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ABSTRACT 

The model-based vision requires object appearances in the computer. How an object appears in the 
image is a result of interaction between the object properties and the sensor characteristics Thus in 
model-based vision, we ought to model the sensor as well as modeling the object. In the past however 
the sensor model was not used in the model-based vision or, at least, was contained in the object model 

This paper presents a framework between an object model and the object appearances. We consider two 
aspects of sensor characteristics: sensor detectability and sensor reliability. Sensor detectability specifies 
what kind of features can be detected and in what area the features are detected; sensor reliability 
specifies how reliable detected features are. Commonly available sensors are briefly examined in terms of 
their sensor characteristics. We define the configuration space to represent sensor characteristics. We 
propose a representation method of the sensor dectectability in the configuration space. Sensor reliability 
distribution is also discussed in the configuration space. Under this framework, we characterize the 
photometric stereo and the lightstripe range finder as examples. 
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1. INTRODUCTION 

The model-based vision requires object models in the computer. Various researchers propose 

many kinds of object models, ranging from generic models such as generalized 

cylinders [5, 31, 9,41], extended Gaussian images [42, 23, 21], and super quadric models [38] to 

specific models such as aspect model [28, 13, 24], region-relation model [4, 37, 6], and smooth 

local symmetry [7, 8]. 

The object appearances, however, are determined by a product of an object model with a 

sensor model. Thus, in the model based vision, it is insufficient to consider only an object model; 

it is essential to exploit a sensor model as well. On the other hand, modeling sensors for model-

based vision has attracted little attention; quite often, researchers who are familiar with the 

sensors they use tended to construct object appearances by implicitly incorporating their sensor 

behavior. This paper, in contrast, explores a general framework for explicitly incorporating 

sensor models which govern the relationship between object models and object appearances. 

A sensor model must be able to specify two important characteristics: sensor detectability and 

sensor reliability. The sensor detectability specifies what kind of features can be detected and in 

what condition the features are detected. The sensor reliability specifies how reliable the 

detected features are. This paper, thus, present a method for modeling sensors with sensor 

detectability and sensor reliability. Commonly available sensors are briefly examined in terms 

of their sensor characteristics. Then, representation techniques for sensor characteristics are 

explored. We choose the projected Quaternion space using the configuration space to represent 

sensor characteristics. Finally, we consider two aspects of sensor characteristics: sensor 

detectability and sensor reliability. We propose a representation space on which a sensor's 

detectability is expressed in the uniform way. Sensor reliability analysis consists of reliability 

distribution and error propagation from observed data to geometric features. Under this 

framework, we characterize the photometric stereo and the light-stripe range finder as examples. 

2. SENSORS IN THE MODEL BASED VISION 

This section gives a brief survey of commonly available sensors in the model-based vision. We 

include both passive and active sensors. The following sensors are often used: edge 

detector [40, 30, 11], shape-from-shading [20, 26], binocular stereo [32, 16, 3, 36], time-of-flight 

range finder [27, 18], light-stripe range finder [1,37], trinocular stereo [35], photometric 
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stereo [44, 25], polarimetric light detector [29],and SAR (Synthetic Aperture Radar) [14,43, 34]. 

Each sensor is a mapping function from object features to sensor features. Object features 

such as faces, edges, and vertices exist in the three-dimensional object space. These object 

features in the object space are mapped to sensor features such as regions, lines, and points in the 

sensor space. Then, these sensor features are transformed into geometric features. Note that the 

sensor features has no meaningful interpretation. For example, a sensor feature such as a region 

should be considered as a collection of points which are not grouped as one meaningful unit by a 

sensor. The conversion process from sensor features to geometric features will group a collection 

of points into a geometric feature such as a region. 

Table 1 gives the summary of detectable features in the object space by commonly available 

sensors. For example, an edge detector can detect some edges in the object space as lines in the 

sensor space. Since it does not need special light sources, it is classified as a passive sensor. 

Table 1 Detectable Object Features 

Sensor Vertex Edge Face active/passive 

Edge Detector no yes no passive 

Shape-from-shading no no yes passive 

SAR yes yes yes active 

Time-of-Flight Range Finder no no yes active 

Light-stripe Range Finder no no yes active 

Binocular Stereo no yes no passive 

Trinocular Stereo no yes no passive 

Photometric Stereo no no yes active 

Polarimetric light detector no no yes active 

Since the brightness change does not occur over any face, passive sensors have usually 

difficulty in detecting faces. An active sensor projects lights over the scene; stronger reflection 

can be obtained from faces; weaker or no reflection is given from edges and vertices. Thus, most 

active sensors are good in detecting faces, while they can detect neither edges nor vertices. 

