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ABSTRACT

Paralld computing gructures consist of many processors operating smultaneoudy. If a concurrent
dructure is regular, as in the case of a systolic array, it may be convenient to think of all processors as
operatingin lock step. Thissynchronizedview, for example, often makesthe definition of the ructure and its
correctnessrelatively easy to follow. However, large, totally synchronized systems controlled by central clocks
are difficult to implement because of the inevitable problem of clock skews and delays. An alternative means
of enfor cing necessary synchronization is the use of sdf-timed, asynchronous schemes, at the cost of increased
design complexity and hardware cost. Reslizing that different circumstancescall for different synchronization
methods, this paper provides a spectrum of synchronization models, based on the assumptions made for each
modd, theoretical lower bounds on clock skew are derived, and appraopriate or best'-possible synchronization
schemes for systolic arrays are proposed. In general, this paper represents a first step towards a systematic
study of synchronization problemsfor large systolic arrays . N

One set of models is based on, assumptions that allow die use of a pipelined clocking scheme, where more
than one dock event is propagated at a time. In this casg, it is shown that even assuming that physical
variationsalong dock linescan produce skews between wires of the samelength, any one-dimensional systalic
array can be correctly synchnmized by a global pipelined dock while enjoying desirable properties such as
modularity, expandability and robustness in the synchronization scheme. This result cannot be extended to
two-dimensional arrays however—the paper showsthat under this assumption, it isimpossibleto run adock
such that die miflTiminn dock skew between two communicating cells will be bounded by a congtant as
systems grow. For such cases or where pipelined docking is unworkable, a synchronization scheme
incor porating both docked and " asynchronous' dementsis proposed. )
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1. Introduction

Parald computing sructures consst of many processors, or cells in the terminology of this paper,
operating smultaneously. If a concurrent structureis regular, asin the case of a systalic array [3], it may be
convenient to think of all cellsasaperating in lock Sep. This synchronizedview, far example, often makesthe
definition of the gructure and its correctness reativdy easy to follow—indeed, synchronized, moving
trangparencies arc typically used in talks to illusrate systolic arrays Perhaps the smplest means of
wnchfonizing an ensemble of cells is the use of broadcast docks. A clocked sysem in general consists of a
collection of fUnctionéI units whose communication is synchronized by external dock sgnals A varigty of
clocking schemes are possible; the essential point is that by referring to dieglobal time gandard represented
by the dock, communicating cells can agree on when a cedll's outputs should be held congtant and when a cell
should be sendtive to its input wires. When different cells receive dock signals by different paths, they may
not receive docking evénts at die same time, potentially causng synchronization failure. These
synchronization errors due to dock skews can be avoided by lowering dock rates and/or adding delay to
circuits, thereby dowing the computation. The usual docking schemes arealso limited in performance by the
time needed to drive dock lines, which will grow as circuit feature size shrinks rdative to total circuit size.
Therefore, unlessoperating at possibly unacceptable speeds, very large systems controlled by global docksare
difficult to implement because of die inevitable problem of dock skews and delays.

An alternative approach is sdf-timing[7J, in which cells synchronize their communication locally with’
some variety of " handshaking" protocols. It is easy to convince onesdlf that any synchronized paralld sysem
where processorsoperatein lock step can be converted into a corregponding asynchronous system of thistype
that computes die same output—the asynchronous system is obtained by smply letting each processor gart
computing as soon as its inputs become available from other processors. The sdf-timed, asynchronous

-sdieme can be cogtly in terms of extra hardware and delay in each cell, but it has the advantage that the time

required for a communication event between two cellsisindependent of die size of the entire pprocessor array.
A seriousdisadvantage of fully self-timed sysemsisthat they are difficult and expensive to design and tes

An advantage that sdf-timed systems often enjoy, in addition to die absence of dock skew problems isa
performance advantage that resultsfrom each cell bei ng ableto gart computing assoon asitsinputsare ready
and to makeitsoutputs available assoon asit isfinished computing. This aDows amachine to take advantage
of variations in component speed or data-dependent conditions allowing fcter computation. This advantage
will seldom exist in systolic sysems, however ,for two reasons: ' |

~ « Usually, eadi cell in a systolic array performs the same kind of computation as every other ceII
thusthereislittle opportunity for speed variation.

* In cases where variations do exigt, the throughput of computation along a path in an array is




limited by the slowest computation on that path. The probability that a worst-case computation
will appear on apath with kcellsis 1—/5* where pisthe probability that any given cell will not be
performing a worst-case computation. This quantity approaches unity as k grows, so large arrays
will ustdly be forced to operate at worst-case speeds.

