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ABSTRACT

We survey some recent results on the problem of numerical
stability of iterations for the solution of nonlinear equa-
tions F(x) = 0 and large linear systems Ax+g = 0 where A = A*
is positive definite.

For systems of nonlinear equations we assume that the
function F depends on a so called data vector F(x) = F(x;d).
We define the condition number cond(F;d), numerical stability
and well-behavior of iterations for the solution of F(x) = 0.
Necessary and sufficient conditions for a stationary iteration
to be numerically stable and well-behaved are presented. We
show that Newton iteration for the multivariate case and se-
cant iteration for the scalar case are well-behaved.

For large linear systems we present. the rounding error
analysis for the Chebyshev iteration and for the successive
approximation iterations. We show that these iterations are

numerically stable and that the condition number of A is a

crucial parameter.
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1. INTRODUCTION

Any iterative algorithm for the solution of nonlinear
equations or large linear systems should satisfy & number of
criteria such as good convergence properties, numerical sta-
bility and as small complexity as possible., Since any itera-
tion is implemented in floating point arithmetic, due to
rounding errors one can at best count on approximate proper-
ties of this iteration.

In this paper we survey some recent results on the prob-
lem of numerical stability of iterations for solving nonlin-
ear equations or large linear systems. Section 2, which
deals with numerical stability of iterations for nonlinear
equations, is primarily based on the author's paper [75a].
Section 3, which deals with numerical stability of iterations
for large linear systems, is based on the author's papers
[75b] and [75d].

It might seem that the problem of numerical stability of
iterations is not as important as for direct methods. We
show that the condition number of the problem is crucial and
if the problem is ill-conditioned, then it is impossible to
compute a good approximation of the solution no matter how
sophisticated an iteration is used. Furthermore, if the
problem is well-conditioned, then we can compute a good ap-

proximation whenever the iteration used is numerically stable.

2. NUMERICAL STABILITY OF ITERATIONS FOR NONLINEAR EQUATIONS
We approximate a simple zero « of the nonlinear func-

tion F,

(2.1) F(x) =0

N
where F: D C (]: - (]:N and G:N is the N dimensional complex



space. Throughout this section we assume that F depends
parametrically on a vector d which will be called a data
vector, F(x) = F(x;d), and d € G:m. For many problems d is
given explicitly, e.g., F(x) = % a.Xi for N = 1. For cer-
tain F it is not obvious how toiﬁgfine d, e.g. F(x) = xz-ex.
One idea how to determine d is as follows. We solve
(2.1) by iteration and most practical iterations use the val-
ue of F(x) to get the next approximation to o. We compute
F(x;d) in floating point binary arithmetic (£1), see
Wilkinson [63], and at best we can expect that a slightly per-
turbed computed value f1(F(x;d)) is the exact one for a

slightly perturbed function at slightly perturbed inputs (see
Kahan [71]), 1i.e.,

(2.2) fl(F(x;d)) = (I-AF)F (x+Ax;d+Ad)

for [IF]) = &y 275ffull, llaxl s %, 27 [l and [lad]] < g 27 lall
where Ki = Ki(N;m) and 2-t is the relative computer precision.
The condition (2.2) can be treated as an equation on a
data vector.
We have to represent the data vector d in f1. Let

d = rd(d) denote t digit representation of d in £f1. Then
(2.3) ”d dH < K 2 Hd“ where K.4 = Ka(m).

Due to this unavoidable change of the data vector in-
stead of the problem F(x;d) = 0 we can at best approximate a
solution of the problem F(x; d) = 0. Let & be a simple zero

of F(x,d) . It is easy to verify that for sufficiently

smooth F we get

(2.4) a-~a= --F;{(t:::z;d)-1 Fé(a;d)(a-d) + 0(2_2t)

where F' and Fé denote the first derivative with respect to
X

x and d. For « % 0 we have



2.5 < x 27" cond(r;0) + 0027

where

(2.6) cond(F;d) = ”F;(d;d)_1Fé(a;d)“ H%H

is called the condition number of F with respect to the data

vector d.

The condition number measures the relative sensitivity
of the solution with respect to a small relative perturba-
tion of the data vector.

Note that in general cond(F;d) is not related to the
condition number H(F'(g)) of the first derivative F'{(qa),
H(F' (@) = [F' (@ ]| ]E(Q)-1H which occurs in linear analysis.

