
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.



A Computational Study
of Rigid Motion Perception

Amit Bandopadhay
Department of Computer Science

The University of Rochester
Rochester, NY 14627

TR221
December 1986

This report reproduces a thesis submitted in partial fulfillment of the
requirements for the degree of Doctor of Philosophy. The work was
supervised by Dr. Dana H. Ballard.

This work was partially supported by the National Science Foundation
under grant DCR-8405720 and the Office of Naval Research under
contracts N00014-80-C-0197 and N00014-82-K-0193.

We thank the Xerox Corporation University Grants Program for
providing the equipment used in the preparation of this paper.



 



Curriculum Vitae

Amit Bandopadhay was born in Calcutta, India in December 1954. He

had his schooling at Various suburban towns in the State of West Bengal and

at Calcutta. In 1972 he graduated high school and was the recipient of the

Indian Government's National Merit Scholership. In the same year he

joined the Indian Institute of Technology (IIT) at Kharagpur, to study

electronics and electrical engineering, obtaining the B.Tech. degree with

honours in 1977. At Kharagpur he was involved in a wide variety of

activities such as dramatics, debating, music for which he received many

awards. He served as the Governor of the Technology Dramatic Society for

a year. He is also an avid hiker and enthusiastic sports lover. In 1977 he

joined the Indian Institute of Technology at Kanpur from where he

graduated in 1979 with the M.Tech. degree in computer science. While at

Kanpur he was elected as the president of the Association for Computing

Activities.

The next phase of his life was spent in Calcutta, from 1979 to 1981,

working as a systems analyst for a multinational corporation.



Ill

He joined the Department of Computer Science at the University of

Rochester in the fall of 1981. The field of artificial intelligence had always

fascinated him so he decided to work in computer vision. He was fortunate

to have found a stimulating atmosphere in the Department of Computer

Science, and was enriched by the intellectual atmosphere there- His

doctoral thesis was supervised by Professor Dana Ballard. While at the

University of Rochester he served as teaching assistant and research

assistant from the fall of 1981 to the summer of 1986.

He has published about a dozen papers and technical reports, in robot

motion perception. His other interests are in massively parallel

computations, knowledge representation and retrieval, expert systems,

automated learning, very large databases, evidential reasoning and computer

aided instruction. He is a member of the Association of Computing

Machinery (ACM) and the Society of Photo-Optical Instrumentation

Engineers (SPIE).



Acknowledgements

It is hard to even begin to thank adequately, the many people who have

influenced my thinking and stimulated my intellectual growth.

Dana Ballard, my thesis supervisor, has provided invaluable help at all

stages of this work. He showed me how to separate the wheat from the

chaff. When there were dry spells, and ideas were not forthcoming, his

indefatigable enthusiasm kept me going. You have my thanks and

admiration for your judicious support, patience and for your help in all the

tangible and intangible ways that are difficult to enumerate.

I consider myself fortunate to have had the chance to interact with

Jerry Feldman. His clear vision has helped me to put things in. perspective

and, I hope, will give me courage to break out of established dogma when

necessary. My discussions with him have invariably proved to be valuable

in expanding my comprehension of my chosen field.

Chris Brown is a guiding spirit of the Rochester Vision Group. His

energy and leadership invigorates the vision research done here. In spite of

his numerous duties as the chairman of the Computer Science Department,

he has almost never failed to find time for discussions or advice, whenever I



or any other student needed it.

I thank Peter Lennie for agreeing to sit in my thesis committee, and for

tolerating proposals for solving vision tasks that surely seemed, at times, far

removed from the scheme of Nature.

My stay at Rochester has been enriched by the friends I have had the

fortune of having here. Yannis Aloimonos and Vally Koubi were always

there for support and help. Yannis has always been an abundant source for

technical inspiration. The vision group deserves thanks for making this

place a rewarding place to work in. I also wish to thank Paul Chou, Joel

Krenis, Takahide Ohkami, Doug Ierardi for their friendship. Barun

Chandra and Rabi Dutta, were great people to work with. Thanks to Gary

Cottrell, Hari Narayanan, Cesar Quiroz, Ken Yap, Isidore Rigoutsos, Rich

Pelavin, Richard Newman-Wolfe and Josh Tenenburg for companionship.

I would like to remember Lydia Hrechanyk, who had a rare

combination of intelligence, charm and patience. She affected us, felow

graduate students and office mates, in more ways than can be recounted.

I am happy to also thank Mr. and Mrs. Ronald Furman, for friendship

and caring, especially during the first few days of my stay here. Thanks also

to Tamisra Sanyal, Atul Kacker and Amitabha Mukherji, long suffering

apartment mates past and present.



Finally I thank my parents for instilling in me the desire to know, an<

my siblings for loving without expecting any return.



 



Abstract

The interpretation of visual motion is investigated. The task of motion

perception is divided into two major subtasks: (i) estimation of two

dimensional retinal motion, and (ii) computation of parameters of rigid

motion from retinal motion- Retinal motion estimation is performed using

a point matching algorithm based on local similarity of matches and a global

clustering strategy. The clustering technique unifies the notion of matching

and motion segmentation and provides an insight into the complexity of the

matching and segmentation process. The constraints governing the

computation of the rigid motion parameters from retinal motion are

investigated. The emphasis is on determining the possible ambiguity of

interpretation and how to remove them. This theoretical analysis forms the

basis of a set of algorithms for computing structure and three dimensional

motion parameters from retinal displacements. The algorithms are

experimentally evaluated. The main difficulties facing the computation are

seen to be nonlinearity and a high dimensional search space of solutions. To

alleviate these difficulties an active tracking method is proposed. This is a

closed loop system for evaluating the motion parameters. It is shown that
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under such a regime it is possible to obtain closed form solutions for the

motion parameters. This leads to a robust cooperative algorithm for motion

perception requiring minimal amount of retinal motion matching. The

central theme for this research has been the evaluation of a hierarchical

model for visual motion perception. To this end, the investigations

revolved around three primary issues: (a) retinal motion computation from

intensity images; (b) the conditions under which three dimensional motion

may be computed from retinal motion, and the efficacy of algorithms that

perform such computation; (c) the active vision or closed loop approach to

visual motion interpretation and what it buys us. This thesis records

fundamental contributions pertaining to the above questions.
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Chapter One

Introduction

1.1. The Motion Perception Problem

Our visual perception creates awareness of the world around us, that

consists of a rich variety of objects. These objects are characterized by

different shapes, colors and motion patterns. The visual data (or stimulus)

that is captured by the eyes is in essence two dimensional patterns of light

reflected from the surfaces, normally of solid rigid objects, that exist in our

environment. When we ponder the complexity of the three dimensional

scene surrounding us, it is apparent that despite the unconscious ease with

which our brain interprets the visual data available to it, Visual Perception is

a complicated task. Two of the problems associated with actually ' 'seeing"

in three dimensions are immediately apparent. First, the images formed on

the retina of the eyes are two dimensional, thus three dimensional

information is only implicit. Second, the retinal images are continually

changing, due to the movement of objects we are seeing, or due to our own

movement.
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To relate retinal images to object models natural constraints in the world

must be used. The retinal stimulus contains implicit information that can be

used to recover aspects of the three dimensional world being viewed. There

are two images formed on the retinas of the two eyes, which are spatially

displaced from each other. The principle of stereoscopic fusion (or

triangulation) of the images of a point in space to compute its depth has

been recognized for a long time. There is also the intimate relationship

between the local surface shape (e.g. slant and tilt) and motion induced

change in the retinal intensity pattern.

This thesis is concerned with one particular set of visual constraints,

namely those having to do with motion. The problem under study concerns

the task of computation of the three dimensional motion between an

observer and rigid objects.

It is now widely accepted that motion is a fundamental sense or

modality, that is extracted from the visual stimulus array (see [63]). This

computational study of motion will be restricted to stimuli that contain

information primarily about spatio-temporal variations in the image intensity

distribution. However, it is useful to bear in mind that submodalities like

depth and surface orientation can prove helpful in analyzing the motion

understanding process. On the other hand color information is assumed to

play a minimal role in the perception of motion. Therefore, the visual input

that is considered useful is monochromatic images from either one or both
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eyes.

The computational goal of the motion perception process is to obtain

estimates for the three dimensional velocities of the objects being observed.

The latter quantities are also termed relative motion parameters and are

global attributes of the moving bodies. In a theoretical sense there is not

much difference in analyzing a scene containing a single moving object and

another containing multiple objects in motion. In the latter case, the motion

analysis must first perform segmentation or break up the two dimensional

image into the various regions corresponding to the different object surfaces.

Subsequent to this, the individual segments can be treated separately as

image fragments dealing with single body motion.

In subsequent portions of this document, unless otherwise specified,

the treatment of three dimensional motion interpretation deals with

egomotiotL This is the situation where the motion stimuli are generated due

to the movement of the observing system in a static visual environment.

The reasons for this simplification are

(i) The two dimensional motion estimation algorithm that is proposed in

chapter two can handle motion segmentation and hence subsequent

analysis need not deal with more than one moving surface.

(ii) Mathematically, there is no difference between the motion stimuli due

to a static observer, whose entire visual field registers motion due to

one moving object, and that for a moving observer registering the
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relative motion of the static surround.

The problem addressed in this thesis can thus be stated as:

Problem Definition: Given monocular or binocular spatio-temporally

varying images and known viewing parameters, to compute egomotion

parameters and structure of the imaged scene.

The viewing parameters referred to in the above definition are the focal

length, image scaling factors and the relative locations and orientations of

the two cameras (in case of binocular imagery).

Traditional approaches to this problem have made two different kinds

of assumptions when compared to the methodology advocated here. The

first of these is that the monocular stimulus should be enough to compute

the motion parameters. The theoretical basis of this belief will be explored

to evaluate how well monocular data can be used to aid the perception

process. It will be seen that the problem is beset with two principal

difficulties, namely: (i)nonlinearity and (ii) high parameter space dimension

The above difficulties make computer algorithms for motion computation

complex and sensitive to errors in two dimensional retinal motion

measurement [84].

Almost all previous work is based on the assumption that the motion

problem can be solved with passive observation. In passive observation, the

sensors (cameras) are rigidly attached to the body in motion. Since motion
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is relative, one can always assume that the sensor is fixed and the

environment moves. Thus passive navigation deals with the measurement of

motion with respect to a static sensing system. This problem assumes that

the alignment of the camera axis with respect to the three dimensional

velocity directions is arbitrary and fixed. In general the solution can be

shown to be dependent upon nonlinear equations of large dimensions [19,

64]. There is no reason to believe that passive navigation can lead to

efficient and robust solutions to the problem of motion perception. In fact it

will be shown that such methods have inherent ambiguities in so far as

motion interpretation from two dimensional retinal cues is concerned.

An alternative approach to the problem, can be based upon the

assumption that the alignment of the camera axes are controllable by the

observer. In this case, as the observer continues to move in the world, the

orientations of the eyes (cameras) are continually adjusted. This adjustment

is dependent upon the two dimensional motion perceived on the retina, and

serves - among other things which will be explained later - to simplify the

constraints governing the perception of the motion. This is the mechanism

of active navigation that will be explored subsequently.

The goal of this dissertation is to explore computational solutions to the

problem of rigid motion perception, A key orientation of this research has

been to derive inspiration for the structure of the computer model from

relevant known attributes of the primate visual system. This knowledge,
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together with some of the emerging concepts in computer and cognitive

science regarding highly parallel computational models [31, 32] and

parameter estimation and transformation [7, 9, 17, 18] motivated the

proposed computational scheme. Before elaborating on this model some

aspects of the biological vision mechanisms are examined*

1.2. The Primate Visual System.

This section examines some interesting attributes of biological vision.

The account is not meant to present a comprehensive picture of neural

visual processing. Rather, the aim is to highlight important neurobiological

features that have strong computational advantages, and form an important

motivation for the motion model proposed in this thesis.

1.2.1. Abstraction Hierarchies

The cortex, which is the outermost portion of the brain, can be roughly

regarded as a two dimensional sheet, a few millimeters in thickness. This

sheet consists of gray matter, which are the neuronal computing units and

white matter, which constitute the mass of fibers that the neuronal units use

to communicate with each other.

Neuroscientists have been able to partition the cortex into a number of

distinct areas. The notable property that emerges is that of uniformity of

the processing architecture, coupled with the functional diversity of the

different areas [54]. The primary visual areas in the striate cortex are



rctinotopic This means that they encode information in the visual field

indexed by two dimensional retinal coordinates. Thus for example a bright

spot of light shone at a particular angular position in the visual field will

affect only those units that are responsible for the given retinal position.

There is good evidence to suggest that different cortical areas compute

and represent information at different levels of abstraction [26]. An indication

of this is provided by an experiment by Movshon [59], which compared tile

responses of neurons in areas VI and MT in the macaque monkey. Given a

checkerboard stimulus, neurons in VI responded optimally when the motion

was perpendicular to the intensity gradients of the checkers. This behavior is

isotropic with respect to the orientation of the intensity gradient and only

depends upon the magnitude of the temporal intensity change, which is

maximum when the motion is perpendicular to the intensity gradient of the

checkers. On the other hand when some of the neurons in the MT were

probed, the responses indicated that each had its own preferred direction of

motion.

An interpretation of the above could be that the VI neurons are

involved in the computation of temporal change in image intensity, while

the MT units code optical flow, which is the retinotopic projection of the

three dimensional velocity field. Such indication of different abstraction

levels were first observed by Hubel and Wiesel [46, 47], who postulated a

hierarchical functional architecture for visual processing with successively
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more and more abstract neuronal units which they called simple, complex and

hypercomplex cells respectively.

In the context of motion perception, one can think of parameters that

are at higher levels of abstraction. For instance, in the case of rigid body

motion, an economical representation is provided by global (i.e. non

retinotopic), parameters such as translation and rotation. In fact, Sakata

[74] has identified neurons that respond to full-field rotations, in the parietal

cortex.

It seems that there exists a motion processing hierarchy in the primate

brain. This information processing pathway includes the primary visual

cortex (area VI), the middle temporal visual area (MT), the medial superior

temporal visual area (MST), and the parietal cortex (area &a) [26]. The

parietal cortex and area MST are layers in the motion hierarchy that appear

to compute high level motion features. While, the area MT seems to

compute lower level retinotopic (i.e. two dimensional) motion

representations.

The foregoing discussion highlights some important design methodologies

in the biological hardware. These have to do with massive parallelism,

computation in hierarchies and successive invariance levels characterized by

their own parameter sets [10]. The lessons drawn from these attributes will

be elaborated subsequently. However, before doing that we will take a look

at an important control principle in the motion processing system.
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1.2.2. Smooth Pursuit Ejye Movements

While it is true that not all creatures with eyes are able to move them,

those that do, do so in order to see better. One of the problems with visual

perception by a moving observer is that the motion induces blurring. As a

quantitative estimate one may calculate that a target movement as slow as

l°/s, when any point on the target takes about three minutes to cross the

visual field, has roughly the same effect on resolution as three diopters of

myopia [93]. Thus it is readily seen that one of the reasons for the ability

of the eyes to rotate with respect to the head is to stabilize the moving

retinal image.

This method of compensation has its limitations, however, since the

eyes cannot displace themselves with respect to the head up to any

significant degree. Therefore, since the rotational movement has its limits,

there are two types of eye movements, both rotational. The first is called

optokinesis or smooth pursuit This is a relatively slow and continuous

movement, whereby the image of a small target can be held steady on the

central part of the retina. This is the tracking movement we are primarily

interested in. The second type of movement is called a saccade, whereby

the eyes execute a 'catching4 movement to position the image of the object

on the central part of the retina. The velocity with which this movement is

executed is quite large, being of the order of lOOO°/s [72].
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For a human, the pattern of eye movements is likely to be a sequence

of saccades with smooth pursuit movement in between. This pattern is

called optokinetic nystagmus. Consider for instance, a jogger running at a

relatively steady pace. His eyes are continually moving according to the

following steady pattern ([22]):

(1) A target feature is selected in the environment.

(2) A saccade is made to catch the target and align its image with the

optical axis*

(3) A smooth pursuit movement of the eyes takes place, where the target

is tracked and held steady.(Le. the retinal slip is kept as near to null as

possible)

(4) When the rotational displacement of the eyes, reaches some limit

another suitable target is selected at the periphery of the visual field

and steps (2) to (4) are repeated.

The above behavior pattern, seems to support the claim, put forth by

Cutting, that the pursuit system plays a cardinal role in our ability to

navigate in a cluttered environment.

The most interesting aspect of the smooth pursuit or tracking system is

that it illustrates an active principle in human visual processing. In other

words, the system is closed loop. This point is worthy of reiteration, since it

is eminently sensible, even from a system theoretic point of view to to
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design measurement mechanisms that adapt to the changes in stimulus. It

will be shown subsequently that there are good reasons for designing

computer models for motion perception in a similar manner.

Experimental evidence indicates that the primate pursuit mechanism

works best when the retinal target velocity is not more than 30°/s [73]. Two

other quantitative performance parameters of this mechanism that are

relevant are the information processing latency within the control loop,

which is around 100 ms. and the tracking error which is found to be well

within 10 percent of the target velocity.

In summary, it should be mentioned that an active method forms a

dominant principle in the motion perception scheme in primates, and

furthermore:

(i) The pursuit hardware is an integral part of the motion processing

pathways. (Recall Cutting's observations on how tracking facilitates

navigation).

(ii) The selection of the target to be tracked depends on image features

such as luminance, size of target (smaller the better), position in the

visual field (smaller eccentricities preferred) and velocity. Although

small punctate targets are preferred, humans can take advantage of

aggregate motion to pursue targets that are perceivable but not visible.

An example is the ability to track the center of a rolling wheel that is

marked only by several, small lamps attached to its rim [77].
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(Hi) The 100 ms loop latency seems to be divided into two time steps. The

first step, of about 40 ms duration, is distinguished by the fact that the

system seems to consider only the direction of target motion for its

computations but not the speed.

1.3. Computer Vision, Connectionism, Biology and Computational

Structure

The study of machine vision systems cannot ignore the fact that most

of the tasks that one sets out to solve are modeled after biological vision.

Studies of the human information processing system are affecting the design

of machine models for similar tasks in most radical ways, as computer and

cognitive scientists are increasingly becoming aware of the fact that

conventional stored program concepts inhibit the formulation of cognitive

tasks in a fast, robust, adaptive, fault tolerant manner [31].

The foregoing sketch of some aspects of the primate visual system has

served to provide a rationale for us to inquire whether it is a good idea to

incorporate concepts from Nature into computer models* The specific task

at hand is motion interpretation. This section will discuss the design

decisions that were made regarding the structure of the proposed computer

model for motion perception.

The study of computer vision is conventionally divided into three

levels:
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(i) Low Level Vision: This stage is concerned with early processing of visual

information. This level is characterized by the local nature of the

computations performed. In the vision mechanism of primates, this

stage encompasses the visual processing at the retina and continued till

the primary visual cortex* In computer vision, examples are provided

by computations connected with the formation of the primal sketch

representation of Marr [57] or Feldman's retinotopic frame [32].

Operations at this level are exemplified by filtering, convolution and

relaxation based on local constraints.

(ii) Intermediate Level Vision: This level of processing is characterized by

two major endeavors, namely segmentation and the computations of

parameters that signal regional invariance characteristics. Here the main

task is to compute stimulus representations that will be used in the next

level of visual tasks. One characteristic of encodings at this level is that

they are intrinsic properties of the viewed objects, and are independent

of particular viewing conditions. Examples of representations at this

level are, optical flow, field of surface normals corresponding to visible

surfaces [15]. This level is also exemplified by Marr's 2—D sketch and

Feldman's stable feature frame. Segmentation is an operation that is

quite crucial at this level, because of the need to separate out image

regions corresponding to different objects or moving surfaces. This

separation is, invariably, a difficult task but serves to simplify higher
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levels of computation by preventing effects of independent phenomena

from interfering with each other in the analysis (this latter problem is

sometimes referred to as crosstalk in connectionist literature).

Segmentation and parameter estimation at this stage often involve

interacting goals* It is likely that cooperative computational algorithms

and constraints derived from higher level computational layers are

likely to facilitate the processing at this stage.

(iii) High Level Vision: This is the level of symbolic information processing.

The central task at this level is concerned with, what has been called

the indexing problem [30]. This is the problem of deriving the

description of a situation from a set of visual features computed at the

lower levels. At this level methods for knowledge representation,

storage and retrieval are of crucial importance. An example of a model

of computations can be found in [32], where a dynamically modified

store of objects and relations in the observer's extrapersonal space

called an environmental frame, interacts with a more permanent

repository of world knowledge called the world knowledge formulary.

The task addressed by this thesis spans the first two levels of the above

hierarchy. The computation of motion parameters begins from a time

varying sequence of images. One can imagine this input to be akin to a

number of consecutive frames of a movie or video sequence. Clearly, there

is a difference between the natural visual input to our eyes and this spatio-
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temporally sampled stimuli that the machine vision system will have to work

with. However, it will be argued in chapter two that in general this

difference will not substantially alter our approach to the problem at hand.

The first and most basic question that will have to be asked is what

form the computation is going to take. There is a choice here since one

could conceivably attempt direct computation of the motion parameters

from the intensity function and its spatio temporal derivatives [2, 64]. This

method has been proposed recently in restricted cases, like motion of planes

or pure rotational motion. A generally applicable strategy according to this

approach seems difficult and is yet to emerge. The other alternative

approach, which is adopted here, is modeled after the abstraction hierarchy

idea encountered previously. The two schemes are shown in figure 1.1.

As mentioned before, the chosen avenue for the investigations is

motivated by the connectionist paradigm and the associated notion that the

computation is structured so as to compute successive invariant levels

characterized by a small set of parameters, as in the parameter net formalism

of Ballard [9]. Such a methodological orientation dictates that the constraint

relations between the parameters in adjacent layers be kept as simple as

possible. In addition, it is desirable to minimize, as far as possible, the size

of the parameter sets describing the invariants at each layer. (Later, this

cardinality is referred to as the dimensionality of the parameter space

corresponding to a particular invariance layer, a usage whose purpose will
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figure 1.1 Alternative models for Motion Analysis

become clear when we introduce the notion of the hough transform as a

general computational paradigm for parallel algorithms). The reason is that

when we envisage, a highly parallel implementation of a computational

scheme in the connectionist form proliferation of dimensions and

complexity of constraints cause exponential growth in units and connections.

Now it is possible to answer the question as to whether all the layers in

the proposed computer model are really necessary. Notice that in the direct

computational model one is constrained to handle the motion and structure

parameters together, necessitating higher dimensional parameter spaces and

complex constraint relations for the parameter computation. On the other
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hand, the layered model can be shown to deal with smaller parameter spaces

and simpler constraints linking them (see chapter three). The demonstration

of this fact was, in fact, a principal goal of this thesis.

The next section will paraphrase the subject matter of each of the

chapters of this dissertation and indicate the contributions made. Some idea

of the nature of the various layers, with reference to figure 1.1 will also be

given.