Sensor features in the sensor space are summarized in Table 2. In Table 2, a line means a 

line-shaped collection of detected points and a region means a region-shaped collection of 

detected points. For all sensors except SAR the correspondence between the object feature and 
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the sensor feature is one-to-one. For example, an edge detector generates one line-shaped sensor 

feature corresponding to either one edge or one reflectance discontinuity line of a object feature 

in the object space. Photometric stereo generates a surface orientation distribution as sensor 

features which corresponds to one physical face in the object space. On the other hand, SAR 

generates either line-shaped sensor feature or point sensor feature from one edge in the object 

space depending on the sensor configuration. A precise discussion of SAR will be found 

elsewhere [14,43, 34]. 

Table 2 Detected Sensor Features 
Sensor Vertex Edge Face 
Edge Detector - line -
Shape-from-shading - - region 
SAR point point/line line 
Time-of-Flight Range Finder - - region 
Light-stripe Range Finder - - region 
Binocular Stereo - line -
Trinocular Stereo - line -
Photometric Stereo - - region 
Polarimetric light Detector - - point 

While this summary tells in general what object features are detectable in what forms by 

various sensors, it is also important to characterize in what viewing conditions those features are 

actually detectable and how reliable the detected features are. For that, we need to develop a 

representation tool for relation between object coordinates and sensor coordinates. 

3 . REPRESENTING SENSOR CONFIGURATION 

This section defines the sensor configuration space on which sensor detectability and sensor 

reliability are specified. Sensor detectability and reliability depend on various factors: distance 

of an object, configuration of an object, reflectivity of an object, transparency of air, and 

background noise such as the sun's brightness. In the model-based vision, since the target object 

and its rough distance is a prior known, mainly angular freedom of object affects on detectability 

and reliability. Thus, we will explore a space to specify the relationship between the sensor 

coordinate and the object coordinate. 
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The relationship between the sensor coordinate and the object coordinate can be specified by 

three degrees of freedoms; two degrees of freedom in the sensor direction and one degree of 

freedom in the sensor rotation. The representation space must satisfy the following two criteria. 

Intuitiveness The representation space should be intuitive because it is a tool to depict 
detectability and reliability; sensor users should understand them easily. 

Continuity The representation space should be continuous. 

In the following discussion, the sensor coordinate is fixed; we will explore the way to specify 

the object coordinate with respect to the sensor coordinate. 

We will examine four different ways to represent these freedoms from these two criteria. 

Euler space to represent an Euler angle on the sphere 
Quaternion space to use quaternion to specify the relationship and represent it on the four 

dimensional hyperspherical surface. 

Projected quaternion space 
to project the four dimensional hyperspherical surface to a three dimensional 
sphere and represent the relationship on the projected sphere. 

Modified projected quaternion space 
to map the projected three dimensional sphere to another three dimensional 
sphere and to represent the relationship on the mapped sphere. 

These representations are used to represent relative relations between the sensor coordinate 

and the object coordinate, and therefore, for the sake of convenience in the following discussion, 

we fix the sensor coordinate and discuss how to specify the object coordinate with respect to the 

sensor coordinate. 

3.1. Euler Space 

Use of an euler angle, (c(),9,\j/), is one of the standard ways to specify the relationship from the 

sensor to the object coordinate: <|>,6, and \\f denote rotation around the z axis, rotation around the 

new y axis, and rotation around the new z axis, respectively. 

The Euler angle can be represented as a point in the sphere. <j> and 0 can be equated to the the 

azimuth and the zenith angles to denote the direction of the point from the center. The distance 

of the point from the spherical surface depicts the rotation of the new coordinates around the new 

z axis, y . In this space, the north pole, for which (<|> 0 \\f = (0 0 0 ) ) , can correspond to the sensor 

coordinate and any point in the sphere corresponds to a particular object coordinate. 

This space satisfies the intuitiveness criterion, but does not satisfy the continuity criterion. 
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Representation become discontinuous near the north pole. Unfortunately, points near the north 
pole corresponds to frequently used coordinates, because the sensor coordinate is expressed as 
the north pole. 

Figure 1 Euler space 
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3.2. Quaternion Space 

Our second candidate is the four dimensional hypersphere which comes from quaternions [17]. 

Other researchers [10, 39, 12, 22] have also explored the use of quaternions for specifying 

rotations in computer vision and robotics research. 

Quaternions can be represented by a quadruplet of four real numbers, 

By using quaternions, rotation can be represented as 

<70=cos(^) 

<7i=sin(|K 

q2=sm(-)ny 

<73=sin(|>z z, 

where co denotes rotation angle and (nx,ny,n2) denotes the axis of the rotation. Since 
< ? o 2 + ? i 2 + ( 7 2 2 + ( 7 3 2 = l > rotation can be represented as a point on the four dimensional 

hyperspherical surface. In this space, the sensor coordinate corresponds to the north pole of the 

four dimensional hypersphere, (1,0,0,0). Any point on the upper hyper-hemisphere corresponds 

to one particular object coordinate. In contrast to Euler space, this space satisfies the continuity 

criterion, but does not satisfy the intuitiveness criterion because we cannot draw a four 

dimensional hypersphere. 

