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Low level modern computer vision is not domain dependent, but concentrates on problems that
correspond to identifiable modules in the human visual system. Several theories have been proposed in the
literature for the computation of shape from shading, shape from texture, retinal motion from spatiotem-
poral derivatives of the image intensity function and the like.

The problems with the existing approach are basically the following:

(1) The employed assumptions are very strong (they are not present in a large subset of real images), and so
most of the algorithms fail when applied to real images.

(2) Usually the constraints from the geometry and the physics of the problem are not enough to guarantee
uniqueness of the computed parameters. In this case, strong additional assumptions about the world are
used, in order to restrict the space of all solutionsto a unique value.

(3) Even if no assumptions at all are used and the physical constraints are enough to guarantee uniqueness
of the computed parameters, then in most cases the resulting algorithms are not robust, in the sense that if
there is a slight error in the input (i.e. a small amount of noise in the image), this results in a catastrophic
error in the output (computed parameters).

It turns out that if several available cues are combined, then the above mentioned problems disappear

in most cases, the resulting algorithms compute robustly and uniquely the intrinsic parameters (shape,
depth, motion etc.).

In this thesis the problem of machine vision is explored from its basics. A low level mathematical
theory is presented for the unique and robust computation of intrinsic parameters. The computational aspect
of the theory envisages a cooperative highly parallel implementation, bringing in information from five
different sources (shading, texture, motion, contour and stereo), to resolve ambiguities and ensure uniqueness
and stability of the intrinsic parameters. The problems of shape from texture, shape from shading and mo-
tion, visual motion analysis and shape and motion from contour are analyzed in detail.
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Abstract

Low-level modern computer vision is not domain dependent, but.
concentrates on problems that correspond to identifiable modules in the
human visual system. Several theories have been proposed in the
literature for the computation of shape from shading, shape from texture,
retinal motion from spatiotemporal derivatives of the image intensity
function, and the like.

The problems with the existing approach are basically the following:

(1) The employed assumptions are very strong (they are not present in a
large subset of real images), and so most of the algorithms fail when
applied to real images.

(2) Usually the constraints from the geometry and the physics of the
problem are not enough to guarantee uniqueness of the computed
parameters. In this case, strong additional assumptions about the world
are used, in order to restrict the space of all solutions to a unique value.

(3) Even if no assumptions at all are used and the physical constraints are
enough to guarantee uniqueness of the computed parameters, then in most
cases the resulting algorithms are not robust, in the sense that if there is a
slight error in the input (i.e. small amount of noise in the image), this
results in a catastrophic error in the output (computed parameters).

It turns out that if several available cues are combined, then the above-
mentioned problems disappear; the resulting algorithms compute uniquely
and robustly the intrinsic parameters (shape, depth, motion, etc.).

In this thesis the problem of machine vision is explored from its basics.
A low level mathematical theory is presented for the unique and robust
computation of intrinsic parameters. The computational aspect of the
theory envisages a cooperative highly parallel implementation, bringing
in information from five different sources (shading, texture, motion,
contour and stereo), to resolve ambiguities and ensure uniqueness and
stability of the intrinsic parameters. The problems of shape from texture,
shape from shading and motion, visual motion analysis and shape and
motion from contour are analyzed in detail.
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1

I ntroduction

A large part of Low and Intermediate Level Vision, i.e. problems such as shape
from texture, shape from shading, structure from motion, three-dimensional motion |
analysis-and shape from contour, is studied. All these problems have been studied in the
past, using very few information sources. It was proved that in order to achieve
uniqueness of the underlying computations, some restrictive assumptions should be
employed. This resulted in algorithms that worked partially in synthetic laboratory
images and not at all in natural images. Furthermore, the stability of the proposed
algorithms was never studied; this resulted in algorithms very sensitive to noise, i.e. a
very small amount of noise in the input could result in a very high percentage error of the
computed parameters. In this work, we study the above problems, by using as much
information is available from different cues (stereo, motion, contour, shading and
texture). This results in algorithms that provably compute uniquely what they are
supposed to compute and they are very stable (robust), in the sense that small noisein the
input, will create a small percentage error in the computed parameters.

The basic ideas in this thesis are centered around the fact that minimal
assumptions, uniqueness and stability, should (and can) be the first and basic
requirements for a visual computation. We support this argument by analyzing several
problems. '

The first chapter introduces the reader to the Held of computer vision and
establishes some of the required nomenclature. The second chapter criticizes a large part
of previous work, givesthe motivation for the research needed and describes the results
that we have obtained. The chapter after thisanalyzesin detail the problem of shape from



texture, and the fourth chapter examines the problem of shape from shading. The fifth
chapter analyzes visual motion and the sixth studies the perception of shape and motion
“from contour. The fina chapter summarizes the results and describes future research in
the fidd. Finally, our technical results are listed at the beginning of the third, fourth, fifth
and sixth chapter. .

Background to thiswork

In this chapter we discuss what a machine vision system is perceived to be by
today's research as well as the relationship of machine vison to other scientific fields. We
introduce concepts that will be used throughout the thesis.

LI Computer Vision

There is no doubt that vison is our most powerful sense. It gives us information
about our environment and the ability to interact with the environment in a very
intelligent way. Because of this, there has been amgor effort in the last twenty years to
give machines a visud sense. (Computer Vison is the fidd of computer science, and
subfidd of artificia intelligence, which attempts to understand vision and provide
machines with a visua sense). But vison, our most powerful sense, is aso our most
complicated sense. Research in the field of neuroscience has shown that more than half of
our brain isengaged in visua 'pr ng. Our knowledge about biologicad vison systems
isstill very poor, and we can say that what we do know about biologicd visionisthat it is
very complex. No wonder, then, that all the attempts up to now to brovide machines with
a rich and genera sense of vison have falled. But, some progress has been made in
industrial applications, where the visua environment can be controlled and so be very
restricted, resulting in aclear-cut task with which the machine vison system isfaced.

Building a universal machine vison system, or understanding the animal visual
system, is far from reality. It is undoubtedly of the nature of research in a difficult field
that some early ideas have to be abandoned and new concepts introduced as time passes.
Some believed, for example, that understanding the image formation process was not
necessary. Other researchers became very excited about specific computing methods of
rather narrow utility. No doubt some of the ideas presented in this thesis will aso be
revised or abandoned in due course. Thefidd isevolving too rapidly for it to be otherwise.



The next section deals with the central problem in computer vision, and constitutes

the basis for the rest of the chapter.
1.2 The Central Goal of Machine Vision

It is very difficult to define the central problem of computer vision or vision in
general, as in many other scientific fields. What goes on inside our heads when we see?
Most people take seeing so much for granted that few will ever have considered the
question seriously. Here we attempt to give the following loose definition of the central

problem of computer vision:

"The central problem of computer vision is: from one or a sequence of images of a
moving or stationary object or a scene, taken by a monocular (one eye) or polynocular (many
eyes) of a moving or stationary observer, to understand the object or the scene and its three-

dimensional properties.”

The reader will immediately observe that all the terms in the above definition are
well defined, with the exception of the term “understand.” What is really the meaning of
“understand” with respect to this problem? The problem of finding meaning is the central
one in artificial intelligence and it is by no means answered. For this reason, because
various researchers understand meaning in different ways, there have basically been two
schools of thought in computer vision. Although no clear distinction between thexﬁ can be
made, we can safely differentiate them into two schools: Reconstruction and Recognition.
The reconstruction school worries about the reconstruction of the physical parameters of
the visual world, such as the depth or orientation of surfaces, the boundaries of objects,
the direction of light sources and the like. The recognition school worries about the
recognition or description of objects that we see and involves processes whose end product
is some piece of behavior like a decision or a motion. Both schools have strong ties with
psychology and neuroscience and it is strongly believed at this point that both schools will
merge into a new one that will, it is hoped, find an answer to the difficult questions of the

vision problem.

Although the author of this thesis does not put himself in any of the schools, most of

the work presented here could be classified in the reconstruction school, for computing in
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Figure 1.1: The two schools in computer vision

a mathematical way three-dimensional properties from 2-dimensional image properties.

The next section reconsiders the central problem of vision from another point of view.
1.3 The Machine Vision Goal Revisited

Up to this point, we have been rather general, since we have been talking about
computer vision as having as its goal the development of a universal visual system. Being

more specific, a machine vision system analyzes images and produces descriptions of what



isimaged. These descriptions must capture the aspects of the objects being imaged that
are usgful in carrying out some task. So, we consider the machine vision system as part of
a larger entity that interacts with the environment. The vision sytem can be considered
an element of a feedback loop that is concerned with sensing, while other elements are
dedicated to decision making and the implementation of these decisions. The input to the
machine vision system is an image, or several images, while its output is a description
that should satisfy at least the following two criteria:

a) It must bear a relevant relationship to what is being imaged;
b) It must contain all the information needed for the specific task.

Obvioudy, the first criterion ensures that the description depends in some way on
the visual input. The second, ensures that the information provided is useful. Something
has to be said about the concept of description that we used above. An object does not héve
a unique description. We can think of descriptions at many levels of detail and from many
pointsof view. It isimpossible to describe an object completely. Fortunately, we can avoid
this potential philosophical snare by considering the task for which the description is
intended. That is, we do not want just any description of what is imaged, but one that
allows usto take appropriate action. |

. An example may help to clarify these ideas. Consider the task of picking up parts
from a conveyor belt. The parts may be randomly oriented and positioned on the belt.
There may be several different types of parts, with each to be loaded into a different
fixture. The vision system is provided with images of the objects as they are transported
past a camera mounted above the belt. The descriptionsthat the system has to produce in
this case are simple. It need only give the position, orientation and type of each object.
This description may be just a few numbers. In other situations an elaborate symbolic
description may be needed. Figure 1.2 depictsavision system.

14 Successup to Now

We have already noted that a universal vision system is very far from reality. But
even systems that are not universal but are supposed to carry out a nontrivial task, are
difficult to design. We think that this introduction would be incomplete if we did not
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mention the status of the state of the art research on computer vision. We will give two

examples, one from the reconstruction school and the other from the recognition school.
1.4.1 The Terregator

The terregator (terrestrial navigator) is an example of the state of the art research
in goal-oriented vision. It is a car equipped with six wheels and television cameras which
propels itself and needs no driver. The success of this robot up to now is a clear witness to
the level of basic research in vision at this point. From what we know, the terregator is a '
primitive robot. More importantly, scientists in the field disagree about whether or not we
will be able very soon to have machines that will navigate autonomously in
unconstrained environments. The autonomous land vehicle (ALV), a similar vehicle
developed at Martin-Merrieta with the help of several American Universities, is still in a

primitive stage; it can navigate autonomously with low speed, in a constrained



environment, but even shadows or dust or unpredicted features in the environment can
affect consderably the operation of the vehicle.

14.2 The Robot that Picks Up Donuts

The robot with visua capabilities which can pick up a donut from a pile of them
and put it in a specific place was developed a MIT under the leadership of Katsushi
Ikeuchi and Berthold Horn, and can be considered an example of state of the art research
in the reconstruction school of computer vison. The robot is quite successful under some
restrictive assumptions. Figure 1.3 shows the robot's action. There is no doubt that the
mogt difficult part of this operation is in stages 1 and 2. During these stages, the robot
takes a picture of the pile of donuts, then from this picture segments the donuts,
differentiates one of them, and then it picks it up. The method to do that is quite
complicated and the interested reader is referred to [Scientific American, Aug. 1984]!
Figure 14 shows three pictures of the pile of donuts, as seen by the "robot's brain," under
three different lighting conditions. Figure 15 shows a part of the images with the surface
normals computed. Figure 16 shows the same part of the image, where the donuts have
been segmented with the help of the surface normals. Finally, Figure 1.7 shows one donut
segmented. Thisisthebasis of an agorithm that will enable the robot'sarm to pick up the
donut under consideration. The robot is quite successful, but if certain conditions are not
satidfied, it falls. For example, if the lighting conditions are riot accurate, the surface of
the donuts is not specia, the illuminating source is not near to point source, there are

shadows on the donuts, etc., therobot will errinitstask.




Figure 1.4: Three pictures of the pile of donuts
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15 A Quick Passage Through Computer Vision History



In this section we will describe the changing character of computer vision,
emphasizing the basic reasons that lead to this change. It is not a complete survey of
vision research; more specific referenceswill falow in later technica sections.

151 Asitwasin thebeginning

Even as late as 1975, compUter vison looked very different from its appearance
today. A lot of research had been devoted to the blocks microworld of scenes of polyhedra.
Huffman [Huffman, 1971] and Clowes had noted the advantage of making the image
formation process explicit. They realized that image lines and junctions were the images
of 3D scene edges and vertices, and they made an extensive catalog of those
interpretations of lines and junctions that were possible, given assumptions of planarity
and the restriction that at mos three surfaces were alowed to meet a a vertex. These
interpretations amounted to locd constraints on the volume occupied by a vertex. The
locd constraints propagated along picture lines since planar polyhedra edges cannot
change their nature between two vertices.

Huffman showed further [Huffman, 1971] that the locd vertex constraints were
not enough to capture the important restriction that picture regions were the images of
planar surfaces. Mackworth's algorithm using gradient space [Mackworth, 1973] was
intended to repair this deficit. Despite this, most line drawings had a remarkable number
of possible interpretations. Waltz's work [Waltz, 1975] introduced thé inherently globa
congtraint afforded by shadows cast from a single distant sourse, and showed that the
multiple ambiguities possible without lighting were often resolved to a unique
interpretation with lighting. More importantly, the process by which the unique
interpretation was discovered naturally lent itself to parallel processing of a particular
sort. Each vertex had an associated processor, and they all operated in strict synchrony.
At each time, a processsor changed its state according to the state of those directly
connected to it. Rosenfeld, Humme and Zucker noted the connection between this scheme
and relaxation processesin numerical analysis[Rosenfdd et al, 1976].

A second strand in the development of computer vision concerns what was referred
to as"low level" processing. It was more art than science, and conssted largely of methods
for the extraction of the "important” intensity changes in an image. The approach mostly



consisted of convolving images with local operators to estimate the position, contrast and
orientation of the important intensity changes. Operators were tuned to particular
applications and failed badly outside their domain in the presence of noise. Little serious
analysis of actual intensity changes including the signal to noise characteristics of real
images had been carried out. Other work in low level vision largely consisted of the design
and construction of region finders. Region finding aimed at isolating those regions of an
image that were the images of perceptual surface patches. It was thought that such
regions might be isolated by defining some descriptor with respect to which they were
uniform, and distinguishable from surrounding regions. It was soon clear [Barrow et al,
1971, Brice and Fennema, 1970] that even if such descriptors existed, they were not

defined simply in terms of color or grey level intensity values.

By the early 1970’s, the consensus was that low level vision was inherently
incapable of producing rich, useful descriptions. It was observed, by analogy to the
apparent need for semantics in parsing English sentences, that downward flowing
knowledge of the scene could provide additional constraints. This in turn could inform
local decision making. A number of program structures were proposed to effect this
interaction between top down and bottom up processing of information [Barrow et al 1976,
Brady 1979, Freuder 1974, Minsky and Papert 1972, Shirai 1973, Winston 1972].
Similar ideas were advanced about natural language understanding and speech
perception. This influenced the design of, for example, Hearsay2 [Lesser and Erman,
1977]. To experiment with these ideas, entire systems were constructed which mobilized
knowledge at all levels of the visual system as well as information specific to some domain
of application. In order to complete the construction of all these systems, it was inevitable
that corners were cut and many over-simplified assumptions were made. By and large,
the performance of these systems did not give grounds for unbridled celebration. The
authors of the KRL proposal [Bobrow and Winograd, 1977], for example, listed several

common failings.
1.5.2 Isnow and ... should be

Perhaps the most fundamental difference between computer vision now and a
decade ago stems from the current concentration on topics corresponding to identifiable

modules in the human visual system. The focus of research today is more narrowly



defined in terms of a domain, and the depth of analysis is correspondingly greater. This

change has produced a number of far-reaching effects in the way vision is researched.

One obvious effect was a sharp decline in the construction of entire vision systems,
in the 1975-1985 period. Most Al workers have gratefully abandoned the idea that visual
perception can profitably be studied in the context of a priori commitment to a particular
program or machine architecture. There is, for example, no more reason to believe that
relaxation style processing will of itself tell us more about vision than did the excursions
into heterarchy. There is no obvious reason to be encouraged by Reddy's [Reddy, 1978]
claim that the Hearsay 2 model can be adapted mutatis mutundis to vision. However, this
opinion is subject to criticism. There is probably reason to believe that if one thinks in the
context of parallel architectures (i.e., connectionist networks) [Feldman, 1986], there is a
chance of formulating vision problems in a context that is closer to animal visual
processing capabilities, and so a greater chance of solving the problem. But that is
subject to more research that will show if thinking in terms of particular architectures is

of any help.

Unfortunately, dogmas have been developed during the last decade and leading
researchers in the area have antidiametric opinions on the issue of whether or not a
particular architecture is of help when formulating and solving vision problems.
Although we think that more research is required for the answer to this question, in this
thesis we do not worry about specific machine or system architectures; we rather worry
about abstract visual computations and the development of algorithms that will carry out
a specific computation, in the spirit of methodology as it was introduced by David Marr
[Marr, 1981]. There is a standard way of designing large and complex information
processing systems. We have to start addressing the question of what the system must do

and have a clear understanding of the constraints on the available resources.

The first step is to divide the whole system into functional components that break |
the overall task into autonomous parts. Then, we should choose the representation of
information within the subsystems and the languages of communication among them.
After this, the details of the subsystems are tested individually, in pairs, and all together.
Essentially the same methods are used for analyzing unknown large information-
processing systems. It is at least possible that a similar paradigm would be of some use in

studying complex biological systems, including the primate visual system, or for that



matter, the development of machines with visua sense. So, if we want to study the animal
visud system or construct seeing machines, we must first understand what the system
should do. In the previous sections we tried to define as clearly as possible what a visual
system should do. Next, we should break the system into functiona components that are
somewhat autonomous. Exactly this is attempted by much of today's research, i.e., to
concentrate on topi csthat correspond to identifiable modules in the human visual system.

We have at this point a clear idea that cues such as shading, motion, texture,
contours and stereopsis are very important for the perception of the 3-D world. For this
reason, almost every computer vision research paper published in the last few years hasto
do with the perception of shape from shading, shape from texture, shape from contour,
shape from motion, depth from stereo, illuminant direction from shading, three-
dimensiond motion from retinal motion, and the like.

Not all modules operate directly on the image. Indeed, it seemsthat few do. Instead
they operate on representations of the information computed, or made explicit by other
processes. In the case of stereopsis, Marr and Poggio [Marr and Poggio, 1979] argue
against correlating the intensity information in the left and right views. Instead, they
suggest that so-called zero-crossings are matched [Marr and Hildreth, 1980]. In any case,
agreat deal of attention has centered on the isolation and study of individual modules,
and in each case on the development of the representations on which they operate, and on
those that they produce. The first of these representations, and the one whose structure is
the least subject to dispute is the image itself. Not surprisingly, then, most attention has
centered on those modules that operate upon the image. As we shall see, the further we
progress up the process hierarchy, the less secure the story becomes as the exact structure
of the representati ons becomes more subject to dispute. Again, thisis not surprising. The
image aside, any representation is one modul€'s co-domain and another's domain. All of
them shape an eventual structure. In the next two sections we will spend some time on
modulesthat operate on the image and other representations.

1*52¢1 Modulesoperating directly on theimage

A great ded of effort has been devoted to understanding how the important
intensity changes in an image can be extracted. Marr [Marr,D., 1976] coined the term
primal sketch to describe such a representation, and he described an agorithm by which
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it might be computed. His work with Poggio led to a revision of the process of construction
of the primal sketch. Instead they advocated the use of zero-crossings of the second
- derivative of the filtered image. This idea was developed in turn by Marr and Hildreth
[Marr and Hildreth, 1980] who propose that an image is first filtered by four Gaussians
having different band pass characteristics. One of the novel features, (as far as Computer
Vision work is concerned) of the Marr-Hildreth account is the size of the operators
involved, the smallest being roughly 35 pixels square. This is in stark contrast to
conventional operators, which, in most Computer Vision work today, are still typically on
the order of 5 x 5. Such a large operator can be in much closer agreement with a Gaussian
(or any filter for that matter) than any small operator, and its effects are therefore more
predictable. Unfortunately, it is no longer obvious how to compute the assertions that
Marr had previously advocated for inclusion in the primal sketch. The whole issue of

constructing the primal sketch from zero-crossings is far from being resolved.

Intensity changes aside, Horn and his colleagues [Horn, B.K.P., 1977,1979,
1980,1982, Ikeuchi and Horn, 1981, Woodham, 1981, Strat, 1981, ] have studied the
perception of surface shape from shading. In brief outline, Horn formulated a second order
differential equation that he calls the image irradiance equation, which relates the
orientation of the local surface normal of a visible surface, the surface reflectance
characteristics, and the lighting to the intensity value recorded at the corrresponding
point in the image. The output of shape from shading is a representation that makes
explicit the orientation of visible surfaces, and may make other information such as depth
and surface discontinuities explicit also. Horn suggests the name needle map. Other
repfesentations have been proposed that make substantially the same information
explicit. Marr [Marr,D., 1978] uses the name 2} sketch, and Barrow and Tenenbaum
(Barrow and Tanembaum, 1976] discuss intrinsic images. Again, the exact nature of the
representation is currently far from clear. In part, this is because very little research has
been devoted to modules that operate upon it.

Finally, methods for computing optic flow (image motion) from spatio-temporal

derivatives of image intensity have been published lately.

1.5.2.2 Modules operating on zero-crossings, points and the primal sketch



We have already stated that there remain a vast number of unresolved issues
concerning the nature of the primal sketch and its computation from zero-crossings or
whatever kind of filtered image. Nevertheless, the broad outlines are clear enough for
work to proceed to investigate modules that are assumed to operate upon these
representations. Indeed, it is necessary that it does, as it will also contribute to our
understanding of the information that needs to be made explicit in the primal sketch, and
thus its eventual form. Motion is an important source of information for determining
structure, and much work has been done in this area. Considerable attention has been
paid to stereopsis and to the detection of surface orientation from texture. In addition,
much research has been devoted to the analysis of line drawings (of planar and curved

surfaces), and contours.
1.6 Where Do We Stand (Current Research Status)

It is clear by now that modern computer vision worries about concentrating on
topics that correspond to identifiable models in the human visual system. And although
we don’t know what exactly these modules are, we understand that there should exist
modules that compute 3-D parameters from specific cues, such as shading, motion, stereo,
contours and texture. When we say 3-D parameters, we mean intrinsic images, such as
shape, depth, reflectance, three-dimensional motion, illuminant direction and the like.

So, one could say that today’s research is:
Compute Y from X.

where Y is an intrinsic property (shape, depth, retinal and three-dimensional motion, etc.)
and X is a cue in the image or a property of the observer (shading, texture, stereopsis,
etc.).

The following figure broadly summarizes the status of contemporary
reconstructionist computer vision. On the right, we see the various cues, and on the left
the intrinsic parameters. Research tries to recover from any of the cues in the right some
of the intrinsic properties in the left. An arrow from box 1 to box 2 indicates that the
property in box 2 is recovered form the cue in box 1. The names along the arrows represent
some of the researchers who have worked on this specific recovery. More complete

references can be found in the rest of the thesis. At this point we have to make clear that



the intrinsic parameters about which we are writing a lot, can basically be classified in
two categories. The retinotopic and non-retinotopic ones . Non-retinotopic ones can be
divided into features (physical parameters) and objects and relations [Ballard, 1985]. The
retinotopic ones (shape, depth and the like) are the ones of most interest in this thesis.
These parameters are spatially indexed at every image point. We can actually say, that
the retinotopic parameters are the basic subject of the Reconstruction School, and the
non-retinotopic ones (features) of the Recognition School. In this thesis we will mostly be
talking about Low-Level Vision, and so the analysis of three-dimensional shape models
and transformations, as part of High-Level Vision modules, won't be treated. Finally, it
has to be said that the current status figure of the next page, is by no means complete.
Other sources of information such as color and nonplanar contours are of great

importance, but we will not discuss them here.

1.7 A Word of Caution and What is to Come

In the preceding sections, we have emphasized that contemporary computer vision
is worrying about the recovery of three-dimensional properties (world) from two-
dimensional image properties. By no means do we imply that this is the only issue of
today’s research. There is a lot of excellent research on low and high level vision, object
recognition and névigation. We feel that the bulk of research (from 2-D properties to 3-D
properties) is the most important because a clear understanding of these issues will
contribute a great deal to our knowledge of extrapersonal space perception, to our
understanding of the cortex and to our ability to construct machines with visual sense. Of
course, several leading researchers may think otherwise and unfortunately the field is too
young to be able to justify our claim. But simple and even naive thinking may convince us
that if we ever hope to understand how the visual system works, we must first understand
that our only input is two-dimensional images, and so in order to reason about the three-
dimensional world, we must discover constraints between the images and the three-
dimensional world that is imﬁged. On the other hand, prior knowledge about the world
can be of great help. We are not opposed to using a priori knowledge about the world in
order to help the process of understanding the 3-D space from its images. But before we do
that, we should first analyze the various vision problems with as few assumptions as

possible, and if no solution is possible, then we should resort to additional assumptions.
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Figure 1.8: Current research status



The next chapter introduces the technical background necessary for the
under standing of the rest of the thesis, presents a positive critique of current research
from a technical point of view, and finishes with a proposal on how 3-D vision problems
should be approached.
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Unique and robust intrinsic images. The problem, the
answer and the technical prerequisit%.

In this chapter we describe what the problems of the current research status are
and we propose a new aproach. In the rest of the chapter we discuss how images are
formed and how they are sensed by a computer, and we give the technical prerequisitesfor '
the foundation of the technical work described in later chapters.

2.1 Thecurrent research picturerevisited

Recalling the current research picture from Section 1.6, we see that the intrinsic
parameters that will be described extensively in the rest of this Chapter, are computed
from some particular image cue. Indeed, shading; texture, contours, motion and stereo are
very important cues for obtaining three-dimensional information, and later chapters will
present evidence for that. If we look carefully at the research picture from Section 1.6, we
will realize that an intrinsic parameter is computed using only a particular cue. So we
have algorithms for shape from shading, shape from mation, depth from stereo, and the
like. There are, however, threebasic problemswith this approach.

The first problem has to do with employing the right assumptions. Some of these
algorithms are based on assumptions which despite their generality are not
present in the real world and so the algorithms fail when applied to a variety of
natural images. An example of this is all the algorithms for the computation of
shape from texture [Witkin, 1981, Stevens, 1980, Davis et al, 19831. In these
algorithms the basic assumption is the directional isotropy. In other words, it is
assumed that contours and line segments in natural images have orientations
which are uniformly distributed over all directions. Obvioudly, if we look around us
for natural or man-made surfaces, we won't find that this assumption istrue.

19



The second problem has to do with uniqueness properties of the resultir
algorithms. Some of the pr'oblem's in Figure 1.8, as formulated; cannot have
~ unique solution. So, in order to bring down the space of all solutions to a uniqu
point, assumptions are made about the world which usually are unrealistic and th
algorithms fail when applied to real images. An example of this is all the shag
from shading algorithms [Horn 1977, Ikeuchi and Horn 1981, Brooks, 1984] th*
use assumptions about the global smoothness of the surfacesin view.

Thethird problém with the current research statusis the one which has to do wit
the robustness or stability of the resulting algorithms. Even if theoretical analys
shows that given the constraints at hand a particular problem has a uniqu
solution, in practiceit turnsout that the solution is very unstable. In other words,
very small error in the input results in a catastrophic error in the output. A
example of this is all the algorithms that compute 3-D motion from retinal motioi
using only one camera [Waxman et al, 1984,1985, 1986, Tsai and Huang, 198
Longuet Higgins and Prazdny, 1984, Prazdny 1984, Bruss and Horn, 1984; fc
additional references, see Chapter 5]. Thebasic problems with the current researc
status can be summarized in the following table.

Problems of Current Research Status

Problem Example

Use of restrictive assumptions
about the world

Shape from texture al gorithmé

Tomake aproblem solvable
(uniquely), unreasonable
assumptions are made

Shape from shading, optic flou
from image sequences

Even if an algorithm isproved
to have aunique solution,
usually the resulting
algorithm isunstable

3-D motion from optic flow,
image reconstruction frrom
zero-crossings and gradients



2.2 Theregularization paradigm and our criticism

One of the best definitions of early vision isthat it is the inverse of optics, i.e., a set of
computational problems that both machines and biological organisms have to solve.
Whilein classical optics the problem is to determine the images of physical objects, vision
is confronted with the inverse problem of determining properties of the 3-dimensional
world from the light distribution in an image, or a dynamic sequence of images. In 1923
Hadamard defined a mathematical problem to be well-posed when its solution:

a) exists,
b) isunique,
c) depends continuously ontheinitial data (is robust against noise).

Most of the problems in classical physics are well posed, and Hadamard argued that
physical problems had to be well-posed. However, it seems that inverse problems are
usualy ill-posed. Consider, for example, the equation: y = Ax, where A is a known
operator. This equation can represent optics, where y is the image, A is the imaging
process, and x is the world. So, in this case, the problem is to determine y from x. The
inverse problem, i.e. find x from;y, is usually ill-posed when x,y belong to a Hil bert space.

The regularization paradigm claims that most early vision problems are'ill-posed
(shape from shading, texture, contour, optic flow from image brightness and the like).
Rigorous regularization theories for solving ill-posed problems have been developed
durihg the past years [Tichonov, and Arsenin, 1977, Tichonov, 19631. The basic idea of
regularization techniques is to restrict the space of acceptable solutions by choosing the
function that minimizes an appropriate functional. The regularization of the ill-posed
problem of finding x from y such that y = Ax requires the choice of norms 1H | and of a
stabilizing functional HPxII. Of course this choice is dictated by mathematical
considerations and most importantly, by a physical analysis of the generic constraints of
the problem. Then, several methods can be applied as for example, find x that minimizes
11Ax - ylI2 +AliPxI12, where \ is the so-called regularization parameter, or among x that
satisfies HPxII™k, where k is a constant, find x that satisfies 11Ax - yli = minimum, etc.
The reader interested in regularization techniques is referred to [Tichonov, and Arsenin,



regularization paradigm may be unrealistic for addressing low-level vision problems in

natural images.

What led to the regularization paradigm is the fact that several published
algorithms for the computation of intrinsic images were basically of the same flavor. In
other words it is a post-facto legitimization of a class of methods in early vision.The
constraints were not sufficient, additional assumptions were made, and a functional from

all these was constructed, with its ultimate goal a minimization that would lead to a
solution. Basically, all the additional assumptions had to do with smoothness, because

smoothness, when expressed in mathematical terms, gives very strong constraints. But
our visual world is anything but smooth. We can safely say that a very small subset of the
surfaces that we see are twice continuously differentiable. But even if we forget this for a
moment and accept that the smoothness assumption is a good one (in the sense that it is
present in our visual world), even then the performance of the regularization algorithms
cannot serve as a strong rationale of the feasibility of the approach. Putting aside natural
iméges and concentrating only on synthetic ones, the performance is not excellent. The
following figures show the image of an object and the extracted shape using a
regularization-based algorithm [Ikeuchi and Horn, 1981] for shape form shading. The
poor performance in this particular example is also due to the fact that the constraint

from the shading is very weak. Several such examples for other early vision problems can
be found.




Figure 2.0.1:Intensity image Figure 2.0.2: Reconstructed shape

A very positive aspect of the regularization-based approach is that it presents a
unified approach for the early vision problems. But this is not at all convincing, since the
assumptions used are very restrictive. Of course, if other functionals ( recall in Section 2.2
the functional Px) are used instead of the ones that incorporate smoothness, then this might
be proven promising. Another negative aspect of the regularization based approach is that
it examines several problems separately, i.e., it investigates shape from shading, shape
from motion, shape and depth from stereo, for example, separately without taking into
account that existing, well-working biological vision systems live in a dynamic world and

have two eyes.

Our claim is that vision is full of redundancy, because organisms can get
information from many different sources. Vision seems to be, at least for biological
organisms, a very well-posed problem. If our knowledge about vision is very limited
today, we should not make the problems ill-posed. If a problem turns out to be
mathematically ill-posed, then we should not try to solve it by imposing unrealistic
restrictions. Instead, we should investigate what kind of information is missing from
the situation at hand, and search for a source which will provide this missing
information. In other words, it is the vision researchers that pose the vision problems
in such a way that they become ill-posed. The vision problems are well-posed, as it
can be very well demonstrated empirically. It is evident that in order to be able to
answer vision questions in the right way we must first ask the questions in the right

way.

Our criticism of the regularization-based approach ends at this point, except for
stating that if we cannot solve a vision problem as formulated, this means that we have
not formulated the problem in the right fashion. Restrictive assumptions about a problem
will never enrich our understanding of computational vision. Finally, our position is
enforced by recent psychological results by Todd et al. [Todd et al, 1986] that state that
for the case of shape from shading no algorithm from the regularization-based paradigm
seems to have any connection with the computational human mechanisms for the

detection of shape from shading.



It has to be noted however that the regularization techniques are very powerful
(in a mathematical sense) for attempting a unique solution, when the required
assumptions are present in the image under consideration. No wonder then, that several
reguralization based algorithms [Terzopulos, 1984, 1985, Negadharipur and Horn, 1986,
Maroquin, 1986] perform very well for their domains, that satisfy smoothness
assumptions. What we are against for, is the use of regularization as a general theory for
low-level vision, for the very simple reason that our visual world is anything but
smooth.But if the problem under consideration obeys smothness assumptions, then

regularization based approaches are very powerful and give good results.
2.3 Mathematical algorithms and biological vision systems

Even though this thesis is on machine vision, we make no basic distinction
between machines and biological systems. In other words, our results could be very well
applied for the explanation of biological visual abilities, even though this is not the goal of
this thesis. In the rest of the thesis, our results will be formulated in terms of
mathematical propositions and algorithms. Two difficulties are immediately raised
regarding the applicability of such results to biological visual systems. The first is that
unlike an electronic computer a biological system cannot be expected to solve the
equations used in deriving the mathematical results. The second is that a biological
system does not have access to the perfectly accurate data used in the mathematical

abstraction.

A comprehensive examination of the first objection would be beyond the goals of this
thesis. The main answer lies, however, in the distinction between different levels of
analysis: competence vs. performance [Chomsky, 1965] or computational vs algorithmic
[Marr and Poggio, 1977]. The computational studies aim primarily at establishing
principles that apply to any visual system facing the problem of interpreting something’
(3-D property) from something else (2-D image property). Certain equations may be used
in the derivation of such principles, but it does not follow that a system utilizing these

principles would have to solve these equations in the process of the interpretation.

The problem of accuracy in the measurement and computation is an important one. To

be of practical value, the interpretation scheme should be robust. Small errors in the



input measurements should not lead to a complete breakdown of the interpretation
scheme. This means that computational studies should not only explore what is possible _
under idealized conditions, but also examine the effects of small perturbations and errors.
Unfortunately, current research does not worry about the last issue, and only very
recently began to consider the uniqueness of the computations [Ullman, 1983, Tsai and
Huang, 1984, Bruss and Horn 1984). Until then, everything was based on an ad hoc

fashion.

2.4 Results: More information from cooperative sources yields unique and

reliable solutions.

Looking back at the current research status diagram of Section 1.6 (Figure 1.8), we
see that from a particular cue a particular intrinsic property is computed. That is, no cues )
are combined, in most of the published work, to recover an intrinsic image. As we have
already seen, this has as a result the fact that several computations do not have
uniqueness properties (and so additional assumptions are needed about the world) and
several computations that have uniqueness properties under ideal conditions break down
in the presence of small amounts of noise. In order to take care of these problems, more
information is needed. In particular, if we combine information from the different image
cues, then several computations that did not have uniqueness properties might now have
them, simply because the unknown parameters are subject to more constraints that
guarantee uniqueness and several computations which even though they had uniqueness
properties were very unstable are now robust, simply because the additional constraints
do not let the solution escape from its actual position. The proposed fr'ame.work for the
computation of intrinsic images is given in the following figure 2.1. The reader should
compare this with Figure 1.8 of Section 1.6 to realize that new information is combined

from different cues to recover the intrinsic parameters.

It is worth noting that very recently a few researchers have realized the need for
combination of information from different image cues for better estimation of intrinsic
parameters. In particular, there is the work of Waxman et al. (Waxman et al, 1986 ] for
combining stereo and motion, the work of Grimson [Grimson, 1984] for combining
shading and stereo, the work of Richards, and Huang for stereo of motion [Richards, 1985,
Huang and Blonstein, 1985], and the work of Milenkovich and Kanade [Milenkovich et al,
1985]. So the need for such an approach has already been realized by some and the hope is



Status that we propose

Depth | < @ Stereo
3-D Motion

T __ Motion
Retionai Motion

| Contour
Light Source
} | Texture |
Shape
| Shading

Figure 2.1: Proposed status



- 7

that this thesis will contribute to a better understanding of this approach and that it will
generate more related research. Due to the different nature of the intrinsic parameters
and the image cues, a unified approach, i.e. a general theory for computing intrinsic
parameters from combination of image cues (with the intrinsics and the image cues as
parameters) seems at this point very difficult, if not impossible. Our approach will be
based on a case-by-case analysis. That is, we will consider each individual problem
separately, analyze it, see that a solution without additional assumptions or stability is

impossible, and then combine different cues to obtain unique or robust results.