1.4. Outline of the Dissertation

The structure of the proposed computer model for motion perception is

given in figure 1.1. Chapter two deals with the computation of image

motion. The computation is basically achieved in two stages, involving the

computation of image features using local image filtering, followed by a

cluster based matching and segmentation algorithm for estimating the image

motion. The next chapter looks at the constraints governing the

computation of the rigid motion parameters and structure. Investigation

centers around determination of the nature of the computation, ways of

segmenting the structure and motion parameter computation, and ways of

resolving interpretation ambiguities when they arise. Chapter four details

algorithms for motion perception from computed image motion. The

constraints used, are derived based on the analysis of chapter three. The

overall computational paradigm employed for this proposed algorithm is
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called the hough transform, which is shown to be parallelizable and

conceptually simple. Chapter five examines some of the difficulties faced by

the final stage of the computation. An active tracking mechanism is shown

to lead to considerable simplification of the computational requirement*

Finally the last chapter concludes by reiterating the goals of the research and

the results of the study.

The following subsections discuss some of the key ideas pertaining to

the various following chapters of this thesis.

1.4.1. Image Motion Measurement

The goal here is to examine models for image motion, and determine

how they can be computed. Intuitively, as well as from psychophysical

evidence [36], it is seen that two dimensional velocity or optical flow is an

adequate and useful representation for image motion. Optical flow captures

the motion and structure information in the retinal image flux and is thus

an abstraction useful for theoretical analysis. Schemes for optical flow

measurement proposed in the literature are applicable only under restrictive

circumstances. A common difficulty encountered occurs in image regions

where contours are present. In this situation, components of the optical

flow normal to the local contour orientation can be measured (Marr and

Ullman [56] call this the aperture problem).
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The retinal motion representation used in this research is a discrete

form of optical flow. The measurement method is based on matching,

"interest points*' obtained by convolving the image frames with a set of

feature masks and applying a simple decision rule for selecting or rejecting

particular retinal locations* The relation between the discrete and the

continuous representations (e.g. optical flow) is analogous to that between

the chord and the tangent to a continuous curve at any location. The curve

referred to is the interpolated trajectory of a retinally projected world point

A problem with retinal motion measurement has been the difficulty

faced by researchers in segmenting motion fields generated by more than

one moving object [33]. The clustering approach adopted in our proposed

model provides a uniform scheme for dealing with both the matching and

the segmentation problem. Local interaction between motion vectors is

modeled by a similarity function similar to one used in [69]. This approach

is more flexible compared to using the mathematical notion of smoothness

to constrain the motion field [44, 87], since the latter requires a dense

sampling of the retinal space in order to estimate derivatives of the motion

field. The method proposed here been tested on artificial as well as real

data.
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1.4.2. Constraints for Motion Analysis

No serious study of rigid motion perception can be successful without

an understanding of the geometrical relationships that make it possible to

compute three dimensional motion from re tin ally projected velocities (or

displacements). The geometric analysis should be aimed at answering

questions such as, what is computable and how simple are the computational

steps required. One should be aware of the fact that the representations of

the various entities to be computed at all stages of the computation must be

chosen with care in order to ensure that they may be computed

conveniently and there is no unnecessary redundancy.

In this respect, the choice of parameters to represent the motion of a

rigid body has to be made. A simple solution is to represent the motion by

the set of three dimensional velocity vectors corresponding to each

observable point on the surface of the body. This is a redundant

representation because, a rigid body, free to move in space has six degrees

of freedom, therefore six parameters should be enough to describe its

motion.

There can be many alternative forms of the six parameters, which are

equivalent, but numerically not identical to each other. Examples of such

representations are

(i) Translational and rotational velocity components of the body.
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(ii) The instantaneous axis of rotation and the rotational velocity of the

body.

The representation that is chosen, may be dependent upon the ease of

computation and manipulation in the particular application domain. In most

of the geometrical analysis given subsequently, the velocity representation

for motion is used. The reason is that, this differential approach leads to

simplicity in the algebraic relations used in the analysis without diluting the

concepts underlying the mathematical characterization of the problem

domain.

The geometrical transformation in the eye, or camera, giving rise to the

two dimensional image from three dimensional scenes is called perspective or

polar projection (refer to chapter three). Another model of transformation

is the orthographic projection, which is an approximation of polar projection.

The constraint equations obtained from the differential analysis embodies a

"small" motion approximation. An understanding of the small

displacement approximation is essential in order to determine under what

conditions the constraint equations are valid and what are the errors

introduced due to the quantization process that approximates differentials by

differences. These issues are examined later.

It is known that [28, 84, 89] a single monocular observation of the

optical flow field may not be enough to determine the three dimensional

motion parameters uniquely. This ambiguity is seen, for example, in the
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motion of a planar surface. Some of the algorithms that have been proposed

for recovering motion parameters from discrete retinal displacements, have

been analyzed to ascertain the conditions under which the computation leads

to unique results. However, there has been no examination of the

uniqueness question that is independent of any particular algorithm.

An analysis of the constraints which form the basis of any approach to

motion perception leads to the following results:

(1) The motion ambiguity for planar surfaces can be resolved when the

orientation of the plane is known, even partially, meaning tilt angle but

not slant is available.

(2) In general there can be at most three interpretations of the optical flow

field. Hence any local analysis, e.g. involving spatio temporal

derivatives of. flow, must involve nonlinear equations (at least cubic),

in the absence of shape information.

(3) If the three dimensional velocity of the rigid body under observation

varies smoothly, then observation of the flow field at two or more time

instants can determine the motion uniquely.

(4) Local shape information (surface orientation) is a powerful aid to

motion perception.

The analytical results outlined above lead to an understanding of the

theoretical basis of any motion perception algorithm. It also highlights the
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fact that the task is difficult due to the inherent nonlinearity and the large

size of the parameter set.

1.4.3. Algorithms for Motion Perception

Chapter four deals with algorithms for rigid motion perception, based

on the analysis in the previous chapter. Some of the basic principles are

demonstrated by computer simulations using synthetically generated data.

The computational principle underlying the design of the algorithms is

the hough transform [7, 9, 18]. The idea derives from histograming in

parameter space. Instances of the constraint hypersurfaces "vote" for

parameter values that are compatible with it. The parameter estimated to be

the most likely candidate, compatible with the global set of constraints, is

the one receiving the largest number of votes. This vote counting can be

implemented in parallel, by a connectionist network. However, as

mentioned before, the number of units and connections grow exponentially

with parameter space dimension.

The hough paradigm has been explored in the domain of motion

parameter estimation. Some of the limitations of the approach, brought on

by the nonlinearity of the constraint equation are examined and heuristics

are suggested to overcome them.



1.4.4. Active Tracking Constraints

When a mobile system has the ability to visually track points in its

environment, it can be shown that the mathematical relations that govern

the determination of the motion parameters become considerably simpler.

One might suppose that the demands of a tracking system might overwhelm

its advantages. In other words, could the requirements of such a system be

more difficult to achieve than the original problem of static motion

measurement? It will be argued that this is not the case, since the tracking

of the image of an environmental point is well within the reach of current

technology, once that point has been identified.

The mathematical advantages of tracking: As we have seen, there are

powerful advantages to designing a motion interpretation system based on

tracking. The arguments in the foregoing sections have been mostly

confined to the retinal structure in the flow field. An important point about

the tracking regime is that it only needs retinal motion measurements for its

sustenance. One can expect the matching of eye motion to the retinaily

projected motion of the imaged scene to facilitate the three dimensional

motion measurements. This is indeed the case, in fact it will be seen that

the following hold true:

(l) In the monocular case the number of parameters in the motion

constraint equation reduces by one, without any increase in the degree

of the nonlinearity.
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(2) When the tracking is done by a system of two cameras whose relative

positions and orientations are known, then the constraint equations

reduce considerably in dimension, in addition to being linear in the

parameters. In this case observation of the optical flow at just two

points is enough to determine the motion parameters completely*

(3) For binocular viewing, it is necessary to combine the optical flow fields

from the two eyes. However, this is not necessary, when the

observation period extends to more than just one instant of time. In

this case one can obtain closed form solutions for the rigid motion

parameters without the necessity for binocular fusion.

1.4.5. Summary

This research is concerned with the computation of rigid motion

parameters from spatio-temporally varying retinal stimulus. The problem is

approached in three stages. These relate to the mathematical and geometrical

relationships that exist between the three dimensional parameters and their

retinal counterparts, the representations that can be computed at various levels

of the computational process to facilitate the perception process and the

structure of the computational processes themselves.



Chapter Two

Computation of Image Motion

2.1. Introduction

« In keeping with the hierarchical model for the interpretation of visual

motion, the first task that is investigated concerns the measurement of the

image motion stimuli To talk meaningfully about this latter measurement

process it will be necessary to define the input and output quantities and

various intermediate representations. The objective is to study the problem

from the point of view of machine vision. However, in many cases the

approach adopted is based on, what is believed to be, certain principal

aspects of biological vision.

Mathematically, the input is a three dimensional (spatio- tempo rally

varying ) intensity function. The spatial coordinates (x,y) of this function

/(*>?>*) refer to the cartesian indexing of the retina or image plane. In

reality however, as far as the human eye is concerned, the available input is

a spatially sampled and temporally averaged version f(x,y,t) of the

underlying function /(s,y,*). Similarly, for the machine vision case, the
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input is again a spatio temporally sampled version of the "real" image.

The temporal discreteness of the latter imaging situation has led visual

psychologists to designate this type of visual input as apparent motion stimuli

The fundamental distinction between the "real" and apparent motion is

stimulus continuity* However this distinction will not affect the proposed

computational algorithms under the proviso that the spatio temporal

variations (frequencies) in the underlying "real" image distribution f{x,y,t)

are not lost in the sampling process, and there is no aliasing. This will be

called the adequate sampling assumption

The second issue has to do with the determination of what to compute.

In other words, what is an adequate explicit representation for image

motion. An answer is provided by the notion of optical flow, a concept

attributed to J.J. Gibson [36]. The optical flow field can be thought of as

the retinal projection of the three dimensional velocity field that could be

thought as the representation that describes the motion of rigid objects and

surfaces. Of course, as will be seen in chapter three, for rigid bodies, there

is a much more parsimonious description of the motion, than the three

dimensional velocity field. None the less, it will be assumed that the optical

flow representation will serve as an adequate representation for image

motion [63].

Optical flow is an idealistic notion, and to measure it requires a

continuous motion stimulus, which neither the biological nor the machine
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vision systems have available to them. But, as mentioned before, by the

adequate sampling hypothesis, it is assumed that the sampling process does

not entail any loss of information. So it will be claimed that optical flow

can, in principle, be recovered. There are essentially two alternative stages

of processing where the transition from discrete to continuous may be

made. Correspondingly, there are two distinctive styles or classes of image

motion measurement algorithms:

I. Continuous Techniques: The sampled image function f(x,y,t) is

interpolated at the onset of the measurement process, to obtain the

"real" image /(x,y,t). The subsequent processing can then be based

on continuous rather than discrete transformations and operations.

II. Discrete Techniques: The discrete point to point displacements are

computed over the quantized space time dimensions. The perceptual

system then performs smooth interpolations over a small "integration"

time period when the spatio temporal trajectories of the observed

"tokens" are smoothed to obtain a sparse sampling of the optical flow

field at the retinal locations where the match tokens were found.

The retinal motion measurement algorithms proposed so far belong to

either of the above classes [61] • Unfortunately, all such algorithms, be they

continuous or discrete, suffer from ambiguity or local indeterminacy. For

instance in the discrete case locally there may be more than one possibility

for finding tokens to match a particular token item. Marr and Ullman call
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this the aperture problem [56]. The problem arises due to the local nature

of the measurement algorithm and hence a limited field of ''attention" or

aperture. Thus if the aperture permits the viewing of only a part of some

smooth contour (e.g. a straight line), then due to the fact that there is no

distinguishable token on the contour, the motion of points on the contour

can be constrained (figure 2.1) but not determined exactly.

Thus if the instantaneous optical flow field is denoted by r ={*(«,y),v(x,y)},

and the constraint available in the local aperture is C(f(x,y,t),u,v) =0, then

at every sampled image location (x,y) there are two unknowns to determine

(i.e. the values that the functions u and v take), but only one equation.

Y
/\

\

L

Actual motion
Apparent Motion

Aperture

X

Figure 2.1 The Aperture Problem
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To overcome the local ambiguity additional constraints are necessary.

The main assumption used by other researchers is that the velocity field is

globally smooth. In terms of the variational calculus, one assumes that the

constraint equation is not exactly satisfied, but C(-) =c where e is the

amount of error. Now if the smoothness criterion is given by the functional

form S(ujv) =0 , then the measurement problem can be posed as minimizing

^ = (?(•) + X5(*) with respect to 'u' and V, where X is aLagrange multiplier.

The above formulation has been the hallmark of a number of

continuous optical flow measurement algorithms [40, 44, 87], One of the

primary problems with the above class of, spatio-temporal gradient based,

methods is that the convergence criteria and rate for the relaxation process

are not known. This lack of performance bounds limits the applicability of

such methods.

The second type of continuous formulation seeks to eliminate the

inherently iterative/search nature of gradient based algorithms. There are

two ways in which this has been attempted, one is to implement digital

filters that are sensitive to time varying intensity patterns, and which

purportedly mimic the spatio temporal receptive fields of the biological

system ( an example can be found in [34]). However the problem here is

that it is hard to determine exactly what such filters indicate quantitatively,

although qualitatively the outputs of such filters may prove to be useful for

discrimination and segmentation purposes. Another type of motion
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computation involves assumptions regarding local structure of the moving

surfaces* For instance assuming that the visible surfaces in motion are

locally planar, leads to the locally second order flow fields which may be

easier to measure [1, 90].

Surprisingly, the class of discrete algorithms, has not been explored

with the same vigor applied to the study of the continuous methods. The

paradigm of token matching is the dominant strain for such methods.

Contrary to continuous methods the main operating criteria here are:

(i) The motion measured be due to the geometrical projection moving

features in three dimensions.

(ii) The measurement be immune to variations in lighting and viewpoint,

(iii) No elaborate form analysis precede the actual measurement operation.

The usual approach here [14, 85] is to assign different a priori

probabilities or confidence to the competing match vectors and to chose the

best set of non conflicting matches based on some global compatibility

measure. Of these two methods, the first [14] employs a solution method

that is ad hoc. The notion of similarity is never exactly quantified. The claim

is that their confidence update rule captures the notion of local similarity,

however their method never makes it clear the exact nature of this

interaction. The rate of convergence of the algorithm is also not shown.
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On the other hand Ullman's exposition [85], which also concerns

discrete matching, seeks to develop a mathematical theory of visual motion

computation. While this minimal mapping theory is in itself, an exemplary

work in the field of scientific exegesis, it makes certain strong assumptions

and leaves certain questions answered. The main idea is simple and elegant,

and proposes the choice of matches to minimize the entropy of the global

field of matches. Each velocity v is associated with an entropy measure

q(v) =-logp(t;), where p() is the probability that v is the true velocity. Thus

the idea is to assume q(v) as the cost of assuming velocity v, so that it can

be minimized globally. In other words he is looking for the maximum

likelyhood solution.

The problems with this approach mainly stem from the fact that to

translate the above idea into a working mechanism, one has to make some

simplifications. The simplifications that Ullman proposes require the

assumptions that the probability distributions of retinal velocities that are

obtained at different image locations, are independent and that the

probabilities are inversely proportional to the velocity magnitudes. It is very

hard to justify the first assumption, while the second is a very coarse

approximation which is not entirely justified by empirical data presented in

[85], The remaining objection to the method is its computational

complexity. Although the algorithm is formulated as a linear programming

problem, the gradient method proposed for its solution need not converge
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to the desired solution, and in fact could lead to cyclic behavior under

certain extreme conditions. Hence it is difficult to envisage a network of

parallel computing elements implementing this algorithm, within the limits

of the performance constraints imposed by a "realistic" (or biological)

computational devices.

The discrete algorithms described so far, we will classify as

discrete /iterative, since, in their proposed forms, they involve local search

with ill understood rates of convergence.

In contrast we believe that a computational theory of image motion

should try to satisfy some desirable properties not encompassed by the

above motion measurement algorithms. For instance:

(i) The velocity estimates for a single region should ̂ collected together,

while those for different regions should separated out. Thus not only

should our theory show how to handle local similarity but also

recognize boundaries where dissimilarities occur.

(ii) The formulation of the algorithm should also bring out the complexity

of the computations, and justify the simplifications introduced to reduce

the complexity.

(III) Since this is basically a low level visual computation algorithm, the style

of implementation should be a major concern during theory

formulation. This is in some sense in opposition to the well known
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position by Marr [57] that theory, representation and implementation are

independent of each other. While this may be so for high level

symbolic computations, it is evident that at lower levels this epistemic

neatness is infeasible. For instance if we agree that a highly parallel

hardware is desirable and even necessary, then in order to realize

performance/cost criteria like dynamic range, speed and efficient

encoding, we might have to resort to well established devices like

"coarse coding", quantization of the measured parameters at various

degrees of coarseness, and so on. It is hard to imagine a probabilistic

global optimization process being implemented under such conditions.

This is essentially the connectionist argument [6, 31] applied to a

concrete case.

The image motion measurement method proposed here, is based on

the hough transform in a more general form than is normally prevalent in

the vision literature [7]. The method is clustering based, where the

complexity of the measurement process and the segmentation process are

treated uniformly. The complexity of the general problem is very clear in

this approach and the simplifications that allow us to obtain biologically

plausible parallel implementations using minimal spanning tree algorithms

seem justified based on simulation experiments. Because of this tighter

complexity and computational bounds, we classify this method in a class

distinct from the other discrete methods. The latter class is the
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discrete /non-iterative category of algorithms for image motion

measurement.

The classification of the algorithms described above is summarized in

Table 2.1.

In general, the methods in categories I,II and III are specialized and

work reasonably well only in restricted domains. Examples of restrictions

imposed are: uniform illumination, smoothly varying reflectance, being able

to locate smooth zero crossings (of the Laplacian of the image intensity)

contours and local planarity of the moving surface. One shortcoming of

these approaches is that they deal primarily with movement of a single

object in the environment or motion of the observer. Some of the above

techniques are sensitive to noise. The proposed cluster based approach

seeks to remedy these lacunae.

Continuous

I. Spatio-temporal gradient
methods
[33, 38, 40, 44, 56, 62, 65].

HI. FIR filters or local
polynomial approximations
[34, 90]

D iscrete

II. Matches compatible with
local constraints [14, 66, 85]

IV. Proposed cluster based
approach

Iterative

Non-Iter.

Table 2.1 Classification of Image Motion Measurement Schemes
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2*2. Overview of the Clustering Algorithm

The algorithm, can be implemented very easily by a parallel network of

relatively simple computing elements and is motivated by the connectionist

paradigm in AI and cognitive modeling [31, 32]. The structure of the

algorithm closely models the parameter network formalism of [9]. The

measurement of image motion is performed in the lower levels of a

hierarchy of computing layers of neuronal computing elements (see figure

2.2).

The layered structure reflects an organizing principle: that vision can be

viewed as computing key parameters at different levels of abstraction.

Figure 2.2 The Motion Perception Hierarchy
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Furthermore, a natural progression of abstraction layers start from low

levels (i.e. the image intensity function) and evolve to high levels (object

tokens). At each level an important concept is the size of the local spatial

domain in the image, over which the parameters at a level can be modeled

as invariant. In analogy with the use of the concept in biology, we term this

domain, the spatial receptive field (SRF) of a parameter.

The idea of a parameter's SRF can be best understood by an example.

Figure 2.2 illustrates the hierarchical layered structure in the computational

model of motion analysis under discussion. The lowest (i.e. the rawest)

level of representation is depicted by the plane, LI, consisting of the image

intensity function. In the first stage of processing locations of significant

intensity change in the image are computed (layer L2) - note that change

units have a very small SRF. The next layer L3, computes the retinal

motion parameter (e.g. optical flow ), indexed by the image frame positional

coordinates (x,y). The SRF of flow parameter value is much greater than

that of the change units. The parameters computed in the following layer

L4, can be thought of as motion vectors that are not specific to particular

spatial locations, but indicate the distribution of velocities in a "window" of

the image. Later descriptions detail how clustering in this "space" of

location independent (relatively speaking) motion vectors, helps to establish

correct matches in the token matching layer L3. The next higher layer

computes the parameters of motion of the imaged surface ( over the region,
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which need not be known to the measurement process a priori,

corresponding to a single moving body )•

The flow of data is from the lower layers of this hierarchy to the upper

layers. There are exceptions, however, since the clustering layer L4

influences the matching process in the lower layer L3 of velocities (

therefore the structure is not a strict hierarchy). The design of the

computation in the layers L2,L3 and L4 and how retinal motion is computed

cooperatively is described subsequently.

The scheme of computation of the retinal motion has the following

steps :

search area

o Points from frame 1

+ Points from frame 2

Figure 2.3 Matching Interest points from two frames
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(1) Location of points in the image with significant intensity variation (contrast).

The goal is to select locations in the image where there is significant (

with respect to its neighborhood ) contrast, yet there is no orientation

specificity. This means that two criteria must be satisfied:

(a) The contrast variation at and around the selected location should

be high. This could be measured by means of a center surround

operator like the Laplacian or DOG operator [55, 57]

(b) A good edge operator should not respond to intensity

distribution at the same location, or have multiple weak

responses.

The interest operator that was used is described in [12]. This operator

decomposes the local intensity distribution around a point in the image into

a set of basis functions. The selection of the point then depends on the

relative responses of the "edge" and uextremum" subspaces in the basis

set. A following section will detail the design and operating characteristics

of this method.

(2) Measurement of image motion* It is assumed that the velocity field is

locally similar, except for a small number of places where motion

boundaries occur. Each point selected in a given frame (i.e. time

instant), can potentially match another point in its neighborhood,

selected from a later frame. The process is depicted in figure 2.3 where

the large circles indicate the areas searched to obtain plausible matches.
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To determine the goodness of the match, each of these ' 'velocity

units" ( or plausible match vectors ) evaluate the support it receives

from nearby velocity units. This scheme was used with great success

for stereo matching by Prazdny [69]. Finally only those matches that

can muster more support than competing matches get selected.

(3) Clustering in image motion space. As the velocity units are evaluating

their support, they also "vote" for non location specific velocity units

in level L4. The units in level L4 then cluster around similar ( the

Euclidean distance metric is used) units and support each other. This

helps to remove the outliers among them. The units that belong to

some cluster are then retained and the rest are deleted. The surviving

units then mediate the matching process in the lower level L3. The

basic idea is illustrated in figure 2.4.

The discussion so far would seem to imply the requirement of two

"snapshots" of a dynamic scene, taken at consecutive time instants. This is

not a critical aspect of the method, being only used for ease of explanation.

In fact it adapts very easily to a sequence of temporal frames of a changing

scene. In this case all we need to do is to introduce a temporal decay rate

for the accumulated support for the velocity units in layers L3 and L4. The

algorithm has been tested with synthetic images comprising spheres and

planes, which where painted with random dot patterns. This was mainly

done so that the computed motion vectors could be compared with the
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velocity space

Image space

Figure 2.4 Clustering in image velocity space

actual values- The experiments with synthetic data show that multiple

moving bodies and as much as 20% random noise points can be handled by

the algorithm. The following sections detail the various parts of the

algorithm and the experimental results.

2.3. Computing Interest Points

An interest point is a point in the image (actually a small

neighborhood) which has properties that distinguish it from its neighboring

points. The properties in question may be simple, like gray levels, or

sophisticated ones indicative of the local topography of the imaged surface.

Previous approaches to finding interest points are exemplified in the work of
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Moravec, Kitchen & Rosenfeld, Nagel, Davis, Sun & Wu, Fang & Huang

([24, 27, 51, 58, 62]).