3.3. Projected Quaternion Space 

We can project the four dimensional hyperspherical surface to a three dimensional sphere (four 

dimensional hyperplane). Before considering the projection, let us examine the two and three 

dimensional case to draw analogy. A two dimensional spherical surface (circle) can be denoted 

as 
y=cos a 
x=sina, 

where a is the rotation angle. This two dimensional spherical surface (circle) can be projected to 

a one dimensional line as 

x=sin a. 

Similarly, a three dimensional spherical surface can be denoted as 
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z=cos a 
j=sin as inp 
x=sinacosp, 

where a,p are the zenith and azimuth angles, respectively, and when we project it to a two 
dimensional plane, we obtain a disc: 

z=l 
;y=sin as inp 
x=sinacosP. 

We can use the similar technique for a four dimensional hyperspherical surface. It can be 
denoted as 

w=cosoc/2 
z=sinoc/2cosp 
y=sin oc/2sin Psin y 
x=s'm oc/2sin pcos y, 

where (u,z,y,jc) denotes the quaternion. Following the same way as in the two and the three 
dimensional cases, we have 

u=l 
z=sinoc/2cosp 
y-sm oc/2sin Psin y 
x=sin oc/2sin pcos y, 

where a denotes the rotation angle and (cos p,sin Psin y,sin Pcos y) denotes the direction of the 

rotation axis. This gives the projection from a four dimensional hyperspherical surface onto a 

three dimensional sphere x2+y2+z2 < 1. 

The origin of the sphere corresponds to the sensor coordinate, and any point in the sphere 

corresponds to one particular object coordinate. See Figure 2a. Note that this only projects 

either the points of upper hyper-hemisphere or the lower hyper-hemisphere to the points of the 

sphere. However, we only need the upper hyper-hemisphere to represent all possible object 

coordinates. Let us call cylinders whose axis agree with the axis between the north pole and the 

south pole as characteristic cylinders. The projected quaternion space has the following 

relationships with the Euler angle. 

Property 1 Points on a characteristic cylinder surface correspond to object coordinates whose 
zenith angles are the same. 

Property 2 A point on the characteristic cylinder rotates on the cylindrical surface depending 
on the difference between \j/ and <(). 
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Property 3 All object coordinates whose corresponding points exist on the intersection line 

between the characteristic cylinder and the x-y plane satisfy <|>+Y=0 or <|>+\|/=7i. 

Property 4 A point on the intersection circle between the characteristic cylinder and the 

sphere surface corresponds to the same object coordinate as the symmetry point with respect to 

the sphere center. In other words, the characteristic cylinder connects to its self in a twisted 

manner. 

This space satisfies both the continuity criterion and the intuitiveness criterion. Unfortunately, 

however, this space has a problem which we refer as the twisted cylinder problem. In this space, 

coordinates whose z axis make a certain angle with one particular direction are projected as an 

ellipsoid on a plane parallel to the x-y plane. Then center of the ellipsoid rotates around the z axis 

depending on the value of z. See Figure 2b. 

Figure 2a 

Figure 2 Projected quaternion space 
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Figure 2b The twisted cylinder problem 

Figure 2, continued 
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3.4. Modified Projected Quaternion Space 

The twisted cylinder problem can be solved by we mapping the project quaternion space to 

another space. We will consider the following sphere. We cut projected quaternion space in the 

plane at z=0 and straighten it up. Then, we convert the plane into a spherical surface covering the 

contents into the sphere. See Figure 3a. This operation gives a new sphere. On this sphere, the z 

axis of the corresponding coordinate agrees with the direction of the point from the center. All 

the coordinates on the spherical surface satisfy \|r+0=O. The inner points correspond to the 

coordinates whose z axis direction agrees with the direction from the center to the points, while 

the z axis rotation, \\r, determines the distance of the point from the spherical surface. This 

sphere may be considered as a modified Euler sphere. See Figure 3b. 

The spherical surface, which comes from the z=0 of the projected quaternion space, <|H-\y=0 

and has no discontinuity around the north pole. Since the upper hemisphere satisfies the 

continuity criterion and the intuitiveness criterion, We define and represent various sensor 

properties on this space. We will refer this space as the configuration space. 

We also use the modified projected quaterion sphere to express possible object attitudes on 

generating appearances of the objects. Since this space corresponds to the original quaternion 

space in a one-to-one correspondence, we can use quaternions for calculation, and project the 

result to this space, if necessary. For example, some applications require uniform digitization in 

terms of rotation. In that case, we can quantize the quaternion space uniformly [10] and then 

project the tessellated points to this space. This relationship between the quaterion space and the 

modified projected quaterion space resembles the relationship between the Gaussian sphere and 

the stereographic plane. 

