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large subset of real images), and so most of the algorithms fail when a|
to real images.

(2) Usually the constraints from the geometry and the physics of the
problem are not enough to guarantee uniqueness of the computed parametei
In this case, strong additional assumptions about the world are used, ir
order to restrict the space of all solutions to be a unique value.

(3) Even if no assumptions at all are used and the physical constraint*
are enough to guarantee uniqueness of the computed parameters, then in r
cases the resulting algorithms are not robust, in the sense that if thei
is a slight error in the input (i.e. a small amount of noise in the ima<
this results in a catastrophic error in the output (computed parameters),

It turns out that if several available cues are combined, then the abow
mentioned problems disappear in most cases; the resulting algorithms
compute robustly and uniquely the intrinsic parameters (shape, depth, me
etc.).

In this thesis the problem of machine vision is explored from its basics
A low level mathematical theory is presented for the unique and robust
computation of intrinsic parameters. The computational aspect of the
theory envisages a cooperative highly parallel implementation, bringing
information from five different sources (shading, texture, motion, contc
and stereo), to resolve ambiguities and ensure uniqueness and stability
of the intrinsic parameters. The problems of shape from texture, shape
from shading and motion, visual motion analysis and shape and motion
from contour are analyzed in detail.
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Abstract
Low-level modern computer vision is not domain dependent, but.

concentrates on problems that correspond to identifiable modules in the
human visual system. Several theories have been proposed in the
literature for the computation of shape from shading, shape from texture,
retinal motion from spatiotemporal derivatives of the image intensity
function, and the like.

The problems with the existing approach are basically the following:
(1) The employed assumptions are very strong (they are not present in a
large subset of real images), and so most of the algorithms fail when
applied to real images.
(2) Usually the constraints from the geometry and the physics of the
problem are not enough to guarantee uniqueness of the computed *
parameters. In this case, strong additional assumptions about the world
are used, in order to restrict the space of all solutions to a unique value.
(3) Even if no assumptions at all are used and the physical constraints are
enough to guarantee uniqueness of the computed parameters, then in most
cases the resulting algorithms are not robust, in the sense that if there is a
slight error in the input (i.e. small amount of noise in the image), this
results in a catastrophic error in the output (computed parameters).

It turns out that if several available cues are combined, then the above-
mentioned problems disappear; the resulting algorithms compute uniquely
and robustly the intrinsic parameters (shape, depth, motion, etc.).

In this thesis the problem of machine vision is explored from its basics.
A low level mathematical theory is presented for the unique and robust
computation of intrinsic parameters. The computational aspect of the
theory envisages a cooperative highly parallel implementation, bringing
in information from five different sources (shading, texture, motion,
contour and stereo), to resolve ambiguities and ensure uniqueness and
stability of the intrinsic parameters. The problems of shape from texture,
shape from shading and motion, visual motion analysis and shape and
motion from contour are analyzed in detail.
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1
Introduction

A large part of Low and Intermediate Level Vision, i.e. problems such as shape

from texture, shape from shading, structure from motion, three-dimensional motion

analysis and shape from contour, is studied. All these problems have been studied in the

past, using very few information sources. It was proved that in order to achieve

uniqueness of the underlying computations, some restrictive assumptions should be

employed. This resulted in algorithms that worked partially in synthetic laboratory

images and not at all in natural images. Furthermore, the stability of the proposed

algorithms was never studied; this resulted in algorithms very sensitive to noise, i.e. a

very small amount of noise in the input could result in a very high percentage error of the

computed parameters. In this work, we study the above problems, by using as much

information is available from different cues (stereo, motion, contour, shading and

texture). This results in algorithms that provably compute uniquely what they are

supposed to compute and they are very stable (robust), in the sense that small noise in the

input, will create a small percentage error in the computed parameters.

The basic ideas in this thesis are centered around the fact that minimal

assumptions, uniqueness and stability, should (and can) be the first and basic

requirements for a visual computation. We support this argument by analyzing several

problems.

The first chapter introduces the reader to the Held of computer vision and

establishes some of the required nomenclature. The second chapter criticizes a large part

of previous work, gives the motivation for the research needed and describes the results

that we have obtained. The chapter after this analyzes in detail the problem of shape from



texture, and the fourth chapter examines the problem of shape from shading. The fifth

chapter analyzes visual motion and the sixth studies the perception of shape and motion

from contour. The final chapter summarizes the results and describes future research in

the field. Finally, our technical results are listed at the beginning of the third, fourth, fifth

and sixth chapter.

Background to this work

In this chapter we discuss what a machine vision system is perceived to be by

today's research as well as the relationship of machine vision to other scientific fields. We

introduce concepts that will be used throughout the thesis.

LI Computer Vision

There is no doubt that vision is our most powerful sense. It gives us information

about our environment and the ability to interact with the environment in a very

intelligent way. Because of this, there has been a major effort in the last twenty years to

give machines a visual sense. (Computer Vision is the field of computer science, and

subfield of artificial intelligence, which attempts to understand vision and provide

machines with a visual sense). But vision, our most powerful sense, is also our most

complicated sense. Research in the field of neuroscience has shown that more than half of

our brain is engaged in visual processing. Our knowledge about biological vision systems

is still very poor, and we can say that what we do know about biological vision is that it is

very complex. No wonder, then, that all the attempts up to now to provide machines with

a rich and general sense of vision have failed. But, some progress has been made in

industrial applications, where the visual environment can be controlled and so be very

restricted, resulting in a clear-cut task with which the machine vision system is faced.

Building a universal machine vision system, or understanding the animal visual

system, is far from reality. It is undoubtedly of the nature of research in a difficult field

that some early ideas have to be abandoned and new concepts introduced as time passes.

Some believed, for example, that understanding the image formation process was not

necessary. Other researchers became very excited about specific computing methods of

rather narrow utility. No doubt some of the ideas presented in this thesis will also be

revised or abandoned in due course. The field is evolving too rapidly for it to be otherwise.



The next section deals with the central problem in computer vision, and constitutes

the basis for the rest of the chapter.

1*2 The Central Goal of Machine Vision

It is very difficult to define the central problem of computer vision or vision in

general, as in many other scientific fields. What goes on inside our heads when we see?

Most people take seeing so much for granted that few will ever have considered the

question seriously. Here we attempt to give the following loose definition of the central

problem of computer vision:

"The central problem of computer vision is: from one or a sequence of images of a

moving or stationary object or a scene, taken by a monocular (one eye) or polynocular (many

eyes) of a moving or stationary observer, to understand the object or the scene and its three-

dimensional properties"

The reader will immediately observe that all the terms in the above definition are

well defined, with the exception of the term "understand." What is really the meaning of

"understand" with respect to this problem? The problem of finding meaning is the central

one in artificial intelligence and it is by no means answered. For this reason, because

various researchers understand meaning in different ways, there have basically been two

schools of thought in computer vision. Although no clear distinction between them can be

made, we can safely differentiate them into two schools: Reconstruction and Recognition.

The reconstruction school worries about the reconstruction of the physical parameters of

the visual world, such as the depth or orientation of surfaces, the boundaries of objects,

the direction of light sources and the like. The recognition school worries about the

recognition or description of objects that we see and involves processes whose end product

is some piece of behavior like a decision or a motion. Both schools have strong ties with

psychology and neuroscience and it is strongly believed at this point that both schools will

merge into a new one that will, it is hoped, find an answer to the difficult questions of the

vision problem.

Although the author of this thesis does not put himself in any of the schools, most of

the work presented here could be classified in the reconstruction school, for computing in
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Figure 1.1: The two schools in computer vision

a mathematical way three-dimensional properties from 2-dimensional image properties.

The next section reconsiders the central problem of vision from another point of view.

L3 The Machine Vision Goal Revisited

Up to this point, we have been rather general, since we have been talking about

computer vision as having as its goal the development of a universal visual system. Being

more specific, a machine vision system analyzes images and produces descriptions of what



is imaged. These descriptions must capture the aspects of the objects being imaged that

are useful in carrying out some task. So, we consider the machine vision system as part of

a larger entity that interacts with the environment. The vision sytem can be considered

an element of a feedback loop that is concerned with sensing, while other elements are

dedicated to decision making and the implementation of these decisions. The input to the

machine vision system is an image, or several images, while its output is a description

that should satisfy at least the following two criteria:

a) It must bear a relevant relationship to what is being imaged;

b) It must contain all the information needed for the specific task.

Obviously, the first criterion ensures that the description depends in some way on

the visual input. The second, ensures that the information provided is useful. Something

has to be said about the concept of description that we used above. An object does not have

a unique description. We can think of descriptions at many levels of detail and from many

points of view. It is impossible to describe an object completely. Fortunately, we can avoid

this potential philosophical snare by considering the task for which the description is

intended. That is, we do not want just any description of what is imaged, but one that

allows us to take appropriate action.

An example may help to clarify these ideas. Consider the task of picking up parts

from a conveyor belt. The parts may be randomly oriented and positioned on the belt.

There may be several different types of parts, with each to be loaded into a different

fixture. The vision system is provided with images of the objects as they are transported

past a camera mounted above the belt. The descriptions that the system has to produce in

this case are simple. It need only give the position, orientation and type of each object.

This description may be just a few numbers. In other situations an elaborate symbolic

description may be needed. Figure 1.2 depicts a vision system.

1.4 Success up to Now

We have already noted that a universal vision system is very far from reality. But

even systems that are not universal but are supposed to carry out a nontrivial task, are

difficult to design. We think that this introduction would be incomplete if we did not
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Figure 1.2: A computer vision task

mention the status of the state of the art research on computer vision. We will give two

examples, one from the reconstruction school and the other from the recognition school

1.4.1 The Terregator

The terregator (terrestrial navigator) is an example of the state of the art research

in goal-oriented vision. It is a car equipped with six wheels and television cameras which

propels itself and needs no driver. The success of this robot up to now is a clear witness to

the level of basic research in vision at this point. From what we know, the terregator is a

primitive robot. More importantly, scientists in the field disagree about whether or not we

will be able very soon to have machines that will navigate autonomously in

unconstrained environments. The autonomous land vehicle (ALV), a similar vehicle

developed at Martin-Merrieta with the help of several American Universities, is still in a

primitive stage; it can navigate autonomously with low speed, in a constrained



environment, but even shadows or dust or unpredicted features in the environment can

affect considerably the operation of the vehicle.

1.4.2 The Robot that Picks Up Donuts

The robot with visual capabilities which can pick up a donut from a pile of them

and put it in a specific place was developed at MIT under the leadership of Katsushi

Ikeuchi and Berthold Horn, and can be considered an example of state of the art research

in the reconstruction school of computer vision. The robot is quite successful under some

restrictive assumptions. Figure 1.3 shows the robot's action. There is no doubt that the

most difficult part of this operation is in stages 1 and 2. During these stages, the robot

takes a picture of the pile of donuts, then from this picture segments the donuts,

differentiates one of them, and then it picks it up. The method to do that is quite

complicated and the interested reader is referred to [Scientific American, Aug. 1984]!

Figure 1.4 shows three pictures of the pile of donuts, as seen by the "robot's brain," under

three different lighting conditions. Figure 1.5 shows a part of the images with the surface

normals computed. Figure 1.6 shows the same part of the image, where the donuts have

been segmented with the help of the surface normals. Finally, Figure 1.7 shows one donut

segmented. This is the basis of an algorithm that will enable the robot's arm to pick up the

donut under consideration. The robot is quite successful, but if certain conditions are not

satisfied, it fails. For example, if the lighting conditions are not accurate, the surface of

the donuts is not special, the illuminating source is not near to point source, there are

shadows on the donuts, etc., the robot will err in its task.



Figure 1.3: The robot's task

Figure 1.4: Three pictures of the pile of donuts
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1.5 A Quick Passage Through Computer Vision History



In this section we will describe the changing character of computer vision,

emphasizing the basic reasons that lead to this change. It is not a complete survey of

vision research; more specific references will follow in later technical sections.

1.5,1 As it was in the beginning

Even as late as 1975, computer vision looked very different from its appearance

today. A lot of research had been devoted to the blocks microworld of scenes of polyhedra.

Huffman [Huffman, 1971] and Clowes had noted the advantage of making the image

formation process explicit. They realized that image lines and junctions were the images

of 3-D scene edges and vertices, and they made an extensive catalog of those

interpretations of lines and junctions that were possible, given assumptions of planarity

and the restriction that at most three surfaces were allowed to meet at a vertex. These

interpretations amounted to local constraints on the volume occupied by a vertex. The

local constraints propagated along picture lines since planar polyhedral edges cannot

change their nature between two vertices.

Huffman showed further [Huffman, 1971] that the local vertex constraints were

not enough to capture the important restriction that picture regions were the images of

planar surfaces. Mackworth's algorithm using gradient space [Mackworth, 1973] was

intended to repair this deficit. Despite this, most line drawings had a remarkable number

of possible interpretations. Waltz's work [Waltz, 1975] introduced the inherently global

constraint afforded by shadows cast from a single distant sourse, and showed that the

multiple ambiguities possible without lighting were often resolved to a unique

interpretation with lighting. More importantly, the process by which the unique

interpretation was discovered naturally lent itself to parallel processing of a particular

sort. Each vertex had an associated processor, and they all operated in strict synchrony.

At each time, a processsor changed its state according to the state of those directly

connected to it. Rosenfeld, Hummel and Zucker noted the connection between this scheme

and relaxation processes in numerical analysis [Rosenfeld et al, 1976].

A second strand in the development of computer vision concerns what was referred

to as "low level" processing. It was more art than science, and consisted largely of methods

for the extraction of the "important" intensity changes in an image. The approach mostly



consisted of convolving images with local operators to estimate the position, contrast and

orientation of the important intensity changes. Operators were tuned to particular

applications and failed badly outside their domain in the presence of noise. Little serious

analysis of actual intensity changes including the signal to noise characteristics of real

images had been carried out. Other work in low level vision largely consisted of the design

and construction of region finders. Region finding aimed at isolating those regions of an

image that were the images of perceptual surface patches. It was thought that such

regions might be isolated by defining some descriptor with respect to which they were

uniform, and distinguishable from surrounding regions. It was soon clear [Barrow et al,

1971, Brice and Fennema, 1970] that even if such descriptors existed, they were not

defined simply in terms of color or grey level intensity values.

By the early 1970's, the consensus was that low level vision was inherently

incapable of producing rich, useful descriptions. It was observed, by analogy to the

apparent need for semantics in parsing English sentences, that downward flowing

knowledge of the scene could provide additional constraints. This in turn could inform

local decision making. A number of program structures were proposed to effect this

interaction between top down and bottom up processing of information [Barrow et al 1976,

Brady 1979, Freuder 1974, Minsky and Papert 1972, Shirai 1973, Winston 1 9 7 2 1.

Similar ideas were advanced about natural language understanding and speech

perception. This influenced the design of, for example, Hearsay2 [Lesser and Erman,

1977]. To experiment with these ideas, entire systems were constructed which mobilized

knowledge at all levels of the visual system as well as information specific to some domain

of application. In order to complete the construction of all these systems, it was inevitable

that corners were cut and many over-simplified assumptions were made. By and large,

the performance of these systems did not give grounds for unbridled celebration. The

authors of the KRL proposal [Bobrow and Winograd, 1977], for example, listed several

common failings.

1.5.2 Is now and... should be

Perhaps the most fundamental difference between computer vision now and a

decade ago stems from the current concentration on topics corresponding to identifiable

modules in the human visual system. The focus of research today is more narrowly



defined in terms of a domain, and the depth of analysis is correspondingly greater. This

change has produced a number of far-reaching effects in the way vision is researched.

One obvious effect was a sharp decline in the construction of entire vision systems,

in the 1975-1985 period. Most AI workers have gratefully abandoned the idea that visual

perception can profitably be studied in the context of a priori commitment to a particular

program or machine architecture. There is, for example, no more reason to believe that

relaxation style processing will of itself tell us more about vision than did the excursions

into heterarchy. There is no obvious reason to be encouraged by Reddy's [Reddy, 1978]

claim that the Hearsay 2 model can be adapted mutatis mutundis to vision. However, this

opinion is subject to criticism. There is probably reason to believe that if one thinks in the

context of parallel architectures (Le., connectionist networks) [Feldman, 1986], there is a

chance of formulating vision problems in a context that is closer to animal visual

processing capabilities, and so a greater chance of solving the problem. But that is

subject to more research that will show if thinking in terms of particular architectures is

of any help.

Unfortunately, dogmas have been developed during the last decade and leading

researchers in the area have antidiametric opinions on the issue of whether or not a

particular architecture is of help when formulating and solving vision problems.

Although we think that more research is required for the answer to this question, in this

thesis we do not worry about specific machine or system architectures; we rather worry

about abstract visual computations and the development of algorithms that will carry out

a specific computation, in the spirit of methodology as it was introduced by David Marr

[Marr, 1981]. There is a standard way of designing large and complex information

processing systems. We have to start addressing the question of what the system must do

and have a clear understanding of the constraints on the available resources.

The first step is to divide the whole system into functional components that break

the overall task into autonomous parts. Then, we should choose the representation of

information within the subsystems and the languages of communication among them.

After this, the details of the subsystems are tested individually, in pairs, and all together.

Essentially the same methods are used for analyzing unknown large information-

processing systems. It is at least possible that a similar paradigm would be of some use in

studying complex biological systems, including the primate visual system, or for that



matter, the development of machines with visual sense. So, if we want to study the animal

visual system or construct seeing machines, we must first understand what the system

should do. In the previous sections we tried to define as clearly as possible what a visual

system should do. Next, we should break the system into functional components that are

somewhat autonomous. Exactly this is attempted by much of today's research, i.e., to

concentrate on topics that correspond to identifiable modules in the human visual system.

We have at this point a clear idea that cues such as shading, motion, texture,

contours and stereopsis are very important for the perception of the 3-D world. For this

reason, almost every computer vision research paper published in the last few years has to

do with the perception of shape from shading, shape from texture, shape from contour,

shape from motion, depth from stereo, illuminant direction from shading, three-

dimensional motion from retinal motion, and the like.

Not all modules operate directly on the image. Indeed, it seems that few do. Instead

they operate on representations of the information computed, or made explicit by other

processes. In the case of stereopsis, Marr and Poggio [Marr and Poggio, 1979] argue

against correlating the intensity information in the left and right views. Instead, they

suggest that so-called zero-crossings are matched [Marr and Hildreth, 1980]. In any case,

a great deal of attention has centered on the isolation and study of individual modules,

and in each case on the development of the representations on which they operate, and on

those that they produce. The first of these representations, and the one whose structure is

the least subject to dispute is the image itself. Not surprisingly, then, most attention has

centered on those modules that operate upon the image. As we shall see, the further we

progress up the process hierarchy, the less secure the story becomes as the exact structure

of the representations becomes more subject to dispute. Again, this is not surprising. The

image aside, any representation is one module's co-domain and another's domain. All of

them shape an eventual structure. In the next two sections we will spend some time on

modules that operate on the image and other representations.

1*5.2*1 Modules operating directly on the image

A great deal of effort has been devoted to understanding how the important

intensity changes in an image can be extracted. Marr [Marr,D., 1976] coined the term

primal sketch to describe such a representation, and he described an algorithm by which



it might be computed. His work with Poggio led to a revision of the process of construction

of the primal sketch. Instead they advocated the use of zero-crossings of the second

derivative of the filtered image. This idea was developed in turn by Marr and Hildreth

[Marr and Hildreth, 1980] who propose that an image is first filtered by four Gaussians

having different band pass characteristics. One of the novel features, (as far as Computer

Vision work is concerned) of the Marr-Hildreth account is the size of the operators

involved, the smallest being roughly 35 pixels square. This is in stark contrast to

conventional operators, which, in most Computer Vision work today, are still typically on

the order of 5 x 5. Such a large operator can be in much closer agreement with a Gaussian

(or any filter for that matter) than any small operator, and its effects are therefore more

predictable. Unfortunately, it is no longer obvious how to compute the assertions that

Marr had previously advocated for inclusion in the primal sketch. The whole issue of

constructing the primal sketch from zero-crossings is far from being resolved.

Intensity changes aside, Horn and his colleagues [Horn, B.K.P., 1977,1979,

1980,1982, Ikeuchi and Horn, 1981, Woodham, 1981, Strat, 1981, ] have studied the

perception of surface shape from shading. In brief outline, Horn formulated a second order

differential equation that he calls the image irradiance equation, which relates the

orientation of the local surface normal of a visible surface, the surface reflectance

characteristics, and the lighting to the intensity value recorded at the corresponding

point in the image. The output of shape from shading is a representation that makes

explicit the orientation of visible surfaces, and may make other information such as depth

and surface discontinuities explicit also. Horn suggests the name needle map. Other

representations have been proposed that make substantially the same information

explicit. Marr [Marr,D., 1978] uses the name 2\ sketch, and Barrow and Tenenbaum

[Barrow and Tanembaum, 1976] discuss intrinsic images. Again, the exact nature of the

representation is currently far from clear. In part, this is because very little research has

been devoted to modules that operate upon it.

Finally, methods for computing optic flow (image motion) from spatio-temporal

derivatives of image intensity have been published lately.

1.5.2.2 Modules operating on zero-crossings, points and the primal sketch



We have already stated that there remain a vast number of unresolved issues

concerning the nature of the primal sketch and its computation from zero-crossings or

whatever kind of filtered image. Nevertheless, the broad outlines are clear enough for

work to proceed to investigate modules that are assumed to operate upon these

representations. Indeed, it is necessary that it does, as it will also contribute to our

understanding of the information that needs to be made explicit in the primal sketch, and

thus its eventual form. Motion is an important source of information for determining

structure, and much work has been done in this area. Considerable attention has been

paid to stereopsis and to the detection of surface orientation from texture. In addition,

much research has been devoted to the analysis of line drawings (of planar and curved

surfaces), and contours.

1.6 Where Do We Stand (Current Research Status)

It is clear by now that modern computer vision worries about concentrating on

topics that correspond to identifiable models in the human visual system. And although

we don't know what exactly these modules are, we understand that there should exist

modules that compute 3-D parameters from specific cues, such as shading, motion, stereo,

contours and texture. When we say 3-D parameters, we mean intrinsic images, such as

shape, depth, reflectance, three-dimensional motion, illuminant direction and the like.

So, one could say that today's research is:

Compute Y from X.

where Y is an intrinsic property (shape, depth, retinal and three-dimensional motion, etc.)

and X is a cue in the image or a property of the observer (shading, texture, stereopsis,

etc.).

The following figure broadly summarizes the status of contemporary

reconstructionist computer vision. On the right, we see the various cues, and on the left

the intrinsic parameters. Research tries to recover from any of the cues in the right some

of the intrinsic properties in the left. An arrow from box 1 to box 2 indicates that the

property in box 2 is recovered form the cue in box 1. The names along the arrows represent

some of the researchers who have worked on this specific recovery. More complete

references can be found in the rest of the thesis. At this point we have to make clear that



the intrinsic parameters about which we are writing a lot, can basically be classified in

two categories. The retinotopic and non-retinotopic ones . Non-retinotopic ones can be

divided into features (physical parameters) and objects and relations [Ballard, 19851. The

retinotopic ones (shape, depth and the like) are the ones of most interest in this thesis.

These parameters are spatially indexed at every image point. We can actually say, that

the retinotopic parameters are the basic subject of the Reconstruction School, and the

non-retinotopic ones (features) of the Recognition School. In this thesis we will mostly be

talking about Low-Level Vision, and so the analysis of three-dimensional shape models

and transformations, as part of High-Level Vision modules, won't be treated. Finally, it

has to be said that the current status figure of the next page, is by no means complete.

Other sources of information such as color and nonplanar contours are of great

importance, but we will not discuss them here.

L7 A Word of Caution and What is to Come

In the preceding sections, we have emphasized that contemporary computer vision

is worrying about the recovery of three-dimensional properties (world) from two-

dimensional image properties. By no means do we imply that this is the only issue of

today's research. There is a lot of excellent research on low and high level vision, object

recognition and navigation. We feel that the bulk of research (from 2-D properties to 3-D

properties) is the most important because a clear understanding of these issues will

contribute a great deal to our knowledge of extrapersonal space perception, to our

understanding of the cortex and to our ability to construct machines with visual sense. Of

course, several leading researchers may think otherwise and unfortunately the field is too

young to be able to justify our claim. But simple and even naive thinking may convince us

that if we ever hope to understand how the visual system works, we must first understand

that our only input is two-dimensional images, and so in order to reason about the three-

dimensional world, we must discover constraints between the images and the three-

dimensional world that is imaged. On the other hand, prior knowledge about the world

can be of great help. We are not opposed to using a priori knowledge about the world in

order to help the process of understanding the 3-D space from its images. But before we do

that, we should first analyze the various vision problems with as few assumptions as

possible, and if no solution is possible, then we should resort to additional assumptions.
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The next chapter introduces the technical background necessary for the

understanding of the rest of the thesis, presents a positive critique of current research

from a technical point of view, and finishes with a proposal on how 3-D vision problems

should be approached.



2
Unique and robust intrinsic images: The problem, the
answer and the technical prerequisites.

In this chapter we describe what the problems of the current research status are

and we propose a new aproach. In the rest of the chapter we discuss how images are

formed and how they are sensed by a computer, and we give the technical prerequisites for

the foundation of the technical work described in later chapters.

2.1 The current research picture revisited

Recalling the current research picture from Section 1.6, we see that the intrinsic

parameters that will be described extensively in the rest of this Chapter, are computed

from some particular image cue. Indeed, shading, texture, contours, motion and stereo are

very important cues for obtaining three-dimensional information, and later chapters will

present evidence for that. If we look carefully at the research picture from Section 1.6, we

will realize that an intrinsic parameter is computed using only a particular cue. So we

have algorithms for shape from shading, shape from motion, depth from stereo, and the

like. There are, however, three basic problems with this approach.

The first problem has to do with employing the right assumptions. Some of these

algorithms are based on assumptions which despite their generality are not

present in the real world and so the algorithms fail when applied to a variety of

natural images. An example of this is all the algorithms for the computation of

shape from texture [Witkin, 1981, Stevens, 1980, Davis et al, 19831. In these

algorithms the basic assumption is the directional isotropy. In other words, it is

assumed that contours and line segments in natural images have orientations

which are uniformly distributed over all directions. Obviously, if we look around us

for natural or man-made surfaces, we won't find that this assumption is true.

19



The second problem has to do with uniqueness properties of the resultin

algorithms. Some of the problems in Figure 1.8, as formulated, cannot have

unique solution. So, in order to bring down the space of all solutions to a uniqu

point, assumptions are made about the world which usually are unrealistic and th

algorithms fail when applied to real images. An example of this is all the shap

from shading algorithms [Horn 1977, Ikeuchi and Horn 1981, Brooks, 1984] th*

use assumptions about the global smoothness of the surfaces in view.

The third problem with the current research status is the one which has to do wit

the robustness or stability of the resulting algorithms. Even if theoretical analysi

shows that given the constraints at hand a particular problem has a uniqu

solution, in practice it turns out that the solution is very unstable. In other words,

very small error in the input results in a catastrophic error in the output. A

example of this is all the algorithms that compute 3-D motion from retinal motioi

using only one camera [Waxman et al, 1984,1985, 1986, Tsai and Huang, 198'

Longuet Higgins and Prazdny, 1984, Prazdny 1984, Bruss and Horn, 1984; fc

additional references, see Chapter 5]. The basic problems with the current researc

status can be summarized in the following table.

Problems of Current Research Status

Problem

Use of restrictive assumptions
about the world

To make a problem solvable
(uniquely), unreasonable
assumptions are made

Even if an algorithm is proved
to have a unique solution,
usually the resulting
algorithm is unstable

Example

Shape from texture algorithms

Shape from shading, optic flou
from image sequences

3-D motion from optic flow,
image reconstruction frrom
zero-crossings and gradients



2.2 The regularization paradigm and our criticism

One of the best definitions of early vision is that it is the inverse of optics, i.e., a set of

computational problems that both machines and biological organisms have to solve.

While in classical optics the problem is to determine the images of physical objects, vision

is confronted with the inverse problem of determining properties of the 3-dimensional

world from the light distribution in an image, or a dynamic sequence of images. In 1923

Hadamard defined a mathematical problem to be well-posed when its solution:

a) exists,

b) is unique,

c) depends continuously on the initial data (is robust against noise).

Most of the problems in classical physics are well posed, and Hadamard argued that

physical problems had to be well-posed. However, it seems that inverse problems are

usually ill-posed. Consider, for example, the equation: y = Ax, where A is a known

operator. This equation can represent optics, where y is the image, A is the imaging

process, and x is the world. So, in this case, the problem is to determine y from x. The

inverse problem, i.e. find x from;y, is usually ill-posed when x,y belong to a Hilbert space.

The regularization paradigm claims that most early vision problems are ill-posed

(shape from shading, texture, contour, optic flow from image brightness and the like).

Rigorous regularization theories for solving ill-posed problems have been developed

during the past years [Tichonov, and Arsenin, 1977, Tichonov, 19631. The basic idea of

regularization techniques is to restrict the space of acceptable solutions by choosing the

function that minimizes an appropriate functional. The regularization of the ill-posed

problem of finding x from y such that y = Ax requires the choice of norms 11-I I and of a

stabilizing functional HPxII. Of course this choice is dictated by mathematical

considerations and most importantly, by a physical analysis of the generic constraints of

the problem. Then, several methods can be applied as for example, find x that minimizes

11 Ax - yll2 +AliPxll2, where \ is the so-called regularization parameter, or among x that

satisfies HPxIl^k, where k is a constant, find x that satisfies 11 Ax - yli = minimum, etc.

The reader interested in regularization techniques is referred to [Tichonov, and Arsenin,



regularization paradigm may be unrealistic for addressing low-level vision problems in

natural images.

What led to the regularization paradigm is the fact that several published

algorithms for the computation of intrinsic images were basically of the same flavor. In

other words it is a post-facto legitimization of a class of methods in early vision.The

constraints were not sufficient, additional assumptions were made, and a functional from

all these was constructed, with its ultimate goal a minimization that would lead to a

solution. Basically, all the additional assumptions had to do with smoothness, because

smoothness, when expressed in mathematical terms, gives very strong constraints. But

our visual world is anything but smooth. We can safely say that a very small subset of the

surfaces that we see are twice continuously differentiable. But even if we forget this for a

moment and accept that the smoothness assumption is a good one (in the sense that it is

present in our visual world), even then the performance of the regularization algorithms

cannot serve as a strong rationale of the feasibility of the approach. Putting aside natural

images and concentrating only on synthetic ones, the performance is not excellent. The

following figures show the image of an object and the extracted shape using a

regularization-based algorithm [Ikeuchi and Horn, 1981] for shape form shading. The

poor performance in this particular example is also due to the fact that the constraint

from the shading is very weak. Several such examples for other early vision problems can

be found.



Figure 2.0.1: Intensity image Figure 2.0.2: Reconstructed shape

A very positive aspect of the regularization-based approach is that it presents a

unified approach for the early vision problems. But this is not at all convincing, since the

assumptions used are very restrictive. Of course, if other functional ( recall in Section 22

the functional Px) are used instead of the ones that incorporate smoothness, then this might

be proven promising. Another negative aspect of the regularization based approach is that

it examines several problems separately, i.e., it investigates shape from shading, shape

from motion, shape and depth from stereo, for example, separately without taking into

account that existing, well-working biological vision systems live in a dynamic world and

have two eyes.

Our claim is that vision is full of redundancy, because organisms can get

information from many different sources. Vision seems to be, at least for biological

organisms, a very well-posed problem. If our knowledge about vision is very limited

today, we should not make the problems ill-posed. If a problem turns out to be

mathematically ill-posed, then we should not try to solve it by imposing unrealistic

restrictions. Instead, we should investigate what kind of information is missing from

the situation at hand, and search for a source which will provide this missing

information. In other words, it is the vision researchers that pose the vision problems

in such a way that they become ill-posed. The vision problems are well-posed, as it

can be very well demonstrated empirically. It is evident that in order to be able to

answer vision questions in the right way we must first ask the questions in the right

way.

Our criticism of the regularization-based approach ends at this point, except for

stating that if we cannot solve a vision problem as formulated, this means that we have

not formulated the problem in the right fashion. Restrictive assumptions about a problem

will never enrich our understanding of computational vision. Finally, our position is

enforced by recent psychological results by Todd et al. [Todd et al, 1986] that state that

for the case of shape from shading no algorithm from the regularization-based paradigm

seems to have any connection with the computational human mechanisms for the

detection of shape from shading.



It has to be noted however that the regularization techniques are very powerful

(in a mathematical sense) for attempting a unique solution, when the required

assumptions are present in the image under consideration. No wonder then, that several

reguralization based algorithms [Terzopulos, 1984, 1985, Negadharipur and Horn, 1986,

Maroquin, 19861 perform very well for their domains, that satisfy smoothness

assumptions. What we are against for, is the use of regularization as a general theory for

low-level vision, for the very simple reason that our visual world is anything but

smooth.But if the problem under consideration obeys smothness assumptions, then

regularization based approaches are very powerful and give good results.

2.3 Mathematical algorithms and biological vision systems

Even though this thesis is on machine vision, we make no basic distinction

between machines and biological systems. In other words, our results could be very well

applied for the explanation of biological visual abilities, even though this is not the goal of

this thesis. In the rest of the thesis, our results will be formulated in terms of

mathematical propositions and algorithms. Two difficulties are immediately raised

regarding the applicability of such results to biological visual systems. The first is that

unlike an electronic computer a biological system cannot be expected to solve the

equations used in deriving the mathematical results. The second is that a biological

system does not have access to the perfectly accurate data used in the mathematical

abstraction.

A comprehensive examination of the first objection would be beyond the goals of this

thesis. The main answer lies, however, in the distinction between different levels of

analysis: competence vs. performance [Chomsky, 1965] or computational vs algorithmic

[Marr and Poggio, 1977]. The computational studies aim primarily at establishing

principles that apply to any visual system facing the problem of interpreting something

(3-D property) from something else (2-D image property). Certain equations may be used

in the derivation of such principles, but it does not follow that a system utilizing these

principles would have to solve these equations in the process of the interpretation.

The problem of accuracy in the measurement and computation is an important one. To

be of practical value, the interpretation scheme should be robust. Small errors in the



input measurements should not lead to a complete breakdown of the interpretation

scheme. This means that computational studies should not only explore what is possible

under idealized conditions, but also examine the effects of small perturbations and errors.

Unfortunately, current research does not worry about the last issue, and only very

recently began to consider the uniqueness of the computations [Ullman, 1983, Tsai and

Huang, 1984, Bruss and Horn 1984]. Until then, everything was based on an ad hoc

fashion.

2.4 Results: More information from cooperative sources yields unique and

reliable solutions.

Looking back at the current research status diagram of Section 1.6 (Figure 1.8), we

see that from a particular cue a particular intrinsic property is computed. That is, no cues

are combined, in most of the published work, to recover an intrinsic image. As we have

already seen, this has as a result the fact that several computations do not have

uniqueness properties (and so additional assumptions are needed about the world) and

several computations that have uniqueness properties under ideal conditions break down

in the presence of small amounts of noise. In order to take care of these problems, more

information is needed. In particular, if we combine information from the different image

cues, then several computations that did not have uniqueness properties might now have

them, simply because the unknown parameters are subject to more constraints that

guarantee uniqueness and several computations which even though they had uniqueness

properties were very unstable are now robust, simply because the additional constraints

do not let the solution escape from its actual position. The proposed framework for the

computation of intrinsic images is given in the following figure 2.1. The reader should

compare this with Figure 1.8 of Section 1.6 to realize that new information is combined

from different cues to recover the intrinsic parameters.