The difficulty of locating interest points for matching stems from the

fact that it is difficult to specify exactly what should be the desirable

characteristics of such feature points. On the other hand it seems clear that

the following properties are in general desirable:

(i) The detection and localization of these points should be fairly

straightforward. In other words, the features that trigger the detection

of such points must be computable by examining a fairly small support

region in an image.

(ii) These points should be preferably be sparsely distributed in the image.

A measure of such sparseness depends upon the support region size for

the subsequent matching algorithm. Thus one performance parameter

could be a measure of the average number of false matches that have

to be considered for every correct pairing of points from two frames. It

has been reported that human performance degrades significantly when

this number increases beyond four or five [78].

(iii) The feature that characterizes the points must be stable. This means

that small changes to viewpoint and illumination should not affect their

determination.
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Concrete proposals for specifying and locating feature points for matching,

fall into the following classes:

1. Grayvalue corner Selection: The feature is restricted to corners in the

image intensity "terrain". The method of detection usually consists of

finding the extrema of the spatial gradient of the intensity function [51,

55, 62].

2. "Interest point" selection: The idea here is to pin down image patches,

where the intensity variation profiles are distinctive in the support

region. This distinction can be mathematically specified, for instance,

by measuring the variance in the pixel intensity values and selecting

locations where it is maximized within a local support region [58].

Another method would be to chose patches with sharp autocorrelation

functions [16].

3. Selection by "topological analysis": This method attempts to label the

intensity terrain with labels such as hill (maxima), pit (minima),

ridge/ravine (line), saddle, table edge (edge) and flats. The idea is that

these labels being relatively viewpoint and illumination independent,

compared to raw intensities and gradients, can be used to perform

sophisticated correlation type of matching algorithms [38].

The problem with corner detectors and the topological analyzers is that the

support region needed is quite large. This is because of the fact that it is

necessary to obtain some locally smooth approximation for intensity
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distribution in the support window, in order to be able to compute the

necessary gradients. This requirement of higher order derivatives of the

intensity function (e.g. the hessian) and the attendant computational

complexity diminishes the attractiveness of the above methods.

The variance based interest operator is poor at contour suppression

(especially for edges oriented at small angles with respect to the horizontal

or the vertical directions). Furthermore, being intensity based, it is

sensitive to viewpoint and illumination changes. Finally, the idea of operator

design based on maximizing autocorrelation is yet to be translated into a

successful design.

The method of interset point selection suggested subsequently seeks to

combine some of the positive aspects of the above mentioned techniques.

The salient advantages of this operator are:

(a) The selection process is essentially linear (convolution) and amenable

to parallel implementation.

(b) The features that are key to the detection process are not intensity

based. In fact they have the flavor of the labels computed by the

topological classification methods, without the attendant computational

complexity.

(c) Contours are suppressed at all orientations.
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(d) The method does not depend upon thresholds that have to be

determined a priori.

The principle underlying the proposal is based upon the comparison of the

outputs of isotropic feature masks. The basic scheme involves comparing

the responses of some edge operator with a center/surround operator like

the laplacian. This scheme is depicted in figure 2.5.a, where the edge

response is provided by the Sobel operator. The normalized values of the

edge response (solid curve) are compared with the response of the laplacian

(dotted curve) are shown in figure 2.5.b, for a step edge profile. The

responses are plotted as the operators are applied along a straight line path

Sobel

r
X

r
y

Q Laplacian

/r\
Sobel

response

x Laplacian.
response

Corner

Sobel
response

Laplacian.
response

figure 2.5 Feature Selection by Comparison of Operator Outputs
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perpendicular to the edge. So we see that if we were to compare the

operator response at or near the step edge, the edge response will always be

greater. However the situation is different when the image profile is shaped

like a corner. In the latter case (figure 2.5.c), the response of the laplacian is

stronger than that of the sobel operator.

It seems that this simple scheme should be capable of selecting interest

points in an image. However, there are some shortcomings of this

approach:

(1) The sobel operator is a poor detector of edges oriented away from the

vertical, horizontal or the two diagonal directions. Hence the above

scheme may select points along such edges.

(2) There are many distinctive variation patterns of the image intensity

function that cannot be detected by such a scheme (see figure 2.6 and

table 2.2).

The above problems make it necessary to reexamine the operator design if

we want to make the relative response measurement criterion work. To

alleviate the first problem one could resort to directional edge detectors, like

the Canny operator [20]. The difficulty of such an approach is that the

scheme entails the the replication of the directed operator at some intervals

of orientation angle. Furthermore, since the above scheme is based upon

comparison of operator responses, it is easier to break up the image vector

space (this concept is explained subsequently) into orthogonal bases rather
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than resort to different types of operators for different types of features and

then calibrating the relative responses on a large number of sample images.

As a solution to the first problem mentioned above, the sobel masks

were augmented with two more 3x3 masks. This arrangement is reported to

be more isotropic in its response to edges of arbitrary orientations [35] •

To minimize the second problem, it was decided to investigate the

response characteristics of rotation invariant filter masks [23]. These can be

represented mathematically by

M{r,4>) =A(r)e^ n =0,1,2,3,...

where / =vCT, h(r) is a radial weighting function and (r,^) are polar

coordinates for position. It is generally preferable to take h(r) to be a

gaussian function. In our case, since for simplicity the masks were limited to

3x3 size, A(r) was taken to be constant.

In this case the operators of various orders ( corresponding to values of

'n') can be interpreted as follows:

(a) n = 0 : Averaging operator.

(b) n = 1 : Step edge operator.

(c) n = 2 : Line Detector ( second and third operators in figure 2.7)

For reasons of economy, the operator size was confined to 3x3. However,

these operators were applied at various image resolutions by smoothing and

sampling the intensity distribution but keeping the operator size fixed. A
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very important property of the set of mask described so far is that with the

addition of a saddle mask, we have a set of nine 3x3 masks which form a

complete orthogonal basis for the space spanned by the nine dimensional

vectors defined over the real field (figure 2,7).

In addition, the space spanned by the feature basis set can be thought

to be subdivided into three components which we term the edge, extremum

and average subs paces. The addition of the line and saddle mask (the fourth

operator in the extremum set in figure 2.7) proves to be more powerful for

detecting intensity profiles that show a high degree of curvature, but are not

like step edges. Thus for example, acute corners have the characteristics of

line terminations and hence trigger the extremum detectors due to the

presence of the line operators in the latter space.

2.3.1. Feature Classification fay Orthogonal Decomposition

The image f{x,y,t) is a three dimensional function. However, we

concern ourselves with a time slice of this function at time =<* thus

obtaining a two dimensional function

J(*,y) =f(x9y,t%)

An image vector at a location (x,y) is formed by concatenating the rows of

the following 3 x 3 image patch

The the image vector T belongs to a 9 dimensional Vector Space defined

over the Real field.
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I(x-l,y+ 1)
Kx-l,y)
I(x-l,y-l)

I(x,y+ 1)
Kx,y)
I(x,y-1)

I(x+ l ,y+ 1)
I(x+ l,y)
I(x+ l,y-l)

where J, is J(z- l ,y- l ) , J2 is I(x,y~l) and so on, alternatively

4=0

where e* is the k* column of the*9x9 identity matrix.

The image vector as defined previously, is represented with respect to the

basis {e,}. The components, therefore, by themselves do not convey any

information regarding the local topography of the image.

When we define the image in this manner, the operation of convolving

the image with a given point spread function or correlating with a particular

feature template can be expressed with respect to the vector inner product.

Thus convolution becomes

I*h = £ E ^

where h is the vector representation of the point spread function and Tis the

image vector at a point

With the above interpretation in mind we freely interchange the terms

function and vector in subsequent text. More importantly, thinking of point

spread functions as vectors, allows us to transform the image vector into

different finite basis space corresponding to the prototypical features that we

are interested in. This transformation is wrought by a non singular matrix T
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whose columns are the feature basis vectors {f,} Thus the image vector 7 is

transformed into the vector if where

?=n=E*A (2.1)

The purpose of this transformation, in our case is to obtain a image code

whose components correspond to the degree of match between the image

function and the feature functions. In general, to compute the transformed

vector if from 7 requires the solution of simultaneous linear equations.

However, computation of the k component of if becomes simple when fk

is orthogonal to the other basis vectors in the set {$}. In this case, we have

from equation (1)

ft* =£•/'***/

-nlftir

In particular, if the basis vectors are chosen so that they form an

orthonormal set then

ft* = »*
Since the image vector is finite dimensional we can design a orthogonal

basis set for the space of the image vector. In addition, this basis set is

constructed in such a way that the each basis corresponds to a feature

primitive. Decomposing the image vector in terms of the new basis would

give us a new set of components (or weights) indicating the strength of each

of the features represented by the respective basis vector. This idea is
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originally due to Frei and Chen [35]. Their purpose was to develop an edge

detector which would not require thresholding after the convolution step.

They convolved a 3x3 image region with nine orthogonal masks and

compared the outputs of the edge masks with a set of "line" detection

masks. The present method for interest point selection follows, in some

sense, a strategy that is a dual of Frei and Chen's approach with a different

set of basis functions.

As stated before, the set of basis functions in our model is built around

feature primitives like edge, maxima/minima and saddle type variation.

Since the image vector is nine dimensional (i.e. the operator size is 3x3)

there are nine elements in the feature basis space. The feature space is

divided into three subspaces:

1. The Extremum subspace defined by the laplacian, line and saddle

masks.

2. The edge subspace.

3. The average subspace.

The basis functions used to define these subspaces are shown in figure 2.6.

A key characteristic of the feature subspaces is the directional isotropy of

their response patterns.

To test the applicabiliiy of the above image decomposition scheme a set of

image profiles were devised to verify the ability of the interest operator to
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figure 2.8 Interest Operator Masks

classify some idealized markings* The test images were 3x3 masks shown in

figure 2.7. The results of the test are summarized in Table 2.2. The figures

in the columns indicate the normalized responses of the operators to the

respective image masks. The last two columns indicate the result of applying

two different decision rules for interset point selection. It is seen that the

simple rule which compares the outputs of the laplacian and the sobel

operator is inadequate, although it is enough to discriminate between

interesting and "edgy11 regions in many instances.



Image Motion 53

No.
1
2
3
4
5
6
7
8
9

10
11
12

Av.(M)
0.34
0.34
3.01
3.01
1.01
3.01
3.01
6.34
4.34
6.67
0.67
5.67

Lap.(L)
0.95
0.12
0.00
0.00
0.36
0.00
0.00
0.95
1.65
0.83
0.83
3.30

Sobel(E)
0.00
0.58
2.31
2.45
1.16
0.00
0.01
0.01
0.01
2.05
0.58
5.20

Point(PS)
0.95
0.98
0.00
0.00
1.21
2.01
2.01
3.78
5.36
3.68
1.68
6.30

Edgc(ES)
0.00
1.16
3.47
3.47
1.74
0.00
0.01
0.01
0.01
3.47
1.16
5.20

PS> ES
yes
no
no
no
no
yes
yes
yes
yes
yes
yes
yes

L> E
ves
no
no
no
no
no
no
yes
yes
no
yes
no

Table 2.2 Operator responses to the test masks

2.4. Algorithms for retinal motion measurement

The correspondence problem is almost universally regarded as difficult.

As mentioned earlier, it arises in the measurement of temporal image

disparities. The problem is magnified for motion measurement, since the

disparity in this case is not constrained, as in the case of stereo, to lye on a

known line (epipolar) in image space. The overall scheme of thing is simple:

select interest points in image frames and then decide which point from one

frame matches another point from the other frame. If it is possible to

obtain interest points that are sparse then correspondence is not difficult.

Here sparseness means that the average disparity value is smaller than the

average spatial distance between points in the same image frame. An

interesting quantification for the degree of sparseness is due to Stevens [78]

and is the number of false matches possible, on average, for a given match
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neighborhood size.

2.4.1. The Matching Algorithm using local support

The algorithm proceeds from the interest point stage by forming all

possible matches subject to a maximum limit on the magnitude of the

match vector. This is equivalent to saying that the match neighborhood size

is determined a priori. Each match vector then proceeds to accumulate
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Figure 2.7 Image masks to test Interest Operator
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evidence supporting its existence within a support neighborhood, which is

larger than the match neighborhood. This scheme is based upon the

assumption that the imaged surface depth varies smoothly (a similar scheme

is reported to be successful with the stereopsis problem [69]).

To justify the notion of local support, consider optical flow (u,v)

generated by a translating object. In this special case the constraint equations

are

U - xW
u~—~z—

= V- yW
V Z

where {U,V9W) is the translational velocity in three space, Z is the depth of

the object corresponding to the retinal location (*,y).

If the depth function Z{x,y) is smooth then, to a first order approximation,

the spatial rate of change in the optical flow is proportional to the spatial

rate of change in depth. For instance consider the optical flow value at

p =(zo,yo)« Let it be (uo,vo), also let the depth at p be Zo. Then the

difference between optical flow at p and a neighboring point r =(«,y) is :

,y) - *0 » j-fAx + SZ\ j ^

where A* = * - x0 and higher order terms involving -̂ =— and -̂ — are

neglected. This leads to:
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\6u\< XipZI + Xalffzl

where Xi,X2 and X3 are constants for a local image neighborhood. Combining

the above we have:

\SZ\
t(Xy) + A 2dst(z,y) -

where X =XX + Xs, dst{ufv) = \6u | + |£v |, and <fc*(z,y) = \Sx | + |£y |. Thus the

situation that arises here, is that the smoothness in the depth function

relates to the smoothness of the displacement field The support that two

candidate vectors {uuvx) and (u2iv2) at retinal locations {xuyt) and (z2,y2)

respectively provide each other is given by the function S[d*t(u,v),dst(x,y)].

Our Experimental results indicate that a linear support function is adequate.

It should be noted that in Prazdny's algorithm for stereopsis [69], an

exponential support function is used. The support function is a quantitative

expression for the notion of local smoothness. Prazdny's choice of support

function is intuitive, based on psychophysicaJ data. The same justification

applies to motion correspondence. As an example consider the following

exponential support function, which we used in our experiments:

where / =cfe*(x,y) and d =dst(u,v). As mentioned previously, there seems to

be no great advantage in using an exponential support function in

preference to a linear one. The advantage of clustering is that, once the

clusters have been determined, the parameters of the support function are
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obtained. Thus once the maximum velocity difference (i.e. the diameter of

the cluster) is known, the largest velocity gradient that should be allowed

can be calculated. This is the ratio of the cluster diameter (i.e. largest linear

distance across the cluster) and the diameter of the support window in

image space. Suppose this ratio is K and f(d,l) =—(*-—), then the linear

support function is

' k) otherwise

The algorithm 2.1 outlines the steps involved in the computation of the

matches.

Algorithm 2.1: Finding motion correspondence by support disparity without
clustering.

begin
Fl := {X |X is a point with coordinate (x,y) on the first frame };
F2 := {X jX is a point with coordinate (x,y) on the second frame };

(* Computation of total support for each disparity *)

for each element, p of Fl do
for each element,q of F2 within a radius, R of p do

Totalsupport(pq) := 0;
for each element, r of Fl do

for each element, s of F2 within a radius, R of r do
Support := support provided by vector rs to vector pq

end_for,
Totalsupport(pq) := Totalsupport(pq) -f Support;

end_Jor,
end_for9
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(* Finding correspondences from the total supports *)

for each element p of Fl do
for each element q of F2 within a radius,R of p do

Find Maximum(Totalsupport(pq))
(* the vector pq corresponding to Maximum(Totalsupport(pq)) gives
the correspondence *)

end^Jor,

end (* algorithm 1 *)

2.4.2. Retinal motion detection with velocity clustering

The simple algorithm presented above works well in most instances.

However, for cases where there are a large number of match possibilities for

every point, the method is cumbersome. In such instances, a separate layer

of space unspecific displacement ( or motion) units are computed. This is

like a cluster space of retinal motion parameters (i.e. u,v) with a spatial SRP

that extends over the window of the image that is of interest. Each unit in

this cluster space collects "votes" or support from the location specific

displacement (or match) vectors of identical magnitude and orientation,

from the layer below.

The clustering approach to visual motion measurement and

segmentation has a number of attractive features that will be mentioned

shortly. The clustering process is best understood in terms of partitioning of

graphs. Let G =( V,E, W) be a weighted undirected graph with vertex set V,

edge set E and a distance or weight function W:E—>R2 (the set of
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nonnegative reals). A partition of the set of vertices into k sets {CuC2,:,Ck),

is called a k-split. The sets Cf are called clusters. In addition there is an

objective function il>\Cu..Ch-+R+ defined on the k-split.

The clustering problem can now be defined in two ways. In case it is known

a priori how many clusters ( i.e. k ) are present then:

Definition I: Given a graph G, an objective function f and an integer k, find

the k-split which minimizes the objective function. In other words, find

;,....,C?) that

1>{C[,..,CZ) =min {1>{Cu..9Ck)\{Cu..,Ck)is a k-split for G)

Under some circumstances however, the number of clusters are not known

a priori. In this case one can specify a threshold 0, whence the clustering

process is defined as:

Definition II: Given a graph G, an objective function y> and a positive real

valued threshold 0, find for the least value of Jfe, a k-split with objective

function value < $.

Clustering can also be defined with respect to an n-dimensional feature

space in an exactly analogous manner. Of course in this case one must

formulate a distance metric for points in the feature space. An alternative to

distance or dissimilarity function is a similarity function, examples of which

were cited in the previous section. In the case that similarities are used in

place of distances, the objective function is usually maximized. Note that

the definition does not require the distance /similarity to be metric.
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The objective function V plays a crucial role in clustering. As mentioned

before the motion vectors and their spatial positions form elements that

belong to a four dimensional space. It is expensive to compute clusters in

this four dimensional space. Conceptually, this is an attractive framework in

which to view the motion measurement and segmentation problem. The

algorithm in the previous section is similar to the stereo algorithm proposed

in [69], On the other hand, the cluster based formulation unifies the notion of

matching and segmentation. The assumption is that with adequate data from

all the different surfaces moving in the visual field separate significantly

large clusters (compared to random fortuitous clusters) will indicate the

corresponding motion segment* Then, the desirable matches belong to one

of these larger clusters while mismatches are scattered into small noise

clusters. In order that the clusters be well rounded and not in the form of

"stringy chains", the objective function must be chosen with care.

A good clustering strategy is provided by the so called complete linkage

or furthest neighbor technique. The objective function in this case is defined

to be the largest distance between pairs of elements computed over all pairs

that belong to the same cluster. Unfortunately clustering with this function

is known to be NP-hard for feature spaces of dimension two or more, when

there is more that one cluster [75].

To overcome the problem of large dimensionality and computational

complexity, the method adopted was to project the four dimensional feature
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space into a two dimensional space of motion vectors without spatial

indexing. Furthermore, simulation with various synthetic data showed that

the problem of chain formation showed up vary rarely in the projected

space. For this reason an agglomerative hierarchical clustering strategy was

adopted. Initially all the elements belong to singleton clusters. At each stage

of processing (for simplicity assume sequential execution of the stages),

each cluster merges with its nearest neighbor. The process continues until

there is only one cluster. This is called the single linkage method and

essentially generates a minimal spanning tree of the feature space graph, in

which the nodes are the elements to be clustered and the edges are the

distances between them.

The computational complexity of the algorithm is O(n2logn) for the

serial case with n elements. The algorithm can be easily implemented in

parallel with p processors with a complexity of O(—logn) [76]. Another

advantage of adopting the clustering view is that a number of suboptimal

algorithms have been published and could be used for this application ( e.g.

see [37] for a factor 2 O(nk) algorithm).

The implemented program follows an algorithm given in [25]. The

clustering metric is the Euclidean distance between two motion vectors. The

number of clusters depends upon a threshold for the similarity. This

threshold is chosen depending on it stability, meaning that small changes to
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it should not affect the clustering in any significant way. The cluster trees

(or dendograms) can be seen for the synthetically generated data of two

differently moving surfaces in figure 2.8.

The clusters so formed now compete against each other and only the

larger clusters, i.e. the ones with accumulated votes in the same order of

magnitude, are kept These clusters then mediate the matching process in

the lower level of displacement vectors (figure 2*4). By this process two

things are achieved:

1. Noise points and spurious matches are avoided*

2. In the case of multiple body motion, the clusters provide a convenient

label for segmenting the displacement field.

An outline of the algorithm follows:

Algorithm 2.2: Finding motion correspondence by clustering followed by

application of support disparity.

begin

FR1 := (X |X is a point with coordinate (x,y) on the first frame }

FR2 := {X |X is a point with coordinate (x,y) on the second frame }

(* setting up the table for clustering *)

for each element,p of Fl do
for each element,q of F2 within a radius,R of p do

displacementjjc_direction := (x coordinate of q) - (x coordinate of p);
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displacement_y_direction : = (y coordinate of q) - (y coordinate of p);
clustertable[displacement_x_direction , displace me nt_y .-direction] :==

clusterUble[displacement_x_direction , displacement_y_direction] •+• 1;
endjfor;

endjFor;

Find the dusters in the two-dimensional array clustertable;
Remove clusters with weak overall support (votes);
From the clusters find the feasible disparities;
Consider points in the feasible disparity ranges only, and apply Algorithm 1;

end(*algorithm 2*)

The matching algorithm is formulated according to whether the points are

labeled or not In case of unlabeled points (as in the above algorithms) :

All neighboring points support (vote for) a particular disparity value.

Similar values support each other strongly in a local region. Shorter

length disparities are preferred. A point adopts a match for which it

finds the maximum support.

The strategy is similar in spirit to the more sophisticated matchers, for

instance, those using labeled points (e.g. [66]). The feature points can carry

labels which are computed from the outputs of the nine basis operators. A

label is a code that identifies the image point in question. Now the matcher

weights the "supporting" votes according to the similarity of these codes*

However, we avoid iterative refinement, which is usually employed in

similar algorithms [14].
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2.5. Experiments

Synthetic Images: Experiments have been conducted on synthetic images

of spheres and planes ''painted" with random dot patterns. All the objects

are opaque and sometimes intersect each other. The choice of spheres and

planes is motivated by the necessity of local smoothness in the imaged

depth. Yet, at the same time, since there are multiple differently moving

objects as well as occlusion of one body by another, motion boundaries do

occur.

The image formation technique was the perspective projection. In a

single image there could be one or more instances of the above primitive

objects moving with similar or different velocities (translational and

rotational) in 3-space. An illustrative depth map of the surface of a sphere

embedded in a plane is shown in Plate 2.1.

For single body motion the matches were found with close to 100%

accuracy. Addition of uniformly distributed uncorrelated noise points to a

level of 10% did not cause any significant difference in the level of correct

matches found* However, the noise points generated some spurious matches

among themselves. The clustering approach works better in this situation

with considerable removal of noise points and false matches.

As a conservative estimate the average number of plausible match

vectors considered was of the order of 10 - 15. Of course in regions with

dense random dot patterns this number was more. Even with larger
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numbers the selection of the correct match was possible with the support

disparity approach. These figures for plausible match vectors fell to a third

of their number with the clustering approach. There was also a speedup of

execution by a factor of around ten.

With two body motion about 94% of the correct matches could be

obtained. The hardest matches to find lay on the border of the two bodies,

as was to be expected. The dendogram (cluster tree) is shown in figure 2.8.

Also, from Plate 2.IV it can be observed that the matches have been found

correctly almost everywhere (comparing with Plate 2.II). The exception

occurs at the boundary of the two bodies, where incorrect matches were

found. An intensity coded view of the cluster generated for this case is



Image Motion 66

shown in Plate 2.IIL The pixel positions and intensity represent the location

(in velocity space) and population of the relevant cluster (or bin). In the

case of totally transparent bodies the algorithm's performance is drastically

reduced with 50 -60 % wrong matches being found.