The basic structure of the thesis is depicted in the following diagram (Figure 2.2).
In the elipses (top) are the different image cues (we take the liberty to call stereo or
motion a cue.) It is obvious that by cue we mean a source of information, either coming
from the image(s) or from the particular set up or condition of the visual system (stereo-
motion). In the squares are the results we obtain (in terms of propositions) when we
combine information from two different cues. Two or more different cues are combined
with arcs which lead to small circles containing a plus. Then, a different arc from the plus
leads to a square containing the result from this combination. The numbers at a plus or an
arc indicate that the theory for this particular computation can be found in the

corresponding chapter.
2.5 Technical Prerequisites: Image formation and intrinsic images

It is very important to understand how the images are formed, because this is a
prerequisite for being able to extract information from images. There are basically two

questions about image formation:

a) What determines where the image of some point will appear?
b) What determines how bright the image of some surface will be?

Agreeing that it is very important to know how an image is formed in order to analyze it,
we have to study two things: First, we need to find the geometric correspondence between
points in the scene and points in the image, and second, we must find out what determines
the brightness at a particular point in the image. The next section addresses the first

issue.
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26 Geometric Correspondence Between Pointsin the Scene and the Image
26.1 Perspectiveprojection

Congder an idedl pinhole at a fixed distance in front of an image plane (see Figure 2.3).
Let usassume that an enclosure is provided so that only light coming through the pinhole
can reach the image plane. Given that light travels dong straight lines, each point in the
image corresponds to a particular direction defined by a ray from that point through the
pinhole. Thisiswhat we know as perspective projection.

Figure2.3: Pergpective projection

In the sequel, in order to smplify the resulting equations, we consider the nodal point of
the eye (pinhole) behind the image plane. Thisisonly for smplifying the analysis; al the
results can be transformed automatically to the actual case. The system we will be using
isdepictedin Figure 2.4,
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We define the optical axis in this case to be the perpendicular from the pinhole to the
image plane. We introduce a cartesian coordinate system with the origin at the nodal
point and the z-axis aligned with the optical axis and pointing toward the image (Figure
2.4). We would like to compute where the image A’ of the point A on some object in front of
the camera will appear. We assume that nothing lies on the ray from point A to the nodal
point O. Let V = (X,Y,Z), the vector connecting O to A and V’ = (x,y,/), the vector
connecting O to A’, with f the focal length, i.e., the distance of the image plane from the
nodal point O, and (x,y) are the coordinates of the point A’ on the image plane in the
naturally induced coordinate system with origin the point of the intersection of the image
plane with the optical axis, and axes x and y parallel to the axis of the camera coordinate

system OX and OY. It is trivial to see that

=X K (21)
z Z

Equations (2.1) relate the image coerdinates to *he wcild coordinates of a point. Very

often, to further simplify the equatiors v-- - _° * jithertlac . geuetau.,.
2.6.2 Orthographic projection

The orthographic projection model seems unrealistic to the eye of the beginner and .
so we will motivate its use. If, in the perspective projection model, we have a plane that
lies parallel to the image plane at Z = Zj, then we define as magnification, mg, the ratio
of the distance between two points measured in the image to the distance between the
corresponding points on the plane. So, if we have a small interval on the plane (dX, dY, O)
and the corresponding small interval (dx, dy, O) in the image, then:
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So a small object at an average distance Z will produce an image that is magnified by mg.
It is obvious that the magnification is approximately constant when the depth range of
the scene is small relative to the average distance of the surfaces from the camera. In this

case we can simply write for the projection (perspective) equations, that:

x=mX, and y=mY (2.2)

with m = fiZ; and Zj the average value of the depth Z. For our convenience, we can set

m = 1. Then equations (2.2) are further simplified to the form:

x=X,and y=Y (2.3)

These equations (2.3) model the orthographic projection model, where the rays are
parallel to the optical axis (see Figure 2.5). So, the difference between orthography and
perspective is small when the distance to the scene is much larger than the variation in
distance among objects in the scene. A rough rule of thumb is that perspective effects are
significant when a wide angle lens is used, while images taken by telephoto lenses tend to

approximate orthographic projection, but, of course, this is not exact [Horn, 1986].




Figure 2.5: Orthographic projection
2.6.3 Paraperspective projection

The orthographic projection is a very rough approximation of the projection of light
on the fovea, but it seems unrealistic for machine vision applications at this point. The
perspective projection, a true model, sometimes produces very complicated equations for
most of the problems and makes the subsequent analysis very hard. The paraperspective
projection is a very good approximation of the perspective, and stands between
orthography and perspective. A very similar form of the paraperspective projection was
first introduced by Ohta et al. [Ohta et al, 1983]. Let a coordinate system OXYZ be fixed
with respect to the camera, with the -Z axis pointing along the optical axis and O the
nodal point of the eye. Again we consider the image plane perpendicular to the X axis at
the point (0,0,-1) (i.e. focal length f =1, without loss of generality). Let a small planar
surface patch SP on a surface S, with the planar patch obeying the equation -Z = pX +
qY = C(see Figure 2.6).
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Figure 2.6: Paraperspective projection

Under perspective, any point (X,Y,Z) ¢ SP is projected onto the point (X/Z, Y/Z) on the
image plane. Let us now see how the small patch SP is projected under the

paraperspective projection model.

Consider the plane -Z = d, where —d is the Z-zoordinate of the center of mass of the

region SP. The paraperspective projection is realized by the following two steps:

a) First, the small region SP is projected onto the plane -Z = d, which plane is
parallel to the image plane and includes the center of mass of the region SP.
The projection is performed by using the rays that are parallel to the central
projecting ray OG, where G is the center of mass of the region SP.

b) The image on the plane -Z = d is now projected perspectively onto the image
plane. Since the plane -Z = d is parallel to the image plane, the
transformation is a reduction by a scaling factor 1/d (see Figure 2.7 which
illustrates a cross sectional view of the projection process sliced by a plane
which includes the central projecting ray and is perpendicular to the XZ
plane). Finally it is clear that the introduced model decomposes the image
distortions in two parts: Step (a) captures the foreshortening distortion and

part of the position effect, and step (b) captures both the distance and the

position effects.
region S
G G = centerofn
(A, B,-1)
0 é v
image plane -Z =




Figure 2.7: Cross sectional view of paraperspective

The paraperspective projection process turns out to have nice mathematical properties,
since it is an affine transformation. Chapter 3 describes in detail the properties of this

projection and its comparison with perspective and orthographic projections.

After having discussed the geometric correspondence between points in the image
and points in the scene, we need now to determine the brightness at each image point. But
to do that we need some technical prerequisites, which will be found in the next section on

intrinsic images.
2.7 Intrinsic Images

In the previous chapter we stressed the fact that a very large percentage of modern
computer vision is exploiting the recovery of three-dimensional properties (i.e. intrinsic
images) from two-dimensional image properties. This section will define mathematically

what we mean by intrinsic images, i.e. shape, motion, depth, etc.

Consider again a coordinate system OXYZ, fixed with respect to a camera, whose
nodal point is the origin 0 and the image plane perpendicular to the Z-axis (which is also
the optical axis), with focal length f. Consider also the naturally induced image plane xy
coordinate system, with origin at the point where the optical axis intersects the image
plane and x,y axes parallel to OX and OY respectively. Image coordinates will be denoted
by small letters and world coordinates by capital letters. Suppose that the system is
imaging a surface S with equation Z = Z(X,Y).

2.7.1 What we mean by shape

We will examine shape under both orthography and perspective projection. Surface
orientation is usually represented as the surface normal vector. In intrinsic images, shape
means the local surface orientation, not some global property of the surface. If the surface

is expressed as Z(X,Y) it can be reconstructed from the local shape orientation.

The meaning of shape under perspective



Consider a point (X,Y,Z) ¢ S whose image under perspective projection is the point
(x=fXIZ,y = fY/Z). If we say that we know the shape of the object in view at the point

(x,y), we mean that we know the surface normal vector n of surface S at the point (X,Y,2),

E 5GP Ff ]

Suppose now that for every point (x,y) in the image we know the surface normal of the

in particular

surface patch whose image is the point (x,y). Then, this new image (a surface normal for
each point (x,y) of the image) is called intrinsic shape image. But from only one image we
can never hope to compute the exact (X,Y,Z) point, and from it (6Z/3X, 0Z/0Y, -1). What we
can compute, though, is the quantity (6Z/dx, 3Z/3y), i.e., the gradient of the surface
expressed in retinal coordinates. But then, what is the relationship between the gradient
in retinal and world coordinates, or in other words, what do we know when we know the

quantities (3Z/dx, 3Z/3y )?

Consider a point (x,y) on the image and a small displacement in the image (dx,dy)
from the point, which corresponds to a displacement (dX, dY, dZ) in the world, on the
surface Z = Z(X,Y). Then, from the perspective projection equations, we have:

dx- Z+xdZ dy- Z+ydZ
_____f_’i_ and dY = .y___f__y__

Now, given that Z(X +dX, Y +dY) = Z(x + dx, y+dy), and expanding both sides of this

equation in a Taylor series and ignoring the higher order terms, we get that:

dX =

Z z VA z az az
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x 2z & wv z x Py
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From equations (2.5) it is easy to see that if 8Z2/8X, 8Z/8Y are known, then the quantity



Z(x + dx,y + dy)
Z(x,y)

is computable. But this means that if the surface normals are known indexed by retinal
coordinates, then the depth function (Z(x,y)) can be computed up to a constant factor. In
other words, if shape is known, then for any two points (x;,y;) and (x;,y;) on the image, we
know the ratio

2, )

Z(xj, yj)

So, an object whose shape we know under perspective projection can be small and near the

camera or large and far away.
The meaning of shape under orthography

Under orthographic projection, the image coordinates of a point are equal to the

corresponding 3-D coordinates, i.e. (x,y ) = (X,Y). So

(% 5%)-(%%)
ax'aY/) \ax’oy /)

Obviously, if we know shape in this case, since

az az
ZG + dx,y + dy)-Z(oy) = — dx + ™ dy + (ho.t),

we know that the depth function can be computed up to constant additive term. So, if we
know shape under orthography, we know exactly the object in view, but we do not know

its depth.
Other representations for shape

We have stated that the surface normal

()

( p2 + q2 +1 )i
with p = 8Z/8X, q = 8Z/8Y at a point of a surface Z = Z(X,Y) represents the shape. This
aZ az )

o= 5



is not the only representation. Obvioudy shape is nothing but a direction in three-
dimensional space, and so there are many representations for it. The onesthat we will use
quite often in this thesis are, with the exception of the gradient that we have already
analyzed, the following:

a) Coordinates (ab,c) on the Gaussian sphere .
b) La):itude and longitude angles, say, (9, p).

c) Slant and tilt. Slant is the tangent of the latitude angle and tilt is the
longitude angle. The notation for (slant, tilt) is (o, X). The slant and tilt are
polar versions of of the (p,q) coordinates.

The relationship among these different representations is given by the following’
eguations:

o=tan8 =V(p2 + g2)
p/g = tan$ = tant

Finally, if (ab,c) are the coordinates on the Gaussian sphere, then:

(@6c) =", |, ") with *=(p?+qg?+l)*

2.7.2 What we mean by retinal motion

If the object in view is moving with a general motion, or if the camerais moving, or
if both move, then the image is moving too. Let the retinal velocity at an image point be
(u,v). Theresulting vector field (the velocity of every image point) is called retinal motion
field or opticflowfield. Thisflowfieldisan intrinsic retinal motion image.

2.7.3 What we mean by depth

Consder again a surface Swith equation Z = Z(X,Y) in front of the camera. Every
point (x,y) in the image isthe projection of apoint (X,Y,Z) e S. If for every point (xy) on the
image we know the Z coordinate (depth) of the corresponding 3-D point (X,Y,Z2); then we
know exactly where the surface is with respect to the camera coordinate system. The



resulting image (for every point in the image there corresponds a number (depth) of the

corresponding 3-D point), is called intrinsic depth image.
2.7.4 Intrinsic parameters that are not images

There exist intrinsic parameters which do not correspond to every point in the
image. These are global constants and every point in the image is in some relation to
them. Examples of these parameters are the 3-D motion and lighting direction

parameters.
3-D motion parameters

If an object moves in front of a camera with a general motion, then this motion can
be considered as the sum of a translation (U,V,W) and a rotation (A,B,C). These six

parameters will be called motion parameters
Lighting direction parameters

Consider again a surface in front of a camera, illuminated by a light source in the
direction (I;,ly,l;), with respect to the camera coordinate system. The direction (I,,l,,l,) is

called the lighting or illuminant direction.
2.8 A synopsis

Up to this point we have defined mathematically so-called intrinsic parameters.
These are shape, depth, retinal motion, 3-D motion, and light source direction. This of
course does not mean that these are the only intrinsic parameters. There can be many
more but the ones that we described here are the ones which we (and contemporary
research) think that are the most important for the perception of the outside world. Again,
we do not want to get involved in philosophical arguments about why these intrinsic
parameters are important to compute for visual perception. The shape of objects is
important for the recognition of objects that we see, the depth of objects is important for
our interaction with the environment (picking up things), retinal motion is important for
understanding discontinuities and segmenting the environment as well as for the
computation of the 3-D motion which is important for navigation and for understanding

the motion of objects in our environment as well as for avoiding moving objects.



There may very wdl be other important intrinsic parameters that we haven't
discovered yet. There may aso be no more intrinsic parameters of interest. Further
research will uncover the truth on this matter.

29 Brightness at every image point

In this section-we anayze how the brightness at every image point is determined.
The amount of light reflected by a surface element depends on its microstructure, on its
optical properties and on the distribution and state of polarization of the incident
illumination. For several surfaces, the fraction of incident illumination reflected in a
particular direction depends only on the surface orientation. The characteristics of the
reflectance of such a surface can be represented as a function f(i,g,e) of the angles i =
incident, g = phase and e = emergent, asthey are deffned in Figure 2.8.

{::I_ normal

viewer

A

Figure 2.8: Reflectance modd

The reflectance function f(i,g,e) determines the ratio of surface radiance to irradiance
measured per unit surface area, per unit solid angle, in the direction of the viewer. If we
want to be precise, we should specify the quantities and units used to define the required
ratio. Here it is sufficient to point out the role that surface orientation plays in the
determination of the anglesi and g.

Consder the example of perfect specular (mirror-like) reflection. In this case, the
incident angle equals the emergent angle and the incident, emergent and normal vectors
lieonthesameplane(g =i + €). So, thereflectance functionis



1if i=eand i+e=g
fieg) =

0, otherwise
The interaction of light with surfaces of varying roughness and composition of material
leads to a more complicated distribution of reflected light. Surface reflectance
characteristics can be determined empirically, derived from models of surface
mircostructure or derived from phenomenological models of surface reflectance. The most
widely used mode of surface reflectance is given by the function f(i,e,g) = p cos, where p
is a constant depending on the specific surface. This reflectance function correspondsto a
phenomenological modd of a perfectly diffuse (Lambertian) surface which appears
equally bright from all viewing directions; the cosine of the incident angle accounts for
the foreshortening of the surface as seen from the source.

The surface normal vector relates surface geometry to image irradiance because it
determines the angles i and e appearing in the surface reflectance function fli,eg). In
orthographic projection,the viewing direction and so the phase angle g is constant for all
surface elements. So, for a fixed light source and viewer geometry and fixed material, the
ratio of scene radiance to scene irradiance depends only on the surface normal vector.
Furthermore, suppose that each surface element receives the same irradiance. Then, the
scene radiance and hence image intensity depends only on the surface normal vector. A
reflectance map R(p,q) determines image intensity as a function of p and q (where
(p,a,-N/"(p2 + o +1) is the surface normal vector). Using a reflectance map, an image
irradiance equation can be written asl(x,y) = R(p,q), where I(x,y) is the intensity at the
image point (x,y) and R(p,q) isthe corresponding reflectance map.

A reflectance map provides a uniform representation for specifying the surface
reflectance of a surface material for a particular light source, object surface and viewer
geometry. A comprehensive survey of reflectance maps derived for a variety of surface
and light source conditions has been given by Horn [Horn, 1977]. Furthermore, a unified
' approach to the specification of surface reflectance maps has been given in [Horn and
Saberg, 1981]

Expressions for cosi, cose and cosg can be easily derived from the surface normal
vector (p,g, -1) and the light source vector (pg gss -1) and the vector (0,0, -2) which points



in the direction of the viewer. For a Lambertian reflectance function we get

pl+pp,+qq)

R(p,q) =
VQa + p2 + q2) va+ pf + qf))

So, for a Lambertian surface, the intensity I(x,y) at a point (x,y) of the image is given by:

pA+pp,+qq)

I(x,y) =
Va + p2 + q2) Va + pf + qg)

with p the albedo constant and (p,q, -1) and (p, g5, —1) the surface normal at the point
whose image is the point (x,y) and the light source direction respectively, under

orthographic projection. Under perspective projection, the model is not known yet exactly.

2.10 Whatis to come

Once again, this thesis does not try to present a unified theory for the computation
of the intrinsic images. Much more research is required for that, and the last chapter
sheds some light on this issue. Instead, it tries to prove mathematically that if several
cues are combined and if the right (natural) assumptions are employed, then we can

obtain visual computations which uniquely and robustly compute intrinsic images.

_ Chapter 3 is dévoted to the problem of shape from texture where it is demonstrated
that a modified Gibsonian ‘assumption leads to an algorithm that works for a variety of
natural images. In this Chapter we demonstrate that the right assumptions are bound to
give good results. Chapter 4 examines the problem of shape from shading, which leads to
the conclusion that it cannot be solved. After this, if shading is combined with motion (or
stereo), then this leads to algorithms that uniquely compute shape from these cues.
Chapter 5 is devoted to visual motion analysis. The feasibility of the problem of structure
from motion is examined and several new theorems of theoretical importance are proved.
Finally, it is shown that if motion is combined with stereo, then robust solutions for the
structure from motion problem are obtained and that motion analysis can be done without
point correspondences. Finally, Chapter 6 is devoted to the analysis of the perception of
shape from contour, and the advantages of combining stereo, contour and texture.
Chapter 7 presents the conclusions from this work, sets forth foundations for future work

and discusses the beginning of a unified early vision theory which works in a highly



parallel fashion, where the different processes cooperate to integrate information from

different sources and compute uniquely and robustly the parameters of our extrapersonal

space.



3

Shapefrom Texture

Results
Herewe study the problem of deter mination of shapefrom texture. In particular: .

1) We show how to recover the shape of a surface covered with small elements (texels) of
the same area. The shape of the texelsis of no importance to our theory. Furthermore we
indicate that thereis avery strong connection between shading and texture.

2) For natural textures, we show that the uniform density assumption is enough to
recover the orientation of a single textured plane in view, under perspective projection.
Furthermore, when the texels cannot be found, the edges of the image are enough to
determine shape,-under a more general assumption, that the sum of the lengths of the
contours on the world plane is about the same everywhere. The problem is examined
under both perspective and paraperspective projection. The results in the case of
paraper spective projection are better than in the case of perspective. Finally, several
experimental resultsin synthetic and natural images ar e presented.

The basic assumption here is that we are imaging a single textured plane. For the
methods developed here to be applied to an image where several planes are present, a
segmentation is required first. In the conclusion of this chapter, we describe how this
theory could be used for such a segmentation. '

A central goal for visual perception isthe recovery of the three-dimensional structure
of the surfaces depicted in an image. Crucial information about three-dimensional
structure is provided by the spatial distribution of surface markings, particularly for
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static monocular views: projection distorts texture geometry in a manner that depends
systematically on surface shape and orientation. To isolate and measure this projective
distortion in an image is to recover the three-dimensional structure of the textured
surface.

In order to study the problem of detecting surface orientation from texture, we need to
distinguish between two kinds of texture: artificial texture (or pattern texture) and
natural texture. When we say that an object is covered with artificial texture, we mean
that the surface of that object is covered with repeated patterns of the same area. When
we say that a surface is covered wtih natural texture, we mean that the surface is
irregularly marked. Both kinds of texture are important for recovering 3-D structure, and
for this reason we will study both of them, beginning with artificial texture. Figure 3.1
depicts the monocular images of surfaces covered with artificial and natural texture
respectively. It is remarkable how humans can infer the three-dimensional structure of

the imaged surfaces clearly with the help of texture.
3.1 Detecting surface orientation from artificial texture, or shape from patterns

The problem we address here is to recover the three-dimensional shape of a surface
covered with repeated texture elements of the same area, which we will call texels, from a
monocular view. This problem, known in the literature as shape from patterns, has
already been addressed by various researchers who obtained partial solutions, under
certain assumptions. Previous work in this area has been developed with the use of three

different kinds of projections: orthographic, perspective and spherical.
In the above figure we show examples of artificial and natural texture.

Kender [Kender, 1980] and Kanader and Walker [Walker and Kanade, 1984] studied the
problem under orthographic projection. Kender assumes the patterns to be polygonal or
symmetrical and recovers orientation using skewed symmetry constraints (knowing the
angle between two axes in space and the angle they make in the image, constraints
between 3-D surface orientation and measurable image parameters can be developed).
For this he needs prior knowledge of symmetry or specific knowledge about the pattern, as
well as some heuristics about the orientation of some of the patterns. Walker and Kanade

use a combination of Kender’s method and Shafer’s theory of generalized cylinders
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Figure3.1: (a) artificial texture, (b) natural texture

[Shafer, 1982] to recover surface orientation from patterns, under orthographic projection.
But their method has limited applicability as reported. ’

Kender [Render, 1982] and Ohta et al.[ Ohta et al, 1983] study the problem under
perspective projection. Render's method is based on the vanishing point of parallel scene
lines and as such is very limited to special kinds of patterns. On the other hand, Ohta's
method is very ingenious even though it is strictly applicable only to planar surfaces. This
method permits different kinds of texels on a plane and it provides a somewhat heuristic
method for their separation, which does not always work. After the image texels have
been separated into clusters of the same kind, the area ratios of two texels of the same
kind provide rich information for the orientation of the imaged planar suface.

Finally, lkeuchi [lkeuchi, 1984] studies the problem under spherical projection and
provides good results for images that fit his assumptions. In his work the texture elements
on the world surface have to be known a priori and to be symmetrical; basically he
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Equation (3.1) relates the area of a world texel Sw, its gradient (p,g), the area S of its
image and its mass center (A,B). If we call the quantity Si "textural intensity,” and the
quantity Sw/P* “textural albedo,” then equation (3.1) is very similar to the image
irradiance equation

i x I-Ap-Bg

CVa+ pi+gd
where/isthe intensity (p,g) the gradient of the surface point whose image has intensity /,

X is the abedo at that point and (A,B,1) the direction of the light souece [Horn 1977;
Ikeuchi, 1981].

Thus equation (3.1) can be used to recover surface orientation, using methods that
have been discovered for the solution of the shape from shading problem [Ikeuchi, 1981].

3,14 A gradient map

Equation (3.1) of the previous section can be written as

/=R (p,a) <%-2)

where / is the textural intensity, i.e. the area of an image texel with mass center (A,B),
and

V(

with X the textural albedo,i.e. the quantity Sw/p?, and (p,q) the gradient of the plane on
which the world texel lies. The function R(pg,) we call textural reflectance. If we fix the
abedo X, and the position (A,B) of the texel on the image, then equation (3.2) can be
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312 Paraperspective projection: An approximation of the perspective
projection by a 2-D affine transformation

Let a coordinate system OXYZ be fixed with respect to the camera, with the -Z axis
pointing along the optical axis, and O the nodal point of the eye (center of the lens), asin
2.6.3. The image plane is assumed to be perpendicular to the Z axis at the point (0,0,-1),
I.e. focd length = 1. If Pisthe depth of the center of mass of the world pattern that lieson
aplane with gradient (p,q), then to represent the original pattern of the surface texel, we
use an (ab,c) coordinate system, with its origin at the mass center of the texel. To
represent the pattern of the image texel, we use and (&, b\ ¢') coordinate system, with its
origin the point (A,B, -1), i.e. the mass center of the image texel, and the axes &, b\ ¢*
parallel tothe axes X, Y, Z respectively. Then the transformation from (ab) to (a,b') with
the two step projection process of the previous section is given by the affine
transformation '

. 1 \-/-(1:"::) \5)|(Bi+p2)
[a 6] - ’a b] S [ q(p+A) gB- 21

Va+p?)(1 +p’+q°) V(1 +p)) (1 +pP+gD)

It isclear that this transformation is the relation between two 2-D patterns, onein the
3D space and the other its image on the image plane. We now use this affine
transformation to develop the desired constraint.

3.1.3 The constraint

The determinant of the matrix of an affine transformation is equal to the ratio of the
areas of the two patterns before and after the transformation. Specificdly, if Sw is the
areaof aworld texel that lies on aplane with gradient (p,) and Si isthe area of itsimage
that hasmass center (A,B), then we have:



develops constraints similar to Kender’s, but in a simpler form because of the properties of
the spherical projection. In this work, we determine the shape of a surface covered with

repeated texels , from a monocular view, under the following assumptions:

(1) The surface in view is smooth and is covered with repeated texture elements. All
the texture elements on the surface are of the same area. These texture elements

we call texels. The shape of the texels is of no importance for our theory.

(2) Each texture element is assumed to lie on a plane (i.e., we assume that the surface
in view is locally planar). This means that the size of the texels on the surface has

to be small compared with a change of surface orientation there.
(3) The scene texture is imaged under paraperspective projection (section 2.6.3).

The fact that the surface in view is smooth, enables us to use existing techniques
already applied to recover shape from shading [Ikeuchi and Horn, 1981], that make use of
smoothness constraints. Although the technique that we will use falls in the
regularization paradigm, it is of significant value for this case. We insist on the fact that
regularization cannot be ap|p1ied to unrestricted natural images, but in this case since the
inherent assumption for the case of artificial texture is smoothness, and the domain that
we will address in our experiments consists of smooth objects, the method that we will

develop is valid and useful.

Under the above assumptions, we develop a new gradient map which will enable us to
define a “textural reflectance function.” Qur theory is very similar to earlier work on
shape from shading [Horn, 1977; Ikeuchi, 1981], with the image intensity at a point
replaced with the area of the image texel at that point.

We value the following analysis and the suggested algorithms, not only because they
provide a good way for detecting shape from patterns, but also because they provide
insight to a possible unified approach for the perception of shape from texture and
shading, since our mathematical findings with respect to this problem suggest that under
the appropriate formulation, the problems of shape from shading and shape from texture

can be solved in the same basic way.



represented conveniently as a series of contours of constant textural intensity. Figure 3.3
illustrates such asimple textural reflectance map.
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Figure3.3: Thegradient map

In the above figure, we present the textural reflectance map for a point (A,B) = (-7,-.3)
with textural abedo X = 1. The reflectance map is plotted as a series of contours paced

one unit apart.
3.1.5 Recovering thetextural albedo

We use equation (3.2) of the previous section to recover the loca surface orientation.
No matter what method we use we must know the textural albedo X = Sw/82.



We cannot know f from a static monocular view; neither can we know Sw in general.
‘But it turns out that we can compute approximately the ratio Sw/pB2, i.e. the textural
albedo A.

Consider three neighboring image texels T, T9 and T3 with areas I, Is and I3 and we
suppose that the world texels whose iamges are the texels T;, T and T'3 lie on the same

plane with gradient (p,q). Then the following equations arise:

— 3.3
I, =\, n) (3.3)
I,= G, n) (3.4)
I3 = A(sa, n) (3.5)

where n = (p,q,1/ V(1+p2+q2) and s; = (A;, B;,1) for i = 1,2,3 and (A;,B;) the mass
center of texel T,. Eliminating the textural albedo A from the equations (3.3), (3.4), and
(3.5) we get:

n= k[I1 (32Xsa)+I2 (s3Xsl)+ I3 ('lesz)]

1
k [sl, 8o s3]

for some constant k that makes n a unit vector, where [s;,s2, s3] = si(s2 X s3) and provided

A=

that [sq, s, s3] = 0, i.e. the vectors sy, s, and s3 are not coplanar (linearly dependent).

The result of equation (3.7) is approximate due to the hypothesis that three
neighboring texels lie on the same plane. But, if we perform this process in all the triples
of neighboring points, and we take the average value for the albedo, then the result is
highly improved. At the same time, we can get an approximate value for the surface
normals at all the texels in the image (equation (3.6)). Then we can use these initial

approximations to start the iterative algorithm that will be introduced in the next section.



3.1.6 Another way to recover the albedo

Following Ohta et al. [1980], and assuming locd planarity, i.e. three neighboring

texelsbel ong to the same plane which we call Q, we havethat:
1

f s, =
..1-(...!'.)3

fy B 8

wherefcj, & are the distances from two texels to the vanishing line of the plane Q aong
the linejoining the two texelsand $j, S2 are the areas of the two texelsin theimage. Since
I//-/21 isjust the distance between the two texels in the image and it is known, a point on
the vanishing line may be determined. With athird texel, two points may be determined,
which give the equation of the vanishing line [Render, 1980]. Since the equation of the
‘vanishing line of the plane Q is px+qy =1, the orientation of the plane Q can be
determined, and from that an approximation of the textural abedo is found.

3.1.7 Additional constraints and propagation of the constraints

In this section we introduce the smoothness constraint [Ikeuchi, 1981] and we present
an iterative algorithm of the same flavour as the one introduced by Ikeuchi.

3.1.8 Aniterative propagation algorithm

We have dready proved that every distortion value (image texel area) for a goecific
image position corresponds to a contour in the gradient space (See section 3.4). So, the
problem has infinite solutions and this is the reason that we introduce the smoothness
assumption. A smoothness constraint can be used to reduce the locus of possible
orientations to a unigque orientation, through an iterative algorithm.

Trying to develop aglobd error function that should be minimized in order to give the
desired value, we measure the departure from smoothness and the error in the textural
reflectance equation (equation (3.2)). The error in smoothness we measure (after [Ikeuchi,
1981]) asfollows:




where py and gy dencte the orientation at the surface point whose image is the point (ij).
Theerror in thetextural reflectance equation, can be given by:

€=U ;- Bip, »q, )2

where /;j is the distortion value (texel area) at the point (ij) and R the textural
r eflectance.

An acceptable solution should minimize the sum of the error terms in all the grid
nodes. IfE issuch aglobal error function, then

E= z Z (s‘.J + mei’j)
and the factor co gives a weight to the errors iln tr]1e textural gradient map relative to the

"digance" from smoothness. To minimize E; we differentiate with respect to pij and qij
and setting the resulting derivativesto zero and rearranging the equations, we obtain: .

drR
Pq = Pagy o [/ Ripgsal Td
J J ij 9 dp
dR
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where pgij and qgaij are the average values of p and g around the point (ij) respectively.
The above equations suggest an adjustment of p and q in the direction-of the gradient of
the textural reflectance function, by an amoung that is proportional to the error in the
textural reflectance equation (equation (3.2)). So it is natural to use the following
iterative rule for the estimation of the p and g everywherein theimage:

n+l &R

P;; TP ico[d. -RP)] —

at+l _ _n no_n an

9 =ao;+ol;-Re0) &
In the above equations the partial derivatives of the textural reflectance are
evaluated on the values of p and q of the n-th iteration. Finally, to avoid numerical

instabilities we modify the above formulasto thefollowingform [l keuchi & Horn, 1981]:

n+ |

[#3%
p"t! =pa. + a>[l.-R(pa’.,qal)] —
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R(Pij,qij) isafunction on a four-dimensional space, unlike the R(p,q) of orthographic
shape from shading. The shading R(p,q) can be determined empirically, but the textural
reflectance R(pij, qij) is an analytic, geometrical entity arising from imaging geometry,
and thus only the global constant (texture) albedo varies from texture to texture and
sceneto scene.

3*19 Experiments

The algorithm was tested on artificial images of a plane, cylinder, sphere, elipsoid
and a donut shaped object. There are four distinct steps into which the program may be
broken down:

1) Location of texels,

2) Minimum triangulation of thetexel centers,

3) Calculation of initial orientations and textural albedo,
4) Iterative process.

In 1), the connection regions in the image are detected. Their centers of gravity are
taken to be the locations of the texels. Their size is recorded and the texels which arein
theboundary are marked [Ballard & Brown, 1982]. In 2), the points denoting the centers
of the texelsare triangulated so that the sum of the length of the lines is minimum [Aho,
Hopcroft & Ullman]. In 3), the estimate of k was calculated from the local orientation with
the lowest value of p and g. Due to curvature of the surface, convex objects tend to give an
overestimate of A while concave objects tend to give an underestimate. These errors are
minimized when the surface of the object is most nearly perpendicular to the image plane.
The algorithm is quite insensitive to initial orientations given to texels whose
orientationswere allowed to vary through the iter ative process. Boundary texels were not
allowed to change. The error in calculating their values was the predominant factor in
influencing the total error. The iterative process took under 10 iterations. The process
always converged for our syntheticimages. Thefinal error valueswere



fractional
error

plane negligible
sphere .005
cylinder .015

The errors in the table denote the average percent error at each texel. The error at
each texel was taken to be 1/4n -0, where 0 = solid angle subtended by rotating the
calculated orientation about the actual orientation. Figure 3.4 gives a pictorial

description of the error at each texel.

S
x: calculated
orientation
y: actual
y orientation
x Error = S/ (area of
the sphere)

Figure 3.4: Schematic description of the error

Finally, azimuthal equidistant coordinates (AEC) [Ikeuchi&Horn, 1981] were used
through the iterative process instead of the gradient space p and q, since AEC change
linearly with change in orientation. The AEC can be easily understood in the following
way. Consider the Gaussian sphere and the gradient space plane tangential to it at the
north pole, in the origin of the gradient space. In order to find on the sphere the AEC of a .
point in gradient space, we roll the sphere to the direction of the gradient space point,
until the sphere touches the point. The corresponding point on the sphere gives the AEC
of the gradient space point. Figure 3.5 shows the image of a sphere which is covered with a
repeated pattern. Figure 3.6 shows the reconstructed sphere using the algorithms of
Sections 3.1.7, and Figure 3.7 shows the reconstructed sphere after the relaxation.

Figures 3.8, 9, and 10 and 11 and 12 show the analogous pictures for a cylinder and plane



respectively. Figures 3.12.1, 3.12.2 (triangulation), 3.12.3 and 3.12.4 show similar
experiments for an ellipsoid and figures 3.12.5, 3.12.6 (triangulation), 3.12.7 and 3.12.8

show similar experiments for a donut shaped object.

In the previous sections we studied the problem of determining surface shape from
artificial texture, i.e. from the apparent distortion of patterns. In the sequel, we will study

the problem of determining surface orientation from natural texture.
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Figure 3.5: Input (sphere) Figure 3.6: First phase
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Figure 3.7: Result (reconstruction) Figure 3.8: Input

Figure 3.9: First phase | Figure 3.10: Result



Figure 3.12: Result
Figure 3.12.2: Triangulation
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Figure 3.11:Input (plane)




Figure 3.12.3:First phase Figure 3.12.4: Result

Figure 3.12.5: Input (donut) Figure 3.12.6: Triangulation




Figure 3-12.7:First phase Figure 3-12,8: Result

3.2 Detection of surface orientation from natural texture-

It is very clear that natural texture provides an important source of information about
the loca orientation of visible surfaces. To recover three-dimensional structure, the
distorting effects of the projection must be distinguished from properties of the texture on
which the distortion acts. This requires that assumptions must be made about the texture.
In this work we will study extensively the problem of shape from texture for the case of
_ planes. Extension of our theory for curved surfaces will also be discussed.: Several
researchers have done work in this area, with the most important results presented by
Gibsoh [Gibson, 1950], Witkin [Witkin, 1981], Stevens [Stevens, 1981], Bacjsy [Bacjsy et
al, 1976], Rosinski [Rosinski, 1980) and Kanatani [Kanatani, 1984]. These researchers
studied the problem under different assumptions about the texture and the imaging
geometry. The next section analyzes the distortions imposed by the imaging geometry in
an attempt to decide under what kind of projection we should study the problem of shape

from texture, and the section following reviews and criticizes previous work.
3.2,1 Distortionsimposed by the imaging geometry

An image is the projection of a three-dimensional world onto a plane. This process
(projection), introduces various distortions to the objects in view. In genéral, the
distortions can be considered as coming from the following effects: the distance effect (the
objects in view appear larger when they are closer to the image plane), the position effect



(the distortion of a pattern depends also on the angle between the line of sight and the
image plane, which depends on the image position of the pattern), and the foreshortening
effect (the distortion of a pattern depends on the anéle between the surface normal and the
line of sight). It is clear that the orthographic projection model captures only the
foreshortening effect and ignores the other two. Therefore, methods for shape from
texture which use orthographic projection are valid only in a limited domain, where the
other two effects can be ignored. On the other hand, the perspective projection model,
which can be used as a camera model, captures all three effects, but the resulting
algorithms are complicated and they involve the solution of nonlinear equations.
Furthermore, the numerical errors introduced by the numerical approximation of several
quantities (under perspective projection) reduce by a small amount the accuracy of any
method. In this work we analyze the texture problem under both perspective projection
and an approximation of the perspective projection that captures all the above three
effects. It is relatively simple and gives accurate results. This approximation is called

paraperspective projection and has already been described in the second chapter.
3.2.2 Previous work

Some serious work has been done in this area, and many of the published papers have
reasonable results for the images that fit their assumptions. The first to approach the
shape from texture problem was Gibson [1950]. Trying to develop a theory on how
humans perceive surface orientation from texture, he suggested that texture consists of
small elements, called texels. Of course, these small elements constitute the texture in a
very irregular, non-canonical way. Gibson, realizing that he should make assumptions
about the texture, proposed the following: The individual elements that constitute the
texture (texels) are uniformly distributed on the world plane, in the sense that in a unit
area on the world plane there is approximately the same number of texels; in other words,
texture is uniformly distributed on the world plane. But when we look at it, i.e. take an
image, then the texture density is not uniform, i.e. it has a gradient. So, Gibson proposed
that humans perceive the orientation of naturally textured surfaces from this sameness
(uniform density on the world plane) and difference (gradient of the texture in the image).
Gibson, not having the necessary analytical tools, treated the case of perspective

projection of a receding plane (ground plane). He assumed the plane to be covered with



elements of uniform density, and from that, the gradient of texture density in the image

specifies surface orientation.

