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ABSTRACT 

The classical reliability model for N-modular redundancy (IWR) assumes the network to be failed 

when a majority of modules which drive the same voter fail. It has long been known that this model is 

pessimistic since there are instances, termed compensating module failures, where a majority of the 

modules fail but the network is nonfailed. A different module reliability model based on lead reliabil­

ity is proposed which has the classical NMR reliability model as a special case. Recent results from 

the area of test generation are employed to simplify the module reliability calculation under the lead 

reliability model. First a fault equivalent technique, based on functional equivalence of faults, is 

developed to determine the effect of compensating module failures on system reliability. This technique 

can increase the predicted mission time (the time the system is to operate at or above a given reliabil­

ity) by at least 40$ over the classical model prediction for simple networks. Since the fault equiva­

lent technique is too complex for modeling of large circuits a second, computational simpler technique, 

based on fault dominance, is derived. It is then shown to yield results comparable to the fault equiva­

lent technique. A more complex example circuit analyzed by the fault dominance model shows at least a 

75$ improvement in mission time due to modeling compensating module failures. A commercially available 

31 gate integrated circuit chip is also modeled to demonstrate the applicability of the technique to 

large circuits. 

Key Phrases: Triple modular redundancy (TMR), compensating module failures, fault equivalence, fault 

dominance, mission time improvement. 

INTRODUCTION 

New system designs for reliable computers must be explored to meet the increasing demand for reli­

able computing systems. One important method of predicting the performance of a system is the modeling 

of the system reliability. 

Modeling requires a mathematical or physical representation which incorporates the salient para­

meters of the modeled system [1]. A model is an incomplete representation of the subject under study. 

To be of value, the modeling technique must be convenient to apply and must successfully predict the 

behavior of the subject under various parameter changes. If a reliability model is accurate, then in­

sights can be gained as to how the system reliability changes as a function of the design parameters. 

An exact method to model the effect of a majority of failed modules in the N-modular redundancy 

(IWR) scheme is presented and shown to increase the predicted mission time (the time for which the sys­

tem is to operate at or above a given reliability) over that of the classical reliability model by at 

least 40$. This exact method is too complex to apply to a large circuit. Thus a second and 
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computationally simpler method is developed and shown to yield a predicted mission time within 10$ of the 

exact model for example systems. 

CLASSICAL NMR RELIABILITY MODEL 

NMR [2] is implemented by dividing the nonredundant network into modules, replicating the modules 

N times (where N = 2t + 1 and t is an integer), and inserting a majority gate between each set of repli­

cated modules. Figure 1 depicts the implementation of a triple modular redundancy (TMR) version of a 

portion of a nonredundant network consisting of a two input, single output module. TMR will be the 

major topic of discussion, although the procedures presented have straightforward applications to the 

general case of NMR. 

Classically the reliability of the network in Figure 1 is modeled by assigning the modules a reli­

ability function, call it R^(t), or R^ with time as an understood variable. The probability of module 

failure is thus 1 - Rm« It is then assumed that the system fails when two or more modules driving the 

same voter, say voter A in Figure 1, fail. The classical reliability model is: 

*l + 3R*(1 - R ) (1) m m m 

The effect of nonperfect voters can readily be incorporated into (1) if voters are assigned to mod­

ule inputs [3,4,5]. Since each voter drives exactly one module input, a voter failure has the same ef­

fect as a module failure. If R v is the voter reliability, then the effective module reliability in (1) 

2 

becomes R y^ m» Networks that do not have a voter for every module input can be modeled by more complex 

techniques [6], However, for the present discussion we will assume every module input has an associated 

voter. Further, the discussion will center on applying the modeling techniques to modules only. Non-

perfect voters can easily be modeled by applying the techniques to modules and their associated input 

voters. 

Equation (1) is pessimistic since there are many cases that a majority of the modules are failed 

yet the network of Figure 1 would not be failed. For example, consider two failed modules for the net­

work of Figure 1. Assume module one has a permanent logical one on its output while module three has a 

permanent logical zero output. The network will still realize its designed function. Such multiple 

module failures which do not lead to network failures will be termed compensating module failures. 