Images of Natural Scenes: Quantitative justification of performance is

difficult on natural scenes. Through manual inspection it has been found

that the number of wrong correspondences obtained are insignificant. Plate

2.V demonstrates the result of applying the algorithm on a natural scene.

The top right box depicts a single snapshot (frame) of the scene, while the

bottom right box shows the interest points computed, superposed on the

scene. The box at bottom left illustrates the computed image motion

vectors, which can be compared with the manually computed vectors. The

latter were obtained by selecting the points to match from two frames by

inspection and then matching them as they were selected manually. In Plate

2.VI, points from two successive time frames are shown superposed, to

illustrate the input available to the clustering algorithm. Here the coding of

the points from different frames is done by bright and dim dots. Finally the

cluster obtained for this image sequence is shown in Plate 2.VIL However,

correct matches associated with roughly 40% of the points have been found.

This discrepancy is a result of the uncertainty associated with the

determination of interest points.
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It is estimated that even with some amount of input/output processing,

the part of the algorithm which could be parallelized took about 75% of the

time on a serial processor. With the removal of file manipulations this

could rise to over 95% or more of the time. It is feasible to implement the

algorithm on a 128-processor MIMD machine (BBN Butterfly) with

considerable improvement in running time.

2.6. Conclusions

The goal of the research here, was to formulate a computational

framework for the measurement of retinal motion. It was desirable that the

motion measurement algorithm be implementable in parallel, and conform

to a connectionist implementation strategy. An important consideration was

graceful degradation in the presence of increasing amounts of noise, and the

ability to handle multiple moving objects. An important issue, relating to the

task of retinal motion measure is the choice of the matching primitive or

token and the process for obtaining these primitives in an image. The

overall framework of the algorithm is based on the matching paradigm of

motion perception. This is based upon the belief that some form of

matching, either involving spatio-temporal gradients or other feature

primitives, is essential to solving the motion perception problem. This

paradigm is by no means inviolable, as has been shown recently in [3], for

certain imaging situations.
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The work with synthetic images served to lay the preliminary

groundwork for evaluating the proposed matching algorithm. The success of

this study showed that the scheme is reliable enough to test on natural

images. Of course the heart of the matter is to be able to determine the

interest points without elaborate processing. Thus experiments with natural

images was thought to be contingent upon being able to formulate and

compute feature primitives that are stable and recoverable with local

operators. The orthogonal decomposition operator described here (see also

[12]) proved adequate for the purposes of applying the clustering algorithm

on natural images. This "interest" operator is simpler than other corner

finding algorithms like the ones described in [27, 51, 62], although its

performance is comparable to the best of them ([80])* Incidentally, the

operator described here was also used recently in another image processing

context with considerable success (see [4]).

To summarize, a list of the salient advantages of our algorithm is given

below:

1. Applicable to multiple moving objects.

2* Good behavior in the presence of noise.

3. Automatic segmentation for image areas projected from different

moving objects or parts of the same rigid surface differentiated by sharp

depth changes.
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4. The clustering formulation proposed, is a mathematically well defined

paradigm for motion segmentation. Furthermore, the complexity of this

approach is well understood and efficient suboptimal algorithms can be

used.

5. Conceptual simplicity and amenability to parallel implementation.

6. Matching and segmentation are handled uniformly, under the same

paradigm.

PLATE I. Example of a synthetically generated surface
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PLATE III. Correct matches for two body motion.

PLATE 2,111. Cluster for two body motion.
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PLATE 2.IV. Computed two body motion matches.

PLATE 2.V. Results obtained on a natural image
(i) computed vectors bottom left '
(ii) manually determined vectors top left
(iii) interest points from 1st frame at bottom right



PLATE 2.VI. Interest Points from two consecutive frames

shown superposed (light and dark points).

• IMTCRfST F«I«TS

PLATE 2. VII. Cluster for the natural image.



Chapter Three

Physical Constraints on Image Motion

3.1. Introduction

This chapter establishes a mathematical framework for investigating the

motion perception problem, with a view to understanding the adequacy of

the resultant mathematical constraints. The reader who is knowledgeable in

the basics of the area, can start with the last section of the chapter, which

summarizes the contribution towards theoretical understanding of the

mechanics of motion interpretation.

The motion of a body can be characterized by the rate of change of the

positions of various points on its visible surface. Instantaneously, this

corresponds to a three dimensional velocity field. If the body (or surface) is

rigid, then, this velocity field can be described by the set of three

dimensional position coordinates and six global parameters (see figure 3,1),

which are:

73
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(i) The three components of the velocity of any point O on the body.

These are called the translation parameters.

(ii) The rotational velocity components of a coordinate frame, with origin

O, attached rigidly to the body.

A standard result from kinematics and geometry (see [21]) is that although

the rotational parameters are invariant with respect to the choice of the

origin O, of the body frame, the translation parameters are dependent on

the choice of O.

In general, computing three dimensional motion from monocular two

dimensional image motion flux is an underdetermined problem, admitting

an infinite number of solutions. However, most of the moving objects in

our environment are rigid, and the rigidity constraint greatly simplifies the

task of representation and analysis of visual motion [86]. From a practical

standpoint, the study of rigid body motion is interesting, since it finds

widespread applications in the areas of optical navigation, tracking and

recovery of 3D structure of rigid objects. The following analysis explores the

ramifications of this central assumption in the interpretation of three

dimensional structure and motion from two dimensional image motion (see

Ullman's paper [88] for a discussion of nonrigid motion perception).

The previous chapter introduced the notion of optical flow as an

abstraction for image motion. It is a fact that, as yet, it seems very difficult

to compute optical flow. However, it can be estimated by spatio-temporal
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interpolation from discrete displacement measurements, when the sampling

is "adequate". Under this adequate sampling assumption, the following

analysis deals with the optical flow representation for image motion.

When considering motion of rigid bodies, there are two cases of

interest, namely, egomotion and general motion. Egomotion or self-motion

refers to the movement of the camera or sensor in a static environment.

The image flux, or optical flow, generated due to such a motion is due to a

single relative movement, i.e. between observer and static environment. In

contrast, general motion implies that there is more than one object moving

with different velocities in the observers field of view. In this case the

optical flow field consists of many segments corresponding to the various

moving surfaces. Each segment is characterized by the translational and

rotational velocities of the associated moving rigid surface inducing the

optical flow. These velocities are called the parameters of motion for the

rigid surface.

The rigid motion parameters are usually expressed with respect to a

frame of reference attached to the moving surface, which is assumed to

coincide with the observers frame of reference at the time of observation.

The problem is to determine the motion parameters corresponding to a

optical flow field segment. If the depth of the scene is unknown then it can

be shown that only the rotation - which is depth invariant - can be

determined uniquely; whereas the three translation parameters can only be
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determined up to a scale factor (this is the depth scaling effect). Thus we

can determine five parameters to characterize the motion in this case.

The concern here is with the physical constraints that make it possible to

compute the five parameters of rigid motion and the structure of the moving

surface from retinal stimulus such as optical flow.

The optical flow field comprises two parts, corresponding to the rotation

and the translation, respectively, of the inducing motion, and is constrained

at every point by the parameters of the motion. Motion perception becomes

simpler in the instances when the optical flow field can be computationally

separated into the respective components [39]. A familiar illustration of this

is the case of motion parallax observable at depth discontinuities in the

retinal field. The effect is to reduce the dimensionality of the space of

unknowns. Unfortunately, this seems to be very hard to accomplish, in

general. Motion parallax is the basis for an algorithm by Law ton [70].

Other approaches to the problem can be found in [19, 52], involving

nonlinear least square techniques or using local constraints involving

derivatives of the optical flow.

Algorithms for rigid motion perception are difficult to design due to two

main reasons:

(1) The space of parameters is of high dimensionality (e.g. five).
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(2) The constraint equations obtained by optical flow measurements are

non-linear.

There have been some clever implementations of non-linear search

algorithms to interpret 3D motion from optical flow data [67, 68]. There

have also been discrete point tracking algorithms by Tsai and Huang [84]

and Fang and Huang [28, 29] and Longuet-Higgins [53]. In some of the

latter algorithms, the nonlinear motion equations are linearized in terms of

synthetic parameters, which are nonlinear combinations of the actual motion

parameters. Tsai and Huang, and Fang and Huang, note the cases when

such algorithms fail to compute motion parameters.

An important aspect of the following analysis will be the examination of

situations where the monocular optical flow field could be interpreted in

more than one way. An instance of such ambiguity is the optical flow field

due to motion of a plane [82].

A geometric analysis of the problem of computing 3D motion

parameters from 2D image velocities has been done by Longuet-Higgins and

Prazdny [52]. The constraint equations that they derive are simple in form,

but deal with velocities. To implement a motion analysis algorithm based

on these equations, one makes the assumption that the temporal grain of

the observations is fine enough to talk meaningfully about the velocities or

time derivatives of both the image and world positions. Representing

motion by velocity parameters entails making a first order approximation of
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the temporal behavior associated with the motion. Thus, for example, if the

displacement of a particle moving in one dimensional space is A* in time At,

then —- is a good approximation for the velocity only when At is small

enough such that the change in velocity in this time period is small.

An alternative derivation is due to Tsai and Huang [84]. Their

approach is to analyze the relation between the projected displacement

vectors in the image plane due to an arbitrary rigid displacement of a set of

points in 3D. It is known [21] that this type of motion can be characterized

by a rotation about an axis passing through the origin of the reference

coordinate frame and a translation.

The assumptions underlying the work reported here are:

(i) The motion being observed, is due to a rigid surface.

(ii) The time constant (or sampling interval) of the sensor is small enough

to make a first order approximation of the temporal behavior due to the

motion being observed.

3.2. Review of related work in the analysis of motion geometry

The computation of rigid motion parameters from image displacement

vector fields has been studied by a number of researchers. Egomotion has

been considered by Longuet-Higgins and Prazdny [52], Prazdny [67],

Waxman and Ullman [89] and Bruss and Horn [19]. Longuet-Higgins and

Prazdny examine ways of determining 3D structure and motion parameters
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from optical flow, given an accurate reconstruction of the optical flow field.

They show that for non planar surfaces local analysis of the flow field yields

a cubic constraint involving the motion parameters. Prazdny ([67]) has

devised a five point algorithm to solve for the motion parameters from

nonlinear constraint equations. Wax man and Ullman's method depends

upon reconstruction of the optical flow field analytically, in local

neighborhoods. Brass and Horn propose a least square solution to the

parameter estimation problem.

Some other computational approaches attempt to segment the optical

flow field into translational and rotational components, albeit approximately.

An example is the method of Rieger and Lawton [70] where the change of

rotational flow at steep depth gradients, is treated as noise. Jain [48, 49]

computes the focus of expansion before computing the image displacements

and uses the former to guide the correspondence for finding the latter.

All the above methods compute the motion parameters from optical

flow, i.e. continuous or differential image motion. An alternative approach

is to consider evaluating the motion parameters and 3D structure from

discrete point correspondence. Ullman [86] shows that three views of four

non coplanar points is adequate to determine the structure and motion of

these points under orthography. Tsai and Huang [84] prove that the motion

of seven points not lying on two planes, one of which passes through the

origin, nor on a cone passing through the origin, can be uniquely computed,
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from discrete displacements. Fang and Huang [28, 29] prove that structure

and motion of nine points not lying on a second order surface passing

through the origin is uniquely determined from image displacements. Nagel

and Neuman [60] and Roach and Aggarwal [71] have also looked at the

problem of determining motion from discrete displacements.

Yet another approach to the problem of motion parameter computation

has been to restrict the motion to simplify the analysis. Webb and Aggarwal

[92] Hoffman and Flinchbaugh [41] and Hoffman and Bennett [43] analyze

rigid motion with the additional assumption of fixed axis of rotation or

planarity. An major motivation for this type of analysis is that, it models the

locomotion of man and animals.

3.3. Hie Geometry of Rigid Motion

Consider a sensor moving relative to a static scene. The coordinate

frame (X,Y,Z) is fixed to the sensor (see figure 3.1). The viewing direction

is along the positive z-axis.

Under orthography, the projection equation relating the position of a

point in three space P =(X,y,Z) to its image p =(x,y) is:

(x,y)=(X,Y)

Under perspective projection, the "image" is formed by "rays" from

points in three space (i.e. world points ). These rays are constrained to pass

through a nodal point called the center of perspectivity. The imaging
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RP = P

P Q and R are rigid body points. XYZ is the reference frame. The
body centered frame is at R. The motion of R is given by the
translational velocity: T = (U , V, W)
The rotational velocity: Q = (a , p, y)
The velocity of Pis: (T,+ Q X P )

Figure 3.1 Representation of rigid motion parameters

geometry is shown in figure 3.2. The nodal point is O, which is also taken

as the origin of the frame of reference. An image point p = (x,y)

corresponds to the world point P = (X,Y,Z). Here the focal length of the

imaging system is f.

The equation of the ray OP is :
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The image Plane

•World point P = (X,Y,Z) projects to p = (x, y)
• f is the focal length of the imaging system

Figure 3.2 Perspective Imaging Geometry

The above projection is denoted by (X,Y,Z)-+(x,yJ). Similarly, the

projective relation between another world point P1 and its image is

A rigid body is defined as a set of points whose relative euclidian

distances from all other points in the set are invariants with respect to the

transformations of rotation and translation. In addition, since we will

generally deal with opaque objects and hence will observe points on a
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surface (or a manifold) in 3 space. In other words the 3 cartesian

coordinates of of a point on a rigid body are not independent. Formally,

where

=<(X,r,Z) | point on the surface of B >

When the body B is displaced with respect to the frame of reference,

we obtain a new representation

The displacement is described by the affine transformation

X*=[i?]X + T (3-1)

Any displacement of a rigid body can be modeled by the above equation,

which describes a rotation about an axis through the origin and a translation

specified by the vector T.

The rotation matrix is orthonormal and its determinant is unity. Since

any matrix can be expressed as the sum of a symmetric and a skew

symmetric matrices uniquely we have:

The axis of rotation is denoted by the unit vector (l,m,n)y whose

components are the direction cosines of the axis of rotation and

I2 + m2 + n2 = 1. The angle of rotation about this axis is $. Then, we have:
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I2 + (1 - /2) cos* /m(l - cos*) n/(l - cos*)
lm(l - cos*) m2 + (1 - m2) cos* mn(l - cos*)
n/(l - cos*) m n ( l - cos*) n2 + (1 - n2) cos*

0 - n m
n 0 - / sin*

r m / 0

If the rotation angle is small with respect to the precision of retinal

measurement, the rotation matrix can be written in terms of the three

component rotations about the individual axes [45]. In this case R and T are

given by

1

- C H f

-<JJM

1

<"«

- ^ *
1 u

where wa =/*, w9 =m* and wB =»*. Substituting for R and T in equation

(3,1) we have,

JT = X -

or,

(3-2.1)

(3-2.2)

(3-2.3)

(3-3.1)

(3-3.2)

(3-3.3)

where,

AX =JT - X = r- Y AZ = Z ' - Z
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We define the parameter vector a for characterizing the motion, where

Motion perception involves the recovery of the parameters of motion, as

well as the structure (or shape) of the moving object. The geometric

properties of the three dimensional surfaces and points are related to the

geometry of their image. Thus the projective transformation involved in the

image formation process must be analyzed. The subsequent analysis

considers both the cases of perspective as well as orthographic projections.

3.4. Motion under Orthography

When the model of image formation involves orthographic or parallel

projection, then the mathematical formulation of the problem becomes

considerably simpler. It can be argued that this is a valid model of image

formation when viewing distant objects, or when the focal length of the

camera is large compared to the distance of the viewed surfaces, or when

the viewing area is small and centered around the line of sight - as in the

case of the field of view corresponding to the fovea in the retina. Consider

an image point p =(z,y) projected by the world point P =(X,Y,Z).

Assuming that after a short while the point moves to a position given by

P' =(Xt
tY

1
9Z

l) while its image moves to p' =(z',y') the following relations are

obtained from equations (3.3):
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Ay = y ' - y =AY=t9 + u>9X- OJ,Z

Optical flow is the time derivative of the image position vector and is

denoted by (u,v) where

Alternatively,

lim Ax dx_ Km Ay dy
tt~~A*->0 At ~"dt v-~At-+0~£j ""dt

The motion parameters are now the translational velocity VT=((7,VF, W) and

the rotational velocity fl =(«,£,7) where:

TJ lim ** v lim J»_ T-T lim **
"" Ai->0 At ~~&-+0 At ~ A<-^0 ^

and

~A^—0 At P ""A^—0 At 7 ~A*->

therefore the equations relating image and 3D motion are

These equations are exactly identical in form to those obtained under the

discrete case (assuming small rotation), i,e. equation (3.3). Strictly

speaking, according to the nomenclature adopted before, the motion

parameters for the discrete case are (<«,<f,ws,wy,a;,) and those for the

differential case are (UtVfatpfi). However, since equations (3.3) and (3.5)

are identical in form, all subsequent analysis is based on the latter equation.

Furthermore, the parameters ( it will be evident later that only the

rotational parameters are of interest here), in both the differential as well as
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the discrete cases will be referred to by the symbols (a,0,7). The treatment

of both the cases is identical, the only difference being that derivatives in

the differential analysis correspond to differences in the discrete case.

3* 4.1* On the information available in the optical flow field

Observe from equation (3.5) that the image displacement (or image

motion field) consists of a translational part and a rotational part The

translational motion parameters are dependent on the origin of reference. In

fact the parameters, intrinsic to the motion are those of rotation. Thus

relative to a particular point, say the origin (0,0), equation (3.5) becomes:

tt -0X ~ " (3.6)

where u actually means u - u(0,0), v is v - v(0,0) and Z is Z - Z(0,0). It

should be emphasized here that Z denotes depth relative to a certain point of

reference ( in this case it is the origin ). If the structure or relative depth is

not known then the parameters (<*,£,7) are not completely recoverable.

There is an exact analog of equation (3.6) for the discrete case, obtainable

from equation (3.3).

Proposition I When the depth function (or structure) is non planar the

following parameters are uniquely determined from the image displacement

field:
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(1) The rotation about the axis aligned with the line of sight, i.e. 7.

(2) The ratio of the other two parameters, i.e. -^-.

p

Proof: The proof is by contradiction. Consider the motion of the non planar

surface Zu which is described by the parameters (ctufluiii). The image

motion equations (from equation (3.6) ) are:

v =- alZl + 7i* V '

Now suppose there is another surface Z2> whose motion is characterized by

the parameters (<*2,£2,72), such that the image motion field in both the cases

is the same. The motion equation for the second surface is:

v =- a2Z2 + 72*

Furthermore, the following relations hold:

A7 = 7 i - 72 7̂  °
Q^ ̂ a a _ (3.9)
/?! ^ ^2

From equations (3.7) and (3.8) the following relations are obtained:

Now since ax^2 7^ a2/3x :

; (3.10)
- a2Z2 -f ajZ! + A7X =0 v '

But this is contrary to the assumption that Zx is non planar. Therefore:

a2
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Again, this implies ( considering equation (3.10) ) that

A7 ==0 or 7J = 7 2

This completes the proof of Proposition I.

Proposition II. The image displacement field generated by a planar surface

is linear in the arguments (x,y). In addition, the parameters ^- and 7 are
p

uniquely determined by the image displacement field if and only if

ap + 0q =0, where {p,q) is the gradient of the planar surface.

Proof: Consider the equation of the planar surface Z(xfy):

Z =jfx •+• qy 4- d

If the motion of the surface is characterized by the parameters (a,£,7). The

image motion (or optical flow) is given by:

-f-h?-"ii'- <3-u)

t; = - a[px + qy) + 71

The above equation indicates that for planar surfaces the optical flow is

linear. It is also true that when the optical flow is linear then the moving

surface is planar. Now considering equation (3.6) and substituting for (t*,v)

from equation (3.11) and rearranging terms:

- Pi - 7 -

0 = ( - ap + ap + 7 - 7)0? + ( - aq" + aq)y

Since the above equations are valid for the entire image we have:

0P =0p (3.13.1)

pq - 1=fiq- 7 (3.13.2)
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ap - 7 =ap - 7 (3.13,3)

aq =5y (3.13.4)

Eliminating p,q and 7 from the above:

or

where /* = -—• The above quadratic equation has a unique solution if and
p

only if:

(fi'q - op")2 - Aofppq ={Jq + ap")2 =0

Under this condition:

a_ a_ p p*

Therefore the image motion of planar surfaces uniquely determines the

parameters (-̂ -,7,-̂ -) if and only if ap + 0q =0.
p 9

3.4.2. Summary for the case of orthographic projection

What we have shown is that:

(1) The analysis under orthographic projection for both differential and

discrete motion are nearly identical.

(2) When the structure of the moving object is known, the motion

parameters can be computed uniquely from image motion.
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(3) When the structure is not known then the recoverable parameters are

(~-,7,~). However in this case, the values are unique only when the

P 9

moving surface is non planar, or a certain condition (see proposition II
) holds*

3.5. Analysis of Rigid Motion for the Perspective Projection Model

Recall that the projective relation between image and world coordinate

for a point P is given by,

The above projection is denoted by (X,Y,Z)-*{x,y,f). Similarly, the

projective relation between another world point P' and its image is

{X',Yl,Z')-*(x',y',f) Following the schema used for orthographic projection

we proceed to derive the equations of motion from first principles. Thus

from equation (3.3) we have,

' - x —f(— —

or,

, ZAX-XAZ
= = / Z(Z+AZ)

ZAY-YAZ
7

Recall that when the 3D rotation angles, characterizing the rigid motion, are

"small" then the 3D displacement components are given by the relations:
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Thus, substituting for AX, AF and AZ in the equation (3.15) we obtain an

expression for the component of the retinal displacement,

or,

( A - xt,)/Z+fu>,
Ax = -

similarly,

2

(ft, - vt)/z /« + «* w

The above equations express the the retinal displacement vector (Ax,Ay) at

an image point P = (x,y) in terms of the parameter vector a and the depth

coordinate Z for corresponding world point p = (X,Y,Z), Another form of

the above equations is,

Ax = ^ + f— f— (3-16.1)

/ x »̂ . y 2

^ f (3-16.2)
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where,

Note that, when the displacement is purely translational

^r4
Ax ( x 0 - x )

This means that when the rotational component of the displacement is zero,

the retinal displacement field converges to or diverges from a single point

(xo>yo)« ia the image plane. This point is called the focus of contraction

(FOC) or the focus of expansion (FOE), depending on whether the

translational motion is directed away from or towards the image plane

(figure 3.3)•

From the retinal displacement field due to a particular motion, it is

possible to estimate the parameters characterizing the motion. In addition,

if the temporal sampling rate of our imaging process is high - meaning that

the components of the displacement for a single time interval is small and

the variable terms in the denominator of equation (3.16) are small

compared to unity, i.e.