Figure 3a 

Figure 3 Modified projected quaternion space 
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Figure 3b 

Figure 3 Modified projected quaternion space 
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4 . DETECTABILITY OF SENSORS 
In the previous section, we have defined the way to represent the relationship between the 

sensor coordinate and the object coordinate. In this section, we will develop a constraint to 

determine whether an object feature can be detected at each point of the configuration space. 

4.1. Constraints in Configuration Space for Feature Detection 
Each sensor has two components: sources and detectors. For example, both a time-of-flight 

range finder and a light-stripe range finder have one source and on detector. Binocular stereo has 

one source and two detectors; photometric stereo has three sources and one detector. Table 3 

summarizes the number of sources and detectors of each sensor. 

Table 3 Source and Detector 

Sensor Number of sources Number of detectors 

Edge Detector 1 1 

Shape-from-shading 1 1 

SAR 1 1 

Time-of-Flight Range Finder 1 1 

Light-stripe Range Finder 1 1 

Binocular Stereo 1 2 

Trinocular Stereo 1 3 

Photometric Stereo 3 1 

Polarimetric light detector n 1 

One source only illuminates one part of an object; one detector only observes one part of the 

object. Each sensor which consists of sources and detectors, only detect one part of the object. 

Thus, in order to specify the detectable area of each sensors, we need to define each source's 

illuminated area and each detector's visible area. We also need to define a operation method on 

illuminated areas and visible areas. 

In the following discussion, we will consider both sources and detectors as generalized sources 

(G-sources). Each G-source has two properties: the illumination direction and the illuminated 

area. In the source case, the illumination direction and the illuminated area are the same as the 

nominal meanings. In the case of detectors, the illumination direction corresponds to the line of 

sight of the detector, and the illuminated area corresponds to the visible area from the detector. 
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In order to define the sensor detectability, we will use the configuration space previously 

defined. The illumination direction of a G-source is specified as a line in the configuration space; 

its illuminated area is specified as a volume in the configuration space. We will define two kinds 

of G-sources in terms of the distribution of illuminated areas: the uniform G-source and the 

directional G-source. A uniform G-source distributes its light evenly in all directions. An 

example of a uniform G-source is a usual light source whose illuminated area is located as a 

hemispherical com of the sensor space. The center direction of the corn corresponds to the 

source direction. 

We specify a uniform G-source as 

(NS type direction angle) 

The first argument, type, specifies what kind of feature the G-source illuminates, and takes one 

of the values; face, edge, and vertex. The second argument, direction, denotes the G-source 

illumination direction as a vector. The third argument, angle defines the illuminated area by 

specifying the spherical angle between the illumination direction and the surface normals 

associated with object features. If type is face, this angle defines the maximum allowable angle 

between the face surface normal and the illumination direction. If type is edge, this angle defines 

the maximum allowable angle of the smaller one of the two angles between the illumination 

direction and the two normals of incident surfaces to the edge. That is, if either or both faces are 

well illuminated, then the edge is considered to be illuminated. If type is vertex, we have to 

consider at least three faces incident to the vertex. This angle defines the maximum allowable 

angle of the smallest angle of those angles between the illumination direcption and the normals 

of incident surfaces. That is, if any of the incident faces of the vertex is illuminated, the vertex is 

considered to be illuminated. 

Another kind of G-source is a directional G-source which projects light depending on the 

rotation around the light source direction. We specify a directional G-source as 

(DS type direction angle spec-direction spec-angle) 

The first argument, type, specifies one of the object features: vertex, edge, and face. The second 

argument, direction, denotes the G-source illumination direction as a vector. The third 

argument, angle, defines the spherical angle of the illuminated area, as for the uniform G-source. 

The fourth argument, spec-direction defines the constraint direction to be used in the following 

argument. The fifth argument, spec-angle defines the maximum allowable angle between the 
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constraint direction and the principal direction such as the surface normal of a face, the edge 

direction of an edge, and the average surface orientation around a vertex. 

An example of a directional source is a directional edge detector. As mentioned before, a 

detector is also considered as a source, and its illuminated area corresponds to the detectable 

area. Since the directional edge detector only detects edges with certain orientations, it is 

regarded as a directional source. The illuminated area of a directional source becomes a thin 

slice of the configuration space. 

We can specify the sensor characteristic with AND and OR operations of these formal 

definitions of all component G-sources of the sensors. Figure 4 shows sensor detectability 

represented by this method for all sensors listed in table 3. 

4.2. Use of Feature Detection Constraints 

The feature detection constraints are used together with a geometric modeler to predict how 

the object appears relative to the sensor. A geometric modeler generates possible attitudes of an 

object corresponding to each point in the configuration space. Then, detectability of each 

component face, edge, or vertex of the object under this attitude is determined using the 

constraint. The illumination direction constrains the surface shape to be detected, and the 

illuminated area constrains the surface orientation to be detected. 