Adding these double, and even triple, module failure cases can often lead to a substantially higher 

predicted reliability than the classical reliability model. With a better reliability model some sys­

tems previously designed may be found to be overdesigned for their specific mission because an inadequate 

reliability model was used. 



Figure 1. Classical triple-moduler redundancy. 
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MODELING COMPENSATING FAILURES 

In the literature, equation ( 1 ) is sometimes rewritten to take into account the cases where two 

modules can fail so as to have compensating effects at the voter: 

R = R 3 + 3 R 2 ( 1 - R ) + K ( 3 R ) ( 1 - R ) 2 ( 2 ) m m m m m 

The K in ( 2 ) is a probability formed by the ratio of the number of ways in which compensating failures 

can occur divided by the number of ways any failure can occur. K has often been taken as l/2 [ 7 ] . 

An alternative model for compensating failures that has appeared in the literature [ 7 ] is: 

3 2 3 0 0 m n a T ) m + n + r 

R ™ » - R + 3R ( 1 - R ) + R Z 2 S K P \Kl> , , ( 3 ) TMR m m m m - . n mnr mnr m.n.r; m=l n=I r=0 

where the module failures follow the Poisson assumption; there are K
m n r ways of designating which of the 

three modules have m, n, and r failures respectively; and P m n r I s the probability that the system oper­

ates correctly with m failures in one module, n failures in another, and r failures in the other. 

Equation ( 3 ) can be rewritten as 

R _ - R 3 + 3 R 2 ( 1 - R ) + R™. + R_, ( 4 ) TMR • m n m 7 Two Three 

where R T w Q> Rxhree i s t* i e c o n t r i b u t i - o n t o t n e system reliability from compensating failures in two and 

three modules respectively. 
Methods for calculating K or P are not described in the literature. The next two sections will 

mnr 
develop a technique to calculate R T w o

 a n & Rxhree b a s e c * o n a ^ e a c i failure model for module reliability. The 

technique can also be used to calculate the P of equation (3), if some assumptions about the relation-
mnr 

ship between the lead failure model and Poisson failure model of module reliability are made. 

This exact technique is only practical for small circuits. A computationally simpler method, em­
ploying the concepts of fault equivalence and fault dominance, is derived for determining the contribu­
tion to R_ of two failed modules with one failure in each. The latter method is validated as a good 

Two 

approximation by comparison to the exact technique. 

MODULE FAILURE MODEL 
In order to calculate R_ and we will have to define what we mean by a module failure. Re-Two Three 

search in the area of testing and diagnosing combinational and sequential logic circuitry has relied 

heavily on the logical stuck-at-fault mode [8]. This model assumes that most or all failures of inter­

est in a logic circuit manifest themselves as some line in the circuit taking on a constant logical 



value, either one or zero. Now that algebraic structure which applies to the behavior of networks in 

the presence of stuck-at faults has been developed [8,11,12], the tools are available to formulate and 

analyze a new module reliability model. 

The new model will assign a reliability function to each lead in the network rather than each mod­

ule as in the classical model. Lead reliability will be represented by R and the probability of lead 

failure by 1 - R. 

Much has been written in defense of the stuck-at failure model [8] but a few words will now be de­

voted to justification of the lead reliability model. In one study of IC failure mechanisms [9] it was 

found that about 84$ of the IC failures were directly related to lead failures, either of input leads or 

of metalization on the chip itself. 

Similar to the classical model assumption that module failures are statistically independent events, 

it will also be assumed that lead failures are statistically independent. A further advantage of the 

lead reliability model is that it takes into account the increased number of interconnections required 

for the massive redundancy version of a nonredundant system. Wiring errors and off-chip interconnec­

tions than may be the major source of failures. 

It will be assumed that the stuck-at-one (s-a-1) faults are as likely to occur as the stuck-at-zero 

(s-a-0) faults. Hence, the probability that a lead is s-a-1 is: 

P (s-a-1) « P (lead failure) P (s-a-1 | lead failure) 

P (s-a-1) - (1-R) • l/2 

FAULT EQUIVALENT RELIABILITY MODEL 

Using the above model for module failure it is now possible to calculate R ^ Q * First, a few assump­

tions are necessary. The modules will be assumed to consist of irredundant combinational logic [8] so 

that any single internal module fault will cause an improper output for at least one set of inputs. It 

will also be assumed that the system has failed as soon as it is possible for the voter to give a wrong 

response to any possible input combination. This excludes the situations where a module trio fails but 

subsequent faults within the module trio restores proper behavior. 