Given these assumptions, it is possible to derive the equations relating

image motion to the motion parameters in the differential case. This is

obtained by dividing equation (3.16) by a small time interval, A*, and taking



Motion Constraints 94

t
•

N k

Direction of translation

^ r FOE

The structure of the translational flow field

figure 3.3 Focus of Expansion for translational Motion

the limit as A*->0. The image displacement then becomes image velocity,

and is called optical flow. The optical flow is denoted by the vector (u,v)

where:

lim Ay dy
v-At-*o At" ~: i t

lim Ax dx
u"~At^O"Ai""~^

Similarly the motion parameters are now the translational velocity

T=(U,V, W) and the rotational velocity n =(<*,£,7) where:

TT lim ^

and

_
Urn

lim Jr_ T-T lim } * _
\t-+Q At W ~ A* "

lim lim

Equation (3.6) now becomes:
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(x, - x)^- + ffi - 7 , - *2L + p**. (3-18.1)

• =(»o- * ) - £ - / a + 7*- <**}- + ?&- (3-18.2)

where the 3D motion is now characterized by a translational velocity

{U,V,W) and a rotational velocity (a,0,7). Furthermore the FOE is now

given by (*0,y0) ^ ( ^ r ^ ) -

Motion perception involves the computation of the parameters of

motion from the image displacement field. The latter, becomes in the

limiting case, a field of velocities, called optical flow. The relation that

optical flow has with the motion parameters, is embodied in equations

(3.18). These motion equations involve velocities, both in 3D as well as in

the retina. However, in a practical vision system, the retinal measurements

that are actually made involve displacements over a small time interval.

Thus the above velocity equations, are not strictly applicable, but under

certain conditions, the penalty paid for doing this may not be too severe.

This happens when the error introduced by the velocity approximation is

sufficiently small.

There are two separate approximations embodied in the usage of the

equations (3.18) to express the constraints on image motion due to the 3D

motion parameters:
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(1) The three dimensional velocity approximation - The velocity of a point

p =(X,y,Z) on a rigid body, moving with a translational velocity

T=(U,V,W)} and a rotational velocity n =(a,£,7) is given by

T = T + f l I '
Integrating the above with respect to time we have

Here X denotes the vector cross product The three dimensional

velocity approximation implies that, for small A*, the image

displacement can be expressed as:

Ap ={AX,AY,AZ) s~ TA* + (n At) X p

(2) The retinal velocity approximation - This enables us to treat retinal

displacements as retinal velocities and is valid so long as —=-« 1. This

can also be written as relation (A) stated previously.

When both the translational velocity T as well as the depth function Z

is multiplied by the same constant, the latter cancels out leaving the

equations (3.18) unchanged. The same applies to the equations (3.16).

This means that scaling the translation by a constant factor, and at the same

time, causing a depth dilation by the same factor leaves the image

displacement field unchanged. Thus, from the information available in the

image displacement field, the translation vector is only determined up to a

scale factor.
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In equation (3.16) the depth variable Z is an unknown. An equation

relating image displacement to the motion parameters is obtained by

eliminating -£- from equations (3.16):

2

J J J i «««.

A f 1 + - £ - *-\ - I „ t + • _ l l + ^ yo~ y - Ay

or,

^ • ^ 3 - w ^ 4 - wMyf + A y y Q - y - A y

where /

* '

xy <j>2 = / 2 + xAx -+• x 2

^s = / 2 + yAy + y2 ^4 =«Ay + xy

The above equation relates the motion parameters to the image

displacements, which are observables. This is a bilinear equation in the

unknown motion parameters. A similar relation is obtained for the

wdifferential motion case, by eliminating — from equation (3.18):z

~ (//? - iy - a-7- + ^-y) X _ a;
5̂ f— = - (3-20)

In the above analysis, the relations between image motion and 3D

motion has been derived by assuming general displacement of a rigid

constellation of points in space. This relation is given by equation (3.18).

From this, by taking the limiting case, for infinitesimal displacement, the
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continuous or differential motion case is obtained. The latter relation can

also be obtained directly from the kinematic equations of rigid motion ( see

Appendix A or [52] for details ).

3.5.1. Hie Information available in the image displacement field

The foregoing analysis illustrates the dependence of the optical flow

field on the motion parameters. In other words 3D motion constrains image

motion. The magnitude of the translation parameter vector cannot be

computed from the optical flow field. The rigid motion parameters

observable from monocular retinal optical flow measurements are given by

the parameter set {x^y^wa9uf9tafa). Now, we examine the motion equations

to see whether the displacement field uniquely determines the parameter

set.

The question to be answered, before attempting the design of

algorithms to compute the motion parameters from optical flow is whether

such computation is feasible. This means that given an optical flow field,

when can we say that it could be produced by a unique set of motion

parameters. The following theorem answers this question, by giving a

sufficient condition for uniqueness.

Theorem I: The optical flow field is uniquely determined by the rigid motion

parameters when the moving surface cannot be expressed as a rational function of

the form — y , where Px and Q2 are polynomials of the first and second



Motion Constraints 09

orders respectively, and(x,y) are image coordinates.

Proof: Let a rigid surface Z\ moving with translational and rotational

velocities ((/', V, W) and (a',0',71) respectively, generate the optical flow field

(u,v) given by

f f

V -
• = z

where the translation parameter vector is (U*,VtW) and the rotational

velocity is (a',^',7')*

Assume that there is another surface Z(x,y) moving with a different set of

motion parameters but giving rise to the same optical flow field (u,v), or

(3 22}

where the 3D motion is now due to a translational velocity {U,V,W) and a

rotational velocity (a,£,7).

From equations (3,21) and (3.22):

U - XW U1 - 2

- -=f-A<* + -VA^ = 0 (3-23.1)

- 4 ^ + ̂ = 0 (3-23.2)

where, Aa = a - a', A^ = £ - ^', and A7 —7 - 71.

Solving for the variable Z1 we have: (assuming the focal length f to be

unity)
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where

Pi{*>v) ={UV- U'V)+x(VW'- VW) +y(U'W - UW) (3.24)

and,

Equations (3.24) and (3.25) imply that the surface Z1 that originally

p
generated the optical flow must be a rational function of the form —-, to

Q2

permit ambiguous interpretation of its rigid motion. This is contrary to the

the statement of the theorem. This proves the theorem.

Corollary I: When the motion of a surface is purely rotational, the optical flow

field is uniquely determined by the motion.

Proof: In equation (3.23) make the substitutions W =V = W =0 to obtain:

xAl ^ + At 0

f f

Now, eliminating Z from the above equations and setting focal length T to

unity, we obtain:

A7 W) + y2(Aa(7 + A7 W) = 0

Since this equation must vanish for all values of x and y, the coefficients of

unity, x, y, zy9 x
2 and y2 must all vanish, giving rise to the following six

equations:
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+ A7J7 =0
+ A7F=0

The above equations imply either U = V = W =0 or Ac* =A£ =A7 =0,

Both these conditions mean that the optical flow field due to a pure

rotational motion has a unique interpretation. This proves the corollary.

Corollary II: It is possible for a flow field generated by pure translational motion

to be identical to one generated by another flow field d*. u> both translation and

rotation. In other words convergence of the flow vectors directly onto a point on

the image plane does not imply purely translational motion.

The truth of the above corollary will be demonstrated by a numerical

example. Consider two flow fields generated by different surfaces

undergoing different motions:

In the first case the motion is due to a planar surface given by the equation :

The motion is rigid and is specified by

7 35

Assume the translation in depth to be unity. Then, from equation (3.18)

we have,

tt=(z - —)(i - ~s+4-y) 2
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3 35 35 7 2 1

35 139 35 7 5
— —xy — —

2 y 6
v 2 « H i / xy

12 36 y 6 y 2 y 6

In the second case the motion is due to the planar surface given by the

equation :

Z=2-X- — F+l
2 6

and the motion is specified by the parameter vector

(*o = - y i yo =-jp a = 0 , p = 0 , 7 =0 )

The optical flow field in both the examples are identical.

The question of multiple interpretations of the same flow field, has

received some attention in the literature. The foregoing example illustrates

the fact that motion of planes can be potentially open to more than one

interpretation. It is known ( see [81-83, 89]) that the motion of planes have

dual interpretations. Uniqueness of interpretation for planes requires three

views of four points, or two views of seven points which uniquely define

two planes neither of which pass through the origin. In another study Fang

and Huang [28] showed that nine points not lying on a second order surface

passing through the origin can be used to determine the motion parameters

uniquely. Another significant theoretical result is due to Longuet-Higgins

[53], and Tsai and Huang [84], where eight points are used to solve for the

motion parameters from a set of linear equations. The important question

as yet unanswered are, under what conditions the optical flow field is
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inherently ambiguous and, what is the degree of the ambiguity possible in

optical flow fields. The following analysis answers these questions.

Theorem II. Under the assumption of rigidity, an optical flow field is amenable

to at most three interpretations.

Proof: Theorem I shows that the optical flow field is enough to determine

the rigid motion parameters uniquely for most surfaces. It was seen

however that in case of certain rational functions there is potential

ambiguity in the interpretation of motion. These are the rational functions

of the form

Z - ** + by + e
d -f ex + fy + gxy + hx* + %y2 v '

Planar surfaces belong to the above class of surfaces. It has been

mentioned previously that planar surfaces can have at most two

interpretations. When a surface is non planar, to have multiple

interpretations of its motion, it must be of the type given by equation (3.26)

with the added property that there is no common factor between the

numerator and the denominator.

Let such a surface be undergoing rigid motion (*7',V, W',a,/0,7). Let there be

another motion (£/, V, W,a + Aa,£ + A#>7 + A7) that produces an identical flow

field. Then comparing with equation (3.24) we have

V'W - VW' =ak
UW - WW =bk (3.27)

- UV =ck
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where k is some constant factor. Since by definition of the class RJ at least

one of a, 6 and e must be non zero, therefore Jfĉ O. This is because if k is

zero then from the above set of three equations we get the result that the

translations (C^V, W1) and {U,V,W) are identical up to a scale factor. Hence

by Lemma I of Appendix I, the motion is not ambiguous.

Multiplying the first equation by U', the second by 71, and the third by

W1 and adding the three equations we have

(aW + 6V" + cW'yk =0

This means that the motion can only be ambiguous when

aU1 + bV + cW =0 (3.28)

Similarly it can be shown that

aJ7 + bV+ cW =0 (3.29)

Again comparing the denominator of the rational function in equation

(3.26) with equation (3.25), and combining the constant k with the

translation parameter {U,V,W):

A0V + AaU =d (3.30)

AaW + A>yU =- t (3.31)

A0W + A7* r=- / (3.32)

AaV + ApU =- g (3.33)

Ar)W =h (3.34)

AiW =t (3.35)

From equations (3.30), (3.34) and (3.35) we get:
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q (3.36)

2A0V=r (3.37)

« (3.38)

where q =d + t - h, r =d - $ + h, $ = - 4 + t + &• Substituting from the

above equations into equations (3.31), (3.32) and (3.33):

qV2 + rU2 + 2gUV = 0 (3.39)

r^2 + «V* + 2/VTK =0 (3.40)

qU2 + sW* + 2eUW = 0 (3.41)

Equations (3.39), (3.40) and (3.41), together with equation (3.28) can admit

no more than two solutions. This is because at least one of (g,r,«,c,/,y)

must be nonzero. Therefore, since there can be at the most two spurious

solutions (recall that the veridical solution corresponds to Jb =o) , the

implication is that:

When the optical flow field has more than one interpretation, the number of

globally consistent solutions for the motion parameters can be at most three.

This completes the proof of the theorem.

It will be shown that there exist surfaces whose rigid motion induces

optical flow that is compatible with three distinct interpretations. This fact

explains why Longuet-Higgins and Prazdny [52] noted, that from local

optical flow constraints and their derivatives three interpretations of the
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motion are possible since the constraint equations were cubic*

An example of 2D motion field with three distinct rigid motion interpretationsi

The equation of the moving surface is

gzy

the motion parameters are (V,V*,0,a,£,7) the expression for optical flow is

therefore

tt = XPgzy - azy + 0(z2 + 1)- iy
v =Vgxy - a(y2 + 1) + 0xy + 73

Alternative interpretation I:

where the motion parameters are (U,0,0,a,/3 + gV,t). The optical flow field is

given by

Jf V{*2 + I)) - «*y + ifi + 9V){** + 1) - IV

»i = - <*(y2 + 1) + (P

Alternative interpretation II:

Z V1

The motion parameters are (0,7,0,a - gl? ,Pn)- The optical flow field is

u2 = - (a - gUt)zy •+• P(x2 + l ) - 7 y

v2 = V— [ Vzy - U1 [y2 4-1)] - (a - gUt){y2 + 1) + 0xy + 7x

It is easily verified that u =ux =u2 and v =vt = v 2 .
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Theorem I states that under certain cases the optical flow field may not

indicate the motion parameters uniquely. The next theorem shows how

unambiguous determination of the motion parameters can be achieved from

optical flow data.

Theorem III: The ambiguity of the optical flow field disappears when the

observation period extends over more than two time instants, assuming that the

motion in three space is steady.

Proof: The term steady motion indicates that the direction of translation is

fixed in space with respect to any inertial frame of reference. In other

words, the observer's line of trajectory is a straight line.

The proof of the theorem follows straightforwardly from equations (3.28)

and (3.29). Those equations tell us that ambiguity can only occur when the

direction of translation lies on the plane tangent to the observed surface at

the origin. Since this condition must necessarily be maintained, in order to

preserve ambiguity, we can state:

To maintain ambiguity, the spatial trajectory of the observer's nodal point

(i.e. origin of the frame of observation) must lie on the observed surface.

Since the observer's trajectory is a straight line, the above condition implies:

(a) The surface is planar.

(b) It is developable, i.e. one of the principal curvatures vanishes at all

points (e.g. a cylindrical surface).
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In the first case it can be shown that the ambiguity cannot be sustained [83] .

In the second case, the direction of translation must be along the principal

axis corresponding to the vanishing principal curvature* This means that all

the interpretations must have their translational velocities in the same

direction. Thus their rotational velocities must be identical (see appendix

A), Hence the motion will not have ambiguity. This completes the proof of

the theorem.

Another way of resolving the ambiguity in the optical flow is by using

shape information. There is a strong relationship between the parameters of

motion, the optical flow field and the structure of a moving surface. The

structure of the surface is defined by depth ratios between any pair of given

points (see Appendix B). The following propositions makes this concept

clear.

Proposition I. When the parameters (i.e. xo,yQ,a,pfi ) describing the motion of a

rigid surface are known then the structure of the surface is uniquely determined

from the optical flow field.

Proof: The proof is evident from equation (3.18). Note that we can obtain

the depth function up to a constant dilation factor W. In other words the

ratio of depths at any two image points can be computed.

Proposition II. When the structure of a surface is known then the parameters

describing its rigid motion are uniquely obtained from the optical flow generated
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by the motion.

Proof: See Appendix IL

Even the partial specification of shape can lead to a correct perception

of rigid motion. A illustration of the fact that shape information can

disambiguate between alternative motion interpretations comes from the

next theorem.

Theorem IV: The motion of a planar surface whose direction of translation does

not lie in the plane of its surface normal and the line of sight, can be interpreted

correctly from the optical flow generated, when the tUt of the plane is known.

Proof: Let the equation of the planar surface be

z = •
1 - px - qy

where (p,q) is the orientation of the depth plane and 'd' is the distance

from the origin along the z axis (e.g. line of sight). Substituting the above

into equation (3.18) and observing that we can ignore multiplication of the

translational parameters by a constant (such as d ) since we can compute the

former up to a scale factor anyway, we have:

tt =lx - l2x - l^y + Uxy + lBx2

v = / „ - l7x - lBy -lhxy + / 4y 2

where the unknowns { af } are given by

U+p^li (3.43.1)
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Up + W=l2 (3.43.2)

Uq + 7 =/s (3.43.3)

Wq - a = i 4 (3-.43.4)

Wp+fi=lh (3.43.5)

V- a = / e (3.43.6)

7- Vp=^ (3.43.7)

V? + W =/„ (3.43.8)

If we can estimate the synthetic parameters {'. y b" .̂ ung measurements of

optical flow at a minimum of four aaiuiuie points, in the image and, in

addition can measure the tilt of the depth plane, i.e.

| - r (3.44)

Then from (3-43.7) and (3-43.8) and (3-44) we have:

7 + rW=/T + r/t (3.45.1)

From (3-43.2), (3-43.3) and (3-44) we have :

r7 _ w =r/s - l2 (3.45.2)

Therefore, since r2 + 1^0 we have:

'7 - r";y?+ ' ' '• (*«*!)
.- ' ( ' , - ',) + ^ ' . (3.45.3.2)

2 + 1T2 + 1

Now if W ^ l9 ( i.e. ? 7^ 0 ) we have from (3-43.8) and (3-43.3):

k ( 3 4 5 4 )

Vq ~ V~l,- W~k (iAbA)

otherwise if l7 5^ 0 (i.e. p ^ 0 ) we have from equations (3-43.7) and (3-

43.2):
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Up ̂ u ^l2- W
Vp V 7 - /7

(if both p and q are zero then the parameters are easily solved for )

Now from (3-45.4), (3-43.6) and (3-43.1) we have:

*a + 0=1 - klt (3.45.5)

Also from (3-43.5) and (3-43.4) we have:

Ta + /3=l6- r/4 (3.45.6)

Therefore, since r ^ i , from the assumption made in the statement of the

theorem, then equations (3-45.5) and (3-45.6) are independent, and we

have:

, -»"' -".>-'(!-".) (3.45.7.2)
k — T

Now U and V can be determined from equations (3-43.6) and (3-43.1).

Thus we have determined the motion parameters uniquely from the optical

flow and tilt information.

At this point it may be mentioned in passing that it is possible to obtain

the motion parameters uniquely from the optical flow generated by two

planes moving together rigidly. In this case the optical flow is locally second

order. If the eight synthetic parameters are now measured at two different

regions of the flow field then



Motion Constraints 112

d

+ WA^r = A / 2a a

= A / Sd

± =A/4

! (3-46)
d

^=Al7

d

3J + WA^r = A / 8
d d

where the two planes involved in the motion are given by z =
px + qy

and z =—t ; . The A operator in front of any quantity denotes the
p'x + q'y + 1 K ' H ^

difference of the corresponding parameters for the two planes, e.g.

The above equations imply that when at least one of, A~ or A-y or A-r is
a d d

non zero' the iranslational parameters are uniquely determined. Hence in

such a case the rigid motion parameters are determined uniquely from the

optical flow field (see Appendix A). Therefore

When two planes, neither of which pass through the origin, move rigidly

together, their motion is uniquely determinable from the optical flow field

generated.
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3.5.2. Summary of the perspective projection case

The analysis presented here leads to considerable insight into the 3D

motion interpretation problem. Previous results (e.g. [28, 84]) by Huang

and his colleagues presented sufficient conditions for uniqueness of three

dimensional motion interpretation, since, they were concerned with specific

algorithms. The work, reported here, deals with necessary conditions for

unique interpretation of 3D motion from the optical flow field.

While the surface denoted by equation (3.26) does mean second order

surfaces containing the nodal point of the camera, it is certainly true that all

such surfaces do not admit ambiguous interpretations of their 3D motions.

Multiple interpretations require, in addition, that the the constraints given

by (3.29), (3.39), (3.40) and (3.41) all be satisfied.

Thus consider, an algorithm, such as Prazdny's [67], where nonlinear

(and independent) flow constraints at five retinal locations are used to

obtain a 3D motion interpretation. It is now possible to answer the question

as to whether the solution obtained is the only one possible. Since now a

set of motion parameters is known, from equation (3.22) the relative depth

or

— can be obtained at the five retinal locations. The latter, when

substituted into equation (3.26), generates five linear equations in the

surface parameters a9bfc,d9e,f,g,h,i. These together with the four

constraints (3.29), (3.39), (3.40) and (3.41) constitute nine linear
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homogeneous equations in the nine surface parameters. Therefore

uniqueness of interpretation is possible if the determinant of the above

system is zero. Which in turn implies, that all the surface parameters must

be zero. This makes it impossible to construct any other interpretation from

measurements at the five retinal locations, guaranteeing that the solution

obtained is the only one possible.

3.6. Summary of motion constraint results

Uniqueness proofs of the type derived by Tsai and Huang and Fang and

Huang do not allow us to visualize the situations when the optical flow field

is intrinsically ambiguous, admitting more than one interpretation. The

analysis of the optical flow field to determine cases of ambiguity was a major

focus of this chapter. We saw that three temporally contiguous image

frames contain enough information to uniquely recover 3-D motion and

structure under perspective projection. Since the optical flow field (two

temporally proximal frames) is, in general, ambiguous, two frames can

recover structure when the moving surface satisfies the conditions of

Theorem I.

The image formation geometry used in the analysis involved the

perspective projection. We also briefly examined an approximation of the

above model called orthographic or parallel projection. The attendant

simplicity in the motion constraint equations can be used to considerable
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advantage in the preliminary analysis of the motion perception problem.

The following results were derived:

1. The component of rotation about the line of sight, the ratio of the

other two components of rotational velocity, and the tilt function is

uniquely computable from a single optical flow field, for a rigid non

planar surface*

2. When the surface normals for a rigid surface are known then the

motion parameters can be computed uniquely.

The Perspective Projection model (see figure 3.2) is a more accurate model of

image formation by eye or camera. For this model it is proved that:

1. The optical flow field, under the assumptions of rigidity can have at

most three interpretations.

2. The rigid motion of any surface whose depth from the nodal point of

the sensor cannot be expressed by the rational function * ' , where

Pi and Q2 are rational functions of the first and second orders

respectively, is uniquely computable from the information in the optical

flow field.

3. Two optical flow fields, obtained at different time instants, determine

the motion parameters uniquely.
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4* The motion parameters are uniquely determined from the optical flow

field when the corresponding motion involves rotation only*

5. The optical flow due to planar surfaces is generally ambiguous.

However this ambiguity can be resolved either when the flow field is

due to more than one plane moving together rigidly, or in the case of a

single plane, if its tilt is known.



Chapter Four

Algorithms for Rigid Motion Perception

4.1. Introduction

In this chapter the applicability of the Hough Transform technique to

motion parameter estimation is examined experimentally.

The main difficulty in computing the 3D Rigid Motion parameters is

that the equation constraining the image motion to the 3D motion is

nonlinear. Another complication arises from the high dimensionality of the

parameter space. If it were possible to separate the component of the image

displacement due to translation from that due to rotation we could have

efficient algorithms for the computation of the three dimensional motion

parameters.

The brute force hough algorithm [7] is seen to have limitations that

stem from the above difficulties. The next section of this chapter outlines

the various computational strategies that were adopted to overcome the

above problems. After this, algorithms employing these strategies and their
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experimentally determined performance is presented. The remaining

portion of this introductory section is a brief discussion of other algorithms

that have been proposed in the literature.

An algorithm due to Ullman uses a simplified situation where the

rotation axis is assumed to be along the z axis [85] • The constraint he

obtained was an equation of the fourth degree in the sine of the rotation

angle. Roach and Aggarwal derived a set of nonlinear constraint equations

in eighteen parameters to characterize rigid body motion [71]. In recent

years, most of the work in motion interpretation in the literature attempt

either least square error minimization or iterative search techniques to

compute the set of motion parameters that best describe the image motion

data. The constraint equation used is some form similar to the one derived

in chapter three (also equation 4.7). Brass and Horn [19] compute

parameter set that minimizes the square of the error between the measured

optical flow and that computed from the parameter constraint In general

such a technique will give rise to a system of non-linear equations from

which the parameters must be computed using some suitable iteration

scheme. Longuet-Higgins and Prazdny [52] mention the possibility of using

motion parallax to simplify the computation of the global motion

parameters. Lawton and Rieger [70] uses a similar idea to factor out the

rotational component of the optical flow at depth discontinuities or regions

where the depth gradient is large. This method is not reliable since it hinges
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upon the ability to compute flow vectors reasonably accurately at

discontinuities. Since almost all algorithms, to date, for computing optical

flow face problems at regions where the field is sharply discontinuous.