It is worth noting that very recently a few researchers have realized the need for

combination of information from different image cues for better estimation of intrinsic

parameters. In particular, there is the work of Waxman et al. [Waxman et al, 1986 1 for

combining stereo and motion, the work of Grimson [Grimson, 1984] for combining

shading and stereo, the work of Richards, and Huang for stereo of motion [Richards, 1985,

Huang and Blonstein, 1985], and the work of Milenkovich and Kanade [Milenkovich et al,

1985]. So the need for such an approach has already been realized by some and the hope is
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that this thesis will contribute to a better understanding of this approach and that it will

generate more related research. Due to the different nature of the intrinsic parameters

and the image cues, a unified approach, i.e. a general theory for computing intrinsic

parameters from combination of image cues (with the intrinsics and the image cues as

parameters) seems at this point very difficult, if not impossible. Our approach will be

based on a case-by-case analysis. That is, we will consider each individual problem

separately, analyze it, see that a solution without additional assumptions or stability is

impossible, and then combine different cues to obtain unique or robust results.

The basic structure of the thesis is depicted in the following diagram (Figure 2.2).

In the elipses (top) are the different image cues (we take the liberty to call stereo or

motion a cue.) It is obvious that by cue we mean a source of information, either coming

from the image(s) or from the particular set up or condition of the visual system (stereo-

motion). In the squares are the results we obtain (in terms of propositions) when we

combine information from two different cues. Two or more different cues are combined

with arcs which lead to small circles containing a plus. Then, a different arc from the plus

leads to a square containing the result from this combination. The numbers at a plus or an

arc indicate that the theory for this particular computation can be found in the

corresponding chapter.

2.5 Technical Prerequisites: Image formation and intrinsic images

It is very important to understand how the images are formed, because this is a

prerequisite for being able to extract information from images. There are basically two

questions about image formation:

a) What determines where the image of some point will appear?

b) What determines how bright the image of some surface will be?

Agreeing that it is very important to know how an image is formed in order to analyze it,

we have to study two things: First, we need to find the geometric correspondence between

points in the scene and points in the image, and second, we must find out what determines

the brightness at a particular point in the image. The next section addresses the first

issue.
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2*6 Geometric Correspondence Between Points in the Scene and the Image

2.6.1 Perspective projection

Consider an ideal pinhole at a fixed distance in front of an image plane (see Figure 2.3).

Let us assume that an enclosure is provided so that only light coming through the pinhole

can reach the image plane. Given that light travels along straight lines, each point in the

image corresponds to a particular direction defined by a ray from that point through the

pinhole. This is what we know as perspective projection.

Figure 2.3: Perspective projection

In the sequel, in order to simplify the resulting equations, we consider the nodal point of

the eye (pinhole) behind the image plane. This is only for simplifying the analysis; all the

results can be transformed automatically to the actual case. The system we will be using

is depicted in Figure 2.4.



Figure 2.4: Perspective projection simplified

We define the optical axis in this case to be the perpendicular from the pinhole to the

image plane. We introduce a cartesian coordinate system with the origin at the nodal

point and the z-axis aligned with the optical axis and pointing toward the image (Figure

2.4). We would like to compute where the image A'of the point A on some object in front of

the camera will appear. We assume that nothing lies on the ray from point A to the nodal

point O. Let V = (X,7,Z), the vector connecting 0 to A and V9 = (x,y,f), the vector

connecting O to A', with fthe focal length, i.e., the distance of the image plane from the

nodal point O, and (x,y) are the coordinates of the point A' on the image plane in the

naturally induced coordinate system with origin the point of the intersection of the image

plane with the optical axis, and axes x and y parallel to the axis of the camera coordinate

system OX and OY. It is trivial to see that

z'y~z
(2

Equations (2.1) relate the image coordinates to *h*> vo*ld coordinates of a point. Very

often, to further simplify the equations *••- ~ . / ". /ithov* In*-. ^

2.6.2 Orthographic projection

The orthographic projection model seems unrealistic to the eye of the beginner and

so we will motivate its use. If, in the perspective projection model, we have a plane that

lies parallel to the image plane at Z - Z#, then we define as magnification, mg, the ratio

of the distance between two points measured in the image to the distance between the

corresponding points on the plane. So, if we have a small interval on the plane (dX, dY, O)

and the corresponding small interval (dx, dy, 0) in the image, then:
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(dxf + (dy)2

(dxr +
f

z
0

So a small object at an average distance ZQ will produce an image that is magnified by mg.

It is obvious that the magnification is approximately constant when the depth range of

the scene is small relative to the average distance of the surfaces from the camera. In this

case we can simply write for the projection (perspective) equations, that:

x = mX, and y = mY <2-2)

with m = fIZo and ZQ the average value of the depth Z. For our convenience, we can set

ra = 1. Then equations (2.2) are further simplified to the form:

x = X , a n d y ^ Y (2-3)

These equations (2.3) model the orthographic projection model, where the rays are

parallel to the optical axis (see Figure 2.5). So, the difference between orthography and

perspective is small when the distance to the scene is much larger than the variation in

distance among objects in the scene. A rough rule of thumb is that perspective effects are

significant when a wide angle lens is used, while images taken by telephoto lenses tend to

approximate orthographic projection, but, of course, this is not exact [Horn, 1986].



Figure 2.5: Orthographic projection

2.6.3 Paraperspective projection

The orthographic projection is a very rough approximation of the projection of light

on the fovea, but it seems unrealistic for machine vision applications at this point. The

perspective projection, a true model, sometimes produces very complicated equations for

most of the problems and makes the subsequent analysis very hard. The paraperspective

projection is a very good approximation of the perspective, and stands between

orthography and perspective. A very similar form of the paraperspective projection was

first introduced by Ohta et al. [Ohta et al, 1983]. Let a coordinate system OXYZ be fixed

with respect to the camera, with the -Z axis pointing along the optical axis and O the

nodal point of the eye. Again we consider the image plane perpendicular to the X axis at

the point (0,0,-1) (i.e. focal length / =1, without loss of generality). Let a small planar

surface patch SP on a surface S, with the planar patch obeying the equation -Z = pX +

qY = C (see Figure 2.6).



Figure 2.6: Paraperspective projection

Under perspective, any point (X,Y,Z) e SP is projected onto the point (XIZ, Y/Z) on the

image plane. Let us now see how the small patch SP is projected under the

paraperspective projection model.

Consider the plane -Z = d, where -d is the Z-coordinate of the center of mass of the

region SP. The paraperspective projection is realized by the following two steps:

a)

b)

o

First, the small region SP is projected onto the plane -Z = d, which plane is

parallel to the image plane and includes the center of mass of the region SP.

The projection is performed by using the rays that are parallel to the central

projecting ray OG, where G is the center of mass of the region SP.

The image on the plane -Z = d is now projected perspectively onto the image

plane. Since the plane -Z = d is parallel to the image plane, the

transformation is a reduction by a scaling factor lid (see Figure 2.7 which

illustrates a cross sectional view of the projection process sliced by a plane

which includes the central projecting ray and is perpendicular to the XZ

plane). Finally it is clear that the introduced model decomposes the image

distortions in two parts: Step (a) captures the foreshortening distortion and

part of the position effect, and step (b) captures both the distance and the

position effects.

region S

G = center of n

image plane -Z = d



Figure 2.7: Cross sectional view of paraperspective

The paraperspective projection process turns out to have nice mathematical properties,

since it is an affine transformation. Chapter 3 describes in detail the properties of this

projection and its comparison with perspective and orthographic projections.

After having discussed the geometric correspondence between points in the image

and points in the scene, we need now to determine the brightness at each image point. But

to do that we need some technical prerequisites, which will be found in the next section on

intrinsic images.

2.7 Intrinsic Images

In the previous chapter we stressed the fact that a very large percentage of modern

computer vision is exploiting the recovery of three-dimensional properties (i.e. intrinsic

images) from two-dimensional image properties. This section will define mathematically

what we mean by intrinsic images, i.e. shape, motion, depth, etc.

Consider again a coordinate system OXYZ> fixed with respect to a camera, whose

nodal point is the origin 0 and the image plane perpendicular to the Z-axis (which is also

the optical axis), with focal length f. Consider also the naturally induced image plane xy

coordinate system, with origin at the point where the optical axis intersects the image

plane and x,y axes parallel to OX and OY respectively. Image coordinates will be denoted

by small letters and world coordinates by capital letters. Suppose that the system is

imaging a surface S with equation Z = Z(X,Y).

2.7.1 What we mean by shape

We will examine shape under both orthography and perspective projection. Surface

orientation is usually represented as the surface normal vector. In intrinsic images, shape

means the local surface orientation, not some global property of the surface. If the surface

is expressed as Z(X, Y) it can be reconstructed from the local shape orientation.

The meaning of shape under perspective



Consider a point (X,Y,Z) e S whose image under perspective projection is the point

(x= PC/Z, y = fYJZ). If we say that we know the shape of the object in view at the point

by), we mean that we know the surface normal vector n of surface S at the point (XfY,Z),

in particular

- [BZ dZ \ \fdZ Kf^p+ii"

Suppose now that for every point (x,y) in the image we know the surface normal of the

surface patch whose image is the point (x,y). Then, this new image (a surface normal for

each point (x,y) of the image) is called intrinsic shape image. But from only one image we

can never hope to compute the exact (X^YJZ) point, and from it (BZIBX, BZIBY, -1). What we

can compute, though, is the quantity (BZ/Bx, BZ/By), i.e., the gradient of the surface

expressed in retinal coordinates. But then, what is the relationship between the gradient

in retinal and world coordinates, or in other words, what do we know when we know the

quantities (BZ/Bxy BZ/By)?

Consider a point (x,y) on the image and a small displacement in the image (dx,dy)

from the point, which corresponds to a displacement (dX, dY, dZ) in the world, on the

surface Z = Z(XfY). Then, from the perspective projection equations, we have:

dx- Z + xdZ dy Z + y dZ
dX = and dY =

Now, given that Z(X + dX, Y + dY) = Z(x + dx,y+dy), and expanding both sides of this

equation in a Taylor series and ignoring the higher order terms, we get that:

BZ z az z az az
dx -H — dy = dx V dy —

^"V 3*7 ^7 '̂'V .3*7 1̂*7 l̂<w *\-
OLA O£J OMLS 0/ Gu£s 0£J CfX dnf

^""xa5F""^ay ^~xHx~yHx
from which

dx

From equations (2.5) it is easy to see that if 8Z/8X, 8Z/8Fare known, then the quantity

az
and

dZ

f-

z

- x ——"

dZ
dY

-yW



Z(x + dx,y + dy)

Z(x,y)

is computable. But this means that if the surface normals are known indexed by retinal

coordinates, then the depth function (Z(x,y)) can be computed up to a constant factor. In

other words, if shape is known, then for any two points (x,-̂ ») and (xj,yj) on the image, we

know the ratio

So, an object whose shape we know under perspective projection can be small and near the

camera or large and far away.

The meaning of shape under orthography

Under orthographic projection, the image coordinates of a point are equal to the

corresponding 3-D coordinates, i.e. (x,y) = (X,Y). So

ax' BY) \a^'^
Obviously, if we know shape in this case, since

dZ dZ
Z(x + dx,y + dy)-Z{x,y) = — etc + — dy + (h.o.L),

dx dy

we know that the depth function can be computed up to constant additive term. So, if we

know shape under orthography, we know exactly the object in view, but we do not know

its depth.

Other representations for shape

We have stated that the surface normal

(p2 + q2 + 1 )*

with p = SZ/8X, q = 8Z/8 Y at a point of a surface Z = Z(X,Y) represents the shape. This

dZ dZ\



is not the only representation. Obviously shape is nothing but a direction in three-

dimensional space, and so there are many representations for it. The ones that we will use*

quite often in this thesis are, with the exception of the gradient that we have already

analyzed, the following:

a) Coordinates (a,b,c) on the Gaussian sphere .

b) Latitude and longitude angles, say, (9, p).

c) Slant and tilt. Slant is the tangent of the latitude angle and tilt is the

longitude angle. The notation for (slant, tilt) is (o, x). The slant and tilt are

polar versions of of the (p,q) coordinates.

The relationship among these different representations is given by the following

equations:

o = tan 8 = V(p2 + q2)

p/q = tan <j> = tan t

Finally, if (a,b,c) are the coordinates on the Gaussian sphere, then:

(a,6,c) = ^ , | , ^ ) with * = (p2 + q 2 + l ) *

2.7.2 What we mean by retinal motion

If the object in view is moving with a general motion, or if the camera is moving, or

if both move, then the image is moving too. Let the retinal velocity at an image point be

(u,v). The resulting vector field (the velocity of every image point) is called retinal motion

field or optic flow field. This flow field is an intrinsic retinal motion image.

2.7.3 What we mean by depth

Consider again a surface S with equation Z = Z(X,Y) in front of the camera. Every

point (x,y) in the image is the projection of a point (X,Y,Z) e S. If for every point (xy) on the

image we know the Z coordinate (depth) of the corresponding 3-D point (X,Y,Z)f then we

know exactly where the surface is with respect to the camera coordinate system. The



resulting image (for every point in the image there corresponds a number (depth) of the

corresponding 3-D point), is called intrinsic depth image.

2.7*4 Intrinsic parameters that are not images

There exist intrinsic parameters which do not correspond to every point in the

image. These are global constants and every point in the image is in some relation to

them. Examples of these parameters are the 3-D motion and lighting direction

parameters.

3-D motion parameters

If an object moves in front of a camera with a general motion, then this motion can

be considered as the sum of a translation (U,V,W) and a rotation (AJB,C). These six

parameters will be called motion parameters

Lighting direction parameters

Consider again a surface in front of a camera, illuminated by a light source in the

direction (lx,ly,lz)> with respect to the camera coordinate system. The direction (lx,ly,lz) is

called the lighting or illuminant direction.

2.8 A synopsis

Up to this point we have defined mathematically so-called intrinsic parameters.

These are shape, depth, retinal motion, 3-D motion, and light source direction. This of

course does not mean that these are the only intrinsic parameters. There can be many

more but the ones that we described here are the ones which we (and contemporary

research) think that are the most important for the perception of the outside world. Again,

we do not want to get involved in philosophical arguments about why these intrinsic

parameters are important to compute for visual perception. The shape of objects is

important for the recognition of objects that we see, the depth of objects is important for

our interaction with the environment (picking up things), retinal motion is important for

understanding discontinuities and segmenting the environment as well as for the

computation of the 3-D motion which is important for navigation and for understanding

the motion of objects in our environment as well as for avoiding moving objects.



There may very well be other important intrinsic parameters that we haven't

discovered yet. There may also be no more intrinsic parameters of interest. Further

research will uncover the truth on this matter.

2.9 Brightness at every image point

In this section we analyze how the brightness at every image point is determined.

The amount of light reflected by a surface element depends on its microstructure, on its

optical properties and on the distribution and state of polarization of the incident

illumination. For several surfaces, the fraction of incident illumination reflected in a

particular direction depends only on the surface orientation. The characteristics of the

reflectance of such a surface can be represented as a function f(i,g,e) of the angles i =

incident, g = phase and e = emergent, as they are defined in Figure 2.8.

normal

viewer

Figure 2.8: Reflectance model

The reflectance function f(i,g,e) determines the ratio of surface radiance to irradiance

measured per unit surface area, per unit solid angle, in the direction of the viewer. If we

want to be precise, we should specify the quantities and units used to define the required

ratio. Here it is sufficient to point out the role that surface orientation plays in the

determination of the angles i and g.

Consider the example of perfect specular (mirror-like) reflection. In this case, the

incident angle equals the emergent angle and the incident, emergent and normal vectors

lie on the same plane (g = i + e). So, the reflectance function is



1 if i = e and i + e = g

0, otherwise

The interaction of light with surfaces of varying roughness and composition of material

leads to a more complicated distribution of reflected light. Surface reflectance

characteristics can be determined empirically, derived from models of surface

mircostructure or derived from phenomenological models of surface reflectance. The most

widely used model of surface reflectance is given by the function f(i,e,g) = p cosi, where p

is a constant depending on the specific surface. This reflectance function corresponds to a

phenomenological model of a perfectly diffuse (Lambertian) surface which appears

equally bright from all viewing directions; the cosine of the incident angle accounts for

the foreshortening of the surface as seen from the source.

The surface normal vector relates surface geometry to image irradiance because it

determines the angles i and e appearing in the surface reflectance function fli,e,g). In

orthographic projection,the viewing direction and so the phase angle g is constant for all

surface elements. So, for a fixed light source and viewer geometry and fixed material, the

ratio of scene radiance to scene irradiance depends only on the surface normal vector.

Furthermore, suppose that each surface element receives the same irradiance. Then, the

scene radiance and hence image intensity depends only on the surface normal vector. A

reflectance map R(p,q) determines image intensity as a function of p and q (where

(p,q,-l)/^(p2 + q2 +1) is the surface normal vector). Using a reflectance map, an image

irradiance equation can be written as I(x,y) = R(p,q), where I(x,y) is the intensity at the

image point (x,y) and R(p,q) is the corresponding reflectance map.

A reflectance map provides a uniform representation for specifying the surface

reflectance of a surface material for a particular light source, object surface and viewer

geometry. A comprehensive survey of reflectance maps derived for a variety of surface

and light source conditions has been given by Horn [Horn, 1977]. Furthermore, a unified

approach to the specification of surface reflectance maps has been given in [Horn and

Sjoberg, 1981]

Expressions for cosi, cose and cosg can be easily derived from the surface normal

vector (p,q, -1) and the light source vector (p8t q8f -1) and the vector (0,0, -2) which points



in the direction of the viewer. For a Lambertian reflectance function we get

P (1 + P P8 + <? Q8)
R(p>q) = ~, 2 2—y 2 7

V(l + p2 + <?2) V (1 + p 2 + g2))
So, for a Lambertian surface, the intensity I(xy) at a point (x,y) of the image is given by:

p (i + p p + q q J

V(l + p 2 + q2) V(l + p 2 + q2)

with p the albedo constant and {p,q, -I) and (ps, qs, -2) the surface normal at the point

whose image is the point (x,y) and the light source direction respectively, under

orthographic projection. Under perspective projection, the model is not known yet exactly.

2.10 What is to come

Once again, this thesis does not try to present a unified theory for the computation

of the intrinsic images. Much more research is required for that, and the last chapter

sheds some light on this issue. Instead, it tries to prove mathematically that if several

cues are combined and if the right (natural) assumptions are employed, then we can

obtain visual computations which uniquely and robustly compute intrinsic images.

Chapter 3 is devoted to the problem of shape from texture where it is demonstrated

that a modified Gibsonian assumption leads to an algorithm that works for a variety of

natural images. In this Chapter we demonstrate that the right assumptions are bound to

give good results. Chapter 4 examines the problem of shape from shading, which leads to

the conclusion that it cannot be solved. After this, if shading is combined with motion (or

stereo), then this leads to algorithms that uniquely compute shape from these cues.

Chapter 5 is devoted to visual motion analysis. The feasibility of the problem of structure

from motion is examined and several new theorems of theoretical importance are proved.

Finally, it is shown that if motion is combined with stereo, then robust solutions for the

structure from motion problem are obtained and that motion analysis can be done without

point correspondences. Finally, Chapter 6 is devoted to the analysis of the perception of

shape from contour, and the advantages of combining stereo, contour and texture.

Chapter 7 presents the conclusions from this work, sets forth foundations for future work

and discusses the beginning of a unified early vision theory which works in a highly
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parallel fashion, where the different processes cooperate to integrate information from

different sources and compute uniquely and robustly the parameters of our extrapersonal

space.



Shape from Texture

Results

Here we study the problem of determination of shape from texture. In particular:

1) We show how to recover the shape of a surface covered with small elements (texels) of

the same area. The shape of the texels is of no importance to our theory. Furthermore we

indicate that there is a very strong connection between shading and texture.

2) For natural textures, we show that the uniform density assumption is enough to

recover the orientation of a single textured plane in view, under perspective projection.

Furthermore, when the texels cannot be found, the edges of the image are enough to

determine shape, under a more general assumption, that the sum of the lengths of the

contours on the world plane is about the same everywhere. The problem is examined

under both perspective and paraperspective projection. The results in the case of

paraperspective projection are better than in the case of perspective. Finally, several

experimental results in synthetic and natural images are presented.

The basic assumption here is that we are imaging a single textured plane. For the

methods developed here to be applied to an image where several planes are present, a

segmentation is required first. In the conclusion of this chapter, we describe how this

theory could be used for such a segmentation.

A central goal for visual perception is the recovery of the three-dimensional structure

of the surfaces depicted in an image. Crucial information about three-dimensional

structure is provided by the spatial distribution of surface markings, particularly for
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static monocular views: projection distorts texture geometry in a manner that depends

systematically on surface shape and orientation. To isolate and measure this protective

distortion in an image is to recover the three-dimensional structure of the textured

surface.

In order to study the problem of detecting surface orientation from texture, we need to

distinguish between two kinds of texture: artificial texture (or pattern texture) and

natural texture. When we say that an object is covered with artificial texture, we mean

that the surface of that object is covered with repeated patterns of the same area. When

we say that a surface is covered wtih natural texture, we mean that the surface is

irregularly marked. Both kinds of texture are important for recovering 3-D structure, and

for this reason we will study both of them, beginning with artificial texture. Figure 3.1

depicts the monocular images of surfaces covered with artificial and natural texture

respectively. It is remarkable how humans can infer the three-dimensional structure of

the imaged surfaces clearly with the help of texture.

3.1 Detecting surface orientation from artificial texture, or shape from patterns

The problem we address here is to recover the three-dimensional shape of a surface

covered with repeated texture elements of the same area, which we will call texels, from a

monocular view. This problem, known in the literature as shape from patterns, has

already been addressed by various researchers who obtained partial solutions, under

certain assumptions. Previous work in this area has been developed with the use of three

different kinds of projections: orthographic, perspective and spherical.

In the above figure we show examples of artificial and natural texture.

Kender [Kender, 1980] and Kanader and Walker [Walker and Kanade, 1984] studied the

problem under orthographic projection. Kender assumes the patterns to be polygonal or

symmetrical and recovers orientation using skewed symmetry constraints (knowing the

angle between two axes in space and the angle they make in the image, constraints

between 3-D surface orientation and measurable image parameters can be developed).

For this he needs prior knowledge of symmetry or specific knowledge about the pattern, as

well as some heuristics about the orientation of some of the patterns. Walker and Kanade

use a combination of Render's method and Shafer's theory of generalized cylinders
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(a) (b)
Figure 3.1: (a) artificial texture, (b) natural texture

[Shafer, 1982] to recover surface orientation from patterns, under orthographic projection.

But their method has limited applicability as reported.

Kender [Render, 1982] and Ohta et al.[ Ohta et al, 1983] study the problem under

perspective projection. Render's method is based on the vanishing point of parallel scene

lines and as such is very limited to special kinds of patterns. On the other hand, Ohta's

method is very ingenious even though it is strictly applicable only to planar surfaces. This

method permits different kinds of texels on a plane and it provides a somewhat heuristic

method for their separation, which does not always work. After the image texels have

been separated into clusters of the same kind, the area ratios of two texels of the same

kind provide rich information for the orientation of the imaged planar suface.

Finally, Ikeuchi [Ikeuchi, 1984] studies the problem under spherical projection and

provides good results for images that fit his assumptions. In his work the texture elements

on the world surface have to be known a priori and to be symmetrical; basically he
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Equation (3.1) relates the area of a world texel Sw, its gradient (p,q), the area Si of its

image and its mass center (A,B). If we call the quantity Si "textural intensity," and the

quantity Sw/P2 "textural albedo," then equation (3.1) is very similar to the image

irradiance equation

i x l-Ap-Bq

where/is the intensity (p,q) the gradient of the surface point whose image has intensity /,

X is the albedo at that point and (A,B,1) the direction of the light souece [Horn 1977;

Ikeuchi, 1981].

Thus equation (3.1) can be used to recover surface orientation, using methods that

have been discovered for the solution of the shape from shading problem [Ikeuchi, 1981].

3,1.4 A gradient map

Equation (3.1) of the previous section can be written as

/ = R (p,q) <3-2)

where / is the textural intensity, i.e. the area of an image texel with mass center (A,B),

and

with X the textural albedo,i.e. the quantity Sw/p2, and (p,q) the gradient of the plane on

which the world texel lies. The function R(pq,) we call textural reflectance. If we fix the

albedo X, and the position (A,B) of the texel on the image, then equation (3.2) can be
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3.1.2 Paraperspective projection: An approximation of the perspective

projection by a 2-D affine transformation

Let a coordinate system OXYZ be fixed with respect to the camera, with the -Z axis

pointing along the optical axis, and O the nodal point of the eye (center of the lens), as in

2.6.3. The image plane is assumed to be perpendicular to the Z axis at the point (0,0,-1),

i.e. focal length = 1. If P is the depth of the center of mass of the world pattern that lies on

a plane with gradient (p,q), then to represent the original pattern of the surface texel, we

use an (a,b,c) coordinate system, with its origin at the mass center of the texel. To

represent the pattern of the image texel, we use and (a', b\ c') coordinate system, with its

origin the point (A,B, -1), i.e. the mass center of the image texel, and the axes a1, b\ c*

parallel to the axes X, Y, Z respectively. Then the transformation from (a,b) to (a',bf) with

the two step projection process of the previous section is given by the affine

transformation

a' 6' = a b

_pB

s
V(i+p2) V(i+p2)

q(p + A) 2̂

+ p2)(l +p2+q2) V(l + p2)(l

It is clear that this transformation is the relation between two 2-D patterns, one in the

3-D space and the other its image on the image plane. We now use this affine

transformation to develop the desired constraint.

3.1.3 The constraint

The determinant of the matrix of an affine transformation is equal to the ratio of the

areas of the two patterns before and after the transformation. Specifically, if Sw is the

area of a world texel that lies on a plane with gradient (p,q) and Si is the area of its image

that has mass center (A,B), then we have:



develops constraints similar to Render's, but in a simpler form because of the properties of

the spherical projection. In this work, we determine the shape of a surface covered with

repeated texels, from a monocular view, under the following assumptions:

(1) The surface in view is smooth and is covered with repeated texture elements. All

the texture elements on the surface are of the same area. These texture elements

we call texels. The shape of the texels is of no importance for our theory.

(2) Each texture element is assumed to lie on a plane (i.e., we assume that the surface

in view is locally planar). This means that the size of the texels on the surface has

to be small compared with a change of surface orientation there.

(3) The scene texture is imaged under paraperspective projection (section 2.6.3).

The fact that the surface in view is smooth, enables us to use existing techniques

already applied to recover shape from shading [Ikeuchi and Horn, 1981], that make use of

smoothness constraints. Although the technique that we will use falls in the

regularization paradigm, it is of significant value for this case. We insist on the fact that

regularization cannot be applied to unrestricted natural images, but in this case since the

inherent assumption for the case of artificial texture is smoothness, and the domain that

we will address in our experiments consists of smooth objects, the method that we will

develop is valid and useful.

Under the above assumptions, we develop a new gradient map which will enable us to

define a "textural reflectance function." Our theory is very similar to earlier work on

shape from shading [Horn, 1977; Ikeuchi, 1981], with the image intensity at a point

replaced with the area of the image texel at that point.

We value the following analysis and the suggested algorithms, not only because they

provide a good way for detecting shape from patterns, but also because they provide

insight to a possible unified approach for the perception of shape from texture and

shading, since our mathematical findings with respect to this problem suggest that under

the appropriate formulation, the problems of shape from shading and shape from texture

can be solved in the same basic way.



represented conveniently as a series of contours of constant textural intensity. Figure 3.3

illustrates such a simple textural reflectance map.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

•* p

Figure 3.3: The gradient map

In the above figure, we present the textural reflectance map for a point (A,B) = (-7,-.3)

with textural albedo X = 1. The reflectance map is plotted as a series of contours spaced

one unit apart.

3.1.5 Recovering the textural albedo

We use equation (3.2) of the previous section to recover the local surface orientation.

No matter what method we use we must know the textural albedo X =



We cannot know p from a static monocular view; neither can we know Sw in general.

But it turns out that we can compute approximately the ratio Sw/P2, i.©« the textural

albedo X.

Consider three neighboring image texels Tj, T2 and T3 with areas /;, I2 and I3 and we

suppose that the world texels whose iamges are the texels 7/, T2 and T3 lie on the same

plane with gradient (p,q). Then the following equations arise:

I =\(so,n) (3.4)

73 = X ( s 3 ' n)
(3.5)

where n = (p,q,l)/ V( l + p2 + q2) and Si = (Ai, Bi,l) for i = 1,2,3 and (Ai,Bi) the mass

center of texel Tr. Eliminating the textural albedo A from the equations (3.3), (3.4), and

(3.5) we get:

n =

for some constant k that makes n a unit vector, where [si,S2, S3] = Si(s2 X S3) and provided

that [si, S2, S3] & 0, i.e. the vectors si, S2, and S3 are not coplanar (linearly dependent).

The result of equation (3.7) is approximate due to the hypothesis that three

neighboring texels lie on the same plane. But, if we perform this process in all the triples

of neighboring points, and we take the average value for the albedo, then the result is

highly improved. At the same time, we can get an approximate value for the surface

normals at all the texels in the image (equation (3.6)). Then we can use these initial

approximations to start the iterative algorithm that will be introduced in the next section.



3.1.6 Another way to recover the albedo

Following Ohta et al. [1980], and assuming local planarity, i.e. three neighboring

texels belong to the same plane which we call Q, we have that:

where fcj, & are the distances from two texels to the vanishing line of the plane Q along

the line joining the two texels and $j, S2 are the areas of the two texels in the image. Since

I//-/2I is just the distance between the two texels in the image and it is known, a point on

the vanishing line may be determined. With a third texel, two points may be determined,

which give the equation of the vanishing line [Render, 1980]. Since the equation of the

vanishing line of the plane Q is px + qy = l, the orientation of the plane Q can be

determined, and from that an approximation of the textural albedo is found.

3.1.7 Additional constraints and propagation of the constraints

In this section we introduce the smoothness constraint [Ikeuchi, 1981] and we present

an iterative algorithm of the same flavour as the one introduced by Ikeuchi.

3.1.8 An iterative propagation algorithm

We have already proved that every distortion value (image texel area) for a specific

image position corresponds to a contour in the gradient space (See section 3.4). So, the

problem has infinite solutions and this is the reason that we introduce the smoothness

assumption. A smoothness constraint can be used to reduce the locus of possible

orientations to a unique orientation, through an iterative algorithm.

Trying to develop a global error function that should be minimized in order to give the

desired value, we measure the departure from smoothness and the error in the textural

reflectance equation (equation (3.2)). The error in smoothness we measure (after [Ikeuchi,

1981]) as follows:

ij 4



where py and <fy denote the orientation at the surface point whose image is the point (i j).

The error in the textural reflectance equation, can be given by:

where /;j is the distortion value (texel area) at the point (ij) and R the textural

reflectance.

An acceptable solution should minimize the sum of the error terms in all the grid

nodes. If E is such a global error function, then

E =
i j

and the factor co gives a weight to the errors in the textural gradient map relative to the

"distance" from smoothness. To minimize Et we differentiate with respect to pij and qij

and setting the resulting derivatives to zero and rearranging the equations, we obtain:

dR
pa = paa+ ° [/ -R(pa>qu)] Td

lJ lJ ij lJ lJ dp

dR
qa = qau+ a [Ii j~R(pwqu)] ~Z

where pqij and qaij are the average values of p and q around the point (i j) respectively.

The above equations suggest an adjustment of p and q in the direction of the gradient of

the textural reflectance function, by an amoung that is proportional to the error in the

textural reflectance equation (equation (3.2)). So it is natural to use the following

iterative rule for the estimation of the p and q everywhere in the image:

&R
n +co[J.. -R(pn.fq

n)] —

,qn)] —
*«,/ dp

In the above equations the partial derivatives of the textural reflectance are

evaluated on the values of p and q of the n-th iteration. Finally, to avoid numerical

instabilities we modify the above formulas to the following form [Ikeuchi & Horn, 1981]:

pn + l =pan. + a>[I..-R(pan.,qa'1)] —



q= qan + co [/ -R(pan , qan )] —
IJ IJ IJ IJ tj £jp

R(Pij,qij) is a function on a four-dimensional space, unlike the R(p,q) of orthographic

shape from shading. The shading R(p,q) can be determined empirically, but the textural

reflectance R(pij, qij) is an analytic, geometrical entity arising from imaging geometry,

and thus only the global constant (texture) albedo varies from texture to texture and

scene to scene.

3*1.9 Experiments

The algorithm was tested on artificial images of a plane, cylinder, sphere, ellipsoid

and a donut shaped object. There are four distinct steps into which the program may be

broken down:

1) Location of texels,

2) Minimum triangulation of the texel centers,

3) Calculation of initial orientations and textural albedo,

4) Iterative process.

In 1), the connection regions in the image are detected. Their centers of gravity are

taken to be the locations of the texels. Their size is recorded and the texels which are in

the boundary are marked [Ballard & Brown, 1982]. In 2), the points denoting the centers

of the texels are triangulated so that the sum of the length of the lines is minimum [Aho,

Hopcroft & Ullman]. In 3), the estimate of k was calculated from the local orientation with

the lowest value of p and q. Due to curvature of the surface, convex objects tend to give an

overestimate of A while concave objects tend to give an underestimate. These errors are

minimized when the surface of the object is most nearly perpendicular to the image plane.

The algorithm is quite insensitive to initial orientations given to texels whose

orientations were allowed to vary through the iterative process. Boundary texels were not

allowed to change. The error in calculating their values was the predominant factor in

influencing the total error. The iterative process took under 10 iterations. The process

always converged for our synthetic images. The final error values were



plane

sphere

cylinder

fractional
error

negligible

.005

.015

The errors in the table denote the average percent error at each texel. The error at

each texel was taken to be l/4n -o, where o = solid angle subtended by rotating the

calculated orientation about the actual orientation. Figure 3.4 gives a pictorial

description of the error at each texel.

x :

y :

Error

calculated
orientation
actual
orientation
s S/ (area of

the sphere)

Figure 3.4: Schematic description of the error

Finally, azimuthal equidistant coordinates (AEC) [Ikeuchi&Horn, 1981] were used

through the iterative process instead of the gradient space p and q, since AEC change

linearly with change in orientation. The AEC can be easily understood in the following

way. Consider the Gaussian sphere and the gradient space plane tangential to it at the

north pole, in the origin of the gradient space. In order to find on the sphere the AEC of a

point in gradient space, we roll the sphere to the direction of the gradient space point,

until the sphere touches the point. The corresponding point on the sphere gives the AEC

of the gradient space point. Figure 3.5 shows the image of a sphere which is covered with a

repeated pattern. Figure 3.6 shows the reconstructed sphere using the algorithms of

Sections 3.1.7, and Figure 3.7 shows the reconstructed sphere after the relaxation.

Figures 3.8,9, and 10 and 11 and 12 show the analogous pictures for a cylinder and plane



respectively. Figures 3.12.1, 3.12.2 (triangulation), 3.12.3 and 3.12.4 show similar

experiments for an ellipsoid and figures 3.12.5, 3.12.6 (triangulation), 3.12.7 and 3.12.8

show similar experiments for a donut shaped object.

In the previous sections we studied the problem of determining surface shape from

artificial texture, i.e. from the apparent distortion of patterns. In the sequel, we will study

the problem of determining surface orientation from natural texture.