To model the faulty modules we will adopt the notation developed in [8]. We will now illustrate 

the evaluation of the ^ T w Q , i.e., the case of two faulty modules for a simple module. 

1) Transform the logical circuit into the corresponding logical model [8]. 

Consider Figure 2(a) where the module under study is a single two input NAND gate. The logical 
model is a directed graph shown in Figure 2(b). 

2) Form the functional equivalence classes for all single and multiple faults in the logical 



2 

(b) 

Fig. 2. An example module (a) for the calculation of supplementary 
classeB and (b) its logical model. 
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supplementary class 

where p is the number of leads in a module and k is the sum of the line failures in the two failed modules. 

The development of step 4) is best given by an example. The equivalence class matrix for the NAND 

gate of Figure 2 is derived from the entries in Table 1(a) and is shown in Table 2. 

For our example of two failed NAND modules (6) becomes: 

( 3 )[(20/4)R7(l-R)2 + (72/8)R6(l-R)3 + (118/l6)R5(1-R)4 

W (7) 
+ (96/32)R4(l-R)5 + (32/64)R3(l-R)6] 

model [8]. 

A fault is said to be functionally equivalent to another fault if and only if the output function 

realized by the module with only the first fault present is equal to the function realized when only the 

second fault is present. For example, a/0 and c/l (the notation i/i means line I stuck at logical value 

i) are functionally equivalent. Table 1(a) shows the fault classes and their members. Here \ is the null 

fault and represents the fault free network. The functional equivalence classes are assigned numbers 

arbitrarily. 

For a TMR system, two faults, f̂  and f^, occurring in different modules are said to be supplementary 

if their simultaneous presence does not cause network failure. Two functionally equivalent fault classes 

are called supplementary classes if the faults contained in one class are supplementary to faults in the 

other. 

3) Enumerate the supplementary classes. 

For the case of two module failures one of the modules will be the fault free function. 

The majority gate can be considered to be a threshold gate with input weights 1 and threshold of 2 [10]. 

In Table 1(b) the Karnaugh maps represent the fault functions for the faults X, a/1, and b/l respec­

tively. We continue to try all possible combinations of faulty function pairs until all supplementary 

classes are formed. These are shown in Table 1(c) for our example. 

In the last step a matrix E is used to actually evaluate R
T W £ > - Element E i of equivalence class  

matrix E is the number of faults in equivalence class j (the equivalence classes were assigned numbers 

under step 2) which are a result of i leads in a module failing, where i is termed the fault multiplicity. 

A) Form the term for two faulty modules by use of the equivalence class matrix E and the equation: 
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Tablo 1. The (a) fault classes, (b) an example of the test for 
supplementary fault classes, and (c) the supplementary 
classes for the NAND gate example of Fig, 2 . 

Class 

c F 1 /(x) 

= (a/1) 

- {b/i} 

'Tk 
{c/0; 

a/l, c/0; a/0, c/0; a/l, b/l ; 

b/l,c/0;b/0,c/0; 

a/l,b/l,c/0;a/l,b/0,c/0; 

a/0, b/0, c /0; a/0, b/l, c/0) 

Fault Function 

X + Y 

Maps 

r V o 
01 
1 

T T 

C p 5 = (a/0;b/0;c/l; 

a/l,c/l;a/0,c/l;b/l,c/l; 

b/0,c/l;a/l,b/0; 

a/0, b/0;a/0, b/l; 

a/l,b/l,c/l;a/l,b/0,c/l; 

a/0, b/0, c /1 ; a/0, b/l, c /1} 

(a) 

1 1 
1 

Y V O 1 Y \ X O 1 
1 1 

#1 #2 
a/l 

#3 
b/l 

(b) 

Y V P 1 
o T y r 

2 0 

Threshold 
Map 

( (2,3) (2,5) (3,5)' (U,5) ) 
(3,2) (5,2) (5,3) (5,M 

Y \ X 0 1 
T T 
1 1 

Y \ X 0 l 
l l 
l 

Voter 
Output 

Function 

(c) 
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Table 2 . The equivalence class matrix for the NAND gate of Figure 2 , 