Having the concept of the condition number we define
numerical stability and well-behavior of iterations for the
solution of F(x;d) = |

Let (?g) be a computed sequence of the successive ap-
proximations of o by an iteration ¢ in fl.

An iteration ¢ is called npumerically stable if

-l

(2.7) 11m —TFTT—- (K + K. cond(F;d)) + 0(2'2t

)

where Ki = Ki(N,m) for i = 5,6.

An iteration ¢ is called well-behaved if

(2.8) IIE']F(x +6x, 5 d+sd, ) || = 0@™%%
k
where |jox || <K, 2" Hx I, llsd || = &g 27 fal|.

Numer1cal stablllty states that the relative error of
the computed x, is of order 2 %cond (Fyd). Well-behavior
states that a slightly perturbed computed Xy s k large, is an
almost exact solution of a slightly perturbed problem.

Note that if ¢ is well-behaved, then ¢ is numerically



stable but not vice versa except the scalar case N = 1 (see
Lemma 4.1 in Wozniakowski [75a]).

Assume that @ is a stationary iteration which produces

in exact arithmetic the next approximation L equal to

%
(2.9) Xep - w(xk,...,xk_n, m(xk,...,xk_n,F))

where n denotes the size of the iteration memory (see Traub
[64]) and T is information of F at x ,...,%X - Next suppose
that

P,
[ k+] ol = C f‘lHX sl ]
n
where P, 2 0, T PJ > 2 and C = C(F) whenever ka-aHS...S
H X, n-als r =0 for sufficiently small [.
In floating point arithmetic instead of (2.9) we have

ofa
riy

(2.10) x4y = Feq 5y

where §k is the computer error in one iterative step. The
value of g depends mainly on the computed error of the in-
formation m and on the computed error of an algorithm which
is used to perform one iterative step.

It is possible to find a form of §k to ensure numerical
stability and well-behavior of the stationary iteration .

Namely, ¢ is numerically stable iff

&, | =t

(2.11) llm ﬂ—ﬂ— (K9 + K. . cond(F;d)) + 0(2

-2t
10 )

where K, = Ki(N,m) for i = 9,10, and ¢ is well-behaved iff

- -2
(2.12) & = tx_+ Fl(x;d d)pd, + 02 )

Filxs

where HAX || = K, 2 “ka HﬁdkH = K, 2 ihllfor large k and



Ky SK(M,m), 1= 19 and 12,
1 1

4.2 in Wozniakowski [75a7].)

behaved algorithm
(see (2.2))

(ii) EL(F' (x ;d)) = F'(x) + o275
o -1
(1iii) the computed zk, (zk =.F (xk) F(xk) and
xk+] = xk + zk) satisfieg

' .
(f1(F (xk,d))-HE:k)zk

—_—

For the Scalar cage Sécant iteratjgp pro-
duces
X -
x ¥ o, k 7k
k+1

- = F(x, )
where Y = xk_] (with nemory) or yk
point iterationp)

= X + ku(xk) (two-

F(xk)
1 s <

for ajj k = ko



M secant jteration is unstable.

For secant jteration wiLu

memory
F(x, ) -t
k 2
F(xk)_F(Xk-1) k-2 xk_1—a
Thus (2.13) holds as long as \xk_1—a\ >> Z—t.

Numerical gstability of the multivariate secant iteration

was proved by Jankowska
suitable distance and position of
Well-behavior of the multivariate

There are geveral classes of

interest for which the problem of

open.
gcalar case and 1

| 0,s
polatory jterations I4.s

3

(see Traub
[74] and Wozniakowski [75¢]
question is

way. There are SOme reasons

of the mentioned classes of jterations are

under certain agsumptions but

Examples are interpolatory jterations L

for the multivariate one,

(64), Kacewic? [75a] and [75b1,

respectively).

[75] under some assumptions On a

successive approximations.

secant jteration is open.
iterations of practical

gumerical stability is

for the

n,s
integral-inter-

and hermitian multipoint igerations

Kung and Traub

One interesting

how to usé jterations with memoTry in a stable

to believe that at least some

numerically stable

further research is needed.