Figure 3.5: Input (sphere) Figure 3.6: First phase
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Figure 3.7: Result (reconstruction) Figure 3.8: Input

Figure 3.9: First phase Figure 3.10: Result



3.11: Input (plane)

Figure 3.12.1: Input (ellipsoid) Figure 3.12.2: Triangulation



Figure 3.12.3:First phase Figure 3.12.4: Result

Figure 3.12.5: Input (donut) Figure 3.12.6: Triangulation



Figure 3-12.7:First phase Figure 3-12,8: Result

3.2 Detection of surface orientation from natural texture-
It is very clear that natural texture provides an important source of information about

the local orientation of visible surfaces. To recover three-dimensional structure, the

distorting effects of the projection must be distinguished from properties of the texture on

which the distortion acts. This requires that assumptions must be made about the texture.

In this work we will study extensively the problem of shape from texture for the case of

planes. Extension of our theory for curved surfaces will also be discussed. Several

researchers have done work in this area, with the most important results presented by

Gibson [Gibson, 1950], Witkin [Witkin, 1981], Stevens [Stevens, 1981], Bacjsy [Bacjsy et

al, 1976], Rosinski [Rosinski, 1980) and Kanatani [Kanatani, 1984]. These researchers

studied the problem under different assumptions about the texture and the imaging

geometry. The next section analyzes the distortions imposed by the imaging geometry in

an attempt to decide under what kind of projection we should study the problem of shape

from texture, and the section following reviews and criticizes previous work.

3.2,1 Distortions imposed by the imaging geometry

An image is the projection of a three-dimensional world onto a plane. This process

(projection), introduces various distortions to the objects in view. In general, the

distortions can be considered as coming from the following effects: the distance effect (the

objects in view appear larger when they are closer to the image plane), the position effect



(the distortion of a pattern depends also on the angle between the line of sight and the

image plane, which depends on the image position of the pattern), and the foreshortening

effect (the distortion of a pattern depends on the angle between the surface normal and the

line of sight). It is clear that the orthographic projection model captures only the

foreshortening effect and ignores the other two. Therefore, methods for shape from

texture which use orthographic projection are valid only in a limited domain, where the

other two effects can be ignored. On the other hand, the perspective projection model,

which can be used as a camera model, captures all three effects, but the resulting

algorithms are complicated and they involve the solution of nonlinear equations.

Furthermore, the numerical errors introduced by the numerical approximation of several

quantities (under perspective projection) reduce by a small amount the accuracy of any

method. In this work we analyze the texture problem under both perspective projection

and an approximation of the perspective projection that captures all the above three

effects. It is relatively simple and gives accurate results. This approximation is called

paraperspective projection and has already been described in the second chapter.

3.2.2 Previous work

Some serious work has been done in this area, and many of the published papers have

reasonable results for the images that fit their assumptions. The first to approach the

shape from texture problem was Gibson [1950]. Trying to develop a theory on how

humans perceive surface orientation from texture, he suggested that texture consists of

small elements, called texels. Of course, these small elements constitute the texture in a

very irregular, non-canonical way. Gibson, realizing that he should make assumptions

about the texture, proposed the following: The individual elements that constitute the

texture (texels) are uniformly distributed on the world plane, in the sense that in a unit

area on the world plane there is approximately the same number of texels; in other words,

texture is uniformly distributed on the world plane. But when we look at it, i.e. take an

image, then the texture density is not uniform, i.e. it has a gradient. So, Gibson proposed

that humans perceive the orientation of naturally textured surfaces from this sameness

(uniform density on the world plane) and difference (gradient of the texture in the image).

Gibson, not having the necessary analytical tools, treated the case of perspective

projection of a receding plane (ground plane). He assumed the plane to be covered with



elements of uniform density, and from that, the gradient of texture density in the image

specifies surface orientation.

Continuing with the approach initiated by Gibson, Bajcsy and Lieberman [1976] tried

a heuristic use of the two-dimensional Fourier power spectrum windows to detect texture

gradient. Their work, despite its elegance, was of a very limited applicability. Their

method works only for receding surfaces, and with the distance of the camera from the

ground known. Furthermore, all the texture elements are assumed to have the same size,

for their theory to be right. Because of the fact that the texture elements are not of the

same size in the real world, their results are not accurate, as reported. After this, the

Gibsonian approach was abandoned, basically due to the work of Witkin and Stevens.

Witkin [1981] presented a statistical approach without assuming spatial,

homogeneity. He assumed "directional isotropy11, i.e. the assumption that the peripheral

contours of the figures in the true texture have line segments that are uniformly

distributed over all orientations. Based on an orthographic projection model, he derived

the maximum likelihood estimators of the slant and tilt angles. Although the isotropic

assumption is a general one, there are many natural scenes that do not agree with this

assumption. In our formulation, Witkin's assumption can be used, but our experiments

showed that it yields very low accuracy. The reason for that is that the directional

isotropy assumption is very restrictive and seems to be present only in a small subset of

natural images. The arguments of Witkin as to why he did not continue with the

Gibsonian uniform density assumption are two: First, it had not been demonstrated up to

that point that the uniform density assumption could be used as the basis of an algorithm

to detect surface orientation in a general situation. We prove in the forthcoming sections

that this is not the case. Witkin's second argument was that even if we had an algorithm

that could recover surface orientation based on uniform density, this algorithm would

need to know the texels, and it is not at all obvious how we can find the texels in an image.

This is perhaps the strongest argument against the Gibsonian assumption of uniform

density, but in later sections we will show how to overcome this problem and alter the

uniform density assumption to a better, more general one that does not require our

finding of the texels.

Stevens (Stevens, 1980) studied the problem under perspective projection and found

that texture density depends on both scaling (distance-position) and foreshortening



(surface shape). From this, he concluded that texture density is not a good measure for

computing surface orientation, since it varies with both scaling and foreshortening.

Stevens did not realize that despite the fact that scaling and foreshortening both affect the

texture density, their effects could be separated and that the separated foreshortening

effect could compute uniquely the surface orientation. Our approach performs the

separation of the foreshortening and distance effects and does not make any assumptions

about the shape and size of the texels. It assumes only that the texels are distributed in

the world plane at uniform density. Practical difficulties (finding texels) obliged us to

generalize the uniform density assumption to another form which seems to capture a very

large subset of natural and man-made environments; the resulting algorithms do not

require a strong segmentation (finding texels), but only a weak segmentation (finding

edges).

Render [1980]) and Kanade [1979] explored the domain under orthographic

projection. Render formalized the relationship between local surface orientation and two

perpendicular axes of the same length. Kanade proposed using skewed symmetry to

recover local surface orientation. The angle between a skewed symmetry direction and

the opposite direction can be a constraint on surface orientation. Render [1980] and Ohta

et al. [Ohta, Maenobu, Sakai, 1981] address the shape from texture problem under

perspective projection. Render determines surface orientation from many parallel lines

observed on a plane. Ohta et al. proposed using the area ratio of texture elements to

recover surface orientation. Their method depends on the accuracy of measuring the areas

of individual texels of the same shape. Measurement errors are amplified when the texels

are very small. Furthermore, their method needs to find the individual texels, something

very hard and seemingly impossible in natural images. Ikeuchi [1984] addresses the

problem under spherical projection for general surfaces, but his crucial assumption is

that the world texels must be regular (symmetrical) and known a priori, as it has already

been noted in section 3.1. Ranatani [1984] uses the second Fourier harmonics of the

number of intersections between texture and parallel scanning lines to find the surface

orientation based on orthographic projection, by assuming that the texture is

directionally isotropic, ie. his method is very similar to the one used by Witkin.

3.2.3 The model
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The paraperspective projection model is very general, and it can slightly change

everytime we change the auxiliary plane. This model has already been described in

sections 2.6.3 and 3.1.2. Here we describe the inverse transformation, i.e. the

transformation from the image plane to the world plane.

3.2.3.1 The inverse transformation under paraperspective projection

The transformation that was introduced in the two previous sections, was from the

world to the image. In this section, we study the inverse transformation, i.e. the one from

the image to the world, under the introduced paraperspective projection. There are two

reasons for doing this. First, we will derive the same algorithm using two different

methods and second, we will use the results of this section later, when we will address the

problem in the case when we cannot identify the individual texels, but parts of their

boundaries (edges).

Consider the function f that maps points in an area Sj of the image to their

corresponding ones in the world plane under the inverse of the already introduced

paraperspective projection. The function f does the following:

1) If the point $=(AJirl) is the center of gravity of the image area S/,then f(s)

is the intersection of the vector (AJBrl) and the world plane.

2) For any other point p=(x,yrl) in the area S/, ftp) =Q + t(A, B, -1), where W is

the vector defined by the origin and the intersection of the direction (x, y, -1) with the

plane z = -d.

It is clear that the transformation /is the inverse of the imaging transformation. From (1)

and (2), f can be written explicitly as:

flx,yrl)= (dx + tA,dy + tBrd-t) with

c J d(pX+qy-l)+c
a = andt= —andt=

l-Ap-Bq 1-pA-qB



In the rest of the chapter, whenever we use the symbol f, we will mean the inverse

transformation introduced in this section. Finally, we should say that f is defined for a

region S in the image, since it depends on the center of gravity of the area S. So, if the

image is divided in n areas sj , s ,̂ ..,sn and the inverse transformation for each area is fj ,

f2,.., fn then the inverse transformation for the whole image can be realized as the set {fi,

3.2.3.2 The inverse transformation under perspective projection

Here we study the inverse transformation under perspective projection. Let us fix a

coordinate system OXYZ with the Z axis as the optical axis and the image plane

perpendicular to the Z-axis (focal length = 1). If (x,y) is the coordinate system on the

image plane (x axis parallel to X, y axis parallel to Y ) with origin at the intersection of

the Z-axis with the image plane, then a point (X,YJZ) in the world is projected on the

image point (x,x),with:

X Y
x = z ' y = I

Furthermore, let a plane Z=pX+qY+c in the world, whose image is considered.

The inverse imaging function, ff is again the function that maps the image plane onto the

world plane. So, if (x,y) is an image point, the 3-D world point on the plane Z=pX+qY + c

that has (x,y) as its image, is given by:

ex cy c \(
= ( px-qy l-px-qy l-px-qy /

We see that in the previous case (paraperspective) the inverse transformation was

defined for a small area. Here the inverse transformation is defined for the whole image

plane by the same form. In the rest of this section we will develop the first fundamental

form of [Lipschutz, 19691, because it will be needed later. The first fundamental form of f

is the quadratic form: Edx?+2Fdxdy+Gdy*

with E=fxfx,F=fxfyfG=fyfy where represents the dot product operation. After simple

calculations we get:



(l-px-qy)4

(l-px-qy)*

-p*)py

4 V + (1 -px)2 + q2

The above coefficients E, F, G are called first fundamental coefficients and are functions of

xy (and so they vary from point to point). In the sequel we will examine the relation

between image and world areas, as well as the relation between image and world lengths,

for both perspective and paraperspective projection.

3.2.4 Relation between image and world areas

In order to study the relationship of the texture on the world plane and of the

texture on the image plane, we must examine the relationship between areas in the world

and in the image. The next two sections do that for both cases of paraperspective and

perspective projection.

3.2.4.1 The case of paraperspective projection

It is known that the absolute value of the determinant of the matrix of a 2-D affine

transformation is equal to the ratio of the areas before and after the transformation. In

other words, if Sw is the area of a region on the world plane -Z = pX + qY + c, and S7 is

the area of its image under the introduced projection process, then:

-1 +pA pB

— =abs[ det\ -
P

q(p+A) qB-p2-l

or

V(l + p2) (1 + p2+q2) V(l + p2) (1 + p2+ q2)

S! ( 1 1-Ap-Bp \
— = abs\ — I
S

w
 V d2 V ( l + p 2 + q 2 ) /
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But it is clear from the intersection of the central projection ray with the world plane

that

d =
1-pA-qB

The above equations give:

w
V(l+p2+q2)

Since the parameters p, q, c are constant, the above equation tells us that the ratio of

the areas before and after the transformation is inversely proportional to the cubic of the

distance of the mass center of the world region from the origin. Also, it says that an area

Sj in the image is due to the projection of an area (Sj abs (d3) V(l +p2 + q2) Ic) in the

world; in other words, if we consider an area S ; in the image, then in order to find the

area in the world plane whose projection is St, we must multiply the area St with the

factor

c2V(l+p2+<?2)\
RT = absi ) = abs.

1 \ c / \ (i-Ap-Bqf
where (AJ3) is the center of gravity of the image area S7.

The ratio S ; /Sw can also be computed in the following elegant way, using the

inverse transformation fthat was developed in section 3.2.3.4. The function /"maps the

region S ; to a region Sw on the world plane (see Fig.3.14a).
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Figure 3.14a:The inverse transformation
8/78* and 8/78y represent the speed along the x curve and y curve
respectively. A rectangle Si in the image having area Ax Ay is mapped to a
parallelogram in the world plane which is determined by tide vectors 8/78x
Ax and8/78yAy. Therefore the area ofthis parallelogram is the magnitude

8f 8f

The area of Sw can be computed by the double integral:

But

dx l-Ap-Bq

and

So,

l-Ap-Bq

(l-qB,pB,-p)

(qA,l-pA,-q)

and

8f^6ft ,2
— X — II = a
8x 8

2= c
Vq+p2+q2)

abs(l-Ap-Bq)

and so, the equations that relate image to world area can be derived again.



3.2.4.2 The case of the perspective projection

Here we address the same problem as in the previous section but for the case of the

perspective projection. We know that if we have an area S2 in the image plane, then the

image of this area through the inverse function /can be computed directly with the aid of

the first fundamental coefficients [Lipschutz, 1969]. In other words, if we have an area S7

on the image plane, then the area Sw in the world plane Z=pX+qY+c whose projection is

Sr is given by:

Sw= \ j V(EG-F2)dxdy

with E, F,G the first fundamental coefficients. If we substitute E, F, G with their values

(section 3.2.3.5) we get:

S f fW = f f "
W iS! J 1-px-

It is obvious that the relation between S; and Sw becomes the same under

paraperspective and perspective, when the area S; becomes very small. Finally, the

above equation cannot be further simplified, since we do not have a specific area Sr

3.2.5 Relation between image and world lengths

Because of the fact that we will need the relation between edges (line segments) on the

world plane and on the image plane, we need to develop them here. The next two sections

examine this problem for both the cases of paraperspective and perspective projection.

3.2.5.1 The case of paraperspective projection

In this section we exploit the relation between the length of a small line segment in

the world and its image under the introduced model of the paraperspective-projection. We

repeat here that the inverse transformation /that was introduced in section 3.2.3.4 maps

image points to world points. The speed of f in the direction o> = (co$9, sinB) is the

directional derivative of fin the direction co. In particular,

fQ(x,y) =Df(x,y)o>1

or



fe'(x,y) =
Difi D2fi
Dif2 D2f2
Dif3 D2f3

cosQ
sinQ

or

(1-Ap-Bq)2

1 -qB qA
pB 1-pA
-p -q

cos 6
sin 8

So, a line segment with length I in the direction 0 in the image, is due to the projection

of a line segment L in the world plane with length

But

c.
q ( i -Ap-Bqr

In other words, if we have a line segment I in the image area Sf in the direction (cos6,

sinQ), then in order to find the length of the line segment in the world plane that has

image /, we have to multiply I with the factor:
2+ (pB)2+p2) cos^ + ((l-pa)2+(qa)2+q^sin2^ + 2((l-qB)qA + (l-pA)pB + pq)ic.

(l-Ap-Bqf

At this point we should say that the same result could be obtained using simple

analytic geometry, but the analysis was done in this way for reasons of elegance.

3.2.5.2 The case of perspective

In this section we address the same problem as in the previous section, but for the case

of the perspective projection. Again, the desired relation is given directly from the first

fundamental coefficients. Indeed, if we have a line segment L on the image plane, then the



length DL of the line segment on the world plane whose image is the line segment L, is

given by the integral of the first fundamental form, i.e.

DL = V(Edx2 + 2F dx dy + Gdy2) on the image plane

where E, F, G are the first fundamental coefficients. Again we can substitute the values of

E, F, G but we cannot get rid of the integral if we don't assume a specific line segment L.

We will now utilize the findings of sections 3.2.4 and 3.2.5 to devise efficient and robust

algorithms for the computation of the orientation of the textured plane in view.

3.2.6 Exploiting the uniform density assumption

In this section, we use the uniform density assumption to develop constraints that will

enable us to recover the gradient (p9q) of the plane in view from its image. We first

address the problem for the case where the texels can be located and counted (strong

segmentation-weak result) and then for the case where the edges (texel boundaries) can

be located (weak segmentation-strong result).

3.2.6.1. Determining shape provided that the texels can be found

In this section we study how we can recover the shape of the textured plane in view,

provided that the texels can be located. Up to this point there is no known algorithm that

can successfully detect texels from a natural image. There is, of course, current research

effort in this direction with promising results. The following two sections are based on the

assumption that the texels can be detected, even though we don't know of any algorithm

that does so. The value of the forthcoming sections is theoretical, and is basically an

answer to the objection raised by those who follow Witkin's approach.

3.2.6.1* 1 The case of perspective projection

The uniform density assumption states that if S and S' are any two regions in the

world plane, and they contain k and k 'texels respectively, then



k k'

area(S) ~~ area(S')

Consider any two regions s1 and s2 in the image of the textured plane with areas S

and S2 respectively. These regions are the projections of some regions in the world plane

with areas SW1 and SW2, where

j
and

Sm= j j V(l+p2+

So, let kt and k2 be the number of texels in the image regions sI and s2 respectively. Then,

the regions in the world plane whose projections are the image regions st and s2 contain k\

and k2 texels respectively. Thus, the uniform density assumption, is written as:

f f -V(l+p2+q2)dxdy f [ -V(l+p2+q2)dxdy
' • j 1 (1—px—qy) 1*2 1 (l—px — qy)

The above equation is the basis for the recovery of the gradient, provided that the

texels can be located and counted. This equation, clearly is an equation in the unknowns

p,q, but it is nonlinear even for the simplest choiceof the areas sJ and s2 (squares). Because

of the nonlinearity of this equation, we do not attempt a closed form solution, something

that probably is not impossible under the employment of over simplifying assumptions.

Instead , we use the following simple method. We divide the image into n equal areas

(squares) (see Fig. 3.15), $2,s2,...,sn, and suppose that each of th$se areas contains k%tk2 ,..,

kn texels respectively. What we require is that the density of the texels in the world plane

is about the same; in other words, we want to find the parameters p,q so that the

quantities:



k.

11 —
J«, J ( 1 - n x -

px-qyf
are about the same, or the quantities

V(l+p2+q2)dxdy
V J a-p**qy?-p**qy

are about the same. Of course "about the same" has a statistical meaning; in particular, if

the density (texel density on the world plane) was the same everywhere, then the

quantities df i=l,.., n should be equal. But it is unrealistic to expect that the density will

be the same everywhere on a textured surface. What is to be expected is that the density

will be "about" the same everywhere. In other words, we want to find the gradient (p,q),

that minimizes the variance of the sample { dt,.., d j . This can be done easily by trying all

the different values for the orientation and choosing the one that minimizes the variance

of the sample d,,.., d . Of course we change formulation for the gradient, and instead of

the gradient space (p,q), we use the (equivalent) Gaussian sphere formalism (azimuth,

elevation) in a discretized fashion (180 different values for the elevation, 180 different

values for the elevation = 180*180 different combinations). We do this in a hierarchical

manner, i.e. after all the different orientations have been tried (180*180 values) and the

sample with the smallest variance has been selected, we have an answer for the

orientation correct up to .9 degrees for both azimuth and elevation. If this answer is, for

example : azimuth=a degrees, elevation=e degrees, we continue the same process but in

the interval (a-l,a + l)X(e-l,e + l) until we obtain the desired accuracy. Finally, the

integral in the computation of the densities dj, i = l ,..,n, can be easily computed. In

particular, if we consider an image



area s that is defined by the square ((m,r),(n,r),(n,s),(m,s)) (see fig. 3.15), then:

y/(l+p2+q2)

\ . \ {l-px-qyf
dxdy = -

+ p2+q2) (n-m) (s-r) (2-

2 (l-

Figure 3.15: Backprojection

So, the denominators in the quantities d can be precomputed for all orientations and

stored in a big look-up table. This 'table is three-dimensional. The first dimension

represents the position in the image (area square in the image), and the other two

orientation. Each entry of the table contains the value of the above integral (denominator

of d.) for the particular area and the particular orientation. So, the algorithm for the

computation of surface orientation given a textured image (where the texels have been

found and counted) is very fast, since it computes the different samples d, i=l , . . ,n

(180*180 of them) by table look-up and by counting the texels (ki ,i= l,..,n) in every area.

The next section examines the same problem, but under the paraperspective

projection. It turns out that in this case a closed form solution can be found ( with a very

simple algorithm).



3.2.6.1.2 The case of paraperspective projection

Here the same problem is treated under the paraperspective projection assumption.

The uniform density assumption states that if S and S'are any two regions in the world

plane, and they contain K and K'texels respectively, then

K K*

areaiS) area(S')

Consider any two regions st and s2 in the image of the textured plane with areas St

and S2 respectively. These regions are the projections of some regions in the world plane

with areas S1R1 and S2R2 respectively, where

and

with (Aj , J?2) and (A2 , B2) the centers of the gravity of the image regions sj9 s2

respectively.

Let Kl and K2 be the number of texels in the image regions st and s2 respectively. By our

assumption, the regions in the world plane whose projections are $t and s2 contain Kt and

K2 texels respectively. That is.

or

abs\
>^S1c2V(l+P2+g2)^
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Since 1 -px-qy= 0 is the vanishing line of the projected plane, ( A l ,Bl) and ( A 2 , B 2 )

lie on the same side of this line. That is, (1- Al p - B t q) and (1 - A2 p - B2 q) have the

same sign. Therefore, we can drop the absolute functions in the above equation. We get

1-A.p-A^q * 1 S 2

or

1 2 1 ^2
= -1

The above equation represents a line in the p-q space. So, considering any two regions in

the image, we constrain (p,q) to lie on a line in the gradient space (see Figure 3.16).

\ (0,A)

(M,0)

Figure 3.16: The constraint in gradient space



In Figure 3.16, the uniform density assumption, taken in two image regions sj, S2

with areas Sj and S2, and K\ and K2 texels respectively, constrains the gradient of the

plane to lie on the above drawn line, where

A = and M =

with (Ai, Bi) and (A2, B2) the centers of gravity of the regions Sj and S2 respectively.

It is now clear that taking two pairs of image regions we can solve for p and q. But

because of the errors introduced by the sampling process (image digitization and density

fluctuations of the regions), we may get inaccurate results. To overcome this problem, we

employ the least-square-fit mechanism. We consider many pairs of image regions, each

one of them gives us one line in the gradient space. The desired solution is estimated by

the point whose sum of distances from all the lines is minimum (see figure 3.17). If these

sampling errors are normally distributed, this estimator gives the best estimation

The desired solution (as seen in the above figure) is estimated by the point whose sum of

distances from all the lines is minimum.

3*2*6.2 Determining shape provided that the edges can be located

In the previous sections we developed a method to recover the orientation of a

textured plane from its image, based on the assumption of uniform density. By uniform

density, we meant that the number of texels per unit area of the world plane is about the

same. Application of this method in natural images did not seem to work very well

because no good methods have been developed up to now that can identify texels in an

image, and our algorithm depends critically on the number of texels in an unit area, as we

have already emphasized. Perhaps the most serious objection against Gibson's

assumption [Witkin, 19811, is the fact that it has not been demonstrated up to now that



f I

q A

Figure 3.17: The solution as constraint intersection

texels can be reasonably found in a natural image. We believe that indeed it is very hard

to find texels in a natural image, and our experiments to date indicate that this is indeed

the case. On the other hand, recent literature [Marr, 1979a, b; Bandopadhyay, 1984;

Canny, 1984; Nalwa, 1985; Sher, 1986] provides many robust methods for the

computation and identification of the boundaries of the texels (edges) everywhere in an

image with texture. Therefore, we slightly modify our uniform density assumption to a

criterion that is sensitive to projective distortion and is computable on natural images.

If indeed Gibson's assumption is true for a large subset of natural images, then given

that the size of the texels will also be uniformly distributed, it follows that the sum of the

legths of the edges will also be uniformly distributed. We now define density in the world

plane as the total length of the texel boundaries per unit area, and our uniform density

assumption states that this new density is the same everywhere in the world plane. This

new assumption is not far from the previous one; it seems to be true for a large subset of

natural images. Of course, it cannot be proved that such an assumption is the appropriate

one to be used for the recovery of shape from texture. An empirical analysis is needed for

such a thing. We have found experimentally that this modified uniform density

assumption (sum of the lengths of the contours per unit area is about the same



everywhere) is true for many natural and man-made textured planes (in particular, it has

been found true for 50 different textured planes - grass fields, gravel paths, leaves on

walls, sea waves, brick walls, carpets, cloth designs, aerial views of towns and parking

lots, books on shelves, text, textured floors, ceilings, and many other cases). We now

utilize this new assumption to devise algorithms for the recovery of surface orientation

from texture. Again, the analysis is done for the cases of paraperspective and perspective

projection.

3,2.6.2.1 The case of perspective projection

In this section we develop an algorithm for the recovery of surface shape using the

assumption introduced in the previous section, under perspective projection.

Let the image be divided into small regions s; , .., s^ (squares, as in fig. 3.15).

Suppose that we find in the area s. the line segments La , L{2 ,.., L^., for i= 1,.., n . Then,

the new uniform density assumption states that the quantities:

J
%+2Fdxdy+Gdy2)

I I ViEG-F^dxdy

with E, F, G the first fundamental coefficients, should be about the same, for i = l, .., n.

Again, in the expressions d we can get rid of the constant c and we follow the same

procedure as in the previous section , i.e. we choose this orientation that minimizes the

variance of the sample dlf..,dn.

The next section studies the same problem, but under the paraperspective projection

assumption.

3.2.6.2.2 The case of paraperspective projection

Let the image be divided into small regions $t, $2 ,.., s^. For each region s., there is an

imaging function f. (that depends on the center of mass of Si) in the way that was described

in section 3.2.3.5. Let also Si and Ri be the area and area change ratio of the region s;

respectively. So, the world area that has s; as an image is Sj. Ri.



In a region s; with center of mass (AJJ),di line segment

(lco$Qf I sinQ) with length / is due to the projection of a line segment in the world plane

withlength/-ft) = {. II/fell.

Let the total length of line segments in direction 9 in the region S; be Ifi . Then, the

new uniform density assumption states that:

= constant for all regions L

Since the area change ratio and the length change ratio for each direction are fixed

within every region for each quantized orientation, tables of those ratios can be

precomputed. The edges in the image are broken into line segments and the values :

i S.R.

for all the regions i, can be computed simply by a table look-up method for each

orientation in the solution space ( with a replacement of the unbounded p-q coordinates

with the bounded azimuth-elevation of the Gaussian sphere formalism). The solution for

the orientation of the world plane can be estimated by the orientation which minimizes

the variance of the sample {ct,.., c J, in the same exactly way as in the previous sections.

3.2.7 A comparison between perspective and paraperspective

In this section we compare the algorithms developed for shape from texture, under

the perspective and paraperspective projections. Obviously, the paraperspective

projection is an approximation of the perspective, and it is an area-to-area projection.

When the area under consideration becomes very small, then the paraperspective

projection becomes equivalent to perspective (as it can be seen from sections 3.2.4.1 and

3.2.4.2). But if we keep the areas very small, then the algorithms in sections 3.2.6.1.2 and

3.2.6.2.2 do not perform well, since not enough information is contained in this small area;

from the other hand, if we make the areas large, again the algorithms do not give

satisfactory results since the error introduced by the paraperspective projection is high .
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We observed that if the areas are kept in between 25*25 and 50*50 pixels, then the results

were very satisfactory.

Comparing the performance of the algorithms in 3.2.6.1. (given that the texels have

been located) we observed that the algorithm based on the perspective projection

performed a little better than the one based on the paraperspective projection. The

algorithms in 3.6.2.2. (based on edges-partial texel boundaries) do not have any

considerable difference in their results. This fact should not be surprising, since both the

algorithms basically minimize a function, and despite the fact that these functions are not

the same for the case of perspective and paraperspective, our experiments showed that

their minimum seems to be the same. Actually, we can say that the algorithm based on

the paraperspective projection performed better than the one based on perspective ; we

think that this is due to the numerical errors introduced by the numerical approximation

of the integrals. The final section describes relevant experiments. The next section

describes an error analysis of the paraperspective projection.

3.2.8 Error analysis

Some of the methods developed in this paper that use the paraperspective

projection depend critically on the promise that the introduced two-step projection process

is a very good approximation of the perspective projection. In this section, we present a

theoretical analysis of the error introduced under the paraperspective projection and we

show that perspective projection and our two step projection process are indeed very close

to each other. A more thorough error analysis can be found in [Aloimonos et al, 1986]. An

error analysis of the two step process that is used in this paper is complicated, since the

error depends on how big is the area that is considered, on the orientation of the world

plane and on the depth. But before we proceed with our analysis, we challenge the reader

to distinguish between the perspective projection and the paraperspective projection from

the figures below (Fig. 3.18). Figures 3.18a and 3.18b are the images of a textured plane.

One of them is produced using perspective projection and the other one using

paraperspective.
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Figure 3.18: (a) the image of a textured plane using perspective projection
and figure (b) the image of the same plane using the paraperspective
projection.

The way we approach the error analysis is the following: We compute the image of

a point under perspective projection and then we compute the image of the same point

under our two step projection (paraperspective). The distance of these two images is the

the error, which is a function of many parameters and we study its behaviour.

We use the terminology introduced in the previous sections. Consider a region S

in the world plane and let G be its center of gravity. Let the perspective image of G be the

point P = ( A,B, -1) on the image plane. Note that the image of G under our two step

process is also the point P. It is easy to see now that G= d.(AJBrl). Consider now a point



Af on the world plane, such that

OM -OP = (Ax, Ay, Az)

This means that M = d . (A, B, -1) + (AJC, Ay, Az). But we can easily prove, since -

z =px+qY+c, that Az = -p Ax -q Ay. So, we conclude that:

Af = W.A + Ax,rf.J

We are now going to compute the image of the point M under perspective projection

and under our two step projection (paraperspective) process. It is clear that the point M

involves the orientation of the plane, the distance from the center of gravity to M and the

distance d. Let the images of the point Af be Afp and Af0 under perspective and

paraperspective respectively. Then, we have:

_ / ri.A + Ax d.B + Ay \

P \ d+pAx + qAy ' d+pAx-f qAy J

and

d.A + Ax-f(pAx + q&y).A d.B + Ay + (pDx + qAy.B

From these equations, we conclude that the difference of the two projections, i.e. the

length of the vector Afo Afp, or in other words the introduced error, is:

*1 . V(2dA 2 2

where z2 = pAx + qAy. It is clear from the above formula that the error depends on many

parameters. Using this formula the calculated error was very small. The following figures

show the dependence of the error on some of the parameters when the rest of the

parameters were fixed. So, it is clear from this analysis that indeed the perspective

projection and our approximation are very close.

Figure 3.19 below shows the dependence of the error on the depth d. The slant and

tilt of the world plane were 54.5 and 45 degrees respectively. The area under

consideration in the image had center of gravity the point (5,5). The difference of the x and

y coordinates of the world point, whose projections are considered, from the center of

gravity of the world area, were Ax = 2 and Ay = 2. Figure 3.20 is the same as Figure 3.19

with the difference that Ax = 2- and Ay = 20.



Figure 3.21 shows the dependence of the error on how large is the area under

consideration. All the quantities were the same as before, with the addition that the depth

<f=300 and the exception that the distance Ax was the independent variable. Finally

Figure 3.22 shows the dependence of the error on the orientation. The fixed values were

(Afi)=(5,5) , d= 300 , (Ax, Ay) = (20, 20) and the quantity q= 10 . The independent

variable was p.

Err*r
liapuwtt)

Figure 3.19 Figure 3.20

Figure 3.21 Figure 3.22



We have experimented a great deal in order to discover the relation between

paraperspective and perspective projection, and in the rest of this section we will describe

some more experiments that describe the error of the paraperspective projection (with

respect to perspective). In the previous figures we showed the error in the projection of a

point. But, for the shape from texture problem, we are primarily interested on the error

in the ratio of areas. We chose two triangles on a world plane, and we computed the ratio

of their images, under paraperspective and perspective projection. From this, the error of

the paraperspective projection was computed for this case. Figure 3.22.1 shows the

percent error as the slant of the world plane varies. Figure 3.22.2 shows the error as the

tilt of theworld plane varies. Figure 3.22.3 shows the error as the depth of the world plane

varies (parameter c).

3.2.9 Implementation and experiments

We have tested our algorithms on many synthetic and natural images. The results

were very satisfactory. In this section, we use slant( tan-1

V(p2 + q2)) and tilt (tan*1 (q/p)) to represent the orientation of a plane, since they are

more intuitive.

3-2.9.1 Synthetic images

In our experiments, we used all the algorithms of 3.2.6.1 and 3.2.6.2, i.e. for the

algorithms in section 3.2.6.1. (3.2.6.1.1-perspective and 3.2.6.1.2-paraperspective) we

used the number of texels per unit area as the density and for the algorithm in the second

part of 3.2.6.2. we used the total length of the boundaries per unit area as the density, to

get a solution. Figure 3.23 is the image of a plane covered with random dots parallel to

the image plane. Figure 3.24 is the image of the previous plane after rotated and

translated, with tilt = 135 and slant = 30 degrees. Algorithm 3.2.6.1.2 (paraperspective)

recovered tilt = 134.4 and slant = 29.75 degrees. Algorithm 3.2.6.1.1 (perspective)

recovered tilt = 134.6 and slant = 29.70 degrees. Figure 3.25 presents the image of a plane

parallel to the image plane covered with random line segments. Figure 3.26 presents the

image of this plane rotated with tilt = 135 and slant = 30 degrees. Algorithm 3.2.6.1.2

(paraperspective) recovered tilt = 133.77 and slant = 30.40. Algorithm 3.2.6.1.1

(perspective) recovered tilt =134.1 and slant = 29.80 degrees. Figure 3.27 presents the
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image of a plane covered with randomly generated small circles parallel to the image

plane. Figure 3.28 presents the image of the plane rotated with tilt = 135 and slant = 30

degrees. Algorithm 3.2.6.1.2 (paraperspective) recovered tilt = 135.54 and slant = 29.77.

Algorithm 3.2.6.1.1 (perspective) recovered tilt = 134.70 and slant = 29.85.

Figure 3,23:

Random dots frontal plane

Figure 3.24:

translated and rotated
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Figure 3.25

Random circles frontal plane

Figjure 3.26

Translated and rotated

Figure 3.27 Figure 3.28



Random line segments frontal plane Translated and rotated

3.2.9.2 Natural Images

In the computation of the actual orientations when the pictures were taken, we

estimate an error of about ± 2 degrees . Our results were in these bounds. The natural

images used here were first preprocessed to find the boundaries of texels (edges) by

applying modified Frei-Chen's operators introduced by Bandopadhyay [Bandopadhyay,

1984]. Figure 3.29 shows a photograph of a textured floor with slant = 45 and tilt = -108

degrees. The test result shows slant = 45.87 and tilt = -109.43 degrees (from the

algorithm in 3.2.6.2.2-paraperspective) and slant = 46.10 and tilt = -110.5 degrees (from

the algorithm in 3.2.6.2.1-perspective). Figure 3.30 shows the photograph of a part of a

grass field with slant = 60 and tilt =0 degrees. Figure 3.31 shows the image of its edges

after the preprocessing. Algorithm 3.2.6.2.2 (paraperspective) recovered slant = 63.057

and tilt = -1.076 degrees. Algorithm 3.2.6.2.1 (perspective) recovered slant = 57.7 and

tilt = -1.55 degrees. Figure 3.32 shows the image of a part of a brick wall, with slant =

40 and tilt = 90 degrees. Figure 3.33 shows the image of its edges. Algorithm 3.2.6.2.2

(paraperspective) recovered slant = 42.6 and tilt = 89 degrees. Algorithm 3.2.6.2.1.