Continuing with the approach initiated by Gibson, Bajcsy and Lieberman [1976] tried
a heuristic use of the two-dimensional Fourier power spectrum windows to detect texture
gradient. Their work, despite its elegance, was of a very limited applicability. Their
method works only for receding surfaces, and with the distance of the camera from the
ground known. Furthermore, all the texture elements are assumed to have the same size,
for their theory to be right. Because of the fact that the texture elements are not of the
same size in the real world, their results are not accurate, as reported. After this, the

Gibsonian approach was abandoned, basically due to the work of Witkin and Stevens.

Witkin [1981] presented a statistical approach without assuming spatial.
homogeneity. He assumed "directional isotropy", i.e. the assumption that the peripheral
contours of the figures in the true texture have line segments that are uniformly
distributed over all orientations. Based on an orthographic projection model, he derived
the maximum likelihood estimators of the slant and tilt angles. Although the isotropic
assumption is a general one, there are many natural scenes that do not agree with this
assumption. In our formulation, Witkin's assumption can be used, but our experiments
showed that it yields very low accuracy. The reason for that is that the directional
isotropy assumptipn is very restrictive and seems to be present only in a small subset of
natural images. The arguments of Witkin as to why he did not continue with the
Gibsonian uniform density assumption are two: First, it had not been demonstrated up to
that point that the uniform density assumption could be used as the basis of an algorithm
to detect surface orientation in a general situation. We prove in the forthcoming sections
that this is not the case. Witkin’s second argument was that even if we had an algorithm
that could recover surface orientation based on uniform density, this algorithm would
need to know the texels, and it is not at all obvious how we can find the texels in an image.
This is perhaps the strongest argument against the Gibsonian assumption of uniform
density, but in later sections we will show how to overcome this problem and alter the
uniform density assumption to a better, more general one that does not require our
finding of the texels.

Stevens (Stevens,1980) studied the problem under perspective projection and found

that texture density depends on both scaling (distance-position) and foreshortening



(surface shape). From this, he concluded that texture density is not a good measure for
computing surface orientation, since it varies with both scaling and foreshortening.
Stevensdid not redlize that despite the fact that scaling and foreshortening both affect the
texture dengity, their effects could be separated and that the separated foreshortening
effect could compute uniquely the surface orientation. Our approach performs the
separation of the foreshortening and distance effects and does not make any assumptions
about the shape and size of the texels. It assumes only that the texels are distributed in
the world plane at uniform density. Practical difficulties (finding texels) obliged us to
generaize the uniform density assumption to another form which seemsto capture a very
large subset of natural and man-made environments; the resulting algorithms do not
require a strong segmentation (finding texels), but only a weak segmentation (finding
edges).

Render [1980]) and Kanade [1979] explored the domain under orthographic
projection. Render formalized the relationship between loca surface orientation and two
perpendicular axes of the same length. Kanade proposed using skewed symmetry to -
recover locad surface orientation. The angle between a skewed symmetry direction and
the opposite direction can be a constraint on surface orientation. Render [1980] and Ohta
et al. [Ohta, Maenobu, Sakai, 1981] address the shape from texture problem under
perspective projection. Render determines surface orientation from many paralel lines
‘observed on a plane. Ohta et al. proposed using the area ratio of texture elements to
recover surface orientation. Their method depends on the accuracy of measuring the areas
of individual texels of the same shape. Measurement errors are amblified when the texels
arevery small. Furthermore, their method needs to find the individua texels, something
very hard and seemingly impossible in natural images. lkeuchi [1984] addresses the
problem under spherical projection for general surfaces, but his crucial assumption is
that the world texels must be regular (symmetrical) and known apriori, asit has aready
been noted in section 3.1. Ranatani [1984] uses the second Fourier harmonics of the
number of intersections between texture and parallel scanning lines to find the surface
orientation based on orthographic projection, by assuming that the texture is
directionally isotropic, ie. his method is very similar to the one used by Witkin.

3.2.3Themodd
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The paraperspective projection model is very general, and it can slightly change
everytime we change the auxiliary plane. This model has already been described in
sections 2.6.3 and 3.1.2. Here we describe the inverse transformation, i.e. the

transformation from the image plane to the world plane.
3.2.3.1 The inverse transformation under paraperspective projection

The transformation that was introduced in the two previous sections, was from the
world to the image. In this section, we study the inverse transformation, i.e. the one from
the image to the world, under the introduced paraperspective projection. There are two
. reasons for doing this. First, we will derive the same algorithm using two different
methods and second, we will use the results of this section later, when we will address the
problem in the case when we cannot identify the individual texels, but parts of their

boundaries (edges).

Consider the function f that maps points in an area S; of the image to their
corresponding ones in the world plane under the inverse of the already introduced

paraperspective projection. The function f does the following:

1) If the point s= (A,B,-1) is the center of gravity of the image area Sy, then fs)
is the intersection of the vector (A,B,-1) and the world plane.

2) For any other point p=(x,y,-1) in the area S;, ip)=Q +t (A, B, -1), where W is
the vector defined by the origin and the intersection of the direction (x, y, -1) with the

planez = -d.

It is clear that the transformation fis the inverse of the imaging transformation. From (1)

and (2), f can be written explicitly as:

fx,y,-1) = (dx+tA,dy +tB,-d-t) with
c dpX +qy-1)+c
= ————— =
1-Ap-Bq 1-pA-qB

d



In the rest of the chapter, whenever we use the symbol f, we will mean the inverse
transformation introduced in this section. Finally, we should say that fis defined for a
region Sin the image, since it depends on the center of gravity of the area S So, if the
imageisdividedinnareas § ; SV, ..,S, and the inverse transformation for each areaiis fj ,
f2,.., f, thenthe inverse transformation for the whole image can be realized asthe set {fi,

&’--rfl'l}-

3.2.3.2 Theinversetransformation under perspective projection

Here we study the inverse transformation under perspective projection. Let usfix a
coordinate system OXYZ with the Z axis as the optical axis and the image plane
perpendicular to the Z-axis (focd length = 1). If (x,y) is the coordinate system on the
image plane (x axis parallel to X,y axis parallel to Y) with origin at the intersection of
the Z-axis with the image plane, then a point (X,YJZ) in the world is projected on the
image point (x,x),with:

X
X = 7

Y
y:|

Furthermore, let a plane Z=pX+qY+c in the world, whose image is considered.
The inverse imaging function, f; is again the function that maps the image plane onto the
world plane. So, if (X,y) isan image point, the 3-D world point on the p]’ane Z=pX+qY+cC
that has (x,y) asitsimage, is given by:

( & cy c \
fx.y) _ !
— px-qy I-px-qy  I-px-qy/

We see that in the previous case (paraperspective) the inverse transformation was
deflned for a small area. Here the inverse transformation is defined for the whole image
plane by the same form. In the rest of this section we will develop the first fundamental
form of [Lipschutz, 19691, because it will be needed later. The Tirst fundamental form of f
isthequadraticform: Edx?+2Fdxdy+ Gdy*

with E=f,f,F=1fG=fyfy where represents the dot product operation. After smple
calculationswe get:



9
[ .
E= — [(l -g*+ p2y2 + pz]
1 -px-qy)

2
F= ro———— [(1 -qy)gx + (1 -p*)py + pql
(I-px-qy)

b4
4V + (L-px)*+

on |
(I-px-qy)*

The above coefficientsE, F, G are called first fundamenta coefficients and are functions of
xy (and so they vary from point to point). In the sequel we will examine the relation
between image and world areas, as well as the relation between image and world lengths,
for both perspective and paraperspective projection.

324 Relation between image and world areas

In order to study the relationship of the texture on the world plane and of the
texture on the image plane, we must examine the relationship between areas in the world
and in the image. The next two sections do that for both cases of paraperspective and
perspective projection.

3.24.1 The case of paraper spective projection

It is known that the absolute value of the determinant of the matrix of a 2-D &ffine
transformation is equal to the ratio of the areas before and after the transformation. In
other words, if S, isthe areaof aregionontheworld plane -Z = pX + Y + ¢,and S is
the areaof itsimage under the introduced projection process, then:

-1 +pA pB
S /o [ Va+g Vit +ph I
I

V(I +p%) (L+p*+q?) V(I +p) (L+p*+d)
or

S| 1 1-Ap-B
:abs( P-Ep I\

SW \% d2 V(|+p2+qé)/






But it is clear from the intersection of the central projection ray with the world plane
that

do —C
1-pA-qB

The above equations give:

SI ( 1 c
— =abs| — —-—-—ﬁ)
Sw d3 \/(1+p +q9)

Since the parameters p, q, ¢ are constant, the above equation tells us that the ratio of
the areas before and after the transformation is inversely proportional to the cubic of the
distance of the mass center of the world region from the origin. Also, it says that an area
S, in the image is due to the projection of an area (Sy abs (d3) V(1+p? + ¢2) /c) in the
world; in other words, if we consider an area Sz in the image, then in order to find the
area in the world plane whose projection is S, we must multiply the area S, with the

factor

&V +p’+¢) EVa+p2+g)
I = abs = abs ———-———3—
¢ (1-Ap-Bq)
where (A,B) is the center of gravity of the image area S, .

The ratio S,'/Sw can also be computed in the following elegant way, using the
inverse transformation f that was developed in section 3.2.3.4. The function f maps the

region S, toaregion S on the world plane (see Fig.3.14a).
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Figure 3.14a:The inver se transfor mation
8/78* and 878y represent the speed along the x curve and y curve
respectively. A rectangle Siin theimage having area Ax Ay ismapped to a
parallelogram in the world plane which is determined bytidevectors 8/78x
Ax and8/78yAy. Thereforethe area ofthis parallelogram isthe magnitude
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Theareaof S, can be computed by the double integral:
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and so, theequations that relateimage to world area can be derived again.




3242 The 'case of the perspective projection

Here we address the same problem as in the previous section but for the case of the
perspective projection. We know that if we have an area S; in the image plane, then the
image of this area through the inverse function /can be computed directly with the aid of
thefirst fundamental coefficients [Lipschutz, 1969]. In other words, if we have an area S,
on the image plane, then the area S, in the world plane Z=pX+qY+ c whose projection is
S isgiven by:

L |
S\ ] V(EG-F?)dxdy
5. -
I

with E, F,G the first fundamental coefficients. If we substitute E, F, G with their values
(section 3.2.3.5) we get:

WF 1 5 vo s ahaa

wooig g 1-px-¥
It is obvious that the relation between S and S, becomes the same under
paraperspective and perspective, when the area S becomes very small. Finaly, the
ebove equation cannot be further smplified, since we do not have a specificarea S

3.25 Relation between image and world lengths

Because of the fact that we will need the relation between edges (line segments) on the
world plane and on the image plane, we need to develop them here. The next two sections
examine this problem for both the cases of paraperspective and perspective projection.

3.25.1 The case of par aper spective projection

In this section we exploit the relation between the length of a small line segment in
the world and its image under the introduced modd of the paraperspective-projection. We
repeat here that the inverse transformation /that was introduced in section 3.2.3.4 maps
image points to world points. The speed of fin the direction 0> = (co$9, sinB) is the
directional derivative offin the direction a. In particular,

fo(xy) =Df(xy)o>"
or



, Dift Dafi
fo'(x,y) = | Dife Dafp . cos 0

Difs Dofs sin©
or
fo'(x,y) = i ! -%B IqAA cos 6
) = p -p : .
(1-Ap-Bq)? p q sin 6

So, a line segment with length [ inthe direction 6 in the image, is due to the projection
of a line segment L in the world plane with length

L =fl-L.

But
¢. V((1-gB)2+ (pB3)2+ p?) c0s?8 + (1-pA ) +(qA)’+ ¢?) 5in%0 + 2((1—gB)qA + (1-pA)pB+
g (1 -Ap-Bg)?

In other words, if we have a line segment [ in the image area S, in the direction (cos6,

sinB), then in order to find the length of the line segment in the world plane that has

image [, we have to multiply [ with the factor: |

¢ V((1~gB)2+ (pBY+ p?) c0s0 + (1-pa)’ + (ga)’ + qHsin?0 + 2((1-gB)qA + (1-pA)pB + pq):
1-Ap —Bq)2

I

At this point we should say that the same result could be obtained using simple

analytic geometry, but the analysis was done in this way for reasons of elegance.
3.2.5.2 The case of perspective

In this section we address the same problem as in the previous section, but for the case
of the perspective projection. Again, the desired relation is given directly from the first

fundamental coefficients. Indeed, if we have a line segment L on the image plane, then the



length DL of the line segment on the world plane whose image is the line segment L, is
given by the integral of the first fundamental form, i.e.

DL = ] V(Edx? + 2F dxdy + Gdy?) on theimageplane
L

where E, F, G are the first fundamental coefficients. Again we can substitute the values of
E, F, G but we cannot get rid of the integral if we don't assume a specific line segment L.
We will now utilize the findings of sections 3.2.4 and 3.2.5 to devise efficient and robust

algorithms for the computation of the orientation of the textured plane in view.
3.2.6 Exploiting the uniform density assumption

In this section, we use the uniform density assumption to develop constraints that will
enable us to recover the gradient (p,q) of the plane in view from its image. We first
address the problem for the case where the texels can be located and counted (strong
segmentation-weak result) and then for the case where the edges (texel boundaries) can

be located (weak segmentation-strong result).
3.2.6.1. Determining shape provided that the texels can be found

In this section we study how we can recover the shape of the textured plane in view,
provided that the texels can be located. Up to this point there is no known algorithm that
can successfully detect texels from a natural image. There is, of course, current research
effort in this direction with promising results. The following two sections are based on the
assumption that the texels can be detected, even though we don’t know of any algorithm
that does so. The value of the forthcoming sections is theoretical, and is basically an

answer to the objection raised by those who follow Witkin’s approach.

3.2.6.1.1 The case of perspective projection

The uniform density assumption states that if S and S'are any two regions in the

world plane, and they contain k and k'texels respectively, then



K k'

area(S) — area(S)

Condder any two regions s; and s, in the image of the textured plane with areas Sl
and S, respectively. These regions are the projections of some regions in the world plane
with areas Sy1 and Sy, where

- 2
_ | < 2, 2
Swi= |, ] - Vit + g+ gDz dy

and

S —V(1+p*+ ghdzdy .
2,  (1-pz-qy) -

o, let ky and k; be the number of texelsin the imageregions s and s, respectively. Then,
the regions in the world plane whose projections are the image regions s and s, contain k\
and k; texelsrespectively. Thus, the uniform density assumption, iswritten as.

k, k,

2
fi——V(+p™ddxdy [%-V(Hp%qz)dxdy |
o) 1 (A—px—ay) I*2 1 (l—px—ay)

The above equation is the basis for the recovery of the gradient, provided that the
texels can be located and counted. This equation, clearly is an equation in the unknowns
p,q, but it is nonlinear even for the simplest choiceof theareass; and s, (squares). Because
of the nonlinearity of this equation, we do not attempt a closed form solution, something
that probably is not impossible under the employment of over simplifying assumptions.
Instead , we use the following smple method. We divide the image into n equal areas
(squares) (see Fig. 3.15), $,,5;,...,.S,, and suppose that each of th$se ar eas contains Kogks ,..,
k, texels respectively. What we requireisthat the density of the texelsin the world plane
is about the same; in other words, we want to find the parameters p,q so that the
quantities: '



k.

13

5 ,i=1,..,n
¢ 2, 2
] I —_— V(1 + p*+q“)dx dy
s, ' (1-px—qy)
are about the same, or the quantities
k.

2 N
d = ,i=1,..,n

vVa +p2+q2) dx dy

l
] s J (1-px—qy°®

are about the same. Of course "about the same” has a statistical meaning; in particular, if
the density (texel density on the world plane) was the same everywhere, then the
quantities d, i=1, .., nshould be equal. But it is unrealistic to expect that the density will
be the same everywhere on a textured surface. What is to be expected is that the density
will be “about” the same everywhere. In other words, we want to find the gradient (p,q),
that minimizes the variance of the sample {d, ,.., dn}. This can be done easily by trying all
the different values for the orientation and choosing the one that minimizes the variance
of the sample d, , .., d . Of course we change formulation for the gradient, and instead of
the gradient space (p,q), we use the (equivalent) Gaussian sphere formalism (azimuth,
elevation) in a discretized fashion (180 different values for the elevation, 180 different
values for the elevation = 180*180 differeht combinations). We do this in a hierarchical
manner, i.e. after all the different orientations have been tried (180*180 values) and the
sample with the smallest variance has been selected, we have an answer for the
orientation correct up to .9 degrees for both azimuth and elevation. If this answer is, for
example : azimuth =a degrees, elevation =e degrees, we continue the same procesc tut in
the interval (a-1,a+1)X(e-1,e+1) until we obtain the desired accuracy. Finally, the
integral in the computation of the densities d;, i=1 ,..,n, can be easily computed. In

particular, if we consider an image



area sthat isdefined by the square ((m,r),(n,r),(n,s),(m,s)) (seefig. 3.15), then:

yl(l+p*+cP) 1 Va+p*+gd) (n-m) (1) (2pr-pm-gs—gr)
Voo {l-px-qyf V=2 (1-pn-qs) (1-pm~qs) (1-pa~qr) (g-pm —qr)

Figure 3.15: Backprojection

So, the denominators in the quantities d, can be precomputed for all orientations and
dored in a big look-up table. This ‘'table is three-dimensional. The first dimension
represents the position in the image (area square in the image), and the other two
orientation. Each entry of the table contains the value of the above integral (denominator
of d) for the particular area and the particular orientation. So, the algorithm for the
computation of surface orientation given a textured image (where the texels have been
found and counted) is very fast, since it computes the different samples ql i=l,..,n
(180* 180 of them) by table look-up and by countingthetexels (ki ,i=1,..,n) in every area.

The next section examines the same problem, but under the paraperspective
projection. It turnsout that in this case a closed form solution can be found ( with a very
smple algorithm).



3.26.1.2 The case of par aper spective projection

Here the same problem is treated under the paraperspective projection assumption.
The uniform density assumption states that if S and S'are any two regions in the world
plane, and they contain K and K'texels respectively, then

K Kt
arealS ~ area(S)

Congder any two regions 5 and s, in the image of the textured plane with areas §
and S respectively. These regions are the projections of some regions inthe world plane
with areas S R; and SR, respectively, where

2V +pi+q’
W )
(1-A,p-B q)
and
EV+piegh
R2=abs( il 4 qa)

with (Aj , J2) and (A; , By) the centers of the gravity of the image regions so
respectively.

Let K, and K; be the number of texelsin theimageregions s and s, respectively. By our
assumption, the regionsin the world plane whose projectionsare $; and s, contain K; and
K, texelsrespectively. Thatis.

1 T2
SIRI SZR:Z
or
{K i Azp—B2q)3
> 2 e A “sk 2 2 2)
AS,c?V (I1+P?+g?)n 8, V(i +p°+¢)
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Since 1 -pz-qy= 0 is the vanishing line of the projected plane, (A ,B ) and (A,,B,)
lie on the same side of this line. That is, (1- A1 pP- B1 q) and (1- A2 p-Bgq) have the

same sign. Therefore, we can drop the absolute functions in the above equation. We get

1
1-Ap-Bg (K2 31>5

1-A,p-Ag K, S,
or
1 1 1
K, S \- K, S \- K, S \-
(5 2Faaloe (2 2Fan)o=(5 2F -
Kl 82 1 Sz 1 S2

The above equationrepresents a line in the p-q space. So, considering any two regions in

the image, we constrain (p,q) to lie on a line in the gradient space (see Figure 3.16).

q A

\ (0, 1)

M, 0)\ p

Figure 3.16: The constraint in gradient space



In Figure 3.16, the uniform density assumption, taken in two image regions s;, s
. with areas S; and Sy, and K; and K texels respectively, constrains the gradient of the

plane to lie on the above drawn line, where

1
(%5
K, S,
1

1

K, S K, S\

2 1) 2 7133
I(K1 sz) 32"31] I(K ) A?‘AI]

with (A7, By) and (Ag, By) the centers of gravity of the regions S; and Sy respectively.

It is now clear that taking two pairs of image regions we can solve for p and q. But
because of the errors introduced by the sampling process (image digitization and density
fluctuations of the regions), we may get inaccurate results. To overcome this problem, we
employ the least-square-fit mechanism. We consider many pairs of image regions, each
one of them gives us one line in the gradient space. The desired solution is estimated by
the point whose sum of distances from all the lines is minimum (see figure 3.17). If these
sampling errors are normally distributed, this estimator gives the best estimation

”n

The desired solution (as seen in the above figure) is estimated by the point whose sum of

distances from all the lines is minimum.
3.2.6.2 Determining shape provided that the edges can be located

In the previous sections we developed a method to recover the orientation of a
textured plane from its image, based on the assumption of uniform density. By uniform
density, we meant that the number of texels per unit area of the world plane is about the
same. Application of this method in natural images did not seem to work very well
because no good methods have been developed up to now that can identify texels in an
image, and our algorithm depends critically on the number of texels in an unit area, as we
have already emphasized. Perhaps the most serious objection against Gibson's

assumption {Witkin, 1981], is the fact that it has not been demonstrated up to now that
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Figure 3.17: The solution as constraint inter section

texels can be reasonably found in a natural image. We believe that indeed it isvery hard
tofind texelsin a natural image, and our experiments to date indicate that thisisindeed
the case. On the other hand, recent literature [Marr, 1979a, b; Bandopadhyay, 1984;
Canny, 1984; Nalwa, 1985; Sher, 1986] provides many robust methods for the
computation and identiflcation of the boundaries of the texels (edges) everywhere in an
image with texture. Therefore, we dlightly modify our uniform density assumption to a
criterion that issensitive to projective distortion and is computable on natural images.

If indeed Gibson's assumption istrue for a large subset of natural images, then given
that the size of the texels will also be uniformly distributed, it follows that the sum of the
legths of the edges will also be uniformly distributed. We now define density in the world
plane as the total length of the texel boundaries per unit area, and our uniform density
assumption states that this new density isthe same everywherein the world plane. This
new assumption is not far from the previous one; it seemsto be true for a large subset of
natural images. Of course, it cannot be proved that such an assumption isthe appropriate
one to be used for the recovery of shape from texture. An empirical analysisis needed for
such a thing. We have found experimentally that this modified uniform density
assumption (sum of the lengths of the contours per unit area is about the same



everywhere) is true for many natural and man-made textured planes (in particular, it has
been found true for 50 different textured planes - grass fields, gravel paths, leaves on
walls, sea waves, brick walls, carpets, cloth designs, aerial views of towns and parking
lots, books on shelves, text, textured floors, cellings, and many other cases). We now
utilize this new assumption to devise algorithms for the recovery of surface orientation
from texture. Again, the analysis is done for the cases of paraperspective and perspective
projection.

3,26.21 The case of perspective projection

In this section we develop an agorithm for the recovery of surface shape using the
assumption introduced in the previous section, under perspective projection.

Let fhe image be divided into smdl regions s, , .., " (squares, asin fig. 3.15).
Suppose that wefindin the areas, theline segmentsLa , L{2 ,.., L”,, fori=1,.., n. Then,
the new uniform density assumption states that the quantities:

J

> f V(Eds"+ 2F dxdy+ Gdy?)

il Lj _

dt= - r »
J | VIEG-F"dxdy

with E, F, G the first fundamental coefficients, should be about the %ime, fori=I, ., n
Again, in the expressions d. we can get rid of the constant ¢ and we fallow the same
procedure as in the previous section , i.e. we choose this orientation that minimizes the
variance of the sample d..,d,.

The next section studies the same problem, but under the paraperspective projection
assumption.

3.26.22 The case of paraperspective projection

L et the image be divided into small regions $, $, ..., . For eachregion s, thereisan
imaging functionf. (that depends on the center of mass of S) in the way that was described
in section 3.2.35. Letdso S and Ri be the area and area change ratio of the region s;
respectively. So, theworld areathat hass;, asanimageis §. Ri.



Inaregion s, with center of mass (AJJ),di line segment

(Ico$Qy | sinQ) with length / is due to the projection of a line segment in the world plane
withlength/-ft) = {. ll/fell.

Let thetotal length of line segmentsin direction 9 intheregion S; belfi . Then, the
new uniform density assumption states that:

[ vt |
8 .
——————— = constant for all regions L
S, R,

Since the area change ratio and the length change ratio for each direction are fixed
within every region for each quantized orientation, tables of those ratios can be
precomputed. The edgesin theimage are broken into line segmentsand the values :

IS
i SR

¢

for al the regions i, can be computed smply by a table look-up method for each
orientation in the solution space ( with a replacement of the unbounded p-q coordinates
with the bounded azimuth-elevation of the Gaussian sphere formalism). The solution for
the orientation of the world plane can be estimated by the orientation which minimizes
the variance of the sample {c,,.., cJ, in the same exactly way asin the previous sections.

3.2.7 A comparison between per spective and par aper spective

In this section we compare the algorithms developed for shape from texture, under
the perspective and paraperspective projections. Obviously, the paraperspective
projection is an approximation of the perspective, and it is an area-to-area projection.
When the area under consideration becomes very small, then the paraperspective
projection becomes equivalent to perspective (as it can be seen from sections 3.2.4.1 and
3.24.2). Butif we keep the areas very small, then the algorithmsin sections 3.2.6.1.2 and
3.2.6.2.2 do not perform well, since not enough information is contained in thissmall area;
from the other hand, if we make the areas large, again the algorithms do not give
satisfactory results since the error introduced by the paraperspective projection is high .
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We observed that if the areas are kept in between 25*25 and 50*50 pixels, then the results

were very satisfactory.

Comparing the performance of the algorithms in 3.2.6.1. (given that the texels have
been located) we observed that the algorithm based on the perspective projection
performed a little better than the one based on the paraperspective projection. The
algorithms in 3.6.2.2. (based on edges--partial texel boundaries) do not have any
considerable difference in their results. This fact should not be surprising, since both the
algorithms basically minimize a function, and despite the fact that these functions are not
the same for the case of perspective and paraperspective, our experiments showed that
their minimum seems to be the same. Actually, we can say that the algorithm based on
the paraperspective projection performed better than the one based on perspective ; we
think that this is due to the numerical errors introduced by the numerical approximation
of the integrals. The final section describes relevant experiments. The next section

describes an error analysis of the paraperspective projection.
3.2.8 Error analysis

Some of the methods developed in this paper that use the paraperspective
projection depend critically on the promise that the introduced two-step projection process
is a very good approximation of the perspective projection. In this section, we present a
theoretical analysis of the error introduced under the paraperspective projection and we
show that perspective projection and our two step projection process are indeed very close
to each other. A more thorough error analysis can be found in [Aloimonos et al, 1986]. An
error analysis of the two step process that is used in this paper is complicated, since the
error depends on how big is the area that is considered, on the orientation of the world
plane and on the depth. But before we proceed with our analysis, we challenge the reader
to distinguish between the perspective projection and the paraperspective projection from
the figures below (Fig. 3.18). Figures 3.18a and 3.18b are the images of a textured plane.
One of them is produced using perspective projection and the other one using

paraperspective .
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Figure 3.18: (a) the image of a textured plane using perspective projection
and figure (b) the image of the same plane using the paraperspective
projection.

The way we approach the error analysis is the following: We compute the image of
a point under perspective projection and then we compute the image of the same point
under our two step projection (paraperspective). The distance of these two images is the

the error, which is a function of many parameters and we study its behaviour.

We use the terminology introduced in the previous sections. Consider a region S
in the world plane and let G be its center of gravity. Let the perspective image of G be the
point P= (A, B, -1) on the image plane. Note that the image of G under our two step
process is also the point P. It is easy to see now that G= d.(A,B,-1). Consider now a point



M on the world plane, such that
OM - OP = (Ax, Ay, A2

This means that M = d . (A, B, -1) + (Ax, Ay, Az). But we can easily prove, since -
z2=px+qY +c,that Az = -p Ax —q Ay. So, we conclude that:
M=(d.A+ Ax,d.B +Ay,-d-p Ax—q Ay) .

We are now going to compute the image of the point M under perspective projection
and under our two step projection (paraperspective) process. It is clear that the point M
involves the orientation of the plane, the distance from the center of gravity to M and the
distance d. Let the images of the point M be M, and M under perspective and
paraperspective respectively. Then, we have:

__( d.A+Ax d.B+Ay )
" \ d+pAx+qldy ' d+pAx+qldy

P

and

M = ( d.A+Ax+(pAx+qlAy).A d.B+Ay+(pDx+qAy.B )
o~ d ’ d

From these equations, we conclude that the difference of the two projections, i.e. the
length of the vector Mg Mp, or in other words the introduced error, is:

z1. V(2dA +Ax+21A)? + (2dB+Ay+21B)?
d(d+21)

Error=| M M, | =

where z, = pAx + qAy. Itis clear from the above formula that the error depends on many
parameters. Using this formula the calculated error was very small. The following figures
show the dependence of the error on some of the parameters when the rest of the
parameters were fixed. So, it is clear from this analysis that indeed the perspective

projection and our approximation are very close.

Figure 3.19 below shows the dependence of the error on the depth d. The slant and
tilt of the world plane were 54.5 and 45 degrees respectively. The area under
consideration in the image had center of gravity the point (5,5). The difference of the x and
y coordinates of the world point, whose projections are considered, from the center of
gravity of the world area, were Ax = 2 and Ay = 2. Figure 3.20 is the same as Figure 3.19
with the difference that Ax = 2- and Ay = 20. '



Figure 3.21 shows the dependence of the error on how large is the area under
consideration. All the quantities were the same as before, with the addition that the depth
d=300 and the exception that the distance Ax was the independent variable. Finally
Figure 3.22 shows the dependence of the error on the orientation. The fixed values were
(A,B)=(5,5), d= 300, (Ax, Ay) = (20, 20) and the quantity g= 10 . The independent

variable was p.
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We have experimented a great deal in order to discover the relation between
paraperspective and perspective projection, and in the rest of this section we will describe
some more experiments that describe the error of the paraperspective projection (with
respect to perspective). In the previous figures we showed the error in the projection of a
point. But, for the shape from texture problem, we are primarily interested on the error
in the ratio of areas. We chose two triangles on a world plane, and we computed the ratio
of their images, under paraperspective and perspective projection. From this, the error of
the paraperspective projection was computed for this case. Figure 3.22.1 shows the
percent error as the slant of the world plane varies. Figure 3.22.2 shows the error as the
tilt of theworld plane varies. Figure 3.22.3 shows the error as the depth of the world plane

varies ( parameter c).
3.2.9 Implementation and experiments

We have tested our algorithms on many synthetic and natural images. The results

were very satisfactory. In this section, we use slant( tan-!

V(p2+4q2) ) and tilt (tan-1 (g/p)) to represent the orientation of a plane, since they are

more intuitive.
3.2.9.1 Syntheticimages

In our experiments, we used all the algorithms of 3.2.6.1 and 3.2.6.2, i.e. for the
algorithms in section 3.2.6.1. (3.2.6.1.1-perspective and 3.2.6.1.2-paraperspective) we
used the number of texels per unit area as the density and for the algorithm in the second
part of 3.2.6.2. we used the total length of the boundaries per unit area as the density, to
get a solution. Figure 3.23 is the image of a plane covered with random dots parallel to
the image plane. Figure 3.24 is the image of the previous plane after rotated and
translated, with tilt = 135 and slant = 30 degrees. Algorithm 3.2.6.1.2 (paraperspective)
recovered tilt = 134.4 and slant = 29.75 degrees. Algorithm 3.2.6.1.1 (perspective)
recovered tilt=134.6 and slant =29.70 degrees. Figure 3.25 presents the image of a plane
parallel to the image plane covered with random line segments. Figure 3.26 presents the
image of this plane rotated with tilt = 135 and slant = 30 degrees. Algorithm 3.2.6.1.2
(paraperspective) recovered tilt = 133.77 and slant = 30.40. Algorithm 3.2.6.1.1
(perspective) recovered tilt=134.1 and slant=29.80 degrees. Figure 3.27 presents the
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image of a plane covered with randomly generated small circles paralld to the image
plane. Figure 3.28 presents the image of the plane rotated with tilt = 135 and slant = 30
degrees. Algorithm 3.2.6.1.2 (par aper spective) recovered tilt = 135.54 and slant = 29.77.
Algorithm 3.2.6.1.1 (per spective) recovered tilt = 134.70 and slant = 29.85.

Figure 3,23: Figure 3.24:

Random dots frontal plane transglated and rotated
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Figure 3.25 Figure 3.26

Random circles frontal plane Translated and rotated

Figure 3.27 Figure 3.28



Random line segments frontal plane Translated and rotated
3.2.9.2 Natural Images

In the computation of the actual orientations when the pictures were taken, we
estimate an error of about * 2 degrees . Qur results were in these bounds. The natural
images used here were first preprocessed to find the boundaries of texels (edges) by
applying modified Frei-Chen's operators introduced by Bandopadhyay [Bandopadhyay,
1984]. Figure 3.29 shows a photograph of a textured floor with slant = 45 and tilt = -108
degrees. The test result shows slant = 45.87 and tilt = -109.43 degrees (from the
algorithm in 3.2.6.2.2-paraperspective) and slant = 46.10 and tilt = -110.5 degrees (from
the algorithm in 3.2.6.2.1-perspective). Figure 3.30 shows the photograph of a part of a
grass field with slant = 60 and tilt =0 degrees. Figure 3.31 shows the image of its edges
after the preprocessing. Algorithm 3.2.6.2.2 (paraperspective) recovered slant = 63.057
and tilt = -1.076 degrees. Algorithm 3.2.6.2.1 (perspective) recovered slant = 57.7 and
tilt = -1.55 degrees. Figure 3.32 shows the image of a part of a brick wall, with slant =
40 and tilt = 90 degrees. Figure 3.33 shows the image of its edges. Algorithm 3.2.6.2.2
(paraperspective) recovered slant = 42.6 and tilt = 89 degrees. Algorithm 3.2.6.2.1.
(perspective) recovered slant = 37.1 and tilt = 87.5 degrees.

Figure 3.34 shows the image of another brick wall , with slant = 30 and tilt = 0
degrees. Figure 3.35 shows the image of its edges. Algorithm 3.2.6.2.2 (paraperspective)
recovered slant = 28 and tilt = 1.2 degrees. Algorithm 3.2.6.2.1 (perspective) recovered
slant = 27.5 and tilt = 2.75 degrees.

Figure 3.36 shows the image of a part of a gravel path, with p=0 and ¢q=0. Figure
3.37 shows the image of its edges. Algorithm 3.2.6.2.2 (paraperspective)recovered p=0.25
and g=0.1. Algorithm 3.2.6.2.1 (perspective) recovered p=0.15 and ¢=0.12.

Figure 3.38 shows shows the image of ivy leaves on a wall, with slant = 20 and tilt =
0 degrees. Figure 3.39 shows the image of its edges. Algorithm 3.2.6.2.2 (paraperspective)
recovered slant = 24.5 and tilt = 5.6. Algorithm 3.2.6.2.1 (perspective) recovered slant =
17.35 and tilt = 4.7 degrees.



rigure 5.4V snows the 1mage ot 1vy leaves on a wall, with p=0 and q=0 .I'igure
3.41 shows the image of its edges. Algorithm 3.2.6.2.2 (paraperspective) recovered
p=0.012and ¢=0.024. Algorithm 3.2.6.2.1 (perspective ) recovered p=0.05 and ¢=0.015.