More precisely, we can imagine putting the configuration space on each point of the object in 

order checked whether it can be detected by the sensor. If the illumination direction from that 

point intersects with any of the surfaces of the object, the point cannot be detected. If the 

illumination direction does not intersect with any of the surface, the point is detectable. If the 

surface orientation on the point is contained in the illuminated area, the point is detectable. If the 

surface orientation is outside of the illuminated area, the point cannot be detected. Figure 5 

illustrate the outline of this operation for the illumination direction and illuminated area using 

this constraint. 
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Sensor Constraints 
in the formal definition 

Constraints 
in the sensor space 

Edge Detector 
(AND (NS edge V d) 

(NS edge V d)) 
= (NS edge V d) 

Shape-from-shading 
(AND (NS face V d) 

(NS face V d)) 
= (NS face V d) 

SAR 

(OR (NS face V d) 
(NS edge V d) 
(NS vertex V d)) 

(needs postprocess) 

Time-of-Flight Range 
Finder 

(AND (NS face V d) 
(NS face V d)) 

= (NS face V d) 

Light-strip Range 
Finder 

(AND (NS face V1 d) 
(NS face V2 d)) 

Figure 4 
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Sensor Constrains 
in the formal definition 

Constraints 
in the sensor space 

Binocular Stereo 
(AND (NS edge V1 d1) 

(DS edge V2 d2 VE de) 
(DS edge V3 d3 VE de)) 

Trinocular Stereo 

(AND (NS edge V1 d1) 
(DS edge V2 d2 VE de) 
(DS edge V3 d2 VE de) 
(DS edge V4 d2 VE de)) 

Photometric Stereo 

(AND (NS face V d1) 
(NS face V1 d2) 
(NS face V2 d2) 
(NS face V3 d2)) 

Polarimetric Light 
Detector 

(OR (AND (NSfaceVd) 
(NS face V1 d)) 

(AND (NS face V d) 
(NS face V2 d)) 

. . . ) 
where V . V = cos 2d 

Figure 4, continued 
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Figure 5 How to use the detection constraints 

4.3. Detectability Distribution 

The feature detection constraint gives the upper bound of the detectable areas in the 

configuration space. In some cases, however even though a object feature exists within the 

detectable area, the feature may be undetected due to noise. We define the detectability 

distribution such that a feature in the detectable area is actually detected. The probability is 
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usually high in the central part and low in the peripheral part of the detectable area. 

The detectability distribution can be described by multiplication of detectability distributions 

of the component G-sources. Namely, each G-source has a detectability distribution defined over 

the illuminated area. In the previous subsection, the constraint was either illuminated or non 

illuminated or either detectable or non-detectable. We will expand this idea to the continuous 

case. Namely, each G-source has its own continuous detectable distribution over its illuminated 

area defined in the configuration space. 

Since all sensors detect features based on a brightness distribution, the detectability 

distribution also depends on a brightness distribution which is detected and converted to sensor 

features. However, there are two types of sensors in terms of the conversion method; direct 

sensors and indirect sensors. The direct sensor measures the brightness value and converts it to 

sensor features, such as surface orientation, directly from the brightness value. The indirect 

sensor measures the brightness value and positional information of the bright spot if the 

brightness value is greater than some threshold. The indirect sensor then converts the positional 

information to sensor features such as depth. Table 4 shows a classification of sensors based on 

this difference. 

Table 4 Measurement method 

sensor direct/indirect 

Edge Detector direct 

Shape-from-shading direct 

SAR indirect 

Time-of-Flight Range Finder indirect 

Light-stripe Range Finder indirect 

Binocular Stereo indirect 

Trinocular Stereo indirect 

Photometric Stereo direct 

Polarimetric light detector indirect 

Since a TV camera is a most typical input device, we will examine its performance before 

exploring the detectability distribution. Let P(x\d),P(d\x), and P(x) be the conditional probability 

of a real value x under the observed value d, the conditional probability of the observed data d 

under a real value x, and the probability of JC, respectively. Then, TV camera performance can be 
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described using Bayes' theorem as 

\P(d\x)P(x)dx 

If we assume that P(x) is constant, namely the brightness distribution occurs randomly, 
P(x\d)=P(d\x). 

The conditional probability of observed data d under the real value x is assumed as the Gaussian 

distribution whose mean value is x and standard deviation is a, 

1 U-d)2 

V2KG 

We can obtain o from experiments. Our SONY CCD camera has G=3, which roughly coincides 
with a result elsewhere [2]. 

Since the detectability distribution depends on sensing methods, we will develop the 

distributions for the photometric stereo as a representative case of the direct sensor, and for the 

light-stripe range finder as a representative case of the indirect sensor. 

4*3.1. Detectability distribution of photometric stereo 

An direct sensor such as photometric stereo can be modeled as 
y=/W 

where x is the input brightness, y is the output feature values, a n d / i s the conversion function. 