Equivalence Class 
1 2 3 

0 
Number of ft _ 
Failed Leads 

2 

3 

The procedure outlined above is easily modifyable to handle the case of three module failures and 

is readily extendable to other multiple line redundancy schemes (NMR)# In some logic families one type 

of logical stuck-at fault may be much more likely than the other. If so, P(s-a-i | lead failure) could 

be taken as approximately 1.0 and the fault equivalence classes formed by considering s-a-i type faults 

only. The comparison of this reliability model with the one of equation (1) will now be undertaken. 

COMPARISON OF FAULT EQUIVALENT AND CLASSICAL RELIABILITY MODELS 

If there are p leads in a module, then the module reliability, Rffl, according to the fault equiva­

lent model just presented is R P. For the case of fewer than half the modules failing in an NMR network, 

the classical reliability model gives a reliability of: 

L N / 2 J / N \ N-i i 
R - t (")R* 1 (1 - R ) (8) 

It will now be shown that the first LN/2J + 1 terms of the fault equivalent reliability model are iden­
tical to ( 8 ) , the classical NMR reliability model. 

Theorem 1: The fault equivalent reliability model proposed above has the same form as (8) for LN/2J or 
fewer module failures. 

Proof: The probability of no module failures is ( R P ) N - R N which is the first term of ( 8 ) , Now for any 
m * 

number of module failures less than or equal to LN /2J , there is still a majority of working modules and 

any failure configuration of a failed module's lines would not cause system failure. So to complete 

the proof of the theorem, all we need show is that the classical failure probability 0-R m) is equal to 

the single module failure probability of the fault equivalent model. 

The fault equivalent failure probability for a single module is: 

I l / 2 k • E , 4 • R p- k(l-R) k 

k«l k» 
Vi 
k,i " * ° " R ) (9) 
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The ± term, considering the cases for all i, is 2^^) since there are ways to select k failed 

leads from p. Each failed lead may be in one of two failure modes, s-a-1 or s-a-0, which accounts for 

the 2 • Hence (9) becomes: 

sCJ)0-wV- k--RP + l" (10) 
k-1 V K 

which is the probability of module failure using the classical reliability model. This completes the 

proof of Theorem 1. 

The classical reliability model (1) was compared to the fault equivalent model for the single NAND 

gate module of Figure 2 and a two HAND gate module. The comparison was made in terms of mission time 

improvement I [7]. I is thè ratio of the time at which two reliability models have the same reliability. 

To obtain I, the classical reliability at time t was equated to the new reliability at time It and the 

resultant equation solved for I. The mission time improvement for the fault equivalent model (evaluated 

for compensating failures in only two modules) over the classical reliability model is shown in Table 3. 

It is important to note that the apparent improvement in mission time is not due to any change in the 

modeled hardware system but rather to a more accurate reliability model. 

Table 3. Mission time improvement, I, of 
3 2 [R + 3 R (1-R ) + R_ ] over L m m m Two 
3 2 [R + 3 R (1-R )] for two simple modules. L m m m J r 

Single NAND gate 

Two NAND gate 

0.7 0.8 0,9 0.95 0.99 
1.474 1.477 1.484 1.491 1.496 

1.491 1.497 1.515 1.526 1.539 

It can be seen that a mission time improvement of 50$ can be obtained by adding the effect of R
T w o 

to the classical reliability model. Another way of looking at the parameter I is that if the classical 

model is used, then the resultant system is overdesigned by 50<£ since it could meet its mission time 

specification with less reliable components. 

The technique outlined above for the fault equivalent reliability model can also be employed to 

determine the P term of equation (3). In (3) a module is assumed to follow the Poisson distribution, mnr 
e.g. the probability that there are exactly n failures in a given period of time t is: 

R 1 2 ^ 
m n. 

In (3) a module can have an infinite number of failures. If we associate a failure in a module to a lead 
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failure and assume P = 0 for m, n, r > p, where p is the number of leads per module, then P is mnr mno 
given by: 

i ^ — ( E
m i • V (11> 

]2 V. . such that (i,j)are supplementary classes 

The first term is the number of ways two modules can fail with m failures in one and n in the other. 