All the above pictures in this section have been taken directly from a TV display
(after digitization) because we wanted to show the reader the quality of the images that
we were working with (discretization effects). The following figures 3.42, 3.43 and 3.44
show the actual pictures of some of the images that we used in our experiments. The

results were again in the bounds of 0 to 5 degrees from the actual values.

Figure 3.29 : Floor & edge image Figure 3.30: grass field




Figure 3.31:edge image

.

R ) icacuwd i

¢ 1 ‘
nondn N by

Figure 3.33: Edge iﬁlage

Figure 3.32:brick wall

Figure 3.34: brick wall
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Figure 3.43 Figure 3-44

3.2.10 Conclusions and futuredirections

We have developed a simple and effective method to obtain the orientation of a
textured plane from its image. Our method is based on the idea of uniform density
introduced by Gibson. Our algorithm works very well in a large subset of artificial and
natural images. We realize that its success depends heavily on the ability to identify the
texels or the texel boundaries. We presented algorithms that employ perspective
projection and an approximation of the perspective, which we called paraperspective.
Overall, the performance of the algorithms under paraperspective projection was better.
The basic assumption is that the segmentation problem has been solved and so we are
applying the developed algorithms to the image of a single plane. But if we have the
image of a set of textured planes, then segmentation can be helped by the our theories,
since we can apply them to small windows all over the image, and from the different
results that we will get for the orientation, to discover and segment the different planes
in the image. We are currently working towards texture segmentation using the
algorithms presented in this paper (i.e. separate the different textured planes in the
image, by finding orientation). Prelirhinary psychological experiments indicate that this
direction seems to be promising. Finally, we are working towards the extension of our
theory to curved surfaces. There is an immediate extension of our theory for curved
surfaces, but under the assumption that the form of the equation of the surface is given.
Another Way is to apply a loca analysis, assuming that the surface in view is locally

planar.
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Shape from Shading and Motion: Combiring information

Results

In this Chapter we prove that if we combine shading with motion, then we can uniquely
compute the direction of the light source and the shape of the object in view. In particular:
1) We develop a constraint between retinal motion displacements, local shape and the
direction of the light source. It is worth noting, that this constraint does not involve the
albedo of the imaged surface. This constraint is of importance by its own, and it can be
used in related research in computer or human vision.
2) We develop a constraint between retinal displacements and local shape. Again, this
constraint is important on its own, and it is the heart of the algorithms presented later in
this Chapter.
3) We present algorithms for the unique computation of the lighting direction and the
shape of the object in view.
4) and we present several experimental results that test the theory.

The basic assumption in this chapter is that the retinal motion is computed
everywhere in the image, in the case of a moving observer and a stationary scene, or a
stationary observer and a moving object. If several objects are moving in the scene, thena

segmentation is required first, i.e. the algorithms developed here can be applied to one
rigidly moving object.

Introduction
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Shading is important for the estimation of three-dimensional shape from two
dimensional images, for instance for distinguishing between the smooth occluding
contour generated by the edge of a sphere and the sharp occluding contour generated by
the edge of a disc. In order to successfully use shading, one must know the illuminant
direction /. This is because variations in image intensity (shading) are caused by changes
in surface orientation relative to the illuminant. This chapter reviews previous
approaches to the solution of the deterxhination of the illuminant direction problem and
presents a new method for the unambiguous determination of the single lighting
direction, and from that of the shape information. In particular, this part of the thesis
shows that if we combine information from shading and motion, then we can uniquely
compute shape and the illuminant direction. Since many concepts from motion will be
used, the non-advanced reader is advised to skip this chapter in the first reading and
study chapter 5 first. Finally, in this chapter we are making the assumption of
orthographic projection, since reflectance equation models are not known up to this point

under perspective projection.

4.1 Prerequisites

The ability to obtain three dimensional shape from two dimensional intensity images,
is an important part of vision. The human visual system in particular is able to ﬁse
shading cues to infer changes in surface orientation fairly accurately, with or without the
aid of texture of surface markings. An example in which shading information is
important, is the change in luminance that distinguishes a smooth occluding contour
(such as that generated by the edge of a sphere) from a sharp occluding contour (such as
that generated by the edge of a disc).

The direction of illumination is required to be known in order to obtain accurate
three-dimensional surface shape from two dimensional shading because changes in
image intensity are primarily a function of changes in surface orientation relative to the
illuminant. For example, small changes in surface orientation parallel to the illuminant
direction can cause large changes in image intensity , whereas large changes in surface
orientation that occur in a direction perpendicular to the direction of illumination will not
change image intensity at all. So, the illuminant direction must be known before one can
determine what a particular change in image intensity implies about changes in surface
orientation. In this chapter, we develop a computational theory for the determination of

the illuminant direction, and the shape of the object in view, from two images of a moving



object (or from two images taken by a moving observer). Before we proceed, we should
discuss a little about image formation, even though this was discussed in chapter 2, in
general terms.
4.2 Process of image formation

In order to be able to make quantitative statements about the world and the image
and specifically to estimate the illuminant direction, we must use a mathematical model
for the image formation. A great deal of work has been done in this area (Horn, 1975,
1979) and many models have been developed. For the purposes of this chapter, we use the
following simple and universally accepted model (See figure 4.1).

Figure 4.1: Process of image formation

Assuming orthographic projection, if n is the surface normal at a point on the imaged
surface, lis the illuminant direction and fis the flux emitted towards the surface and we
assume a Lambertian reflectance function for the surface (Horn 1975, 1979), the the .
image intensity is given by:

I=pf(n-1)

where p is the albedo of the surface, a constant depending on the surface.

4.3 Motivation and previous work



Despite the fact that the problem of determining the illuminant direction is
important for computer vision (shape from shading), not too much work has been done*
towards itssolution.

We stress here the fact that the problem of the determination of the illuminant
direction is important. Most of the work in shape from shading (Horn, 1975, Strat, 1979,
Ikeuchi, 1981) assumes that the albedo of the surface in view and the illuminant direction
are known apriori; in other words, this work assumes that the reflectance map specifies
how the brightness of a surface patch depends on its orientation, under given
circumstances. It therefore encodes information about the reflecting properties of the
aurface and information about the distribution and intensity of the light sources. In fact,
the reflectance map can be computed from the bidirectional reflectance-distribution
function and the light source arrangement, as shown by Horn and Soberg (1979).

When encountering a new scene, we usually do not have the information required to
determine the reflectance map. Y et, without thisinformation, we are unable to formulate
the Shape from Shading problem, much less solve it.

The dilemma may be resolved if a calibration object of known shape appears in the
scene, since the reflectance map can be computed from itsimage. But what happens when
we are not that fortunate? It is evident from the above discussion that at least the
knowledge of the illuminant direction isrequired. The only work done for the illuminant
direction determination, is due to Pentland (1982), Brooks (1985) and Brown and
Ballard(1983). Pentland’'s method is based on the assumption that surface orientation,
when considered as random variable over all possible scenes, isisotropically distributed.
A consequence of this assumption, is that the change of surface normals is also
isotropically distributed. Pentland's method, that usesthe same modd of image formation
that wedo, isvalid for some objects. Under hisassumptions, Pentland solvesthe problem
uniquely, but hisassumptionsare very restrictive. |

On the other hand, Brooks and Horn (1985) presented a method in the general
framework of the ill-posed problems and regularization in early vision. Their theory
proposes to solve the shape from shading problem and at the same time to compute the
illuminant direction, by minimization of an appropriate functional. They did not present
any uniqueness or convergence proofs of their iterative methods, but their experimental
resultsfor synthetic images were reasonable.
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Finally, Ballard and Brown presented a method that based on Lambertian
reflectance and a Hough transform technique, recovered the direction of the light source.

In the sequel, we prove that the illuminant direction cannot be recovered from only
one intensity image of a lambertian surface. After this, we will prove that two intensity
images (moving object or moving observer) with the correspondence between them
established, can uniquely recover the illuminant direction, and from that the shape.

4.4 A uniquenessresult

Here we prove the following theorem.

THEOREM 1. Given an image (i.e. an intensity function I(x,y)), there are an infinite
number of surfaces and an infinite number of positions of the light source, that will
producethesameimage, under thepr ocessofimagefor mationdescribedinsection4.2.

PROOF : Suppose that for ashape ny), (x,y) € Q (Q isthe domain where the image
function is deffned) and alight source position s we have:
I(X,y) = p ni(x,y)" §, where pisthe abedo of the surfacein view
(conddered constant everywhere).
Define ashape ny(x,y) over Q and alight source position s, , asfollows
»2(X,y) = 2m(ni(x, y)-m) - ni(x,y) , S2 =2m(si«m)- s '
for any vector m, with jjm|| = 1.

Then, consideri ng a surface with the same abedo as before and with shape ny(x,y) and
illuminated from a point sourceinthedirection s, 1 we have :
P (X y)-s=p@m(n(x, y)m- nix,y)2m(sim-s) =
p[4(mem)ni(x,y)-m)(srm) - 2 (ni(x, y )-m)-(S - m) - 2 (s-m) +ni(x, y )-S
1= pni(x, y )si |

So, 1(xy) =p naAx,y) s .

This means that the image 1(x,y) could be due to an infinite number of surfaces
illuminated from the one of an inftnite number of light sources, since the vector m can be
arbitrary, (g.e.d)



The importance of the above theorem is that no correct and robust method can exist
that will find the illuminant directionfrom one intensity image of a lambertian surface
illuminated from a point source.

We now move to the main part of this Chapter, that is atheorem that stateéthat given
two images of a moving object (or two images of the same object taken by a moving
observer), with the correspondence between the two images established, the position of
the light source can be uniquely determined. But before that, we need some technical
prerequisites that are presented in the following séction. :

45 Technical Prerequisites
In this section we develop two technical results, one concerning the relationship between shape, intensity,
displacements and the lighting direction and the other concerning the parameters of a small motion (small

rotation) with the shape. We proceed with thefollowing theorem.

THEOREM 2: Suppose that two views (rigid motion) of the same (Lambertian) surface
(locally planar) are given and let /j and j2 be the two intensity functions. Suppose also that
the displacement vector field (u(x,y),v(xy)), (xy) € ~ is known, where *?}is the domain of
theimage, i.e. apoint (x,y) in thefirst image will move to the point (X + u(x,y), y + v(X,y)) in
the second image. Ifthe lighting direction is 1= Gi,|2"3) 'd the gradient ofa surface point
whose image is the point (x,y) is (p,q), the the following relation holds:

PPlllgAvu -1y (1 + 80P -8 ]+

2pq I(h AV -1,(1 + AMu))(h 1+ Au) -1, Au) -2A\Il]+

a2 [(i &v-l, (1+ Au)P-r2l2,-

2 ph Lr (r-((1 +AU)(I + A% ) - A*u A*v) ) -

2gl, 13r(r-((I + A'u)(d + AWV) « Alu AY)) -

(@ + AU+ AW) -Ayu AV +

2 (A +1 + ASu)) + 1% ((Ay)® +(1 + A'W)Y) +

+1, (1 + Au) A'v + Au (1 + AW)) -

12 15521 1% (1 + AU) (1 + Aw) - Ayu AY) =0 (4D

where,

o<+ Uy + U(xy)
Il (x,¥)

r=
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A =u(x + |
u =u(x +1y) -u(x,
A'u =u(x,y +)I/ -irgx,yg

A =y(x + | -V(X,
s 20

Itisclear that the above equation (4.1) is local, i.e. it involves the gradient at a point (x,y):
the displacements around the point (x,y) along with the global direction of lighting.

PROOF: To exploit therigid motion assumption, we represent the surface normal by two
vectors and note that their length, angular separation and hence their dot and cross
product are preserved by rigid motion. Consider the surface S, a point A on S, the vector
n=pi+qj + k perpendicular to Sat

the point A, and the plane Il that istangent to the surface S at the point A (see figure

Figure 4*2. Shapevectors

4.2).

Thevectorsa=(1,0,-p) and b =(0,1,-g) liein Il and:
aX b=pi+qj tk=n

We shall use vectorsaand b asthe shape (surface normal) representation.
We usethefollowing traditional camera modd. Let O be the position of the nodal point of
the eye, let OXYZ be a coordinate system that is fixed with respect to the eye, and let OZ
bethelineof sight. Finally, let the image plane be perpendicular to the Z-axis at the point
(0,0,2).
Consider a point A(xgy) on the surface S at time t whose shape vectors are
a=vec(AB) =i-pk and b=vec(AC)=j-gk (vec(AB) means the vector from the point A to
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the point B). Since the projection of a=vec(AB) on the image plane is i, we conclude that
if I4 = (x,y) is the projection of A then the projection of B will be Ig=(x+1,y) . Similarly,
the projection of C will be the point I¢c=(x,y +1) on the image plane. Consider now the
object at the next frame where the point A will become A’ , with shape vectors a’=A'B’
andb’=A'C’

IA « o IB
(x,y) x+1y)

Figure 4.3: Displacement vectors

Let I4: be the projection of A’. I4- is the position to which I4 moves, which can be
determined from the displacements. Thus, I4'=(x+u(x,y),y +v(x,y)). Similarly, if Iy-and
I are the projections of B’and C’, then Ig-is the position to which Ig will move. Of course,
displacement at Ig is due to the motion of the surface’s point that has the same x,y
coordinates as B (orthography), but because of the assumed local planarity, this point is
the same as B. (The planarity constraint of course fails at boundaries). So, we have:
Ig=(x+1+u(x+1,y),y+v(x+1,y)), and for the same reasons
Io=(x+u(x,y+1),y+1+uv(x,y+1)). The projection of a’=vec(A’B’) on the image plane is
thus:

Iy Ig=[1+u(x+1,y)-u(x,y)li +[v(x+ 1,y)-v(x,y)]j

But according to our hypotheses, the above relation can be written:

Iylg = (14 A™u)i+A%v;

Similarly, we get:

Ipde=  AVui+(1+A7V)j

The above two equations give us the expressions for I4:Ig- and I4'Ic which are the
projections of the shape vectors a’ and b’ respectively. But then,

a'=(1+ A"wit A*vj+1k and

b’= A¥ui + (1+A%) j+upk where A, pare to be determined .



But since rigid body motion preservesthe vector length, we have that

Ia’12 = a2

A= *(p2-A*u-A*v-2* A*u)*?
Similarly, we get
ji = £(qg2. A%u - AVv - 2*AYu)'/?

Assumingthat neither region isin shadow, we have that:

If(x,y) = Pi na 1 (4,2)
and
h(x +u(x,y),y + v(xsy)) =p2 n”I (4.3
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Equation (4.2) above, gives the intensity of the point A(xy) in the first frame. Note that
n™ is the surface normal at the point A (in the first view). Equation (4.3) gives the
intensity at the point A'(X + u(Xy),y +Vv(Xyy)) in the second frame. Note that n» is the

surface normal at the new position of the point A .

Dividing equations (4.2) and (4.3) and setting 12(A")I1i(A) = r and taking into account

that Pi ~ P2 (surface markingsdo not change), we get:
rNa.l=na>.l (4.4)
But

axXb
n LA
A JaXb]

(4.5) and from therigidity of the motion it follows that:

aXxXb'

n, =%t —~———— _ 4.6)

A faxXb}
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where the sign is chosen such that na». k >0.

But since

ia’t =jal Ib’} =ibj andab=a’b’ it follows that
la X bj = ja’X b’ 4.7
Using equation (4.7), equation (4.4) becomes:

r(a,b,11=%[a’,b’]I’] ’ (4.8)

where the sign chosen is the sign of [a’,b’,k], and [, , ] is the triple scalar product of

vectors. But [a’,b’k] = (1 +A™w)(1 +A%v)-A%u A%v It is obvious that [a,b,k]>0; if

[a’,b’ k] <0, then we don’t have a valid motion, because [a’,b’ k] <0 means that we have

reversed orientation so that the the texture in the image is viewed as if seen in a mirror. )
So, [a’,b’,k]>0, and substituting in equation (4.8) the values of a,b,a’ b’ after algebraic

manipulations and using the fact that :

AN =p2+]1-(1+A%u)2-( A*v)2

p2:q2 +1-(1+A%)2-( Au )2

A*n=p*q-(1+A%u)Au-(1 +4A8v)( A*v)

we get equation (4.1).

It is obvious that equation (4.1) involves the lighting direction , but it also involves the
shape (p,g). We would like to find the direction 1 without knowing the shape (p,q),
otherwise the problem is of no importance. Theorem 2 is very important , in the sense
that it has established a constraint between lighting direction, shape and displacement
vectors.

We now proceed with the following theorem.

THEOREM 3. Suppose that the surface S (locally planar) is moving with a rigid motion,
and the camera model is the one described in the previous theorem. Let the gradient of the
surface (with respect to the first frame) be (p(x,y),q(x,y)) and the displacement vector field
be (u(x,y),u(x,y)). It is known that this motion can be considered as a translation (dx,dy,dz)
plus a rotation of an angle 0 about an axis ( ni,ng,n3) passing through the origin ( n2 1 +
n22 + n2 =1 ). If the rotation angle 8 is small, then the following relations hold:

(a): Thedisplacement vector field (u(x,y),v(x,y)) is given by :
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u(x,y) =dx+Bz(x,y)-Cy

v(x,y) =dy+Cx-Az(x,y),
where A=n;6,B=ny0,C=n36 and z(x,y) the depth of the surface point whose projection is
the image point (x,y).

(b):
(x,y) = — A%
X, = e——
P(x,y)=—
(x,y) = —— &Y
x,y)=—A~AV
a(x,y)=—
A% — Nu+ V(Nu+ A)? —4*a%utv
A AVv 2 —8v
B A% AYv
PROOF:
a) Trivial.

b) Using the two equations in (a) and the assumption about local planarity, we get:
A*u=Bp '

Av=C-Ap

A’u=Bq-A

Av=-Aq

where the p and q are considered at the point (x,y). From the above
equations we get:

x, u
y B

1
, = —— AY
a(x.y) A Y
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A% — A%u + V(&u+ AV) 2 -4*AXur Ay
-&*v

A = Aly— 2
B AXU A¥v

(g.ed).

4.6 Development of the lighting direction constraint

In this section we develop the constraint that will be used as the heart of the
algorithm that will solve the problem of the determination of of the illuminant direction.
Ifwelet 1/A = a 1/B = PB/A = Kand use part (b) of theorem 3, to subsitute
in equation (4.1) for p and g, we get the following equation.

(A u P BP(la Au- | | £4%) 2.2\ ]+

+2 Au AV K [(h Aul, YA + AU ) (h 1 +AV)-LA)-2
P2lla] +(AV)2 K2 $2 [(* AV -1, (1 + &u)22 1%] -

2 Ku) pli 1371 (r-(I + A*u + A*v + &"u &>v - AMu &%) -

2 &) K$S 1L, 131 (r-(I + Au + &v + A'u A'u-A'u &V))-

- (1 + Afu AN+ Lu+ AN-A>u &V) +

+ 12 (A*)2 +(1 +AW)2) + 1% ((A"u)2 +(1 +A*u)2) +

+h h (1 + AUAYV + Au (1 + AV) 2 1% +

+2r 1% (1 + A%u + AV + Au A-Au AV) =0 (49).

The above equation is apolynomial inézdz.3, B.

Considering equation (4.9) in four points we get a polynomial system of four equations
infour unknowns. A simple but tedious cal culation of the Jacobian of this system gives us
the fact that the Jacobian has rank four (except for the degenerate cases whose set has
measure zero). This means (inverse function theorem) that the function defined by the
equations of the system islocally anisomorphism, which meansthat its zeros are isol ated.
But, from Whitney's theorem, the set of the zeros of this algebraic system is an algebraic
set and it has finite components.

The conclusion of this is that the solutions of the system are finite (uniqueness). If we
now consider equation (4.9) in five points, then we get a system of five equations in four
unknowns which, barring degeneracy, will have at most one solution.
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It is clear from the above discussion, that two intensity images of a Lambertian
surface, with the correspondence between them established, gives the lighting direction
uniquely. In the next section, we present a practical way to recover the lighting direction
based on the constraint developed in this section.

4.7 Thealgorithm for finding illuminant direction
First of all we choose the Gaussian sphere formaism (azimuth-elevation) to represent
the vector that denotes the lighting direction. More specifically, we set:
{; =cosd cosh
{s=gind
Iag=cosd cosd
where 8 and <& are the azimuth and elevation (See figure 4.4).

(T

Figure4.4: Gaussan sphere X

6 /
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Now we consider equation (4.9) in n points in the images, and we get n equations eql, eg2,
..o€gnin the three unknowns f$84>. Then, the following algorithm solves the problem:

for all 6
forall <
{
get nquadratic equationsin {3
Check if they have acommon solution
Ifyes, output 8<p.
}

4.8 Applying the algorithm to natural images

When one is experimenting with natural images, it is sometimes difficult to compute
the displacement field for every point in the image. In that case, one can compute the
parameters of the correspondence of small regions. In other words, if we have a small
planar region Si in the first image that corresponds to a small region S2 in the second
image, then the parameters of an afiine transformation f(x,y)=(ax + by+c,dx+cy+fi

between the two patterns (see figure 4.5)

Figure 4.5:Corresponding regions



can be computed using a variation of a least-squares method introduced by Lucas and
Kanade that is described in Webb[{1981]. In that case, the essential constraint (equation
(4.9)), has a similar form and the whole analysis proceeds as previously.
4.9 Implementation and experiments

We have implemented the abovementioned algorithm, and it works succesfully for
synthetic images. Figure 4.6 represents the displacements vector field that was obtained
from the motion (rotational with wy=1,0wy=2, w, =3) of a sphere. Figure 4.7 represents
the image of the sphere before the motion. The surface of the sphere is supposed to be
Lambertian, the albedo p= 1 and the lighting direction with gradient (ps,qs)=(0.7,0.3),
i.e. to the right and a little above the horizon. The computed lighting direction was (0.65,
0.33 ). The observed inaccuracy is due to discretization effects. In our synthetic
experiment, we did not compute the displacements; instead , we calculated them since we
knew the motion and the exact position of the sphere. If the Lambertian reflectance model
is not adequate for capturing natural images (which it is not, of course), there probably
exists a model (not discovered yet) that captures natural shading. This model, should of
course depend on the shape and the lighting direction. The approach that we took here,
can be taken with any other model of reflectance, and it is one of our future goals to apply
the method in natural images and employ general reflectance models, that consider the

illumination from the sun and the sky.

Figure 4.6:
Intensity image
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Figure 4.7: Displacementstield

The next section discusses the problem of determining shape from shading and motion, in
a unique way. Again the findings of the next sectidn cannot be applied at this point to
natural images, for the reasons that we mentioned above. The treatment again, is of
theoretical value, and the method could be applied to natural imagery, if better

reflectance models (i.e. models that capture the reality) were known.

4.10 Computing shape from Shading and motion
In this section we discuss the problem of determining Shape from Shading and Motion.

Before we proceed we need some technical prerequisites , that are introduced in the next

sections.

4.11 The constraint between shape and displacements
THEOREM 4: With the assumptions and notation of THEOREM 2, the gradient (p,q) of a

surface point whose image is the point (x,y), with displacement vector (u,v), satisfies the

constraint :
Ap2 +Bq2-2Cpq+D =0, with

A=DAulx,y))? +(A (x,y))? +2A% (x,y)

B=(Au(x,y)2 +( A*v(x,y))2 +2 A u(x,y)

C=Au (x,y) + Au (x,y)A%u(x,y) + A% v(x,y) + A*v(x,y)A%v (x,y)

D =C?-AB ,where the coefficients

A*u, AYu, A*v, AYv are defined in theorem 2.

PROOF: F‘rom the proof of theorem 2, because of the rigid motion assumption, we have

the preservation of the dot product. So,

' * 0
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Ap2 +Bq2-2Cpq+D =0 (4.10)

where (p,q) is the gr adient at the point (x,y), and
A=Au(x,y))? +(A (x,y))? +28% (x,y)
B=(A%u(x,y))2 +( A*uv(x,y))2 +2 A*u(x,y)
C=A% (x,y)+ A%u (x,y)A%u(x,y) +A%u(x,y) + A*v(x,y) A% (x,y)
D=C?-AB

Equation (4.10) gives the constraint between displacements and shape and
represents a conic section in p-q space. This conic section is a hyperbola or parabola
depending on the values of the coefficients A,B,C. The constraint (4.10) is a constraint
between shape and displacements. Constraint (4.1) is a constraint between shape,
displacements and the lighting direction. For the purposes of the rest of this Chapter, and
to avoid confusion, we will refer to constraint (4.1) as the lighting constraint, and to
constraint (4.10) as shape-motion constraint .

~

4.12 How to utilize the constraints

Here we show how to utilize the constraints to recover the three-dimensional shape
of the object in view, using shading and motion. It is assumed that the lighting direction
has already been computed with the algorithm described in section 4.7. Up to now we
have developed two constraints on shape, that also involve retinal motion displacements
and the lighting direction. The lighting constraint is a conic on p,q, with coefficients that
depend on intensities (relative), displacements and lighting direction. The shape-motion
constraint is again a conic on p and q, with coefficients that depend on the displacement

vectors. Finally, the image irradiance equation:

I=pf(n-1) (4.11)
that determines the intensity I(x,y) at a point (x,y) of the image as a function of the shape
n of the world point whose image is the point (x,y) and the lighting direction I, is another
constraint on p and q that is also a conic. This constraint we will be callling image-
irradiance constraint. The next subsections will describe algorithms for the unique
computation of shape, under a variety of situations.

Figure 4.7.1 below gives a geometrical description of the constraints.
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Figure 4.7,1: Pictorial description of the constraints

4,121 Computing shape when the albedo is known

When the abedo is known, then we have at our disposa three constraints at every
image point for the computation of shape. The lighting constraint, let it be Fx(p,q) =0, the
shape-motion constraint, let it be F2(p,q)=0, and the image-irradiance constraint, let it
be F(p)=0. These are three equations, all of degree two, and their system, barring
degeneracy, will have a most one solution. Several agebraic or geometrica techniques
exist for solving a system of algebraic equations, each of degree two. Direct methods result
in solving equations of a high degree, and so we prefer to use an iterative technique; and
even though we do not have theoretical results about the convergence of the techni que, in
pactice it has shown to converge very fast, to the right solution.
The function E(p,g)= Ai(F(p,0)2+ AiF(p.9)2+ X3i(F(p.)2 , should be minimized
everywhere in the image, where Xi; Az A3 constants with their sum equa to one. If we
add one more term in the error function that accounts for smoothness and by setting the
partial derivatives of E(p,q) equa to zero and solvingfor pand g, we get equations of the
fallowing form:
P=Gi(p,d,Pav), 9=G2(p,0,0av), Where G, and G; are polynomias of p,g,pa, and p,d,0ay
respectively. These equations can be solved iteratively, provided that we have an
gpproximate initial solution. If the values of p and q at the boundaries are known, then
p,g are propagated throughout the image using a genera smoothness criterion, by an
algorithm similar to the Gauss-Seiddl algorithm of Ikeuchi and Horn [lkeuchi and
Horn,1981]. At this point we should emphasize that we do not depend on smoothness to



achieve uniqueness in our methods. Smoothness is used to achieve an approximate initial

solution,
4.12.2 Computing shape when the albedo is not known

a) Iteratively.

If the albedo is not known, then we cannot utilize the image-irradiance constraint,
because it contains the albedo as a coefficient. We have to use the lighting constraint and
the shape-motion constraint. An algorithm similar to the one in the above section can be
easily obtained. At this point, the uniqueness of this problem has to discussed. The
lighting constraint and the shape-motion constraint are two conics in p and q. The
Jacobian of the system that they form, is non-zero. So, the function defined by the system
is locally an isomorphism (from the inverse function theorem), which means that that its
zeros are isolated. But fromWhitney’s theorem, the set of zeros of this algebraic system is
an algebraic set and it has finite components. The conclusion of this is that the sytstem
has finite solutions. In this case, the solutions can be restricted to a unique solution, if a
local smothness constraint is used. This, being in the paradigm of the regularization
theory (which we do not follow), has been observed from experiments, and up to this point

we do not have a formal proof.

b) Directly

In a minimization scheme based on the Lagrange multiplier technique, the solﬁtion is
obtained without propagating the boundary conditions. If Fy(p,q)=0 is the lighting
constraint and Fo(p,q)=0 the shape motion constraint, the error function
E(p,q)=(F1(p,q))2 is to be minimized subject to the constraint Fq(p,q)=0. The Lagrange
multiplier scheme says that the p,q that minimize E are one of the solutions of the

following system:
VE=AVFy  Fo=0 where A the Lagrange multiplier.
4.12.3 Implementation and experiments

Figures 4.8 and 4.9 represent exactly the same entities as figures 4.6 and 4.7. From
this input, our algorithm (4.12.1) recovered the shape shown in figure 4.10. A local



smoothing scheme has been used at the end of the program to smooth out the results. The
error in the resulting shapé Is very low, basicaly due to discretization effects  If we
introduce noise in the input, then the results get very much corrupted, if we don't apply a
smoothing scheme, because of the locdity of the method.. If aloca smoothness constraint
is utilized, then the results are very good. At this point, we should emphasize that a locd
smoothness constraint is not restrictive; and amost every natural surface obeys this
congtraint.

______

__________

- = ey < > Z
Womoe = XX —

Figure 4.8: Intensity image Figure 4.9: Displacements field
for asphere

Figure 4,10: Reconstructed shape

4.13 Conclusions and future directions



In this chapter we have presented a theory on how to compute in a unique way shape and
the direction of the light source, from shading and motion. Our input, is the intensity of
two images in a dynamic sequence, with the correspondence between the two frames
established. We proved that in this case the light source direction and the shape of the
object in view, can be uniquely determined in contrast with existing theories that are
based on heuristics and restrictive assumptions [Pentland, 1981, Horn, 1979, Ikeuchi,
1981]]. Our results have theoretical value, since they demonstrate that if we combine
information from different sources then we can obtain unique results for intrinsic images.
In the past, there has been in this framework only the work of Grimson [Grimson, 1983],
that combined shading with stereo with very good results. It is one of our future goals, to
extend this theory to capture a very general reflectance maps [Brooks and Horn, 1986],

that model the illumination due to the sun and the sky.



5

Visual Motion Analysis

Results

In this Chapter we study the problem of interpreting Visual Motion. We derive several’
results of both theoretical and practical importance. In particular, our results are the
following:

1) The orthographic velocity field does not provide enough information to recover the
structure of the object in view.

2) The orthographic velocity, if the surface in view is nonplanar, determines the structure
of the inducing object up to a depth-scaling, or in other words the tilt at every point of the
surface in view can be uniquely recovered. For planar objects, the orthographic velocity
field admits two interpretations for the structure of the inducing object, up to a depth
scaling, or in other words there are two distinct solutions for the tilt of every point of the
surface in view.

3) For the discrete case, three orthographic projections of three points in space can
uniquely recover the structure of the points, when a testable condition holds.
Furthermore, when this condition does not hold, the number of structures compatible
with the motion is at most two.

4) The perspective optic flow field uniquely defines the three-dimensional motion
parameters except for the case of planar surfaces and some special kind of quadric
surfaces (Hyperboloids).

5) Shape and three-dimensional motion are equivalent in the sense that the one greatly
simplifies the computation of the other.

6) In the case of differential motion and using only one camera, the spatiotemporal

derivatives of the intensity function are enough to detect some kinds of motion. In
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particular, only rotational or only translational maotion. The general case is reduced to the
solution of anonlinear system. So, motion can be detected without the need of optical flow.
©7) If a binocular observer is used instead of a monocular one, then the problem of
detecting three-dimensional motion becomes easier in the sense that nonlinear motion
equations of the monocular case, now become linear. Of course, since abinocular observer
isused, it appears that we need to solve the correspondence problem between the left and
_ right images. But we present a theory on how to find depth without correspondence for
the case of planar surfaces. For the case of genera (curved) surfaces, the work of finding
depth without correspondence is one of our future goals.

8) Findly we show how to recover three-dimensional mation in the discrete perspective
case, without point correspondences.

The basic assumption in this chapter is that we only consider rigid motion, i.e. we
either congder the camera moving in astatic environment or only one rigid object moving
in front of a stationary camera. All of the results, exactly as in the case of shape from
texture, if there are more than one object moving in the visua field, in order to be applied,
a segmentation is first required. And again, if some of the results are applied locdly
everywhere in theimage, they can contribute agreat dea to segmentation.

Prolegomena _

A lot of useful information can be extracted from time varying images. At firgt, it
might seem foolish to consider processing sequences of images, ‘given the difficulty of
interpreting even a single image. Curioudy though, some information seems to be easier
to obtain from atime sequence. When the camerais movi ng relative to the objects being
imaged, or equivaently the imaged objects are moving, then the brightness pattensin the
image are moving. This motion, i.e. the motion of the image is called image or retinal
motion. Severd theories have been proposed for measuring and interpreting this retinal
motion. In this chapter, we condder the problem of interpreting image motion, i.e. to
recover the structure and three-dimensional motion of a moving object from a sequence of
its images, and we suggest several computational mechanisms for the motion -
interpretation process. This problem is known in the literature as the structure from
motion problem. Despite the fact that we don't propose any theories for the measurement
of the image motion, we will criticize previous approaches and we suggest some ideas that
might prove to be fruitful for the computation of retinal motion.

5.1 Introduction
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The perception of motion and structure from temporally varying two dimensional
retinal stimulus is important to computer vision as well as the cognitive and perceptual
sciences. In this thesis, this problem is addressed from the standpoint of formulating a
computational theory underlying the motion interpretation process. For the purpose of
this chapter, the input (stimulus) to this process is a two dimensional map of the intensity
of reflected illumination from the imaged scene. In other words the starting point is cine
or video imagery. The first step in the computation, according to all the existing theories,
involves the estimation of two dimensional motion in the image plane. The second stage
involves the computation of the three dimensional scene intrinsics like structure and
motion parameters from the two dimensional image motion. Here we are basically
concerned with the latter stage in the perceptual process. There is a lot of research on the
estimation of image motion. Unfortunately, the problem of estimating image motion has
proved to be extremely hard, if not impossible to solve. Later in this chapter we shall
discuss the difficulties involved in this process. The subsequent analysis is based on the
following imaging conditions and assumptions:

1. The image is monochromatic.
2. The imaged surface moves rigidly.
3. There is no ambiguities due to occlusion.

Even though almost all the existing theories are based on the hierarchical model of
motion perception (computation of retinal motion first, then interpretation), we prove
later that this is not necessary, and the interpretation process can be done in some cases
without having to compute retinal motion.

5.2 Technical Prerequisites

The problem of estimating image motion from time varying image intensity
distributions is by no means a simple one. There are essentially two ways in which this
problem has been tackled.
(i) The first assumes the dynamic image to be a three dimensional functicn «fi«: zpaual
arguments and a temporal argument. Then, if this function is locally well behaved and its
spatio temporal gradients are computable, the image velocity or optical flow may be
computed [Horn &Schunck 1982, Ullman &Hildreth 1984, Bandopadhay 1984, Nagel
1984, Davis et al 1983, Haralick&Lee 1984). From now on, we will call this kind of retinal
motion differential, or continuous or short range, or small motion.
(ii) The second method for measuring image motion considers the cases when the motion

is "large" and the first technique is not applicable. In these instances the measurement



technique relies upon isolating and tracking highlights and feature points in the image
through time. This entails tackling the correspondence problem that can be difficult in
many situations. From now on, we will call this kind of motion discrete, or long range, or
large motion.

Thus there is a situation where the motion is differential or "small” as opposed to the
case of "large" or discrete motion. The mathematical relations that hold between the
image motion and the three dimensional scene parameters are quite different in these two
cases. It will be seen later that the information recoverable from these two types of motion
is sometimes different. This fact indicates that there is a need for analyzing these two
motion cases separately. Furthermore, due to the difference in the computational theory
underlying these two motion types, perceptual processes for motion analysis must also be
organized in cognizance of this dichotomy. The input to the perceptual process is a two
dimensional intensity function which changes with time (image). The image contains two
kinds of information, photometric and geometric. For the purpose of this chapter, only the

geometric information is important.

5.2.1 Motion equations under perspective projection

Here we analyze the relation between the retinal motion and the corresponding three-
dimensional motion for the case of perspective, under both small amd large motion.

Considering the familiar perspective projection model and some point P in space
whose coordinates are (X,Y,Z) with respect to a fixed inertial frame XYZ (see fig. 5.1). The
image of this pointis p = ( x, y ) whose coordinates are given with respect to a xy frame
located on the image plane, as it was explained in Chapter 2. The relation between the
world point P and the image point p is given by the familiar equation (x,y) =(FX/Z FY/Z)

(5.1),

where 'F" is the focal length of the imaging system. The focal length is assumed to be unity
in the following analysis.

Now if a rigid surface moves with a translational velocity V,= (U, V, W) and a
rotational velocity Q=(a, B, y), then from kinematics, the three- dimensional velocity of

any point on the surface can be written as

(g{- %1':- d—-) V,+QXX,Y,2) (5.2)



where 't' is the time variable and 'x' denotes vector product.