(perspective) recovered slant = 37.1 and tilt = 87.5 degrees.

Figure 3.34 shows the image of another brick wall , with slant = 30 and tilt = 0

degrees. Figure 3.35 shows the image of its edges. Algorithm 3.2.6.2.2 (paraperspective)

recovered slant = 28 and tilt = 1.2 degrees. Algorithm 3.2.6.2.1 (perspective) recovered

slant = 27.5 and tilt = 2.75 degrees.

Figure 3.36 shows the image of a part of a gravel path, with p=0 and <j = 0. Figure

3.37 shows the image of its edges. Algorithm 3.2.6.2.2 (paraperspective)recoveredp=0.25

and<j = 0.1. Algorithm 3.2.6.2.1 (perspective) recoveredp=0.15 and q=0.12.

Figure 3.38 shows shows the image of ivy leaves on a wall, with slant = 20 and tilt =

0 degrees. Figure 3.39 shows the image of its edges. Algorithm 3.2.6.2.2 (paraperspective)

recovered slant = 24.5 and tilt = 5.6. Algorithm 3.2.6.2.1 (perspective) recovered slant =

17.35 and tilt = 4.7 degrees.



ngure <5.<*u snows tne image ot ivy leaves on a wall, with p = 0 and q = 0 .Figure

3.41 shows the image of its edges. Algorithm 3.2.6.2.2 (paraperspective) recovered

p=0.012 and <?=0.024. Algorithm 3.2.6.2.1 (perspective) recoveredp=0.05 and g = 0.015.

All the above pictures in this section have been taken directly from a TV display

(after digitization) because we wanted to show the reader the quality of the images that

we were working with (discretization effects). The following figures 3.42, 3.43 and 3.44

show the actual pictures of some of the images that we used in our experiments. The

results were again in the bounds of 0 to 5 degrees from the actual values.

Figure 3.29: Floor & edge image Figure 3.30: grass field



Figure 3.3 l:edge image Figure 3.32: brick wall

Figure 3.33: Edge image Figure 3.34: brick wall



Figure 3.36

Figure 3.37 Figure 3.38



Figure 3.39 Figure 3.40
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Figure 3.41 Figure 3.42



Figure 3.43 Figure 3-44

3.2.10 Conclusions and future directions

We have developed a simple and effective method to obtain the orientation of a

textured plane from its image. Our method is based on the idea of uniform density

introduced by Gibson. Our algorithm works very well in a large subset of artificial and

natural images. We realize that its success depends heavily on the ability to identify the

texels or the texel boundaries. We presented algorithms that employ perspective

projection and an approximation of the perspective, which we called paraperspective.

Overall, the performance of the algorithms under paraperspective projection was better.

The basic assumption is that the segmentation problem has been solved and so we are

applying the developed algorithms to the image of a single plane. But if we have the

image of a set of textured planes, then segmentation can be helped by the our theories,

since we can apply them to small windows all over the image, and from the different

results that we will get for the orientation, to discover and segment the different planes

in the image. We are currently working towards texture segmentation using the

algorithms presented in this paper (i.e. separate the different textured planes in the

image, by finding orientation). Preliminary psychological experiments indicate that this

direction seems to be promising. Finally, we are working towards the extension of our

theory to curved surfaces. There is an immediate extension of our theory for curved

surfaces, but under the assumption that the form of the equation of the surface is given.

Another way is to apply a local analysis, assuming that the surface in view is locally

planar.
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Shape from Shading and Motion: Combining information

Results

In this Chapter we prove that if we combine shading with motion, then we can uniquely

compute the direction of the light source and the shape of the object in view. In particular:

1) We develop a constraint between retinal motion displacements, local shape and the

direction of the light source. It is worth noting, that this constraint does not involve the

albedo of the imaged surface. This constraint is of importance by its own, and it can be

used in related research in computer or human vision.

2) We develop a constraint between retinal displacements and local shape. Again, this

constraint is important on its own, and it is the heart of the algorithms presented later in

this Chapter.

3) We present algorithms for the unique computation of the lighting direction and the

shape of the object in view.

4) and we present several experimental results that test the theory.

The basic assumption in this chapter is that the retinal motion is computed

everywhere in the image, in the case of a moving observer and a stationary scene, or a

stationary observer and a moving object. If several objects are moving in the scene, then a

segmentation is required first, i.e. the algorithms developed here can be applied to one

rigidly moving object.

Introduction
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Shading is important for the estimation of three-dimensional shape from two

dimensional images, for instance for distinguishing between the smooth occluding

contour generated by the edge of a sphere and the sharp occluding contour generated by

the edge of a disc. In order to successfully use shading, one must know the illuminant

direction /. This is because variations in image intensity (shading) are caused by changes

in surface orientation relative to the illuminant. This chapter reviews previous

approaches to the solution of the determination of the illuminant direction problem and

presents a new method for the unambiguous determination of the single lighting

direction, and from that of the shape information. In particular, this part of the thesis

shows that if we combine information from shading and motion, then we can uniquely

compute shape and the illuminant direction. Since many concepts from motion will be

used, the non-advanced reader is advised to skip this chapter in the first reading and

study chapter 5 first. Finally, in this chapter we are making the assumption of

orthographic projection, since reflectance equation models are not known up to this point

under perspective projection.

4.1 Prerequisites

The ability to obtain three dimensional shape from two dimensional intensity images,

is an important part of vision. The human visual system in particular is able to use

shading cues to infer changes in surface orientation fairly accurately, with or without the

aid of texture of surface markings. An example in which shading information is

important, is the change in luminance that distinguishes a smooth occluding contour

(such as that generated by the edge of a sphere) from a sharp occluding contour (such as

that generated by the edge of a disc).

The direction of illumination is required to be known in order to obtain accurate

three-dimensional surface shape from two dimensional shading because changes in

image intensity are primarily a function of changes in surface orientation relative to the

illuminant. For example, small changes in surface orientation parallel to the illuminant

direction can cause large changes in image intensity , whereas large changes in surface

orientation that occur in a direction perpendicular to the direction of illumination will not

change image intensity at all. So, the illuminant direction must be known before one can

determine what a particular change in image intensity implies about changes in surface

orientation. In this chapter, we develop a computational theory for the determination of

the illuminant direction, and the shape of the object in view, from two images of a moving



object (or from two images taken by a moving observer). Before we proceed, we should

discuss a little about image formation, even though this was discussed in chapter 2, in

general tertns.

4.2 Process of image formation

In order to be able to make quantitative statements about the world and the image

and specifically to estimate the illuminant direction, we must use a mathematical model

for the image formation. A great deal of work has been done in this area (Horn, 1975,

1979) and many models have been developed. For the purposes of this chapter, we use the

following simple and universally accepted model (See figure 4.1).

Figure 4.1: Process of image formation

Assuming orthographic projection, if n is the surface normal at a point on the imaged

surface, 1 is the illuminant direction and / is the flux emitted towards the surface and we

assume a Lambertian reflectance function for the surface (Horn 1975, 1979), the the

image intensity is given by:

I = pf(n-l)

where p is the albedo of the surface, a constant depending on the surface.

4.3 Motivation and previous work



Despite the fact that the problem of determining the illuminant direction is

important for computer vision (shape from shading), not too much work has been done*

towards its solution.

We stress here the fact that the problem of the determination of the illuminant

direction is important. Most of the work in shape from shading (Horn, 1975, Strat, 1979,

Ikeuchi, 1981) assumes that the albedo of the surface in view and the illuminant direction

are known a priori; in other words, this work assumes that the reflectance map specifies

how the brightness of a surface patch depends on its orientation, under given

circumstances. It therefore encodes information about the reflecting properties of the

surface and information about the distribution and intensity of the light sources. In fact,

the reflectance map can be computed from the bidirectional reflectance-distribution

function and the light source arrangement, as shown by Horn and Sjoberg (1979).

When encountering a new scene, we usually do not have the information required to

determine the reflectance map. Yet, without this information, we are unable to formulate

the Shape from Shading problem, much less solve it.

The dilemma may be resolved if a calibration object of known shape appears in the

scene, since the reflectance map can be computed from its image. But what happens when

we are not that fortunate? It is evident from the above discussion that at least the

knowledge of the illuminant direction is required. The only work done for the illuminant

direction determination, is due to Pentland (1982), Brooks (1985) and Brown and

Ballard(1983). Pentland's method is based on the assumption that surface orientation,

when considered as random variable over all possible scenes, is isotropically distributed.

A consequence of this assumption, is that the change of surface normals is also

isotropically distributed. Pentland's method, that uses the same model of image formation

that we do, is valid for some objects. Under his assumptions, Pentland solves the problem

uniquely, but his assumptions are very restrictive.

On the other hand, Brooks and Horn (1985) presented a method in the general

framework of the ill-posed problems and regularization in early vision. Their theory

proposes to solve the shape from shading problem and at the same time to compute the

illuminant direction, by minimization of an appropriate functional. They did not present

any uniqueness or convergence proofs of their iterative methods, but their experimental

results for synthetic images were reasonable.
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Finally, Ballard and Brown presented a method that based on Lambertian

reflectance and a Hough transform technique, recovered the direction of the light source.

In the sequel, we prove that the illuminant direction cannot be recovered from only

one intensity image of a lambertian surface. After this, we will prove that two intensity

images (moving object or moving observer) with the correspondence between them

established, can uniquely recover the illuminant direction, and from that the shape.

4L4 A uniqueness result

Here we prove the following theorem.

THEOREM 1: Given an image (i.e. an intensity function I(x,y)), there are an infinite

number of surfaces and an infinite number of positions of the light source, that will

produce the same image, under the process of image formation described in section 4.2.

PROOF : Suppose that for a shape n ^ y ) , (x,y) € Q (Q is the domain where the image

function is defined) and a light source position st we have:

I(x, y) = p ni(x, y)" Sj, where p is the albedo of the surface in view

(considered constant everywhere).

Define a shape n2(x,y) over Q and a light source position s2 , as follows:

»2(x, y ) = 2m(ni(x, y)-m) - ni(x, y) , S2 =2m(si«m)- sx

for any vector m, with j| m || = 1.

Then, considering a surface with the same albedo as before and with shape n2(x,y) and

illuminated from a point source in the direction s2 f we have :

p n2(x, y )-s2 = p (2m (n2(x, y )-m) - ni(x, y ) )-(2 m (si m)- st) =

p [4 (m • m )(ni(x, y )-m)(srm) - 2 (ni(x, y )-m)-(si - m ) - 2 (si-m) +ni(x, y )-si

]= p ni(x, y )si

So, I(x,y) = p n2(x,y) s2 .

This means that the image I(x,y) could be due to an infinite number of surfaces

illuminated from the one of an infinite number of light sources, since the vector m can be

arbitrary, (q.e.d)



The importance of the above theorem is that no correct and robust method can exist

that will find the illuminant directionfrom one intensity image of a lambertian surface

illuminated from a point source.

We now move to the main part of this Chapter, that is a theorem that states that given

two images of a moving object (or two images of the same object taken by a moving

observer), with the correspondence between the two images established, the position of

the light source can be uniquely determined. But before that, we need some technical

prerequisites that are presented in the following section.

4.5 Technical Prerequisites

In this section we develop two technical results, one concerning the relationship between shape, intensity,

displacements and the lighting direction and the other concerning the parameters of a small motion (small

rotation) with the shape. We proceed with the following theorem.

THEOREM 2: Suppose that two views (rigid motion) of the same (Lambertian) surface

(locally planar) are given and let /j and j2 be the two intensity functions. Suppose also that

the displacement vector field (u(x,y),v(xfy)), (x,y) € ^ is known, where **is the domain of

the image, i.e. a point (x,y) in the first image will move to the point (x + u(x,y), y + v(x,y)) in

the second image. If the lighting direction is 1 = Gi,l2^3) and the gradient of a surface point

whose image is the point (x,y) is (p,q), the the following relation holds:

2pq l(h Axv -12(1 + A^u))(h (1+ Ayu) -12 Ayu) -2x2l\

q2 [(li &xv-l2 (1 + Axu ) P -

2 ph l3r(r-((l +Axu)(l

2ql2 l3r(r-((l + Axu)(1 + Ayv) • Ayu Axv)) -

((1 + Axu)(l + Ayv) -Ayu A'v)2 +

l2l ((A'v)2 +(1 + A>u)2) + l2
2 ((Ayu)2 +(1 + Axu)2) +

+ lll2 ((1 + Axu) Axv + Ayu (1 + Ayv)) -

-r2 l2
3 -2 r l2

3 ((1 + Axu) (1 + Ayv) - Ayu Axv) = 0 (4.1)

where,

I0(x + u(x,y),y + u(x,y))
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and
=u(x + l,y) -u(x,y)
= u(x,y + l) -irfx,y)
=v(x + l,y) -v(x,y)
=v(x9y+l) -v(x,y)

It is clear that the above equation (4.1) is local, i.e. it involves the gradient at a point (xyy)t

the displacements around the point (x,y) along with the global direction of lighting.

PROOF: To exploit the rigid motion assumption, we represent the surface normal by two

vectors and note that their length, angular separation and hence their dot and cross

product are preserved by rigid motion. Consider the surface S, a point A on S, the vector

n = pi+qj + k perpendicular to S at

the point A, and the plane II that is tangent to the surface S at the point A (see figure

n

Figure 4*2: Shape vectors

4.2).

The vectors a=(1,0,-p) and b = (0,1,-q) lie in II and:
aX b = pi + qj + k = n

We shall use vectors a and b as the shape (surface normal) representation.

We use the following traditional camera model. Let O be the position of the nodal point of

the eye, let OXYZ be a coordinate system that is fixed with respect to the eye, and let OZ

be the line of sight. Finally, let the image plane be perpendicular to the Z-axis at the point

(0,0,1).

Consider a point A(x9y) on the surface S at time t whose shape vectors are

a=vec(AB) = i-pk and b = vec(AC)=j-qk (vec(AB) means the vector from the point A to
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the point B). Since the projection of a = vec(AB) on the image plane is i , we conclude that

if IA = (x,y) is the projection of A then the projection of B will be lB==(x + l,y) • Similarly,

the projection of C will be the point Ic=(x,y + 1) on the image plane. Consider now the

object at the next frame where the point A will become A* , with shape vectors a' = A'B'

IB'

IA • • IB

(x,y) (x + l ,y )

Figure 4.3: Displacement vectors

Let I A* be the projection of A'. I A* is the position to which I A moves, which can be

determined from the displacements. Thus, lAt:=(x + u(x,y)fy + v(x,y)). Similarly, if Jg'and

IQ* are the projections of B' and C, then I& is the position to which /# will move. Of course,

displacement at /# is due to the motion of the surface's point that has the same x,y

coordinates as B (orthography), but because of the assumed local planarity, this point is

the same as B. (The planarity constraint of course fails at boundaries). So, we have:

Is' — fx-hl + u(x + l,y),y + v(x + l,y)), and for the same reasons

Ic^ix* u(x,y +1)fy +1 + v(x,y +1)). The projection of a* = vec(A'B') on the image plane is

thus:

But according to our hypotheses, the above relation can be written:

Similarly, we get:

IAIC= Ayui+(1 + Ayv)j

The above two equations give us the expressions for IA'IB* anc* IA'IC which are the

projections of the shape vectors a* and bf respectively. But then,

a'= (1+ A*u)i+ Axvj + Ak and

b' = Ayu i 4- (1 + Ayv) j + pk where A, yL are to be determined .
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But since rigid body motion preserves the vector length, we have that

o r

A= ±(p2-Axu-Axv-2*Axu)1/2

Similarly, we get
ji = ± ( q 2 . Ayu - Ayv - 2*A y u) 1 / 2

Assuming that neither region is in shadow, we have that:

y) = Pi n A 1 (4,2)
and

h(x +u(x,y),y + v(xfy)) =p2 n^l (4.3)

Equation (4.2) above, gives the intensity of the point A(xty) in the first frame. Note that

n^ is the surface normal at the point A (in the first view). Equation (4.3) gives the

intensity at the point A'(x + u(xty) ,y + v(xyy)) in the second frame. Note that n̂ » is the

surface normal at the new position of the point A .

Dividing equations (4.2) and (4.3) and setting l2(A')IIi(A) = r and taking into account

that Pi = P2 (surface markings do not change), we get:

rnA . l=nA>.l (4.4)

But

a X b

a X b |

(4.5) and from the rigidity of the motion it follows that:
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where the sign is chosen such that nA> • k > 0.

But since

ya'| = |a |> flb'fl =»b | | and ab=a'b ' , it follows that

| a X b | = |a'Xb'| (4.7)

Using equation (4.7), equation (4.4) becomes:

r[a,b,l]=±[a\bM'] (4.8)

where the sign chosen is the sign of [a',b*,k], and [ , , ] is the triple scalar product of

vectors. But [a',b',k] = (1 +Axu)(l +Ayv)-Ayu Axv It is obvious that [a,b,k]>0; if

[a f,b\k]<0, then we don't have a valid motion, because [a',b\k]<0 means that we have

reversed orientation so that the the texture in the image is viewed as if seen in a mirror.

So, [af,b',k]>0, and substituting in equation (4.8) the values of a,b,a',bf after algebraic
manipulations and using the fact that:
\2 =p2 +1 .(1 +A*u)2-( A*v)2

= q2+l .

k*yi=p*q-(l +&xu)&yu-(l +b?v)( Axv)

we get equation (4.1).

It is obvious that equation (4.1) involves the lighting direction , but it also involves the

shape (p,q). We would like to find the direction 1 without knowing the shape (p,q),

otherwise the problem is of no importance. Theorem 2 is very important, in the sense

that it has established a constraint between lighting direction, shape and displacement

vectors.

We now proceed with the following theorem.

THEOREM 3. Suppose that the surface S (locally planar) is moving with a rigid motion,

and the camera model is the one described in the previous theorem. Let the gradient of the

surface (with respect to the first frame) be (p(x,y),q(xtf)) and the displacement vector field

be (u(x,y),v(x,y)). It is known that this motion can be considered as a translation (dx,dy,dz)

plus a rotation of an angle 6 about an axis (njtn2tns) passing through the origin

n?2^~ n^3 = ^- If the rotation angle® is small, then the following relations hold:

(a): The displacement vector field (u(x,y),v(xty)) is given by :
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u(x,y)=dx+Bz(x,y)-Cy

v(x,y) =dy+Cx-Az(x,y),

where A=njQJJ=TI28, C=TI3Q and z(x,y) the depth of the surface point whose projection is

the image point (x,y).

(b):

P ( x , y ) = — - A*u

q ( x , y ) = — - Ayv
A

"y-Ayu4-V(Ayu+Ax i;)2 -4*Axu*Ayv
-A*uA Ayv 2

B Axu Ayv

PROOF.

a) Trivial.

b) Using the two equations in (a) and the assumption about local planarity, we get:
Axu=flp
&XV=C-Ap

where the p and q are considered at the point (x,y). From the above
equations we get:

p ( x , y ) = — - A\i

q(x,y) = —- Ayv
A



106

y u + Axv) -4*Axu*Ayv
-&xv

A _ Ayv 2
B AXU Ayv

(q.e.d).

4.6 Development of the lighting direction constraint

In this section we develop the constraint that will be used as the heart of the

algorithm that will solve the problem of the determination of of the illuminant direction.

If we let 1 / A = a 1 / B = P B / A = K and use part (b) of theorem 3, to subsitute

in equation (4.1) for p and q, we get the following equation.

Ayu- I 1 ( l ) \ ]

2 Axu Ayv K$2 [(h Axu-l2 )(1 + Axu )) (h (1 + Ayv)-l2A
yu)-2

+ (Ayv)2 K2 $2 [(^ Axv -12 (1 + &xu))2-r2 l2
2] -

-2 (kxu) p li I3 r (r-(l + Axu + A*v + &xu &>v - A^u &xv)) -

-2 (&v) K $ l2 I3 r (r-(l + Axu + &yv + Axu A'u-A'u &xv))-

- (1 + Axu Â i; + Lxu+ A^-A>u &xv)) +
+ l2l ((A*v)2 +(1 +AyU)2) + l2

2 ((Axu)2 +(1 +A*u)2) +

+h h ((1 + Axu)Axv + Ayu (1 + Ayv)) -r2 l2
3 +

+ 2r l2
3 (1 + Axu + Ayv + Axu Ayv - Ayu Axv) = 0 (4.9).

The above equation is a polynomial in

Considering equation (4.9) in four points we get a polynomial system of four equations

in four unknowns. A simple but tedious calculation of the Jacobian of this system gives us

the fact that the Jacobian has rank four (except for the degenerate cases whose set has

measure zero). This means (inverse function theorem) that the function defined by the

equations of the system is locally an isomorphism, which means that its zeros are isolated.

But, from Whitney's theorem, the set of the zeros of this algebraic system is an algebraic

set and it has finite components.

The conclusion of this is that the solutions of the system are finite (uniqueness). If we

now consider equation (4.9) in five points, then we get a system of five equations in four

unknowns which, barring degeneracy, will have at most one solution.
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It is clear from the above discussion, that two intensity images of a Lambertian

surface, with the correspondence between them established, gives the lighting direction

uniquely. In the next section, we present a practical way to recover the lighting direction

based on the constraint developed in this section.

4.7 The algorithm for finding illuminant direction

First of all we choose the Gaussian sphere formalism (azimuth-elevation) to represent

the vector that denotes the lighting direction. More specifically, we set:

where 8 and <J> are the azimuth and elevation (See figure 4.4).

6 /

Figure 4.4: Gaussian sphere
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Now we consider equation (4.9) in n points in the images, and we get n equations eql, eq2,

..9eqn in the three unknowns f$,8,4>. Then, the following algorithm solves the problem:

for all 6

for all <J>

{

get n quadratic equations in {3

Check if they have a common solution

If yes, output 8<|>.

4.8 Applying the algorithm to natural images

When one is experimenting with natural images, it is sometimes difficult to compute

the displacement field for every point in the image. In that case, one can compute the

parameters of the correspondence of small regions. In other words, if we have a small

planar region Si in the first image that corresponds to a small region S2 in the second

image, then the parameters of an afiine transformation f(x,y)=(ax + by+c,dx+cy+fi

between the two patterns (see figure 4.5)

Figure 4.5:Corresponding regions



can be computed using a variation of a least-squares method introduced by Lucas and

Kanade that is described in Webb[1981]. In that case, the essential constraint (equation

(4.9)), has a similar form and the whole analysis proceeds as previously.

4.9 Implementation and experiments

We have implemented the abovementioned algorithm, and it works succesfully for

synthetic images. Figure 4.6 represents the displacements vector field that was obtained

from the motion (rotational witho)x = l,o)y = 2,caz =3) of a sphere. Figure 4.7 represents

the image of the sphere before the motion. The surface of the sphere is supposed to be

Lambertian, the albedo p= 1 and the lighting direction with gradient (ps,qs) = (0.7,0.3),

i.e. to the right and a little above the horizon. The computed lighting direction was (0.65,

0.33 ). The observed inaccuracy is due to discretization effects. In our synthetic

experiment, we did not compute the displacements; instead , we calculated them since we

knew the motion and the exact position of the sphere. If the Lambertian reflectance model

is not adequate for capturing natural images (which it is not, of course), there probably

exists a model (not discovered yet) that captures natural shading. This model, should of

course depend on the shape and the lighting direction. The approach that we took here,

can be taken with any other model of reflectance, and it is one of our future goals to apply

the method in natural images and employ general reflectance models, that consider the

illumination from the sun and the sky.

Figure 4.6:
Intensity image
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Figure 4,7: DisplacementsTfeld
The next section discusses the problem of determining shape from shading and motion, in

a unique way. Again the findings of the next section cannot be applied at this point to

natural images, for the reasons that we mentioned above. The treatment again, is of

theoretical value, and the method could be applied to natural imagery, if better

reflectance models (i.e. models that capture the reality) were known.

4.10 Computing shape from Shading and motion

In this section we discuss the problem of determining Shape from Shading and Motion.

Before we proceed we need some technical prerequisites , that are introduced in the next

sections.

4.11 The constraint between shape and displacements

THEOREM 4: With the assumptions and notation of THEOREM 2, the gradient (p,q) of a

surface point whose image is the point (x,y), with displacement vector (u,v), satisfies the

constraint:

Ap2+Bq2-2Cpq+D = 0 , with

A =(&yu(xfy))2 +(&yv (xyy))2 +2A^ (x,y)

B=(&xu(x,y))2 +( &xv(x,y))2 +2 £ixu(x,y)

C = A>u (xj) + &u (x,y)kxu(x,y) + Lxv(x,y) + ̂ xv(x,y)^yv (x,y)

D=C2 -AB ,where the coefficients
Axu, Ayu, Axv, Ayv are defined in theorem 2.

PROOF: From the proof of theorem 2, because of the rigid motion assumption, we have

the preservation of the dot product. So,
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Ap2+Bq2-2Cpq+D=0 (4.10)

where (p,q) is the gr adient at the point (x,y), and

&xv(x,y))2+2 Axu(x,y)

Equation (4.10) gives the constraint between displacements and shape and

represents a conic section in p-q space. This conic section is a hyperbola or parabola

depending on the values of the coefficients AJB,C. The constraint (4.10) is a constraint

between shape and displacements. Constraint (4.1) is a constraint between shape,

displacements and the lighting direction. For the purposes of the rest of this Chapter, and

to avoid confusion, we will refer to constraint (4.1) as the lighting constraint, and to

constraint (4.10) as shape-motion constraint.

4*12 How to utilize the constraints

Here we show how to utilize the constraints to recover the three-dimensional shape

of the object in view, using shading and motion. It is assumed that the lighting direction

has already been computed with the algorithm described in section 4.7. Up to now we

have developed two constraints on shape, that also involve retinal motion displacements

and the lighting direction. The lighting constraint is a conic on p,q, with coefficients that

depend on intensities (relative), displacements and lighting direction. The shape-motion

constraint is again a conic on p and q, with coefficients that depend on the displacement

vectors. Finally, the image irradiance equation:

I = p f(n-l) (4. i i)

that determines the intensity Kxj) at a point (x,y) of the image as a function of the shape

n of the world point whose image is the point (x,y) and the lighting direction 1, is another

constraint on p and q that is also a conic. This constraint we will be callling image-

irradiance constraint. The next subsections will describe algorithms for the unique

computation of shape, under a variety of situations.

Figure 4.7.1 below gives a geometrical description of the constraints.
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Figure 4.7,1: Pictorial description of the constraints

4,12.1 Computing shape when the albedo is known

When the albedo is known, then we have at our disposal three constraints at every

image point for the computation of shape. The lighting constraint, let it be Fx(p,q) =0, the

shape-motion constraint, let it be F2(p,q)=0, and the image-irradiance constraint, let it

be F^(ptq)=0. These are three equations, all of degree two, and their system, barring

degeneracy, will have at most one solution. Several algebraic or geometrical techniques

exist for solving a system of algebraic equations, each of degree two. Direct methods result

in solving equations of a high degree, and so we prefer to use an iterative technique; and

even though we do not have theoretical results about the convergence of the technique, in

pactice it has shown to converge very fast, to the right solution.

The function E(p,q)= A1(F1(p,q))2+ A2(F2(p,q))2 + X3(F3(p,q))2 , should be minimized

everywhere in the image, where Xit A2f A3 constants with their sum equal to one. If we

add one more term in the error function that accounts for smoothness and by setting the

partial derivatives of E(p,q) equal to zero and solving for p and q, we get equations of the

following form:

p=Gi(p,q,pav), q = G2(p,q,qav), where Gx and G2 are polynomials of p,q,pav and p,q,qav

respectively. These equations can be solved iteratively, provided that we have an

approximate initial solution. If the values of p and q at the boundaries are known, then

p,q are propagated throughout the image using a general smoothness criterion, by an

algorithm similar to the Gauss-Seidel algorithm of Ikeuchi and Horn [Ikeuchi and

Horn,1981]. At this point we should emphasize that we do not depend on smoothness to



achieve uniqueness in our methods. Smoothness is used to achieve an approximate initial

solution.

4.12.2 Computing shape when the albedo is not known

a) Iteratively.

If the albedo is not known, then we cannot utilize the image-irradiance constraint,

because it contains the albedo as a coefficient. We have to use the lighting constraint and

the shape-motion constraint. An algorithm similar to the one in the above section can be

easily obtained. At this point, the uniqueness of this problem has to discussed. The

lighting constraint and the shape-motion constraint are two conies in p and q. The

Jacobian of the system that they form, is non-zero. So, the function defined by the system

is locally an isomorphism (from the inverse function theorem), which means that that its

zeros are isolated. But from Whitney's theorem, the set of zeros of this algebraic system is

an algebraic set and it has finite components. The conclusion of this is that the sytstem

has finite solutions. In this case, the solutions can be restricted to a unique solution, if a

local smothness constraint is used. This, being in the paradigm of the regularization

theory (which we do not follow), has been observed from experiments, and up to this point

we do not have a formal proof.

b) Directly

In a minimization scheme based on the Lagrange multiplier technique, the solution is

obtained without propagating the boundary conditions. If Fi(p,q) = 0 is the lighting

constraint and F2(p,q) = 0 the shape motion constraint, the error function

E(p,q) = (Fl(p,q))2 is to be minimized subject to the constraint F2(p,q) = 0. The Lagrange

multiplier scheme says that the p,q that minimize E are one of the solutions of the

following system:

VE = XVF21 F2 = 0 where A the Lagrange multiplier.

4.12.3 Implementation and experiments

Figures 4.8 and 4.9 represent exactly the same entities as figures 4.6 and 4.7. From

this input, our algorithm (4.12.1) recovered the shape shown in figure 4.10. A local



smoothing scheme has been used at the end of the program to smooth out the results. The

error in the resulting shape is very low, basically due to discretization effects. If we

introduce noise in the input, then the results get very much corrupted, if we don't apply a

smoothing scheme, because of the locality of the method.. If a local smoothness constraint

is utilized, then the results are very good. At this point, we should emphasize that a local

smoothness constraint is not restrictive, and almost every natural surface obeys this

constraint.
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Figure 4.8: Intensity image Figure 4.9: Displacements field
for a sphere

igure 4,10: Reconstructed shape

4.13 Conclusions and future directions



In this chapter we have presented a theory on how to compute in a unique way shape and

the direction of the light source, from shading and motion. Our input, is the intensity of

two images in a dynamic sequence, with the correspondence between the two frames

established. We proved that in this case the light source direction and the shape of the

object in view, can be uniquely determined in contrast with existing theories that are

based on heuristics and restrictive assumptions [Pentland, 1981, Horn, 1979, Ikeuchi,

1981]]. Our results have theoretical value, since they demonstrate that if we combine

information from different sources then we can obtain unique results for intrinsic images.

In the past, there has been in this framework only the work of Grimson [Grimson, 1983],

that combined shading with stereo with very good results. It is one of our future goals, to

extend this theory to capture a very general reflectance maps [Brooks and Horn, 1986],

that model the illumination due to the sun and the sky.



5

Visual Motion Analysis

Results
In this Chapter we study the problem of interpreting Visual Motion. We derive several'

results of both theoretical and practical importance. In particular, our results are the

following:

1) The orthographic velocity field does not provide enough information to recover the

structure of the object in view.

2) The orthographic velocity, if the surface in view is nonplanar, determines the structure

of the inducing object up to a depth-scaling, or in other words the tilt at every point of the

surface in view can be uniquely recovered. For planar objects, the orthographic velocity

field admits two interpretations for the structure of the inducing object, up to a depth

scaling, or in other words there are two distinct solutions for the tilt of every point of the

surface in view.

3) For the discrete case, three orthographic projections of three points in space can

uniquely recover the structure of the points, when a testable condition holds.

Furthermore, when this condition does not hold, the number of structures compatible

with the motion is at most two.

4) The perspective optic flow field uniquely defines the three-dimensional motion

parameters except for the case of planar surfaces and some special kind of quadric

surfaces (Hyperboloids).

5) Shape and three-dimensional motion are equivalent in the sense that the one greatly

simplifies the computation of the other.

6) In the case of differential motion and using only one camera, the spatiotemporal

derivatives of the intensity function are enough to detect some kinds of motion. In
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particular, only rotational or only translational motion. The general case is reduced to the

solution of a nonlinear system. So, motion can be detected without the need of optical flow.

7) If a binocular observer is used instead of a monocular one, then the problem of

detecting three-dimensional motion becomes easier in the sense that nonlinear motion

equations of the monocular case, now become linear. Of course, since a binocular observer

is used, it appears that we need to solve the correspondence problem between the left and

right images. But we present a theory on how to find depth without correspondence for

the case of planar surfaces. For the case of general (curved) surfaces, the work of finding

depth without correspondence is one of our future goals.

8) Finally we show how to recover three-dimensional motion in the discrete perspective

case, without point correspondences.

The basic assumption in this chapter is that we only consider rigid motion, i.e. we

either consider the camera moving in a static environment or only one rigid object moving

in front of a stationary camera. All of the results, exactly as in the case of shape from

texture, if there are more than one object moving in the visual field, in order to be applied,

a segmentation is first required. And again, if some of the results are applied locally

everywhere in the image, they can contribute a great deal to segmentation.

Prolegomena

A lot of useful information can be extracted from time varying images. At first, it

might seem foolish to consider processing sequences of images, given the difficulty of

interpreting even a single image. Curiously though, some information seems to be easier

to obtain from a time sequence. When the camera is moving relative to the objects being

imaged, or equivalently the imaged objects are moving, then the brightness pattens in the

image are moving. This motion, i.e. the motion of the image is called image or retinal

motion. Several theories have been proposed for measuring and interpreting this retinal

motion. In this chapter, we consider the problem of interpreting image motion, i.e. to

recover the structure and three-dimensional motion of a moving object from a sequence of

its images, and we suggest several computational mechanisms for the motion

interpretation process. This problem is known in the literature as the structure from

motion problem. Despite the fact that we don't propose any theories for the measurement

of the image motion, we will criticize previous approaches and we suggest some ideas that

might prove to be fruitful for the computation of retinal motion.

5.1 Introduction
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The perception of motion and structure from temporally varying two dimensional

retinal stimulus is important to computer vision as well as the cognitive and perceptual

sciences. In this thesis, this problem is addressed from the standpoint of formulating a

computational theory underlying the motion interpretation process. For the purpose of

this chapter, the input (stimulus) to this process is a two dimensional map of the intensity

of reflected illumination from the imaged scene. In other words the starting point is cine

or video imagery. The first step in the computation, according to all the existing theories,

involves the estimation of two dimensional motion in the image plane. The second stage

involves the computation of the three dimensional scene intrinsics like structure and

motion parameters from the two dimensional image motion. Here we are basically

concerned with the latter stage in the perceptual process. There is a lot of research on the

estimation of image motion. Unfortunately, the problem of estimating image motion has

proved to be extremely hard, if not impossible to solve. Later in this chapter we shall

discuss the difficulties involved in this process. The subsequent analysis is based on the

following imaging conditions and assumptions:

1. The image is monochromatic.

2. The imaged surface moves rigidly.

3. There is no ambiguities due to occlusion.

Even though almost all the existing theories are based on the hierarchical model of

motion perception (computation of retinal motion first, then interpretation), we prove

later that this is not necessary, and the interpretation process can be done in some cases

without having to compute retinal motion.