Further, each lead can fail in one of two ways (s-a-0, s-a-1). The second term of (11) is the number of 

ways two modules with m and n lead failures can form compensating failures. The modifications of (11) 

to calculate P are obvious, mnr 
The fault equivalence class matrix E is the computational bottleneck for the fault equivalent model. 

A significantly simpler model, based on fault dominance, is developed in the next section. Subsequently 

it will be compared to the fault equivalent model and shown to be a tight lower bound. 

FAULT DOMINANCE RELIABILITY MODEL 

One might speculate that the first term in the summations of equation (3) (m-1, n-1, r • 0) or 

equation (6) (k « 2) might be the dominant term as far as compensating failures are concerned. That 

this is the case will be demonstrated by comparison with the fault equivalent model and a multiple fault 

model. Hence we shall consider the case of two module failures with one failure per module. A simple 

formula for P,,A and R_ (with one lead failure in each of two modules) assuming tree structured mod-1 i u TWO 

ules will now be derived. Approximations for modules with reconvergent fanout will also be given. 

The modules adhere to the same assumptions as the fault equivalent reliability model. The follow­
ing definitions will be required: 

Definition 1: A test set, T^, for a fault is that set of inputs which can detect fault f^; i.e., 

produces a different output if f i occurs than when no fault is present. 

Definition 2: Fault is equivalent to fault f ] 9 denoted by f ] - if and only if ^ s T 2, where 
"s" denotes set equivalence. 

Definition 3: Fault f 2 is said to dominate f 1 , denoted by f̂  > f 1 iff T 2 3 T 1 where z> denotes set cover­

ing. Conversely f̂  is said to be dominated by f^. 

The necessary and sufficient conditions for compensating module failures can now be given. 
stands for the empty set. 

Theorem 2: Single faults f1 and f 2 are supplementary (written f1 ~ f 2) if and only if ^ fl T 2 • ^. 
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Proof: 

Part L: If T ] fl T 2 = |» then f ] ~ 

For any input t i e , F(f^) © F • 1 where F is the nonfaulty output and F(f.j) is the output with 

fault f1 present. But F(f2> © F = 0 or F(f 2) = F since t± does not detect t^. Thus majority (FC^), 

F(f 2), F) = F. Similarly for any input t^ e T 2 > F(f2> © F = 1 and F ^ ) © F = 0. So majority (FC^), 

F(f 2), F) = F. Hence if T ] 0 T 2 = j> then f ] ~ f £. 

Part II: If f 1 ~ f 2 then T ] 0 T 2 = \. 

The proof is by contradiction. Assume f1 ~ f 2 but fl T 2 / <|>. Take the case T 1 fl T 2 = ti« 

Since t± is a test for f 1, Y(f^) © F » 1 for the input t±. Likewise t± is a test for F 2 and F(f2> ©F=1. 

The majority (F(f.j), F(f 2), F) ̂  F and f1 f 2 # The original assumption is contradicted and therefore 

if f1 ~ f 2 then T 1 D T 2 = j). This completes the proof. 

There are two corollaries to Theorem 2 which will prove helpful. 

Corollary 2.1: If » f 2 then f 2. 

Proof: If f1 = f 2 then T 1 s T 2 by the definition of fault equivalence. Thus ^ f] T 2 / | and f1 ^ f 

Corollary 2.2: If f ] > f £ then f ] /* f £. 

Proof: If f1 > f 2 then 3 T 2 by the definition of fault dominance. Further £ ^ since the module 

was assumed irredundant and a fault for which there is no detection test is considered redundant. Hence 

T ] 0 T 2 / j. and f ] £ f 2. 

The modules will also be assumed to be composed of elementary gates: Invert, AND, OR, NAND, and 

NOR are depicted in Figure 3. The equivalent and dominating fault class structure, as developed in [8, 

11,12], is also depicted. Consider the two input AND gate in Figure 3. In the graphical representation 

of the AND gate each lead is represented by a pair of circles; the upper circle stands for a s-a-1 fault, 

the lower one for a s-a-0. Equivalent faults are connected by a straight line. Faults related by dom­

inance are connected by an arrow pointing from the dominating fault to the dominated fault. The test 

sets for the various faults are also given in Figure 3. The notation T f l^ means the test set for input 

'a1 being s-a-1. The first element of the test vector corresponds to the uppermost lead, etc. Thus, to 

detect a s-a-1 in the two input AND gate a 0 should be applied to input 'a' and a 1 to input 'b'. 