X,Y,2)

o

ANEA

Figure 5.1: Perspective projection
In the differential motion case the image motion or optical flow at the point (x,y) is
denoted by (u,v) = (dx/dt , dy/dt ) . Differentiating equation (5.1) and substituting from

equation (5.2) we have the following relations

U—

u= Z" —axy +BEE+1) —yy  6.3.1)
 VeyW

v= Zy —a(yz+1)+[3xy+yx (5.3.2)

Eliminating the unknown depth variable from the above we get

u+axy-B(x2+ D+yy _ U-xW

v+ap?+1) —Bry—yx V-IW
The above equation describes the constraint imposed by the measured value of the

(5.4)

optical flow (u,v) at an image point (x,y) on the six motion parameters (U,V,W,q,8,y).

The discrete analogs of equations (5.3) and (5.4) are more complex in form, and they
follow in the rest of this section.
Again we consider the pinhole camera model that was described in the former part of this
section, and consider one point P=(X,Y,Z) before the motion with image (x,y). Suppose
that the point moves with a general motion, and goes to the position P'=(X"Y’,Z’) with



image (x’,y’). It is well known that any three-dimensional rigid body motion is equivalent
to a rotation by an angle 6 around an axis through the origin with directional cosines
ny,na,n3, followed by a translation T=(AX,AY,AZ)". The relation between the

coordinates of the point before and after the transformation is given by:

(XY Z)"=R(X,Y,Z)"+T,
where R is a 3X3 orthonormal matrix of the first kind (i.e. det{R)=1)

rpra2r3
R = rqy rsre with

rz rg rg

r,=n’+(1 .nf)cose, r,= n,n(1-cos8)-n_sinB, r.=n n (1-cos6) +n,sind
r,=nn(Il-cos8)+ nzsinB, r =n22 +(1 -nzz)cosB, r6=nln3( 1-cos0) -nlsinB
r,=n n(1-cos0)-n,sin®, r,=n,n(1-cos8)+n sind, r,=n?+(1-n’)cosd

Although the elements of R r ,r,..,r, are complicated functions of the rotation
parameters nl,nz,ns,B, the latter can be easily determined without ambiguity from the
former [Tsai and Huang, 1984).Therefore, we can freely talk about the uniqueness and
computation of the matrix R, rather than n,n,n, 0.

Taking now into account the perspective projection equations that relate the
coordinates X,Y,Z to x,y and the coordinates X’ Y",Z’ to x’,y’, we get (assuming that the

focal length is unity):

(rlx+ r2y+r3)Z+AX

t]

*= (r7x+ray+r9)Z+AZ

and

(r‘x+r5y+rG)Z+AX

r= (r7x+r&y+r9)Z+AZ
By eliminating the depth Z from the above two equations, we get:




x,y,1] =E

- g

where

e1 €2 e3
E = eq e5eg with

e7 eg €9

e,=0Zr,-AYr, , e,=AZr,- AYr,, e;= AZr,-AYr,
e,=AXr,-AZr,, e,=AXr,-AZr,, e,=AXr,-AZr,
e,= AYr,-AXr,, e,=AYr,-AXr, e,=AYr,-AXr,

The above equation describes the constraint between retinal and three-dimensional
motion in the discrete case, and it represents all the information we can get from the
motion of one point.

We now develop the same equations for the case of orthographic projection.
5.2.2 Motion equations under orthographic projection.

The projection equation for the case of the orthographic projection, becomes:
(x,y)=X,Y) (5.6)

Again, following the same method as in the previous section, we get that the optical flow
field is given by the following equations:

u=U+BZ - yy (5.7.1)

v=V -aZ +yx 6.7.2)

It is obvious that the translation in depth does not affect at all the image motion in
this case.

The equations for the discrete case, if developed, basically solve the problem



(structure from motion). For this reason, they will be developed in section 5.6 that
discusses the problem of determining structure from motion in the discrete case under

orthographic projection.

5.3 Previous work

Several researchers have worked in this area and most of the published papers
presented satisfactory results in keeping with assumptions and restrictions made. It is
clear by now, that the problem of Motion Analysis concerns the recovery of the structure
of the scene (or objects) in view and the rigid motion parameters (of the moving viewed
object or of the moving sensor), from the perceived changing retinal image. The problem
has been studied for both the cases of differential retinal motion or short range motion
(optical flow) and long range motion (discrete displacements), under both orthography and
perspective.

In the case of discrete motion under orthography the pioneering work of Ullman
[(Ullman 1979,] stands out for being highly precise. In his classical paper on the
interpretation of structure from motion, Ullman showed how structure was determined
uniquely (up to a reflection) from the orhographically projected locations of four non-
coplanar points, obtained at three different instances of time. At this point, we should
mention in passing that the problem of the interpretation of non-rigid motion (
Johansson's "biological motion" [Johansson, 1974]) which we don't address here, was
analysed by Hoffman and Flinchbaugh [1980], Hoffman and Bennett [ 1981], Bennett and
Hoffman [1985] and Webb and Aggarwal [1982]. Their analysis is-again for orthographic
projection and discrete motion, with the additional assumption that the axis of rotation is
fixed for the entire period of observation (i.e. equivalently, the motion is planar).

In the case of differential motion (optical flow) under orthography, published research
is confined to Hoffman [1980] and Sugihara [1985]. Hoffman develops a relationship
between optical flow derivatives and local surface orientation and illustrates that if the
acceleration of the optical flow field is known, then the computation of shape is feasible.
On the other hand, Sugihara presented an involved proof that optical flow under
orthography cannot recover local surface orientation, and he developed a method that
using two optical flow fields, the structure of the object in view can be recovered (at most
four solutions). Sugihara, observed that despite the fact that his theoretical analysis
predicted four solutions for the structure, given two optical flow fields, in his experiments

the solution recovered was unique. So, he developed a conjecture which states that: two



optic flow fields uniquely define structure. In this chapter, we prove that optical flow
cannot recover local surface orientation in a much simpler way, and we give an
explanation of Sugihara's conjecture for the discrete case (i.e. we prove that three frames
(two optical flow fields means at least three frames) of three points uniquely recover the -
structure, except some degenerate cases whose set is of measure zero).

In the case of differential motion under perspective the relation between the motion
parameters and the retinal motion (eq. 5.3) is a nonlinear equation in the direction of the
translation and the rotational parameters. The effort of almost all the researchers in this
area concentrates on how to solve this non-linear equation, or to formulate the problem in
such a way that it becomes tractable. In this case (differential motion under perspective
projection), which is a case of great interest, there is a lot of recent work concering the
recovery of the structure and motion parameters of a moving object from its changing
retinal image (optical flow). In this area, there is the work of Longuet-Higgins and
Prazdny [ 1982] that developed the relation between the optical flow and the motion
parameters as well as the relationship between the gradient of the surface in view and the
derivatives of the optical flow. Their method does not guarantee uniqueness of the motion
parameters and the algorithm relies on the solution of a non-linear system whose
coefficients involve second-order derivatives of the optical flow. Furthermore their
method is local, and as we point out in section 5.6.2 every local method is bound to be
unstable, because a small patch of optic flow under noisy situations will resemble
ambiguous flow fields, and so it cannot recover surface orientation.

Soon researchers in the area realized that Eq. (5.3) (relation of flow to motion
parameters), is bilinear in the direction of translation and the rotational parameters; this
means, that Eq. (6.3) is nonlinear in the motion parameters, but if the direction of
translation is known, then it becomes linear with respect to the rotational parameters,
and vice versa. So, efforts have been made to separate the optical flow in its rotational and
translational component, and make the problem of the determination of the motion
parameters easy. The work of Prazdny [1984] and Lawton and Rieger [1984] are examples
of this type of effort. Both these papers are based essentially on the property of a
translational field, that all the flow vectors pass through the same point on the image
plane (FOE or FOC); based on that, they develop statistical methods for the computation
of the motion parameters. But this is not true in general, i.e. there are cases where the
optical flow field vectors pass through the same point,with the motion consisting of both

translation and rotation [Bandyopadhyay, 1985]. At this point, we should mention in



passing the work of Bruss and Horn [1984], that considered the cases of only translational .
or only rotational motion and developed algorithms for the determination of the direction
of translation or the rotational parameters. '

The work of Huang,Tsai and Fang stands out for being mathematically precise and
for being the first to address the uniqueness problem in this area, i.e. how many values for
the motion parameters are compatible with a flow field -- or two discrete frames. Despite
the fact that this work is done in the discrete case under perspective, the results are not
far from the differential case under perspective, because they made the assumption that
the rotation used is very small. (If small rotation is considered, then the equations that
relate the displacements to the motion parameters, are very similar to the analog ones for
the differential case.

Fang and Huang [1985], proved that the nonlinear system developed using five points
has a unique solution which may be found using iterative methods. They also presented a
nine points method, but the condition that has to be satisfied for this method to work,
cannot be tested from the image data. Also, Tsai, Huang and Zhu [ 1984], studied the
problem for the case of a moving plane, and they concluded that the number of solutions is
either one or two depending on the multiplicities of the singular values of a matrix that
contains eight essential parameters. Finally, Tsai and Huang [1985] proved that three
views, in the case where the moving surface is planar, guarantee the uniqueness of the
motion parameters. Also, in this area there is the work of Kanade [ 1985] , who inspired
by the work of Yen and Huang [1985], developed a method, -that using line
correspondences in three frames (small rotation), can uniquely find the motion
parameters. Experimental results, not known to us at this point, will determine how
immune to noise the method is or how well the employed assumptions fit practical
situations.

At this point we should mention the work of Waxman [Waxman and Sinha,1985],
who, motivated by important psychological and neurobiological experiments by Regan
and Beverley [1984 ] presented a method, termed Dynamic Stereo. This method is based
on the comparison of image flow fields obtained from two cameras in known relative
motion. For stationary objects this technique reduces to conventional motion stereo.
Finally, in the case of discrete motion under perspective, there is little work (arbitrary
rotation), only that of Ullman [1977 ] and Tsai and Huang [1984]. Ullman studied the
problem when the rotation is around the z-axis and, using two views of three points he

developed a polar equation (a fourth degree equation on the sin of the rotation angle) from
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which he could determine the motion and structure, but the solution was not unique.

On the other hand, Tsai and Huang, developed a method for the determination of
motion parameters in the case of curved surfaces. Using seven points, they prove that the
five motion parameters can be uniquely recovered (from the other eight essential
parameters), provided that the seven points do not belong on two planes with one passing
;hrough the origin or one a cone containing the origin. After the eight essential parameters
have been computed, the five motion parameters can be uniquely computed using the

Singular Value Decomposition technique [Stewart, 1980]

5.4 Criticism of previous work
Before we criticize previous work on the problem of the interpretation of image motion
fields, we should classify previous work in some broad categories . There are basically two

categories:

1) The first assumes the dynamic image to be a three-dimensional function of two
spatial arguments and a temporal argument. Then if this function is locally well -
behaved and its spatiotemporal derivatives are computable, the image velocity or

optical flow may be computed.

2) The second method for measuring image motion considers the cases where the
motion is “large” and the previous technique is not applicable. In these instances the
measurement technique relies upon isolating and tracking highlights or feature
points in the image through time. In other words operators are applied on both
dynamic frames which output a set of points in both images, and then the
correspondence problem between these two sets of points has to be solved (i.e. finding

which points on both dynamic frames are due to the projection of the same world

point).

In both the above approaches, after the optical flow field or the discrete
displacements field (which can be sparse) are computed, then algorithms are constructed
for the determination of the three-dimensional motion , based on the optical flow or

discrete displacements values.



As the problem has been formulated over the years, one camera is used and so the
three dimensional motion parameters that have to be computed and can be computed, are

five (two for the direction of translation and three for the rotation).

The basic motivation for this research is on one hand the fact that optical flow (or
discrete displacement) fields produced from real images by existing techniques are
corrupted by noise and are partially incorrect [Ullman, 1983]. So, it is doudtful if retinal
motion can be used as input to a three-dimensional motion analysis process. Furthermore,
the uniqueness properties of the motion interpretation process, have not yet been
examined in detail. As far as computations from retinal motion are concerned, all the
algorithms in the litterature that use thé retinal motion field to recover three-
dimensional motion fail when the input (retinal motion) is noisy. We will address the
uniqueness issues at the end of the section. Here we proceed with our criticism of the
previous work.

Some researchers [ Roach and Aggarwal 1980, Prazdny 19880, Nagel 1981, Nagel
and Neumann 1981, Fang and Huang 1983, Fang and Huang, 1984] developed sets of
nonlinear equations with the three-dimensional motion parameters as unknowns, which
are solved by iterations and initial guessing. These methods are very sensitive to noise, as
it is reported in [ Roach and Aggarwal 1980, Nagel 1981, Fang and Huang 1984, Fang
and Huang 1981]. On the other hand, other researchers [ Longuet-Higgins 1981, Tsai and
Huang, 1984] developed methods that do not require the solution of nonlinear systems,
but the solution of linear ones. Despite that, under the presence of noise, the results are
not satisfactory [Longuet-Higgins 1981, Tsai and Huang, 1984].

Bruss and Horn [1984] presented a least-squares formalism that tried to compute the
motion parametefs by minimizing a measure of the difference between the input optic
flow and the predicted one from the motion parameters. The method, in the general case,
results in solving a system of nonlinear equations with all the inherent difficulties in such
atask, and it seems to have good behavior with respect to noise only when the noise in the
optical flow field has a particular distribution. Prazdny, Rieger, and Lawton presented
methods based on the separation of the optical flow field in its translational and rotational
components, under different assumptions [ Prazdny 1981, Rieger and Lawton 1983]. But
difficulties are reported with the approach of Prazdny in the present of noise [Jerian and
Jain 1983], while the methods of Rieger and Lawton require the presence of occluding

boundaries in the scene, something which cannot be guaranteed. Finally, Ullman in his
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pioneering work [Ullman, 1977] preéented a local analysis, but his approach is sensitive
to noise, because of itslocal nature.

Several other authors|[ Longuet Higgins and Prazdny 1980, Waxman and Ullman
1983] use the optical flow field and its first and second spatial derivatives at
corresponding points to obtain the motion parameters. But these derivatives seem to be
unreliable with noise, and there is no known algorithm which can determine them
reasonably in real images. Others[Adiv 1984] follow an approach based partially on local
interpretation of the flow fleld, but it can be'proved [Ullman 1983] that any local
interpretation of the flow field is unstable.

At this paint it is worth noting that all the aforementioned methods assume an
unrestricted motion (tranglation and rotation). In the case where prior assumptions are
employed or in the case of restricted motion (only trandation), there is some good ,
published work. Ballard and Kimball [1983] report a method for measuring three-
dimensional motion based on three-dimensional flow. For the case of translational
motion, a robust algorithm has been reported by Lawton [1982], which was succésfully
applied to some real images. His method is based on a global sampling of an error
measur e that corresponds to the potential position of the focus of expansion (FOE); finally,
alocal search isrequired to determine the exact location of the minimum value. However,
the method is time-consuming, and is likely to be very sensitive to small rotations. Also
the inherent problems of correspondence, in the sense that there may be drop-ins or drop-
outsin the two dynamic frames, is not taken into account. All in all, most of the methods
presented up to now for the computation of three-dimensional motion depend on the value
of flow or retinal displacements. Probably there is no algorithm until now that can
compute retinal motion reasonably (for example, 10% accuracy) in real images.

Even if we had some way, however, to compute retinal motion in a reasonable
(acceptable) fashion, i.e., with at most an error of 10%, for example, all the algorithms
proposed to date that use retinal motion as input, would still produce non-robust results.
The reason for thisis the fact that the motion constraint (i.e., the relation between three-
dimensional motion and retinal displacements) is very sensitive to small perturbat-ions .
Table 1 shows how the error of motion parameters grows as the error in image point
correspondence increases when 8-point correspondence is used, and Table 2 shows the
same relationship when 20-point correspondence is used with 25% error on point
correspondences based on a recent algorithm of great mathematical elegance [Tsai and
Huang, 1984].



(Tables 1 and 2 arefrom [Tsai and Huang, 1984].)
Table 1: Error of motion parameters for 8-point correspondence

for 2.5% error in point correspondence.

Error of E (essential parameters) 73.91 %
Error of rotation parameters 38.70%
Error of translations 103.60%

Table 2: Error of motion parameters for 20-point correspondence

for 2.5% error in point correspondence.

Error of E (essential parameters) 19.49%
Error of rotation parameters 2.40%
Error of translations 29.66%

It is clear from the above tables that the sensitivity of the algorithm in [Tsai and
Huang, 1984] to small errors is very high. It is worth noting at this point that the
agorithm in [Tsa and Huang, 1984] is solving linear equations, but the sensitivity to
error in point correspondences is not improved with respect to algorithms that solve non-
linear equations. Also, it is worth mentioning at this point that the same behaviour is
presentin the algotithms that compute 3-D motion in the case of planar surfaces . -

So, as the problem has been formulated (monocular observer), it seems to have a
great dedl of difficulty, because of the correspondence problem. This is again not
surprising, and the same problem is encountered in many other problems in computer
vision (shagpe from shading, structure from motion, stereo, etc.).

55 Mativation for thisresear ch and an outline of what isto come

It is by now clear that there are many difficulties with the structure from motion
problem. The uniqueness properties of the problem have not yet been discovered, i.e. itis
not yet known what kinds of surfaces and motions are amenable to multiple
interpretations when our only input is the image motion field.



The next section does the feasibility evaluation of the structure from motion
problem. The problem is studied under orthography and perspective for both small
(differential) and large (discrete) motion. Theorems are developed concerning what can be
computed from the differential or discrete motion field, and under what assumptions. At
this point, we should say that we use the image motion field only as an abstraction, i.e. as
the information we have about motion, in order to achieve uniqueness proofs. This does
not mean that we will develop algorithms for the interpretation of retinal motion that are
based on optical flow, because we feel that the retinal motion field cannot be computed in
a robust way without prior assumptions. |

The section after next, develops algorithms for the solution of ‘the structure from
motion problem, without trying to solve the correspondence problem as an intermediate
step. Instead it uses novel techniques that do not require correspondence. There has
recently been an approach to combine information from different sources in order to
achieve uniqueness and robustness of low-level visual computations . With regard to the
three-dimensional motion parameters determination problem, why not combine motion
information with some other kind of information? It is clear that in this case the
constraints won’t be the same, and there is some hope for robustness in the computed
parameters. As the other kind of information that should be combined with motion, we
choose stereo. There are more deep theoretical reasons for combining motion with another
cue (depth). The reason is that the constraint between three-dimensional motion and
retinal motion when one camera is used is very sensitive to small perturbations; and so,
even if we could compute retinal motion with a reasonable accuracy, it wouldn’t be
enough for computing three-dimensional motion.

The need for combining stereo with motion has recently been appreciated by a
number of researchers [ Jenkin and Tsotsos 1986, Huang and Blonstein 1985, Waxman
and Sinha 1985, Richards 1985]. Jenkin and Tsotsos used stereo information for the
computation of retinal motion, and they presented good results for their images. Waxman
et al presented a promising method for dynamic stereo, which is based on the comparison
of image flow fields obtained from cameras in known relative motion, with passive
ranging as goal. Whitman Richards is combining stereo disparity with motion in order to
recover correct three-dimensional configurations from two-dimensional images
(othography-vergence). Finally, Huang and Blonstein presented a method for three-
dimensional motion estimation that is based on stereo information. In their work, the

static stereo problem as well as the three-dimensional matching problem have to be



solved before the motion estimation problem. The emphasis is placed on the error
analysis, since the amount of noise (in typical image resolutions) in the input of the
motion estimation algorithm is very large.

So a natural question arises: is it possible to recover three-dimensional motion from
images without having to go through the very difficult correspondence problem? And if
such a thing is possible, how immune to noise will the algorithm be? In this Chapter, we
prove that if we combine stereo and motion in some sense and we avoid any static or
dynamic correspondence, then we can compute the three-dimensional motion of a moving
object. At this point, it is worth noting recent results by Kanatani [Kanatani 1985] that
deal with finding the three-dimensional motion of planar contours in small motion,
without point correspondences. These methods seem to suffer from numerical instability a
great deal, but they have a great mathematical elegance.

As the problem has been formulated over the years, usually one camera is used and so
the 3-D motion parameters that can be computed are five : two for the direction of
translation and three for the rotation. If we assume a binocular observer then we can
recover six motion parameters : three for the translation and three for the rotation.

With the traditional one camera approach for the estimation of the 3-D motion
parameters of a rigid planar patch, it was just mentioned [Roach and Aggarwal,
1980],that one should use the image point correspondences for object points not on a single
planar patch when estimating 3-D motions of rigid objects. But it was not known, how
many solutions there were, what was the minimum number of points and views
needed to assure uniqueness and how could those solutions be computed without
using any iterative search (i.e. without having to solve non-linear systems). It was
proved [Tsaiand Huang 1984] that there are exactly two solutions for the 3-D motion
parameters and plane orientations, as we will see later in section 5.6. However, the
solutions are unique if three views of the planar patch are givenor two views withat
least two planar patches. In our approach, the duality problem does not exist for two

views, since two cameras are used ( and so the analysis is done in 3-D).

The outline of the chapter is as follows: Section 5.6 does a feasibility evaluation of the
problem of structure from motion under orthography and perspective. Section 5.7
examines the problem of detecting the three-dimensional motion in the differential case,
without using optical flow, but the spatiotemporal derivatives of the flow. Finally, the last

section deals with the problem of recovering three-dimensional motion without



correspondence for the case of discrete motion under perspective projection.

5.6 Structure from motion : A feasibility evaluation

Here we study what the constraints are between three-dimensional motion and image
motion, as well as what can we compute from two dimensional motion. We first analyze

the case where the projection is orthographic.
5.6.1 Structure from motion: the case of orthography

Here we investigate lower bounds in relation to the structure from motion problem ,
i.e. the minimal number of points from an ensemble of points that move in a rigid
configuration and the minimal number of projections that are required to uniquely
recover the structure. We show that it is possible to uniquely recover structure from
three orthographic projections of three points in space, when a certain condition holds.
Furthermore, when this condition does not hold, the number of structures compatible
with the motion is at most two.

The interpretation of visual motion by humans and other biological organisms is an
exciting field in the study of perception. An issue here is what kinds of mathematical
analysis are adequate and lead to a biologically plausible model of computation for the
task. Here we examine ways and means by which a perceptual system may be organized
to detect the three dimensional structure of rigid objects from their projected motion. The
ability of the human visual system to discern structure from motion stimulus was
demonstrated by experiments by Wallach and O'Connell in the 1950's. Subsequently
Gunnar Johansson discovered our ability to recognize the human form from the
projected motion of as few as ten points on the body, such as the various joints like elbows,
shoulders and knees.

It would seem that the perception of rigid structure from motion should not require the
detection of the projected trajectory of too many points. One of the first rigorous
mathematical treatments of this problem was done by S. Ullman [Ullman 1977]. In his
classical paper on the computation of structure from motion, Ullman showed how
structure was determined uniquely (up to a reflection) from the projected locations of four
noncoplanar points, obtained at three different instants of time. His analysis is based on

the orthographic projection model. The treatment also considered the correspondence of



the four projected points between the three frames, as available. In our analysis we too
work  with orthographic projection and assume the point correspondences already
given.

While it istrue that the perspective or central projection mode is more appropriate for
image formation in the human visual system, we will argue that orthographic projection
is aredistic ampliftcation for this speciffc problem. One reason is that at small retinal
eccentricities perspective effects are  small. Another reason is that in Ullman's scheme,
as well as ours, only a smal  number of points are considered at a time and so
orthography will serve as an adequate modd, because of the locality of the gpproach.

We should mention in passing that the problem of interpretation of Johansson's
"biologicd motion" was andlysed by Hoffmen and Flinchbaugh [19811, Hoffman and
Bennett [1984] and Webb and Aggarwal [1982]. Their analysis is for orthographic
projection with the additional assumption that the axis of rotation is fixed for the entire
period of observation (i.e. equivaently, the motion is planar). From the other hand, our
analysis does not require the fixed axis assumption.

5.6.1.2 Mathematical formulation and lower bound arguments

Condder the Cartesian representation of a point in 3D space. This is the vector
(X,YJZ) . A quartet of four such points can be writtenas  (X.,Yi1Z2J,1=1,2,3,4. Lét these
points move and take up new positions (X.oY'irZy. Considering rigidity, we have the fact
that the motion can be represented by an affine transformation:

KN2)" =R (%2.,2)" + (AXAY,AZ)T
where JR isa3 by 3 rotation matrix and (AX,AY,AZ) isa trandation vector. Taking
the orthographic projection of the above we have:

r=rl.frT.fr,Z+AX
i 117 120 13
Y'=rX.+rY+rZ+t»Y

i 210 22i 23 i
where the elements 1 of the rotation matrix depend upon three

independent parameters - the axis of rotation and the angle of rotation about this axis.
Now if we take two views of three points, we obtain six equations in the seven
variables - three for the rotation, two depth variables ( we have three depths but only
relative depth can be recovered) and two for the translation. Thus we cannot solve the
problem in thiscase. A similar argument holds for three views of two points and two



views of four coplanar points. So, according to the above argument, the following
theorem has been proved.

THEOREM 5.1: Ingeneral it is impossible to recover the structure of

1) Three points, given two orthographic projections of these points,

2) Two points, given three orthographic projections of these points, and

3) Four coplanar points, given two orthographic projections of these points.

In the sequel we are going to prove that three orthographic projections of three points
uniquely recover the structure of these points . So, given theorem 1, the above results will
constitute lower bounds for the problem at hand. Before we proceed, we need constraints
between the structure of rigidly moving points and their image displacements. In the

next section, we develop these constraints, in lemmas 5.1 and 5.2.

5.6.1.3 Mathematical preliminaries.
In this section we develop the constraint that was mentioned in the previous section, in

two forms, in lemmas 1 and 2 .

LEMMA 1 : Given two distinct orthographic projections of three points in a rigid
configuration, the gradient (p,q) of the plane that the three points define (with respect to
the coordinate system of the first frame), lies on a conic section in the gradient space. The
coefficients of this conic section dépend entirely on the interframe displacements of the
above points. PROOF: Let the three points in space be 0, A, B in their first position

and O’, A’ B’ in their second position and their projections in the two frames be 0,4,

B, and O, A , B, ,respectively ( See figure 5.2).

Figure 5.2: Two orthographic projections of three points



Let dso the gradient of the plane OAB be G = (p,q). Furthermore, let
OIAI =a,= (xl’y 1)
OB =b =(c,d)
O,A1=a,=(X2,Y2)
0,B,=b, =(c,d)

Considering the geometry ofthefirst projection ( OAB to O,A;1B; ), we have that:
OA=(X1,y;,Gay) andOB”*c"G*»), (59)
with™ the inner vector product operator.
Similarly, considering the second projection ( OAB to O,A,B,), we get:
OA*=(xy2,A) and O'B'=(c,,dz,p) (5.10)
where A and p areto bedetermined.
But, because of the rigid motion, the vectors OA and O'A'  have the same length. The
same holdsfor the vectors OB and  O'B'. From these requirements we get:

- 2 2 2,12
A= :i:(al-i-(Gal) _82)
and . (b1

= 2 2 212
=03 +Gb )~ b))

Finaly, égain because of the rigidity, the angles between the vectors OA , OB and
OA! , OB arethe same. From this, weget:
0AOB=0'A'0'B' (5.12)
where"+" denotesthe dot product operation.
Substituting to equation 5.12 from equations 5.9,5.10,5.11 we get:

a a,+(Ga)Gb)=a b, tAp

and substituting the values for A and p and squaring appropriately , we get the
following equation 5.13:



2 .2 2,,.2 2 2 2 2,2 .2
(bl -bz)(Gal) -!-(al —az)(Gbl) —2(Gal)(Gbl)(albl - a2b2)+(a1 —az)(bl - b2)—(albl —a2b2

Given that
Ga, =px +qy, and Gb,=pc, +qd,
the above equation is of the form:
Ap’+Bq’+Cpq+D=0
where the coefficients A,B,C,D depend on the image vectorsa ,a,b,b,. (q.e.d.).
We now state and prove a second lemma, that relates the depth differences of the

world points with the interframe displacements.

LEMMA 2: Given two distinct orthographic projections of three points 0,A,B with
depths 2,2z, ,z, (withrespect tothe coordinate system of the first frame ), the tuple (z,,
z,), withz =z2,-z, and z,=z, 2z, lies on a conic section on the plane (z,,z2,) .
The coefficients of this conic depend entirely on the interframe displacements of the above
points.

PROOF: 1t is obvious that this statement is equivalent to the previous lemma. The reason
that we state it, is that we will use this form of the constraint in our subsequent analysis.

Using the nomenclature of the previous lemma, we observe that:
Ga =z and Gb =z,

and so equation 5.13 becomes:

2 2,2 2 2,2 2 2\1.2 2 2_
(bl—bz)zl 4—(&11—512)22 "22122(9‘11’1—azb2)+(81_az)(b1_bz)_(albx—azbz) =0 (5.14)

The above equation (5.14) proves the claim. The above lemmas relate the structure (
shape ) of three points with their two distinct orthographic projections. Whether the
points move or the projection plane moves (moving observer) or both of them move, the
analysis remains the same. We will now state and prove the theorems pertaining to

lower bound results in the recovery of structure from motion.

5.6.1.4 Lower bound results



So far, we have established the fact that two orthographic views of less than four
points cannot recover the structure of these points. We now show that if the number of
pointsisfour, structure can be determined.

THEOREM 3: Two orthographic projections of four rigidly linked noncoplanar points are
compatible with infinite interpretations of their relative 3-D positions, in general. Adding a
third viewyields a unique interpretation of the structure of the four points.
PROOF: Let the four pointsin space be O,A,BoC. Let also the projections of the four
pointsin the two framesbe  O;A;sB: C, and
0,,A2,B,, C, respectively (See Fig. 5.3), and the gradients of the planes OAB , OBC
and OCA be G=(pot) » G=(p202) and Gz=(ps,qJ

respectively (with respect to thefirst frame).

i B Ai B
t 2
o, 9
¢ c.
frame 1 frame 2

Figure5.3: Two projectionsof four noncoplanar points
Using the projections O/A; ,0;B, and their corresponding ones G‘,,A2 , OB and
utilizing lemma 1 weget :

A p’+Bgl+Cpg,+D =0 (.185)
wher e the coefficients depend entirely on the image vectors. Similarly, considering the

projections O;B, and 0O;C; and their corresponding ones in the second frame and the
projections O,C;and O;A; and their correspondingonesin the second frame, we get:

2 2 =
A,p,+Byg,+Cop,q,+D,=0  (516)

2 2 =
A,p+Byq +Copg,+D,=0  (5.17)



At this point we should say that the above equations seem independent because they
come from the rigidity of the three rods OA,0B,OC. In other words the fact that the three
lengths OA, OB, and OC in space remain constant and the two angles AOB and BOC in
space remain constant between the two frames, does not imply that the third angle COA
will remain the same.

Proceeding, we note that we have more information about the gradients G, , G,, G,
from the well known Mackworth constraints that they state:
G 0B =G,0B,
G:.Oncl = GS‘OICI .18
G,0,A=GO0A

The above equations 5.15-5.18 constitute a system of six equations in the six uknowns
Py 9, Py 9,0 Py, 9, - Before we proceed with a rigorous proof, we shed some light on the
form and information content of the equations 5.15-5.18. Equations 5.18 simply express
the fact that the gradients G, ,G,,G, of the three planes make a triangle the direction of
whose sides are known, but we don't know its position and its scaling. On the other
hand, equations 5.15, 5.16 and 5.17 state that each of the gradients G, ,G,,G, lieson a
conic section in gradient space. So, in order to solve the problem (i.e. to find the three
gradients) we have to put a triangle on gradient space, such that its sides have the
orientation defined by the Mackworth constraints (equations 5.18) and each one of its
vertices lies on each one of the three conic sections (defined by equations 5.15, 5.16 and
5.17). At this point we should say, that several important problems in Vision Processing
have been solved in a very similar way. Horn (Horn, 1977) solved the problem of
determining the shape of a polyhedral object from intensity information and the
Mackworth constraints, and Kanade (1982) solved the same problem (shape of polyhedral

objects) but using skewed symmetry and the Mackworth constraints .

The simple fact that we have six equations in six unknowns here does not mean that
this system will have a finite number of solutions. To find out if there are a finite number
of solutions we apply the inverse function theorem. This theorem allows us to conclude
that whenever the Jacobian of these equations is nonsingular, the mapping defined by
these equations is locally one to one and onto. Hence, any roots at points where the

Jacobian is nonsingular are isolated and not part of a continuum of solutions.



It is a simple exercise to compute the Jacobian of the above system and prove that in
general it has rank less than six. ( One has to be careful when determining the rank of the
dJacobian; all the coefficients have to be expressed in the image coordinates, otherwise
hidden dependencies may cause problems. The degenerate cases can be easily found by
factoring the determinant of the Jacobian). Consequently we can assert that the system
has an ifinite number of solutions.

To conclude the proof of the theorem, if we add one more view, then the solution is
unique, and the proof is immediate from the "Structure from Motion" theorem, by S.
Ullman (Ullman, S.,1979). (q.e.d).

We now proceed with our second theorem.

THEOREM 4: Three orthographic projections of three rigidly linked points are compatible
with at most one interpretation (plus reflection) of their relative 3-D positions, in general.

Furthermore, when a certain testable condition holds then there are at most two

interpretations (plus reflections). Adding a fourth view yields a unique interpretation of the

structure of the four points.

PROOF : Let the three points in space be 0,A,B with depths Zo,2,, 2 ( with respect to

the coordinate system of the first view ), and their projections on the three framesbe O,

A, B, for i= 1,2,3 respectively (See Fig. 5.5).

frame 1 : frame 2 frame 3

-t
)
(~°

A

3

Figure 5.5: Three projections of three points

Letalso:
z1=20-z4
22=20-2B
O;Ai=1;




140

O;B;=b;
Now applying lemma 2 for frames 1 and 2 and then for frames 1 and 3 we get the-

following system I of equations :

2 .2 2. ,2 2 2 2 2,2 .2 2_
(bl 'bz)"x +(al - az)z2 --2z122(t=11bl - a2b2)+ (a1 -—az)(b1 - bz)—(alb1 'azbz) =0

2 .2 2,,2 2 2 2 2.2 .2 2_
(bl —133)21 +(al —:3.3)22 —Zzlzz,(alb1 —asb3)+(al —t13)(b1 —b:,)—-(tllbl —a3b3) =0

The above equations constitute a system of two equations in the two uknowns z; , zg

. The Jacobian of this system has rank two in general, and so by applying the inverse
function theorem we conclude that the system has finite solutions. Using Bezout's.
theorem we conclude that the system  has at most four solutions. ( Actually two
solutions, plus the Necker reflections). In the sequel we prove that in general the above
system has a unique solution (plus reflection).
After eliminating the constant terms from the above equations we get :
(KEN,-KNJ)Z*+(MN-MN)zz,+(LN,-LN)2z?=0 (522)
with
K =b?*b}
K,=b?2b}
L= a’a’

2= anz'aaz
M = -2(ab-ab)
M,=-2(ab -ab)

f
Nl.—.KlLl_. —-—-4
g
N2=K 1,2_. ———4

and by dividing with  z? and setting

Equation (5.22) is homogeneous in z , z )

2
z/z,=x weget the following equation:



(KN -EN)* +(MN -MN)x+(LN-LN)=0 (523
The solution of the above equation (30) is given by:

—(MN| - MJTV)) £ (Disc)"
KN,-K\N,
whereDisc isthediscriminant of equation (5.23).

x=

From the other hand, ifthe length of the vectors OA (OB is p and p respectively, then
from the geometry of the projection on thefirst frame, it isobviousthat:

_ 2 2
zl—:t\/p —-a,

and
| 2,=£Vy?-6,°
Consequently,
2 2
e,
\/p —b2

Thus, if X has two solutions then these solutions must have the same absolute value and
opposite sign if both are to be valid. From (5.23) we conclude that-x will have two valid
solutions if:

IN —MSNI 524}

Obvioudy the above condition (5.24) isatestable condition in the image data. Sofar, we
have concluded that if condition (5.24) holds, then the problem hastwo solutions ( plus
reflections), because then there will be two solutions for x*Zz ;, and so four solutions for
(292" (actually two solutions, plusreflections). If condition (5.24) does not hold, then
thereisonly one solution for x and consequently two solutionsfor (z ,z)

(actually one solution, plusreflection).

In addition, the above description can be used to actually find the structure of three
pointsfrom three projections, by developing equation (5.23), solvefor x and then use this
value in conjunction with the equations of the abovementioned system E, to solvefor z.
, Zxrgectingtheimaginary roots. \

Finally,to conclude the proof we have to prove that if we add one more view, then we
get a unique result. If we call O4A4, B4 the projections in the fourth view, and let O4A4
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=a, and O B =b_,then considering the first and the fourth frame we get the equation:

b} -b)z, + @ -8z’ ~ 22 2,(a b —ab )+ (@} -a))b] -bl)—(a,b -ab)?=0 (5.24)

Equations of the system X and (5.25) constitute a system of three equations with two
uknowns. So, this system, barring degeneracy will have at most one solution. This
concludes the proof of the theorem.