5.2 Technical Prerequisites

The problem of estimating image motion from time varying image intensity

distributions is by no means a simple one. There are essentially two ways in which this

problem has been tackled.

(i) The first assumes the dynamic image to be a three dimensional function nf i —r -p^aal

arguments and a temporal argument. Then, if this function is locally well behaved and its

spatio temporal gradients are computable, the image velocity or optical flow may be

computed [Horn &Schunck 1982, Ullman &Hildreth 1984, Bandopadhay 1984, Nagel

1984, Davis et al 1983, Haralick&Lee 1984]. From now on, we will call this kind of retinal

motion differential, or continuous or short range, or small motion.

(ii) The second method for measuring image motion considers the cases when the motion

is "large" and the first technique is not applicable. In these instances the measurement



technique relies upon isolating and tracking highlights and feature points in the image

through time. This entails tackling the correspondence problem that can be difficult in

many situations. From now on, we will call this kind of motion discrete, or long range, or

large motion.

Thus there is a situation where the motion is differential or Hsmair as opposed to the

case of "large** or discrete motion. The mathematical relations that hold between the

image motion and the three dimensional scene parameters are quite different in these two

cases. It will be seen later that the information recoverable from these two types of motion

is sometimes different. This fact indicates that there is a need for analyzing these two

motion cases separately. Furthermore, due to the difference in the computational theory

underlying these two motion types, perceptual processes for motion analysis must also be

organized in cognizance of this dichotomy. The input to the perceptual process is a two

dimensional intensity function which changes with time (image). The image contains two

kinds of information, photometric and geometric. For the purpose of this chapter, only the

geometric information is important.

5.2.1 Motion equations under perspective projection

Here we analyze the relation between the retinal motion and the corresponding three-

dimensional motion for the case of perspective, under both small amd large motion.

Considering the familiar perspective projection model and some point P in space

whose coordinates are (X,Y,Z) with respect to a fixed inertial frame XYZ (see fig. 5.1). The

image of this point is p = ( x , y ) whose coordinates are given with respect to a xy frame

located on the image plane, as it was explained in Chapter 2. The relation between the

world point P and the image point p is given by the familiar equation (xy) =(FX/ZJFY/Z)

C5.1),

where 'F is the focal length of the imaging system. The focal length is assumed to be unity

in the following analysis.

Now if a rigid surface moves with a translational velocity V r= ( U , V , W) and a

rotational velocity Q = (a, 0, y), then from kinematics, the three- dimensional velocity of

any point on the surface can be written as

(d£ M dY y
at at at l



where V is the time variable and V denotes vector product.

(X,Y,Z)

Figure 5.1: Perspective projection
In the differential motion case the image motion or optical flow at the point (x,y) is

denoted by (u,v) = (dx/dt , dy/dt). Differentiating equation (5.1) and substituting from

equation (5.2) we have the following relations

t/—• xW

u= (5.3.1)

I -a(y2+l) y* (5.3.2)

Eliminating the unknown depth variable from the above we get

u+axy-$(xl+l)+xy U-xW

v+a(y 2 +l ) -pry-Y* v~yw

The above equation describes the constraint imposed by the measured value of the

optical flow (u,v) at an image point (x,y) on the six motion parameters (U,V,W,a,($,Y).

The discrete analogs of equations (5.3) and (5.4) are more complex in form, and they

follow in the rest of this section.

Again we consider the pinhole camera model that was described in the former part of this

section, and consider one point P=(X,Y,Z) before the motion with image (x,y). Suppose

that the point moves with a general motion, and goes to the position P'=(X\Y'JZ') with



image (x\y'). It is well known that any three-dimensional rigid body motion is equivalent

to a rotation by an angle G around an axis through the origin with directional cosines
nlfn2>n3f followed by a translation T= (AX,A Y,AZ)T. The relation between the

coordinates of the point before and after the transformation is given by:

rx',r^;T=/?rx,y,z>)
T-h r,

where R is a 3X3 orthonormal matrix of the first kind (i.e. det(R) =1)

T2

rg r9

with

, r= nno(l-cosQ)-n.sinQ,r.=n1n
4b 1 d 0 if 1 O

r7 ~ nia/* -cosB)-n2$inQ, r8 = ntnj[l -cosQ) + ntsinQ, rQ=nf+(1 -n3
2)cosQ

Although the elements of R rlfr29..9r are complicated functions of the rotation

parameters n1,n2,n3,G, the latter can be easily determined without ambiguity from the

former [Tsai and Huang, 1984].Therefore, we can freely talk about the uniqueness and

computation of the matrix R, rather than nl9n2,n3,6.

Taking now into account the perspective projection equations that relate the

coordinates X,Y,Z to x,y and the coordinates X',Y\Z' to x',y\ we get (assuming that the

focal length is unity):

and

y -

By eliminating the depth Z from the above two equations, we get:



[x', y\ 1] = E
x
y
1

where

E =
e2 €3

ese6

eg eg

with

et=AZr4-AYr7 , e2=AZr5-AYr8, e3= AZr6-AYr9
e, = AXr7-AZr., e.=AXra-AZr9, efi=AXrQ- AZr,
e7= AYrrAXr4, e8=AYr2-AXr5, e9=AYr3-AXr6

The above equation describes the constraint between retinal and three-dimensional

motion in the discrete case, and it represents all the information we can get from the

motion of one point.

We now develop the same equations for the case of orthographic projection.

5*2.2 Motion equations under orthographic projection.

The projection equation for the case of the orthographic projection, becomes:

(x,y) = (X,Y) (5.6)

Again, following the same method as in the previous section, we get that the optical flow

field is given by the following equations:

u=U + 0Z - yy (57.1)

v=V -aZ+Y* (5.7.2)

It is obvious that the translation in depth does not affect at all the image motion in

this case.

The equations for the discrete case, if developed, basically solve the problem



(structure from motion). For this reason, they will be developed in section 5.6 that

discusses the problem of determining structure from motion in the discrete case under

orthographic projection.

5*3 Previous work
Several researchers have worked in this area and most of the published papers

presented satisfactory results in keeping with assumptions and restrictions made. It is

clear by now, that the problem of Motion Analysis concerns the recovery of the structure

of the scene (or objects) in view and the rigid motion parameters (of the moving viewed

object or of the moving sensor), from the perceived changing retinal image. The problem

has been studied for both the cases of differential retinal motion or short range motion

(optical flow) and long range motion (discrete displacements), under both orthography and

perspective.

In the case of discrete motion under orthography the pioneering work of Ullman

[Ullman 1979,] stands out for being highly precise. In his classical paper on the

interpretation of structure from motion, Ullman showed how structure was determined

uniquely (up to a reflection) from the orhographically projected locations of four non-

coplanar points, obtained at three different instances of time. At this point, we should

mention in passing that the problem of the interpretation of non-rigid motion (

Johansson's "biological motion" [Johansson, 1974]) which we don't address here, was

analysed by Hoffman and Flinchbaugh [1980], Hoffman and Bennett [ 1981], Bennett and

Hoffman [1985] and Webb and Aggarwal [1982]. Their analysis is again for orthographic

projection and discrete motion, with the additional assumption that the axis of rotation is

fixed for the entire period of observation (i.e. equivalently, the motion is planar).

In the case of differential motion (optical flow) under orthography, published research

is confined to Hoffman [1980] and Sugihara [1985]. Hoffman develops a relationship

between optical flow derivatives and local surface orientation and illustrates that if the

acceleration of the optical flow field is known, then the computation of shape is feasible.

On the other hand, Sugihara presented an involved proof that optical flow under

orthography cannot recover local surface orientation, and he developed a method that

using two optical flow fields, the structure of the object in view can be recovered (at most

four solutions). Sugihara, observed that despite the fact that his theoretical analysis

predicted four solutions for the structure, given two optical flow fields, in his experiments

the solution recovered was unique. So, he developed a conjecture which states that: two



optic flow fields uniquely define structure. In this chapter, we prove that optical flow

cannot recover local surface orientation in a much simpler way, and we give an

explanation of Sugihara's conjecture for the discrete case (i.e. we prove that three frames

(two optical flow fields means at least three frames) of three points uniquely recover the

structure, except some degenerate cases whose set is of measure zero).

In the case of differential motion under perspective the relation between the motion

parameters and the retinal motion (eq. 5.3) is a nonlinear equation in the direction of the

translation and the rotational parameters. The effort of almost all the researchers in this

area concentrates on how to solve this non-linear equation, or to formulate the problem in

such a way that it becomes tractable. In this case (differential motion under perspective

projection), which is a case of great interest, there is a lot of recent work concering the

recovery of the structure and motion parameters of a moving object from its changing

retinal image (optical flow). In this area, there is the work of Longuet-Higgins and

Prazdny [ 1982] that developed the relation between the optical flow and the motion

parameters as well as the relationship between the gradient of the surface in view and the

derivatives of the optical flow. Their method does not guarantee uniqueness of the motion

parameters and the algorithm relies on the solution of a non-linear system whose

coefficients involve second-order derivatives of the optical flow. Furthermore their

method is local, and as we point out in section 5.6.2 every local method is bound to be

unstable, because a small patch of optic flow under noisy situations will resemble

ambiguous flow fields, and so it cannot recover surface orientation.

Soon researchers in the area realized that Eq. (5.3) (relation of flow to motion

parameters), is bilinear in the direction of translation and the rotational parameters', this

means, that Eq. (5.3) is nonlinear in the motion parameters, but if the direction of

translation is known, then it becomes linear with respect to the rotational parameters,

and vice versa. So, efforts have been made to separate the optical flow in its rotational and

translational component, and make the problem of the determination of the motion

parameters easy. The work of Prazdny [1984] and Lawton and Rieger [1984] are examples

of this type of effort. Both these papers are based essentially on the property of a

translational field, that all the flow vectors pass through the same point on the image

plane (FOE or FOC); based on that, they develop statistical methods for the computation

of the motion parameters. But this is not true in general, i.e. there are cases where the

optical flow field vectors pass through the same point,with the motion consisting of both

translation and rotation [Bandyopadhyay, 1985]. At this point, we should mention in



passing the work of Bruss and Horn [1984], that considered the cases of only translational

or only rotational motion and developed algorithms for the determination of the direction

of translation or the rotational parameters.

The work of Huang,Tsai and Fang stands out for being mathematically precise and

for being the first to address the uniqueness problem in this area, i.e. how many values for

the motion parameters are compatible with a flow field - or two discrete frames. Despite

the fact that this work is done in the discrete case under perspective, the results are not

far from the differential case under perspective, because they made the assumption that

the rotation used is very small. (If small rotation is considered, then the equations that

relate the displacements to the motion parameters, are very similar to the analog ones for

the differential case.

Fang and Huang [1985], proved that the nonlinear system developed using five points

has a unique solution which may be found using iterative methods. They also presented a

nine points method, but the condition that has to be satisfied for this method to work,

cannot be tested from the image data. Also, Tsai, Huang and Zhu [ 1984], studied the

problem for the case of a moving plane, and they concluded that the number of solutions is

either one or two depending on the multiplicities of the singular values of a matrix that

contains eight essential parameters. Finally, Tsai and Huang [1985 ] proved that three

views, in the case where the moving surface is planar, guarantee the uniqueness of the

motion parameters. Also, in this area there is the work of Kanade [ 1985], who inspired

by the work of Yen and Huang [1985], developed a method, that using line

correspondences in three frames (small rotation), can uniquely find the motion

parameters. Experimental results, not known to us at this point, will determine how

immune to noise the method is or how well the employed assumptions fit practical

situations.

At this point we should mention the work of Waxman [Waxman and Sinha,1985],

who, motivated by important psychological and neurobiological experiments by Regan

and Beveriey [1984 ] presented a method, termed Dynamic Stereo. This method is based

on the comparison of image flow fields obtained from two cameras in known relative

motion. For stationary objects this technique reduces to conventional motion stereo.

Finally, in the case of discrete motion under perspective, there is little work (arbitrary

rotation), only that of Ullman [1977 ] and Tsai and Huang [1984]. Ullman studied the

problem when the rotation is around the z-axis and, using two views of three points he

developed a polar equation (a fourth degree equation on the sin of the rotation angle) from
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which he could determine the motion and structure, but the solution was not unique.

On the other hand, Tsai and Huang, developed a method for the determination of

motion parameters in the case of curved surfaces. Using seven points, they prove that the

five motion parameters can be uniquely recovered (from the other eight essential

parameters), provided that the seven points do not belong on two planes with one passing

through the origin or one a cone containing the origin. After the eight essential parameters

have been computed, the five motion parameters can be uniquely computed using the

Singular Value Decomposition technique [Stewart, 1980]

5.4 Criticism of previous work

Before we criticize previous work on the problem of the interpretation of image motion

fields, we should classify previous work in some broad categories . There are basically two

categories:

1) The first assumes the dynamic image to be a three-dimensional function of two

spatial arguments and a temporal argument. Then if this function is locally well -

behaved and its spatiotemporal derivatives are computable, the image velocity or

optical flow may be computed.

2) The second method for measuring image motion considers the cases where the

motion is "large" and the previous technique is not applicable. In these instances the

measurement technique relies upon isolating and tracking highlights or feature

points in the image through time. In other words operators are applied on both

dynamic frames which output a set of points in both images, and then the

correspondence problem between these two sets of points has to be solved (i.e. finding

which points on both dynamic frames are due to the projection of the same world

point).

In both the above approaches, after the optical flow field or the discrete

displacements field (which can be sparse) are computed, then algorithms are constructed

for the determination of the three-dimensional motion , based on the optical flow or

discrete displacements values.



As the problem has been formulated over the years, one camera is used and so the

three dimensional motion parameters that have to be computed and can be computed, are

five (two for the direction of translation and three for the rotation).

The basic motivation for this research is on one hand the fact that optical flow (or

discrete displacement) fields produced from real images by existing techniques are

corrupted by noise and are partially incorrect [Ullman, 1983]. So, it is doudtful if retinal

motion can be used as input to a three-dimensional motion analysis process. Furthermore,

the uniqueness properties of the motion interpretation process, have not yet been

examined in detail. As far as computations from retinal motion are concerned, all the

algorithms in the litterature that use the retinal motion field to recover three-

dimensional motion fail when the input (retinal motion) is noisy. We will address the

uniqueness issues at the end of the section. Here we proceed with our criticism of the

previous work.

Some researchers [ Roach and Aggarwal 1980, Prazdny 19880, Nagel 1981, Nagel

and Neumann 1981, Fang and Huang 1983, Fang and Huang, 1984] developed sets of

nonlinear equations with the three-dimensional motion parameters as unknowns, which

are solved by iterations and initial guessing. These methods are very sensitive to noise, as

it is reported in [ Roach and Aggarwal 1980, Nagel 1981, Fang and Huang 1984, Fang

and Huang 1981]. On the other hand, other researchers [ Longuet-Higgins 1981, Tsai and

Huang, 1984] developed methods that do not require the solution of nonlinear systems,

but the solution of linear ones. Despite that, under the presence of noise, the results are

not satisfactory [Longuet-Higgins 1981, Tsai and Huang, 1984].

Bruss and Horn [1984] presented a least-squares formalism that tried to compute the

motion parameters by minimizing a measure of the difference between the input optic

flow and the predicted one from the motion parameters. The method, in the general case,

results in solving a system of nonlinear equations with all the inherent difficulties in such

a task, and it seems to have good behavior with respect to noise only when the noise in the

optical flow field has a particular distribution. Prazdny, Rieger, and Lawton presented

methods based on the separation of the optical flow field in its translational and rotational

components, under different assumptions [ Prazdny 1981, Rieger and Lawton 1983]. But

difficulties are reported with the approach of Prazdny in the present of noise [Jerian and

Jain 1983], while the methods of Rieger and Lawton require the presence of occluding

boundaries in the scene, something which cannot be guaranteed. Finally, Ullman in his
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pioneering work [Ullman, 1977] presented a local analysis, but his approach is sensitive

to noise, because of its local nature.

Several other authors [ Longuet Higgins and Prazdny 1980, Waxman and Ullman

1983] use the optical flow field and its first and second spatial derivatives at

corresponding points to obtain the motion parameters. But these derivatives seem to be

unreliable with noise, and there is no known algorithm which can determine them

reasonably in real images. Others [Adiv 1984] follow an approach based partially on local

interpretation of the flow field, but it can be proved [Ullman 1983] that any local

interpretation of the flow field is unstable.

At this point it is worth noting that all the aforementioned methods assume an

unrestricted motion (translation and rotation). In the case where prior assumptions are

employed or in the case of restricted motion (only translation), there is some good

published work. Ballard and Kimball [1983] report a method for measuring three-

dimensional motion based on three-dimensional flow. For the case of translational

motion, a robust algorithm has been reported by Lawton [1982], which was successfully

applied to some real images. His method is based on a global sampling of an error

measure that corresponds to the potential position of the focus of expansion (FOE); finally,

a local search is required to determine the exact location of the minimum value. However,

the method is time-consuming, and is likely to be very sensitive to small rotations. Also

the inherent problems of correspondence, in the sense that there may be drop-ins or drop-

outs in the two dynamic frames, is not taken into account. All in all, most of the methods

presented up to now for the computation of three-dimensional motion depend on the value

of flow or retinal displacements. Probably there is no algorithm until now that can

compute retinal motion reasonably (for example, 10% accuracy) in real images.

Even if we had some way, however, to compute retinal motion in a reasonable

(acceptable) fashion, i.e., with at most an error of 10%, for example, all the algorithms

proposed to date that use retinal motion as input, would still produce non-robust results.

The reason for this is the fact that the motion constraint (i.e., the relation between three-

dimensional motion and retinal displacements) is very sensitive to small perturbations .

Table 1 shows how the error of motion parameters grows as the error in image point

correspondence increases when 8-point correspondence is used, and Table 2 shows the

same relationship when 20-point correspondence is used with 2.5% error on point

correspondences based on a recent algorithm of great mathematical elegance [Tsai and

Huang, 1984].



(Tables 1 and 2 are from [Tsai and Huang, 1984].)

Table 1: Error of motion parameters for 8-point correspondence

for 2.5% error in point correspondence.

Error of E (essential parameters) 73.91 %

Error of rotation parameters 38.70%

Error of translations 103.60%

Table 2: Error of motion parameters for 20-point correspondence

for 2.5% error in point correspondence.

Error of E (essential parameters) 19.49%

Error of rotation parameters 2.40%

Error of translations 29.66%

It is clear from the above tables that the sensitivity of the algorithm in [Tsai and

Huang, 1984] to small errors is very high. It is worth noting at this point that the

algorithm in [Tsai and Huang, 1984] is solving linear equations, but the sensitivity to

error in point correspondences is not improved with respect to algorithms that solve non-

linear equations. Also, it is worth mentioning at this point that the same behaviour is

present in the algotithms that compute 3-D motion in the case of planar surfaces .

So, as the problem has been formulated (monocular observer), it seems to have a

great deal of difficulty, because of the correspondence problem. This is again not

surprising, and the same problem is encountered in many other problems in computer

vision (shape from shading, structure from motion, stereo, etc.).

5.5 Motivation for this research and an outline of what is to come

It is by now clear that there are many difficulties with the structure from motion

problem. The uniqueness properties of the problem have not yet been discovered, i.e. it is

not yet known what kinds of surfaces and motions are amenable to multiple

interpretations when our only input is the image motion field.



The next section does the feasibility evaluation of the structure from motion

problem. The problem is studied under orthography and perspective for both small

(differential) and large (discrete) motion. Theorems are developed concerning what can be

computed from the differential or discrete motion field, and under what assumptions. At

this point, we should say that we use the image motion field only as an abstraction, i.e. as

the information we have about motion, in order to achieve uniqueness proofs. This does

not mean that we will develop algorithms for the interpretation of retinal motion that are

based on optical flow, because we feel that the retinal motion field cannot be computed in

a robust way without prior assumptions.

The section after next, develops algorithms for the solution of the structure from

motion problem, without trying to solve the correspondence problem as an intermediate

step. Instead it uses novel techniques that do not require correspondence. There has

recently been an approach to combine information from different sources in order to

achieve uniqueness and robustness of low-level visual computations . With regard to the

three-dimensional motion parameters determination problem, why not combine motion

information with some other kind of information? It is clear that in this case the

constraints won't be the same, and there is some hope for robustness in the computed

parameters. As the other kind of information that should be combined with motion, we

choose stereo. There are more deep theoretical reasons for combining motion with another

cue (depth). The reason is that the constraint between three-dimensional motion and

retinal motion when one camera is used is very sensitive to small perturbations; and so,

even if we could compute retinal motion with a reasonable accuracy, it wouldn't be

enough for computing three-dimensional motion.

The need for combining stereo with motion has recently been appreciated by a

number of researchers [ Jenkin and Tsotsos 1986, Huang and Blonstein 1985, Waxman

and Sinha 1985, Richards 1985]. Jenkin and Tsotsos used stereo information for the

computation of retinal motion, and they presented good results for their images. Waxman

et al presented a promising method for dynamic stereo, which is based on the comparison

of image flow fields obtained from cameras in known relative motion, with passive

ranging as goal. Whitman Richards is combining stereo disparity with motion in order to

recover correct three-dimensional configurations from two-dimensional images

(othography-vergence). Finally, Huang and Blonstein presented a method for three-

dimensional motion estimation that is based on stereo information. In their work, the

static stereo problem as well as the three-dimensional matching problem have to be



solved before the motion estimation problem. The emphasis is placed on the error

analysis, since the amount of noise (in typical image resolutions) in the input of the

motion estimation algorithm is very large.

So a natural question arises: is it possible to recover three-dimensional motion from

images without having to go through the very difficult correspondence problem? And if

such a thing is possible, how immune to noise will the algorithm be? In this Chapter, we

prove that if we combine stereo and motion in some sense and we avoid any static or

dynamic correspondence, then we can compute the three-dimensional motion of a moving

object. At this point, it is worth noting recent results by Kanatani [Kanatani 1985] that

deal with finding the three-dimensional motion of planar contours in small motion,

without point correspondences. These methods seem to suffer from numerical instability a

great deal, but they have a great mathematical elegance.

As the problem has been formulated over the years, usually one camera is used and so

the 3-D motion parameters that can be computed are five : two for the direction of

translation and three for the rotation. If we assume a binocular observer then we can

recover six motion parameters: three for the translation and three for the rotation.

With the traditional one camera approach for the estimation of the 3-D motion

parameters of a rigid planar patch, it was just mentioned [Roach and Aggarwal,

19801,that one should use the image point correspondences for object points not on a single

planar patch when estimating 3-D motions of rigid objects. But it was not known, how

many solutions there were, what was the minimum number of points and views

needed to assure uniqueness and how could those solutions be computed without

using any iterative search (i.e. without having to solve non-linear systems ). It was

proved [Tsai and Huang 1984] that there are exactly two solutions for the 3-D motion

parameters and plane orientations, as we will see later in section 5.6. However, the

solutions are unique if three views of the planar patch are given or two views with at

least two planar patches. In our approach, the duality problem does not exist for two

views, since two cameras are used (and so the analysis is done in 3-D).

The outline of the chapter is as follows: Section 5.6 does a feasibility evaluation of the

problem of structure from motion under orthography and perspective. Section 5.7

examines the problem of detecting the three-dimensional motion in the differential case,

without using optical flow, but the spatiotemporal derivatives of the flow. Finally, the last

section deals with the problem of recovering three-dimensional motion without



correspondence for the case of discrete motion under perspective projection.

5.6 Structure from motion: A feasibility evaluation

Here we study what the constraints are between three-dimensional motion and image

motion, as well as what can we compute from two dimensional motion. We first analyze

the case where the projection is orthographic.

5.6.1 Structure from motion: the case of orthography

Here we investigate lower bounds in relation to the structure from motion problem ,

i.e. the minimal number of points from an ensemble of points that move in a rigid

configuration and the minimal number of projections that are required to uniquely

recover the structure. We show that it is possible to uniquely recover structure from

three orthographic projections of three points in space, when a certain condition holds.

Furthermore, when this condition does not hold, the number of structures compatible

with the motion is at most two.

The interpretation of visual motion by humans and other biological organisms is an

exciting field in the study of perception. An issue here is what kinds of mathematical

analysis are adequate and lead to a biologically plausible model of computation for the

task. Here we examine ways and means by which a perceptual system may be organized

to detect the three dimensional structure of rigid objects from their projected motion. The

ability of the human visual system to discern structure from motion stimulus was

demonstrated by experiments by Wallach and O'Connell in the 1950's. Subsequently

Gunnar Johansson discovered our ability to recognize the human form from the

projected motion of as few as ten points on the body, such as the various joints like elbows,

shoulders and knees.

It would seem that the perception of rigid structure from motion should not require the

detection of the projected trajectory of too many points. One of the first rigorous

mathematical treatments of this problem was done by S. Ullman [Ullman 1977]. In his

classical paper on the computation of structure from motion, Ullman showed how

structure was determined uniquely (up to a reflection) from the projected locations of four

noncoplanar points, obtained at three different instants of time. His analysis is based on

the orthographic projection model. The treatment also considered the correspondence of



the four projected points between the three frames, as available. In our analysis we too

work with orthographic projection and assume the point correspondences already

given.

While it is true that the perspective or central projection model is more appropriate for

image formation in the human visual system, we will argue that orthographic projection

is a realistic simplification for this specific problem. One reason is that at small retinal

eccentricities perspective effects are small. Another reason is that in Ullman's scheme,

as well as ours, only a small number of points are considered at a time and so

orthography will serve as an adequate model, because of the locality of the approach.

We should mention in passing that the problem of interpretation of Johansson's

"biological motion" was analysed by Hoffman and Flinchbaugh [19811, Hoffman and

Bennett [1984] and Webb and Aggarwal [1982]. Their analysis is for orthographic

projection with the additional assumption that the axis of rotation is fixed for the entire

period of observation (i.e. equivalently, the motion is planar). From the other hand, our

analysis does not require the fixed axis assumption.

5.6.1.2 Mathematical formulation and lower bound arguments

Consider the Cartesian representation of a point in 3-D space. This is the vector

(X,YJZ) . A quartet of four such points can be written as (X.,YifZJ,1=1,2,3,4. Let these

points move and take up new positions (X'.9Y'ifZy. Considering rigidity, we have the fact

that the motion can be represented by an affine transformation:

(X\,Y\,Z\)T =R (Xx?.,Z)T + (AXAY,AZ)T

where JR is a 3 by 3 rotation matrix and (AX,AY,AZ)r is a translation vector. Taking

the orthographic projection of the above we have:

r=rI.frT.fr,
i 11 i 12 i 13

Y'=rX.+rY+rZ+t»Y
i 21 i 22 i 23 i

where the elements r of the rotation matrix depend upon three

independent parameters - the axis of rotation and the angle of rotation about this axis.

Now if we take two views of three points, we obtain six equations in the seven

variables - three for the rotation, two depth variables ( we have three depths but only

relative depth can be recovered) and two for the translation. Thus we cannot solve the

problem in this case. A similar argument holds for three views of two points and two



views of four coplanar points. So, according to the above argument, the following

theorem has been proved.

THEOREM 5.1: In general it is impossible to recover the structure of

1) Three points, given two orthographic projections of these points,

2) Two points, given three orthographic projections of these points, and

3) Four coplanar points, given two orthographic projections of these points.

In the sequel we are going to prove that three orthographic projections of three points

uniquely recover the structure of these points . So, given theorem 1, the above results will

constitute lower bounds for the problem at hand. Before we proceed, we need constraints

between the structure of rigidly moving points and their image displacements. In the

next section, we develop these constraints, in lemmas 5.1 and 52.

5.6.1.3 Mathematical preliminaries.

In this section we develop the constraint that was mentioned in the previous section, in

two forms, in lemmas 1 and 2 .

LEMMA 1 : Given two distinct orthographic projections of three points in a rigid

configuration, the gradient (p,q) of the plane that the three points define (with respect to

the coordinate system of the first frame), lies on a conic section in the gradient space. The

coefficients of this conic section depend entirely on the interframe displacements of the

above points. PROOF: Let the three points in space be O,A,B in their first position

and O', A' B' in their second position and their projections in the two frames be Oj9Alf

Bx and O2, A2,B2, respectively (See figure 5.2).

Figure 5.2: Two orthographic projections of three points



Let also the gradient of the plane OAB be G = (p,q). Furthermore, let

O,A1=a,=(x2,y2)

Considering the geometry ofthe first projection ( OAB to O1A1B1 ), we have that:

OA=(x1,yl,Ga1) a n d O B ^ c ^ G ^ ) , (5.9)

with n" the inner vector product operator.

Similarly, considering the second projection ( OAB to O2A2B2), we get:

O'A*=(x2,y2,A) and O'B'=(c2,d2,p) (5.10)

where A and p are to be determined.

But, because of the rigid motion, the vectors OA and Of A1 have the same length. The

same holds for the vectors OB and OfBf. From these requirements we get:

and (5.11)

Finally, again because of the rigidity, the angles between the vectors OA , OB and

OfA1 , OfBf are the same. From this, we get:

0AOB = 0'A'0'B' (5.12)

where "•" denotes the dot product operation.

Substituting to equation 5.12 from equations 5.9,5.10,5.11 we get:

and substituting the values for A and p and squaring appropriately , we get the

following equation 5.13:



(b J - b^XGa/+(aj - a ^ X G ^

Given that

G a i ~ P x i + ^ i a n d G b i = P0!+ fldi
the above equation is of the form:

Api*+Bc?+Cpq+D=0

where the coefficients AJi,CJD depend on the image vectors a l fa2 ,b l fb2 . (q.e.d.).

We now state and prove a second lemma, that relates the depth differences of the

world points with the interframe displacements.

LEMMA 2: Given two distinct orthographic projections of three points O,AJB with

depths zQfzAy zB (with respect to the coordinate system of the first frame ), the tuple ( z2,

z2 ) , with zx = zQ - z A and z2 = z Q~zB , lies on a conic section on the plane (zt ,z2).

The coefficients of this conic depend entirely on the interframe displacements of the above

points.

PROOF: It is obvious that this statement is equivalent to the previous lemma. The reason

that we state it, is that we will use this form of the constraint in our subsequent analysis.

Using the nomenclature of the previous lemma, we observe that:

Ga1=z1

and so equation 5.13 becomes:

(5.14)

The above equation (5.14) proves the claim. The above lemmas relate the structure (

shape ) of three points with their two distinct orthographic projections. Whether the

points move or the projection plane moves (moving observer) or both of them move, the

analysis remains the same. We will now state and prove the theorems pertaining to

lower bound results in the recovery of structure from motion.

5.6.1-4 Lower bound results



So far, we have established the fact that two orthographic views of less than four

points cannot recover the structure of these points. We now show that if the number of

points is four, structure can be determined.

THEOREM 3: Two orthographic projections of four rigidly linked noncoplanar points are

compatible with infinite interpretations of their relative 3-D positions, in general. Adding a

third view yields a unique interpretation of the structure of the four points.

PROOF: Let the four points in space be O,A,B9C. Let also the projections of the four

points in the two frames be OlfA1$Blt C2 and

O2,A2,B2, C2 respectively (See Fig. 5.3), and the gradients of the planes OAB , OBC

and OCA be Gt=(pl9qt) 9 Gf=(p2fq2) and G3=(p3,qJ

respectively (with respect to the first frame).

frame 1 frame 2

Figure 5.3: Two projections of four noncoplanar points
Using the projections OtAt ,OJBl and their corresponding ones

utilizing lemma 1 we get :

, O2B2 and

where the coefficients depend entirely on the image vectors. Similarly, considering the

projections OJBl and O1C1 and their corresponding ones in the second frame and the

projections O2C1 and OJA1 and their corresponding ones in the second frame, we get:

( 5 1 6 )



At this point we should say that the above equations seem independent because they

come from the rigidity of the three rods OA,OB,OC. In other words the fact that the three

lengths OA, OB, and OC in space remain constant and the two angles AOB and BOC in

space remain constant between the two frames, does not imply that the third angle COA

will remain the same.

Proceeding, we note that we have more information about the gradients G , Go , G
1 2 3

from the well known Mackworth constraints that they state:

The above equations 5.15-5.18 constitute a system of six equations in the six uknowns

Pt'Qi* &2f %> $zy % ' Before we proceed with a rigorous proof, we shed some light on the

form and information content of the equations 5.15-5.18. Equations 5.18 simply express

the fact that the gradients Gx ,G2,G3 of the three planes make a triangle the direction of

whose sides are known, but we don't know its position and its scaling. On the other

hand, equations 5.15, 5.16 and 5.17 state that each of the gradients Gx ,G2 fG3 lies on a

conic section in gradient space. So, in order to solve the problem (i.e. to find the three

gradients) we have to put a triangle on gradient space, such that its sides have the

orientation defined by the Mackworth constraints (equations 5.18) and each one of its

vertices lies on each one of the three conic sections (defined by equations 5.15, 5.16 and

5.17). At this point we should say, that several important problems in Vision Processing

have been solved in a very similar way. Horn (Horn, 1977) solved the problem of

determining the shape of a polyhedral object from intensity information and the

Mackworth constraints, and Kanade (1982) solved the same problem (shape of polyhedral

objects) but using skewed symmetry and the Mackworth constraints .

The simple fact that we have six equations in six unknowns here does not mean that

this system will have a finite number of solutions. To find out if there are a finite number

of solutions we apply the inverse function theorem. This theorem allows us to conclude

that whenever the Jacobian of these equations is nonsingular, the mapping defined by

these equations is locally one to one and onto. Hence, any roots at points where the

Jacobian is nonsingular are isolated and not part of a continuum of solutions.



It is a simple exercise to compute the Jacobian of the above system and prove that in

general it has rank less than six. (One has to be careful when determining the rank of the

Jacobian; all the coefficients have to be expressed in the image coordinates, otherwise

hidden dependencies may cause problems. The degenerate cases can be easily found by

factoring the determinant of the Jacobian). Consequently we can assert that the system

has an iflnite number of solutions.

To conclude the proof of the theorem, if we add one more view, then the solution is

unique, and the proof is immediate from the "Structure from Motion" theorem, by S.

mimanOJllman, S.,1979). (q.e.d).

We now proceed with our second theorem.

THEOREM 4: Three orthographic projections of three rigidly linked points are compatible

with at most one interpretation (plus reflection) of their relative 3-D positions, in general.

Furthermore, when a certain testable condition holds then there are at most two

interpretations (plus reflections). Adding a fourth view yields a unique interpretation of the

structure of the four points.

PROOF : Let the three points in space be O,AJi with depths zQ , zA , zB (with respect to

the coordinate system of the first view), and their projections on the three frames be O ,

A.fB. for i= 1£,3 respectively (See Fig. 5.5).

frame 1 frame 2 frame 3

Figure 5.5: Three projections of three points

Let also:
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Now applying lemma 2 for frames 1 and 2 and then for frames 1 and 3 we get the-

following system £ of equations:

The above equations constitute a system of two equations in the two uknowns z\, Z2

. The Jacobian of this system has rank two in general, and so by applying the inverse

function theorem we conclude that the system has finite solutions. Using Bezout's.

theorem we conclude that the system has at most four solutions. ( Actually two

solutions, plus the Necker reflections). In the sequel we prove that in general the above

system has a unique solution (plus reflection).

After eliminating the constant terms from the above equations we get:

(K/rfKMZf+MM-MMzftHLM-Lpfa^O (5.22)
with

L,= a.'-a,'

Mt= -

Equation (5.22) is homogeneous in zx , z2 and by dividing with z2
2 and setting

z1/z2 = x we get the following equation:



O (5.23)

The solution of the above equation (30) is given by:

l - MJTVJJ) ± (Disc)m

where Disc is the discriminant of equation (5.23).