‘The result of these considerations is that clocking is generally preferable to sdf-timing in the
synchronization of systolic arrays. The techniques described below use clock-based approaches, sometimes
with asdf-timed assig, to alow convenient synchronization of large arrays. '

2. Basic Assumptions
The basic model that we will use for considering synchronization of systolic arraysis as follows:

(Al) Inter-cell data communications in an ideally synchronized systolic array, in which al processors
operatein lock step, are defined by adirected graph COMM, which islaid out in the plane. Each
nixie of COMM, also called a cell, represents acell of the systalic array, and each directed edge of
COMM, caled a communication edge, represents a wire capable of sending a data item from the
source cell to die target cel in every cycle of the system.” Any two cells connecting by a
communication edge are called communicating cells.

(A2) A cdll occupiesunit area.
(A3) A communication edge has unit width.

We now add assumptions which provide die basis for docked implementations of ideally synchronized
arrays. ' '

(A4) A dock for adocked systalic array is distributed by arooted binary tree CLK, which isaso laid
outintheplane. A cell of COMM can bedocked ifthe cell isalso anode of CLK.

(A5) A docked system may be driven V\;ith dock period 5+ A +r, where 8 is the maximum dock skew
between any two communicating cells, A isthe maximum time for acell's outputs to be computed
and propagated, and T isthe time to distribute adocking event on CLK.

This assumption can bejustified by appeal to amore detailed model which deals with the periods of timein
which “cells hold their output edges invariant or are sensitive to the values on their input edges. The
constraints between dock events, which are enforced in implementation by the pattern of die dock signals
and circuit delays, may be adjusted so that any communicating pair is property synchronized with a dock
period 4+ A + T . Induction on the size of an array then shows that the docked system correctly implements
the ideally synchronized array.

Note that if we adopt the usuél convention that die dock tree is brought to an equipotential state before a
new dock event is transmitted, eliminating dock skew can Iead only to a constant factor increase in
performance, since it must alwaysbetruethat 5 < T. |n particular, speed of light considerations impose the
followingcondition: |

(A6)The time r required to distribute a docking event on adock tree CLK in a particular layout is
bounded bdow by a-P; where a>0 is a constant and P is the (physical) length of a longest
root-to-leaf path in CLK. g




Thus, since die clock tree must reach each cdl in the array, large arrays which are synchronized by
equipotential docking must have dock periods at least proportional to their layouts’ diameters. Note that in
the remainder of this paper, we will relate tranamision delays to wire length; delays are caused by other

factors, of cour se, but we chooseto treat them together asa " digance' metric

In diecase where an array growstoo big for itsdock tree to be driven at the desred speedsdueto thetime
needed to bring long wiresto an equipotential Sate, it is possible to take advantage of the propagation delay
down a long wire by having several clock cycles in progress along its Iengthl.' The dectrical problems of
passing a clean dgnal in this fashion are severe, due to analog phenomena‘such as damping and reflections.
Wecan ingead smulate this behavior by replacing long wireswith strings of buffers, which will resore sgnal
levels and prevent backward noise propagation. These buffers are spaced a constant distance apart; a good
candidate is that digance which will cause wire ddays between buffers to be of the same size as a buffer's
propagation delay. Thisallowsusto replace assumption (A6) with the following:

(A7) IfTCLK is abuffered clock treg, the time r required to distribute a clocking event on a particular
unbuffered segment of CLK is the maximum delay through a buffér and its output wire. Thus, r
isacongant independent of the size of the array.

To ensurethat successve clock events remain correctly spaced along die dock path, we make die following
assmiption: '

(A8) Thetime for asignal to travel on a particular path through a buffered clock treeis invariant“ over
time. ' -

Thefollowing section describes two models based on die above éswmptions and Sections4 and 5 explore
die problem of docking under these models. Section 6 consders die case where assumption (A8) does not
hold, and hence condition (A6) holdsrather than condition (AT).

3. Two Models of Clock Skew

Given a basic modd consisting of conditions (Al) through (A5), plus (A7) and (A8), die following sections
congder die implications of two models of dock skew. Firg, in Section 4 we consder die case where dock
sew between two cdls depends on die difference in their physical distance from the root of die dock tree.
This di,ff-'ere'nce model corresponds reasonably well with the practical Stuation in high speed syssems made of
discrete components, where dock trees are often wired so that delay from the root is the same for all cells.

Moreformally, weassumethe following:

(A9) Thedock skew between two nodes of CLK, with respect to a given layout, is bounded above 'by
J{dX wher e/is some monotonically increasng function and dis die positive difference between
tbe(phy_/sical) lengthsof the pathson CLK that connect dietwo nodesto die r oot

L) : . .
TJieattbon wot told tint this ~pipdfed” fonn of dodrii” was actualty implemented im soeme high-speed CDC machines,




Thisassumption isillusrated in Figure 3-1. The two circles connected by the dashed line have clock skew
between them which is no more than a constant times the length of the crosshatched segment This segment
represents the difference between thecells distancesto their nearest common ancestor in the clock tree.

