. Server and node recovery require one and two backward 
passes over the log, respectively. 

• The transaction manager coordinates the initiation, commit, and abort of local and 
distributed transactions. 

• The node server is the repository of configuration data necessary for restarting the node. 
(See Section 3.2.) It stores its data in recoverable storage and is recovered before other 
servers. A primitive interface is defined for it, so that it may be accessed by user written 
application programs. 

• The NCA permits Camelot users to update configuration data in the node server and to crash 
and restart servers. 

The interfaces of the low-level Camelot components together constitute the primitive interface to 

Camelot, briefly referred to in Section 3. For example, the disk manager implements a procedure called 

DS_LogOidvaiueNewVaiue, which accepts a transaction identifier, an object location, and two log 

values, and spools a corresponding record to the log. As another example, Camelot assumes that all 

data servers implement a procedure, SR_RestoreOb ject, that sets an object to a specified value. The 

recovery component calls this procedure to restore the value of an object to a committed or aborted state. 

(The Camelot library automatically performs the SR_RestoreOb ject functions for users of the library.) 
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Figure 5 - 1 : Tasks in Camelot Release 1 

This figure shows the Mach kernel and the tasks that are needed to execute distributed transactions. The node server is both a part 
of Camelot and a Camelot data, server because it is the repository of essential configuration data. Other data servers and 
applications use the Camelot and Mach facilities. The NCA permits users to exercise control over a node's configuration. 

The remaining component of Camelot not yet described is the distributed logging service, which 

comprises multiple dedicated log servers running with uninterruptable power supplies [12]. The Camelot 

disk manager directly communicates with the log servers when it needs to read or write log records, or 

when it needs to truncate the log. This relationship between Camelot components is graphically 

described in Figure 5-2. 

Camelot Release 0.4(22) contains about 40,000 non-comment, non-machine generated lines of C 

code. (There will probably be approximately 60,000 lines of code in Release 1.0) 
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Figure 5-2: A Camelot Network with Log Servers 

6. Performance Evaluation 

A complete evaluation of the performance of a system like Camelot is difficult: Camelot provides a 

number of diverse functions, many of which involve distributed processing. There is substantial room for 

parallelism in Camelot and its client tasks on multiprocessors and on distributed systems. There is also 

instruction execution overlap with disk I/O and inter-node communication. Counterbalancing this 

parallelism is potential contention in Camelot, Mach, and data servers. Camelot runs on a wide variety of 

different hardware, and can use both long-haul and local area networks. Further complicating 

performance evaluation is the diversity of applications that Camelot is intended to support: activities 

ranging from commercial on-line transaction processing systems, to military command and control 
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systems, to CAD/CAM databases. Finally, a thorough performance analysis would be lengthy since it 

would require studies of both transaction latency and throughput, and a sensitivity analysis to show the 

effects of Mach's performance, CPU speed, disk performance, and multiprocessor architecture on 

performance. 

Thus, it would be impractical to embed a complete evaluation of Camelot in this paper. Instead, this 

section describes the Release 0.4(22) performance of a number of important Camelot functions on three 

different machines. 2 Its goal is to convince the reader that Camelot's performance is fine for many 

applications and that transaction processing, per se, adds little overhead to distributed processing. The 

methodology used here is a subset of that of that we used to evaluate TABS, which we described in [53]. 

In the following section, we describe the hardware and testing methods we used. Section 6.2 

describes the measured performance of the operating system and hardware functions on which Camelot 

depends. These measurements provide a basis for both calibrating the performance of the three 

individual machines and operating systems, and also for evaluating the overhead added by Camelot. 

Section 6.3 describes the measured latency of transaction execution on a number of simple benchmarks. 

Section 6.4 details the elapsed time of transaction execution as a function of the number of local 1 

kilobyte write operations. Section 6.5 summarizes Camelot's performance, and provides a few 

performance estimates not explicitly measured for this paper. 

6.1. Hardware Used 
The performance measurements were done on three types of hardware: 

1. IBM RT PCs [63] with 6 megabytes of memory, running at about 2 RT MlPS/second. Both 
Camelot and Mach were compiled using the Metaware [39] optimizing C compiler. All 
distributed experiments done between RT PCs used a 4 megabit/second (IEEE 802.5) IBM 
token ring. All disks on R T s were 70 megabyte 5 1/4M hard disks without hardware DMA. 
Mach uses a sector interleaving factor of 4 on these disks. 