From the other hand, if the length of the vectors OA fOB is p and p respectively, then

from the geometry of the projection on the first frame, it is obvious that:

and

2 2 = ± V u 2 - 6 1
2

Consequently,

V u 2 - a 2

±

Thus, if x has two solutions then these solutions must have the same absolute value and

opposite sign if both are to be valid. From (5.23) we conclude that x will have two valid

solutions if:

Obviously the above condition (5.24) is a testable condition in the image data. So far, we

have concluded that if condition (5.24) holds, then the problem has two solutions ( plus

reflections), because then there will be two solutions for x^zjz t and so four solutions for

(zl9z^ (actually two solutions, plus reflections ). If condition (5.24) does not hold, then

there is only one solution for x and consequently two solutions for (zt ,z2)

(actually one solution, plus reflection).

In addition, the above description can be used to actually find the structure of three

points from three projections, by developing equation (5.23), solve for x and then use this

value in conjunction with the equations of the abovementioned system E, to solve for zL

, z2 rejecting the imaginary roots.

Finally,to conclude the proof we have to prove that if we add one more view, then we

get a unique result. If we call O4,A4, B4 the projections in the fourth view, and let O4A4
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= a4 and O4B4=b4 , then considering the first and the fourth frame we get the equation:

J ; l f ^ 2 l 2 l 1 4 4 f - a J ) ( b ; - b J ) - ( a 1 b l - a 4 b 4 ) 2 = 0 (5.24)

Equations of the system E and (5.25) constitute a system of three equations with two

uknowns. So, this system, barring degeneracy will have at most one solution. This

concludes the proof of the theorem.

The rest of this Chapter discusses the problem in the differential case.

5.6.1.5 The Constraint Induced by the Discrete Displacements Field

Consider a moving surface z = z(xf y) and let (Au(x, y), Au(x, y)), for all (x, y) on the

image, be the discrete displacements field for two time instances t\ and t<i with t\ < *2, i.e.,

if an image point is at the position (x, y) at time t\, then at time t<i it will be at the position

(x + Au(x, y)f y + &v(x, y)). Then, from the previous theorems (see also 8) it can be proved

(and actually it has been proved in Chapter 4) that the gradient (p, q)9 at a surface point

whose projection on the image plane is the point (x, y)t satisfies the following conic

constraint:

with

k - [Ayu(x,y)f + [Ayv(x,y)f + 2Ayu(x,y)

, = [ A V i j ) f + [Axv(x,y)f + 2Axu(x,y)

= Ayu(x,y) + Ayu(x,y)Axu(x,y) + Axi*x,y) + Axv(x,y)Ayv(x,y)

where

Axa(x, y) = Au(x + 1 , y) - Au(x, y)

, y) = Aa(x, y +1) - Au(x, y)
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&xv(x,y) =

c, y) = Av(x, y +1) - Aitfx, y)

Equation (5.26) has been used with smoothness and boundary conditions to orientation

from a dense discrete displacements field. The point that we want to stress in this section

is that the discrete displacements oblige the gradient (p, q) to lie on a conic section in

general (Eq. 5.26).

We now proceed with the analysis in the differential case.

6.6. L6 The Differential Case.

Here we treat the case where the optic flow field is given, i.e., the 2-D velocities of the

image points. Let a surface z = z(x, y) translate with translation (u, v, w) and rotate with

rotation (A, B, C) around an axis passing through the origin of a fixed coordinate system,

whose z-axis serves as the optical axis and image plane is perpendicular to the z-axis.

Then, the optic flow field induced by the motion of the surface z = z(x, y) is given by:

and

v(x,y) = v + Cx-Az (

with (x, y) the image coordinates (same as the world coordinates). If we consider a surface

z' = Az(x, y) moving with translation (u, v, w) and rotation (A/A, B/A, C), then the optical

flow field induced by this motion of z' is identical to the previous one (Eqs. 35, 36) induced

by the motion of the surface z. But the shapes of the surfaces z and z' are different under

orthography. (Knowledge of the shape under orthography means knowledge of the depth

difference corresponding to any two image points. In other words, under orthography, if

we know the shape of an object in view, then we know exactly the object, but we don't

know its depth.) Clearly, the surfaces z and z have different shapes, but under the above

described motions they induce the same optical flow. Since the choice of A was arbitrary,

we conclude that there are infinite surfaces with different shapes that induce the same

optic flow field when moving with appropriate motions. So, we have proved the following



THEOREM 4: Under orthography, optical flow cannot recover surface orientation. W e

now move to discover the relationship between the flow field and the surface gradient.

Differentiating the flow field (Eqs. 5.27,5.28) with respect to x and y, we get:

d-=Bp (5.29.1)
ax y

^ = C _ A (5.29.2)
ax

^ = A (5.29.4)
ax

with(p, q) the gradient of the surface in view at the point (x, y) (i.e., p = dz/dx, q = dz/8y).

It turns out from the system of Equations (5.29) that the quantities C, p/q, and A/B

can be computed. In particular, we get:

do du , Jfdu dv\o du dv\
— - — ± V — + - )2 - 4 (5.30)
ax By \\dy BxJ dx dy J w * o v /

and

—
p = ax (5.31)
q du

So, we have proved the following theorem.

THEOREM 5: The optic flow field, at every point (x, y) of an image under orthography,

constrains the gradient (p9 q) of the surface point whose image is the point

(x, y) to lie on one of two straight lines that pass through the origin of the gradient space

(e.g. ASM)).

Under closer examination, we can prove (and it has actually been proved by Ullman)

that for nonplanar surfaces the value p/q has a unique solution, whereas for planar

surfaces, the value p/q has two distinct solutions. For a proof different than Ullman's, see

[Aloimonos, 1985, ]. So, the following theorem has been established.
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THEOREM 6: The orthographic optic flow at every point (x, y) of an image constrains the

gradient (p, q) of the surface (nonplanar) point whose image is the point (x, y) to lie on a

straight line passing through the origin of the gradient space.

Up to this point we have established that the discrete displacements field constrains

the gradient (p, q) of the surface in view at every point to lie on a conic section (hyperbola,

parabola, ellipse) in general, whereas the optic flow field constrains the gradient (p, q) w

lie on a degenerate conic section (two straight lines, or one straight line). Despite the

difference in the constraints, the content in terms of the structure from motion problem, is

the same.

5.6.1.8. Discussion and Conclusion (Motion under orthography)

The perception of rigid structure from motion stimulus is well within the competence

level of the human visual system.

Our results fill an important gap in the study of the perception of structure from

motion-showing the limitation of the approach.

We believe that our work forms an important extension to Ullman's theory and, in

conjunction with interpretation schemes for recovering structure in the case of biological

motion using the planarity (or fixed axis) assumption, constitutes a significant advance in

the problem of the interpretation of structure from motion.

Concluding, we would like to propose a research problem, with which we have had

some success up to now. Given the constraint in section 5, surface smoothness and

boundary conditions, under what assumptions do we have a unique solution for the

surface structure? Our investigation shows that methods similar to the ones used by A.

Bruss [Bruss, 1982] for the shape-from-shading problem are very fruitful.

At this point we have concluded our analysis of the structure from motion under

orthographic projection.

5.6.2 Structure from motion: the case of perspective

Here we do a feasibility evaluation of the computation of three-dimensional motion,

under perspective projection. We will only study the case of differential motion. The

analysis in the case of discrete motion has been done fully by Longuet-Higgins [Longuet-
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Hoggins, 1981] and Tsai and Huang [Tsai and Huang, 1984], and can be summarized in

the following propositions:

Proposition 1: Given the image correspondences of four points that lie on a plane that

moves rigidly, the motion parameters are computable and there can be at most two

solutions. In paricular, if the motion can be realized by rotationg the object around the

origin and then translating it along the normal direction of the plane's surface, then the

motion parameters are unique, otherwise there are exactly two solutions.

Proposition 2: Given the image point correspondences of two planes not passing through

the origin (lens center), the motion is unique.

Proposition 3: The image point correspondences of six points, with four points on one plane

not containing the origin, and two points common to the above two groups of four points

on the intersection of the two planes, ensure unique solutions for the motion parameters.

Proposition 4: The image correspondences of four points on a plane not passing through

the origin and two other points not on this plane, determine the motion parameters

uniquely.

Proposition 5: Given the image correspondences of seven or more points not traversable

by two planes with one plane containing the origin, nor by a cone containing the origin,

the motion parameters are unique.

We now move to the differential case that has drawn a lot of attention during the past few

years.

5.6.2.1 Introduction

Following the model introduced in section 5.2.1, we have that if the camera is moving

with translation T = (U,V,W) and rotation Q = (A,B,C), then the optical flow (u,v) at a

point (x,y) is given by:

— ^ — -a ry

-a(y2+l) + {3x;y + \x

where Z is the depth of the imaged surface point, whose image is the point (x,y).The

question that arises then is whether we can compute the three-dimensional motion from

the flow field. Is there place for ambiguity? In other words, are there different surfaces
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and corresponding motions that willl produce the same optic flow field and so no matter

what algorithm we use, we will never be able to recover the actual three-dimensional

motion in this case?

Before we proceed with our analysis, we must say that all the published approaches that

a purely local analysis of the flow field will never succeed. In a sufficiently small patch,

given the noise in the real data, the estimated motion field will not be distinguishable

from one resulting from surfaces for which there is no unique solution, as we will see in

the rest of this section.

5.6.2.2 Uniqueness analysis of flow fields

It is an important question in motion research whether a given optic flow field could

be due to the different motions of different surfaces. Research in the field has shown that

this is true for planar surfaces [Maybank, 1984, Subbarao and Waxman, 1985]. It is very

important to discover what kinds of surfaces are bound to ambiguity, because if their set

is very rich, then we should reconsider many of the published theories. In what follows,
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because of the fact that the equations become very complicated, we will use vector

notation, to keep the equations neat. Considering the traditional camera model, with focal

length = 1, a world point is denoted by P = (X,Y,Z)T and its projection on the image plane

by

p=(x,y,l)T. Then the perspective projection equation becomes

where k the unit vector along the Z axis. If the camera is moving with translational

velocity T = (U,V,W) and rotational Q = (A,B,C). then in order to find the flow field we

must differentiate the above equation with respect to time t, and take into account that

dp
dt

and from that we get:

dt P.#
where "JT is the cross product vector operation. This is a vector equation, which when

expanded to its components, will yield equations (5.3).

5.6*2.3 Finding surfaces that yield identical motion fields

Suppose that we have a surface Ẑ x̂ y) moving with motion (T^Q^ and a surface Z2(x,y)

moving with motion (T2,Q2) . Suppose further that these surfaces yield identical motion

fields, i.e.

Z21 '2

or

-((Tvk)p-T.)- -((r,.*)p-TJ=
21 22

with AQ = fi^^ So we see that only the difference of the rotational velocities matters.

This has been observed by Bandyopadyhay too [Bandyoapadhay, 1986].
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Using the above equation we can discover the surfaces that give rise to ambiguous

flow fields . If the motion is only translational or only rotational, or it is general but we

know either the rotation or the translation, then we can uniquely recover three-

dimensional motion from flow fields, i.e. the motion fields cannot be ambiguous. A proof of

this is easy, and the interested reader is referred to [Bruss and Horn, 1984,

Bandyopadhyay, 1986].

Assuming that the translations are nonzero, we proceed with the general case:

If we solve the above vector equation for Zt and Z2 we get:

2l
and

These equations give the surfaces in terms of retinal coordinates. From these, it is

clear that the depth function of surfaces with ambiguous motion fields, when expressed in

retinal coordinates it is the ratio of a first order polynomial over a second order

polynomial. This was known to Bandyopadhyay [Bandyopadhyay, 1985]. Here we go

further to get the description in terms of three-dimensional coordinates. For this to

happen, we must express the retinal coordinates in terms of the three-dimensional

coordinates from the perspective projection equation. We have that,

and

r2
If we substitute in the above equations we get:

z/2

2 1 1 j ^ ) = 0

and

(TJCTJP = 0



Obviously the above equations, when expressed in coordinates X,Y, Z are of second order,

So, up to now we know that only planes and quadric surfaces can create motion fields that

are ambiguous. It remains to be investigated what kinds of second order surfaces are

ambiguous.

5.6*2.4 What kinds of quadrics are ambiguous

In the previous section we proved that only quadric surfaces (with the exception of

planes) are candidates for ambiguous flow fields. The question that arises then is : is any

quadric surface problematic in this matter, or only paricular kinds of second order

surfaces.

We know that second order surfaces are ellipsoids, hyperboloids, paraboloids and

quadric cones. Here we prove that only hyperboloid surfaces are candidates for

ambiguous interpretation.

From the equation of a quadric, we know of two methods that can be used to determine

the kind of the quadric. One has to do with the signs of several expressions such as the

determinant of the matrix of the coefficients of the quadric, and the other with the

eigenvalues of the matrix. Here we choose the second, because it is simpler to implement.

The equation of a quadric that passes through the origin, as in our case, can be

written in the form xTAx+Bx = 0, where x = (x,y,z)T and A and B 3X3 matrices. If we

change coordinate systems and we move the origin to the center of the quadric, then we

get rid of the linear terms and the equation becomes: xTAx = b, with b a constant and x the

new coordinates. Then from the eigenvalues of the matrix A we may decide about the

kind of the quadric.

Recalling from the previous section, the equation of the pathological quadric is :

or

or
- ( r 2

or
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with I the 3X3 identity matrix. So, the quadric equation can be written as

PfA
with

A = T2AQr + AQT^ - 2(T2

If we transform the coordinate system center to the center of the quadric, we get as

coefficient matrix the matrix A. Its eigenvalues are:

A3 = -2(T2.AQ)

Obviously Axis positive and A2is negative.So, the quadric is a hyperboloid.

At this point we should mention that research in this area has been done by

Bandyopadhyay, who obtained the result that the problematic surface is the ratio of two

polynomials of degree one and two [Bandyopadhyay, 1986]. In the sequel we describe two

theorems concerning the equivalence of stucture and motion.

Proposition: If the three-dimensional motion parameters are known, then the structure

of the object in view is uniquely determined by the optic flow field.

Proof: Immediate from equations 5.3.1 and 5.3.2

Proposition: If the structure of the object in view is known, then the three-dimensional

motion parameters are uniquely determined from the optic flow field.

Proof: See [Bandyopadhyay and Aloimonos, 1985]

5.7 Algorithms for Motion perception

Here we study ways and means for computing the three-dimensional structure and

motion of a moving object from a sequence of its images. Because of the fact that the

problem of finding structure and the problem of finding three-dimensional motion are

related as we already stated in section 5.6.2, in the sense that the knowledge of the one

greatly simplifies the other, in this section we will only study the problem of determining

three-dimensional motion. We will present algorithms that do not depend on finding first

the correspondence between points in the sequence of images, but they recover the three-

dimensional motion without using any correspondence. We will study the problem under



 



both the differential (continuous or small motion) and the discrete (apparent or large

motion) case.

The next section describes the problems with any approach that utilizes local motion

(point correspondences or optical flow).

5.7.1 Optical flow or discrete displacements: Can we compute them?

Extensive research in dynamic scene analysis has shown that the computation of

retinal motion is very hard. Let us first address the problem of finding optic flow (retinal

motion in the differential case). Suppose that the camera is moving (or the imaged object

is moving). Then, the image intensity function f is a function of three arguments (space -

position in the image (x,y), and time -1). If at time t the velocity of an image point (x,y) is

(u,v), then it can be easily proved [Horn and Schunck, 1982], that it obeys the following

relation:

fxu+fv+ft=O, where f% { ft the spatiotemoral derivatives of the intensity function. From

now on we will call the above equation, image flow equation. This relation is the only

information we can have about the image velocity at the point (x,y). Obviously, we need

two parameters (u,v), but we only have one equation. So, without other assumptions, we

cannot compute the optic flow (u,v). Despite that, several methods have been proposed for

the computation of flow, which belong basically in the regularization paradigm. In other

words, the optic flow field is assumed to be smooth, and this introduces additional

constraints that may reduce the solution space to a unique point. It is obvious however,

that the optical flow fields are not smooth in most of the situations, and it is the

discontinuities of the flow field that are of some interest, since they contain information

about the structure discontinuities of the surface in view. Restrictive assumptions about

the flow filed (smooth), cannot lead to methods that will work satisfactorily in a variety of

situations. From this discussion, we conclude that the optical flow field cannot be

measured, and eventhough a large part of todays research is devoted to the computation of

this optical flow field, leading researchers in the field are starting to realize that

computation of optical flow is a Utopia [Horn, 1986].

So, in the case of differential motion, the only information that we can have about

retinal motion, is the spatiotemporal derivatives of the image intensity function, fgff9 ft.

At this point, we conclude our discussion about the feasibility of the computation of

optical flow.



Moving now to the problem of the feasibility of the computation of discrete

displacements, we have to say that this problem can probably be solved, in contrast with

the problem of computing optical flow. This case has to do with apparent (large motion).

Suppose that the point (x,y) is the image of the three-dimensional point (X,Y,Z). Suppose

also that a general motion occurs and the point (X,Y,Z) moves to the position (X',Y',Z')

with the new image (x\y'). The retinal motion that we observe, and which can be our only

input, is the motion of the point (x,y) to the position (x',y*). Let us call the point (x,y) point

before the motion and point (x\y') point after the motion. The discrete displacement from

this motion is the vector (x'-x,y'-y). Now, suppose that we have many point on the image

plane before the motion, say (x,y), i=l,..n. These points are the projections of texture

markings on the three-dimensional object. If a motion occurs, then the three-dimensional

markings on the object move rigidly, and after the motion their new projections are the

points (x'.,y'.), i = l,2,..,n. Now, in order to find the retinal motion, we have to find to which

point after the motion every point before the motion corresponds. This is known in the

literatture as the Correspondence problem. There have been several approaches towards

the solution of the correspondence problem. These can basically be classified in the

following categories.

1) Minimum distance criterion [Ullman, 1977, Nagel, 1984]

2) Matching contours [Hildreth, 1984, Waxman and Wohn, 1985]

3) Similarity measures and relaxation [Prager and Arbib, 1984, Horn and Schunck, 1982,

Barnard and Thompson, 1981]

4) Clustering [Bandyopadhyay, 1986].

In what follows we will discuss and criticize each approach .

The minimum distance criterion methods, are basically based on the heuristic that a

point before the motion will be matched with the point after the motion that is nearest to

it. This approach, that Ullman uses in a global criterion, would work if the points before

and after the motion were very sparse and the motion was relatively not large. Then we

could say that the nearest point will be the corresponding one. Unfortunately, the points

before and after the motion about which we are discussing, do not come automatically.

They have to be extracted from the sequence of the intensity images. And eventhough

there exist several methods for their extraction, no one of them is perfect, in the sense

that there will exist points in the first dynamic frame whose corresponding one will no be

there in the second dynamic frame and vice versa. This of course is due to the
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inaccuracies of the methods, and to the unpredictability of the natural images. But even

if we could extract the points in a accurate way, no one guarantees that they will be sparse

so that the minimum distance criterion can be applied. The points that are extracted are

interesting points (corners, high curvature points, etc), and their sparseness depends

solely on the imaged scene. From the other hand, the minimum distance criterion is a

heuristic that will be true only under certain kinds of motions and surfaces.

The method of matching contour points seems very promising and there is good work

in this area by Hildreth and Waxman. Points along contours are matched, and the

apperture problem is addressed by relaxing the results along the contours. Of course the

results will be reasonable if the contours under consideration are smooth. And even

though several contours in natural images are smooth, we cannot know this apriori.

Furthermore, to extract the contours seems a hard problem, eventhough there are some

new results that show great promise. Finally, what do we do if there are no contours in the

image?

The methods that are based on the similarity measures, follow the heuristic that

nearby points will have similar displacements, i.e. the difference of their displacement

vectors will be in some small interval. Several methods have been proposed in this line of

thought, and they are basically based on iterative relaxation methods, which work with

the hope that the system will converge to a correct solution. Of course, there are no results

on the convergence and the uniqueness of the relaxation computations and more

importantly, the heuristic of the similarity of the nearby displacement vectors is correct

only for smooth surfaces, something that the surfaces of our visual world do not follow.

Finally, recently clustering methods have been proposed. The clustering methods are

again based on the fact that nearby displacements will have similar values, and so they

form a cluster. The clustering is done in a two-dimensional space (only displacement

values), instead of a four-dimensional (dispacement values and position on the image

plane), for efficiency reasons. Even though the clustering methods are based on similarity

measures and so our criticism in the previous paragraph applies here too, the method is

new and more experimental and theoretical work is required in order to get more

information about the method.

Up to this point, we have discussed all the methods for computing image motion

displacements. Here we will talk about a very important constraint that has not been

used by research in retinal motion computation.



5.7.2 Should we want to compute retinal displacements, we should rely on

constraints

The previous section reviewed previous and current work in the area of the computation

of retinal motion displacements. As we saw, all the methods are based on heuristics about

the similarity of the displacements, minimal distance, and the formation of clusters. No

method has taken into account the very strong constraint that exists among the

displacements. The points in the two dynamic frames (before and after the motion), are

related by the very strong constraint of rigid motion. Indeed, the points before and after the

motion are the projections of three-dimensional points that move rigidly. If we ever hope

to recover retinal motion displacements, we must take into account the existing

constraints. If we don't, we will never be able to solve the problem, since we will always be

obliged to rely on heuristics and restrictive assumptions. So, we must investigate the rigid

motion constraints. Recalling from section 5.2.1 the relation between two corresponding

retinal points we have:

If (x,y) is the retinal point before the motion and (x',y') is the point after the motion, then:

[x', y\ 1] = E
x
y
l

where

2=AZr6- AYr8> e,=

AZr,

So, we have here the following mathematical problem:



E = with

eg

Given the set of points A^ffx^y.)^^l,..tn} before the motion and the set

A'={(x'i9y'J,i=l,..9n} after the motion, correspond the points of these two sets , such that 3

matrix E, with the property:

[x\ y\ 1] = E y
1

for all the corresponding points (x,y)€A and (x\y')€A\

This is the correspondence motion problem, phrased in a mathematical way, utilizing

the available constraints.

The question that arises now then, is: Can we solve this problem?

It would be nice to solve this problem, without having to compute the matrix E,

because then we would know the three-dimensional motion parameters, and then the

problem of computing retinal displacements would be very easy. Unfortunately, we

haven't been able to solve this problem up to now, without first finding the matrix E.

Later, in section 5.7.4 we will show how to find matrix E without correspondences, and

then come back and compute the displacements. It remains a problem of our future

reseach, to address this question.

At this point, we conclude the criticism of previous research, and we move to

algorithms for the computation of three-dimensional motion parameters.



5.7*3 Algorithms for 3-D motion perception

Here we study how to recover three-dimensional motion without i

correspondences (optical flow or discrete displacements). We will study the differ

and discrete cases separately.

5.7.3.1 The differential case

In these sections we study the problem of determining three-dimensional moti<

the case of nonplanar surfaces. The case of planar surfaces, is easier, and it has been

analyzed recently [Negadharipur and Horn, 1985].

We approach the problem of motion estimation from a least squares point of

Given the motion and the spatial brightness gradient one can predict the time deri>

of brightness at each point in the image. We find the motion that minimizes the int

of the square of the difference between this predicted value and the observed

derivative. The integral is taken over the image region of interest, which may b

whole (in the egomotion case). Before we apply the method to real images, care mi

taken in filtering and sampling. The estimate of the spatial gradient and time derive

is sensitive to effects of aliasing that comes from inadequate low-pass filtering t

sampling. It can be considered a mistake to simply pick every nth frame out of an i

sequence. At the least, all the frames should be averaged before sampling in ore

reduce the high frequency components. Of course, in this way we might have

smearing but a series of widely separated snap-shots do not obey the conditions <

sampling theorem, and the estimates of the derivatives will have large errors.

5*7.3*2 The relation between 3-D motion and retinal motion

A camera is assumed to move in a static environment. Let a coordinate system X,l

fixed with respect to the camera, with the Z-axis pointing along the optical axis,

rigid body B be stationary in the environment, from the surface of which a closed sui

is visible. Any rigid body motion, as we have already seen, can be resolved in two fa

a translation and a rotation. We shall denote by T =(U,V,W) the translational comp

of the motion and by Q = (A,B,C) its angular velocity. We also consider the image

perpendicular to the Z axis at the point (0,0,1) (i.e. focal length = 1). and we dene

(x,y) the coordinates of a point on the image plane. We have already seen that the o

flow equations are given by:
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u= +Axy _B(x2+l) + Cy 5.32

_ Bxy _ Cx 533
v

It is clear that there is translational part in the flow and a rotational one. In other words,

the flow equations can be written as:

u=u-+a_ , v=v-+vo where u_,i;_the translational parts anduD,t;- the rotational parts,
i a T R t r r it it

with

-U+xW
U-,=

r Z

u = +Axy -B(x2+1) +Cy

V =
V+yW

r Z

But, we know that the optical flow at every point in the image satisfies the following

equation:

fu+fv+ft=O.
If we substitute the values of the optical flow field from the equations 5.32, 5.33 into this

equation, then we get the following equation:

-U+xW o -V+yW o
fx( +Axy -B(x2+1) +Cy)+fy( j=J— +A(y2+1) - Bxy - Cx)+/e = 0

We call this equation image brightness motion equation, and it will be the basis of the

forthcoming analysis.

Determining the motion of a moving camera from successive images is much easier if we

are told that the motion is purely translational or purely rotational.

5.7.3.3 Rotational case



In this section we discuss the case where the motion of the camera is assumed

purely rotational. In that case, the optical flow is:

u=Axy-B(x2+l)+Cy
and

v=A(y2+l)-Bxy-Cx
For the following we assume that the image plane is the rectangle

x€[-A,A], y€[-p,p]. The same method applies if the image has some other shape,

matter of fact, it can be used on subimages corresponding to individual objects in th

that the environment contains objects that may move relative to one another; of c

this case is much harder, and we do not consider it in this thesis).

The image britghness motion equation now becomes:

fJAxy -B(*2+l) +Cy)+fy(A(y2+l) - Bxy - Cx)+/,=0

or

Bt-fJX* +l)-fxy) +A(fxy+fy(f+l)) + C(f3y-fx) +f=0 (5.34)

The above linear equation contains the desired parameters A,B,C and

everywhere in the image. It has to be understood that the coefficients of this eqi

involve measurable parameters, the spatiotemporal derivatives of the image int<

function.

If we use equation 5.34 at three points in the image, then we obtain a linear syst

three equations with three unknowns A,B,C, from which the unknowns are <

recovered. But if we take into account the noise in the image (introduced b

digitization process and other factors) a well as the errors introduced by the num

approximation of the image derivatives fx f and f% tfien we may get very undes:

results. So, seeking a global method we wish to minimize the expression:

f * f *

X

-fyx)+

In this case we determine the best fit with respect to the L2 norm, which is defined as:
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-A -n

So, we differentiate equation 5.34 with respect to A,B, and C and we set the resulting

expressions equal to zero.

Let us introduce the following abbreviations.

Expression 5.34 thus becomes:

I [K(xj)B+L(x,y)A +M(xj)C+ftfdxdy
- A - p

After we differentiate equation 5.34 with respect to A,B,C we obtain the following three

equations:

a21A+a22B+a2f=b2 Sx

with

L2(x,y)dxdy
- A -

l12= J j Ux,y)K{x^)dxdyJ
- A -

L(xty)M(x,y)dxdy
J
J

- A -

f A rp

- A - i



and

- fA r k
«22 : '

- A ' - i

«23= J J" K(x,y)M(x,y)dxdy

L{x,y)M(xj)dxdy

-A rj
- A -

1r
- A -

7
- A -

j M\x,y)dxdy

J Uxj)ftdxdy

fA rn
= J J K(xj)ftdxdy7,A

M(x,y)ft(x,y)dxdy

The system 2^ determines uniquely the parameters AJB and C.

5.7.3A Translational case

In this section we discuss the case where the motion of the camera is assumed

purely translational. In that case, the optical flow is:
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-U+xW
u —

and

-V+yW

and the image brightness motion equation becomes:

-U+xWSt e,-V+yW

or

We should note that the depth is involved now in the image brightness motion equation

and so our method will be different.

By differentiating the above equation with respect to x and y, we obtain:

+ fxw+f (
and

fxy{-U+xW) + y J ^ f y
or (by dividing the above two equations and assuming that there is motion in depth, i.e.

W*0),

fJ(-U/W)+x) + /x + y ( - WW)+y) ftx

^ fy+fyy((-V/W)+y) ftyZ+ft(BZ/dy)

In the above equation the depth and the derivatives of the depth with respect to the

image coordinates are involved. But the derivatives of the depth function with respect to

the retinal coordinates (x,y), are related to the derivatives of the depth function with

respect to the world coordinates (X,Y,Z), in the following way:

ZBZ/BX

1-xdZ/aX-ydZ/dY



ZdZ/dY
aZ/dy=

1-xdZ/aX-ydZ/dY

Near the origin of the image plane the denominator of the above equations becon

(The above equations are true under the assumption that the focal length of the cam*

1). So, near the origin of the image plane, equation 5.35 becomes:

/ ((-um+x) + f+fji-v/m+y)
fty+ft(dZ/dY)

The above equation, linear in the unknowns U/W, V/W can be used in a least sq

formulation to give us the direction of translation. The obvious price we have U

though, is that we have to compute the shape of the object (3Z/8X.3Z/6Y).

Equation 5.36 after some algebraic manipulations becomes:

K(xj)a+L(x,y)b=M(x,y)

where we have introduced the abbreviations:

a = U/W,

b=V/W,

K(x,y) = -fj

Finally using equation 5.36 in a least squares scheme, we derive the system:

[I I K\xj)dxdy]a+l\ j K(x,y)L(x,y)dxdy]b= I I KbjWM
—" A -•* Jl ~ — A ~ * J 1 — A —* |1

[J j K(x9y)L(xty)dxdy]aH\ j L(x,y)dxdy]b = J J L(x,y)M(xj)d

whose solution gives the desired direction of translation.

To study the general case, we can follow the same approach (i.e. differentiate the i

brightness motion equation with respect to x and y) and follow the same least sq

method, with the use of shape information.

In what follows, because the image brigthness motion equation is complicated, we

use a vector notation. This equation can be written as:

f+ V.Q + (1/Z)K.T = O,
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where Q the rotational velocity, T the translational velocity, and

V = (f +y(xf+yf), -f-x(xf+yf),yf-xf)T

K=(-f,-fy,xf,+yf)T

5.7*3.5 Motion known

The image brigthness motion equation can be used to find depth if the motion is known.

Indeed, from this equation we get:

All the quantities of the right hand side of this equation are computable from the image

gradients or known (motion). Obviously this method may produce inaccurate estimates of

the depth Z, because the numerator and denominator may be small, if the britghness

gradients are small or the vectors K and T are nearly orthogonal.

5.7.3.6 Depth known

Suppose that the depth of the surface in view is known. Then, it is trivial to recover

motion without correspondences in this differential case. In order to avoid errors from

noise, we minimize the quantity:

- A - i i

Differentiating with respect to Q and T, we get the following vector equations:

[I (1/Z)2KKT]T + [ (1/Z)KVT]Q= - I ft(VZ)K
- A - l i - A - H - A - p

[I f (l/Z)VKT]T + [J j W r ] Q = - j J ftV
- A - | i - A —ix - A - p

These equations represent six linear equations in the six motion parameters unknowns.

5.7.3.7 Stability of the method in the case of rotational motion



Recalling from section 5.7.3.3 the method that recovers rotation, we had to soh

linear system (in vector notation):

In order to study the properties of thge algorithm that solves this linear system, we

study the matrix

rr T

But such a thing seems very difficult at this point, because the vector V depends o

intensity function and its derivatives. So, the only thing that we can hope for, is to <

approximate analysis, by assuming that the values of vectors V are unifo

distributed.

Instead, we give some intuitive reasons for the stability that have been confirmed b

experiments. Rotations about the x and y axis are computed with high accuracy, wh

rotation about the Z-axis is corrupted with small amounts of noise. The reason for tt

that rotation about the x and y axes produce motion fields (spatiotemoral variations]

vary a little over the image, and in that case a small field of view can be used to esti

these components. From the other hand, rotation about the z axis produces a field

varies a lot over the image. So, the maximum velocity depends on the size of the fi<

view.

5.7.3.8 The translational case revisited

In section 5.7.3.4 we studied the translational case. In our analysis, we neede<

shape of the object in view in order to obtain a solution. This is rather weak in some s

So, the question that arises then, is : can we recover the direction of translation wi1

correspondence in the discrete case, and without using shape information? Prelimi

investigations show that this is possible if a binocular observer is used. Another pos

approach is the following:

The image brightness motion equation under the assumption that the moti<

translational, becomes:



Obviously the depth has to be positive. So, we must find what are the numbers

T=(U,V,W) that make the depth Z from the above equation, positive, at every image

point. Clearly, the problem as posed might not have a unique solution, but we might be

able to find a set of solutions, which can be satisfactory. Finally, it has to be understood,

that the depth has an upper bound in such a situation. Indeed, from the above equation,

we have that:

Z=-fl/#VT , or \Z ] = IKTI/l/;i or \Z I/||T||£ \\K\\/\ft\ . This is an upper bound under the

assumption that T is parallel to K. Actually, the depth will be much smaller if K is nearly

orthogonal to T.

5.7.3.9 The general case

In the general case (rotation plus translation) the method that we propose is the same

as in section 5.7.3.4, with the difference that the resulting system will be nonlinear in the

five parameters (U/.W,V/W, A,B,C). In order for this system to be solved, we must start

with an approximate solution near the actual solution. Otherwise, it will not converge to

the actual solution.

5.7.3.10 Implementation and experiments

The purely translational and purely rotational cases have been implemented. Figure

5.5.1 shows pictures of a sphere taken from a moving camera (synthesized motion). The

camera was moving with velocity U=-7, V = -7, W = -7 and took pictures every unit of

time. The actual direction of translation, was (U/W=l, V/W=l), and our algorithm

(5.7.3.4), from this sequence of images, yielded:

(U/W= 1.052632, V/W=0.925926).