Figure3-1: Skew in thedifference model

Assystemsgrow, small variationsin eectrical characterigticsalong clock linescan build up unpredictably to
produce skews even between wires of the same length. In the worgt case, two wires can have propagation
' delays which differ in proportion to die sum of their lengths, Especially since it is not possible to tune the
dock network ofawstem on asgngle chip, Section 5 consdersamodd in which the skew between two nodes
depends on the digance between them along die dock tree. Formally, die summation model (so called
because die disance between two nodes is the sum of their disancesifom their nearest common ancestor,
while die difference measure used above is the difference between those distances) uses die following upper’
— . assumptions: ' ‘

(Ale The dock skew between two nodes of CLK, with respect to a given layout, is bounded
above by g(s) where.gis some monotonically increasing function and sis the (physcal) length of
thepath on CLK that connectsthe two nodes.

(All) The dock skew between two nodes of CLK, with respect to a given layout, is bounded
below by fis where fi >0 is some congant and sis die (physical) length of the path on CLK that
connectsdietwo nodes.

Figure 3-2 illugrates these assumptions, here both die upper and lower bounds on the skew between die
two cryffmniiniraring cells depend on the entire length of the path between them, which is die sum of ther

disancesto their nearest common ancestor in dietree,

Thetwo models of dock skew introduced above can be formally derived asfollows, for the case when both
functions/and g are linear. Let h, and A* with h&h* be the distances of any two ceII_s-to their nearest
Common ancestor in the Clock tree. Lft m+? and m—f ** *fr» imdmiiin and minimum rimg, respectively, to
tranamit a dock signal .across a wire of unit length, where e corresponds to the variations in eectrical
characterigicsalong dock lines. Then the clock skew between the two ceilscan be aslarge as

dock kew = *(m+ehA/m-e) = (A;-A;)m+(A+hje.

Noticing that </=” - h* s= hy+h* and-sE d>0, we have




Figure>2: Skew in the summation modelL

(m+e>5 > dock skew = ntd+ &5 £ «*

We see that die upper and lower bounds correspond directly to assumptions (A10) and (All) used in the
summation model, whereas the difference model corresponds to the case when terms involving e can be

ignored.

4. Clocking under the Difference Model

Assuming die basic modd defined above along with condition (A9), which states that the skew between
two cells is bounded by a function of the difference between their distances from the root, it is apparent that
no dock skew will accur if we assure that all nodes in COMM are equidistant (with respect to die dock
layout) from die root of CLIC This can be achieved for any layout for COMM of bounded aspect ratio,
without increasing die area of die layout by more than a small constant factor, by distributing the dock
through an H-tree[SJ. This scheme is illustrated for linear, square, and hexagona arrays in Figure 4-1, in
which heavy lines represent dock edges and thin lines represent communication edges.

©) (b) ©

Figure4-1: H-treelayoutsfor docking (a) linear arrays, (b) square afrays, and (c) hexagonal arrays.

More precisely, wehave diefollowing result:

¥




Lemma 1. For any given layout of bounded aspect ratio, it is possible to run a clock tree such
that all nodesin the original layout are equidistant (with respect to the clock tree) from the root of
the tree, and the dock tree takes an area no more than a congant times the area of the original
layout

By a theoretical result [1] that any rectangular grid can be embedded in a square grid by dretching the
edgesand the area of the source grid by at most a constant factor, we have the following theorem:

_ - Theorem 2. Under the difference model of clock skew, any ideally synchronized systolic array
with computation and communication delay A bounded by a congtant can be smulated by a
correponding docked system operating with a clock period independent of the size of the array,
with nomorethan acongtant factor increasein layout area.

5. Clocking under the Summation Mode

_ This section relaxes the assumption of the previous section by using the summation model rather than the
differencemodd for dock skews. Theclock skew between two nodes of CLK, with respect to a given layout,
is reated to the (physical) length of the path on CLK that connects the two nodes. Note that because the
summation modd is weaker than the difference model, any clocking scheme working under the summation
modd must also work under the difference model  The reverse of the satement is not true, however. For
example, thedocking scheme illugtrated in Figure4-1(a) for linear arraysmay not work under die summation
model, since two communicating cells (such as the two middle cells on the Ieft side of the layout) could be
connected by a path on CLK whose length can be arbitrarily large as the size of the array grows. In the
following we give another docking scheme for linear arraysthat works even under the summation model for
dock skew; in addition, we show that it is impossible, under this modell, to dock a two-dimensional array in

_timeindependent ofitssize. In thissense, linear arraysare especially, suitablefor docked implementation.