An important observation to make from Figure 3 is that for elementary gates the test sets for all 

faults, other than equivalent faults, are disjoint. This includes faults dominated by the same output 

fault, A test for a circuit can only put one value on each lead of a circuit, thus the circuit test sets 

for two faults in an elementary gate must be disjoint if the faults are not equivalent. 



(a) 

Figure 3. The elementary gates (a), the test sets (b) 
and the class structure (c) 
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A tree circuit is depicted in Figure 4(a) and its fault class structure in Figure 4(b). Although 

AND and OR gates are used the fault class structure of Figure 4(b) is representative of the fault class 

structure of any arbitrary tree composed of elementary gates. 

The exact number of supplementary faults for a given lead can be derived with the aid of the follow­

ing definitions. 

Definition 4: A lead y is a successor of a lead x iff every path from x to the circuit output also pass­

es through y. 

Definition 5: A lead x is a predecessor of a lead y iff y is a successor of x. 

In Figure 4(a) lead y is a successor of lead x and x is a predecessor of y. 

Theorem 3: The number of supplementary single faults to a failure on lead x is an arbitrary tree cir­

cuit composed of arbitrary combinations of elementary gates is: 

p + p - n - n (12) r r pre sue 

where p is the number of leads, n the number of predecessor leads of lead x and n the number of r * pre r sue 
successor leads of x. 

Proof: For a tree with p leads the fault class structure will always consist of two trees of p nodes 

each regardless of what combination of elementary gates are used. Of the 2p single faults, any fault in 

one tree is supplementary with any fault in the other tree since their test sets are disjoint. A lower 

bound on the number of supplementary faults is thus p. To illustrate this consider faults f^ and f̂  in 

Figure 4. If we denote their test sets by T^ and T 6, respectively, it is easy to demonstrate that 

T^ 0 Tg • 4>. No matter what the relative positions of f̂  and f̂  are there is always a fault in one tree 

such that s U p (where U denotes set union) and a corresponding fault in the other tree such that 

T L • T r U r. Also the faults f and f will be in the same elementary gate so that T 0 T, 8 i. Thus h 6 g h g h T 

<T 4 U p) 0 <T 6 U r) - 4> 

(T 4 0 Tfi) U (T 4 n r) U (p 0 T 6) U (p 0 r) = t 

This can be the empty set only if each individual term is empty. Hence fl a fy. 

Within each tree of the fault class structure any fault on lead x will either dominate or be equiva­

lent to any predecessor node because of the transitivity of the dominance and equivalence relationships 

[11,12]. Hence there can bê  no supplementary failures on the n predecessor leads since a test set 
pre 

for a fault on a predecessor lead will not be disjoint from the test set for a fault on lead x. Similar­

ly, faults on successor leads to x cannot be supplementary to x since they will either dominate or be 



Figure 4. An example tree circuit (a) and its fault class structure (b). 
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- (JH-1) t 

Proof: From the first term of (12) each faulty lead is supplementary to p other lead faults in the 

other module. Since there are p leads in a module and two types of failures per lead the first term in 
2 t w . i t 

(13) should represent 2p , We must show that p 8 3 — — — . At each level i of the tree there are t 
4 JfrH t~ 1 Z i t -1 t =» —t~T~ * T* 1 6 r e m a i n i n 8 terms count the number of leads that are not predeces 

sors or successors of a given lead, for all leads. For level k there are t leads which are not prede­

cessors or successors to subtrees consisting of 4-k, 4-k+l,...&-1 levels. Levels are numbered from the 

module output to input. Thus the number of supplementary faults is augmented by: 

equivalent to it. This accounts for the negative terms in (12). 

All that remains to be shown is that each remaining lead contributes exactly one supplementary 

fault. For any given successor lead, y, one tree of the fault class structure will have a fault on y 

dominating a fault on x or a fault on a successor lead of x. The other tree will have an equivalence 

relation. Refer to Figure 4 to clarify the discussion. Assume lead x is represented by faults f̂  

and lead y by fy f^. It will be shown that faults f^, f^, f̂  are supplementary to f̂  but fg, f^, f^ 

are not supplementary to fy. 