Figure 5.5.1: Nine snapshots of a translating sphere

For the purely rotational case, we experimented with several motions and several

different reflectance functions. In general, if the image intensity function is smooth, then

the results are very accurate. If the image intensity function is not smooth enough, then

the results get corrupted, because, even with sufficient smoothing, the image

spatiotemporal derivatives are very inaccurate. In the sequel, we will present

experiments for the case where the motion was (A = C = 0, B = 0.001), for spherical

surfaces (since they are the worst for this kind of experiment), with many different

reflectances. The following table presents the results obtained with the least squares

method, for the different surfaces that are presented in figure 5.5.2.



iv. Specular x Random

Specular x Diamond vi. Highly Specular x Vertical Stripes

Figure 5.5.2

vii. Specular x Stri



i. Lambertian

ii. Random

iii. Specular

iv. Specular x Random

v. Specular x Diamond
vi. Highly Specular x

Vertical Stripes

vii. Specular x Stripes

-0.000048

-0.002594

-0.000191

-0.002588

0.000009

-0.000970

0.000092

0.001025

0.002572

0.001205

0.002220

0.000856

0.000991

0.001932

-0.000019

-0.000088

0.000384

-0.001412

-0.000580

-0.000262

-0.000790

5,7.3,10 Conclusions (Differential motion without correspondence)

In this section we presented algorithms for the computation of the three-dimensional

motion, in the case of continuous motion, without using the intermediate stage of

computing optical flow. Our algorithms work well for the rotational and translational

case. The general case needs more investigation. Our future work in this area, is to work

out the details of computing translational motion without the need of the shape of the

surface in view, even though the use of surface shape agrees with our general framework

of combining information from different sources. Also, to work for the development of

linear equations for the general case (translation & rotation). Our treatment did not use

any correspondences (optical flow). This by no means attempts to indicate that

correspondence is not implemented in some way in the human visual system. This is

something that we don't know, even though there is some indication (from various

psychological and psychophysical experiments) that the human (animal) visual system is

engaged in some kind of visual correspondence. Our analysis did not try to establish the

fact that correspondence is useless. On the contrary, correspondence is very powerful, but

it has not yet been demonstrated that it is feasible. We simply demonstrated that three-

dimensional motion can be obtained without using correspondences. Our theory is not

based on an input that we don't know if it is computable, as optical flow for example. It is

based on the spatiotemporal derivatives of the intensity function, something that is very



well defined and measurable. Also, it is highly parallel and easily implementable in

neuronal hardware. Finally it is worth saying that our analysis employed the use of a

single camera. It is one of our future goals to study the motion perception problem using a

binocular observer. The reason for this is, as the next section will explain, the fact that

using a binocular observer, the constraints between retinal and three-dimensional motion

change, and the complexity of the problem changes too. The highly nonlinear equations

for the case of a monocular observer, become linear in the case of a binocular observer.

5-7.4 The discrete case

In this section we study how to recover three-dimensional motion from retinal motion

in the case of discrete motion. The problem is the following:

Consider a set A={(Xi,Y.£i),i=l,..fn} of three-dimensional points, that move rigidly and

they come to a new position, such that they constitute the set A'={(X'.,Y'iJZ'J,i=:l,..,n}.

The points are imaged by a camera (traditional model, as described in Chapter 2), and

their projections before the motion make the set AJ={(xjyJ,i=l9..9n} and after the motion

the set A'I={(x'iyj,i=l,..fn}. With only input the sets A{ and A'z we want to recover the

three-dimensional motion that transformed set A to set A'. All the traditional approaches

that are based on the correspondence approach, first try to find out the correspondence

between the points of the two sets A and A',i.e. to find out for every point (x,y)€ A, what

point (x\y'K A\ is the image of the same three-dimensional point. From the association of

point (xj) to (x*y), we have a displacement vector, and from several displacement vectors

the three-dimensional motion may be obtained, as it has been shown by several

published algorithms (Section 5.3 contains several references). Sections 5.3 and 5.4

criticized the approaches that use correspondence, from the point of view that

correspondence is very difficult. So, we would like to solve this problem, without having to

go first through the solution of the correspondence problem. Our only input is the sets A

and A', ie . the perspective projections of a cloud of 3-D points before and after the motion.

Our analysis is done for the case of a binocular observer. Of course, now we should

address the problem of finding depth, which requires the solution of the correspondence

problem between the left and right image. But we show in our analysis, that it is

possible to recover depth without correspondence, at least for the case of planar surfaces.

For the purposes of this section, we will assume that in the case of nonplanar surfaces, the

depth is known.



In the sequel, we will address the problem of finding motion without correspondence, in

the case of discrete motion, for both planar and nonplanar surfaces. These cases will be.

treated differently.

6-7.4.1. Stereo without correspondence for planar surfaces

In this section we present a method for the recovery of the 3-0 parameters for the set of

3-D planar points from their left and right images without using any point-to-point

correspondence; instead we consider all point correspondences at once and so there is no

need to solve the difficult correspondence problem in the case of the static stereo.

Let an orthogonal cartesian coordinate system OXYZ be fixed with respect to the left

camera, with O at the origin (O being also the nodal point of the left eye) and the Z-axis

pointing along the optical axis.

Let the image plane of the left camera be perpendicular to the Z-axis at the point

(0,0,f), (focal length=f).

Let the nodal point of the right camera beat the point (d,0,0) and its image plane

be identical to the left one; the optical axis of the right camera (eye) points also along the

Z-axis and passes through point (d,0,0).

Consider a set of 3-D points A ={ (X^Y^i) I i=1^2J3... n } lying on the same plane,

the latter being described by the equation:

Z=pX+qY+c

Let Oi,Or be the origins of the two-dimensional orthogonal coordinate systems on each

image plane; these origins are located on the left and right optical axes while the

corresponding coordinate systems have their y-axes parallel to the axis OY, and their x-

axes parallel to OX.Finally let {(x#yj I i=l#<3...n} and {(x^yj I i=l£J...n}

be the projections of the points of set A on the left and right retinae, respectively, i.e.

Vs^f (637) yir~^T~ (5'38)

i

(5.39) yr.= £ p (5.40) / i=l,2,3...n
i i
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Let (xutfij) and (xridrO be corresponding points in the two frames. Then we have that.

ir*rrfr {5A1)

i

where Zi, the depth of the 3-D point having those projections.

In the sequel, we prove that the quantity

it y*

LS directly computable without using any point correspondence between the left and right

frames. We proceed with the following propositions:

5*7,4.2 Proposition: Using the aforementioned nomenclature the quantity

yk,

where

*2>0 A * * - — • , m,n € Z - {0} ,

is directly computable.



Proof: We have that

n v*
— = (fromequation (5.41)) = / y 7TZ

X v
= 2- "TT" "" 2- "TT" -(fromequation (5.42)) =

= y

Thus,

From equation (5.43) the claim is obvious.

5*7.4.3 Proposition : Using the aforementioned nomenclature, the parameters p, q and c

of the plane in view are directly computable without using any point-to-point

correspondence between the two frames.

Proof: The equation of the world plane when expressed in terms of the coordinates of the

left frame, becomes:

So, from equation (8) it follows that:

-L = (f-pXu-qyu) -L i=l,2,3...n (5.45)



Now, we have:

2

or

n v* i n i

The left-hand side of equation (10) has been shown to be computable without using

any point-to-point correspondence (see Proposition 5.7.4.1).

If we write equation (10) for three different values of k, we obtain the following linear

system in the unknowns p,q,c which in general has a unique solution (except for the case

where the projection of all points of set A, have the same y-coordinate in both frames):

n T. vkl n X . ykl

177
i = l ' a

li Jli sr ri •

Z-y

I f f - Zi7
1 = 1 ' 1 = 1 '

f = T Ẑ ff - ^ i I / v ? + Z^ »•«»
1 = 1 ' 1 = 1 1 = 1

where we used equation (5.43) to the left hand sides.

The solution of the above system recovers the structure and the depth of the points

of set A without any correspondence and this is the conclusion of Proposition 5.7.4.2.

5.7.4.4. Practical Considerations

We have implemented the above method for different values of ki,k2,k3 and especially

for the cases:

a) k r = 0 k2 = l/3 k3=2/3

b )k !=0 k2 = l/3 k 3 =l /5



The noiseless cases give extremely accurate results.

Before we proceed, we must explain what we mean by noise introduced in

images. When we say that one frame (left or right) has noise of a%, we mean that L

plane contains N projection points we added [(N*a)/100] randomly distributed poir

Note: [] denotes the integer part of its argument).

When the noise in both frames is kept below 2% then the results are still

satisfactory. When the noise exceeds 5% then only the value of p gets corrupted, bui

values of q and c remain very satisfactory. To correct this and get satisfactory res

for high noise percentages, we devised the following method that uses three cameras

" We consider the three camera configuration system as in Figure 5.6, where th<

camera has only vertical displacement with respect to the left one. If all three im;

are corrupted by noise ( ranging from 5% to 20% ) then application of the algoritl

Proposition 3.2) to the left and top frames will give very reasonable va-lues for p a

and corrupt q, which q, as well as c, are accurately computed from the applicatk

the same algorithm to the right and left frames ".

So, by applying our stereo ( without correspondence ) algorithm to tr,

camera configuration vision system, we obtain accurate results for the parame

describing the 3-D planar patch, even for noise percentages of 20% or slightly more,

for different amounts of noise in the different frames.

(0,d,0)

Figure 5.6: Trinocular system



&7,4.5. Recovering the direction of translation.

Here we treat the case where the points of set A just rigidly translate, and we wish

to recover the direction of the translation. In this case, the depth is not needed but the

orientation of the plane is required. The general case is treated in the next section.

5.7.4.5.1 Technical prerequisites*

Consider a coordinate system OXYZ fixed with respect to the camera; O

coincides with the nodal point of the eye, while the image plane is perpendicular to the Z-

axis (focal length=f), that is pointing along the optical axis (see Figure 5.7.).

Let us represent points on the image plane with small letters (e.g (x,y)) and points

in the world with capital ones (e.g. (X,Y,Z)).

Let us consider a point P=(XifYitZi) in the world, with perspective image

vfherex1=(fX1)/Zandy1=(fY1)/Z.

(Xi.Yi.Zi>

displacement vector

Figure 5.7: Motion of a point

If the point P moves to the position Pf=(X2,Y29Z2) w

=Zt +LZ

(5.50)

(5.51)

(5.52)

then we desire to find the direction of the translation (AX/AZ,AY/AZ).

If the perspective image of P' is (X2,y2), then the observed motion of the world point in the

image plane is given by the displacement vector : ( X2-xi, y2-yi) (which in the case of very

small motion is also known as "optical flow").

We can easily prove that :



/"AX-x AZ

z + *z (553)

Under the assumption that the motion in depth is small with respect to the d

the equations above become :

- xl =

fAX-x AZ

( 5 5 6 )

The above equations relate the retinal motion (left-hand sides ) to the \

motion AX, AY, AZ.

5.7.4.5.2 Detecting 3-D direction of translation without correspondence.

Consider again a coordinate system OXYZ fixed with respect to the camera

Figure 5.8, and let A = {(Xi,Yi,Zi)/i = 1,2,3 ... n},such that

Zt= pXi + qYi+c , i=l,2,3.. .n

that is the points are planar. Let the points translate rigidly with transL

(AX,AY,AZ), and let { (xi,yi) / i= 1,2,3 ... n } and {(x^yf ) / i= 1,2,3, ... n} be

projections of the set A before and after the translation, respectively.
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Consider a point (x,,yi) in the first frame which has a corresponding one (xj'.y;') in

the second (dynamic) frame.

For the moment we do not worry about where the point (x ,', yf) is, but we do

know that the following relations hold between these two points

f&X -x.tJ,
x.-x.= (5.57)

ftY-y AZ

yi-y^ z ( 5 5 8 )

i

where Z{ is the depth of the 3-D point whose projection (on the first dynamic frame) is the
point (xi,y;). Taking now into account that

1 f-px-qy
- = (5.59)

the above equations become :

f-px-qy
-x. AZ) — (5.60)

l cf

f-px-qy
.y.iftiY-y. AZ) j - l- (5.61)

If we now write equation (24) for all the points in the two dynamic frames and

sum the resulting equations up, we take :

n n f— p x. — q y.

or

, " f(f-px-qy)UC-x<f-px-qy)*Z
.-xJ= I [ i ! — l; l- '• ] (5.62) (



Similarly, if we do the same for equation (25), we take :

f-l
*i-*,•> = 2

or

-y (f-px-qy)AZ
' 1 (5.63)

f

At this point it has to be understood that equations (5.62) and (5.63) d<

require our finding of any correspondence.

By dividing equation (5.62) by equation (5.63), we get:

izl ifi2_ = izl (5.64)

Equation (5.64) is a linear equation in the unknowns AX/AZ , AY/AZ anc

coefficients consist of expressions involving summations of point coordinates in

dynamic frames; for the computation of the latter no establishment of any p

correspondences is required.

So, if we consider a binocular observer, applying the above procedure in both

and right "eyes", we get two linear equations (of the form of equation (5.64) ) in the

unknowns AX/AZ, AY/AZ, which constitute a linear system that in general has a un

solution.

5.7.4.5.3 What the previous method is not about, an unexpected bonus

some problems

If one is not careful when analyzing the previous method, then he might think

all the method does, is to correspond the center of mass of the image points before

motion with the center of mass of the image points after the motion, and then base



that retinal motion to recover three dimensional motion. But this is wrong, because

perspective projection does not preserve simple ratios, and so the center of mass of the

image points before the motion does not correspond to the center of mass of the image

points after the motion. All the above method does, is aggregation of of the motion

constraints; it does not correspond centers of mass. At this point we should mention that

the method we presented, in order to be valid, needs the set of the world planar points to

be visible by both eyes; otherwise, the mathematics is not valid. But, on the other hand,

this method would work with a textured region, for which we wouldn't be able to find

corresponding interest points.

5.7.4.5.4 Practical considerations.

We have implemented the above method with a variety of planes as well as

displacements; noiseless cases give exremely accurate results, while cases with noise

percentages up to 20% (even with different amounts of noise in all four frames (first left

and right - second left and right)) give very satisfactory results (an error of at most 5% )

. We now proceed considering the general case.

5.7.4.6 Determining unrestricted 3-D motion of a rigid planar patch without

point correspondences.

Consider again the imaging system (binocular) of Figure 5.9, as well as the set A= {

(Xi,Yi,Zi)/i=l,2,3...n } such that :

Zi=pXi+qYi+c i= 1,2,3 ... n

i.e. the points are planar; let B be the plane on which they lie. Suppose that the

points of the set A move rigidly in space ( translation plus rotation ) and they become

members of a set A' = { ( X^Y^Zf ) / i= 1,2,3 ... n }. Since all o f the points of set A

move rigidly, it follows that the points of set A' are also planar; let B' be the (new) plane

on which these points lie.

UJOfl)

O)



Figures 5.8: A stereo imaging system

In other words the set A becomes A' after the rigid motion transformation. We wii

recover the parameters of this transformation . From the projection of sets A and i

the left and right image planes and using the method described in Section 5.7.4.3 the

A and A' can be computed. In other words, we know exactly the positions in 3-D of al

points of the sets A and A' (and this has been found without using

any point correspondences).

So, the problem of recovering the 3-D motion has been transformed to the followi

"Given the set A of planar points in 3D and the set A9 of new

planar points, which has been produced by applying to the points

of set A a rigid motion transformation, recover that transformation.9*

Any rigid body motion can be analyzed to a rotation plus a translation; the rot*

axis can be considered as passing through any point in the space, but after this poi

chosen, everything else is fixed.

If we consider the rotation axis as passing through the center of mass (CM) o

points of set A, then the vector which has as its two endpoints the centers of mass <

of sets A and A' respectively, represents the exact 3-D translation.

So, for the translation we can write

translation - T = (X,Y,Z) = CMA, - CMA

It remains to recover the rotation matrix.

Let, therefore, nj and 112 be the surface normals of the planes B and B\ Then, the an;

between ni and n2 , where

n r n2
cos6= , with * • f the inner—product operator

l|n1 | * | n s |
represents the rotation around an axis O1O2 perpendicular to the plane
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defined by ni and 112, where

! 2
O-0o = , with f X ' the cross—product operator1 2 | n t X n2 J

From the axis O1O2 and the angle G we develop a rotation matrix B,\. The matrix Ri

does not represent the final rotation matrix since we are still missing the rotation around

the surface normal. Indeed, if we apply the rotation matrix Ri and the translation T to

the set A, we will get a set A" of points, which is different than A', because the rotation

matrix Ri does not include the rotation around the surface normal 112.

So we now have a matching problem : on the plane B' we have two sets of points A1

and A" respectively, and we want to recover the angle <|> by which we must rotate the

points of set A" (with respect to the surface normal 112) in order to coincide with those of

set A'.

Suppose that we can find angle 4>. From <J> and n2 we construct a new rotation

matrix R2. The final rotation matrix R can be expressed in terms of Ri , R2 as

follows:

R = Ri R2

It therefore remains to explain how we can compute the angle <$>. For this we need

the statistical definition of the mean direction.

Definition .

Consider a set A = {(Xi,Yi)/i= 1,2,3 ... n} of points ail of which lie on the same plane.

Consider the center of mass, CM, of these points to have coordinates (Xc^Ycn).

Let also circle (CM,1) be the circle having its center at ( Xcn^Ycm) and radius of length

equal to l.Let Pi be the intersections of the vectors CMAj with the circumference of the

circle (CM,1), i= 1,2,3 ... n. Then the "mean direction" of the points of the set A, is defined

to be the vector MD, where

M D s ^ CMPj



It is clear that the vector of the mean direction is intrinsically connected wit

set of points considered each time, and if the set of points is rotated around an

perpendicular to the plane and passing through CM, by an angle co, the new i

direction vector is the previous one rotated by the same angle co.

So, returning to the analysis of our approach, the angle <J> is the angle betwee

vectors of mean directions of the sets A' and A" (which have obviously, common CJ

Moreover, it is obvious that the angle 4>, and therefore the rotation matrh

cannot be computed in the case the mean direction is 0 (i.e. in the case the set of poii

characterized by a point symmetry).

5.7.4.7 Determining unrestricted 3-D motion of a rigid surface without point

correspondences

In this section we consider the problem of the recovery of unrestricted 3-D moti

non-planar surfaces. Again, we consider a set of rigidly moving points, and we asi

that the depth information is available. In another work [Aloimonos et al, 1986

describe how to recover the depth of a set of non-planar points from their stereo in

without having to go through the correspondence problem. So consider a bino<

imaging system, and a set A = { Pi = (Xj, Y*, Z\), i = 1,2,3 ... n } of 3-D non-planar p<

The coordinates are with respect to a fixed coordinate system that will be used throug

this section (we can consider as this system either the system of the left or right car

or the head frame coordinate system). Applying the method described in [Aloimonos

1986], from the left and right images of the points of set A, we can recover the memb<

A themselves, i.e. their 3-D coordinates. Suppose now that the points of the set A 1

rigidly in space (translation plus rotation) and that they become members of the set A

Pi = (X'i, Y'i, Z'i) / i = 1,2,3 ... n}. It is evident that the set A1 can be recovered exact

the set A with the method described in [Aloimonos et al, 1986]. In other words, the \

becomes A' after the rigid motion transformation. We wish to recover the parametc

this transformation. We have already stated that from the projection of the sets A ai

on the left and right image planes and using the method described in [Aloimonos <

1986] , the sets A and A' can be computed. Hence we know exactly the positions c

points of the sets A and A' (and we came up with this result whithout relying to any p
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to-point correspondence ). So, for the purposes of this section we will assume that the

depth information is available.

From the above discussion, we see that the problem of recovering the 3-D motion has

been transformed to the following:

* Given the set A ofnonplanar points and the set A* corresponding to the new positions of

the initial points after they have experienced a rigid motion transformation, recover that

transformation, without any point-to-point correspondences! "

Any rigid motion can be analyzed to a rotation plus a translation; the rotation axis

can be considered as passing through the any point in space, but after this point is chosen,

everything else is fixed.

If we consider the rotation axis as passing through the origin of the coordinate

system, then if the point ( Xj, Y{, Zx) € A moves to a new position (X'i, Y*i, Z'i) € A', the

following relation holds:

(X'i, Tit Z'i )T = R (Xit Yi, Zi )T + T / i= 1,2,3 ... n ( 5.65)

where R is the 3x3 rotation matrix and Ts(AX, AX, AZ )T is the translation vector. We

wish to recover the parameters R and T, without using any point-to-point

correspondences.

Let,

(Xi( Yj, Zi)' m Pj and (X'i, Y'i( Z\)' = P'i / i= 1,2,3 ... n

Then, equation (5.65) becomes:

Pi = R P ' i + T / i = 1,2,3... n

Summing up the above n equations and dividing by the total number of points, n, we get:

Z ' , I <••
— — = R — — + T (5.66)

n n

From equation ( 5.66 ) it is clear that if the rotation matrix R is known, then the

translation vector T can be computed. So, in the sequel, we will describe how to recover

the rotation matrix R. In order to get rid of the translational part of the motion we shall

transform the 3-D points to " free " vectors by subtracting the center-of-mass vector.



Let, therefore, CM A and CMA
f be the center-of-mass vectors of the sets of poii

and A' respectively; i.e. CMA = 2 ( Pi / n ) and CMA» = 2 ( P'i An ). We further]

define:

Vi = P|-CMA / i=l ,2 ,3. . .n

i= 1,2,3 ...n

With these definitions, the motion equation (5.65), becomes:

where R is the (orthogonal ) rotation matrix.

If we know the correspondences of some points ( at least three ) then the matrix R a

principle be recovered, and such efforts have been published [Huang and Blonstein, 1

. But we would like to recover matrix R without using any point correspondences.

Let,

Vi = (v3ti,vy.,vz.) / i = 1,2,3 ...n

v>i = (VXi,v
f
yi,v

f
Xi) / i = 1,2,3 ...n

Note that Vi and v'i are the position vectors of the members of sets A and A' respecti

with respect to their center-of-mass coordinate systems.

We wish to find a quantity that will uniquely characterize the whole sets A and i

terms of their * relationship " ( rigid motion transformation ). We have found thai

matrix consisting of the second order moments of the vectors Vi and v'i has t

properties. In particular, let

S \72
V X; S vXivy i 2vX ivZ i

i =1

n

i = 1 i = 1

n

i = l
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n

l = 1

i =1

n
Ev'2

7

From these relations, we have that:

n

V =E(v'Ii,v'yi,v'z.)
1(v>

x.,v'yi,

= S R( V*., Vy., Vz. )' ( Vj., Vy., Vz. ) R' =

i = 1

= RVR1

So, V'=RVR' (5.67)

At this point it should be mentioned that equation ( 5.67 ) represents an invariance between the two sets of 3-D

points A and A', since the matrices V and V are similar. In other words we have discovered that matrix V

remains invariant under rigid motion transformation. From now on, the recovery of the rotation matrix R is

simple and comes from basic Linear Algebra.Furthermore equation (5.67) implies that the matrices V and V*

have the same set of eigenvalues [ Stewart, 1980 ].

But sinceV and V* are symmetric matrices, they can be expanded in their eigenvalue decomposition, i.e.
thcro ovict motrirofl S T eii/»t> that•



(5.68)

(5.69)

where S, T are orthogonal matrices having as columns the eigenvectors of the matri

and V respectively ( e.g. i-th column corresponding to the i-th eigenvalue) an

diagonal matrix consisting of the eigenvalues of the matrices V and V\ We ha

mention at this point that in order to make the decomposition unique we require tha

eigenvectors in the columns of matrices S and T be orthonormal.

From equations ( 5.67), (5.68), (5.69) we derive that matrices T and R S both co

of the orthonormal eigenvectors of matrix V. In other words, the columns of matrice

and T must be the same, with a possible change of sign. So, the matrix RS is equal U

of eight possible matrices, T[, i= 1,..,8. Thus, R = TjST • i = 1,..,8. But the rotation m

is orthogonal and it has determinant equal to one. Furthermore, if we apply matrix

the set of vectors V| then we should get the set of vectors vt'. So, given the above t

conditions and Chasles theorem, the matrix R can be computed uniquely.

There is something to be said about the uniqueness properties of the algorii

When all the eigenvalues of the matrix V have multiplicity one then the problem h

unique solution. When there are eigenvalues with multiplicity more than one, then t

is some inherent symmetry in the problem that exhibits some degeneracy properties,

example, if the surface in view (i.e. the surface on which the points lie) is a soli

revolution, then there is an eigenvalue (of the matrix V) with multiplicity 2, and onl)

eigenvector corresponding to the axis of revolution can be found. The other

eigenvectors define a plane vertical to the axis of revolution. So, in this case there i

inherent degeneracy. We are currently working towards a complete mathemat

characterization of the degenerate cases of the problem. We are also develo]

experiments to test the robustness of the method as well as setting up the equipmeni

experimentation in natural images. The study of the sensitivity of the algorithm ̂

respect to different number of points in the successive dynamic frames, is one of

future goals. The algorithm is not sensitive in small perturbations of the poi

[Aloimonos et al, 1986].

5.7.4.7.1. Experiments.
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We will describe experiments for both the detection of structure and depth without

correspondence and the detection of 3-D motion without correspondence for the case of

planar surfaces. Experiments for the case of curved (general) surfaces are under

development.

In our experiments, we considered a set of three-dimensional planar points, which

we projected perspectively in both the left and right frames. From the projections

we recover the structure and depth of the 3-D plane using the alogrithm described in

Section 3 , or using the projections in three frames . It is clear, that the equations that

are used to develop the linear system described in Section 5.7.4.3, are based on the

assumption that the number of points on (left and right frames ), is the same. But in

noisy situations, this is not the case. In particular, in real images operators have first

to be applied on all four frames (two before the motion and two after the motion ) that

will produce points of interest, and then the theory developed in this-paper is applied

to these points.

But any method that will produce points of interest from intensity images is bound

to have errors due to the noise in the images and the unpredictable behavior of the

intensity function in natural scenes. When we say that the methods that find interesting

points in intensity images are bound to errors, we mean that there will be points in

the left frame whose corresponding ones have not been found in the right stereo frame,

and also there will be points in the first dynamic frame whose cor- responding ones

have not been found in the second dynamic frame, and vice-versa. So, the number of

points will not be the same in the different images . Because of that, our method is

bound to have an error, since it is based on the assumption that the number of points is

everywhere the same. To reduce this error we do the following: Equations (5.47), (5.48),

(5.49) are not affected if both sides are divided by the number of points in all the frames

(under the assumption that the number of points is the same in all frames ). If now the

numbers of points in the left and right fram e are different, say n^ft and n ^ ^ , in the

static stereo case, then we divide the summations resulting from each of the frames, by

the number of points of the corresponding frame, and the resulting equations are (for

the static stereo case):
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where n^ft andrtright represent the numbers of points in the left and right frames

respectively. It is clear that the resulting equations are approximate, but our experiir

show that the introduced error is very small. It has to be mentioned , however, tha

intrinsic difficulty, appearing in the traditional methods (i.e. stereo, optical flow ), o

being able to find corresponding points, exists even in our algorithm but under the foi

different numbers of points in the different frames, because of the globality of

approach. However, even considerable differences in the numbers of points among

different frames hardly affects the results. Furthermore, the same technique is appli

the case of motion as well.

Figure 5.10 shows the projections of a set of planar points on both the left and i

frames. The frame on top is the superposition of the left and right frames. The a<

parameters of the plane were:

p = o.O, q = 0.0, c = 10000, while the number of points was equal to 1000.

We did not include any noise to our pictures.

The computed ones were: P=-0.0 , Q = -0.0, C = 10000.0



Figure 5.1(h

Stereo without correspondence

Figure 5.11 shows the projections of a set of planar points on both the left and right

frames. The frame on top is the superposition of the left and right frames. The actual

parameters of the plane were:

p = 1.0, q = 1.0, c =-1*0000, while the number of points was equal to 1000.

We did not include any noise to our pictures.

The computed ones were: P = 0.98, Q = 1.00, C = 9809.8

Figure 5.12. shows the projections of a set of planar points on both the left and right

frames. The frame on top is the superposition of the left and right frames. The actual

parameters of the plane were:

p = 1.0, q = 1.0, c = 10000, while the number of points was equal to 1000.

We included 5% noise to the left frame and 7% to the right one.

The computed ones were: P = 1.7, Q = 1.2, C = 10266.7

Figure 5.11: Figure 5.12
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Figures 5.13a., 5.13b. show the results from the 3-eye method. Here the projections of €

set of 3-D planar points on all the three frames are considered. The actual parameters

were:

p = o.O, q = 0.0, c = 10000 (Figure 5.13a.) and p = 1.50, q = 2.30, c = 10000 (Figure

5.13b.) respectively. The number of points was equal to 1000, in both pictures.

Picture 5.13b. did not have any noise, whereas Figure 5.13a. had 5% noise in the lef)

frame and 7% noise in the right and top frames.

The computed ones were: P = 0.10, Q = 0.05, C = 10197.0 and

P = 151 ^ft = 2.22, C = 10000.0 respectively.

mnocular stereo
Figure 5.13a. Figure 5.13b

Figures 5.14,5.15,5.16,5.17,5.18, show the 3-D motion determination results. In figure

5.5., the two frames at the bottom represent the projections of a set of 3-D planar points

on the left and right eyes respectively. The two frames at the top, represent the

projections ofthe same set of points, after it has been translated. The actual direction oi

translation was equal to (-2.0,2.0), and the computed one was (-1.9,2.0).

The noise percentage was equal to 10% in all four frames while the number of points was

equal to 1000. At this point it has to be mentioned that the parameters p,q were alsc

computed computed,since the latter are used in the determination of the direction oi

translation. Figures 5.15 and 5.16, represent similar experiments.



192

Figure 5.14: Direction of translation without Correspondence



Figure 5.15 Figure 5.16

Figures 5.17 and 5.18, show experiments determining the general motion . The results

were computed according to the method presented in section 5.7.4.6, and the results were

recalculated with respect to the left-camera coordinate system.

Figure 5.17 Figure 5.18
NOTE: All the parameters involved in the above experiments that have a dimension of

length (U MO TV) are calculated in pixels, where 1 pixel = 100\im.

5.8* Conclusion and future work.

We have presented a method on how a binocular ( or trinocular ) observer can recover

the structure, depth, and 3-D motion of rigidly moving surface patch without using any

static or dynamic point correspondences. It is one of our future goals to experiment for
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the application of the method in natural images. We will also work towards the analysis

of nonrigid motion and occluded scenes.



6
Shape and 3-D Motion from Contour

Results
In this chapter we study the detection of surface shape and three-dimensional motion

from the perception of a planar contour. We prove that a binocular observer can compute

the orientation and the 3-D motion of a moving contour without using point to point

correspondences.In particular:

1) We develop constraints between the coordinates of the points that constitute the

contours in the left and right retina of a binocular observer that enable him to detect the

structure and the depth of the plane in view without using any point to point

correspondences.

2) We develop constraints between the lengths and the areas of the contours in the left

and the right retina of a binocular observer that enable him to compute the structure and

the depth of the plane in view without any point correspondences. These constraints are of

significant value by their own, and they can be successfully used in many related areas,

as object recognition and identification.

3) We discover constraints between the retinal motions of the contour and its three-

dimensional motion that make it possible to recover 3-D motion without any

correspondences,

4) and finally we generalize some of the above results for a monocular observer. In

particular, a translating monocular observer can recover the shape of an imaged contour

without using any point to point crspondences.

195
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The basic assumption here is that the contours in the left and right images have been

found and the correspondence between them has been established.

6*1 Introduction

The human perceiver is able to derive enormous amounts of information from the

contours in a scene. As part of this capacity, we are able to use the shapes of image

contours (as they are seen by both eyes) to infer the shapes and dispositions in space of the

surfaces they lie on, as well as their motion. To the extent the inferences we draw are

accurate, our strategies for drawing them must have some basis in the character of the

visual world, just as the efficacy of stereopsis as a source for depth information has a basis

in the geometry of projection and triangulation. The aim of the research described here is

(1) to discover constraints on the visual world that allow surface shape and motion to be

reliably inferred from contours in images, (2) to derive methods of inference from these

constraints. The interpretation of contours by a binocular observer falls into four

subproblems (following Witkin, [Witkin 1981]). In particular these four subproblems are

the following:

a) Locating contours in the images.

If contours are to be used to infer anything, they must be found. The human perceiver

has little difficulty deciding what is and is not a contour, yet the automatic detection of

edges has proved very difficult. Perhaps this fact should not be surprising; the contours

that we see in natural images usually correspond to definite physical events, such as

shadows, depth discontinuities, color differences and the like. Our ability to detect these

events may say more about their significance for image interpretation than about their

ease of detection. Why should we expect events that have simple descriptions in terms of

the structure of the scene to have simple descriptions in terms of the image intensity as

well? If the physical significance of contours is taken as their primary feature, then at

least we know what is being detected, even if we don't know how. But recent research

[Nalwa, 1985] shows that we are in pretty good state as far as detection of contours goes.

Actually, we can say that we can fairly well detect the contours in an image, even if there

are some inaccuracies.

b) Labeling contours (i.e. distinguishing contours which are due to different physical

events)

If contours correspond to different physical events, then an essential component of

their interpretation must be to decide which contours denote which event, since each kind



of contour imparts a different meaning. Recent work has shown that strong struc

constraints can be applied to distinguish one kind of contour from another.

c) Corresponding contours (i.e. finding which contours in the left and right images a\

image of the same 3-D contour).

Before we apply some interpretation method to the images of the contours (lef

right), we should know which contours in both images correspond to each other, i.e.

are the images of the same three-dimensional contour.

d) Interpreting contours.

Even after contours have been found, labeled and the corresponding ones in th

and right images have been identified, not much is known about the physical structi

the scene, if we don't wish to resolve in a point-to-point correspondence between th

and right images. It is clear that contours play an important role in the hi

perceiver's ability to decide how things are shaped and where they are, apart fror

application of specific "higher level" knowledge to objects of known shape. This res(

addresses this fourth problem, i.e., given the left and right image of a moving plana

contour, to recover its orientation, depth and 3-D motion, without using any point-to-

correspondence neither between the left and right images nor between the dyn

frames. The reason that we want to solve the problem without using \

correspondences is that correspondence is a very hard problem and it does not

tractable with the available tools. So, we would like to address the problem in such e

that we avoid the correspondence problem.

6.2 Motivation

This research is motivated by the inherent difficulties of the conventional s

problem as well as the difficulty of the dynamic correspondence problem (to recover

flow or discrete displacements, that will be used for the recovery of 3-D motion),

criticism about the difficulty of dynamic correspondence was presented in the pre

chapter.

Passive ranging by triangulation methods, which is employed successfully by hu]

under certain conditions, has received much attention in computer vision literatu

recent years [Jarvis, 1983]. It is obvious that the ability to recover absolute ran

objects in a scene would be important in a variety of robotic applications. To date,

two basic methods of passive ranging have been reported, the "static stereo," i.e. the i

two cameras separated by a known baseline and "motion stereo," i.e., the use of a s
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camera moving in a known way through a stationary scene. Recently, a new concept has

been introduced for passive ranging to moving objects, termed "dynamic stereo," which is

based on the comparison of multiple image flows [Waxman et a/., 1984]. In the sequel, we

will only deal with the criticism of the first method (static stereo). Most of the literature

on passive ranging has been concerned with the difficult "correspondence" problem

associated with the assignment of stereo disparities (for the static stereo method). Beside

the traditional method of intensity correlation between images, much attention has been

paid to the theory of Marr and Poggio [1979], with implementation by Grimson [1981],

The use of more than two camera locations, to aid in solving the correspondence between

images, has been approached in different ways by Tsai [1983] and Moravec [1981].

Nevertheless, solution of this correspondence problem remains a computationally

expensive and slow process, with partial success in a variety of input images. Moreover, a

maximum ranging distance is implied by the finite resolution of the cameras and the

statically configured baseline between cameras. Most of the work needed to solve the

correspondence problem deals with the matching of microfeatures, such as points of

interest (corners, high curvature points), and edges. A natural question that arises then,

is: Is it possible to recover structure and depth, given that we have matched a

macrofeature (i.e., a planar contour) instead of a microfeature? We prove that it is. Of

course in this study we don't deal with "how to match the planar contours in the two

stereo frames," i.e., to find in both images the contours which are due to the projection of

the same three-dimensional planar contour (size, color, texture, fractal dimension could

be used for the solution of this problem). Also, it has to be realized that the constraints for

the static stereo problem are unique. The constraints cannot change. But the method

we propose, which is based on a global approach, can be considered as immune to noise,

since it gives very good results when the images are corrupted with noise up to 7%.