3. NUMERICAL STABILLITY OF ITERATIONS FOR LARGE LINEAR SYSTEMS

Direct methods

1inear systems Axtg

Well-behavezﬁ

well-DEr———

- 0 where A is NxN matrix and g

of numerical jnterest for the golution of

is Nx}1

Specifically they produce an approx-

imation ¥ to the exact solution « such that ¥y is the exact

3.1



Examples of well-behaved direct methods include Gaussian
elimination with pivoting, the Householder method and the
Gram-Schmidt reorthogonalization method. Note that a method

is well-behaved iff the residual vector r = Ay+g is small,

i.e.

0.2 el =, 27l Il ¢, = ¢

Furthermore, for any well~behaved method we get

(3.3) Hﬁ:ﬁﬂ <c. 27% 5
oy 3

where H(A) = |M]|]h-]” denotes the condition number of A and
Cy = CB(N)' In general (3.3) is sharp which indicates that
the condition number H(A) is a crucial parameter. (Note that
(3.3) also holds for any numerically stable method.)

It might seem that-the numerical accuracy of iterations
for solving large linear systems might be better than for di-
rect methods. However, this is not true. We shall discuss
some iterations to see that H(A) is still crucial and more-
over, we shall show that for some very efficient iterations
well-behavior dqes not hold in general.

Iwo reasons why the condition number is still crucial

are as follows:

(i) No matter which iteration is used we have to rep-
resent (not necessarily store!) all entries of A
and g in-fibating point arithmetic. Thus, instead
of the problem Ax+g = 0 we can at best approximate

the solufion o of
(3.4) (A+8A)x + (gtbg) = 0

where [[sal] = ¢, 27F[h]l , flsg]l < ¢, 2"%g]| and

5



and Ci = Ci(N) for i = 4,5. The relative error
lB-dH/HaH is of order 2-tH5A2. Thus, once more

the condition number is important.

(i1) Let us assume that all entries of A and g can be
exactly represented in fl, A = rd(A), g = rd(g).
For many iterations the only known information of
the system is given by a procedure which for a
given x computes z = Ax. Since Ax is computed in

f1 then at best we can get
(3.5) z = fl(Ax) = (A+E)x

where E = E(x) and [E|| < Cg 27all, cg = c(m.
Thus all information derives from perturbed sys-

rtems and the computed solution X can be at best
the exact solution of a slightly perturb problem
(Aﬁk)+g = (), Then

. -1
(3.6) X -o= -A Ekxk‘

As long as we do not require any special property

-1 -1
of E. then |h Ekka can be close to |M |H|E“|b%”

which is of order 2 H(A) [x_

We are now in a position to discuss numerical properties
of some particular iterations. First we consider successive

approximation iteratioms which are defined as follows:

(i) Transform Ax+g = 0 to the equivalent system

(3.7 x = BX + h.

Sometimes B is chosen to minimize the spectral

radius p(B) of B, p(B) < 1.



(ii) Solve (3.7) by the iteration

.8 = =
(3.8) %41 = B¥ +h, k=0,T,...

where Xg is a given initial approximation.

For different transformations we get different iterations; for

instance, the Jacobi (J), Richardson (R), Gauss-Seidel (GS)

or successive overrelaxation (SOR) iterations, see Young [711].
k

Note that for e, =% -« we get e = B e and the character

of convergence mainly depends on the spectral radius p (B).

Suppose that in fl we have
(3.9) fl(Bxk+h) = (B+Ek)xk + (I+§Ik)h = Bx th + §

where |EkH < Cg 2‘t”B”, HéIkH <G, 9=t and c, = Ci(N)’ i=6,7
and

gk = Ekxk + 6Ik(I-B)a.

Thus, instead of (3.8) we get in £fl,

Xy = Bxk+h + gk
which has the solution
1 ko pi
(3.10) X4 " @5 B (xo-a) + izo B §i.

Suppose that |B||< 1. From (3.3) we get

— “‘;1 - -t [[B|H+][I-B -2
Tonle el < iy el < cg 27 R = lllo
where C8 = max(C6,C7). Hence if

311 o = ()l + -3/ C-IBlD is of order [All 7'

then this iteration is numerically stable.