Another method is to linearize the constraint equation by writing

equation 4.7 as a linear equation in eight parameters* Obviously these eight

parameters are each functions of the values of the five actual parameters.

This implies that linear least square methods are not applicable here, since

the eight synthetic parameters are not independent of one another. A similar

method is used by Tsai and Huang [84] but they found that the computation

is very sensitive to errors. Algorithm V attempts to alleviate the problem of
t

high dimensionality of the above scheme by using spatio-temporal

derivatives of the optical flow field.

In the case of General Motion, where one or more objects move with

respect to the observer, the situation is complicated by the fact that we have

to determine several sets of parameters, corresponding to the several bodies

in motion. However, the image motion measurement technique of chapter

two has been found to be quite good under such circumstances. This fact

enables us to assume that the algorithm for motion parameter estimation

can deal, without loss of generality, with the motion of a single body.

Motion segmentation has also been studied in restricted domains by

Fennema & Thompson [33]. The more tricky question concerning the

difference between Egomotion and General Motion has to do with the choice
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of the body frame of reference. In the case of egomotion the camera frame

and the natural body frame can be though to coincide. This means that the

notion of steady motion (i.e. parameters relatively unvarying within any

small period of observation) is intuitive, in the sense that it implies steady

motion of the observer in space. On the other hand for the motion of an

object the usual convention is to chose the body frame of reference to

coincide with the camera frame. In this case the steady motion of the body

in space need not imply steadiness of the observed motion parameter

values.

Recently a way of determining motion parameters from three

dimensional flow has been suggested [8]. This method is amenable to

adaptation to the general motion case. It is not clear as to how difficult it is

to compute the three dimensional flow in this case. However, it can be

shown that in case a depth map can be obtained (by some stereo matching

technique), the three dimensional flow map can be calculated.

Computer algorithms for determining the parameters of rigid motion

are discussed in the light of the various constraints developed in the

previous chapter. The treatment will consider both orthographic and

perspective projections. Some of the algorithms are described in detail, while

others are outlined, particularly when they bear any similarity to one already

discussed. In the algorithms proposed here, the Hough Transform technique

[7] is used to compute the desired global parameters from sets of constraint



Motion Algorithms 121

equations obtained at different image (or retinal) locations. It should be

noted that least square error minimization techniques are also applicable in

most cases.

Recall that the notation for optical flow is («,«)• While the translation

parameters are denoted by (U9V,W) or (*o =157^0 =-57) and the rotational

parameters by (0,0,7) •

4.2. Using the Hough Transform for Motion Parameter estimation

The concept of the hough transform is very simple. It is closely related

to the idea of clustering, introduced in chapter two. Consider an example

problem where we are required to estimate the parameters of a straight line

in two space from local measurements of small edge segments. The form of

the line equation we will use is

x cos $ •+• y sin $ = p

and hence the parameters to be estimated are (/>,*)• The set of

measurements is given by

M ={(zl-,y,-,^l) \there is an edge at (z,-,y,) with orientation $ }

Using the elements of M we obtain a distribution H(pf$) which denotes the

count of the number of times each of the (p,0) pairs satisfied the line

constraint equation for all the data values. This distribution is called the

hough transform of the data set M. The parameter estimate {p',0*) is then

given by the mode of the distribution H(). The situation is depicted in
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figure 4.1.

Hough Transform is defined in the (p,6) parameter space. An important

aspect of the method is the necessity of quantizing (or discretizing) the

parameter space in order to implement the transform process by computer

(or by a hardwired connectionist network [31]). The degree of quantization

is, in most cases, a critical control variable. The quantization can be

visualized by imagining the parameter space to be covered by a set of cells

that collect evidence or votes from the data values in order to determine

whether the desired parameter set lies in the space spanned by the celL

.
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Figure 4.1 Parameter estimation by Hough Transform
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An alternative formulation arises when we are unable to measure the

orientation 9 of the edge elements. In this case

M ={{xifyi) \there is an edge at (x,-,y,)}

Therefore, every (*,-,&•) determines a constraint surface in the parameter

space :

3,-cos $ + ftsin $ =p

Thus the transform is obtained by voting for every cell in the transform

space that * 'satisfies" the constraint for a given data element. Again the

estimated parameter set (p*,O is obtained by taking the mode of the

resulting distribution H(p>$).

The motion parameters that are to be estimated are:

( *o > Vo > <* > P > 1)

The measured data is the optical flow field [u(xyy),v(xyy)]. In order to use

the hough transform method for to tackle the motion perception, the

following issues have to be addressed:

(i) What does it mean for the data to satisfy a constraint? This question is

important since we have to contend with nonlinearity, discretization

and noise. Thus the data may never exactly satisfy the constraint.

(ii) At what coarseness level should the parameter space be quantized,

(iii) How does nonlinearity affect the first two issues.
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In order to represent the the parameter space one has to be able to

determine the bounds of the plausible parameter values. This does not seem

an unreasonable demand, however a more critical factor is the quantization

of the space. In of nonlinear constraints small discretization errors may

cause large fluctuations in the constraint surface* Hence with coarse

discretization the issue of iC constraint satisfaction" may be difficult to

determine. This is reflected by the results obtained from algorithm III.

A heuristic solution to this problem is to stipulate that constraint

satisfaction implies that the constraint surface intersects the parameter cell

in question. This leads to a simple scheme to determine intersection, in the

case of linear surfaces, whose distance from the cell center can be

determined by substituting the cell center parameter values in the constraint

equation. This is however not possible in the case of nonlinear constraint

surfaces (figure 4.2).

The great advantage of this method is that very coarse quantization of the

parameter space is possible. The only problem with this intersection

strategy is that when the cells are large the distribution obtained may be

multimodal. This situation is depicted in figure 4.3. In this case the spurious

modes have to be eliminated by successive refinement by considering

particular candidate cells and splitting them into sub cells and repeating the

voting process. This strategy is used in algorithm V and a modified version

of algorithm III.
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parameter space

computing intersection
with linear constraints

computing intersection
with nonlinear constr-
aints is difficult

Figure 4.2 Determining Constraint satisfaction by hough cell intersection

In some of the subsequent algorithms the five dimensional parameter

space is subdivided into a translational subspace and a rotational subspace.

The first subspace is quantized in terms of rectangular cells, while in the

case of the rotational space we have used a gaussian sphere representation,

using geodesic tessellations, to span the directions in three space

corresponding to the axis of rotation.

The results reported in this chapter indicate that hough transform can

be a reliable and robust method for motion parameter estimation. The

problem of nonlinearity cannot be totally be removed, necessitating the

knowledge of some initial estimate of the parameter solution set. without

this it becomes difficult to label the parameter cells in the transform space

and requiring a large number of such cells.
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cell 4 is the actual soln.

ceil 3 is the spurious
mode

Figure 4.3 Spurious mode formation in the cell intersection scheme!

4.3. Motion under Orthography

For the sake of completeness the case of orthographic projection is

considered in this section. This is , however a restrictive situation, which is

approximates the imaging geometry when the imaged object is either very

far away, or the focal length of the lens is large. This case has been

analyzed extensively in the literature, [5, 42, 79], are some examples. The

above methods deal with local analysis of the image motion field. The

algorithms presented in this section are based on the uniqueness results of

chapter three and involve global analysis of the optical flow field.

Under orthography the translational part of the optical flow field is

constant and hence the translational parameters are not computable. Hence

motion parameters here, always refer to the rotational velocity parameters
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The relevant equations are

Au =£A2r - 7Ay ( *
A A , A (4«1)

where the A symbol denotes that the following quantity is a difference

obtained from measurements made at two different retinal locations. The

relation between the surface gradients and the optical flow derivatives are:

Ji _,£ (4.2.1)

£—-£+7 <4-2-2 '
4^=/j-|^- f (4.2.3)
ay ay

.*!! = _ ai*fL f4 24)

Algorithm I: Motion parameters from image motion and structure information.

The simplest instance is when the structure of the moving object is known.

In the discrete case the relative depth function, AZ(x,y), values are enough

to compute the parameters (<*,0,7) uniquely from the linear equation (4.1).

For the differential case structure or shape can be represented by the surface

normals (-x—,--—). If the surface normals are known everywhere, then we
ox ay

can integrate the surface normals to obtain the depth up to a constant

additive term. In other words AZ(x,y) is computable. In this case

measurement of optical at three non collinear points is enough to compute

the rotational parameters. However, if the surface normals are only known

at sparse locations, but the optical flow field is locally known at these
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locations then we can use equation (4.2) for computing the rotation

parameters. In this case we are relying on the fact that the first derivatives

of the flow can be reliably computed. This is possible when, in the

neighborhood of the points of interest, the optical flow values have been

measured at enough locations so as to allow analytic reconstruction of the

optical flow function. Finally note that, if the motion parameters are known

then the structure can be obtained from the image motion for both the

discrete and the differential cases. The steps in the algorithm are:

1. Set up a three dimensional accumulator array for the rotation

parameters: A[a,£,7]:=0.

2. For every point in the image where optical flow and surface normals are

known, select the constraint equation (4.1) if the estimated

measurement error in the surface normal function is less than that

estimated for the optical flow function; otherwise select equation (4.2).

For all values of (a,p,i):

If (a,0fi) satisfies the constraint equation selected

h[afPrt]z=h[a,fi,n] + 1

3. Obtain the maximum value in the accumulator array. The

corresponding indices are the desired values for the rotation

parameters.



Motion Algorithms 129

Algorithm II; Motion parameters and structure from image motion. When the

structure is not known then, considering the differential case and

eliminating (-5—f-j—) from equations (4.2) :

dv a du

a
(4.3.2)

Similarly, eliminating AZ from equation (4.1):

fiu - 7X + p7y + v ==0 (4.4)

where p = -§-.
p

It is easy to obtain quadratic equations in either 7 or ~ from the equations
p

(4.3). This means that in general, at every image location, from the

measurement of the spatial derivatives of the optical flow at most two sets

of values of the parameters (~-,7,~) may be obtained. However, if some
p 9

global assimilation technique, like the hough transform ( see [7] ) is used,

then, as shown previously, if the moving surface is non planar, only one set

of parameters will be globally consistent. An exactly similar method, but

using differences of image displacements, can be devised for the discrete

case starting from equation (4.4).

4.4. Motion under Perspective projection

The relation between the optical flow and the motion parameters is given by

the equation:
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z

z
From the above we obtain, by eliminating Z:

u -f axy - /3(x2 + 1) 4- 7y

t + a( f* + 1 ) . ^ + 7* ^

Observe from the right hand side of the above equation, that its value is

unchanged when the translational parameters are multiplied by some

constant. Hence we can determine the translational parameters only up to a

scale factor. If we assume that W ^ 0 then the previous equation can be

written as:

+ axy - P(x2 + 1) + 7F ~ *
= u7

v + a{y2 + 1) - fixy + 7* y0 - y
If w =0 then (4.6) reduces to:

tt + otsy - £ ( s 2 + 1) + iy = U , x

* + a ( * 2 + l ) - j 8 * y + 7 * ^ l J

Equations (4.6), (4.7) and (4.8) are bilinear in the translation and the

rotation parameters. This nonlinearity makes it difficult to combine

constraints from different image locations to compute the motion

parameters. To summarize, the problems with computation of motion

parameters are:

1. The constraint equations are nonlinear.

2. The parameter space is of high (e.g. five) dimensionality.
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Algorithm III: Hough transform in 5D parameter space. This type of

algorithm can be easily realized by simple parallel neuronal hardware (see

[31]). The parameters that are to be determined are the polar angles (or

direction cosines) representing the directions of translation and rotation, and

the magnitude of the rotation vector. This representation for the rigid

motion parameters is convenient since the parameter subspaces

representing directions in space become easy to quantize by means such as

geodesic tessellation of the gaussian sphere. The steps in the algorithm are:

1. Select a coarseness scale for the parameter subspaces. For instance, how

many distinct directions in space, the range of values estimated for the

rotation magnitude and the sampling interval in this range. Initialize

the parameter units belonging to the hough transform space (this is the

five dimensional accumulator array where the votes for every parameter

vector is tallied).

2. For all retinal locations where optical flow has been measured do step 3:

3. For all possible parameter values (i.e. values of the parameter

quintuple) admitted in step 1, do:

(i) If the direction of the translational velocity is not parallel

to the image plane select equation (4.7) else select equation

(4.8).

(ii) If the parameter values satisfy the chosen constraint

equation vote for the corresponding parameter vector.
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4. Find the parameter quintuple that has received the maximum number

of votes.

5. Restrict the parameter space to a neighborhood of the selected

parameter quintuple. Repeat the steps from 2 to 4 after choosing a finer

parameter space quantization.

6. If the error due to the parameter quantization is acceptable then stop

and return the parameter values computed. Otherwise repeat step 5.

Some Remarks:

(i) The space and time required by the algorithm is reduced by periodically

examining the parameter accumulator units and purging those that have

collected only a few votes compared to the top contenders. This is

possible, since it is assumed that the noise in the optical flow data is

uniformly distributed in retinal space.

(ii) The confidence of the computed parameter quintuple is the ratio of the

votes it received to the maximum votes possible.

(iii) If in step 4 instead of a clear winner, a number of contenders are found

then step 5 might have to be repeated for each of these for finer

resolutions. Then the winner is the parameter quintuple that comes

through with the highest confidence.

Algorithm III, performs well when the quantization of the parameter space

is not too coarse. The following table 4.1 shows the degradation of
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performance with coarser quantization. Although the motion constraint

equation is nonlinear it is actually bilinear in form. This means that if either

the two translation parameters are known then the constraint becomes linear

in the three rotational parameters. The same holds true when the three

rotational parameters are known in which case the constraint becomes linear

in terms of the two translational parameters- This fact is used to modify

Algorithm III, so that instead of voting in a five dimensional space, we

break up the parameter space into two subspaces corresponding to the

translational and rotational parameters respectively. The two subspaces are

arranged in a hierarchical fashion. Every cell in the translation space spawns

a rotational space where the linear intersection strategy is used to

accumulate votes. The method is depicted in figure 4.4. It was found that

this strategy was very robust with respect to parameter space quantization.

In fact very coarse translation as well as rotational spaces could be used and

successively refined. Plate 4.1 shows some of the results for the rotational

parameter. The displays show vote distribution on the geodesic gaussian

sphere which has been quantized at various resolutions. The quantization

parameter N denotes the number of distinct directions in space used for the
Quantization Error

Trans.(%)
10.0
5.0

1 2.5
1.2

Rot. (%)
8
4
2
1

Computed Parameters
xf)

0.44
0.97
1.00
0.99

y0
1.4
2.4
2.0
1.9

a
3.0
3.3
3.0
3.0

P
2.5
2.7
2.0
2.1

Y
2.7
4.0
4.4
3.9

Error
Trans.(%)

30
9
6
3

Rot.(%)
20.0
5.0
0.5
1.0

Table 4.1 Quantization effects on five parameter hough transform
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Figure 4.4 Hough Transform with Decoupled Subs paces

The next two algorithms approach the nonlinearity problem by

linearizing the constraint equation. Although in this case the price we pay is

that the dimensionality of the parameter space increases. In the following

discussion it is assumed that the not all the translational velocity

components are zero. This is a valid assumption since it has been shown in

a previous section that the motion parameters for pure rotational motion are

uniquely detectable.

From equation (4.6) we have:

(yu - xv)W + vU - « V - x{*W - y(/3W _ Xy{otV + fiU) (4.9)

Now we state and prove a lemma regarding the feasibility of computing the
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motion parameters using the constraint given above.

Lemma I: The optical flow components can be expressed as an implicit

polynomial equation F(tt,9,x,y;pj9» =1, . . 8) =0 involving the image coordinates

(x,y) and eight linearly independent parameters p4 unless the depth function is a

rational function l ' , where Px and Q2 are polynomials of first and second
QXV)

orders respectively.

Proof: Equation (4.9) is homogeneous in the motion parameters. Assume

that the parameter W ^ 0 (The case where W =0 but either U o r V ^ O can

be worked out in an analogous manner). Dividing the above equation by W

yields:

{yu - xv) + ptv - p2u 4- ps - P4* - PbV + P**2 + PiV* - Vt*V =0 (4 .10 )

where

Pi=x0 (4.11a)

P2-yo (4.11b)

(4.11c)

. (4.lid)

Ps =0 + 7*0 (4.11e)

p7=7+az0

The parameters p,'s are linearly dependent if and only if
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k{v - k2u + A:3 - k4x - ksy + ktx
2 + &7y

2 - k8xy = 0

where the Jb.'s are constants not all of which are zero. Let the optical flow

be due to a rigid surface Z moving with velocity (U,V,vF,a,/?,7). In this case:

u = — ^ axy + 0(x2 + 1) - iy
_ Z _ (4.13)

Assume that the parameters p,- are linearly dependent. This implies that in

equation (4.12) there must be at least one Jfc,- that is not equal to zero.

However, if both kx and k2 are zero, then, all the Jb,-'s must be zero. Hence,

if the parameters pf- are linearly dependent, then at least one of kx and k2

must be nonzero*

Substituting for 'u' and V in equation (4.12) from equation (4.13) we

obtain:

M ^ y ^ - g s y + f t x ' + l ) - 7 * ) - *

+ ifes - kAx - * 6 y -h * 6 x 2 + * 7 y 2 - *8a;y ==0

Since both kx and *2 are not zero, we obtain Z as a rational function of the

form *, ' ; . This proves the lemma.

Lemma II: The five parameters of rigid motion are be uniquely determined by

the parameters pf«.

Algorithm IV: Equation (4.10) is the basis of a hough transform scheme to

recover the motion parameters. The advantage of this scheme is that the

constraint equation is linear in the synthetic parameters p,-. Once these
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parameters are computed the five rigid motion parameters are uniquely

determined. However this algorithm has the draw back that it requires an

eight dimensional solution space. The next algorithm seeks to remedy this

problem. It is based on the assumption that the optical flow field is available

in the form of locally analytic functions. This enables us to obtain the first

order spatial derivatives of the flow field, which are used to derive motion

constraint equations.

Algorithm V: Differentiating equation (4.10) with respect to the retinal

space coordinates we have two independent equations:

(yu, - v - xv%) + pxv9 - p2ut - p4 + 2ptz - psy =0 (4.14)

(u + yu, - xvf) + ptv9 - p2u9 - ps + 2p7y - psx =0 (4.15)

The parameters in equations (4.14) and (4.15) are linearly independent

when the depth function is not of the form given in lemma I. Selecting five

suitable points we obtain two alternative sets of simultaneous equations in

five unknowns. These can then be solved for the five motion parameters.

Note, however, that when px ==«0 =0 then then equation (4.14) alone cannot

be used for the computation. This is because the parameters (PI,P2>P4>P«>P8)

cannot then be used to solve for the five motion parameters. A similar

restriction holds for equation (4.15) when p2 =yo =0 .

Algorithm VI: Motion parameters from structure and optical flow.
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When the structure of the moving surface is known, its motion is

unambiguous. This method also reduces the dimensionality of the

parameter space by isolating the rotational parameters. Two alternative

constraint equations can be used here. In the first form spatial derivatives

of the optical flow function are needed. This implies local analytic

reconstruction of the flow function. In the alternative form of the constraint

depth ratios are needed, implying reliable ( and dense) measurement of

surface normals.

From eq. (4.5) the expressions for the spatial derivatives of the optical flow

(u,v) are obtained as:

" . - - -f - (*o- «)-|i-|f-- «y + 2/?x (4.16.1)

s--(».-»>7r!r-«-7 (4.16.2)

f, = - (*>- ») ; | r§f+ /»» + ? (4.16.3);|r§f

( 4 ' 1 6 - 4 )

Substituting (z0- x) — and (y 0- v)~ir *n the above equations from equation

z z
(4.5) we get:

(4.17.1)

(4.17.2)

(4.17.3)

where V

dZ
dx
Z

f

and

=(

= (

P

- U - 0

- v — a

az
- dy

z

txy + 0{

•(V2 + 1)

x* + l ) - 7 »

+ fixy + ix

)p - ax - 1

+ 7
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Thus at every image location (x,y), a set of three linear independent

equations involving the rotation parameters can be obtained. The functions

/? 7
i>(x,y) and p{x,y) are computable from the surface orientation values |s>r

ft 7
and -T-=r|«,f (see Appendix B).a Y

When it is not possible to measure derivatives of the optical flow, but

the ratio of depths at any two image locations can be estimated, an

alternative linear constraint equation can be derived involving only the

rotation parameters. Consider two image points (xuyx) and («2,y2)
 w*th

depths z\ and *2 respectively. The optical flow values at these points are

(«i,«i) and (u2,t/2). The motion parameters are {U,V,W,a,0,i). Using

equation (4.5) we have the following equations

uxzx - u2z2 = ( x 2 - xx) W + zx( - <*xxyx + /3(xx
2 + 1) - iyx) - z2( - ax2y2

vxzx - v2z2 ={y2 - yx) + zx( - a{yx
2 + 1) + 0 * ^ + 7«i) - *a( ~ a(y2

2 + 1) + 0x2y2

Eliminating W from the above equations we have

lX2a + m120 4- ri27 + <i2 =0

where

lX2 =xxyxy2- x2yx* + xx -

m12 =xxx2yx - xj2y2 + yi - y2 + — (xxx2y2 - a?2
2y1 - yx

2 2 Z* ( 2 2

r12— Z!X2 yxyr-*\ V\ ^
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«12 ==tti(y2 - 2/i) " vi(*2 - *i) + — ( - «2(y2 - yt) + v2(x2 - xx))

zl

If the surface normal value are available everywhere in a region enclosing

two image points, then the depth ratio, —, (corresponding to those
zi

locations) can be estimated (of course, mathematically, it is possible to

compute this ratio if the surface normal values are known along a path from

the one image location to the other). Consequently, each pair of image

points gives rise to a linear constraint in the rotation parameters. Thus by a

suitable choice of three pairs of image points we can uniquely solve for the

U Vrotation parameters and subsequently the translation parameters (-TT -̂TTF)

(see Appendix A).

The novel feature of the above algorithm is that it can combine shape

and motion information under two different conditions:

(1) In the first case the optical flow field has been measured sufficiently

'densely' to enable local reconstruction of the flow field. This enables

the first order spatial derivatives of the flow field to be estimated. Then

at all retinal points where the surface normals are known, we can

locally solve for the rotation parameters by means of a set of three

linear constraint equations.

(2) Alternatively, if the flow measurements are not dense, but the shape

measurements allow reconstruction of the depth function (up to a

constant scale factor), then again locally we obtain linear constraints in



the rotation parameters (e.g. equation (4.18)).

This means that in any image neighborhood, full reconstruction of either

shape or image motion, helps to recover both structure and motion. The

schematic diagram of the algorithm is given in figure 4.5.

The implemented algorithm uses the constraint equation obtaining $

and p from equations (4.17), to obtain a cubic polynomial equation in the

three rotation parameters. The optical flow and its first spatial derivatives are

measured and the cubic constraint is used to estimate the rotation

parameters by the hough transform technique. So, although the nonlinearity

remains, the dimension of the parameter space is reduced, which reduces

the size of the search space. The effect of parameter space quantization for

algorithm VI can be seen in table 4.2.