We also show that it is possible to solve the 3-D motion determination problem

without using point-to-point correpondence for the case where the imaged object is a

planar contour. In the previous Chapter we showed that this is possible for a collection of

points. Here,we show that it is possible for the case of a planar contour, i.e., a binocular

observer can understand the 3-D motion of a contour, from two temporally close positions

of the contour, without using any point-to-point correspondence. Of course there are still

difficulties with this new approach and the inherent problems of the dynamic imagery

appear in another form, different from the one of the traditional methods (one camera — >



retinal motion — > 3-D motion); but it turns out that these problems, in the preset

small noise percentages, hardly affect the results.

The organization of this Chapter is as follows. Section 6.3 describes previous l

Section 6.4 introduces the concept of "aggregate stereo/9 a method that compute

structure and depth of a 3-D planar contour from its images on the left and righ

retina, and that was basically presented in the previous chapter.. Section 6.5 intnx

new constraints for the stereo problem, which are not based on triangulation, but o

change of area and perimeter in the left and right images of the contour. Sectio

introduces the concept of determining the direction of the translation of a transl

planar contour, without using any point-to-point correspondence, and introduce

reader to Section 6.7 which deals with the solution of the general problem (the case v

the 3-D planar contour is translating and rotating).

In what follows, because of the discrete nature of images, we will consider a coi

either as a collection of points (which it actually is) or as a continuous curve, when n<

to establish the mathematical rigorousness of a proof.

6-3 Previous Work

The idea of using more than one camera to recover the shape of a contour seems

new.

The recovery of three-dimensional shape and surface orientation from a

dimensional contour is a fundamental process in any visual system. Recently, a nu

of methods have been proposed for computing this shape from contour. For the most

previous techniques have concentrated on trying to identify a few simple, gei

constraints and assumptions that are consistent with the nature of all possible object

imaging geometries in order to recover a single "best" interpretation, from amon;

many possible for a given image. For example, Kanade [1981] defines shape constr

in terms of image space regularities such as parallel lines and skew symmetries i

orthographic projection. Witkin [1981] looks for the most uniform distribute

tangents to a contour over a set of possible inverse projections in object space u

orthography. Similarly, Brady and Yuille [1984] search for the most compact s

(using the measure of area over perimeter squared) in the object space of inverse proj

planar contours.

Rather than attempting to maximize some general shape-based evaluation fun

over the space of possible inverse projective transforms of a given image contour
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keeping in our framework of attempting unique solutions without employing any

restrictive assumptions and heuristics, we propose to find a unique solution by using more

than one camera, since it can be easily proved that only one image (under orthography or

perspective) of a planar contour admits infinite intepretations of the structure of the

world plane on which the contour lies, if no other information is known. Finally, the need

for a unique solution, which is guaranteed in our approach, comes also from the fact that

there exist many real world counterexamples to the evaluation functions that have been

developed to date. For example, Kanade's and Witkin's measures incorrectly estimate

surface orientation for regular shapes such as ellipses (which are often interpreted as

slanted circles). Brady's compactness measure does not correctly interpret non-compact

figures such as rectangles since he will compute it to be a rotated square (e.g. if we view a

rectangular table top, we do not see it as a rotated square surface, but as a rotated

rectangle.)

Finally, the need for the solution of the 3-D motion parameters determination

problem without using point-to-point correspondence has recently been appreciated by

Kanatani [1985 ]. But the proposed methods, despite their mathematical elegance, are

quite artificial and subject to numerical errors. The methods that we will propose in the

following sections are quite intuitive and can be considered immune to small noise

percentages.

6.4. Aggregate Stereo

In this section we present a theory for the recovery of the three-dimensional

parameters of a planar contour, from its left and right images, without using any point-to-

point correspondence. Instead, we consider all the point correspondences at once; thus,

there is no need for the solution of the correspondence problem of points. Correspondence

of the contours as a whole is required.

Let a coordinate system OXYZ be fixed with respect to the left camera, with the Z axis

pointing along the optical axis. We consider that the image plane Imi is perpendicular to

the Z axis at the point (0,0,1). Let the nodal point of the right camera be the point (d,0,0),

and its image plane Imr identical to the previous one. Consider also a plane P in the world

with equation Z = pX + qY + c, which contains a contour C and consider the images

(perspective) C/ and Cr of the contour on the left and right image planes respectively (See

Fig. 6.0). From this point we will denote the coordinates on the left and right image

planes by (x/,y/) and (xr,yr) respectively. We consider every contour on each image plane



as a collection of points. So,

i =

Then with the method that was analyzed in section 5.7.4.1 we can recover

orientation anddeptitof the contour.

Figure 6.0

The algorithm, that is the same as in section 5.7.4.3, is not sensitive to small i

percentages, as it was observed from experiments.

It is obvious that in this case the triangulation constraint has been aggregated «

the three-dimensional surface (plane) can be represented with few (3) parame

Simulations on synthetic data with different percentages of uniform noise (up to 7<

both frames (left and right) indicate that the algorithm is immune to noise, since the«

in the resulting plane parameters (p,q,c) is negligible.

At this point we should also explain what we mean by noise. When we hav.

images of a contour, and we say that the images are corrupted by noise a«. we mean



we randomly drop from both frames (left and right contour images) a\% and ar% of the

points that constitute the left and right contour respectively, with a = (ai + ar )/2 . Such a

noisy situation is te be expected in real images, due to perspective effects and bad

behaving intensity functions. (We should remember that the contour points will be

extracted from intensity images.) Finally, in the case where we are imaging a textured

planar surface, we first preprocess the left and right images to extract points

[Bandyopadhay, 1984; Kitchen & Rosenfeld, 1980; Moravec, 1977], and on these points we

apply the algorithm of Section 2.2. But this algorithm expects the same number of points

in both frames, something that will not be the case in actual situations, because of the

following two problems:

a) Any method that finds interesting points from intensity images is bound to

errors, i.e., there will be points in the left frame for which there will not exist

corresponding ones in the right frame, and vice versa.

b) There are points seen by the left camera which are not seen by the right

camera, and vice versa.

To simulate the effects of the noise due to the above reasons, we add random points to

both frames. When we say that there is noise a%, we mean that we have added a\% and

ar% random points in the left and right frames respectively, with a = (ai -f ar) /2 . In a

later section we describe relevant experiments, and explain some techniques that have

been used in the actual implementations in order to reduce the error in the computed

parameters.

6.5. Orientation of a contour without correspondence

In this section, we show how to recover the orientation of a planar contour without

using any correspondence between the left and right images of the contour and without

basing our approach on the triangulation procedure. To do this, we need some technical

prerequisites, which are introduced in the next section. In particular, we will describe the

co-called paraperspective projection, which is an approximation of the perspective. The

results that we will get can be generalized for the case of the perspective projection. But

we present the results first for the case of the paraperspective projection because of the

intuition behind it and because of the natural extension of the results for the perspective

projection. The paraperspective projection has been already analyzed in Chapters 2 and 3.

The area ratio constraint



We have seen that the paraperspective projection is an affine transformation (sec

3.1.2). The determinant of the matrix of an affine transformation is equal to the rat

the areas of the two patterns before and after the transformation. Specifically, if Sw i-

area of a world contour that lies on a plane with gradient (p,q) and Sj is the area c

image that has mass center (A,B), then we have:

- 1 + p A pB

or

•P2) V(i+p2)
7T = ~n det \ 2
Sw p z I q(p+A) qB-p - 1

V(i+p2)(i4-p24-(?2) Vu+p2)(i+p2+g2)

SI 1 1-Ap-B<?

or

SW \-Ap-Bq
SI = " T • / 2 2 (6-8)

7 p2 Vl+p2+?)

Equation (6.8) relates the area of a world contour Sw? its gradient (p,q), the area

its image and its mass center (A,B). If we call the quantity Si "textural intensity/' am

quantity Sw/P2 "textural albedo," then equation (6.8) is very similar to the in

irradiance equation for Lambertian surfaces:

r % 1 + Ap + Bq

V(l+p2+<?2)

where (p,q) is the gradient of the surface point whose image has intensity I, X is the al

at that point and (A,B,1) the direction of the light source [Horn, 1977; Ikeuchi, 19

Thus equation (6.8) can be used to recover surface orientation.

In the sequel we present a theory for the recovery of shape from contour. Our ana

is based on three views or on two views. We proceed with the following proposition.

6.5.1 Shape from change in the area of a contour in three frames

6.5.1.1 Proposition
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Let a coordinate system OXYZ be fixed, with the -Z axis pointing along the optical

axis. We consider that the image plane Imi is perpendicular to the Z axis at the point

(0.0,-1). Consider a plane II with equation -Z = pX + qY 4- c in the world, where (p,q) is

the gradient of the plane that contains a contour C. Furthermore, we consider two more

cameras with image planes Im2 and Im3, whose coordinate systems (nodal points) are such

that any world point has the same depth with respect to any of the cameras . Then

assuming paraperspective projection of the contour C on the image planes, the images Cx,

C2, and C3 of the contour on the three cameras are enough to determine uniquely the

orientation of the plane II, without having to solve the point-to-point correspondence

between Cl, C2 and C3.

Proof

Let Sx, S2, and S3 be the areas of the contours Cx, C2 and C3 respectively. Let also the

depth of the center of gravity of the contour C be 0. If Sw is the area of the contour C on the

plane II, and (A JB̂ t (A2,B2) and (A3,B3) the centers of gravity of the image contours C , C2

and C3 respectively, then by dividing appropriately the area ratio constraints (previous

section), we get:

S l-Ap-Bq

F • H ^ (612)

< 6 1 3 )

Equations (6.12) and (6.13) constitute a linear system with unknowns p and q, which in

general has a unique solution (q.e.d.).

A degenerate case in the solution of the above system arises when the centers of all

three image planes are collinear. Experiments using the above method on perspective

images computed the orientation of the world contour with great accuracy. This is due to

the fact that equations (6.12) and (6.13), despite the fact that they were developed under

the paraperspective projection assumption, are true under perspective too, as we prove in

the Appendix.

We now proceed to solve the same problem, but given two images of the contour.



6.5.2 Solving the problem with two frames

In the previous section, we used three frames for the recovery of shape from cor

But the information we used from the image contours was only their area, ai

particular how the area was changing from view to view. A useful piece of inform

that we have not yet utilized is the length of the contour (which is of course independ

its area in general). Using this information, we can solve the shape from contour prc

with two projections (binocular observer) but in a computationally much harder

involving nonlinear equations.

Consider a coordinate system OXYZ to be fixed with respect to the left camera,

the -Z axis again pointing along the optical axis. We consider that the image plane <

left camera is perpendicular to the Z axis at the point (0.0,-1). The nodal point of the

camera is the point (Ax,0,0) and the image plane of the right camera is identical to th

of the left camera. C is a contour on the world plane II with equation -Z — pX+qY+i

CL and CR are the projections of the contour C on the left and right image resped

using the paraperspective projection. We can easily prove, assuming parapersp*

projection, [Aloimonos et al., 1985], that a small line segment (/ cos 0. I sin 8) o

image plane is due to the projection of a line segment on the world plane, with length

/ Lt, with

La = V(k.cos2Q +kosin2Q + k^sinQcosQ)

(l-Ap-Bq)

where:

k^d-qB)2 +(pB)2 +p>

k2=(l-pA)2 + (qA)2 +<f

k3 = 2((l-qB)qA -f (l-pA)pB -f pq) ,

and (A,B) is the center of gravity of the area under consideration. So, given a contc

an image, if we break the contour into small line segments (edges) (I* cos6[, lj sinOj), i

..., n, then the length of the contour in the world plane is given by:

L = > LL.

with
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L = y/ik.cos2^. + kjsinh. + kjxsQ.sinQ.)
* l—AP — Bq l l z i <s i i

where klf k2, k3 are as above, and (J is the depth of the center of gravity of the world

contour. If we consider now the left and right images of the contour C , and we compute

the length of the world contour from each one, we should find the same answer. In other

words, if LL and LR are the length of the world contour that we compute from the left and

right image, respectively, we must have

LL = LR (6.14)

Equation (6.14) is an equation in the unknowns p,q, but it is in a complicated form

that does not permit easy algebraic manipulations.

On the other hand, if Sw, S., S. are the areas of the world contour, the left image

contour and the right image contour respectively, then we have

= — (6.15)

and

T5" = h / R1\ 2 (616)
bW P V(X+p +q)

where (A ,B,) and (A^.BJ are the centers of gravity of the left and right image contour

respectively. From (6.15) and (6.16) we conclude

S 1-ALP-Bq

it = 1-A -B (61?)

Equation (6.17) represents a straight line in gradient space, or a great circle in the

(equivalent) Gaussian sphere formalism. Equations (6.14) and (6.17) constitute a

nonlinear system in the unknowns p and q. Experimental results, based on the following

discrete method, indicate that there exists a unique solution. The discrete method we

used is as follows: Equation (6.14) represents a great circle in the Gaussian sphere

(constant azimuth, varying elevation). By taking different values for the elevation angle



(180 values, if the different values are 1 degree apart) we solve for the gradient p,q an

choose the p,q that makes the function

(LL -1^)2 minimum.

6.5.3 Solving the problem with two frames and without the paraperspec

approximation

In the previous section we presented a method for the recovery of the shape

contour from two images (binocular observer) under the paraperspective projec

assumption. In this section we show that the problem can be solved by assui

perspective projection, but the solution is the same, with the method in the prev

section being better for its simplicity. The method presented in the previous section

based on Equations (6.14) (lengths) and (6.17) (areas). Equation (6.17), despite the

that it was developed under the paraperspective projection model, is exact. Wha

mean is that equation (6.17) is true under perspective projection and a proof of this c

is given in the Appendix. So, in this Section we shall show that an equation analogoi

(6.14) can be developed if we assume perspective projection.

For that, we need to develop the first fundamental form of the world plane a

function of the retinal coordinates, in order to be able to compute the length of the w

contour (up to a constant factor, of course), and use it in an equation analogous to (6.14

we fix a coordinate system OXYZ with the Z axis as the optical axis and focal length F

we consider a plane U : Z = pX + qY + c in the world with a contour C on it, an<

denote by (x,y) the coordinates on the image plane, then a point (X,Y,Z) in the vt

planar contour C is projected onto the point:

XF YF

* = T ; ' = T (618)

The inverse imaging function, call it f, is the function that maps the image plane

the world plane; so, if (x,y) is an image point, the 3-D world point on the plane Z = p

qY + c that has (x,y) as its image, is given by

fixfy) = , , )
(F—px—qy F-px-qy F-px-qy

The first fundamental form of f [Lipschutz, 1969] is the quadratic form
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Edx2 +2Fdxdy

with

E=fsfx

F = ftfy and

If we consider two points (xj) and (x+dx, y+dy) on the image plane, then the three-

dimensional distance dC of the corresponding points on the world plane is given by:

2 2 (6.19)

Consequently, if we have a contour C on the image plane, then the 3-D planar contour has

length:

I V(Edx2+2Fdxdy + Gdy2) (6.20)
Jc

The above expression (6.20) can be used to compute the quantities LL and LR , so that

the equation LL = LR can be developed. It has to be realized that this equation can be

developed only in terms of p,q (the constants of the plane, which are different for the two

frames, are eliminated).

6.5.4 A comparison between paraperspective and perspective projection

In the previous section, we showed how to develop an equation analogous to (6.14)

which in conjunction with equation (6.17) would result in the recovery of the orientation

(p,q) with exactly the same method presented in previous section. It is clear that in the

method presented here the desired p,q are the values that minimize the function (LL - LR)2

while satisfying equation (6.17). The difference between the method using

paraperspective projection and using perspective projection is that the functions (LL - LR)2

are different. But despite this fact, our experiments showed that the values of (p,q) that

minimize (L»L - LR)2 while satisfying equation (6.17) are about the same in both the

paraperspective and perspective cases. So, we find the paraperspective method more

appealing, for the simple reason that it gives the same results with the perspective one



and is computationally simpler, since it does not have to approximate numerical

integral (6.27), as the perspective method requires.

6.6 Finding the depth without triangulation

In the previous sections , we presented two methods on how to recover the shap<

of a planar contour, without correspondence, and without any triangulation. Ir

section we show how to compute the depth of the 3-D planar contour (i.e., the param

of the world plane). From equations (6.15) and (6.16) we get:

(SSR c \l-ARp-BRqJ

which is a linear equation in the unknown c. Of course, in the above equatio

paraperspective projection is assumed, but the introduced error is negligible, a

experiments at the end of the paper indicate.

So far, we have presented methods for the recovery of shape and depth from co

using three or two frames (binocular observer). We now proceed to a method fo

motion determination without having to find point-to-point correspondence betwec

successive dynamic frames.

6*7. Determining 3-D motion without correspondence

Here we only treat the case of pure translation. The general case is treated in th<

section. The treatment in this section presumes real perspective projection

paraperspective.

Consider a coordinate system OXYZ fixed with respect to the camera, O the

point of the eye and the image plane perpendicular to the Z axis, (focal length 1) t

pointing along the optical axis . Let us represent points on the image plane with

letters ((x,y)) and points in the world with capital letters ((X,Y,Z)).

Let a point P = (Xj9YltZt) in the world have perspective image (xi9yt) where JC; =

andyl = YJZV If the point P moves to the position P* = (X^Y^ZJ with

X2 = Xx + AX

Y2 = Yx + AY

Z2 = Zr + AZ ,

then we desire to find the direction of the translation (AX/AZ, AY/AZ). If the image c

(x2,y2), then the observed motion of the world point in the image plane is given I
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displacement vector (x2-x1( VJ-VJ) (which in the case of very small motion is also known as

optic flow).

We can easily prove that

y2 - ^i - AZ

Under the assumption that the depth is large (and the motion in depth small), the

equations above become:

A X - x AZ

V*i = 7 ( 6 2 8 )

AY-y AZ

All the published methods for the recovery of the direction (AX/AZ, AY/AZ) are based

on equations (6.28) and (6.29) (see [Ullman 1979; Longuet-Higgins, 1981; Tsai & Huang,

1984; Bandyopadhyay & Aloimonos, 19851), which of course require the knowledge of the

correspondence between points in the successive frames. In the next section, we present a

method for the recovery of the translational direction of a moving planar contour (AX/AZ,

AY/AZ), without having to solve the point-to-point correspondence problem.

6.7.1 Detecting 3-D direction of translation without correspondence

This case is exactly the same as the one described in section 5.7.4.5.2.

Experimental results based on this method are accurate and robust. A recent method

presented by Kanatani [1985a, 1985b] has numerical instabilities that affect the desired

result a great deal.

6.7.2 The aperture problem in the "large"

It seems, from the analysis in Section 6.7.1 (which is equivalent to 5.7.5.4.2), that the

perspective effects are not taken into account. In other words, it is assumed that the



contour points are the same in number, before and after the motion. Of course, this is

true in general, because of the perspective effects; so, in general, the number of poin

the contours before and after the motion will not be the same. We call this prol

"apperture problem in the large." The inherent difficulties of the point-to-point dynj

correspondence problem are present in this method too, but in another form (diffe

number of points in the two dynamic positions of the contour) because of the globali

the approach. This fact should not be surprising, because the "constraints that relate

retinal motion to the 3-D motion" have not changed. These constraints cannot cha

and the algorithm in Section 6.7.1 is just "aggregating" the motion constraints. In o

words, the method in Section 6.7.1 aggregates the motion constraints that have been i

in all the approaches that employ point-to-point correspondences. But the point tha

raise is that despite this fact, if the motion is not large (so that the difference ol

number of points in the two dynamic frames is kept small), then the results are

accurate. Later we describe relevant experiments and explain some techniques that i

used in actual implementations in order to reduce the error in the computed paramete

The next section deals with the general problem (unrestricted motion) and in this

the "apperture problem in the large" is not present, since the analysis is done in 3-D.

method in Section 6.7.1 is completely different from the method in Section 6.7.3 since

latter uses more sources of information (depth) and in a way that does not require p

correspondences.

6,7.3. Detecting 3-D motion without correspondence: General case

In the previous section we presented a method to recover the direction of

translation of a translating planar contour, from the motion of its left and right image

is clear that we did not use any depth information. In this section we present a metho

how to recover the motion parameters of a rigidly moving planar contour. Any i

motion can be represented as a rotation around an axis that we can freely choose to

through any point of our choice, plus a translation. The problem then is reduce

finding the translation and the rotation matrix.

So, suppose that we have four images of a moving planar contour (left and right b€

the motion, left and right after the motion). With the already presented methods , we

recover the orientation and depth of the 3-D contour before and after the motion, an<

(Pi» Ql» ci) and (p2, q2, C2) be the parameters of the 3-D contour before and after the mo



respectively. But since we know the contour in 3-D, we will do our analysis of the motion

in 3-D, instead of the image plane.

So, let

c1={(jr.fr.,z.)

and

the two positions of the 3-D contour.

We assume that the rotation axis passes through the center of gravity of Ci. This has

as an immediate consequence that the translation is given by the displacement of the

center of the gravity between the two positons of the contour. So,

Translation = (AX, AY, AZ) = T =

= center of mass of C2-center of mass of Ci =

flK lxt 1Y\ lYi lz\ lzi\
\ m n m n m n /

It is obvious that we used different points in the two positions of the contour.

Obviously, we did not need to do this. The methods that find the 3-D position of the

contour do not address any "apperture in the large" problem. But the 3-D points are found

from their projections and discretization effects may cause a small difference in the

number of points of the two positions of the contour. We found that equation (6.29) gave

very good results as we will see in the section on experiments.

What remains to be found is the rotation matrix. But since we know the surface

normals ni = (pi, qi, -1) , r%2 =(P2, <i2> mD of the two positions of the contour, we can

immediately find the rotation around an axis parallel to the plane of the contour Ci.

Indeed, the angle 9 between ni and n2

(oos9=
I

gives the rotation angle around the axis



n \ X n2

The angle 9 along with the axis 1 constitute a rotation matrix, Rj. It is obvious that

not the final rotation matrix because it misses rotation around an axis perpendicul

the world plane. In other words, if we apply to contour Ci the rotation matrix Ri an<

translation T, then the result will not be contour C2, but a contour Ci' which lies oi

same plane as C2, and has the same center of gravity of C2. To find the missing rota

we must find the angle that we have to rotate contour C\ around an axis n which pi

through the center of gravity of contour C2 and is perpendicular to C2 .

To do that, we start rotating the contour C\ until it coincides with contour C2. Tl

done with small increments and the coincidence of the two contours (Ci* and C

signaled by the maximization of their common area. The resulting angle <$> along wit!

axis n constitute a new rotation matrix R2. Obviously, the final rotation matrix is g

by R = Ri R2 .

Finally, it is clear that the method described above will not work (rotation matri

will not be found) for some symmetric contours. If, for example, the 3-D contour is a ci

matrix R2 cannot be found, since Ci' and C2 coincide; or if the 3-D contour is a square

the rotation angle <{> = n/2, then again matrix R2 cannot be found. This simple fact is

obviously true for human observers who observe apparent motion and are aske

estimate the 3-D motion parameters.

6.8 Using a monocular observer

Extension of the above results can obviously be trivially generalized for a mono<

observer who is translating with known motion.

We proceed now with the final section which describes experimental results base

the previous methods for the recovery of structure, depth and 3-D motion of a me

planar contour by a binocular or trinocular observer.

6.9 Experiments

Here we present experimental results from the implementation of the algorit

developed in this chapter. Figures 6.1-6.5 show results of binocular and trinoc

experiments. We did not add any noise, since we already have the problem of diffe

number of points in the different images.
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Figure 6.1 shows the perspective images of a planar contour taken by three cameras

at the positions (0,0), (0,50) and (50,0) respectively. The actual orientation of the contour

in space was given by the gradient (p,q) = (15,25). The computed orientation, was (p,q) =

(14.99, 24.99). Figure 6.2 shows again the perspective images of a planar contour taken

by three cameras at the positions (0,0), (0,50) and (50,0) respectively. The actual

orientation of the contour in space was (p,q) = (30,5) and the estimated orientation was

foq) ~ (30, 4.99). Figure 6.3 shows the images of a translating planar contour (human

figure) taken by a binocular system at two different time instants. The actual orientation

of the contour in space was (p,q) = (10,5) and the actual direction of translation (dx/xz,

dy/dz) = (-4,6). , our program recovered orientation (p,q) = (10,00007, 5.000297) and

direction of translation (dx/dz, dy/dz) = (-4.000309, 6.00463). Figure 6.4 shows again the

perspective images of a translating planar contour taken by a binocular system at two

different time instances. The actual orientation of the contour was (p,q) = (-25,30) and

the direction of translation (dx/dz, dy/dz) = (50,60). The computed orientation from these

images was (p,q) = (-24.99, 30.000021) and the computed direction of translation (dx/dz,

dy/dz) = (49.858421, 59.830266). Figure 6.5 shows the perspective images of a

translating planar contour taken by a binocular system at two different times. The actual

orientation of the contour was (p,q) = (10,-11) and the direction of translation (dx/dz,

dy/dz) = (1.66, 3.33). The estimated parameters from these images were (p,q) = (9,99, -

11.000383) and (dx/dz, dy/dz) = (1.66, 3.33).

The experiments to determine the general motion parameters are shown in 6.6 - 6.10.

The actual and computed parameters are recalculated with respect to the coordinate

system of the left camera. In figure 6.6 the actual translation was (100,100,100) and

actual rotation was 0.2 radians around the axis (0.707, 0.707, 0); the estimated values

were translation = (100.4, 99.6, 99.8) and rotation = 0.1997 radians around the axis

(0.707, 0.707, 0). The results for the next figure were as follows: actual translation (50,

60,40) and actual rotation = 0.2 radians around the axis (0.707, 0, 0.707). The estimated

translation was (44.25, 54.94, 39.53) and the estimated rotation was 0.1980 radians

around the axis (0.704, 0.014,0.711). Figure 6.8 shows the actual translation as (100,150,

100) and rotation of 0.9 radians around the axis (0.123, 0.123, 0.985); the estimates were

translation = (106.11,150.7, 99.21) and rotation = 0.902 radians around the axis (0.121,

0.119, 0.985). The ship in figure 6.9 was translated by (100, 150, 80) and rotated by 1.5



(95.30, 145.98, 80.04) and rotation = 1.49 radians around the axis (0.124, 0, 0.91

Figure 6.10 shows the actual parameters as translation - (100, 50,40) and rotation =

radians around the axis (0.577,0.577,0.577). The estimated parameters were translat

= (102.75,49,59.49) and rotation = 0.199 radians around the axis (0.577,0.573,0.582

NOTE: All the parameters involved in the above experiments that have a dimensioi

length (L* M° TO) are calculated in pixels, where 1 pixel = 100 p m.

Figures/1 Figure 6.2

Figure 6.3 Figure 6.4



Figure 6.5
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Figure 6.7

Figure 6.6

Figure 6.8
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Figure 6-9

6.10. Conclusions and future directions

Figure 6-10

We presented a theory for the recovery of the structure, depth and three-dimensional

motion of a moving planar contour by a binocular or trinocular observer. The method

seems promising and does not use any static or dynamic point-to-point correspondences.

It is one of our future goals to extend this theory to nonplanar contours. In particular we

are working towards the characterization of a non-planar contour , as well the detection of

its three-dimensional motion without point to point correspondences. Methods that are

based on the invariance of the 3-D length of the contour over multiple frames seem very

fruitfull, and preliminary results are very promising.



Conclusions and future directions

In this thesis we claimed that low-level visual computations should be done in such a

way so that uniqueness and robustness of the computations is guaranteed and that visual

computations can be done in this way. We justified our claims by examining several

problems, such as shape from texture, shape from shading, structure from motion and

visual motion analysis, shape and motion from contour and some cases of stereo.

The problem of understanding vision and building intelligent machines with a visual

sense is very hard and by no means solved. We have argued that a very large part of

today's research is analyzing visual capabilities, i.e. research is concentrating on topics

that correspond to identifiable modules in the human visual system. And even though it is

not at all clear what are the topics that correspond to identifiable modules in the human

visual system, research has shown that shading, texture, motion, contours and stereo are

areas that help to understand the extrapersonal space. Existing theories for the analysis

of these cues fall basically into the regualization paradigm.

We showed that the regularization school suffers from three basic problems:

(a) the employed assumptions do not capture the real world;

(b) the available constraints are not sufficient to guarantee the uniqueness of visual

computations. So restrictive assumptions such as smoothness are usually

employed. The resulting algorithms work poorly in synthetic imagery and do not

work at all in natural imagery; and



(c) the resulting algorithms, even if uniqueness from the constraints is guarai

are non robust, in the sense that a small error in the input is enough to dc

completely the results.

There is no doubt that vision is full of redundancy and there is a lot of informati

the image which if used correctly will give rise to constraints which will guar;

uniqueness and robustness of the visual computations. We have demonstrated this f<

case of the problems that appeared in Chapters 3, 4, 5, and 6. Obviously, we need to c

robust and unique visual computations if we ever want to advance our understand]

vision.

There is a standard way to design large and complex information systems as res

in computational fields has shown [Feldman 1985].

(1) First we divide the system into functional components which break the o^

task into autonomous parts, and analyze these components.

(2) Then we must choose the representation of information within the sybsyj

and the language of communication among them.

(3) After this, the details of the systems are tested individually, in pairs ar

together.

In this thesis, in order to analyze and understand a visual system (machi:

biological), we started with the first two steps and a part of the third, and we did th

some subsystems (texture, shading, motion, contours, stereo). Our technical results c

found at the beginning of Chapers 3, 4, 5, and 6. Our results can be summarized b

Figure 2.2 of Chapter 2.

There are more subsystems to be analyzed such as color, nonplanar cont

recognition of objects, navigation modules, and many others. The analysis of all of

constitutes our future research. More importantly, our immediate future research v

devoted to the third stepp, where we have to test the subsystem all together

7.1 Future Research
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Our future research will investigate more subsystems, in the introduced paradigm

(minimal assumptions, uniqueness, robustness). In particular,

(a) We will work for the analysis of nonplanar contours, i.e. a characterization of

their shape as well as finding their three-dimensional motion and structure

without point-correspondences. We have found the invariance of the length of the

contour is very fruitful as a tool for successfully combining the three-dimensional

motion of the contour with the lengths of the projections of the contours in the

different frames.

(b) There is no doubt that retinal motion is very important, if it can be found. In

Section 5.7.2 we showed that there exists a very strong constraint between

coresponding points (from rigid motion) and that this constraint has not been

utilized for the recovery of retinal motion. We will recover retinal motion from

this constraint without having to compute the matrix E first. We believe that a

connectionist architecture might prove very useful in solving this problem.

(c) Recent psychological experiments by Todd et al. [1986] have indicated that the

ability of humans to recover shape from shading is not at all correlated with their

ability to recover the illuminant direction. Of course there exist other

psychological experiments [Pentland 1983] which support the opposite. There is a

little work in this area by Koenderick and Van Doom [1979] which does not

propose any computational mechanisms for the perception of solid shape from

shading. We will follow this line of thought to investigate if global methods vs.

local methods are possible for the solution of the problem at hand (shape from

shading).

(d) We have demonstrated that shading and pattern texture have a strong

relationship in terms of constraints. Shading can be viewed as a differential case

of "pattern texture," where the patterns become very small. So, shape from

shading could probably be obtained with a method similar to the one presented in

Section 3.17, if we can transform the shading to a pattern texture. Up to this

point, we know how to do this for the case where the light source is in the direction



of the optical axis. We will work towards generalizing this for any ligh

direction.

(e) Lines in an image are very important for understanding the three-dimensi<

structure. In parallel with our approaches without correspondences, we willl v

towards extracting three-dimensional motion from lines (p, 0 representat

without correspondences. There is current work in this area by Huang & Mit

[Huang et aL 1986; Mitiche & Aggarwal 19861, which results in nonlir

equations from corresponding lines. We will work toward extracting lir

equations for 3-D motion determination, from lines without correspond

individual lines.

(f) We will work towards extracting depth information for the case of nonpla

surfaces given a set of points in the left and right images. If we know the fon

the equation of the depth function, then the problem is not complicated. But L

do not, then the situation is much different. The problem might be approac

from the point of view of three-dimensional motion, since a vergence stereo sys

is a camera and the same camera translated and rotated by a fixed amount. S<

know the matrix E of Section 5.7.2 and so the correspondence may be obtaii

The stability of the method is up to investigation.

(g) It is our ambition to work towards the recognition of objects. Recognition of obj<

consisting of line segments is an easier task compared to solid objects. Recognii

of objects will follow after the analysis of nonplanar contours. Recognitioi

objects consisting of line segments can be done by camera rotation. This enai

us to compute the structure of the object in view [Kanatani 1986]. In tun

search for the space of models encoded in a parallel activation network may gi

solution.

(h) Finally, we plan to work towards the coupling of visual computations. To m

this clear, let us take a simple example. Suppose that we have three processes

P2» P3> which compute intrinsic parameters Pi, $2, $3 (Figure 7.1) but as we h

seen, several intrinsic parameters are connected among them through all kinc

functions. So we will have



From image

Pi

P2

Figure 7.1

This tells us that the computation of an intrinsic parameter will greatly simplify the

computation of the others. But, for example, how can Pi be used in the computation of P2

when Pi is not known yet? We must find a way that will enable computations to interact

before their completion (Figure 7.2).

In this problem, there are computational as well as empirical issues. By

computational issues, we mean problems such as determining the point where process pi

will interact with P2, or vice versa, given some constraints, or, if the computations are of

an iterative fashion, when do we know when to stop computing and interacting given that

we want to compute all parameters Pi, P2, P3, for example. At this point, the connectionist

architectures [Feldman 1980] show great promise for a solution to this problem, given

that we can develop some "goodness" functions as well as some stopping criteria.

Empirical issues have to do with what kinds of cues are more important in natural images

from others. For example, shading seems to be a weak cue when compared with contour or

texture. This (what cues are stronger than others) will enable us to decide what

computations should have more weight when computations are interacting.



Image

Pi P2 Ps

Figure 7.2

We believe that what we have presented in this thesis will advance our understan*

of low-level visual computations and we hope that several researchers in the discip

will follow our paradigm to enrich it with new ideas which will contribute to

understanding of vision.



APPENDIX

Here we prove that equation 6.17 is true under perspective projection. We prove this

for a more general case, i.e. the case where the two cameras do not only have horizontal

but also vertical displacements.

Theorem:

Let a coordinate system OXYZ be fixed with respect to the left camera, with the Z axis

pointing along the optical axis. We consider that the image plane ImL is perpendicular to

the Z axis at the point (0,0,1) and O the nodal point of the left camera. Let the nodal point

of the right camera, be the point (R,L,0) and its image plane identical to the previous one,

i.e. lml=lmr Consider a polygon P on the world plane Z=pX+qY+c, defined by the

points (X.,YifZ.)t i=l,..,n, and having area Sw. Let Sl9 S2 the areas of the paraperspective

projections of P on the left and right cameras respectively and S'lf S'2 the areas of the

perspective projections of the polygon P on the left and right cameras respectively. Then,

s 2 - s<2
Proof:

The proof is given in several parts.

Let (A^J and (A^^) the centers of mass of the projections of the contour P on the left

and right image planes respectively (it has to be noted that (A^J and (A^B^ are the

centers of mass of the actual left and right images as opposed to the projections of the

center of mass of P onto the left and right image planes). Then, we have:

(1)

The above equation is the equation (6.17), that we will prove to be exact under

perspective projection.

But,

, X , Y. i X-R . Y.-L



Substituting in (1) we get after some tedious manipulations:

From the other hand, we can easily prove that:

X.-X
V(_2

zz
-I. T ' t

with

X.Y.^.-X.^.Y.

i i
We can also easily prove that:

Af
and

» (6)
M c

From equations (2),(3),(4),(5) and (6) the proof of the theorem is immediate.
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