Suppose X* is the definition area of the function/, ie, the direct sensor outputs a feature value y 

from any x. if x-e X*. Then, the detectability distribution can be determined as the probability 

that the input brightness, x+Sx, disturbed by 5x, is still contained in the definition area, X*. In 

order to be the problem more specific, we will examine the definition area of photometric stereo. 

Photometric stereo determines the surface orientation from three images taken from the same 
position under different lighting directions. 

7 2=S 2*N 
7 3=S 3#N, 

where Ii9S-9N are the brightness value under light source /, the / th light source direction vector, 

and the surface normal vector, respectively. Thus, expressing the brightness as a vector, I, and 

the light source as a matrix, S, 
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I=SN. 

Applying S"1 to both sides, we obtain an explicit expression of N, 

N=S"1I. 

This is the basic idea of photometric stereo [44]. 

Working photometric stereo has, however, two modification [25] to this theory. 
1. S"1 is determined from calibration and stored in a lookup table rather than 

calculated from the ideal case. 

2. Brightness values are normalized I/|I | so that we can cancel the albedo effect. 

We will obtain the detectability distribution of the photometric stereo. At first, we consider 

light source l ' s detectability distribution. Assume a brightness value moves from ix to il+dil due 

to sensor error. The normalization gives f ' 1 +6f 1 =(/ 1 +& 1 ) /( / 1 +5i 1 +/ 2 +/3). However, the 

normalized intensity (i\-¥6i\/2/3) exists on the same plane / /

1 + 8 / ' 1 + / ' 2 + r 3 = l . Since a 

continuous area on the plane is the solution area for photometric stereo, we can obtain the 

solution from the new triple i'x+bi'vi2,iy Than is, we will always succeed to obtain the feature 

values, ie. we will have a unit detectability distribution for the light source 1. (Though of course 

the resultant value may be less reliable as will be discussed in the reliability section.) The same 

discussion is applicable to light source 2 and light source 3. Since the total detectability 

distribution is given as the multiple of all three detectability distributions of sources, the 

detectability distribution is a constant distribution over the detectable area in the configuration 

space. This analysis reveals that the normalization makes the detectability to be a unit value, and 

thus, helps to detect features in a stable manner. 

43.2. Detectability distribution of a light-stripe range finder 

An indirect sensor projects light on the scene and determines the positional features from the 

observed image or signal. Thus, the detectability distribution depends on whether a sensor can 

detect the returned light or not. Usually, to avoid the confusion of the returned value with 

background noise, threshold operations are applied, such as 

i is detected ifi > i0 

i is not detected otherwise. 

Let us consider the light-stripe range finder as an example. A light-stripe range finder projects 

light stripes on the scene and recovers the depth at a point from the distance between two 

adjacent light stripes. Thus, the detectability function depends on whether the TV camera 

observes the light stripes or not. 
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Assuming that the surface is lambertian, the brightness of the stripe is determined by the angle 

between the surface normal, N, and the light source direction, S. Then, the brightness / is given 

by N*S, while the disturbance factor 5/ is given by a Gaussian distribution, 
1 - ( S ° 2 

P ( 8 0 = = — ^ ^ 2 . 
V2XCG 

In almost all illuminated areas, N*S- / 0 > > 3a holds, and the viewer direction does not affect 

the observed brightness. Thus, the detectability distribution is constant over the most part of 

illuminated area of the light source. In the peripheral area, however, 

J ' o - ' V27ta 

See Figure 6. 

Figure 6 Detectability function of a light-stripe range finder 
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5. RELIABILITY OF SENSORS 
Once a sensor feature is detected, then the next question is how reliable the sensor feature is. 

This section discusses two issues of sensor reliability. The first issue is the reliability of the 

detected sensor feature; data detected by a sensor always contains measurement error. To 

determine the bound of the error is important for model based vision. For example, suppose 

there is a sensor feature which the geometric model takes two nominal value 100 and 90 for two 

distinct situations or attitudes. If a sensor has an error range of plus/minus 1 for the sensor 

feature, we can use the feature from that sensor as one of reliable discriminators in the 

recognition stage. On the other hand, if a sensor has an error range of plus/minus 20, we cannot 

use the feature from that sensor. 

The second issue is propagation of error from sensor features to geometric features, hence the 

resulting reliability of those geometric features. In some cases, a detected sensor feature from a 

sensor is used direcdy as a feature; in most cases, however, geometric features are derived from 

sensor features and are used as features in model based vision. Thus, it is necessary to determine 

the error propagation mechanism. 

5.1. Reliability Distribution of Sensor Feature 
Table 5 shows the main sources that affect reliability of sensor features. In addition to these, 

various digitization such as phase digitization in a time-of-flight range finder and spatial 

digitization in binocular stereo [2,15, 33] must be considered but are omitted for the time being. 