4.5. Conclusions

This chapter reported the results obtained experimentally using motion

interpretation algorithms based on the constraints developed in chapter

three. The hough transform was chosen as the preferred scheme for

implementing the algorithms since it is implementable by simple massively

parallel architectures [31] • In the case of linear constraints least square error

Quantization
N
5
3
2
1

Computed
X

.25

.17

.00

.00

y
.47
.81
.67
.36

Axis
z

.84

.56

.75

.93

Error
<%)

7
36
30
36

Table 4.2 Error in determination of axis of rotation
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minimization methods can be applied, however these techniques are no

longer appealing when the constraint equations are nonlinear. The hough

Transform technique extends to the nonlinear case.

This chapter also introduced the notion of a hierarchic hough transform

scheme where a coarse to fine refine strategy was seen to work well with the

nonlinear constraint equations that arise in relation to rigid body motion.

surface normals optical flowWhich
is measured

more
accurately ?

select window in image

Use pairs of optical
flow values and the
reconstructed depth
values (upto a scale
factor) to derive linear
constraints on the
rotational parameters.

Use spatial derivatives
of the flow and surface
normals to solve for the
rotational parameters
from local linear
constraints

Cooperative algorithm for the
computation of rigid motion
parameters from optical flow and
shape information. (Algorithm Vn)

Figure 4.5 An Adaptive algorithm for determining rotation
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PLATE 4.1. Hough Transform in rotational subspace.

Ml
A. Resolution parameter N = 5

B. Resolution parameter N = 3
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C. Resolution parameter N = 2

D. Resolution parameter N = I



Chapter Five

Active Navigation

Egomotion Perception by the Tracking Observer

5.1. Introduction

The perception of rigid motion finds application, in many areas. Some

of these have been mentioned previously. One of the more important ones

is the computation of egomotion parameters with the help of visual stimuli.

These parameters help in registering the observer's motion with respect to

the environment and are prerequisites to navigation. The problem that is

addressed in this chapter, is termed the Visual Navigation problem. The goal

here is to devise means of computing the Egomotion parameters of a moving

observer, from visual data.

The Passive Navigation approach [19] deals with egomotion parameter

computation, when the moving observer carries an optical imaging device(s)

which obtains time-varying imagery of the surrounding scene. The

computation usually assumes that image motion (e.g. optical flow) has been
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computed previously, and is available as input to the perceptual process.

Recently, there have been attempts to do "direct computation" [64] or

"motion without correspondence" [3] based on restricted situations like

planar moving surfaces or purely translational motion. These approaches are

novel, and certainly merit attention, but are of a preliminary nature and

need further study. Egomotion perception under the monocular passive

technique is handicapped by nonlinear constraint equations. In addition, the

difficulty of the computational task is compounded by the fairly large

number of unknown parameters to be determined. Therefore, since the

equations cannot be decoupled or simplified, iterative search techniques or

parameter space histograming (hough transform) have to be used in the

parameter determination. In this chapter, an alternative approach to

computing Egomotion is proposed. This technique requires the moving

observer to visually track an environmental feature. Our term for this

proposed method of egomotion perception is Active Navigation. It must be

clarified, however, that the sensing method used is not active (e.g. laser or

ultrasound ranging), but the perceptual system operates in a closed loop

fashion with active feedback from the image motion computation module.

The various advantages of the method are discussed. An analysis of the

geometry of this particular situation is examined to outline how closed form

solutions for the parameters may be obtained.
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The strategy advocated in this chapter calls for visual tracking and

combination of information from stereo image pairs. This approach is

adopted based on a number of experimental simulation studies reported in

the previous chapter and also in [28, 84], which indicate the difficulty of the

passive monocular approach. The stereo motion approach is also under

investigation elsewhere [50, 91], and the possible employment of active

tracking to facilitate navigation has been suggested by visual psychologists

[22].

It will be shown that when the observer is able to track a prominent

feature point in the imaged scene, the task of navigation is facilitated since

it is easier to compute egomotion parameters, compared to the non-tracking

case* The emphasis in this chapter is on the mathematics governing the

imaging equations that are obtained while the system is tracking. To track,

the system must have some way of measuring the error in the retinal signal.

Ways of doing this are discussed in section 5.2.

The outline of this chapter is as follows:

1 Error velocity measurement to correct tracking drift is discussed in light

of the primate pursuit system.

2. A general form of the relation between 3D velocity parameters and

retinal optical flow is derived. In previous derivations of this relation

[52] the origins of the body centered coordinate frame and viewer

centered coordinate frame are taken to coincide at the instant of
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measurement* Using the general representation it is shown why a

monocular observer, who is able to track an environmental feature

point, has to contend with a smaller number of velocity parameters.

3. The analysis extends naturally to stereo imaging situations, where it is

shown that, by combining measurements from both eyes, a linear

equation in two unknowns is obtained.

4. The above constraint is applied with all possible stereo correspondences

in a small neighborhood, so as to minimize the square error. This least

square error technique is seen to work well on simulated data, even

with the addition of 10-20 percent noise.

5. A new set of constraint equations are derived for the tracking observer,

which allow closed form solution of the egomotion parameters.

Simulation results are described and implementational issues for

integrating this module in the overall motion interpretation scheme are

discussed.

5.2. Target selection via Velocity Channels

The key assumption is that the alignment of the camera axes are

controllable by the system itself. In this case, as the system moves in the

world, the orientation of the camera is continually adjusted- This

adjustment is dependent upon the two dimensional motion perceived on the

retina.
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Optical
flow

Egomotion

t T
1

channel
Mechanism

Figure 5.1 Hie Tracking Mechanism

In the tracking system the problem can be seen as, given the image of a

target environmental point, to generate control signals that will foveate the

target The block diagram of a system for accomplishing this can be

schematized as shown in figure 5.1. The first and most important point to

make is that the system can be adequately modeled by servomechanism

concepts. It is relatively easy to see how to generate the kinds of motor

commands for the two movement systems to produce the observed

behavior. This of course assumes that the target point is identified.

Target identification is a central issue: in a complicated motion field,

how can the target velocities be easily identified ? This is a basic
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subproblem in tracking using velocity sensing and is captured by figure 5.2.

Our answer to this question uses the notion of global flow field vectors.

Such vectors respond to velocities in every part of the optical flow field. In

other words, if we visualize the optic flow field as a four dimensional

parameter space (x,y,u(x,y),v(x,y)), The global flow field sums all the

different flow vectors in a two dimensional (u,v) parameter space.

Detectors form a distinct set whose sensitivities are organized into channels.

In the case of a particular flow field, some channels will typically respond to

it and others will not. Figure 5.3 shows how the channel concept can be

a. b.

Tracking system must use velocities that stem from
the object being tracked and ignore background
velocities, (a) shows an initial situation where a
target is moving in the retina, (b) Once the tracking
system is engaged, the target is moving with a
relative velocity near zero but the background has a
large signal

Figure 5.2 Target Identification
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utilized.

We claim that with this abstract flow channel model the problem

becomes one of determining which of the channels should be used for the

eye movement control system. This means that a mechanism is needed to

switch the appropriate channels into the servo system. Note that this

technique uses a spatially distributed detector array. Our contention is that

it is appropriate to average the flow field over this subset.

A mechanism to switch the detectors on once the appropriate ones have

been identified is simple to understand, so we will concentrate on

t V

The global velocity space registers the number of flow vectors with
certain values. Channels, shown in the figure as concentric annular
regions, allow ranges of velocities to be selectively ignored, (a)
Initially the low velocity channel is off (shaded) allowing the system
to selectively register a moving target (•) and ignore background
variations (o). (b) Once the tracking mechanism is activated the high
velocity channels are blocked and again the target velocities are
passed, ignoring the background signals.

Figure 5.3 Concept of the Velocity Channel
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identifying the ideas behind selecting the right detectors* The general way

that this is done is by a feed-forward mechanism that determines some

selection criterion. The different kinds of criteria are important, so it is

useful to categorize them.

1. Extrinsic features. This method uses some other feature, say color, that

also has spatially organized detectors. To track a red object, the

detectors that register red are used to select the spatial component of

the velocity detectors. All such detectors with the appropriate

correspondence are used.

2. Intrinsic Features. This method uses some particular range of values for

the flow field itself, say all values over a certain velocity magnitude. To

track an object, all the detectors that satisfy the intrinsic criterion are

switched into the movement control system.

These distinctions are important as they correspond to two different

types of tracking situations. In navigation, where the entire spatial field is

moving, an extrinsic feature is appropriate. In pursuing a small target, that

target is usually moving differently with respect to the background, so an

intrinsic feature may be appropriate.
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5.3. Measuring Egomotion

5.3.1. Background

Consider first, the monocular imaging situation where a sensor is

moving relative to a static scene. The co-ordinate frame (X,Y,Z) is fixed to

the sensor (see figure 5.4). The viewing direction is along the positive Z-

axis.

The analysis presented here assumes a rotating and translating observer

moving in a static environment. However, since the velocity parameters that

characterize the motion are all relative to the observer's frame of reference,

the analysis per se, is not affected by multiple moving objects. The analysis

assumes the velocity representation for the motion parameters.

The reference coordinate frame is fixed to the observer. There is

another coordinate frame fixed at the point'S' on the body (see figure 5.4).
T"

The point S has the velocity Tt ~{Ut,Vi9W9). At the time of observation the

reference and the body frame axes are parallel to each other. The rotational

velocity of the body is given by the vector n =(<*,£,7). The 3D velocity of a

point P =(X,Y,Z) on the body is given by the equation

X « T + [ * ] ( X - X.) (5.1)

where X, =(Xf,!",,£,) denote the position of the body origin 'S' , and X

denotes the 3D velocity of P (the 'dot' operator is used throughout to

signify differentiation with respect to time), also
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0 - 7 0
7 0 - a
0 a 0

[R] =

The image formation is modeled by the perspective projection model (see

chapter three). The projection of a point P={X,Y,Z) is denoted by p=(z,y).

The projective relation is

^ p (5.2)

The constant f is the focal length of the imaging system. It is the distance

separating the nodal point of the camera (or eye) and the image plane,

moving along the optical axis (i.e. Z axis). In subsequent steps the constant

f is assumed to be unity. The velocity of image points in the 2d image

space is called optical flow. The relations between the 2D and 3D velocities

are obtained by differentiating the equation (5.2) and substituting from

equation (5.1).

L ^ L L (5.3)

t1 + 2 J] + fi[ 4 1 + [ 1

When the origin of the body coordinate frame coincides with the reference

or observer coordinate frame then X8 =Y9 =Z, =0 , and

T = T0 = ( U9 V,W),which simplifies the equation for optical flow to give :

17 - xW
u = ' . - axy +y3(z2-fl) - 1V (5.4.1)

v = V yW - a(l + y2) -f fixy + 7 (5.4.2)
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Figure 5.4 Imaging Geometry and motion representation

The above pair of equations embodies the constraint that the optical flow

(u,v) imposes upon the the parameters of rigid motion. Thus all an observer

has to do to determine where he is going is to measure the retinal velocity

pattern and then use the above pair of equations applied at least five points

[13, 67, 84], to determine the 3D velocity of egomotion. Note that there

are six velocity, components (Le. three for translation and three for

rotation). Unfortunately however, all the six parameters cannot be

computed by monocular visual data. This is because of the depth term 'Z'

that occurs in the above pair of equations. The depth introduces a scaling

effect, whereby other things being equal, multiplying the translational
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components and the depth by the same constant factor leaves the perceived

retinal motion unchanged. Thus for example an object at a certain distance,

translating with a certain speed generates the same optical flow field when it

is twice as far away and traveling in the same direction with twice the speed.

Thus the monocular observer, lacking depth information, must

eliminate the depth factor from the optical flow constraints. This will then

imply that the observer's translation can only be determined up to a scale

factor. Thus the number of egomotion parameters of interest are five -

pertaining to the direction of translation and the rotation.

When the depth variable is eliminated from the above equations we have

g ^ 0{x2 +. 1) + 7? , g 5 v
Vo - V v + a(y2 + 1 ) - fixy - 7* \ ' )

U Vwhere (xOiyQ) = ( — , — ) represents the direction of translation of the

observer's coordinate frame.

The above constraint equation demonstrates the difficulty of motion

computation for a monocular observer. It is nonlinear as well of high

dimensionality, both this properties in conjunction make the problem

difficult ([13, 28, 52, 53, 70, 84]).

5.3.2. The tracking Advantage

It will now be shown that in case the monocular observer can discern a

distinguishing feature or mark on the observed surface then the perception
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problem becomes simpler* Suppose that the surface in view has an easily

distinguishable and localized feature at point 'S' whose corresponding image

location is {x9fy9). In this case we can shift the body origin to the point S

and rewrite the optical flow equations as in (5.3). In addition

«*(*,,y.) = « . = %

r.-Lw.

Combining equations (5.6) and (5*3) one obtains:

axy,-P(l+xxt) + 1Vttt = Y1 z7 axy P(l+X> ~ 7y I5-7-1)

v = — ?:: *— -f- rr-^ — - or(l-fy2) + )9xy + 7X (5 .7 .2)

where the 'prime1 operator signifies scaling by Z99 i.e. W9* =—i-. Note that

the translational parameters with respect to the observer's frame ( i.e. the

observers actual translation ) are related to the body centered translational

parameters by

V = V + a - 7*. (5.8)
W'=W9'~ ay9 + fix.

The above analysis illustrates the fact that given the ability to estimate the

projected velocity of a localized feature accurately, the constraint equations

reduce in dimensionality by one.

A similar result may be obtained, as can be expected, when the moving

observer is able to track a single feature point so that it appears stationary
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on the retina at position (0,0). In this case we assume that the tracking

motion consists of rotations about the axes that are orthogonal to the line of

sight or the optical axis of the lens* The tracking motion is a rotation

(o/s,o;f,0), which is superimposed upon the actual parameters of motion.

Let 5 =(0,0,if0) be the spatial coordinates of the point being tracked.

Assume that the observer can track an environmental point and hold it

steady on the optical axis ( Z axis). Therefore the optical flow field will

have a singularity at the origin of the retinal frame, where the flow value is

zero. At the time of observation, the tracked point tends to move along the

observer's optical axis (figure 5.5).

Consider an observer moving with translation {U,VfW) and rotation

(a,£,7). Then, if the body frame origin is taken to be at 5, from equation

(5.8), remembering that U9 = Vt =0:

W, =W

furthermore the optical flow equation (5.3) becomes:

, (5.10)
f = - ^ 2 L - A[l- -±+y2}+Bxy+1x

where A = a + u, and B =f) + wr.
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v/

(0.0.0)

Velocity in depth of S is

v* (o'o.wf

figure 6.5 Monocular Tracking

Eliminating Z from the above we have:

+Axy- B(x2
B + xW

v + A{1 + y2) - Bxy - 7 x

where 1^'=-^.

150

(5-H)

The constraint equations derived above are similar in form to equation

(5.5). However, in this case the dimensionality of the parameter space has

been reduced from five to four without increase in the degree of nordinearity of

the constraint It is important to note that the observer can determine his

direction of translation since from equation (5.9) we have
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U--J.-B

Thus even without explicitly measuring his tracking motion, the observer

can determine the scaled translation (U*fV*fW). We next examine the

constraint equation (5.10) and show how it may be used to actively compute

the direction of translation.

5.4. Stereo tracking

It can be expected that stereoscoping viewing can simplify the task of

motion perception. Binocular imaging system does introduce a new

complication in that in addition to the task of retinal motion estimation, one

must also accomplish stereo fusion. However stereo fusion is a simpler task

than optical flow estimation, and a recently published algorithm is reportedly

able to handle this task reasonably satisfactorily [69]. The advantages of

stereo imaging for analyzing motion are:

1. The motion constraint equation is linearized.

2. Tracking an environmental feature point greatly simplifies motion

computation under stereo imaging conditions.

3. The epipolar constraint is a powerful aid in handling the

"correspondence problem" for both stereo fusion as well as retinal

motion estimation. ( In this section the reason for this will be sketched,

but it will not be detailed)
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figure 5.6 Tracking in stereo

5.4.1. Tracking in Stereo with Parallel Camera Axes

The monocular imaging geometry described previously is augmented by

two other coordinate frames located at the points (rf,0,0) (the left eye frame

) and (-d,0,0) ( the right eye frame) respectively. The central frame can be

imagined as the "head frame" and the two other frames as the camera or

"eye" frames. The situation is depicted in (figure 5.6). In this scheme there

is no vergence between the two eye frames ( rather the eyes verge at

infinity). This means that the corresponding axes of all the coordinate

frames are parallel. Furthermore, it is assumed that the frames are rigidly

attached to each other.
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The tracking action is with respect to the head frame. Now if the head

frame is tracking a feature point Sh at (0,0,p) then its image on the left and

right eye frames are at (-e,0,0) and (e,0,0) respectively. The relation

between the depth p and t is

_2±s=±
p 2e p

Once again for simplicity of explanation, consider the relative motion

between the observer's head frame and the observed rigid scene, as due to

egomotion. The motion parameters are the translational velocity (U,V,W)

and the rotational velocity (<*,£,7). The observer's tracking movement is

confined, as before, to the rotation (ws,o>f,0), with respect to the head frame.

The tracking motions executed by the the eye frames include this rotation

plus translations in depth of - dw9 and dw, respectively.

Consider an image location {xl9y) in the left frame, and its stereo pair

(xr,y) in the right frame. The disparity is given by

where Z is the depth of the point in space giving rise to the stereo pair.

The motion parameters are as before (U,V}W) and (a,£,7), with respect

to a hypothetical head frame located between the two stereo coordinate

frames. The head frame is assumed to track the environmental feature SK

(the subscript refers to the fact that the nomenclature is with respect to the

head frame). Therefore equations (2.9) hold. The motion parameters with
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respect to the stereo frames are:

L : Ti =T!b + T,* n ( = n , b + ni*
R : TF =T r

b + T* Q , =Q b + n *

where the subscripts / or r refer to the left or right frames, and the

superscripts b or tr refer to body parameters ( or representing actual

motion) and motion induced due to the tracking motion respectively. These

components can be expanded to

T , b = ( U, V + td, W- f id) f l ib = ( « . * . 7)

T b = ( U, V- 1d9 W + pd) n b = ( a , ^ , 7 )

and

T f - ( O f O f - «fd) fli fc=(« l f«i,0)

T ? . = * { o , o t w 9 d ) n ? = ( * , , « f f o )

It can be seen that the motion of the tracked point, is given as

T9 =( 0 , 0 , W ) in both the left and right frames. The rotation of these

frames is also the same, namely ( A , B , 7 ). Finally, the tracked point is

located with respect to the two frames as: 5/ =( -d , 0, p ) and

Sr =( d , 0 , p ). Therefore from equation (2.3) we get the optical flow

constraints for the left eye as:

A + B (1 + 2 +Axty + B ( 1 - y+ */2 + - j - ) - IVAxty + B (1 y

y ) + 1 ( z t + )

where A = a + w, and B=j5 + wr In the above equation, making the

substitution ( Z = ) we have:
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t* = y * - A ( l - -==-) + 7 -
2

where 4> = — - Ay + 5-^-r—-. similarly the optical flow for the right eye

is given by:

t i r = ^ + 5 ( i ~ 4-)- ŷ

vr =

From the above equation we get:

2 r —• Xf

which leads to a constraint equation in two parameters:

This with stereo tracking it is possible to obtain a linear constraint in two

unknowns at every point of measurement.

5.4.2. Tracking with Convergent Stereo Imaging

In this case the optical axes of the two cameras converge onto a point

in the environment that is being tracked. The geometry is illustrated in

(figure 5.7). We will generally deal with the left coordinate frame, with

respect to which the various quantities will be written as in the monocular

case. When we need to reference the quantities with respect to the right

frame these will be written primed (e.g. x'). The tracking motion involves

three independent rotational velocities (u,u/y,c«/y
f). The rotation u is about
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Figure 5.7 Binocular Convergent Tracking

the baseline RL of the imaging system (figure 5.7). Hence the tracking

motion of the left frame is given by (ws = - wsintf, wr, w, =o;cos0). If Zo is

the depth of the tracked point in the left frame then:

2d
sin(tf') sin(0)

Thus we can write:

also

F =

which simplifies to

inC^ -f B1) - {0 +
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Differentiating the above relation with respect to time once more, we have:

£ .[ 9'coe9' (9 + 9')ein9'coB{9 + 9') ]

*') J
+ 9') (9 + jVsinJ'cogffl + 9')

simplifying the above leads to

F =2 [ 8 in 2 ( •

- 2(9 + 0')cot{$ +$')F (5.16)

Let the motion of the observer be described by the translational velocity

T =(U,V,W) and rotational velocity n =(a,0,7). These parameters are

defined with respect to the point L in the body, which also happens to be

the origin of the left coordinate frame. The tracking motion of the system

consists of three independent rotations with respect to the observer. These

three rotations correspond to the three motors in figure 5.1. The angular

velocity a; corresponds to the rotation of the plane PRL about the axis LR.

The other two angular velocities are 0 and *"', which affect the left and right

coordinate frames respectively. Let the sense of CJ be positive in the

direction from L to R. Then the tracking angular motion of the left frame
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with respect to the observer is given by a>t and that of the right frame is o>t'.

Note that we will the express all the motion parameters measured in a

frame with respect to basis vectors defined in that frame. Therefore:

o/t' =( _ a;sin0', $\ - a/cos(')

If the rigid motion parameters with respect to the right coordinate frame are

given by the translations! velocity T and the rotational velocity fit' then we

have:

where V denotes the vector product and * denotes matrix multiplication. In

addition, the rotation matrix Rx expresses the transformation due to the

rotation by X =*• - (0 + f) between the left and right frames and is

cosX 0 - sin\
0 1 0

sinX 0 cosX

Now from equation (5.9) we have:

0 (5.17)
V- (<* + w,)F{t) =0

Observe that the above equations involve five unknown motion parameters.

If we now differentiate these equations we have

U + pF{t) + fiF(t) + w\F{t) + w f/(0 =0 (5.18)
V- aF(t) - otF{t) - u!9F{t) - u>,F{t) =0

Although here we consider a rectilinearly moving observer, the translational
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velocity {U,V,W) undergoes change due to the rotation of the frame in

which the observations are made* Thus we obtain:

V = - (a + a;,) W + (7 + a/s) U

W ={a+ ws)V- (/?+a;f)tf

Similarly the rotational velocity (0,^,7), undergoes change due to the

tracking motion, as follows:

a =a;r7 - wMp

ft = - a;s7 + a;,a

7=0

Introducing the parameters A =a + wt , B =0 4- w9 and C =7 + ws,

substituting for U9 V, W, a and p from the above relations, and replacing U

and V from (5.17), we have, from the last two equations in (5.18)

_ 2BF{t) + Aw,F{t) + u>wF{t)

and

2AF(t)~ Bu,F(t)
c = , _—

Finally eliminating C from the above pair of equations and using the

remaining equation of (5,18) we obtain the pair of independent equations:

At + s i ~ 7 ( 0 " ~ ' 1 (5'19#1)

<j>2A + 4>ZB + <f>A = 0 (5.19.2)

where
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=2u>,F{t)F{t) + cif

From equation (5.19) we obtain two sets of solutions for the motion

parameters. Eliminating the parameter B we have:

aA2 + bA +c = 0 (5.20)

where a =$1 + ^|f b =2^2^4 and c = ^

To summarize, the solution method consists of obtaining the solutions to

the pair of equations (5.19.1) and (5.19.2). Since closed form solutions are

obtained at every time instant and assuming the computation errors to be

uniformly random, we perform smoothing on the time series of the

computed parameters, to eliminate a large portion of the error.