The test sets for and f̂  are disjoint hence ~ ^3* B v t* i e t r a nsitivity of equivalence and 

dominance, the same disjoint relationship holds for the test sets of f^, f^. Hence f̂  is supplementary 

to all the faults in the subtree dominated by f^. By similar reasoning, f̂  76 f̂  because test sets are 

not disjoint. Hence fg f̂  and f̂  f̂ . By the transitivity of equivalence and dominance, the above 

reasoning holds for all successors of lead x. In summary, each subtree dominated by a fault on a suc­

cessor of lead x contributes one supplementary fault per lead. Taken over all successors of x the re­

sult is one supplementary fault per non-successor and non-predecessor lead of x. This completes the 

proof. 

With Theorem 3 the number of supplementary single faults in an arbitrary tree can be deduced by 

inspection. A closed form formula will now be derived for a full, uniform tree. 

Theorem 4: The number of supplementary faults in a full tree of t-input elementary gates of % levels is 

1 • (13) 
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A 

A 

+ ... + t Z T-7 

which is: 

Equation (14) becomes: 

A 

t-i" 
j = J6-K-1-1 

A 

k=l j=4-k+1 

A 

(t-D k - - l t-i 

(14 ) 

(15 ) 

It remains to be shown that 
(t-l) S(t-i) (_(t-i) J - (t-i) ' " kfi ( ( 6 ) 

Z k t k - 1 Z k t k " ] + 1 - 1 Z (k+n t k + 1 
k«1 k«2 k»1 

A 

t Z (k+i) t k + t - (je+i) t
A + 1 

k=i 
A A Z k t k + 1 Z t k + 1 - (jw-D t ^ 1 

k=l k=1 

This completes the proof of the theorem. 

Hie subtree counting technique employed in Theorem 4 can be used to calculate the number of supple­

mentary faults, S 2 (for a single lead failure in each module) for an arbitrary tree. Thus, from equa­

tion (6) 

RTwo - 3 # S 2 ' 0 / 2 ) 2 r 3 P " 2 ° - R ) 2 ( 1 7 ) 

Note that for the NAND gate of Figure 2 A • 1 and (13) yields S 2 - 20. Thence (17) agrees with the first 

term of equation (7). Similar correspondences have been made between the fault equivalence and fault 

dominance models for tree structured modules. Table 4 depicts the mission time improvement of the fault 

dominance reliability model over the classical reliability model for various circuits. A four level 

binary tree is also listed in Table 4 to demonstrate that the fault dominance model can lead to 
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substantial mission time improvement. 

Table 4. Mission time improvement, I, of the Fault equivalence 
reliability model and Fault dominance reliability 
model over the classical reliability model for various 
modules. 

Rm 0.75 0.8 0.85 0.9 0.95 0.99 
1 

Single NAND gate 

Equivalence Model 1.476 1.477 1.481 1.484 1.491 1.496 

Dominance Model 1.358 1.382 1.405 1.439 1.472 1.491 

Two NAND gate 

Equivalence Model 1.494 1.497 1.510 1.515 1.526 1.539 

Dominance Model 1.355 1.384 1.414 1.452 1.492 1.531 

Four Level Full 
Nary Tree 

Dominance Model 1.405 1.451 1.505 1.575 1.663 1.766 

Multiple Fault Model 1.300 1.318 1.389 1.361 1.386 1.408 

Dominance plus Multiple 1.442 1.485 1.535 1.598 1.692 1.771 

In order to illustrate that equation (13) is the dominant term in equation (6) a reliability model 

employing multiple faults can be developed using the following theorem: 

Theorem 5: A lower bound on the number of supplementary faults for N lead failures in two modules of a 

full & level tree of t-input elementary gates is: 

N-ir A ^ r A 

i-1 Vjc-0 X X J u-o 

Proof: Equation (18) enumerates the subtree multiple faults (SMF), those multiple faults whose component 

faults are all in one subtree with one fault at the root of the subtree. Since the fault at the root 

masks the effects of other faults in the subtree then the SMF (subtree multiple fault) will be supple­

mentary to any other SMF in the other module so long as the root faults are in different fault class 
k Ji-k+1 structure trees. At level k there are t subtrees each with t branches. Thus there are 