For instance, for the Richardson iteration we get

o,

B=1 - cA where A = A'c > 0

and ¢ =

=1 -1
K1+K2 for A"l = “A ”2 3 7\'2 = “AHZ'

Then HB“2 = (xz-k])/(x2+x]) and

3
q=3 H(A) -1
which proves that the Richardson iteration is stable. (For
more examples see Wozniakowski [75d].) However, it is very
easy to find a counter example where (3.11) does not hold

even for N = 1, (Note that for N = 1, H(A) = 1,) Let us

consider

(2-0)x =1 for 0 < e < 1
with the transformation x = (~1+c)x + 1. Thus B = -J+c and
q = gq(c) = 3-2c. Note that lim, q(c) = + ® which indicates

that for small ¢ (3.11) does no€t hold. Numerical tests con-

firm this observation. For instance using the PD10 where

27F 10-8 with ¢ = 10-4 we get x such that [xk-al/lal = 1OM%

It is possible to prove that if B is diagonalizable then
(3.11) ensures well-behavior (Stewart [73]). Note that for
the SOR iteration B is not diagonalized and the problem of

well-behavior is open.

We pass to the second class of iterations for large lin-
N ) - *
ear systemg Axtg = 0 where A = A 1is positive definite. We
construct a sequence {xk} of the successive approximation of

& such that
(3.12) X - a =W (4)(x,-o

where wk(o) = 1 and Wk is a polynomial of degree at most k.



In the Chebyshev iteration W, is defined by

k
69 o= ine el
PEPk(O,l)
where HP“ = sup |P(X)|, Pk(0,1) denotes a class of poly-

nomials of degiggbat most k which has the value 1 at zero and
[a,b] contains all eigenvalues of matrix A,

The solution of (3.13) is given by the Chebyshev polynomi-
als of the first kind and using the three-terms recurrence

formula we get

(3.14) X = X, + (Pk-l(xk-xk-l) - rk>/qk, rk = Axk+g

for certain coefficients P 1 and q, -

Assuming that
(3.15)  fl(ax) = (a+B)x, [E]l, = cg 27 [l

and a = Ih—1|E1, b = HA”2 it is possible to show that the

computed sequence (?k} by the Chebyshev iteration satisifes

y2 % wa) + 02725

(3.16) 1EIE |k, -all = (144c

which means numerical stability. Unfortunately the Chebyshev
iteration is, in general, not well-behaved since the computed

residual vector r, can be of order 2-t|hll|h” H(A), see

Wozniakowski [75b]. It seems to us that for any numerically
stable iteration based on (3.12), the norm max|Mk||has to be
relatively small, Note that in conjugate grgdient iterations

W, is defined as the polynomial which minimizes a certain

k

norm of X, - o, see Stiefel [58]. This need not imply that

|Mk“ is small. This might explain why conjugate gradiant

iterations are numerically unstable.



ACKNOWLEDGMENT

T wish to thank J. F. Traub and B. Kacewicz for their

comments on this paper.

REFERENCES

Kacewicz [75a] Kacewicz, B., "An Integral-Interpolatory
Iterative Method for the Solution of Non-
linear Scalar Equations,' Department of
Computer Science Report, Carnegie-Mellon
University, 1975.

Kacewicz [75b] Kacewicz, B., "The Use of Integrals in
the Solution of Nonlinear Equations in N
Dimensions," these Proceedings. Also,
Department of Computer Science Report,
Carnegie-Mellon University, 1975.

Kahan [717] Kahan, W., "A Survey of Error Analysis,"
IFIP Congress 1971, I, 220-226.

Kung and Traub [74] Kung, H. T. and J. F. Traub, "Optimal
Order of One-Point and Multipoint Itera-
tion," J. Assoc. Comput. Mach., Vol. 21,
No. 4, 1974, 643-651,

Jankowska [75] Jankowska, J., "Mumerical Analysis of
Multivariate Secant Method," a part of
the Ph.D. dissertation, University of
Warsaw, 1975.

Stewart [73] Stewart, G. W., private communication.

Stiefel [58] Sti;fel, E., "Kernel Polynomials in Lin-
ear Algebra and Their Numerical Applica-
tions,'" NBS Appl. Math., Series 40, 1958,
1-22, ‘

Traub [64 ] Traub, J. F., Iterative Methods for the
Solution of Equations, Prentice-Hall,
Englewood Cliffs, New Jersey, 1964,




Wilkinson [63]

Wozniakowski

Wozniakowski

Woézniakowski

Wozniakowski

Young [71]

[75a]

[75b]

[75¢]

[75d]

Wilkinson, J. H., Rounding Errors in
Algebraic Processes, Prentice-Hall,
Englewood Cliffs, New Jersey, 1963.