2. A DEC MicroVax II [15] with 6 megabytes of memory, running at about 1 VAX 
MlPS/second. Both Camelot and Mach were compiled using the Portable C compiler. No 
distributed experiments with Camelot are reported between Vaxes. The logging disk on the 
Micro Vax II is a 140 megabyte 5 1/4H hard disk, with hardware DMA. Mach uses a sector 
interleaving factor of 1 on these disks. 

3. A DEC VAX 8800, 2-way multiprocessor with 32 megabytes of memory, running at 
approximately 5 to 7 VAX MIPS per CPU. Both Camelot and Mach were compiled using 
the portable C compiler. No distributed experiments are reported with the Vax 8800. All 

*We expect the performance numbers to be approximately 20% to 100% better in Release 1.0 in the Fall of 1987. This is 
primarily due to a reduction in some per-transaction overhead and forthcoming improvements in Mach message passing and 
datagram times. 
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disks on the Vax 8800 were DEC RA81s. Mach uses a sector interleaving factor of 1 on 
these disks. Mach was in a preliminary stage of development on this machine so 
performance is less well tuned than for the other machines. 

All performance evaluation was done on machines that were relatively unloaded. The RT PCs were 

connected to the CMU internet, but we ran the experiments on a Sunday when there was relatively little 

other network traffic. 

6.2. Operating System and Hardware Primitives 
Camelot and its clients depend heavily on the following low-level operations during processing: 

• RPCs where client and server are located on the same node: These are used by the 
SERVER_CALL macro when the client and server are collocated, and for some local 
communication with and between Camelot components. 

• RPCs across nodes: These are used by SERVER_CALL for RPCs across the network. 

• Inter-node datagrams: These are used during the transaction commit protocols, for lock 
resolution within nested transactions, and for supporting the distributed logging service. 

• Log writes to a raw disk: These are used to implement local logging. 

• Paging reads and writes: These are the times to do 4K byte page reads and writes of 
recoverable storage. For this paper, we assume all pages are accessed randomly, not 
sequentially. The performance of sequential paging would be substantially better. 

The times for these operations, and the familiar "puzzle" benchmark are described in Table 6 -1 . 

6.3. Camelot Benchmarks 

To make the performance evaluation tractable, we ran benchmarks transactions serially from a single 

application, and recorded only elapsed times. In particular, we did not measure throughput when multiple 

clients were attempting to perform operations the same server. (Throughput would be greater than the 

inverse of the latency for all transactions except read-only local transactions, since Camelot exploits most 

sources of parallelism.) Also, we did not measure Camelot's paging performance. The reason is that 

Camelot's disk manager does not interfere with normal paging, except for occasionally writing hot pages 

to disk. 

We ran the following benchmarks: 

• Transactions on 1, 2, and 3 local data servers that read (write) one 32 byte record. These 
benchmarks demonstrate the time to execute simple read (write) transactions. Additionally, 
they demonstrate the extra cost of involving more than one data server. 
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Primitive Operation IBM RT PC DEC MicroVax DEC VAX 8800 

Local 32 byte RPC 4.1 4.4 0.89 

Local 1024 byte RPC 5.0 5.4 1.1 

Remote 32 byte RPC 40 NA NA 

Remote 1024 byte RPC 57 NA NA 

Single 64 byte inter-node datagram 7 NA NA 

Average 512 byte disk write, 
streamed raw I/O, includes track steps 

3.3 2.7 1.5 

Random access 4096 byte 
paged I/O, read or write 

55 43 37 

Puzzle Performance 4.6 8.9 1.8 

Table 6 -1 : Primitive Operation Times in Msecs 

This chart presents the elapsed time in milliseconds to do 8 benchmarks on the IBM RT PC, DEC Micro vax, and DEC 
VAX 8800. These numbers are average elapsed times produced during long running tests. They reflect the 
performance of the Mach Alpha release kernel of late May 1987. The elapsed time for local communication and 
puzzle benchmarks is comprised entirely of CPU time. The NAs indicate performance numbers that we did not 
obtain; they are not needed to interpret the benchmarks presented in Section 6.3, since we ran distributed 
experiements on only the RT PC. Mach is probably most highly optimized on the MicroVax II, with the RT PC 
implementation second best. The -O (optimize) compiler switch was used on the VAX compiler for the puzzle 
benchmark. 