Table 5 Main factor of unreliability 

Sensor Factor 

Edge Detector G-source brightness (TV camera) 

Shape-from-shading G-source brightness (TV camera) 

SAR G-source direction (camera direction) 

Time-of-Flight Range Finder G-source direction (mirror direction) 

Light-stripe Range Finder G-source direction (mirror direction) 

Binocular Stereo G-source direction (camera direction) 

Trinocular Stereo G-source direction (camera direction) 

Photometric Stereo G-source brightness (TV camera, light sources) 

Polarimetric light detector G-source direction (light source direction) 
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As shown in Table 5, the main error comes from G-source brightness in a direct sensor and 

from G-source direction in a indirect sensor. Thus, we will analyze the reliability of photometric 

stereo and the light-stripe range finder as representatives of the direct and indirect sensors, 

respectively. 

5.1.1. Reliability distribution of photometric stereo 

For the direct sensor, y=/(x), the disturbance of 8x is propagated via / . Namely, the 
disturbance of the detected value, 6y is 

6y=/(x)5x 

Our photometric stereo can be described as two step processes. First a original brightness triple 

is converted to a normalized brightness triple. 

T=I/ |I | . 

Then, the normalized brightness triple is converted to a surface orientation N. 
N=S" 1I ' . 

Let us denote the brightness disturbance distribution as iV(0,G2). Then the normalized 

brightness distribution is denoted as N(Iy(of )2X where / is the first derivative of / . Figure 7a 

shows the distribution of / over the detectable area. Although it is possible to approximate the 

distribution with polynomial, we assume it is constant (0.004) over the detectable area for 

simplicity. Since G=3, 2qf=0.03. This value corresponds to a 1.5 mesh in the lookup table. 

We determine S"1 from the real data, because S~l is represented as a lookup table. Figure 7b 

shows the angular distance in terms of mesh number. Namely, the figure shows angular 

differences between two adjacent surface normals in the lookup table. By using this result and a 

1.5 mesh error from the brightness distribution, the total error becomes 5 degrees over the 

detectable area. This agrees with the observation from the experiment, which has plus/minus 5 

degrees error in determining surface orientations over the range of detectable surface 

orientations. See Figure 7c. 

5.1.2. Reliability distribution of a light-stripe range finder 

In the case of indirect sensors, the main source of unreliability comes not from the G-source 
brightness but from the G-source direction. The indirect sensor can be modeled as 

z=Ay(v1,v2,..v l l)). 

v. denotes the ith G-source direction, and y denotes the conversion function from G-source 



Figure 7a Distribution off 

Figure 7b Angular distance in terms of mesh 

Figure 7 
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Figure 7c Angular error over the detectable area 

Figure 7 

directions to the positional information, while / denotes the conversion function from the 
positional information such as a bright spot to the observed data, and z specifies the detected data 
such as depth or surface orientation. 

S z = Z / & v , 

Thus, we will examine the disturbance based on the G-source direction. 

In the light-stripe range finder, we will calculate / | l directly from the system analysis. The 

angular error in the mirror is propagated to the observed error with the physical conversion 

process. The propagation process can be divided into three parts: mirror error to positional 

difference in the stripe, positional difference in the stripe to image difference, and image 

difference to the converted distance difference. The propagation process can be obtained 

analytically as follows. 

Let us denote the angular error as r8G, where r is the distance from the light source to the 
physical point. At the physical place A, the laser light is intercepted. Then, due to the angular 
error, the physical difference, 5y occurs. 

8y=_L_5e, 
cos a 
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where a is the angle between the light source, S, and the surface normal, N. See Figure 8a. 

This physical difference is observed from the TV camera, and the image difference, 8/ occurs. 
8/=(cos p)8y, 

where p is the angle between the surface normal, N, and the viewer direction, V. 

The third step is the propagation from the image plane to the distance. For the simplicity, we 

will assume that the camera model be orthographic projection. Then, the horizontal difference, 

8i, is propagated into the distance error 8z as 
r . 8/ 
8z=- , 

tany 
where y, is the angle between the viewer direction, V, and the light source direction, S. See 

Figure 8a. 
Finally, we obtain 

Sz- C O s P rS8 
cosoctany 

- < N > v * s ' v ^ 8 e . 
(N#S)Vl-S#V 

Figure 8b shows the reliability distribution over the detectable area. 

5.2. Propagation of Reliability to Geometric Features 
Usually raw data detected by a sensor is converted into geometric features such as distance, 

area, and inertia. This process propagates errors into the geometric features due to two reasons: 

the detectability distribution and the reliability distribution. Since this conversion process 

depends on the detected data, we will concentrate on faces as detected data, because most of the 

active sensors detect faces as the primal features. 