The rest of this Chapter discusses the problem in the differential case.

5.6.1.5 The Constraint Induced by the Discrete Displacements Field

Consider a moving surface z = z(x, y)‘ and let (Au(x, y), Au(x, y)), for all (x, ) on the
image, be the discrete displacements field for two time instances ¢; and t9 with ¢; < ¢g, i.e.,
if an image point is at the position (x, y) at time ¢, then at time ¢3 it will be at the position
(x + Au(x,y),y + Auv(x, y)). Then, from the previous theorems (see also 8) it can be proved
(and actually it has been proved in Chapter 4) that the gradient ( p, q), at a surface point

whose projection on the image plane is the point (x, y), satisfies the following conic

constraint:
2 2 —_o (5.26)
klp + k2q - 2k3pq + k4- 0

with

k, = (Aux, YF + (A%, 91 + 28%u(x, y)

ky = [A%ulx, NI + [A%(x, I + 28%u(x, )

k 3= AVu(x, y) + Aulz, y) A%ulx, y) + Au(x, y) + A%v(xz, y)AVv(x, y)

— 1.2
ky=ky—kk,

where

Atu(x,y) = Au(x+1,y) — Aulx, y)

Aulx,y) = Aulx,y+1) — Aulx, y)
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A*u(x,y) = Avix+1,y) — Av(x, y)

Av(x,y) = Av(x, y+1) — Av(z, y)
Equation (5.26) has been used with smoothness and boundary conditions to orientation
from a dense discrete displacements field. The point that we want to stress in this section
is that the discrete displacements oblige the gradient (p, q) to lie on a conic section in
general (Eq. 5.26).

We now proceed with the analysis in the differential case.
6.6.1.6 The Differential Case.

Here we treat the case where the optic flow field is given, i.e., the 2-D velocities of the
image points. Let a surface z = z(x, y) translate with translation (u, v, w) and rotate with
rotation (A, B, C) around an axis passing through the origin of a fixed coordinate systein,
whose z-axis serves as the optical axis and image plane is perpendicular to the z-axis.

Then, the optic flow field induced by the motion of the surface z = z(x, y) is given by:

u(x,y)=u+ Bz - Cy (5.27)
and

vix,y)=v+ Cx — Az (5.28)

with (x, y) the image coordinates (same as the world coordinates). If we consider a surface
z' = Az(x, y) moving with translation (u, v, w) and rotation (A/A, B/A, C), then the optical
flow field induced by this motion of z' is identical to the previous one (Egs. 35, 36) induced
by the motion of the surface z. But the shapes of the surfaces z and z’ are different under
orthography. (Knowledge of the shape under orthography means knowledge of the depth
difference corresponding to any two image points. In other words, under orthography, if
we know the shape of an object in view, then we know exactly the object, but we don’t
know its depth.) Clearly, the surfaces z and z’ have different shapes, but under the above
described motions they induce the same optical flow. Since the choice of A was arbitrary,
we conclude that there are infinite surfaces with different shapes that induce the same

optic flow field when moving with appropriate motions. So, we have proved the following

+tthanra



THEOREM 4: Under orthography, optical flow cannot recover surface orientation. W e
now move to discover the relationship between the flow field and the surface gradient.

Differentiating the flow field (Eqgs. §.27, 5.28) with respect to x and y, we get.:

B (5.29.1)
ax
¥ c-ap (5.29.2)
ax
% _pg-cC (5.29.3)
dy
¥ - Aq (5.29.4)
ax

with(p, q) the gradient of the surface in view at the point (%, y) (i.e., p = 3z/dx, q = 32/dy).
It turns out from the system of Equations (5.29) that the quantities C, p/q, and A/B

can be computed. In particular, we get:

o _ %y‘i iv((ﬁ‘i + "’-‘3)“’—43’i a—”) (5.30)

& dy A ax 3y
€2 2
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So, we have proved the following theorem.

THEOREM 5: The optic flow field, at every point (x, y) of an image under orthography,
constrains the gradient (p, q) of the surface point whose image is the point

(x, y) to lie on one of two straight lines that pass through the origin of the gradient space
(e.g.,(5.31)).

Under closer examination, we can prove (and it has actually been proved by Ullman)
that for nonplanar surfaces the value p/q has a unique solution, whereas for planar
surfaces, the value p/q has two distinct solutions. For a proof different than Ullman’s, see
[Aloimonos, 1985, ]. So, the following theorem has been established.
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THEOREM 6: The orthographic optic flow at every point (x, y) of an image constrains the
gradient (p, q) of the surface (nonplanar) point whose image is the point (x, y) to lie on a
straight line passing through the origin of the gradient space.

Up to this point we have established that the discrete displacements field constrains
the gradient (p, q) of the surface in view at every point to lie on a conic section (hyperbola,
parabola, ellipse) in general, whereas the optic flow field constrains the gradient (p, q) ‘0
lie on a degenerate conic section (two straight lines, or one straight line). Despite the
difference in the constraints, the content in terms of the structure from motion problem, is

the same.

5.6.1.8. Discussion and Conclusion (Motion under orthography)

The perception of rigid structure from motion stimulus is well within the competence
level of the human visual system.

Our results fill an important gap in the study of the perception of structure from
motion--showing the limitation of the approach.

We believe that our work forms an important extension to Ullman’s theory and, in
conjunction with interpretation schemes for recovering structure in the case of biological
motion using the planarity (or fixed axis) assumption, constitutes a significant advance in
the problem of the interpretation of structure from motion.

Concluding, we would like to propose a research problem, with which we have had
some success up to now. Given the constraint in section 5, surface smoothness and
boundary conditions, under what assumptions do we have a unique solution for the
surface structure? Our investigation shows that methods similar to the ones used by A.
Bruss [Bruss, 1982] for the shape-from-shading problem are very fruitful.

At this point we have concluded our analysis of the structure from motion under

orthographic projection.

5.6.2 Structure from motion: the case of perspective

Here we do a feasibility evaluation of the computation of three-dimensional motion,

under perspective projection. We will only study the case of differential motion. The

analysis in the case of discrete motion has been done fully by Longuet-Higgins [Longuet-
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Hoggins, 1981] and Tsai and Huang [Tsal and Huang, 1984], and can be summarized in
the fallowing propositions: .
Proposition 1: Given the image correspondences of four points that lie on a plane that
moves rigidly, the motion parameters are computable and there can be at most two
solutions. In paricular, if the motion can be realized by rotationg the object around the
origin and then translating it dong the normal direction of the plane's surface, then the
motion parameters are unique, otherwise there are exactly two solutions.

Proposition 2: Given the image point correspondences of two planes not passing through
theorigin (lenscenter), the motion isunique.

Proposition 3: Theimage point correspondences of Sx points, with four pointson oneplane
not containing the origin, and two points common to the above two groups of four points
on the intersection of the two planes, ensure unique solutionsfor the motion parameters.
Proposition 4. The image correspondences of four points on a plane not passing through
the origin and two other points not on this plane, determine the motion parameters
uniquely.

Proposition 5: Given the image correspondences of seven or more points not traversable
by two planes with one plane containing the origin, nor by a cone containing the origin,
the motion parameters are unique.

We now move to the differentia case that has drawn alot of attention during the past fenv
years.

5.6.2.1 Introduction
Following the modd introduced in section 5.2.1, we have that if the camera is moving
with trandlation T=(U,V,W) and rotation Q=(A,B,C), then the optical flov (uyv) a a
point (x,y) isgiven by:

- W
u= LW -ary +pGa2+1) —yy
F /]

-a(y?+1) + {3y +

where Z is the depth of the imaged surface point, whose image is the point (x,y).The
question that arises then is whether we can compute the three-dimensional motion from
the flow fidd. Is there place for ambiguity? In other words, are there different surfaces

D=

V—yW
VA
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and corresponding motions that willl produce the same optic flow field and so no matter
what agorithm we use, we will never be able to recover the actual three-dimensional
“motioninthiscase?

Before we proceed with our analysis, we must say that all the published approaches that
apurely loca analysis of the flow field will never succeed. In a sufficiently small patch,
given the noise in the real data, the estimated motion field will not be distinguishable
from one resulting from surfaces for which there is no unique solution, as we will see in
therest of this section.

56.22 Uniqueness analysis of flow fields

It isan important question in motion research whether a given optic flow field could
be due to the different motions of different surfaces. Research in the fidd has shown that
thisistrue for planar surfaces [Maybank, 1984, Subbarao and Waxman, 1985]. It is very
important to discover what kinds of surfaces are bound to ambiguity, because if their set
isvery rich, then we should reconsider many of the published theories. In what follows,
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because of the fact that the equations become very complicated, we will use vector
notation, to keep the équations neat. Considering the traditional camera model, with focal
length =1, a world point is denoted by P=(X,Y,Z)" and its projection on the image plane
by

p=(x,y,1)". Then the perspective projection equation becomes

P Pk
where k the unit vector along the Z axis. If the camera is moving with translational

velocity T=(U,V,W) and rotational Q=(A,B,C). then in order to find the flow field we
must differentiate the above equation with respect to time t, and take into account that

apP
— =-T-PXQ
dt

and from that we get:

|5

7 = -1;—1; (T.R)p-D+(PXQ).p-pXQ

where "X™ is the cross product vector operation. This is a vector equation, which when

expanded to its components, will yield equations (5.3).

5.6.2.3 Finding surfaces that yield identical motion fields
Suppose that we have a surface Z (x,y) moving with motion (T,,Q)) and a surface Z,(x,y)
moving with motion (T,,Q,) . Suppose further that these surfaces yield identical motion

fields, i.e.

1 1
= (T p—T )+@EXQ).kp—pXQ = —(T ,kp—T )+ (pXQ,).kp—pXQ,
% 2

or

1 1
—((Tl.k)p—Tl)—--—((Tz.k)p—T2)=(pXAQ).kp-pXAQ
z, -z,
with AQ=Q -Q So we see that only the difference of the rotational velocities matters.

This has been observed by Bandyopadyhay too [Bandyoapadhay, 1986].



149

Using the above equation we can discover the surfaces that give rise to ambiguous
flow fields . If the motion is only translational or only rotational, or it is general but we
know either the rotation or the translation, then we can uniquely recover three-
dimensional mation from flow fields, i.e. themotion fields cannot be ambiguous. A proof of
this is easy, and the interested reader is referred to [Bruss and Horn, 1984,
Bandyopadhyay, 1986].

Assuming that the trandations are nonzero, we proceed with the general case:

If we solve the above vector equation for Z; and Z, we get:

1
— {TZX T l)p + (pXAQXT Xp)=0
i

and

zlz(TZXTl)p + (pXAQXT1 Xp)=0 |
These equations give the surfaces in terms of retinal coordinates. From these, it is
clear that the depth function of surfaces with ambiguous motion fields, when expressed in
retinal coordinates it is the ratio of a first order polynomial over a second order
polynomial. This was known to Bandyopadhyay [Bandyopadhyay, 1985]. Here we go
further to get the description in terms of three-dimensional coordinates. For this to
happen, we must express the retinal coordinates in terms of the three-dimensional
coor dinates from the per spective projection equation. We have that, ‘

1
p=—P
1
and
p=—P
Z

If we substitute in the above equations we get:

(T.XT P +(P XAQXT ) = o
and

(TICTIP,+ (P XAQXT XP,)=0



Obvioudy the above equations, when expressed in coordinates X,Y, Z are of second order,
S0, up to now we know that only planes and quadric surfaces can create motion fieds that
are ambiguous. It remains to be investigated what kinds of second order surfaces are
ambiguous.

5624 What kinds of quadrics are ambiguous

In the previous section we proved that only quadric surfaces (with the exception of
planes) are candidates for ambiguous flow fields. The question that arises then is : isany
~ Quadric surface problematic in this matter, or only paricular kinds of second order
surfaces.

We know that second order surfaces are elipsoids, hyperboloids, paraboloids and
quadric cones. Here we prove that only hyperboloid surfaces are candidates for
ambiguous interpretation.

From the equation of aquadric, we know of two methods that can be used to determine
the kind of the quadric. One has to do with the signs of several expressions such as the
determinant of the matrix of the coefficients of the quadric, and the other with the
elgenva ues of the matrix. Here we choose the second, becauseit issimpler to implement.

The equation of a quadric that passes through the origin, as in our case, can be
written in the fom x"Ax+Bx=0, where x=(x,y,2)" and A and B 3X3 matrices. If we
change coordinate systems and we move the origin to the center of the quadric, then we
get rid of the linear terms and the equation becomes: X' Ax = b, with b aconstant and x the
new coordinates. Then from the elgenvalues of the matrix A we may decide about the
kind of the quadric.

Recalli ng from the previous section, the equation of the pathologica quadricis:

T XT )P, + P XAQNT XP)=0

or

(TXT )P +P TXOQP) (1 , ADPP)=0

or

7 T Tp -
(T XT )P, + PIT AQTIP, ~(T, AQ)P{P =0

or



2T XT )P, + PI(T,AQT + AQT] —2(T,AQIDP, =0
with I the 3X3 identity matrix. So, the quadric equation can be written as
P‘TAP, +2(T XT, )P, =0
with

A=TAQT + AQT] —2(T, AQ)
If we transform the coordinate system center to the center of the quadric, we get as
coefficient matrix the matrix A. Its eigenvalues are:
A =-T,AQ+ T, | |AQ |
A, =-T,AQ- [T, [HAQ
A,=-2T,AQ)
Obviously A is positive and A, is negative.So, the quadric is a hyperboloid.
At this point we should mention that research in this area has been done by
Bandyopadhyay, who obtained the result that the problematic surface is the ratio of two
polynomials of degree one and two [Bandyopadhyay, 1986]. In the sequel we describe two
theorems concerning the equivalence of stucture and motion.
Proposition: If the three-dimensional motion parameters are known, then the structure
of the object in view is uniquely determined by the optic flow field.
Proof: Immediate from equations 5.3.1 and 5.3.2
Proposition: If the structure of the object in view is known, then the three-dimensional
motion parameters are uniquely determined from the optic flow field.
Proof: See [Bandyopadhyay and Aloimonos, 1985]

5.7 Algorithms for Motion perception

Here we study ways and means for computing the three-dimensional structure and
motion of a moving object from a sequence of its images. Because of the fact that the
problem of finding structure and the problem of finding three-dimensional motion are .
related as we already stated in section 5.6.2, in the sense that the knowledge of the one
greatly simplifies the other, in this section we will only study the problem of determining
three-dimensional motion. We will present algorithms that do not depend on finding first
the correspondence between points in the sequence of images, but they recover the three-

dimensional motion without using any correspondence. We will study the problem under






both the differential (continuous or small motion) and the discrete (apparent or large
motion) case.
The next section describes the problems with any approach that utilizes local motion

(point correspondences or optical flow).

8.7.1 Optical flow or discrete displacements: Can we compute them?

Extensive research in dynamic scene analysis has shown that the computation of
retinal motion is very hard. Let us first address the problem of finding optic flow (retinal
motion in the differential case). Suppose that the camera is moving (or the imaged object
is moving). Then, the image intensity function f is a function of three arguments (space -
position in the image (x,y), and time - t). If at time t the velocity of an image point (x,y) is
(u,v), then it can be easily proved [Horn and Schunck, 1982], that it obeys the following
relation:
fu+ fy v+f,=0, wheref fy f, the spatiotemoral derivatives of the intensity function. From
now on we will call the above equation, image flow equation. This relation is the only
information we can have about the image velocity at the point (x,y). Obviously, we need
two parameters (u,v), but we only have one equation. So, without other assumptions, we
cannot compute the optic flow (u,v). Despite that, several methods have been proposed for
the computation of flow, which belong basically in the regularizatioﬁ paradigm. In other
words, the optic flow field is assumed to be smooth, and this introduces additional
constraints that may reduce the solution space to a unique point. It is obvious however,
that the optical flow fields are not smooth in most of the situations, and it is the
discontinuities of the flow field that are of some interest, since they contain information
about the structure discontinuities of the surface in view. Restrictive assumptions about
the flow filed (smooth), cannot lead to methods that will work satisfactorily in a variety of
situations. From this discussion, we conclude that the optical flow field cannot be
measured, and eventhough a large part of todays research is devoted to the computation of
this optical flow field, leading researchers in the field are starting to realize that
computation of optical flow is a utopia [Horn, 1986].

So, in the case of differential motion, the only information that we can have about
retinal motion, is the spatiotemporal derivatives of the image intensity function, f,, f;
At this point, we conclude our discussion about the feasibility of the computation of

optical flow.



Moving now to the problem of the feasibility of the computation of discrete
displacements, we have to say that this problem can probably be solved, in contrast with
the problem of computing optical flow. This case has to do with apparent (large motion).
Suppose that the point (X,y) is the image of the three-dimensional point (X,Y,Z). Suppose
also that a general motion occurs and the point (X,Y,Z) moves to the position (X'\Y'.Z")

with the new image (x\y'). The retinal motion that we observe, and which can be our only
| input, isthe motion of the point (x,y) to the position (X',y*). Let uscall the point (x,y) point
before the motion and point (x\y') point after the motion. The discrete displacement from
this motion isthe vector (x'-x,y'-y). Now, suppose that we have many point on the image
plane before the motion, say (X,y), i=I,..n. These points are the projections of texture
markings on the three-dimensional object. If a motion occurs, then the three-dimensional
markings on the object move rigidly, and after the motion their new projections are the
points (x'l.,y'{), i=1,2,..,n. Now, in order tofind theretinal motion, we haveto find to which'
point after the motion every point before the motion corresponds. This is known in the
literatture as the Correspondence problem. There have been several approaches towards
the solution of the correspondence problem. These can basically be classified in the
following categories.
1) Minimum distance criterion [Ullman, 1977, Nagel, 1984]
2) Matching contours [Hildreth, 1984, Waxman and Wohn, 1985]
3) Similarity measures and relaxation [Prager and Arbib, 1984, Horn and Schunck, 1982,
Barnard and Thompson, 1981]
4) Clugtering [Bandyopadhyay, 1986].

In what followswe will discussand criticize each approach .

The minimum distance criterion methods, are basically based on the heuristic that a
point before the motion will be matched with the point after the motion that is nearest to
it. Thisapproach, that Ullman usesin a global criterion, would work if the points before
and after the motion were very sparse and the motion wasrelatively not large. Then we
could say that the nearest point will be the corresponding one. Unfortunately, the points
before and after the motion about which we are discussing, do not come automatically.
They have to be extracted from the sequence of the intensity images. And eventhough
there exist several methods for their extraction, no one of them is perfect, in the sense
that there will exist points in the first dynamic frame whose corresponding one will no be
therein the second dynamic frameand viceversa. This of course is due to the
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inaccuracies of the methods, and to the unpredictability of the natural images. But even

_if we could extract the points in a accurate way, no one guarantees that they will be sparse
so that the minimum distance criterion can be applied. The points that are extracted are
interesting points (corners, high curvature points, etc), and their sparseness depends
solely on the imaged scene. From the other hand, the minimum distance criterion is a
heuristic that will be true only under certain kinds of motions and surfaces.

The method of matching contour points seems very promising and there is good work
in this area by Hildreth and Waxman. Points along contours are matched, and the
apperture problem is addressed by relaxing the results along the contours. Of course the
results will be reasonable if the contours under consideration are smooth. And even
though several contours in natural images are smooth, we cannot know this apriori.
Furthermore, to extract the contours seems a hard problem, eventhough there are some
new results that show great promise. Finally, what do we do if there are no contours in the
image?

The methods that are based on the similarity measures, follow the heuristic that
nearby points will have similar displacements, i.e. the difference of their displacement
vectors will be in some small interval. Several methods have been proposed in this line of
thought, and they are basically based on iterative relaxation methods, which work with
the hope that the system will converge to a correct solution. Of course, there are no results
on the convergence and the uniqueness of the relaxation computations and more
importantly. the heuristic of the similarity of the nearby displacement vectors is correct
only for smooth surfaces, something that the surfaces of our visual world do not follow.

Finally, recently clustering methods have been proposed. The clustering methods are
again based on the fact that nearby displacements will have similar values, and so they
form a cluster. The clustering is done in a two-dimensional space (only displacement
values), instead of a four-dimensional (dispacement values and position on the image
plane), for efficiency reasons. Even though the clustering methods are based on similarity
measures and so our criticism in the previous paragraph applies here too, the method is
new and more experimental and theoretical work is required in order to get more
information about the method.

Up to this point, we have discussed all the methods for computing image motion
displacements. Here we will talk about a very importarit constraint that has not been

used by research in retinal motion computation.



5.7.2 Should we want to compute retinal displacements, we should rely on
constraints

The previous section reviewed previous and current work in the area of the computation
of retinal motion displacements. As we saw, all the methods are based on heuristics about
the similarity of the displacements, minimal distance, and the formation of clusters. No
method has taken into account the very strong constraint that exists among the
displacements. The points in the two dynamic frames (before and after the motion), are
related by the very strong constraint of rigid motion. Indeed, the points before and after the
motion are the projections of three-dimensional points that move rigidly. If we ever hope
to recover retinal motion displacements, we must take into account the existing
constraints. If we don’t, we will never be able to solve the problem, since we will always be
obliged to rely on heuristics and restrictive assumptions. So, we must investigate the rigid
motion constraints. Recalling from section 5.2.1 the relation between two corresponding
retinal points we have:

If (x,y) is the retinal point before the motion and (x’,y’) is the point after the motion, then:

x,y,1] =E

=

where
e, =A0Zr,-AYr, , e,=AZr.-AYr,, e,= AZr -AYr,
e, =AXr -AZr, e =AXr -AZr,, e, =AXr -AZr,

e,=AYr -AXr, e, =AYr,-AXr , e, =AYr -AXr,

So, we have here the following mathematical problem:
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Given the set of points A ={(xi,yi),i =1,..,n} before the motion and the set
A’={(x’i,y’i),i=1 ,--»t} after the motion, correspond the points of these two sets , such that 3
matrix E, with the property:

x,y,11 =E y

for all the corresponding points (x,y)€A and (x’,y’ )€A’.

This is the correspondence motion problem, phrased in a mathematical way, utilizing
the available constraints.

The question that arises now then, is : Can we solve this problem?

It would be nice to solve this problem, without having to compute the matrix E,
because then we would know the three-dimensional motion parameters, and then the
problem of computing retinal displacements would be very easy. Unfortunately, we
haven't been able to solve this problem up to now, without first finding the matrix E.
Later, in section 5.7.4 we will show how to find matrix E without correspondences, and
then come back and compute the displacements. It remains a problem of our future

reseach, to address this question.

At this point, we conclude the criticism of previous research, and we move to

algorithms for the computation of three-dimensional motion parameters.



573 Algorithmsfor 3-D motion per ception

Here we study how to recover three-dimensional motion without i
correspondences (optical flow or discrete displacements). We will study the differ
and discrete cases separately.

5.7.31 Thedifferential case

In these sections we study the problem of determining three-dimensional mati<
the case of nonplanar surfaces. The case of planar surfaces, iseasier, and it has been
anayzed recently [ Negadharipur and Horn, 1985].

We gpproach the problem of motion estimation from a least squares point of
Given the mation and the spatial  brightness gradient one can predict the time deri>
of brightness at each point in the image. We find the motion that minimizes the int
of the square of the difference between this predicted value and the observed
derivative. The integral is taken over the image region of interest, which may «
whole (in the egomotion case). Before we apply the method to real images, care mi
taken in filtering and sampling. The estimate of the spatial gradient and time derive
is senditive to effects of aliasing that comes from inadequate low-pass filtering t
sampling. It can be considered a mistake to Smply pick every nth frame out of an i
sequence. At the least, all the frames should be averaged before sampling in ore
reduce the high frequency components. Of course, in this way we might have
smearing but a series of widdly separated snap-shots do not obéy the conditions <
sampling theorem, and the estimatesof the derivatives will have largeerrors.

5732 Therelation between 3-D motion and retinal motion

A cameraisassumed to move in astatic environment. Let acoordinate system X,
fixed with respect to the camera, with the Z-axis pointing along the optical axis,

rigid body B be stationary in the environment, from the surface of which a closed sui
isvisble. Any rigid body motion, as we have already seen, can be resolved in two fa
atranglation and arotation. We shall denote by T =(U,V,W) the translational com
of the motion and by Q=(A,B,C) its angular velocity. We aso consider the image
perpendicular to the Z axis at the point (0,0,1) (i.e. focd length=1). and we dene
(x,y) the coordinates of a point on the image plane. We have already seen that the o
flow equationsaregivenby:
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Itisclear that thereistrandational part in theflow and arotational one. In other words,
theflow equationscan bewritten as:

u=u-+a_ , v=v-+v, where u_,i;_the trandational parts andup,t;- the rotational parts,
i a T R¢ rr it it

with

- = +Axy -B(x?+1) +Cy

_=VHYW
Ve T z

v,=+AG?+1) — Bxy — Cx
But, we know that the optical flow at every point in the image satisfies the following
equation: |
fu+fy+f=0
If we substitute the values of the optical flow field from the equations 5.32, 5.33 into this
equation, then we get the following equation:

-U+xW o -V+yW
f( ——g——+AXy -B(x*+1) +Cy)+(— ="— +A(y +1) - Bxy - Cx)+/e=0
We call this equation image brightness motion equation, and it will be the basis of the
forthcoming analysis.
Deter mining the motion of a moving camera from successive images is much easier if we

aretold that the motion ispurely trandational or purely rotational.

5.7.3.3 Rotational case
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In this section we discuss the case where the motion of the camera is assumed

purely rotational. In that case, the optical flow is:

u=Axy —B(x*+1) +Cy
and

v=AG?+1) - Bxy — Cx
For the following we assume that the image plane is the rectangle

x€[-A,A], y€[-p,nl. The same method applies if the image has some other shape.
matter of fact , it can be used on subimages corresponding to individual objects in th
that the environment contains objects that may move relative to one another; of ¢
this case is much harder, and we do not consider it in this thesis).

The image britghness motion equation now becomes :

f (Axy —BG*+1) +Cy)+fy(A(y2+ 1) — Bxy — Cx)+f,=0
or
B(-f (2 +1)-fxy) +A(fxy +f (¥’ +1) + C(f y-fx) +f=0 (5.34)

The above linear equation contains the desired parameters A,B,C and
everywhere in the image. It has to be understood that the coefficients of this eqt
involve measurable parameters, the spatiotemporal derivatives of the image int
function.

If we use equation 5.34 at three points in the image, then we obtain a linear syst
three equations with three unknowns A,B,C, from which the unknowns are «
recovered. But if we take into account the noise in the image (introduced b
digitization process and other factors) a well as the errors introduced by the num
approximation of the image derivatives f, fy and f,then we may get very undes

results. So, seeking a global method we wish to minimize the expression:

A p
[ ] [(—f,(x2+1)-fyxy)IB+‘A(fxxy+fy(y2+1))+C(ﬁcy-fyx)+ﬁ]2dxdy

- -p
In this case we determine the best fit with respect to the L, norm, which is defined as
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A rp
lgx.y) = [ J lgxy)dxdy
-A —-n
So, we differentiate equation 5.34 with respect to A,B, and C and we set the resulting

expressions equal to zero.

Let us introduce the following abbreviations.
K(z,y)= -ﬁ(x’+1)-f’xy,
Lixy)=fxy+f(y'+1),

M(xy)=fy-fx.

Expression 5.34 thus becomes:

A o
] I [K(x.)B +L(x,)A + M(x,y)C+f Fdxdy

- - B
After we differentiate equation 5.34 with respect to A,B,C we obtain the following three

equations:

a A+a B+a C=b,
amA +a”B +a23C=b2 z
anA +a”B +a33C= bs
with

1

A orp
a,= I [ L2%x,y)dxdy
- - B

A (p
a,,= I J L(x,y)K(x,y)dxdy

-A —-p

A rp
013=I I L(x,y)M(x,y)dxdy

-\ -p

A B .
a21=l I L(x,y)K(x,y)dxdy

-A -n



A orp
a =J I K2(x,y)dxdy

-\ -p

A (p
= [ I K(x,y)Mi (x,y)dxdy
-2 -p

Gog

A rp
a; = I I L(x,y)M(x,y)dxdy
- - B

A op
a32=J [ K(x,y)M(x,y)dxdy

-A —-p

A orp
a,.= [ ! M%(x,y)dxdy
-\ - B

A orp
b 1= [ [ L(x,)f tdxdy
—-A -p

and

A rp
b2= ] J K(x,y)ftdxdy

A rp
b= I ] M(x,y)f (x,y)dxdy
- - B
The system Z determines uniquely the parameters A,B and C.

5.7.3.4 Translational case
In this section we discuss the case where the motion of the camera is assumed

purely translational. In that case, the optical flow is:



162

and

-V+yW
Z
and the image brightness motion equation becomes:

V=

~U+xW —V+yW

f(——)+f(

x VA y VA )+ft=0

or

fx(— U+xW)+fy(— V+yW)+ftZ=0
We should note that the depth is involved now in the image brightness motion equation
and so our method will be different.
By differentiating the above equation with respect to x and y, we obtain:

fn(— U+xW) + fo-i-fyx(— V+yW)+ftxZ+f‘(aZ/ax)=0
and

fxy(--U+xW) + ny+fyy(—V+yW)+ftyZ +f,0Z/3y)=0
or (by dividing the above two equations and assuming that there is motion in depth, i.e.

W=20),

[L=UW+D) + f +f (=VIW)+y) [ Z+f(aZlax)

[ (UMW +x) + f +f (~VIW+y) [, Z+fJaZlay)
In the above equation the depth and the derivatives of the depth with respect to the

image coordinates are involved. But the derivatives of the depth function with respect to
the retinal coordinates (x,y), are related to the derivatives of the depth function with

respect to the world coordinates (X,Y,Z), in the following way:

Z3Z 16X
1 — 23Z/3X — yoZ/3Y

Z/dx=



Zdz/dy
1-xdZ/aX-ydz/dY
Near the origin of the image plane the denominator of the above equations becon

azldy=

(The above equationsar e true under the assumption that thefocal length of the cam*
1). So, near theorigin oftheimage plane, equation 5.35 becomes:

I ((CUM+X) + fHfji-vimy) fi+/6Z/ax)
f UMW+ + £, +f (~VIW+y)  fy+(dz/dY)
Theabove equation, linear in the unknowns U/W, V/W can be used in aleast sq

(5.36)

formulation to give us the direction of translation. The obvious price we have U
though, isthat we have to compute the shape of the object (32/8X.3Z/6Y).
Equation 5.36 after some algebr aic manipulations becomes: '
K(xj)atL(x,y)b=M(x.y)

where we have introduced the abbreviations:

a=U/W,

b=V/W,

K(xy) = -fif, +feZeyN+f_(f, +£(8Z/3x))

Lixy)=-f {f, +f(azray))+f (f, +f(82/ax))

M(xy, v +fQUNAF x+f +f yXf, +f(az;ax))

Finally using equation 5.36 in a least squar es scheme, we derive the system:

[|J' J'| Kig)axdylath | | K(x,y)L(x,y)dxdy]b:j'I ;1 Kbiwm
—A ~2A~1 B -
‘A rp [r® hm .
[J ] K(Xoy)L(xy)dxdy] aH\J | Lixy)dxdylo=J J L(xyM(x)d
-1 =q -3 —-p -k =p

whose solution gives the desired direction of translation.

To study the general case, we can follow the same approach (i.e. differentiate the i
brightness motion equation with respect to x and y) and follow the same least sq
method, with the use of shape information.

In what follows, because the image brigthness motion equation is complicated, we
use a vector notation. Thisequation can bewritten as:

f+VQ+(UZ2)K.T=0,
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where Q the rotational velocity, T the translational velocity, and
V= (f’ +y(ef, + yfy), - -x(xf,_+ yfy), yf!-xfy)’r
K= (-f’, -fy, xf! + yfy)'r

§.7.3.5 Motion known
The image brigthness motion equation can be used to find depth if the motion is known.

Indeed, from this equation we get:

K.T
f+V.Q
All the quantities of the right hand side of this equation are computable from the image

gradients or known (motion). Obviously this method may produce inaccurate estimates of
the depth Z, because the numerator and denominator may be small, if the britghness

gradients are small or the vectors K and T are nearly orthogonal.
5.7.3.6 Depth known

Suppose that the depth of the surface in view is known. Then, it is trivial to recover
motion without correspondences in this differential case. In order to avoid errors from

noise, we minimize the quantity:

A rp
j J [ft+V.Q+(1/Z)K.T]2

- - B
Differentiating with respect to Q and T, we get the following vector equations:

A op A (p A ¢p

[ J J (1/2)’KK™IT + [ ] ] w2Kve= _I ] /12K
-2 -y -2 -n -2 -n
A B A B A B

[[ [ wW/z)VKTIT + [ [ [ vviia = _J I fv
-1 -p -A —p -\ -p

These equations represent six linear equations in the six motion parameters unknowns.

5.7.3.7 Stability of the method in the case of rotational motion



Recalling from section 5.7.3.3 the method that recovers rotation, we had to soh
linear system (in vector notation):

r w"]b:-r r A

1
In order to study the properties of thge algorithm that solvesthis linear system, we

study the matrix
[
T
1

A -
But such a thing seems very difficult at this point, because the vector V depends o

intensity function and its derivatives. So, the only thing that we can hope for, isto <
approximate analysis, by assuming that the values of vectors V are unifo
distributed.

Instead, we give some intuitive reasons for the stability that have been confirmed b
experiments. Rotations about the x and y axis are computed with high accuracy, wh
rotation about the Z-axis is corrupted with small amounts of noise. The reason for tt
that rotation about the x and y axes produce motion fields (spatiotemoral variations]
vary alittle over theimage, and in that case a small field of view can be used to esti
these components. From the other hand, rotation about the z axis produces a fied
varies alot over the image. So, the maximum vel dcity depends on the size of the fi
view.

5.7.3.8 Thetrandlational caserevisited

In section 5.7.34 we studied the translational case. In our analysis, we neke<
shape of the object in view in order to obtain asolution. Thisisrather weak in some s
o, the question that arises then, is: can we recover the direction of translation wil
correspondence in the discrete case, and without using shape information? Prelimi
investigations show that this is possible if a binocular observer is used. Another pos
approach isthe following:

The image brightness motion equation under the assumption that the mai<
trang ational, becomes:



Z=41/f)KT.

Obvioudy the depth has to be positive. So, we must find what are the numbers
T=(U,V,W) that make the depth Z from the above equation, positive, at every image
point. Clearly, the problem as posed might not have a unique solution, but we might be
able to find a set of solutions, which can be satisfactory. Finally, it has to be understood,
that the depth has an upper bound in such a situation. Indeed, from the above equation,
wehavethat:

Z=-fl/#V-T , or \Z] =IKTIN/i or \Z l/||T|IE WKWAF\ . Thisisan upper bound under the
assumption that T isparallel to K. Actudly, the depth will be much smaller if K is nearly
orthogona to T.

5739 Thegeneral case

In the general case (rotation plustranslation) the method that we propose is the same
asin section 5.7.3.4, with the difference that the resulting system will be nonlinear in the
five parameters (U/.W,V/W, A,B,C). In order for this system to be solved, we must start
with an approximate solution near the actual solution. Otherwise, it will not converge to
the actua solution.

5.7.3.10 Implementation and experiments
The purely translational and purely rotational cases have been implemented. Figure
5.5.1 shows pictures of a sphere taken from a moving camera (synthesized motion). The
camera was moving with velocity U=-7, V =-7, W=-7 and took pictures every unit of
time. The actual direction of translation, was (U/W=I, V/W=l), and our algorithm
(5.7.3.4), from this sequence of images, yielded:
(UW=1052632, V/W=0.925926).