• Transactions on 1, 2, and 3 local data servers that read (write) ten 32 byte records, each as 
a separate RPC. These benchmarks demonstrate the incremental costs of doing additional 
operations on servers. When coupled with the numbers from the one read transactions, 
these benchmarks enable one to deduce the local per-transaction overhead. In the case of 
write transactions, these transactions show the effects of log forces on transaction 
performance. 

• All of the above with 1 kilobyte records. These benchmarks demonstrate the additional cost 
of transmitting the larger records. 

• All of the above with each data server on a separate remote node. These benchmarks 
demonstrate the cost of doing non-local operations committing distributed transactions. We 
ran these benchmarks only on the RT PCs on the token ring, though they could have been 
run on the Vaxes, or with mixed RT PCs and Vaxes. 

Note that 10 operations per server per transaction execute up to 30 operations. For the benchmarks 

using 1 kilobyte records, these are relatively heavy-duty, 30 kilobyte update transactions. 

To get the numbers in the tables, we used a simplex log, and executed new-value only transactions. 
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Transaction Benchmarks 1 Server 2 Servers 3 Servers 

Local Read Transactions 
1 32 byte read/server 
10 32 byte reads/server 
1 1K byte read/server 
10 1K byte reads/server 

Local Write Transactions 
1 32 byte write/server 
10 32 byte writes/server 
1 1K byte write/server 
10 1K byte writes/server 

Remote Read Transactions 
1 32 byte read/server 
10 32 byte reads/server 
1 1K byte read/server 
10 1K byte reads/server 

Remote Write Transactions 
1 32 byte write/server 
10 32 byte writes/server 
1 1K byte write/server 
10 1K byte writes/server 

27 
76 
28 
86 

52 
118 
68 

216 

110 
590 
130 
770 

170 
660 
190 
900 

44 
137 
46 
160 

80 
234 
97 

403 

190 
1090 
210 
1450 

260 
1170 
290 
1590 

61 
202 
63 

240 

110 
372 
137 
688 

240 
1680 
300 

2150 

320 
1740 
400 

2270 

Table 6-2: Benchmarks on 1-4 RT PCs, elapsed msecs/transaction 
These benchmarks were run on 6 megabyte RT PCs interconnected with a 4 megabit/second token ring. These 
benchmarks indicate, for example, that the RT PC is capable of executing at least 19 simple, main memory write 
transactions per second on a single local server without group commit. With paging transactions, write transaction 
latency would increase substantially due to the need to move data to/from disks. Mach remote RPC times of 40 - 57 
msecs currently account for much of the elapsed times of multi-operation, distributed transactions. Note that elapsed 
times would barely increase as the number of remote servers increase if the distributed benchmarks had executed 
the SERVE R E C A L L S in parallel, using the COBEGIN ... COEND library constructs. (See Section 6.5.) 

We did not use group commit, since we were looking to achieve low latency. (Of course, system 

throughput would increase for short write transactions.) 

The tables report the average elapsed time per transaction for the median run that we executed. (For 

most tests, we ran 30 runs of 20 transactions per run, for 600 transactions total. For the very long 

distributed transactions, we ran 10 runs of 10 transactions per run.) In general, this value was close to the 

average elapsed time per transaction across all runs. We chose to report the median value in an attempt 

to factor out the effects of paging and network traffic not reflecting Camelot's underlying performance. 

Approximately, 50,000 transactions were executed to produce these numbers. The numbers reflect 

Camelot Version 0.4(22) of June 10,1987. 
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Transaction Benchmarks 1 Server 2 Servers 3 Servers 

Local Read Transactions 
1 32 byte read/server 37 58 80 
10 32 byte reads/server 97 181 263 
1 1K byte read/server 38 61 83 
10 1K byte reads/server 112 207 298 

Local Write Transactions 
1 32 byte write/server 66 97 126 
10 32 byte writes/server 258 318 456 
1 1K byte write/server 72 115 147 
10 1K byte writes/server 257 475 688 

Table 6-3: MicroVax I I Benchmarks, elapsed msecs/transaction 

These benchmarks were run on a 6 megabyte MicroVax II. The numbers ar relatively close to the RT PC numbers: 
The MicroVax executes C code more slowly, but has a faster disk. 