The important aspect of this method of computation of the motion

parameters is as follows:

(a) The solution is closed form, requiring no iteration or search.

(b) The constraints are derived from the observed tracking velocities and

rotations. We do not need the optical flow measurements.

(c) Here the observables are, ($,$',6,9',0,0')• These can be measured quite

accurately by analog measurement apparatus. This possibility forms a

strong motivation for the tracking approach.

(d) The optical flow field, in our motion perception scheme is only used to

disambiguate between the possible interpretations computed by the
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tracking module. This is always possible since under extended periods

of observation the optical flow field generated is compatible with one

and only one interpretation.

5.5. Experiments

5.5.1. Stereo with parallel camera axes

We have carried out some preliminary experiments on artificial images

to date. Assuming binocular vision and tracking we obtain A and 7 from

which we can recover the other parameters.

The experiments were performed under certain assumptions:

(a) The optical flow is known at each point

(b) There are a reasonable number of points in the vicinity of the tracked

point.

(c) The translational velocity parameter along the camera axis (i.e. Z axis)

is small compared to the average scene depth.

The algorithm used to recover A and 7 is as follows:

(a) Obtain possible stereo correspondences by epipolar constraints, i.e. the

difference in the y values in the two camera's image frame has to lie

within a certain value which we shall call the radius.

(b) Calculate the depth of the point by the correspondence.
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(c) Throw away all correspondences which give extreme values of (depth

of point - p ) where p = depth of tracked point.

(d) Repeat step c until the number of points has been reduced to some

threshold (typically the original number of points).

(e) Calculate the coefficients of A and 7 in equation(5.3) for the remaining

points, and apply the least squares method to obtain A and 7.

The experiments were performed for values of f (focal length) ranging

from 35mm to 200mm, d (stereo baseline/2) ranging from 4 cm to 20 cm, $

(angle of rotation) varying between 2 degrees and 5 degrees and additive

noise of up to 20 percent. We found that the algorithm was quite stable

within these limits, recovering A and 7 to within 10 - 25 percent accuracy.

As the radius (distance between epipolar lines for correspondence) increased

the error increased. Further, if steps (c) and (d) of the algorithm were not

carried out, the errors were found to be much bigger, specially as the radius

became large. The results are summarized in table 5.1. (Note that the

values of V calculated from equation 5.9 are tabulated, together with 7) .

The parameters relevant to table 5.1 are (the unit of length is one pixel

width):

Focal length = 1000

stereo baseline = d = 1000

Rotation = ( a,0rf ) = ( 0.0688 , 0.0229 , 0.0688 )
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Translation = ( U , V , W ) = ( - 227 , 611 , 34 )

Percentage of noise = 10

The algorithm works with large amounts of additive noise because most

of the noise points get removed in step (c) of the algorithm. Other points

whose depth is calculated to be very different from p also get removed,

leaving points for which the A coefficient in equation (3,3) are quite similar

which gives better results with least squares. The error is due to two

factors:

(a) Discretization: This becomes specially important when the optical flow

or the depths are small.

(b) Wrong correspondences: These may be reduced by using more

elaborate statistical smoothing techniques in tandem with the parameter

evaluation stage (e.g. the overall scheme can be a few iterations of a

noise filtering step, then parameter hough transform followed by

radius
0
1
2
3
5

10

av. false match count
0.76
2.48
3.83
5.27
7.83

15.26

Y
0.0640
0.0634
0.0638
0.0636
0.0632
0.0645

V
647
539
533
526
510
485

error in y (%)
8
7
7
7
7
8

error inV (%)
9

12
13
14
17
21

Table 5,1 Measurements for tracking with stereo fusion
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further pruning of the input data and so on).

5.5.2. Convergent Stereo

The geometric configuration in this case is depicted in figure 5.7. The

simulation experiments were performed under the following assumptions:

(1) The precision of angular measurements is up to half a minute of arc.

(i.e. the truncation error ~ .0001 radians).
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E
T
A 0.3
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* NOISY ESTIMATES
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Figure 5.8 Time evolution of angular position
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(2) The error in estimating the angular positions of the camera axes is

random and follows a normal distribution with zero mean and standard

deviation no more than five times the error due to truncation.

(3) The motion of the system is smooth. In particular the path of

translation is piecewise linear in time, and the speed of translation

changes very slowly (no acceleration). Furthermore, there is no

precession or any other change in the rate or direction of rotation.

The motion stimuli were generated, synthetically, by applying exact rigid

transformations (rotations and translations), using user specified parameters.

The time progression was modeled by a sequence of small intervals (ticks).

At every tick three additional rotations were generated to maintain tracking.

The output of the data generation program consists of the sequence of

values of $ and •', which are the angles made by the optical axes of the left

and right camera respectively with the base line. Additionally, the rotation

of the camera system about the baseline was also recorded (w of figure 5.1).

All computations were done with respect to the left frame. The values of $

and $' were artificially corrupted by random noise following a zero mean

normal distribution, with standard deviation around 0.5°.

The steps in the computation were:

(i) The $ values were smoothed over time to reduce the noise. An

example of the effect of smoothing can be seen in figure 5.8, where the
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actual values, the observed values and the smoothed values of $ are

plotted. The scale for 9 is in radians while that of 'time' is in ticks.

(ii) The depth values and its derivatives were computed from the smoothed

curve 0{t), using the equations (5.15) and (5.16).

(iii) The OJ9 component of the tracking rotation is simply the first derivative

of $(t) with its sign reversed. The other components, w% and w, were

computed from w(t) and $(t), by a/f =-a;sin0 and wM =wcos0.

(iv) Finally the value of the body rotation is computed from equation

(5.20). The remaining parameters of motion are obtained from

equations (5.19),(5.17) and (5.18) by back substitution.

A typical set of values for the parameters used in the experiments is:

Stereo baseline length = 1.0

Initial value of $ — 100°

Initial value of 0' =77*

Initial depth of tracked point = 18.62

Vector (unnormalized) specifying the rotation axis = ( 1, 2, 3)

The angle of rotation per time step = 2°

The translation vector = ( 0.2, 0.3, 0.1)

The results for this set are plotted in figures 5.8 and 5.9. In figure 5.9 the

actual value for the x component of the rotation and the two computed

solutions (according to (5.19) ) are shown. The error in the computed

values of the rotation parameters were less than one percent. After back
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substitution, the error in the values obtained for the translations!

parameters were found to be around 5%

5.6. Summary & Conclusions

In this chapter a mathematical framework for active navigation,

employing tracking, has been developed. The results reported here suggest

that there is a better alternative to the "passive" technique for visual

navigation (19, 52, 68]. This new approach is termed Active Navigation. The

qualifier "active" is used because the mobile system is required to track an
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environmental feature.

The passive method has been unable to deliver practical algorithms for

motion parameter estimation due to the fact that the constraint equations

that arise are nonlinear and involve a fairly large number of unknowns.

The computation in such cases is hampered by sensitivity to small errors

and the need to have initial estimates of the solution in order to commence

the search/iteration in the nonlinear parameter space [84]

The idea that tracking environmental points may be beneficial to

navigation has previously been put forward by Cutting [22]. His analysis,

however, is largely qualitative. A general analysis of the tracking geometry

shows that the difficulties in motion parameter computation are alleviated

under monocular imaging and largely removed for the binocular case. The

problem with the binocular situation is that both motion as well as stereo

correspondence is needed. Simulation experiments were conducted to

examine the feasibility of this approach. The results are acceptable, when

the the stereo fusional radius is is known. Therefore in itself, the

stereo/motion approach cannot be recommended in practical cases due to

accumulation of stereo and motion matching errors.

On the other hand, an analysis of a tracking system as in figure 5.1

shows that if the position, angular velocity and acceleration of the tracking

motors can be measured over a period of time, then closed form solutions

of the egomotion parameters are obtainable. In general, two solutions are
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obtained at every time instant. However, an extended period of observation

can disambiguate between these, since the two solution trajectories intersect

at the correct solution (see figure 5.9).

Experimental simulation of the time evolution of of the solution space

was conducted, using discretely generated motion data corrupted by noise

that was as much as 20% of the rotation parameter value. The computational

scheme proved to be quite robust with respect to these random noise

fluctuations. The point is that the equations are stable enough, so that

perturbations caused by noise are not overwhelming. Therefore, the correct

solution trajectory can be recovered by temporal smoothing and

interpolation.

Thus a strong case can be made for adopting this method for visual

navigation, when the mobile system is undergoing steady motion. Even

when the steady motion assumption holds only approximately (e.g. when

there is a steady translational acceleration), the stability of the equations

allow us to obtain reasonable estimates of the motion parameters. This

suggests a cooperative scheme for the motion perception task. This involves

using the closed form solutions obtained from the tracking constraints to be

used as initial estimates in the monocular and binocular "flow" modules to

refine the solution and compute structure of the observed surface. Such a

scheme is outlined in the concluding chapter.



Chapter Six

Conclusion

6.1. Summary and Discussions

The purpose of this research was to analyze the problem of Rigid Body

Motion Perception. The paradigm adopted for this study was a model for

motion perception where the main task was viewed as the computation of

sets of parameters that defined a hierarchy of abstraction levels. The

parameters at any level can be thought of as succinct rfepresentations for the

invariances that characterize that level. The computations performed at the

proposed levels of the hierarchy span Low Level to Intermediate Level visual

processing tasks.

The concept of spatial receptive field (SRF) of the parameters at any

level of the hierarchy was introduced to capture the notion of the degree of

abstraction realized by the parameters at that level. Thus at lower levels of

the hierarchy, involving the computation of optical flow for instance, the

SRF is small. In contrast, at the higher levels of abstraction, an example of
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which have larger SRF. In the latter case, the SRF is global in the sense that

it spans the part of the visual field that receives input from an entire moving

surface.

The study was divided into three main stages. The first stage had to do

with the measurement of image motion. It was demonstrated that clustering

is a powerful tool in determining and structuring the image motion field.

An orthogonal image decomposition scheme was also introduced to

determine match tokens in time varying intensity images.

The second part dealt with the analysis of the algebraic constraints

between the image motion field and the rigid body motion parameters.

Here, the solution of two open problems were derived. These had to do

with the upper bound on the number of interpretations of the optical flow

field, which was proved to be three, and the conditions under which unique

interpretation is possible. Regarding the latter question it was proved that the

condition of ambiguity can be resolved by making observations at more than

two time instants.

Finally, the analysis of the previous part were utilized to design

algorithms for estimating the motion parameters from image motion, using

the hough transform technique.

It was seen that nonlinearity and large dimensionality of the parameter

space were two obstacles to the solution of the motion perception problem.

In chapter five, alternative Active, strategies were proposed to tackle these
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difficulties. The notion of tracking was introduced in analogy with the

human smooth pursuit system. It was shown that under this active scheme

the motion parameter estimation problem becomes simpler. In the case of

egomotion, when the observer's motion is steady in space over the period

of observation, it is possible to obtain closed form solutions for the

egomotion parameters. In general, when the assumption of steady motion

does not hold, the above parameter estimate degrades. However, the

tracking solution is proposed, as one of the modules in a cooperative stereo-

motion (see figure 6.1) system.

In this cooperative scheme, the motion and stereo correspondence is

aided by the initial parameter estimate. Future research will determine the

efficacy of this approach, although as far as motion and structure

interpretation from optical flow is concerned it forms a vital link in the

proposed hierarchical motion perception model (figure 1.1), since good

initial estimates of the parameter values, as seen in chapter four, greatly

simplifies the task of rigid body motion parameter computation.

6.2, Future Work

The research reported in this thesis, has opened up several avenues for

further study. The task of motion perception is seemingly complex. The

model proposed here is based on the belief that highly parallel hierarchies of

simple local interactions is in principle upto the task. This belief is bolstered
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Figure 6.1 A cooperative model for motion perception

by the results demonstrated here and by the increasingly better

understanding of the biological visual mechanisms evolving from research in

psychology and the neural sciences.

Areas in which future research in computational studies in motion

perception may be directed include:

(i) Correspondence using labeled interest points: The orthogonal

decomposition operator provides a a natural way of labeling the selected

interest points. These labels when used explicitly may reduce the
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average number of match possibilities for the image motion algorithm.

(ii) Cluster Analysis for multiple time frames: The cluster based approach to

image motion analysis is extendible to multiple time frames* This

needs to be analyzed and experimentally evaluated*

(iii) Limited Spatial indexing of the velocity space: The clustering method is

oblivious to the spatial coherence of the match data, only dealing with

match vector or velocity values. It is easy to extend the clustering

scheme to include some measure of spatial coherence like the principal

components of the two dimensional spatial scatter. The details of such a

strategy needs to be worked out and implemented.

(iv) Alternative Clustering strategies: A controlled probabilistic relaxation

technique seems possible. Maximizing entropy or energy functional

are good candidates. This needs further study.

(v) Sampling and quantization of the parameter space: Uniform sampling and

quantization need not be the only solution. The sampling properties of

the motion parameter space needs to be studied to determine whether,

for instance, random location and sizes of the cells lead to economy

and efficiency without sharp decline in performance.

(vi) Tracking target selection: Aggregating many coherently moving features

may help. The exact mechanism for doing this needs to be examined.
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Appendix A

Uniqueness of Rigid Motion Parameters

Consider a point P in space whose coordinates are [X,YfZ) with respect

to a fixed inertial frame XYZ- The image of this point is p =(z,y) whose

coordinates are given with respect to a xy frame located on the image plane.

The relation between the world point P and the image point p is given by

f ^ (i)
where T is the focal length of the imaging system. This is assumed to be

unity in the following analysis.

Now if a rigid surface moves with a translational velocity VT =((7,y,w) and

a rotational velocity fi =(a,0,7). Then, from kinematics, the three

dimensional velocity of any point on the surface can be written as

where 't' is the time variable and 4x' denotes vector product.

In differential motion case the image motion or optical flow is denoted by

(utv) =(~^,~^)# Differentiating equation ( l ) and substituting from equation

at dt

(2) we have the following relations
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) - IV (iii.a)

+ 7x (iii.b)

Eliminating the unknown depth variable from the above we get

u + axy - fi(x% + 1) + 7y U -

u -u z
V-t

xW

tW

The above equation describes the constraint imposed by the measured value

of optical flow (u,t>), at an image point (x,y), on the six motion parameters

Proposition I. Given the rotation parameters the translation parameters can be

uniquely determined from the optical flow field

Proof: First we define the function fi{x,y) where,

v + a(y2 + 1) - pxy - 7* ^ '

Now we analyse the following cases:

Case 1: If /x =eoiMicint then from equation (iv) we have W =0, In this case

we can only obtain the ratio — from the optical flow field.

Case 8: If fi 7̂  constant then there are two image points where n is different.

In which case we can solve the resultant set of two linear equations,

obtained from (iv), to get z0 = — and y0 = — .

Proposition II. Given the translation parameters the rotation parameters can be

uniquely determined from optical flow.
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Proof: Here the values of x0 and y0 are known. The expression for optical

flow is,

u =(x 0 - x)* - azy + 0{x* + 1) - ty

• =(»o - *)* - «(»a + 1) + 0xy + 71

Where (a,£,7) are the rotation parameters and <j> —— is the reciprocal of the

z

scaled depth function. If possible let there be another surface moving with

the same translation but different rotation parameters, but generating the

same otical flow* Thus we have,

u =(z0 - x)4>> - a'xy + /?'(x2 + 1) - 7'y

^ =(yo - VW - <*\y2 + 1)+ pxy + Var

Now from the above sets of equations by subtracting appropriately we get,

0 =(x0 - *)(^ - +') - ^»«y + 4?(*2 + l) - A7y (v.a)

0 =(*o - y)(^ - ^') - &a(y2 + 1) + A^xy 4- A7* (v.b)

where Aa = a - a1, A0 =/9 - 01 and A7 = 7 - 71. Eliminating (^ - ^') from the

above we have,

(Acrx0 + &/3y0) - x(A7z0 + Aa) - y(A7y0 + A0) -h x2{A0yo -h A7)

-I- y2(Aax0 + A7) - xy(A0zo + Acry0) = 0 (vi)

Since the above equation is valid everywhere in the image,

Aax0 + A^yo = = 0 Aay0 + A^3x0 = 0

A7X0 4- Aa = 0 A0yo + A7 = 0

A7y0 •+• A^ = 0 Aax0 + A7 = 0

From the above we obtain,

Aa = 0 A0 = 0 A7 = 0
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This means that a =<*', fi =ff and 7 = 7 ' and therefore, the rotation

parameters are uniquely determined when the translation parameters are

known.

Proposition III / / the structure of a Rigidly moving surface is known, then the

parameters describing its motion is uniquely determined.

Proof: Knowing structure means that we have the depth values available up

to some scale factor* Thus in equation (iii) the value 'Z' is no longer an

unknown. The unknown scale factor is lumped with the translation

parameters. Now proceeding in a manner analogous to the previous proof

we have,

4r(Al7 - zAW) =Aaxy - A0{x2 + 1 ) + A^y (vii.a)

z
y ( A 7 - yAW) =Aa{y* + 1) - A0xy - A7x (vii.b)

Eliminating — we have,z

{ActAU + A0AV) - x{A^AU + AaAW) -

+ x2{A*tAW +• &/3AV) 4- y2(A^AW + AaAU) - xy[AaAV + A0AU)

Since the above equation must be valid all over the image plane, the

following relations hold:

AaAJ7 + A0AF = 0 AaAW + A>yAU = 0 A0AW + A7AV = 0

AaAV H- A0AU = 0 2\^AV -f A7AV^ = 0 AaAU + A7AM^ = 0

From eqn. (vii) and the above relations we have,

AU ==AF =AVK = A a = A ^ = A 7 = 0
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Therefore, once the structure is known for a rigidly moving surface, its

translation ( up to a scale factor ) and its rotation is determined uniquely

from the optical flow generated by the motion.



Appendix B

Representation of surface shape

In computer vision, the terms surface orientation map and shape are

sometimes used interchangably. The following is an attempt to explain the

basis of this usage. The cases of Perspective as well as Orthographic

projections are considered. Shape information obtainable from a surface

orientation map in image coordinates is also explored.

Representations for surface orientation

A direction in three space is specified by two independent parameters.

A. (Latitude, Longitude): The coordinates are denoted by (0,^) where

B. Coordinates on the gaussian (or unit radius) sphere. If the coordinates

are (/,m,n) then I2 + m2 + n2 =1 .

C. (slant , tilt): Slant is the tangent of ther latitude angle (or tan0 ) while

tilt is the longitude angle. The symbolic notation is (<r,r).

D. (Gradient): If the depth is expressed in the form Z = /(X,y), then it is

the level surface F(X,Y,Z) = 0, where
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F{X,Y,Z) =f(X,Y) - Z

The gradient of F{-) , i.e. {%,%,-1) gives the orientation of the
oX oi

surface ( in the direction of increasing F(-) ). The gradient notation is

written as {p9q)f where (p,g) =(

Relationship among the surface normal representations:

Shape under Perspective Projection

In the case of perspective projection the relation between a world point

(X>Y,Z) and its projection (*,y) in the image plane is given by

where F is the focal length of the imaging system.

The surface is represented in the world frame by the functional form

Z(X,Y). It is assumed that the surface can also be represented (at least

locally) by the function z{x,y) in image coordinates. Here the relation

between the surface normals (^=,-^7) corresponding to an image point lx,y)
oX oY

and the partial derivatives of z{x>y) are saught.

A- Relationship between surface gradients in image and world coordinates. Now

a small displacement (Sxt6y) in the image plane corresponds to a
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displacement (SX9SY9SZ) in the world frame, along the surface Z{X9Y).

From equation (i) we get the relation

y$M (Ua)

(iLb)

Furthermore the following identity holds

Z{X + SX, Y+SY) =*(* + Sx ,y + Sy) (Hi)

Using the Taylor series expansion of the above

Z{X+6X, Y+SY) = Z(X,Y) + SX~: + SY^- + (higher order term*) (iv.a)

8Z dZ
z(x + Sx , y + Sy) =Z(xfy) 4- 6x~? h Sy-~ h {higher order terms) (iv,b)

Neglecting the higher order terms in equation (iv) and substituting for SX

and SY from equation (ii) in equation (iv.a)

Z{X + SX , Y + SY) - Z(XfY) =SZ =j(SxZ + * « Z ) ~ + -~

or

crwtn uZ OZ \ rr c &Z , „- OZ / \
SZ(F - x— - y—) =ZSX— + Z*y— (y)

Recall now that

f X , Y + SY) - Z(X,Y) =z{x +Sx ,y + S y ) - z(x,y)

Therefore combining equations (iii), (iv) and (v)

z dz . z az dz_ dz^
9Z__dZ_dX V 3Z__ dZ_3Y dx Vdy (vi)

x ax aY zax dY
Since Sx and Sy are independent of each other we have
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ax i - \
( v u ' a )F-nU.-

dX

z**-
dY

dY

dz
«

B. What Shape means Consider the shape information available from the

field of surface normals indexed by the image coordinates. Making the

appropriate substitutions from equations (vii) in equation (iv.b) we have:

zlz + Sx , y + Sy) ~ « P dX c dY
—\ y 9 */ x -h ox 4~ o y

Z{*JV) p 92 8Z „ dZ dZ
8X" dY dX" dY

Thus the following statement can be made:

Under perspective projection, when the field of surface normals is available,

indexed by image coordinates, then the image centered depth function can be

computed upto a dilation factor.

Lemma I. If the surface Z is represented by an algebraic function Z(X,Y) and

furthermore if the function z(x9y) denotes the same surface in terms of the

image coordinates (x,y), then the tilt function r(x,y) is given by

dZ_ dz_
r = dX = dx

dZ dz^
dY dy

Proof: Since Z{X9Y) is an algebraic function, by definition it can be

expressed implicitly by the polynomial equation F(XyY}Z) =0 . We can write
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F(-) as

ESE^'^4 =o (viii)

where the e^'s are real constants and L, M, N are finite positive integers.

By using the implicit function theorem we get

dZ
dY

T~ az ~

FY

~ F,
Fx

Fr

Fr

where FXyFriFx denote the partial derivative of F(*) with respect to J , y and

Z'. Therefore we have from equation (viii):

L U N

r =-

EEE
(ix)

Observe now that we can obtain an implicit representation for the depth in

terms of the image coordinates [xfy) from equation (viii) by substituting for

IT V

X and Y in accordance with x =— and y =— (where the focal length is
z z

assumed to be 1). Thus we obtain the representation G(z,y,z) =0 or

^ / * (x)

Again by the implicit function theorem we have

EEI
dy

G G L Kf N

or
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E
L M N

Consider now, equation (ix) and substitute x =xz and y =yz

, ...
E

But the right hand sides of the equations (xi) and (xii) are identical* This

means,

dZ dz^
BY dy

J S S s=S =—-

az dz
dX dx

which concludes the proof of the lemma*

Shape under Orthographic Projection:

Under orthography the image coordinates of a point are equal to the

corresponding three dimensional coordinates, or

Thus

/dZ dZ\ t &Z dZ\

Now observe from equation (iv.a) that when the surface normals are known

at an image point (s,y), then the depth difference between this point and

neighbouring image points are known:
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Z(X+SX, Y+SY)- Z{XtY) ^SX^= + BY^- + (higher order terms)

Thus we can state the following:

When a map of surface normals is available under orthography, the depth

function can be computed upto a constant additive term.