Wozniakowski, H., "Numerical Stability

for Solving Nonlinear Equations,'" Depart-
ment of Computer Science Report, Carnegie-
Mellon University, 1975.

Wozniakowski, H., '""Numerical Stability of
the Chebyshev Method for the Solution of
Large Linear Systems," Department of Com-

* puter Science Report, Carnegie-Mellon

University, 1975.

Wozniakowski, H., '"Maximal Order of Multi-
point Iterations Using n Evaluations, "
Department of Computer Science Report,
Carnegie-Mellon University, 1975. To ap-
pear in Analytic Computational Complexity,
edited by J. F. Traub, Academic Press,
1975.

Wozniakowski, H., '"'Numerical Stability of
the Successive Approximation Method for
the Solution of Large Linear and Nonlin-
ear Equations, in progress.

Young, D. M,, Iterative Solution of
Large Linear Systems, Academic Press,
New York, 1971.



UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE BEF A T BTG FORM

1. REPORT NUMBER T2 GOVY ACCESSION NO. 3- RECIPIENT'S CATALOG NUMBER

4. TITLE (and Subtitie)

NUMERICAL STABILITY OF ITERATIONS FOR SOLUTION
OF NONLINEAR EQUATIONS AND LARGE LINEAR SYSTEMS

5. TYPE OF REPQRT & PERIOD COVERED

Interim

5§ PERFORMING ORG HEPORT NUMBER

8. CONTRACT OR GRANT NUMBERra)

N00014-67-A-0314-0010,
NR 044-422; CMU 1-51039

7. AUTHOR(a)
H. Wozniakowski

3. PERFORMING ORGANIZATION NAME AND ARDRESS 10. PROGRAM ELEMENT. PROJECT TASK
AREA & WORK UNIT NUMBERS

Carnegie-Mellon University
Computer Science Dept.
Pittsburgh, PA 15213

11 CONTROLLING DFFICE NAME AND ADDRESS

12, REPORT DATE

. une 197

Office of Naval Research J 975

. 13. R OF P

Arlington, VA 22217 ;g"“ OF PAGES

A MONITORING AGENCY NAME & ADDRESSAIf differant from Conirotling Qifice) 15, SECURITY CLASS rof this report)
UNCLASSIFIED

15a, DEGCL ASSIFICATION DOWNGRADING
SCHEDULE

16. DISTRIBU TION STATEMENT rof this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION 5T ATEMENT rof the abatract entered In Block 20, if diiferent from Report)

18. SUPPLEMENTARY NOTES

19, KEY WORDS Continue on reverss eide if necessary and identify by block aumber)

20. ABST A T rContinue ont reverds side i{f noceanary and Identify by black number)
We survey some recent results on the problem of numerical stability of iteratio

for the solution of nonlinear equations F(x} =0 and large linear systems Ax+g =
0 where A = AY is positive definite. For systems of nonlinear equations we as-
sume that the function F depends on a so called data vector, F(x) = F(x;d). We
define the condition number cond(F;d) , numerical stability and well-behavior of
iterations for the solution of F(x) = 0. Necessary and sufficient conditions

for a stationary iteration to be numerically stable and well-behaved are pre-

sented. We show that Newton iteration for the mul;;gg;ig;g_gaagcsﬂ%_sananx___._
INUED

DD , FOPM 1473  EDITION OF ' NOV 6515 OBSOLETE UNCLASSIFIED

1AN T3
SECURITY CLASSIFICATION OF THIS ©AGE

-

{Whaen Dnats Entreed)



UNCLASSIFIED
aus2 00LL3 0518
SECURITY CLASSIFICATION QOF THIS PAGE{When Data Entered)
20, abstract CONTINUED
For large linear systems we

iteration for the scalar case are well-behaved.

present the rounding error analysis for the Chebyshev iteration and for the
successive approximation iterations. We show that these iterations are nu-
merically stable and that the condition number of A is a crucial parameter,

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entared)