Table 6-2 shows the results for all these benchmarks on the RT PC. Tables 6-3 and 6-4 show the local 

benchmarks for the MicroVax II and VAX 8800. 

Transaction Benchmarks 1 Server 2 Servers 3 Servers 

Local Read Transactions 
1 32 byte read/server CO

 13 

CO
 

10 32 byte reads/server 16 32 49 
1 1K byte read/server CO

 13 19 
10 1K byte reads/server 19 38 58 

Local Write Transactions 
1 32 byte write/server 33 33 33 
10 32 byte writes/server 33 67 85 
1 1K byte write/server 34 34 52 
10 1K byte writes/server 76 133 198 

Table 6-4: VAX 8800 Benchmarks, elapsed msecs/transaction 

These are elapsed times per transaction for running the benchmarks on a VAX 8800. There is a small amount of 
parallelism in the benchmarks, but they primarily run on one CPU. The large jumps in some of the write transactions 
(e.g., 1 Kbyte write operations) is apparently due to the delay caused by missing a disk rotation. 
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6.4. Performance Graphs 

We ran one more detailed measurement on an RT PC, a MicroVax, and VAX 8800 to learn the 

performance of long update transactions. Long update transactions strain write-ahead logging 

techniques, but are useful in applications such as CAD/CAM. Graph 6-1 shows the elapsed time as a 

function of the number of 1 kilobyte updates, for up to 100 separate updates. Approximately 8 ,12 , and 2 

msecs of CPU time is spent executing the update operation in the server on the RT PC, MicroVax, and 

VAX 8800, respectively. Most of the rest of the time is due to logging I/O. This time would decline 

substantially on the RT PC with a DMA disk controller. We conclude that the logging of very large 

updates will not be an intolerable performance penalty for many CAD/CAM activities. 

0 10 20 30 40 50 60 70 80 90 100 
Number of IK byte write operations per transaction 

Figure 6 - 1 : Times for Large Update Transactions, in Seconds 
This graph shows the elapsed time in seconds of local transactions as a function of the 
number of 1 kilobyte updates, from 10 to 100 separate updates, in gradations of 10. 

6.5. Discussion 

The approximate elapsed times of certain Camelot functions are reported in Table 6-5. These numbers 

are derived from the observed performance, ad reported in the previous two sections. Comparing these 

derived performance numbers with the primitive times reported in Table 6-1 helps to understand the 

overhead of transaction execution in Camelot. 

For example, Table 6-5 shows that the cost on RT PCs of beginning and committing a read-only 

transaction on n servers is approximately 10+12n msecs for the local servers and 50+1 On msecs for 

remote servers. The higher base in the distributed case is a result of extra processing and 
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communication delays in the distributed commit protocol, and the CPU overhead of tracking the spread of 

distributed transactions. The lower slope is due to parallelism in the distributed protocol. 

Camelot Function IBM RT PC DEC MicroVax DEC VAX 8800 

Cost/Transaction 
Local read-only 10+12n 14+15n 2.8+4.3n 
Local write 21+22n 31+22n 6.8+6n 
Remote read-only 50+1On 
Remote write-only 120+1 On 

Cost/Read Operation 
Local 32 byte 5.5 7 1.1 
Local 1024 byte 6.5 

CO
 1.6 

Remote 32 byte 52 
Remote 1024 byte 70 

Cost/Write Operation 
Local 32 byte 8.5 12 2.1 
Local 1024 byte 17.5 20 6.2 
Remote 32 byte 52 
Remote 1024 byte 73 

Table 6-5: Approximate Elapsed Time of Various Camelot Functions 

In the cost per transaction formulas, n refers to the number of servers involved in a transaction. For the distributed 
case, the formulas apply to a single coordinator node and n servers running on n separate nodes. The formulas are 
usually accurate within 5%, and are off by more than 10% only in cases where log forces consistently miss disk 
revolutions. 

In comparing the cost per operation, a read operation adds about 1 msecs to the cost of a local RPC 

on Mach on the RT PC. A write operation adds about 4+8m msecs to the cost of an RPC, where m is the 

number of kilobytes written. Camelot adds roughly 11 msecs to the cost of a remote read operation, and 

roughly 11+3m msecs to the cost of a remote write operation. These formulas generally match the 

numbers measured and are consistent with the expected behavior of the underlying recovery algorithms. 