1 2 3




Figure 5.5.1: Nine snapshots of a translating sphere

For the purely rotational case, we experimented with several motions and several
different reflectance functions. In general, if the image intensity function is smooth, then
the results are very accurate. If the image intensity function is not smooth enough, then
the results get corrupted, because, even with sufficient smoothing, the image
spatiotemporal derivatives are very inaccurate. In the sequel, we will present
experiments for the case where the motion was (A=C=0, B=0.001), for spherical
surfaces (since they are the worst for this kind of experiment), with many different
reflectances. The following table presents the results obtained with the least squares

method, for the different surfaces that are presented in figure 5.5.2.
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i. “Lambertian _ -0.000048 0.001025 -0.000019
ii. Random . -0.002594 0.002572 -0.000088
iii. Specular -0.000191 0.001205 0.000384
iv. Specular x Random -0.002588 0.002220 -0.001412
v. Specular x Diamond 0.000009 0.000856 -0.000580

vi. Highly Specular x
Vertical Stripes -0.000970 0.000991 -0.000262

vii. Specular x Stripes 0.000092 0.001932 -0.000790

5',;7"."3,10 Conclusions (Differential motion without correspondence)
In this section we presented algorithms for the computation of the three-dimensional
motion, in the case of continuous motion, without using the intermediate stage of
computing optical flow. Our agorithms work well for the rotational and translational
case. The general case needs more investigation. Our future work in this area, is to work
out the details of computing translational motion without the need of the shape of the
surface in view, even though the use of surface shape agrees with our general framework
of combining information from different sources. Also, to work for the development of
linear equations for the general case (translation & rotation). Our treatment did not use
any correspondences (optical flow). This by no means attempts to indicate that
correspondence is not implemented in some way in the human visual system. This is
something that we don't know, even though there is some indication (from various
psychologica and psychophysical experiments) that the human (animal) visua system is
engaged in some kind of visual correspondence. Our analysis did not try to establish the
fact that correspondence is useless. On the contrary, correspondence is very powerful, but
it has not yet been demonstrated that it is feasible. We smply demonstrated that three-

- dimensional motion can be obtained without using correspondences. Our theory is not
based on an input that we don't know if it is computable, as optical flow for example. It is
based on the gpatiotemporal derivatives of the intensity function, something that is very



well defined and measurable. Also, it is highly parallel and easily implementable in
neuronal hardware. Finally it is worth saying that our analysis employed the use of a
single camera. It is one of our future goals to study the motion perception problem using a
binocular observer. The reason for this is, as the next section will explain, the fact that
using a binocular observer, the constraints between retinal and three-dimensional motion
change, and the complexity of the problem changes too. The highly nonlinear equations
for the case of a monocular observer, become linear in the case of a binocular observer.
6.7.4 The discrete case
" In this section we study how to recover three-dimensional motion from retinal motion
in the case of discrete motion. The problem is the following:
Consider a set A ={(Xi,Y'.,Z )i=1 ,-»,n} of three-dimensional points, that move rigidly and
they come to a new position, such that they constitute the set A’={(X",Y’,2°),i=1,..,n}.
The points are imaged by a camera (traditional model, as described in Chapter 2), and
their projections before the motion make the set A ={(x,y),i=1,..,n} and after the motion
the set A’ ={(x’,y’),i=1,..,n}. With only input the sets A, and A’, we want to recover the
three-dimensional motion that transformed set A to set A’. All the traditional approaches
that are based on the correspondence approach, first try to find out the correspondence
between the points of the two sets A and A’,i.e. to find out for every point (x,y)€A, what
point (x’,y")€ A’, is the image of the same three-dimensional point. From the association of
point (z,y) to (x’,y’), we have a displacement vector, and from several displacement vectors
the three-dimensional motion may be obtained, as it has been shown by several
published algorithms (Section 5.3 oontain.;s several references). Sections 5.3 and 5.4
criticized the approaches that use correspondence, from the point of view that
correspondence is very difficult. So, we would like to solve this problem, without having to
go first through the solution of the correspondence problem. Our only input is the sets A
and A’, i.e. the perspective projections of a cloud of 3-D points before and after the motion. .
Our analysis is done for the case of a binocular observer. Of course, now we should
address the problem of finding depth, which requires the solution of the correspondence
problem between the left and right image. But we show in our analysis, that it is
possible to recover depth without correspondence, at least for the case of planar surfaces.
For the purposes of this section, we will assume that in the ease of nonplanar surfaces, the
depth is known.



In the sequel, we will address the problem of finding motion without correspondence, in
the case of discrete motion, for both planar and nonplanar surfaces. These cases will be.
treated differently.

5.7.4.1. Stereo without correspondence for planar surfaces

In this section we present a method for the recovery of the 3-D parameters for the set of
3-D planar points from their left and right images without using any point-to-point
correspondence; instead we consider all point correspondences at once and so there is no
need to solve the difficult correspondence problem in the case of the static stereo.

Let an orthogonal cartesian coordinate system OXYZ be fixed with respect to the left
camera, with O at the origin (O being also the nodal point of the left eye) and the Z-axis
pointing along the optical axis.

Let the image plane of the left camera be perpendicular to the Z-axis at the point'
(0,0,f), (focal length=f{).

Let the nodal point of the right camera be at the point (d,0,0) and its image plane
be identical to the left one; the optical axis of the right camera (eye) points also along the
Z-axis and passes through point (d,0,0).

Consider a set of 3-D points A ={ (X;,Y;,Z;)/i=1,2,3...n } lying on the same plane,
the latter being described by the equation :

Z=pX+qY +c

Let 01,0, be the origins of the two-dimensional orthogonal coordinate systems on each
image plane; these origins are located on the left and right optical axes while the
corresponding coordinate systems have their y-axes parallel to the axis OY, and their x-
axes parallel to OX.Finally let {(x,y)/i=123..n} and {(x,y)/i=123..n}
be the projections of the points of set A on the left and right retinae, respectively, i.e.

Xi fYi .
z, == (5.37) y =12 538 /i=123..n
Ui Zi Ui Zi

_f&i=d) 4 y = 6400 /i=123..n

Xri VA r —Z—

i i
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Let (x;;,y1) and (x,,yr;) be corresponding points in the two frames. Then we have that.

X, —%, (5.41)

fd
li 7z

13
=Y, (5.42)

where Z;, the depth of the 3-D point having those projections.
In the sequel, we prove that the quantity

s directly computable without using any point correspondence between the left and right
frames. We proceed with the following propositions:

5.7.4.2 Proposition : Using the aforementioned nomenclature the quantity
3

=173
where

k=0 /\k:tl, mmn €Z~ {0},
2*n

is directly computable.



Proof: Wehavethat

*

<

- : b ley-xy)
- = (fromequation (5.41)) = _/' Vi — 717 =
]

v
N|

-
]
-

i=m]

I - k
f X v

=2-"TT" "" 2- "TT" “fromequation (5.42)) =

i=1 - =1 -

nox.y,. nx.¥
il { ri
=Y fd -2 fd
Thus,

* *
eh_gud 3

(5.43)
From equation (5.43) the claim isobvious.

5743 Proposition : Using the aforementioned nomenclature, the parametersp, gand ¢

of the plane in view are directly computable without using any point-to-point
correspondence between the two frames.

Proof: The equation of the world plane when expressed in terms of the coordinates of the
|eft frame, becomes:

1 1
—Z—=(f_pxl_qy‘) ? (5.44)
So, from equation (8) it follows that:

:ZL = (f-pxu-qYu) ;:If i=1,2,3...n (545)



Now, we have:

*
n
E = Z(f--pxh. ¥y b
i=1"% e cf
or

LY i n L n k n *
Loz T &N Ty [> pryyt > w1 548
i=1% i=1 i=1 i=1

The left-hand side of equation (10) has been shown to be co_mputable without using
any point-to-point correspondence (see Proposition 5.7.4.1).

If we write equation (10) for three different values of k, we obtain the following linear
system in the unknowns p,g,c which in general hasa unique solution (except for the case
where the projection of al pointsof set A, have the same y-coordinate in both frames):

177 ) d - e 2 - [ Z px 3 + Z 93,55 1 5.47)
i=1 a i=1 ¢ i=1
XY y

n - n 1
-Zl fd -—Z'S}-}:TZJ’H [ZP;;J',,‘FZQJ’, l.](5.41&1)
i=

Iff If—TZ/fr - A

where we used equation (5.43) to the left hand sides.
The solution of the above system recovers the structure and the depth of the points

of set A without any correspondence and thisis the conclusion of Proposition 5.7.4.2.
5.74.4. Practical Considerations

I /V'> ZN >xo>

ll ll

We have implemented the above method for different values of ki,k2,k3 and especialy

for the cases:
a) k=0 ko, =1/3 k3=2/3
b)k!=0 ko, =1/3 ks=1/5



Thenoiseless cases give extremely accur ate r esults.
Before we proceed, we must explain what we mean by noise introduced in
images. When we say that oneframe (left or right) hasnoise of a%, we mean that L
planecontainsN projection points we added [(N*a)/100] randomly distributed poir

Note: [] denotestheinteger part of itsargument).

When the noise in both frames is kept below 2% then the results are still .
satisfactory. When the noise exceeds 5% then only the value of p gets corrupted, bui
valuesofg and ¢ remain very satisfactory. To correct this and get satisfactory res
for high noise percentages, wedevised thefollowing method that usesthree cameras

" Weconsider the three camera configuration system asin Figure 5.6, whereth<
camera hasonly vertical displacement with respect totheleft one. Ifall threeim;
are corrupted by noise ( ranging from 5% to 20% ) then application of the algoritl
Proposition 3.2) to the left and top frames will give very reasonable va-lues for p a
and corrupt g, which q, aswell asc, are accurately computed from the applicatk
thesamealgorithm totheright and left frames" .

So, by applying our stereo ( without correspondence ) algorithm to tr,
camera configuration vision system, we obtain accurate results for the parame
describing the 3-D planar patch, even for noise per centages of 20% or slightly more,

for different amountsgf noisein the different frames.
Y
(0,d,0)
o
[
4.0.0) {
- . . 2>
or Figure 5.6: Trinocular system



&745. Recoveringthedirection of trandation.
Here we treat the case where the points of set A just rigidly translate, and we wish
to recover the direction of the translation. In this case, the depth is not needed but the
orientation of the plane isrequired. The general caseis treated in the next section.

5.7.4.5.1 Technical prerequisites*
Congder a coordinate system OXYZ fixed with respect to the camera; O

coincides with the nodal point of the eye, while the image plane is perpendicular to the Z-
axis (focal length=f), that ispointing along the optical axis (see Figure 5.7.).

Let usrepresent points on the image plane with small letters (e.g (x,y)) and points
inthe world with capital ones(e.g. (X,Y,2)).

Let us consider apoint P=(XifYi;Zi) in the world, with perspective image(xy,y),
vfherex;= (fX,)/Zandy,= (fY1)/Z.

(Xi.Yi.Zi>

(aX.aY,s2)
(X2,¥2,Z2)

z

digplacement vector

Figure 5.7: Motion of a point

If the point P moves to the position P'=(X2,Y2,22) “ith

Xp=X; +AX (5.50)
Yo=Y +AY (5.51)
Zy=7,+LZ (5.52)

then we desire to find the direction of the translation (AX/AZ,AY/AZ).
If the perspective image of P' is (X2,y2), then the observed motion of the world point in the
image plane is given by the displacement vector : ( X2-xi, y2-yi) (which in the case of very
small motion isalso known as "optical flow").

We can easily prove that :



X, — X, = ————ee (5.53)

fAY —y AZ

—y, = — 5.54
Y27 Z, +AZ ©.54)

Under the assumption that the motion in depth is small with respect to the d

the equations above become :

fAX — x AZ

X, —x = -———Z—-l———-—— (5.55)
fAY —y AZ

Yo=Y = 7 (5.56)

The above equations relate the retinal motion ( left-hand sides ) to the
motion AX, AY, AZ.

5.7.4.5.2 Detecting 3-D direction of translation without correspondence.

Consider again a coordinate system OXYZ fixed with respect to the camera
Figure 5.8, and let A={(X;,Y;,Z;)/i=1,2,3 ... n}, such that

Zi=pX;+qY;+c ,1=1,2,3...n
that is the points are planar. Let the points translate rigidly with transl

(AX,AY,AZ), andlet {(x;yi) / i=1,2,3..n} and {(x{,yi)/1i=1,2,3, ... n} be

projections of the set A before and after the translation, respectively.
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Consider a point (x;,y;) in the first frame which has a corresponding one (x;’,y;’ ) in
the second (dynamic) frame.
For the moment we do not worry about where the point (x{’, y;’) is, but we do

know that the following relations hold between these two points

, fAX -z, AZ
X, —x = —-——Z—— (5.57)
12
, fAY -y, AZ
V== T (5.58)

i
where Z; is the depth of the 3-D point whose projection (on the first dynamic frame) is the
point (x;,y;). Taking now into account that

1 f-px —-qy, (

—_—= 5.59

Zl. cf )

the above equations become :
R f—P xi -q yi
xi-xi=(fAX—x‘. AZ) o F (5.60)
. f-px —qy, :
¥, =y, =(fAY -y, AZ) (5.61)
cf

If we now write equation (24) for all the points in the two dynamic frames and

sum the resulting equations up, we take :

no n f-px —qy,
D> —z)= > [(fAX —x AZ) C'f -]

i=1 i=1

or

noo, n ff-px,—qy)AX -x (f-px —qy)AZ
D -x)= D0 oy ] (5.62)

R ]




Similarly, if we do the same for equation (25), we take :

n . n f_pxi -qy‘
Z(yi—yi)= Z [((fAY -y, AZ) ————— ]
i=1 i=1 cf
or
LI o f-px,—qy)AY -y, (-px,—qy)AZ
2 b=y)= 20 1 6.63
i=1 i=1 cf

At this point it has to be understood that equations (5.62) and (5.63) d
require our finding of any correspondence.

By dividing equation (5.62) by equation (5.63), we get :

n n

SE-d D

=1 ]

KIK

ff=px=ayy) = (f~px;=qy,) 7]

~.
-
—

=1
n , n n
Z Yi— Z Y Z !
i=1 i=1

i=1

(5.64)

KIQ

f (f=px;—ay,) = (f-px;—qy,) 5]

Equation (5.64) is a linear equation in the unknowns AX/AZ , AY/AZ anc
coefficients consist of expressions involving summations of point coordinates in
dynamic frames; for the computation of the latter no establishment of any j
correspondences is required.

So, if we consider a binocular observer, applying the above procedure in botl
and right “eyes”, we get two linear equations (of the form of equation (5.64) ) in the
unknowns AX/AZ, AY/AZ, which constitute a linear system that in general has a un

solution.

5.7.4.5.3 What the previous method is not about, an unexpected bonus
some problems

If one is not careful when analyzing the previous method, then he might think
all the method does, is to correspond the center of mass of the image points before

motion with the center of mass of the image points after the motion, and then base



that retinal motion to recover three dimensional motion. But this is wrong, because
perspective projection does not preserve simple ratios, and so the center of mass of the
image points before the motion does not correspond to the center of mass of the image
points after the motion. All the above method does, is aggregation of of the motion
constraints; it does not correspond centers of mass. At this point we should mention that
the method we presented, in order to be valid, needs the set of the world planar points to
be visible by both eyes; otherwise, the mathematics is not valid. But, on the other hand,
this method would work with a textured region, for which we wouldn’t be able to find

corresponding interest points.

5.7.4.5.4 Practical considerations.

We have implemented the above method with a variety of planes as well as
displacements; noiseless cases give exremely accurate results, while cases with noise
percentages up to 20% (even with different amounts of noise in all four frames (first left
and right - second left and right ) ) give very satisfactory results (an error of at most 5% )

. We now proceed considering the general case.

5.7.4.6 Determining unrestricted 3-D motion of a rigid planar patch without
point correspondences.
Consider again the imaging system (binocular) of Figure 5.9, as well as the set A= {
(X;,Y1,Z;)/i=1,2,3 ... n }such that :
Z;=pX;+qY;+c i=1,23..n
i.e. the points are planar; let B be the plane on which they lie. Suppose that the
points of the set A move rigidly in space ( translation plus rotation ) and they become
members of a set A’ = {(X{,Y{,Z ) / i=1,2,3...n }. Since all o f the points of set A
move rigidly, it follows that the points of set A’ are also planar; let B’ be the (new) plane
on which these points lie.

W00



Figures 5.8: A gereoimaging system

In other words the set A becomes A’ after the rigid motion transformation. We wii
recover the parameters of this transformation . From the projection of sets A and i
the left and right image planes and using the method described in Section 5.7.4.3  the
A and A' can be computed. In other words, we know exactly the positionsin 3-D of al
points of the setsA and A' (and this hasbeen found without using
any point correspondences).

o, the problem of recovering the 3-D motion has been transformed to the followi
"Given the set A of planar points in 3D and the set A’ of new
planar points, which hasbeenproduced by applyingtothepoints
ofsetAarigidmotiontransformation, recover thattr ansfor mation.*

Any rigid body motion can be analyzed to arotation plus atranslation; the rot*
axis can be consdered as passing through any point in the space, but after this pol
chosen, everything else isfixed.

If we congider the rotation axis as passing through the center of mass (CM) ©
points of set A, then the vector which has as its two endpoints the centers of mass <
and CMy4- of sets A and A’ respectively, representsthe exact 3-D tranglation.

So, for the transl ation we can write

trandation - T = (X)Y,Z2) = CMa, - CMj

It remains to recover the rotation matrix.
Let, therefore, nj and 112 be the surface normals of the planes B and B\ Then, the an
between ni and n2 , where '

n n
ro'2
COs6= , with * « " the inner—product operator
Iy * | ns]
represents the rotation around an axis O102 perpendicular to the plane
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deffned by ni and 112, where

nXn

2 . f \
0-0, = , with " X ' the cross—product oper ator
1% [N X npJ P P

From the axis O102 and theangle G wedevelop a rotation matrix B,\. The matrix Ri
doesnot represent thefinal rotation matrix since we are still missing the rotation around
the surface normal. Indeed, if we apply therotation matrix Ri and the translation T to
theset A, wewill get aset A" of points, which is different than A', because the rotation
matrix Ri does nat include therotation around the surface normal 112

So we now havea matching problem : on the plane B' we have two sets of points A*
and A" respectively, and we want to recover the angle 4> by which we must rotate the
points of set A" (with respect to the surface normal 112) in order to coincide with those of
set A'.

Suppose that we can flnd angle 4> From <> and n2 we construct a new rotation
matrix R2. The final rotation matrix R can be expressed in terms of Ri , R2 as
follows:

R = Ri R,

It therefore remainsto explain how we can compute the angle <= For thiswe need
the statistical definition of the mean direction.

Definition .

Consder aset A ={(Xi,Yi)/i=123 ... n} of points ail of which lie on the same plane.
Consider the center of mass, CM, of these points to have coordinates (Xc"Ycn).
Let alsocircle (CM,1) bethecircle havingits center at ( Xen*Yam) and radius of length
equal to |.L et Pi bethe intersections of the vectors CMA]j with the circumference of the
circle (CM,1), i= 1,23 ... n. Then the " mean direction” of the points of the set A, is defined
tobethevector MD, where

- on
MDs ~ CMP,

=1



It is clear that the vector of the mean direction is intrinsically connected wit
set of points considered each time, and if the set of points is rotated around an
perpendicular to the plane and passing through CM, by an angle «, the new

direction vector is the previous one rotated by the same angle w.

So, returning to the analysis of our approach, the angle ¢ is the angle betwee

vectors of mean directions of the sets A’ and A” ( which have obviously, common C)}

Moreover, it is obvious that the angle ¢, and therefore the rotation matri>
cannot be computed in the case the mean direction is 0 (i.e. in the case the set of poi

characterized by a point symmetry).

5.7.4.7 Determining unrestricted 3-D motion of a rigid surface without point

correspondences

In this section we consider the problem of the recovery of unrestricted 3-D moti
non-planar surfaces. Again, we consider a set of rigidly moving points, and we as
that the depth information is available. In another work [Aloimonos et al, 1986
describe how to recover the depth of a set of non-planar points from their stereo in
without having to go through the correspondence problem. So consider a bino
imaging system, and aset A={P; = (X;, Yi,Z;),i = 1,2,3... n} of 3-D non-planar p«
The coordinates are with respect to a fixed coordinate system that will be used throug
this section (we can consider as this system either the system of the left or right car
or the head frame coordinate system). Applying the method described in {Aloimonos
1986], from the left and right images of the points of set A, we can recover the memb
A themselves, i.e. their 3-D coordinates. Suppose now that the points of the set A
rigidly in space (translation plus rotation) and that they become members of the set A
Pi=X4, Y5, 23)/1i=1,23..n} Itis evident that the set A’ can be recovered exact
the set A with the method described in [Aloimonos et al, 1986] . In other words, the
becomes A’ after the rigid motion transformation. We wish to recover the paramete
this transformation. We have already stated that from the projection of the sets A a
on the left and right image planes and using the method described in [Aloimonos
1986] , the sets A and A’ can be computed. Hence we know exactly the positions ¢

points of the sets A and A’ (and we came up with this result whithout relying to any p
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to-point correspondence ). So, for the purposes of this section we will assume that the
depth information isavailable.

From theabove discussion, we see that the problem of recovering the 3-D motion has
been transformed to the following:

* Given the set A ofnonplanar points and the set A* corresponding to the new positions of
the initial points after they have experienced a rigid motion transformation, recover that
transformation, without any point-to-point correspondences! "

Any rigid motion can be analyzed to a rotation plus a trandation; the rotation axis
can be considered as passing through the any point in space, but after this point ischosen,
everythingelseis fixed.

If we consider the rotation axis as passing through the origin of the coordinate
system, then if the point ( Xj, Y{, Zx) € A movesto a new position (X'i, Y*i, Z'i) € A", the
following relation holds:

X', TeZi) = R(XiYi,Zi)" +T /i=123..n (5.65)
where R is the 3x3 rotation matrix and Ts(AX, AX, AZ )" is the translation vector. We
wish to recover the parameters R and T, without using any point-to-point
cor respondences.

L et,

(Xi(Yj,Zi)' mPj and (X'i,Y'i2\) =Pi [i=123..n

Then, equation (5.65) becomes: |
Pi=RP'i+T /i=123..n

Summing up theabove n equationsand dividing by the total number of points, n, we get:

Z', | <=
i=1 i=1

== R T— 4T 5.66
- - ( )

From equation ( 5.66 ) it is clear that if the rotation matrix R is known, then the
translation vector T can be computed. So, in the sequel, we will describe how to recover
the rotation matrix R. In order to get rid of the tranglational part of the motion we shall
transform the 3-D pointsto " free" vectorsby subtracting the center -of-mass vector.



Let, therefore, CMs and CM4- be the center-of-mass vectors of the sets of poil
and A’ respectively;ie. CMp =L (P;j/n)and CMy = £ (P%/n). We further
define:

vi=P;-CM, /i=123..n

vi=P3-CMyr /i=123..n

With these definitions, the motion equation ( 5.65 ), becomes :
vi=Rv; /i=123..n

where R is the ( orthogonal ) rotation matrix.
If we know the correspondences of some points ( at least three ) then the matrix R c:
principle be recovered, and such efforts have been published [Huang and Blonstein, 1
. But we would like to recover matrix R without using any point correspondences.
Let,

Vi = (v,i, vy, Vz) /1=123..n

Vi=(Vy, Vy, ve) /i=1,23..n
Note that v; and v’; are the position vectors of the members of sets A and A’ respect
with respect to their center-of-mass coordinate systems.
We wish to find a quantity that will uniquely characterize the whole sets A and .
terms of their " relationship ” ( rigid motion transformation ). We have found tha
matrix consisting of the second order moments of the vectors v; and v’; has t

properties. In particular, let

n n n
2
. L v, 2 VxVy; . Z vy, vy
i=1 i=1 i=1
n n n
Vy.Vx: vty Z vy vz
V= =1 0 i=1°" j=1 "0 1
n n n
2
. 21 Vx;Vz; . z VyiVz; ; Zj
1= 1= =
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n n
v 2 P o s 9
- . 2vxiv Y: zvxlv Zj
i=1 i=1 i=
o n n
PR ) ’2 y .7
V= TV ¥i AL
i=1 I = =]
It n n
: J ] ¥ 3 '2.
B VxVy IVyVy BV
i=1 i=1 i=1
R =

From theserelations, we havethat:

Vo =E(V VYV ) (VY i, V) =

jml
=S R(V*,Vy, Vz) (Vi Vy.Vz) R =

=RVR!

o) V'=RVR' (567)

At this point it should be mentioned that equation ( 5.67 ) represents an invariance between the two sets of 3-D
points A and A', since the matricesV and V are similar. In other words we have discovered that matrix V
remains invariant under rigid motion transformation. From now on, the recovery of the rotation matrix R is
simple and comes from basic Linear Algebra.Furthermore equation (5.67) implies that the matrices V and V*
have the sameset of eigenvalues[ Stewart, 1980 ].

But sinceV and V* are symmetric matrices, they can be expanded in their eigenvalue decomposition, i.e.

thcecro ovict motrirofl S T eii/sst> fhate



V=SDS? (5.68)
V=TDT' (5.69)

where S, T are orthogonal matrices having as columns the eigenvectors of the matri
and V’ respectively ( e.g. i-th column corresponding to the i-th eigenvalue) an
diagonal matrix consisting of the eigenvalues of the matrices V and V. We ha
mention at this point that in order to make the decomposition unique we require the

eigenvectors in the columns of matrices S and T be orthonormal.

From equations ( 5.67), (5.68), (5.69) we derive that matrices T and R S both co
of the orthonormal eigenvectors of matrix V'. In other words, the columns of matrice
and T must be the same, with a possible change of sign. So, the matrix RS is equal t
of eight possible matrices, T;,i=1,..,8. Thus, R=T;ST.i=1,..,8. But the rotation m
is orthogonal and it has determinant equal to one. Furthermore, if we apply matrix
the set of vectors v; then we should get the set of vectors v;’. So, given the above t

conditions and Chasles theorem, the matrix R can be computed uniquely.

There is something to be said about the uniqueness properties of the algori:
When all the eigenvalues of the matrix V have multiplicity one then the problem k
unique solution. When there are eigenvalues with multiplicity more than one, thent
is some inherent symmetry in the problem that exhibits some degeneracy properties.
example, if the surface in view (i.e. the surface on which the points lie) is a soli
revolution, then there is an eigenvalue (of the matrix V) with multiplicity 2, and only
eigenvector corresponding to the axis of revolution can be found. The other
eigenvectors define a plane vertical to the axis of revolution. So, in this case there i
inherent degeneracy. We are currently working towards a complete mathemat
characterization of the degenerate cases of the problem. We are also develoj
experiments to test the robustness of the method as well as setting up the equipmen
experimentation in natural images. The study of the sensitivity of the algorithm +
respect to different number of points in the successive dynamic frames, is one of
future goals. The algorithm is not sensitive in small perturbations of the po:
[Aloimonos et al, 1986].

5.7.4.7.1. Experiments.
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We will describe experiments for both the detection of structure and depth without
correspondence and the detection of 3-D motion without correspondence for the case of
planar surfaces. Experiments for the case of curved (general) surfaces are under
development.

Inour experiments, we considered a set of three-dimensional planar points, which
we projected perspectively in both the left and right frames. From the projections
we recover the structure and depth of the 3-D plane using the alogrithm described in
Section 3, or using the projectionsin three frames . It isclear, that the equations that
are used to develop the linear system described in Section 5.7.4.3, are based on the
assumption that the number of points on (left and right frames ), is the same. But in
noisy situations, this is not thecase. In particular, inreal imagesoperators have first
to be applied on all four frames (two before the motion and two after the motion ) that
will produce pointsofinterest, and then the theory developed in this-paper is applied
tothese paints.

But any method that will produce points of interest from intensity images is bound
to have errors due to the noise in the images and the unpredictable behavior of the
intensity function in natural scenes. When we say that the methods that find interesting
points in intensity images are bound to errors, we mean that there will be pointsin
the left frame whose corresponding ones have not been found in the right stereo frame,
and also there will bepointsin the firs dynamic frame whose cor- responding ones -
have not been found in the second dynamic frame, and vice-versa. So, the number of
points will not be the same in the different images . Because of that, our method is
bound to have an error, sinceit is based on the assumption that the number of pointsis
everywher e the same. To reduce thiserror we do the following: Equations (5.47), (5.48),
(5.49) are not affected if both sides are divided by the number of pointsin all the frames
(under the assumption that the number of pointsisthe same in all frames). If now the
numbers of pointsin the left and right fram e are different, say n*ft and n* ", in the
static stereo case, then we divide the summations resulting from each of the frames, by
the number of pointsof the corresponding frame, and the resulting equations are (for
the static stereo case):
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where n ft andrtright represent the numbers of points in the left and right frames
respectively. It isclear that the resulting equations are approximate, but our experiir
show that the introduced error is very small. It has to be mentioned , however, tha
intrinsic difficulty, appearing in the traditional methods (i.e. stereo, optical flow ), ©
being abletofind corresponding points, exists even in our algorithm but under thefoi
~ different numbers of points in the different frames, because of the globality of
approach. However, even considerable differences in the numbers of points among
different frames hardly affectsthe results. Furthermore, the same technique is appli
the case of motion as well.

Figure 5.10 showsthe projections of a set of planar points on both the left and i
frames. The frame on top is the superposition of the left and right frames. The a<
parameter s of the plane wer €
p = 0.0,qg = 0.0, c = 10000, whilethe number of points was equal to 1000.

Wedid not include any noiseto our pictures.
The computed oneswere: P=-0.0, Q = -0.0, C = 10000.0



Figure5.1(h
Ster eo without correspondence

Figure 5.11 shows the projections of a set of planar points on both the left and right
frames. The frame on top is the superposition of the left and right frames. The actual
parameters of the plane were:

p = 1.0, q=1.0, c =1*0000, while the number of pointswas equal to 1000.
Wedid not include any noiseto our pictures. :
The computed ones were: P = 0.98, Q = 1.00, C = 9809.8

Figure 5.12. shows the projections of a set of planar points on both the left and right
frames. The frame on top is the superposition of the left and right frames. The actual
parameters of the plane were:

p = 1.0,g = 1.0, c = 10000, while the number of points was equal to 1000.
Weincluded 5% noiseto theleft frameand 7% to theright one.
The computed ones were: P = 1.7, Q = 1.2, C = 10266.7

Figureb5.11: Figufe 512
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Figures 5.13a., 5.13b. show the results from the 3-eye method. Here the projections of ¢
set of 3-D planar points on all the three frames are considered. The actual parameter:
were:

p=0.0,q=0.0,c =10000(Figure5.13a.) and p=1.50,q = 2.30,c = 10000 (Figure
6.13b.) respectively. The number of points was equal to 1000, in both pictures.
Picture 5.13b. did not have any noise, whereas Figure 5.13a. had 5% noise in the lef
frame and 7% noise in the right and top frames.
The computed ones were: P = 0.10,Q = 0.05,C = 10197.0 and
P=151,Q=222,C = 10000.0 respectively.

‘Irinocular stereo
Figure 5.13a. Figure 5.13b

Figures 5.14,5.15,5.16,5.17,5.18, show the 3-D motion determination results. In figure
5.5., the two frames at the bottom represent the projections of a set of 3-D planar point:
on the left and right eyes respectively. The two frames at the top, represent the
projections of the same set of points, after it has been translated. The actual direction o
translation was equal to (-2.0, 2.0), and the computed one was (-1.9,2.0).
The noise percentage was equal to 10% in all four frames while the number of points was
equal to 1000. At this point it has to be mentioned that the parameters p,q were alsc
computed computed,since the latter are used in the determination of the direction o

translation. Figures 5.15and 5. 16, represent similar experiments.
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Figure 5.14: Direction of translation without Correspondence




Figure 5.15 Figure 5.16

Figures 5.17 and 5.18, show experiments determining the general motion . The results
were computed according to the method presented in section 5.7.4.6, and the results were

recalculated with respect to the left-camera coordinate system.

tual m-18 & theta « © 123e%1 ¢
TLal Trans = 108 Qeseue 150 VOREOVL 10e &eeund

Figure 5.17 Figure 5.18
NOTE: All the parameters involved in the above experiments that have a dimension of
length (L1 MO TY) are calculated in pixels , where 1 pixel = 100pm.

5.8. Conclusion and fumrg work.

We have presented a method on how a binocular ( or trinocular ) observer can recover
the structure, depth, and 3-D motion of rigidly moving surface patch without using any

static or dynamic point correspondences. It is one of our future goals to experiment - for
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the application of the method in natural images. We will also work towards the analysis

of nonrigid motion and occluded scenes.



6

Shape and 3-D Motion from Contour

Results

In this chapter we study the detection of surface shape and three-dimensional motion
from the perception of a planar contour. We prove that a binocular observer can compute
the orientation and the 3-D motion of a moving contour without using point to point
correspondences.In particular:
1) We develop constraints between the coordinates of the points that constitute the
contours in the left and right retina of a binocular observer that enable him to detect the
structure and the depth of the plane in view without using any point to point
correspondences.
2) We develop constraints between the lengths and the areas of the contours in the left
and the right retina of a binocular observer that enable him to compute the structure and
the depth of the plane in view without any point correspondences. These constraints are of
significant value by their own, and they can be successfully used in many related areas,
as object recognition and identification.
3) We discover constraints between the retinal motions of the contour and its three-
dimensional motion that make it possible to recover 3-D motion without any
correspondences,
4) and finally we generalize some of the above results for a monocular observer. In
particular, a translating monocular observer can recover the shape of an imaged contour

without using any point to point crspondences.

195
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The basic assumption here is that the contours in the left and right images have been
found and the correspondence between them has been established.

61 Introduction

The human percever is able to derive enormous amounts of information from the
contours in a scene.  As part of this capacity, we are able to use the shapes of image
contours (asthey are seen by both eyes) to infer the shapes and dispositions in space of the
surfaces they lie on, as well as their motion. To the extent the inferences we draw are
accurate, our strategies for drawing them must have some basis in the character of the
visual world, just as the efficacy of stereopsis as a source for depth information has a basis
in the geometry of projection and triangulation. The aim of the research described hereis
(1) todiscover constraints on the visual world that allow surface shape and motion to be
reliably inferred from contours in images, (2) to derive methods of inference from these
constraints. The interpretation of contours by a binocular observer fals into four
subproblems (following Witkin, [Witkin 1981]). In particular these four subproblems are
the following:

a) Locatingcontoursintheimages.

If contours are to be used to infer anything, they must be found. The human perceiver
has little difficulty deciding what is and is not a contour, yet the automatic detection of
edges has proved very difficult. Perhaps this fact should not be surprising; the contours
that we see in natural images usually correspond to definite physical events, such as
shadows, depth discontinuities, color differences and the like. Our ability to detect these
events may say more about their sgnificance for image interpretation than about their
ease of detection. Why should we expect events that have ssimple descriptions in terms of
the structure of the scene to have smple descriptions in terms of the image intensity as
well? If the physical significance of contours is taken as their primary feature, then at
least we know what is being detected, even if we don't know how. But recent research
[Nalwa, 1985] showsthat we are in pretty good state as far as detection of contours goes.
Actualy, we can say that we can fairly wel detect the contours in animage, even if there
are someinaccuracies.

b) Labeling contours (i.e. distinguishing contours which are due to different physical
events) :

If contours correspond to different physical events, then an essential component of
their interpretation must be to decide which contours denote which event, since each kind



of contour imparts a different meaning. Recent work has shown that strong struc
constraints can be applied to distinguish one kind of contour from another.

c) Corresponding contours (i.e. finding which contours in the left and right images a
image of the same 3-D contour).

Before we apply some interpretation method to the images of the contours (lef
right), we should know which contours in both images correspond to each other, i.e.
are the images of the same three-dimensional contour.

d) Interpreting contours.

Even after contours have been found, labeled and the corresponding ones in th
and right images have been identified, not much is known about the physical struct
the scene, if we don’t wish to resolve in a point-to-point correspondence between th
and right images. It is clear that contours play an important role in the ht
perceiver’s ability to decide how things are shaped and where they are, apart fror
application of specific “higher level” knowledge to objects of known shape. This res
addresses this fourth problem, i.e., given the left and right image of a moving plana
contour, to recover its orientation, depth and 3-D motion, without using any point-to-
correspondence neither between the left and right images nor between the dyn
frames. The reason that we want to solve the problem without using j
correspondences is that correspondence is & very hard problem and it does not
tractable with the available tools. So, we would like to address the problem in such :

that we avoid the correspondence problem.

6.2 Motivation

This research is motivated by the inherent difficulties of the conventional s
problem as well as the difficulty of the dynamic correspondence problem (to recover
flow or discrete displacements, that will be used for the recovery of 3-D motion).
criticism about the difficulty of dynamic correspondence was presented in the pre
chapter.

Passive ranging by triangulation methods, which is employed successfully by hu
under certain conditions, has received much attention in computer vision literatu
recent years [Jarvis, 1983]. It is obvious that the ability to recover absolute ran
objects in a scene would be important in a variety of robotic applications. To date,
two basic methods of passive ranging have been reported, the “static stereo,” i.e. the 1

two cameras separated by a known baseline and “motion stereo,” i.e., the use of a s
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camera moving in a known way through a stationary scene. Recently, a new concept has
been introduced for passive ranging to moving objects, termed " dynamic stereo," which is
based on the comparison of multiple image flows [Waxman et a/., 1984]. In the sequel, we
will only deal with the criticism of the first-method (static stereo). Most of the literature
on passive ranging has been concerned with the difficult " correspondence’ problem
associated with the assignment of stereo disparities (for the static stereo method). Beside
the traditional method of intensity correlation between images, much attention has been
- paid to the theory of Marr and Poggio [1979], with implementation by Grimson [1981],
The use of more than two camera locations, to aid in solving the correspondence between
images, has been approached in different ways by Tsai [1983] and Moravec [1981].
Nevertheless, solution of this correspondence problem remains a computationally
expensive and dow process, with partial successin a variety of input images. Moreover, a
maximum ranging distance is implied by the finite resolution of the cameras and the
statically configured baseline between cameras. Mogt of the work needed to solve the
correspondence problem deals with the matching of microfeatures, such as points of
interest (corners, high curvature points), and edges. A natural question that arises then,
is: Is it possible to recover structure and depth, given that we have matched a
macrofeature (i.e., a planar contour) instead of a microfeature? We prove that it is. Of
course in this study we don't deal with "how to match the planar contours in the two
stereo frames,” i:e., to find in both images the contours which are due to the projection of
the same three-dimensional planar contour (size, color, texture, fractal dimension could
be used for the solution of thisproblem). Also, it hasto be realized that the constraints for
the static stereo problem are unique. The constraints cannot change. But the method
we propose, which is based on a global approach, can be considered as immune to noise,
sinceit givesvery good resultswhen the images ar e corrupted with noise up to 7%.