5.2.1. Error propagation from detectability distribution 

Most active sensors detect physical patches as detected pixels. Usually, these detected pixels 

will be grouped and converted into isolated regions. If the sensor fails to find a detectable pixel, 

the measured area will be reduced from the nominal area size given by a model. This process 

can be modeled as follows: 

Suppose the detectability probability is p over a region and the nominal area size of the region 

is n. Under this condition, the probability to observe x pixels out of n pixels over the region is 
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physical 
plane 

cos a 5/»(cosp)fix 
5y 

Figure 8a 

Figure 8b 

Figure 8 Reliability distribution of a light-stripe range finder 

/ > w = C D p v " 
Namely, this probability denotes that the system executes n trials and succeeds to detect x pixels 

under that condition that success probability is p and fail probability is q, where p+q=l. This 

process is a binomial distribution; the mean and variance of this distribution are 
m=np 
G^npq 

This gives the error propagation (area reduction ratio) for the detectability distribution. 
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Since both photometric stereo and a light-stripe range finder give p = l , neither sensor causes an 

area reduction due to the detectability distribution. 

5.2.2. Error propagation from reliability distribution 

The Next factors to be considered is the reliability of detected data. We recover the geometric 

features such as distance, area, and inertia from skewed raw data by an affine transform, based 

on the observed surface orientation in either the photometric stereo or light-stripe range finder. 

Thus, if the raw data are erroneous, the obtained geometric features are also erroneous. 

Let d be the real distance, and <i+&2 be the observed one. Then, the physical system generates 

an observed distance dcos 0, while due to the sensor error, we will measure this surface surface 

orientation as cos (0+86), where 0 is the angle between the viewer and surface normal. Thus, for 

80 small, we get 

d+bd = dcos 0/cos (0+80) = d(l+80tan 0). 

In the area case, 

a+80 = a(l+280tan0). 

In the inertia case, 

/+8/ = /(l+380tan0). 

These formulas give error propagation from angular error to features at each pixel. We will 

obtain geometric features from a region which consists of n pixels. Thus, the system will 

execute n trials of measuring 80, which is approximated as a Gaussian distribution, Af(0,a2), and 

observe the total 2,-58.. From the theorem of the Gaussian distribution, S&sEfld- is a Gaussian 

distribution, N(0/io2). 

By using these formulas, we calculate error ratio of areas and inertia for photometric stereo as 

shown in Table 6. Predicted results are obtained based on the reliability of photometric stereo 

developed previously and the formulas of section. We use n=70, a=0.045. Observed results are 

obtained from the distribution of the real data sampled five times. Similar results are expected in 

the other sensors. 

Table 6 Reliability of Geometric Features 

Feature Observed Predicted 
Area 0.02 0.045 
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Inertia I O05 I 0.067 

6. CONCLUDING REMARKS 

This paper discussed modeling sensors for model-based vision. Our sensor model consists of 

two characteristics: sensor detectability and sensor reliability. Sensor detectability specifies 

under what conditions a sensor can detect a feature, while sensor reliability denotes how reliable 

the obtained measurement is over the detectable area. 

We have proposed to use a modified projected quaternion space as the configuration space 

which represents the relationship between sensor coordinates and object coordinates. The sensor 

detectability and the sensor reliability are expressed in this configuration space. Constraints in 

the configuration space involved in detecting features have been developed by using G-source 

illuminated area and G-source illumination direction. We have shown how to compute the 

sensor detectability distribution and the sensor reliability distribution for photometric stereo and 

a light-stripe range finder as examples. 

In model based vision, expected values of various features can be computed from 3D 

geometric model. Those values are, however, nominal values that they should take in ideal cases 

or should be sensed by ideal sensors. On the other hand, actually observed sensor data contains 

noises and should be used accordingly. The sensor model bridges the discrepancy between these 

two values by modeling the distribution of the sensed value based on the characteristics of a 

given sensor. In model-based vision, it is possible to precompile a given 3D geometric model 

into a recognition strategy [24]. This precompilation cannot generate an optimal strategy 

without knowing each feature's reliability, because the strategy should use the most stable 

features at each recognition step. Thus, the sensor model is an essential component in model-

based vision. We have to explore more reliable sensor models for this purpose. 

We also have analyzed the error propagation mechanism from detected data to the geometric 

features. This is important, because quite often we are interested in geometric features derived 

from the detected sensor features. Once we establish the error propagation mechanism from 

detected sensor features to geometric features, we can also assess the reliability of the geometric 

features, hence we can construct a recognition system more systematically and reliably. Further 

study is required in this area. 
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To calculate detectable features of an object under the constraints of various sensors is a 

tedious job when we use a conventional geometric modeler. The better way is to interface a 

geometric modeler with the sensor model proposed. We call this a sensor modeler. The 

traditional geometric modeler only allows users to generate a 3D object by combining primitive 

objects and to display its views. In this sense, the traditional modeling system has only one 

sensor model which is projection. The sensor modeler we propose can generate various 2D 

representations under given sensor specifications. Part of this facility is being implemented in 

our new geometric/sensor modeler VANTAGE [19]. 
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