This paper has not mentioned paging, except to say that Camelot only minimally interferes with the 

normal paging of recoverable objects. It also has not mentioned the overhead of nested transactions. 

Nested transactions have a small fixed overhead, for example, of about 8 milliseconds on the RT PC. 

Note that the commit of a nested transaction never requires a 2-phase protocol or any non-local message 

communication. Nested transactions become expensive in Camelot only when there are intra-family lock 

conflicts. Resolving these could require multiple network datagrams to be sent between transaction 

managers. 
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Importantly, the paper has not mentioned recovery time after node failure. Recovery time is linear in 

the amount of log between the tail of the log (at the time of the crash) and the most recent checkpoint 

record, the first log record applying to the oldest active recoverable page, or the first log record of the 

longest running transaction, whichever is further back. Checkpoints are very inexpensive in Camelot, and 

can be taken frequently. Very long running transactions are automatically aborted. The Camelot disk 

manager tracks the oldest log record that applies to every recoverable page to ensure that hot pages are 

written with sufficient frequency. We do not have specific performance numbers, as we have not yet done 

empirical studies of recovery times. 

While we have not reported any throughput measurements in the preceding section, we have done a 

small amount of experimentation. Here are two small throughput results: 

• Five transaction processing nodes were able to drive two RT PCs running as a distributed log 
service at the the rate of sixty-nine 800 byte log forces per second. Due to the fact that each 
log force was sent to two RTs, (for replication), this used about 25% of the 4 Mbits/second 
available on the token ring. 

• Three clients competing for local read-only service on one server achieved 9 2 % utilization of 
each processor on the VAX 8800. There was no throughput degradation when 3 clients 
competed for read-only service on one Camelot server on an RT PC with read-only 
transactions. 

These numbers suggest the system will perform well, but definitive proof would require more evidence. 

We are willing to project that Camelot Release 1.0 will execute roughly 10 local ET-1 [2] debit/credit 

transactions per second on an RT PC with 8 megabytes of memory, provided there is sufficient disk 

capacity to do local logging. 

Camelot's performance should improve substantially with improvements to local and remote message 

passing, and Camelot's implementation. For example, we can usually eliminate the call on the 

transaction manager to allocate a unique transaction identifier by piggybacking the identifier on a previous 

acknowledgement. 

Only recently have detailed performance evaluations of the transactional costs of other systems begun 

to be published, and there is still very little data. However, a recent paper on Argus [36], provides 

additional evidence that transaction overhead, particularly for nested transactions, can be very low. The 

Quicksilver system [22] appears to have overhead per transaction that is similar to Camelot's but 

Quicksilver has substantially faster local and network communication. 

There have also been a number of performance studies of the ET-1 benchmark, providing throughput 

results. In a recent paper, Tandem described a large experiment in which they executed a sustained rate 

of 6.5 ET-1 transactions/second on a network of 32 3 MIPS processors [1]. (Fifteen percent of these 
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transactions were distributed.) It seems that Camelot's performance on RT PCs is in the same league, 

though it must be said that Tandem's system provides functions (e.g., process pairs and support for large 

networks) that Camelot does not. 

7. Conclusions 

Camelot integrates and extends the best features of many systems. For example, the commit 

protocols are optimizations of those developed for R* [40]. The nested transaction model was developed 

at MIT and used in Argus [35]. RPC protocols and stub compilers became of wide interest in the early 

80's. Write-ahead logging was developed for commercial database management systems, such as 

IBM [28]. 

However, there are also a number of quite new ideas in Camelot. The hybrid non-blocking commit 

protocol, the combination of old-value/new-value and new value-only logging; the distributed logging 

algorithms; the C-oriented interface for transaction processing; Camelot's machine independence and 

effective use of multiprocessors; and the integration of virtual memory management and recoverable 

storage [16] are some of the more important ones. These will be the subject of Ph.D. dissertations over 

the next year. 

The goal of this paper has not been to describe the new algorithms in Camelot, but rather to describe 

the implementation and integration of diverse ideas from the fields of distributed systems, operating 

systems, and database systems. The Camelot interfaces bundle many diverse techniques into an easy to 

use and efficient package for a Unix-like environment. We hope this paper will help to make the case that 

distributed transaction processing can be an easy to use and relatively efficient basis for supporting 

reliable, distributed systems. 
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