2^ C \ £ i" J S M F s where y j is defined as zero if y > x or y < 0. The outer sum in (18) enumerates 

the ways N faults can be distributed between two modules with at least one fault per module. Finally, 
N-2 

only two of the N faults have specified values (those at the roots of the subtrees) hence there are 2 

values of s-a-1 or s-a-0 the multiple fault can assume and still be supplementary. Finally, there are 
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n-1 

(19) 

Equation (19) is a lower bound since there are multiple supplementary faults which do not have all of 

their component faults restricted to a single subtree. In Table 4 the Multiple Fault Model is compared 

to the Dominance Model for a four level binary tree for S 2 exact (13), estimated (18) for all N , and 

a combination of double and multiple faults (19). From the comparison we can see that S 2 exact is the 

dominant contributor to the mission time improvement and that multiple faults as given by (18) are a 

second order effect. 

Equation (13) can be used to estimate S 2 for arbitrary trees or circuits with reconvergent fan-out. 

An upper-bound on S 2 for an arbitrary tree would be equation (13) with the maximum depth of the tree sub­

stituted for i and the maximum number of inputs per gate for t. This accounts for all supplementary faults 

in the circuit and for some that do not exist. A lower bound would be (13) with minimum I amd minimum t. 

The fault dominance model can also be used for circuits with reconvergent fan-out. The circuit is 

modeled by an identical circuit with fan-out points removed. Figure 5(a) depicts an exclusive-OR cir­

cuit and Figure 5(b) the tree circuit used to calculate the supplementary faults. This value for S 2 will 

be a lower bound since not all faults are considered. All supplementary faults in the reduced circuit 

will also be supplementary in the original circuit since fan-out points only restrict the values of test 

sets. Gate inputs are no longer independent. Table 5 depicts the mission time improvement for the ex­

clusive-OR and a SN74147 10-line-to-4-line priority encoder chip. The latter consisted of 31 gates and 

70 leads. The value of S 2 was calculated by inspection. The number of non-successor and non-predecessor 

leads for each lead, taken over all leads, took less than 10 minutes to determine by hand. This illus­

trates the applicability of the technique to large circuits. 

Table 5. Mission time improvement, I, of the fault dominance 
reliability model over the classical reliability 
model for modules with reconvergent fan-out. 

exclusive-OR 
0.75 0.8 0.85 0.9 0.95 0.99 
1.196 1.207 1.219 1.232 1.246 1.259 
1.228 1.244 1.263 1.283 1.304 1.324 

two ways the root faults can be in different fault class structure trees. This accounts for the 2 
N-2 

2*2 factor in (18) and completes the proof. 

Equation (17) can now be amended to 
2p 

R T w o a 3 ^ S N < V 2 ) N R 3 P - N 0 - R ) N 



Figure 5. An exclusive-OR circuit (a) and the modeled circuit with fan-out 
removed (b). 
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The fault dominance model can also be used to calculate P.^ by dividing the number of supplementary 

faults by the total number of single faults. To find the maximum value of P l i n for a full tree divide 
t w . t

 2 

equation (13) by 2 — ^ — and take the limit as JL approaches infinity. The result is: 

1/2 + 1/4 ^ 

Hence P 1 1 A is between l/2 and 3/4 for a binary tree. It can be shown that adding levels to a tree causes 

P ^ n to increase while adding an inverter or a new gate input causes Q to decrease. 

CONCLUSION 

A technique, the fault equivalence reliability model, has been developed and shown to increase mis­

sion time by 50$ for some simple circuits. A computationally simpler model, the fault dominance reli­

ability model, has been demonstrated to be a good approximation to the fault equivalence model. Both 

techniques can be applied to calculate the p
m n r ' s f o r modules employing the Poisson failure assumption. 

The classical reliability model may be sufficient for establishing the better of two different fault 

tolerant architectures where the mission time improvement may be on the order of 5-20. However, in fine 

tuning of the design and predictions of the reliability of the final system a method which accounts for 

compensating module failures should be used. 
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