We also show that it is possible to solve the 3-D motion determination problem
without using point-to-point correpondence for the case where the imaged object is a
planar contour. In the previdus Chapter we showed that thisis possible for a collection of
points. Herewe show that it is possible for the case of a planar contour, i.e., a binocular
observer can understand the 3-D motion of a contour, from two temporally close positions
of the contour, without using any point-to-point correspondence. Of course there are still
difficulties with this new approach and the inherent problems of the dynamic imagery
appear in another form, different from the one of the traditional methods (onecamera — >



retinal motion --> 3-D motion); but it turns out that these problems, in the prese:

small noise percentages, hardly affect the results.

The organization of this Chapter is as follows. Section 6.3 describes previous
Section 6.4 introduces the concept of “aggregate stereo,” a method that compute
structure and depth of a 3-D planar contour from its images on the left and righ
retina, and that was basically presented in the previous chapter.. Section 6.5 intro
new constraints for the stereo problem, which are not based on triangulation, but o
change of area and perimeter in the left and right images of the contour. Sectio
introduces the concept of determining the direction of the translation of a transl
planar contour, without using any point-to-point correspondence, and introduce
reader to Section 6.7 which deals with the solution of the general problem (the case v
the 3-D planar contour is translating and rotating).

In what follows, because of the discrete nature of images, we will consider a co
either as a collection of points (which it actually is) or as a continuous curve, when n

to establish the mathematical rigorousness of a proof.

6.3 Previous Work

The idea of using more than one camera to recover the shape of a contour seems
new.

The recovery of three-dimensional shape and surface orientation from a
dimensional contour is a fundamental process in any visual system. Recently, a nu
of methods have been proposed for computing this shape from contour. For the most
previous techniques have concentrated on trying to identify a few simple, ge
constraints and assumptions that are consistent with the nature of all possible object
imaging geometries in order to recover a single "best” interpretation, from amon
many possible for a given image. For example, Kanade [1981] defines shape constr
in terms of image space regularities such as parallel lines and skew symmetries t
orthographic projection. Witkin [1981] looks for the most uniform distributi
tangents to a contour over a set of possible inverse projeétions in object space
orthography. Similarly, Brady and Yuille [1984] search for the most compact s
(using the measure of area over perimeter squared) in the object space of inverse proj
planar contours.

Rather than attempting to maximize some general shape-based evaluation fun

over the space of possible inverse projective transforms of a given image contour
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keeping in our framework of attempting unique solutions without employing any
restrictive assumptions and heuristics, we propose to find a unique solution by using more
than one camer a, since it can be easily proved that only one image (under orthography or
~ perspective) of a planar contour admits infinite intepretations of the structure of the
world plane on which the contour lies, if no other information is known. Finally, the need
for a unique solution, which is guaranteed in our approach, comes also from the fact that
there exist many real world counterexamples to the evaluation functions that have been
developed to date. For example, Kanade's and Witkin's measures incorrectly estimate
surface orientation for regular shapes such as ellipses (which are often interpreted as
danted circles). Brady's compactness measure does not correctly interpret non-compact
figures such asrectangles since he will compute it to be a rotated square (e.g. if we view a
rectangular table top, we do not see it as a rotated square surface, but as a rotated
rectangle)

Finally, the need for the solution of the 3-D motion parameters determination
problem without using point-to-point correspondence has recently been appreciated by
Kanatani [1985 ]. But the proposed methods, despite their mathematical elegance, are
quite artificial and subject to numerical errors. The methods that we will propose in the
following sections are quite intuitive and can be considered immune to small noise
per centages.

6.4. Aggregate Stereo

In this section we present a theory for the recovery of the three-dimensional
parameters of a planar contour, from its left and right images, without using any point-to-
point correspondence. Instead, we consider all the point correspondences at once; thus,
thereisno need for the solution of the correspondence problem of points. Correspondence
of thecontours asa wholeisrequired.

L et acoordinate system OXYZ be fixed with respect to the left camera, with the Z axis
pointing along the optical axis. We consider that the image plane |, is perpendicular to
the Z axis at the point (0,0,1). Let the nodal point of the right camera be the point (d,0,0),
and itsimage plane | ,,; identical to the previous one. Consider also a plane P in the world
with equation Z = pX + qY + ¢, which contains a contour C and consider the images
(perspective) C/ and C, of the contour on the left and right image planes respectively (See
Fig. 6.0). From this point we will denote the coordinates on the left and right image
planes by (x/,y/) and (x.,y) respectively. We consider every contour on each image plane



asacollection of points. So,

C‘ = [(xli,y!i) I i= 1....!’1} and Cr = [(xr‘.’yfi) l =R nl

Then with the method that was analyzed in section 5.7.4.1 we can recover
orientation anddeptitof the contour.

:/ e’ ]

Figure 6.0

The algorithm, that is the same asin section 5.7.4.3, is not sensitive to small i
percentages, as it was observed from experiments.

It isobvious that in this case the triangulation constraint has been aggregated «
the three-dimensiona surface (plane) can be represented with few (3) parame
Simulations on synthetic data with different percentages of uniform noise (up to 7<
both frames (Ieft and right) indicate that the algorithm isimmune to noise, since thex
inthe resulting plane parameters (p,q,C) is negligible.

At this point we should also explain what we mean by noise. When we hav.
images of a contour, and we say that the images are corrupted by noise a«. we mean



we randomly drop from both frames (left and right contour images) aj% and a,% of the
points that constitute the left and right contour respectively, witha = (a; + a,)/2. Sucha
noisy situation is te be expected in real images, due to perspective effects and bad
behaving intensity functions. (We should remember that the contour points will be
extracted from intensity images.) Finally, in the case where we are imaging a textured
planar surface, we first preprocess the left and right images to extract points
[Bandyopadhay, 1984; Kitchen & Rosenfeld, 1980; Moravec, 1977], and on these points we
apply the algorithm of Section 2.2. But this algorithm expects the same number of points
in both frames, something that will not be the case in actual situations, because of the
following two problems:

a) Any method that finds interesting points from intensity images is bound to

errors, i.e., there will be points in the left frame for which there will not exist

corresponding ones in the right frame, and vice versa.

b) There are points seen by the left camera which are not seen by the right

camera, and vice versa.

To simulate the effects of the noise due to the above reasons, we add random points to
both frames. When we say that there is noise a%, we mean that we have added a;% and
a,;% random points in the left and right frames respectively, witha = (a; + a,)/2.Ina
later section we describe relevant experiments, and explain some techniques that have
been used in the actual implementations in order to reduce the error in the computed
parameters.

6.5. Orientation of a contour without correspondence

In this section, we show how to recover the orientation of a planar contour without
using any correspondence between the left and right images of the contour and without
basing our approach on the triangulation procedure. To do this, we need some technical
prerequisites, which are introduced in the next section. In barticular, we will describe the
co-called paraperspective projection, which is an approximation of the perspective. The
results that we will get can be generalized for the case of the perspective projection. But
we present the results first for the case of the paraperspective projection because of the
intuition behind it and because of the natural extension of the results for the perspective

projection. The paraperspective projection has been already analyzed in Chapters 2 and 3.

The area ratio constraint



We have seen that the paraperspective projection is an affine transformation (se
3.1.2). The determinant of the matrix of an affine transformation is equal to the rat
the areas of the two patterns before and after the transformation. Specifically, if Sy i
area of a world contour that lies on a plane with gradient (p,q) and Sj is the area ¢

image that has mass center (A,B), then we have:

~1+4pA pB
i ‘= 1 ot \/(1+p2) va +p2)
Sy p? q(p+A) gB-p’-1
Va+pda+pi+ed Va+pha+pi+dd
or
S; 1 1-Ap-Bq
-S-; B Eé V1 +pi+g)
or
§,= 2. l=ApcBe o
B V1+p°+q%

Equation (6.8) relates the area of a world contour Sy, its gradient (p,q), the area
its image and its mass center (A,B). If we call the quantity S; “textural intensity,” anc
quantity Sw/p2 “textural albedo,” then equation (6.8) is very similar to the in

irradiance equation for Lambertian surfaces:

1+Ap+Bq
V1 +p+gdH
where (p,q) is the gradient of the surface point whose image has intensity I, A is the al
at that point and (A,B,1) the direction of the light source [Horn, 1977; Ikeuchi, 19

I=X

Thus equation (6.8) can be used to recover surface orientation.
In the sequel we present a theory for the recovery of shape from contour. Our ana

is based on three views or on two views. We proceed with the following proposition.

6.5.1 Shape from change in the area of a contour in three frames

6.5.1.1 Proposition
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Let a coordinate system OXYZ be fixed, with the -Z axis pointing along the optical
axis. We consder that the image plane Imi is perpendicular to the Z axis at the point
(0.0,-1). Condgder aplane Il with equation-Z = pX + qY 4- cin theworld, where (p,q) is
the gradient of the plane that contains a contour C. Furthermore, we consider two more
cameraswith image blanes Im, and I mg, whose coor dinate systems (nodal points) are such
that any world point has the same depth with respect to any of the cameras . Then
assuming par aper spective projection of the contour C on the image planes, the images Cy,
C,, and C; of the contour on the three cameras are enough to determine uniquely the
orientation of the plane II, without having to solve the point-to-point correspondence
between ClI, C2and C3.

Pr oof

Let S, S, and S; be the areas of the contours C,, C, and Cs respectively. Let also the
depth of the center of gravity of the contour C be 0. If S, isthe area of the contour C on the
plane 1, and (A, JBt (A2,B;) and (A3,B3) the centers of gravity of the image contoursC , C;
and C; respectively, then by dividing appropriately the area ratio constraints (previous
section), we get:

I-Ap-B
é o Hl—/ﬁ (612)

S, 1-A,p-Bg

5; - 1-A,p—Bygq <613)

Equations (6.12) and (6.13) constitute a linear system with unknowns p and q, which in
general hasa unigue solution (g.e.d.).

A degenerate case in the solution of the above system arises when the centers of all
three image planes are collinear. Experiments using the above method on perspective
images computed the orientation of the world contour with great accuracy. This is due to
the fact that equations (6.12) and (6.13), despite the fact that they were developed under
the par aper spective projection assumption, are true under perspective too, aswe prove in
the Appendix. |

We now proceed to solve the same problem, but given two images of the contour.



6.5.2 Solving the problem with two frames

In the previous section, we used three frames for the recovery of shape from cot
But the information we used from the image contours was only their area, a
particular how the area was changing from view to view. A useful piece of inform
that we have not yet utilized is the length of the contour (which is of course independ
its area in general). Using this information, we can solve the shape from contour pr«
with two projections (binocular observer) but in a computationally much harder
involving nonlinear equations.

Consider a coordinate system OXYZ to be fixed with respect to the left camera,
the -Z axis again pointing along the optical axis. We consider that the image plane
left camera is perpendicular to the Z axis at the point (0.0,-1). The nodal point of the
camera is the point (Ax,0,0) and the image plane of the right camera is identical to th
of the left camera. C is a contour on the world plane IT with equation -Z = pX +qY +
C_ and C,_ are the projections of the contour C on the left and right image respect
using the paraperspective projection. We can easily prove, assuming paraperspt
projection, [Aloimonos et al., 1985], that a small line segment (I cos 0. { sin 8) o
image plane is due to the projection of a line segment on the world plane, with lengt}

[ L, with

Ly= ————— V(k 005 +kysin’® + k sinBcosd)
(1—Ap—Bgq)

where:
k, = (1-qB) + (pB)* + p*
k, = (1-pAP + (qA)* + ¢
. = 2((1-gB)qA + (1-pA)pB + pq) ,
and (A,B) is the center of gravity of the area under consideration. So, given a contc
an image, if we break the contour into small line segments (edges) (l; cos8;, }; sin6;), i

..., n, then the length of the contour in the world plane is given by:

with
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B

L = ———
i~ 1-AP-Bgq

\/(klcoszﬂi + kzsinzﬁi + k40058 5in8))

where k, k,, k, are as above, and B is the depth of the center of gravity of the world
contour. If we consider now the left and right images of the contour C , and we compute
the length of the world contour from each one, we should find the same answer. In other
words, if L and L_ are the length of the world contour that we compute from the left and

right image, respectively, we must have
LL = LR (6.14)

Equation (6.14) is an equation in the unknowns p,q, but it is in a complicated form
that does not permit easy algebraic manipulations.
On the other hand, if S, S, S, are the areas of the world contour, the left image

contour and the right image contour respectively, then we have

SL ~ 1 l—ALp-BLq 6.15)

Sw B2 Va+pi+gd
and

Sp 1 1-App—Bpq 6.16)

Sw B Va+pi+dd

where (A ,B ) and (A;,B,) are the centers of gravity of the left and right image contour

respectively. From (6.15) and (6.16) we conclude
S . 1 —-A P -B 19

S "1-A0-Ba 6.17)

r 1-4Ap-Bq

Equation (6.17) represents a straight line in gradient space, or a great circle in the
(equivalent) Gaussian sphere formalism. Equations (6.14) and (6.17) constitute a
nonlinear system in the unknowns p and q. Experimental results, based on the following
discrete method, indicate that there exists a unique solution. The discrete method we
used is as follows: Equation (6.14) represents a great circle in the Gaussian sphere

(constant azimuth, varying elevation). By taking different values for the elevation angle



(180 values, if the different values are 1 degree apart) we solve for the gradient p,q ar
choose the p,q that makes the function

(L, - L))’ minimum.

6.5.3 Solving the problem with two frames and without the paraperspec
approximation

In the previous section we presented a method for the recovery of the shape
contour from two images (binocular observer) under the paraperspective projec
assumption. In this section we show that the problem can be solved by assur
perspective projection, but the solution is the same, with the method in the pres
section being better for its simplicity. The method presented in the previous section
based on Equations (6.14) (lengths) and (6.17) (areas). Equation (6.17), despite the
that it was developed under the paraperspective projection model, is exact. Wha
mean is that equation (6.17) is true under perspective projection and a proof of this ¢
is given in the Appendix. So, in this Section we shall show that an equation analogo
(6.14) can be developed if we assume perspective projection.

For that, we need to develop the first fundamental form of the world plane 2
function of the retinal coordinates, in order to be able to compute the length of the v
contour (up to a constant factor, of course), and use it in an equation analogous to (6.1-
we fix a coordinate system OXYZ with the Z axis as the optical axis and focal length F
we consider a plane I1 : Z = pX + qY + c in the world with a contour C on it, an
denote by (x,y) the coordinates on the image plane, then a point (X,Y,Z) in the v

planar contour C is projected onto the point:

X =

XF YF 6.18)
z'?" 7z 7
The inverse imaging function, call it f, is the function that maps the image plane
the world plane; so, if (x,y) is an image point, the 3-D world point on the plane Z = p
qY + cthat has (x,y) as its image, is given by

cx cy cF
(F—px—qy ' F—pzx—qy ' F—px—qy

fx,y) =(

The first fundamental form of f [Lipschutz, 1969] is the quadratic form
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Edx® +2Fdxdy + Edy? ,

with

E:fsf)'(

F =fdf, and

G=f-f .

If we consider two points (Xj) and (x+ dx, y+dy) on the image plane, then the three-
dimensiond distance dC of the corresponding points on the world plane is given by:

dC = V(Edx’ + 2F dxdy + G dy’ (6.19)

Consequently, if we have acontour C on the image plane, then the 3-D planar contour has
length:

f V(Edx®+2Fdxdy + Gdy?) (6.20)
Jc
The above expression (6.20) can be used to compute the quantities L, and Lr , S0 that
the equation L, = Lg can be developed. It has to be redlized that this equation can be
developed only in terms of p,g (the constants of the plane, which are different for the two
frames, are eliminated).

6.54 A comparison between paraper spective and per spective projection

In the previous section, we showed how to develop an equation analogous to (6.14)
which in conjunction with equation (6.17) would result in the recovery of the orientation
(p,) with exactly the same method presented in previous section. It is clear that in the
method presented here the desired p,q are the values that minimize the function (L, - Lg)*
while satisfying equation (6.17). The difference between the method using
paraperspective projection and using perspective projection isthat the functions (L, - Lg)*
are different. But despite this fact, our experiments showed that the values of (p,g) that
minimize Ly - Lg)2 while satisfying equation (6.17) are about the same in both the
paraperspective and perspective cases. So, we find the paraperspective  method more
appealing, for the smple reason that it gives the same results with the perspective one



and is computationally simpler, since it does not have to approximate numerical

integral (6.27), as the perspective method requires.

6.6 Finding the depth without triangulation

In the previous sections , we presented two methods on how to recover the shape
of a planar contour, without correspondence, and without any triangulation. I
section we show how to compute the depth of the 3-D planar contour (i.e., the param

of the world plane). From equations (6.15) and (6.16) we get:

§£ C-—-pd ( l—ALp—-BLq )2
SR c

1-4A rP —BRq

which is a linear equation in the unknown ¢. Of course, in the above equatio
paraperspective projection is assumed, but the introduced error is negligible, a
experiments at the end of the paper indicate.

So far, we have presented methods for the recovery of shape and depth from co
using three or two frames (binocular observer). We now proceed to a method fo
motion determination without having to find point-to-point correspondence betwee
successive dynamic frames.

6.7. Determining 3-D motion without correspondence

Here we only treat the case of pure translation. The general case is treated in the
section. The treatment in this section presumes real perspective projection
paraperspective.

Consider a coordinate system OXYZ fixed with respect to the camera, O the
point of the eye and the image plane perpendicular to the Z axis, (focal length 1) t
pointing along the optical axis . Let us represent points on the image plane with
letters ((x,y)) and points in the world with capital letters ((X,Y,Z)).

Leta point P = (X ,Y,Z ) in the world have perspective image (x,,y,) wherex =
andy, =Y /Z . If the point P moves to the position P’ = (X Y Z,) with

X, =X, +AX
Y, =Y, +AY
Z,= 2 +A4Z,

then we desire to find the direction of the translation (AX/AZ, AY/AZ). If the image ¢

(x,,y,), then the observed motion of the world point in the image plane is given
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displacement vector (x

;X,» ¥,-¥,) (which in the case of very small motion is also known as

optic flow).

We can easily prove that

AX — xlAZ
£ = —
2 1 z,+AZ

AY -~ y,AZ
Y27 N7 z +AZ
Under the assumption that the depth is large (and the motion in depth small), the
equations above become:

AX - x, AZ

Xy— X, = (6.28)
AY - ¥, AZ

Yo= ¥ = - (6.29)

All the publiéhed methods for the recovery of the direction (AX/AZ, AY/AZ) are based
on equations (6.28) and (6.29) (see [Ullman 1979; Longuet-Higgins, 1981; Tsai & Huang,
1984; Bandyopadhyay & Aloimonos, 1985]), which of course require the knowledge of the
correspondence between points in the successive frames. In the next section, we present a
method for the recovery of the translational direction of a moving planar contour (AX/AZ,

AY/AZ), without having to solve the point-to-point correspondence problem.

6.7.1 Detecting 3-D direction of translation without correspondence

This case is exactly the same as the one described in section 5.7.4.5.2.

Experimental results based on this method are accurate and robust. A recent method
presented by Kanatani [1985a, 1985b] has numerical instabilities that affect the desired
result a great deal.

6.7.2 The aperture problem in the “large”
It seems, from the analysis in Section 6.7.1 (which is equivalent to 5.7.5.4.2), that the

perspective effects are not taken into account. In other words, it is assumed that the



contour points are the same in number, before and after the motion. Of course, this i
true in general, because of the perspective effects; so, in general, the number of poir
the contours before and after the motion will not be the same. We call this prol
“apperture problem in the large.” The inherent difficulties of the point-to-point dyn
correspondence problem are present in this method too, but in another form (diffe
number of points in the two dynamic positions of the contour) because of the globali
the approach. This fact should not be surprising, because the “"constraints that relat:
retinal motion to the 3-D motion” have not changed. These constraints cannot cha
and the algorithm in Section 6.7.1 is just “aggregating” the motion constraints. In c
words, the method in Section 6.7.1 aggregates the motion constraints that have been
in all the approaches that employ point-to-point correspondences. But the point tha
raise is that despite this fact, if the motion is not large (so that the difference o
number of points in the two dynamic frames is kept small), theh the results are
accurate. Later we describe relevant experiments and explain some techniques that
used in actual implementations in order to reduce the error in the computed paramete
The next section deals with the general problem (unrestricted motion) and in this
the “apperture problem in the large” is not present, since the analysis is done in 3-D.
method in Section 6.7.1 is completely different from the method in Section 6.7.3 since
latter uses more sources of information (depth) and in a way that does not require i

correspondences.

6.7.3. Detecting 3-D motion without correspondence: General case

In the previous section we presented a method to recover the direction of
translation of a translating planar contour, from the motion of its left and right image
is clear that we did not use any depth information. In this section we present a methc
how to recover the motion parameters of a rigidly moviﬁg planar éontour. Any |
motion can be represented as a rotation around an axis that we can freely choose to
through any point of our choice, plus a translation. The problem then is reduce
finding the translation and the rotation matrix.

So, suppose that we have four images of a moving planar contour (left and right be
the motion, left and right after the motion). With the already presented methods , we
recover the orientation and depth of the 3-D contour before and after the motion, an

(p1,9q1, ¢1) and (pg, q2, ¢9) be the parameters of the 3-D contour before and after the mc



respectively. But since we know the contour in 3-D, we will do our analysis of the motion
in 3-D, instead of the image plane.
So, let

c1={(jryr.,z.)

i=1....,n]

and
C,= [ (XJYJZJ) | j= 1,...,m}
the two positions of the 3-D contour.
We assumethat the rotation axis passes through the center of gravity of Ci. This has
as an immediate consequence that the tranglation is given by the displacement of the
center of the gravity between the two positons of the contour. So,

Trandation = (AX,AY,AZ) =T =
= center of mass of C2-center of massof Ci =

i G T e A Y T L W L1

\'m n m n m n /

It is obvious that we used different points in the two positions of the contour.
Obvioudy, we did not need to do this. The methods that find the 3-D position of the
contour do not addressany " apperturein thelarge” problem. But the 3-D points are found
from their projections and discretization effects may cause a small difference in the
number of points of the two positions of the contour. We found that equation (6.29) gave
very good resultsaswe will seein the section on experiments.

What remains to be found is the rotation matrix. But since we know the surface
normals ni = (pi, qi, -1) , r%2 =(P2, <i2> "D of the two positions of the contour, we can
immediately find the rotation around an axis parallel to the plane of the contour Ci.
Indeed, the angle 9 between ni and n2

n

I un; )

00s9=

givestherotation angle around the axis
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fn, Xn, i

The angle 0 along with the axis I constitute a rotation matrix, R;. It is obvious that
not the final rotation matrix because it misses rotation around an axis perpendicul
the world plane. In other words, if we apply to contour C; the rotation matrix R; an
translation T, then the result will not be contour Cg, but a contour C;’ which lies o
same plane as Cg, and has the same center of gravity of Co9. To find the missing rots
we must find the angle that we have to rotate contour C;’ around an axis n which p:
through the center of gravity of contour Cq and is perpendicular to Co .

To do that, we start rotating the contour Cy’ until it coincides with contour Co. T!
done with small increments and the coincidence of the two contours (C;’ and C
signaled by the maximization of their common area. The resulting angle ¢ along wit
axis n constitute a new rotation matrix Rg. Obviously, the final rotation matrix is g
by R = R; ‘Ry .

Finally, it is clear that the method described above will not work (rotation matr
will not be found) for some symmetric contours. If, for example, the 3-D contour is a ¢
matrix Rg cannot be found, since Cy’ and Cs coincide; or if the 3-D contour is a square
the rotation angle ¢ = /2, then again matrix Ry cannot be found. This simple fact is
obviously true for human observers who observe apparent motion and are aske

estimate the 3-D motion parameters.

6.8 Using a monocular observer

Extension of the above results can obviously be trivially generalized for a monox
observer who is translating with known motion.

We proceed now with the final section which describes experimental results base
the previous methods for the recovery of structure, depth and 3-D motion of a mg

planar contour by a binocular or trinocular observer.

6.9 Experiments

Here we present experimental results from the implementation of the algorif
developed in this chapter. Figures 6.1-6.5 show results of binocular and trinoc
experiments. We did not add any noise, since we already have the problem of diffe

number of points in the different images.
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Figure 6.1 shows the perspective images of a planar contour taken by three cameras
at the positions (0,0), (0,50) and (50,0) respectively. The actual orientation of the contour
in space was given by the gradient (p,q) = (15,25). The computed orientation, was (p,q) =
(14.99, 24.99). Figure 6.2 shows again the perspective images of a planar contour taken
by three cameras at the positions (0,0), (0,50) and (50,0) respectively. The actual
orientation of the contour in space was (p,q) = (30,5) and the estimated orientation was
(p,9) = (30, 4.99). Figure 6.3 shows the images of a translating planar contour (human
figure) taken by a binocular system at two different time instants. The actual orientation
of the contour in space was (p,q) = (10,5) and the actual direction of translation (dx/xz,
dy/dz) = (-4,6). , our program recovered orientation (p,q)= (10,00007, 5.000297) and
direction of translation (dx/dz, dy/dz) = (-4.000309, 6.00463). Figure 6.4 shows again the
perspective images of a translating planar contour taken by a binocular system at two
different time instances. The actual orientation of the contour was (p,q) = (-25,30) and
the direction of translation (dx/dz, dy/dz) = (50,60). The computed orientation from these
images was (p,q) = (-24.99, 30.000021) and the computed direction of translation (dx/dz,
dy/dz) = (49.858421, 59.830266). Figure 6.5 shows the perspective images of a
translating planar contour taken by a binocular system at two different times. The actual
orientation of the contour was (p,q) = (10,-11) and the direction of translation (dx/dz,
dy/dz) = (1.66, 3.33). The estimated parameters from these images were (p,q) = (9,99, -
11.000383) and (dx/dz, dy/dz) = (1.66, 3.33). |

The e)iperiments to determine the general motion parameters are shown in 6.6 - 6.10.
The actual and computed parameters are recalculated with respect to the coordinate
system of the left camera. In figure 6.6 the actual translation was (100,100,100) and
actual rotation was 0.2 radians around the axis (0.707, 0.707, 0); the estimated values
were translation = (100.4, 99.6, 99.8) and rotation = 0.1997 radians around the axis
(0.707, 0.707, 0). The results for the next figure were as follows: actual translation (50,
60, 40) and actual rotation = 0.2 radians around the axis (0.707, 0, 0.707). The estimated
translation was (44.25, 54.94, 39.53) and the estimated rotation was 0.1980 radians
around the axis (0.704, 0.014, 0.711). Figure 6.8 shows the actual translation as (100, 150,
100) and rotation of 0.9 radians around the axis (0.123, 0.123, 0.985); the estimates were
translation = (106.11, 150.7, 99.21) and rotation = 0.902 radians around the axis (0.121,
0.119, 0.985). The ship in figure 6.9 was translated by (100, 150, 80) and rotated by 1.5



(95.30, 145.98, 80.04) and rotation = 1.49 radians around the axis (0.124, 0, 091
Figure 6.10 shows the actual parameters astranslation = (100, 50,40) and rotation =
radiansaround the axis (0.577,0.577,0.577). The estimated parameterswere trandat
= (102.75,49,59.49) and rotation = 0.199 radians around the axis (0.577,0.573,0.582

NOTE: All the parameters involved in the above experiments that have a dimensioi
length (L* M° TO) arecalculated in pixels, where 1 pixel = 100 p m.
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6.10. Conclusions and future directions

We presented a theory for the recovery of the structure, depth and three-dimensional
motion of a moving planar contour by a binocular or trinocular observer. The method
seems promising and does not use any static or dynamic point-to-point correspondences.
It is one of our future goals to extend this theory to nonplanar contours. In particular we
are working towards the characterization of a non-planar contour , as well the detection of
its three-dimensional motion without point to point correspondences. Methods that are
based on the invariance of the 3-D length of the contour over multiple frames seem very

fruitfull, and preliminary results are very promising.



Conclusions and future directions

In this thesis we claimed that low-level visual computations should be done in such a
way so that uniqueness and robustness of the computations is guaranteed and that visual
computations can be done in this way. We justified our claims by examining several
problems, such as shape from texture, shape from shading, structure from motion and

visual motion analysis, shape and motion from contour and some cases of stereo.

The problem of understanding vision and building intelligent machines with a visual
sense is very hard and by no means solved. We have argued that a very large part of
today’s research is analyzing visual capabilities, i.e. research is concentrating on topics
that correspond to identifiable modules in the human visual system. And even though it is
not at all clear what are the topics that correspond to identifiable modules in the human
visual system, research has shown that shading, texture, motion, contours and stereo are
areas that help to understand the extrapersonal space. Existing theories for the analysis

of these cues fall basically into the regualization paradigm.
We showed that the regularization school suffers from three basic problems:
(a) the employed assumptions do not capture the real world;

(b) the available constraints are not sufficient to guarantee the uniqueness of visual
computations. So restrictive assumptions such as smoothness are usually
employed. The resulting algorithms work poorly in synthetic imagery and do not

work at all in natural imagery; and



(0 theresulting algorithms, even if uniqueness from the constraints is guarai
are non robug, in the sense that a small error in the input is enough to dc
completely the results.

There is no doubt that vision isfull of redundancy and there is a lot of informati
the image which if used correctly will give rise to constraints which will guar;
uniquenessand robustness of the visual computations. We have demonstrated thisf<
case of the problemsthat appeared in Chapters 3, 4, 5, and 6. Obviously, we need to ¢
robust and unique visual computations if we ever want to advance our understand]

vision.

Thereisa standard way to design lar ge and complex information systems as res
in computational fields has shown [Feldman 1985].

(1) First we divide the system into functional components which break the o®
task into autonomous parts, and analyze these components.

(20 Then we must choose the representation of information within the sybsyj
and the language of communication among them.

(3) After this, the details of the systems are tested individually, in pairs ar
together.

In this thesis, in order to analyze and understand a visual system (machi:
biological), we started with the first two steps and a part of the third, and we did th
some subsystems (textur e, shading, motion, contours, stereo). Our technical resultsc
found at the beginning of Chapers 3, 4, 5, and 6. Our results can be summarized b
Figure 2.2 of Chapter 2.

There are more subsystems to be analyzed such as color, nonplanar cont
recognition of objects, navigation modules, and many others. The analysis of all of
constitutesour future research. Moreimportantly, our immediate future research v
devoted to the third stepp, where we haveto test the subsystem all together

7.1 Future Research
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Our future research will investigate more subsystems, in the introduced paradigm

(minimal assumptions, uniqueness, robustness). In particular,

(a) We will work for the analysis of nonplanar contours, i.e. a characterization of

(b)

(©)

(d)

their shape as well as finding their three-dimensional motion and structure
without point-correspondences. We have found the invariance of the length of the
contour is very fruitful as a tool for successfully combining the three-dimensional
motion of the contour with the lengths of the projections of the contours in the

different frames.

There is no doubt that retinal motion is very important, if it can be found. In
Section 5.7.2 we showed that there exists a very strong constraint between
coresponding points (from rigid motion) and that this constraint has not been
utilized for the recovery of retinal motion. We will recover retinal motion from
this constraint without having to compute the matrix E first. We believe that a

connectionist architecture might prove very useful in solving this problem.

Recent psychological experiments by Todd et al. [1986] have indicated that the
ability of humans to recover shape from shading is not at all correlated with their
ability to recover the illuminant direction. Of course there exist other
psychological experiments [Pentland 1983] which support the opposite. There is a
little work in this area by Koenderick and Van Doorn [1979] which does not
propose any computational mechanisms for the perception of solid shape from
shading. We will follow this line of thought to investigate if global methods vs.
local methods are possible for the solution of the problem at hand (shape from
shading).

We have demonstrated that shading and pattern texture have a strong
relationship in terms of constraints. Shading can be viewed as a differential case

?

of “pattern texture,” where the patterns become very small. So, shape from
shading could probably be obtained with a method similar to the one presented in
Section 3.17, if we can transform the shading to a pattern texture. Up to this

point, we know how to do this for the case where the light source is in the direction



(e)

®

(g)

(h)

of the optical axis. We will work towards generalizing this for any ligh

direction.

Lines in an image are very important for understanding the three-dimensi
structure. In parallel with our approaches without correspondences, we willl v
towards extracting three-dimensional motion from lines (p, 6 representat
without correspondences. There is current work in this area by Huang & Mit
[Huang et al. 1986; Mitiche & Aggarwal 1986], which results in nonlir
equations from corresponding lines. We will work toward extracting lir
equations for 3-D motion determination, from lines without corresponc

individual lines.

We will work towards extracting depth information for the case of nonple
surfaces given a set of points in the left and right images. If we know the for
the equation of the depth function, then the problem is not complicated. But i
do not, then the situation is much different. The problem might be approa
from the point of view of three-dimensional motion, since a vergence stereo sys
is a camera and the same camera translated and rotated by a fixed amount. S«
know the matrix E of Section 5.7.2 and so the correspondence may be obtai

The stability of the method is up to investigation.

It is our ambition to work towards the recognition of objects. Recognition of obj
consisting of line segments is an easier task compared to solid objects. Recogni
of objects will follow after the analysis of nonplanar contours. Recognitio
objects consisting of line segments can be done by camera rotation. This ena
us to compute the structure of the object in view [Kanatani 1986]. In tur
search for the space of models encoded in a parallel activation network may gi

solution.

Finally, we plan to work towards the coupling of visual computations. To m
this clear, let us take a simple example. Suppose that we have three processes
P2, p3, which compute intrinsic parameters By, B2, B3 (Figure 7.1) but as we }
seen, several intrinsic parameters are connected among them through all kinc

functions. So we will have
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Figure 7.1

This tells us that the computation of an intrinsic parameter will greatly simplify the
computation of the others. But, for example, how can §; be used in the computation of B2
when f; is not known yet? We must find a way that will enable computations to interact

before their completion (Figure 7.2).

In this problem, there are computational as well as empirical issues. By
computational issues, we mean problems such as determining the point where process p;
will interact with po, or vice versa, given some constraints, or, if the computations are of
an iterative fashion, when do we know when to stop computing and interacting given that
we want to compute all parameters B, B2, B3, for example. At this point, the connectionist
architectures [Feldman 1980] show great promise for a solution to this problem, given
that we can develop some “goodness” functions as well as some stopping criteria.
Empirical issues have to do with what kinds of cues are more important in natural images
from others. For example, shading seems to be a weak cue when compared with contour or
texture. This (what cues are stronger than others) will enable us to decide what

computations should have more weight when computations are interacting.
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Figure 7.2

We bdieve that what we have presented in this thesis will advance our understan®
of low-levd visual computations and we hope that severa researchers in the discip
will fdlow our paradigm to enrich it with new ideas which will contribute to
understanding of vision.



APPENDIX

Here we prove that equation 6.17 is true under perspective projection. We prove this
for a more general case, i.e. the case where the two cameras do not only have horizontal

but also vertical displacements.

Theorem:

Let a coordinate system OXYZ be fixed with respect to the left camera, with the Z axis
pointing along the optical axis. We consider that the image plane Im  is perpendicular to
the Z axis at the point (0,0,1) and O the nodal point of the left camera. Let the nodal point
of the right camera, be the point (R,L,0) and its image plane identical to the previous one,
ie Im =Im, Consider a polygon P on the world plane Z=pX +qY +c, defined by the
points (XY ,Z), i=1,..,n, and having area S_. Let S, S, the areas of the paraperspective
projections of P on the left and right cameras respectively and S’ S’, the areas of the

perspective projections of the polygon P on the left and right cameras respectively. Then,

_5

S(

CI)I_CIJ

2

N

Proof:

The proof is given in several parts.
Let (A ,B,) and (A,,B,) the centers of mass of the projections of the contour P on the left
and right image planes respectively (it has to be noted that (A ,B) and (A,,B,) are the
centers of mass of the actual left and right images as opposed to the projections of the

center of mass of P onto the left and right image planes). Then, we have:

fz _ 1—-A2p—82q -
Sl 1-A p-Bg
The above equation is the equation (6.17), that we will prove to be exact under
perspective projection.

But,



Substituting in (1) we get after some tedious manipulations:

) R+qL
L PR+q

——=1

(2)

<

From theother hand, wecan easily provethat:

Y. ' . .
s z l.+l) z( 1 l+l)
2 i i+l 77 +t
S_ 3)

with

M= () @

i+l =£_ )
¢

and

i+1 6
M =2 (©)

From equations (2),(3),(4),(5) and (6) the proof of the theorem isimmediate.
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