5.1. Clocking one-dimensional systolic arrays

Given any ideally synchronized onedimensional systolic array (Figure5-1(a)), we propose a
corregponding docked array (Figure5-1 (b)) obtained by running a dock wire along die length of die one-
dimengonal array. By (A10) die maximum dock skew between any two neighbors is bounded above by a
congtant g(s\ where sis the center-to-center distance between neighboring cells. Thuswe have the following

reult: -+ -

Theorem 3. Under the summation model of dock skew, any ideally synchronized one-
dimensional systolic array with computation and communication delay A bounded by a constant
can be LM by a corresponding docked system, as illustrated in Figure 5-1, operatlng ata
dock period independent of the size of the array.

Skew between die host and the ends of the array can be handled smilarly by folding the array in the
middle (Figure5-2), and thearray can belaid out with any desired aspect ratio by using acomb-shaped layout
(Figure5-3).
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Flgure5-1: (a) Ideally synchronized one-dimensional systolic array and (b) corresponding clocked array.

With the clocking schemesiillustrated, we see that the dock period for any one-dimensional systolic array
can be made independent of the size of the array. Asaresult, die clocked array may be extended to contain
any number of cellsusing the same clocked cell design. Therefore, we can say that these clocked schemes are
most suitable for synchronizing one-dimensional arrays due to their smplicity, modularity and expandability.
Notethat one-dimensional arrays are epecially important in practice because of their wide applicabilitiesand
-. their bounded I/O requirements[3]. '

=] =
host clock . . w '

Figure5-2: ’ Array folded to bound skew with host
5.2. A lower boUnd result on clock skew
. We show here that the result of Theorem 3 for die one-dimensional array cannot be extended. to two- |
dimensonal dructures. Condder any layout of an nxn array and a global dock tree CLK whose nodes
include all cells of die array. Let 8 be the maximum dock skew between two communicating cells of the
array. We want to prove that 8 can not be bounded aboVe by any constant independent of n. We use die

following well known result {4J:

Lemma 4. To bisect an nxn mesh-connected graph at least on edges have to be removed,
wherec>0isacongant independent of I L

Bisecting a graph means partitioning die graph into two subgraphs, each containing about half of die nodes of




Figure 5-3: Comb layout.

the original graph. Here for the axn mesh-connected graph we assume that none of the subgraphs contain
. more than (23/30)- 72 nodes. We also use the following trivial but useful lemma without giving a proof.

Lemma 5: For any subset M of nodes of a binary tree, there exists an edge of the tree such that
its removal from the tree will result in two disjoint subtrees, each having no more than two-thirds
of the nodes in M.

The 72 cells of the nXn array form a subset of nodes of CLK. By Lemma S we know that by removing a single
edge, CLK can be partitioned into two disjoint subtrees such that each subtree has no more than (2/3)-7
cells. Denote by 4 and B the sets of cells in the two subtrees. Let u be the root of the subtree that contains
cellsin 4. Conﬁderthecirdecenmdatuandwiﬂxradius_&/ﬁ, where 8 is defined in (Al11). If there are >
(1/10) 2 cells inside the circle, then by (A2) '

#(3/BP2rm/10, or 8= Q(n), . .

<

‘and thus § cannot be bounded above by any constant independent of n. Suppose now that there are <
(1/10)- 2 cells inside the circle. Note that any of those cells in A which are outside the circle cannot reach any
cell in B by a path on CLK with (physical) length <8/8. Thus these cells cannot have any communicating
cells in B (with respect to the nXn array), since by (A11) the clock skew between these cells and any cell in B




is >fi*8/fi = 8 and the dock skew between any two neighboring cells is assumed to be £5. Thee stsare
illugtrated in Figure 5-4(a). Let A bethe Lmion of A and the set of cellsin thecircle, and Sbe B minusthe set
of cellsin thecircle. See Figure 5-4(b). Then A and B form a partition of the nxn array, and each of them
has no more than (1/10>/1%+(2/3>/12= (Unoyn* " cells. From Figure 5-4(b), we see that any edge in the
nxn array connecting acell in A and acell in Smust cross the boundary of the circle. Since the length of the
. boundary is 2v5//?; by (A3) A and B are connected by no more than 2*8/ft edges. By Lemma 4 we have

28d/Bzenor )
8 = Q(n).
Thereforeasn increases, 8 grows at leadt at the rate of n; we see that it isimpossible to run a global dock for

the nxn array such that the maximum clock skew 8 between communicating cellswill be bounded above by a
congant* independent of /L

(@) | (b)

Figure5-4: (@) original part'ition and (b) new partition of die communication grlaph.

The above proof for two-dimensional mesh graphs can be generalized to deal with other classes of graphs.
For the generalization, we need to define the minimurﬁ bisection width of agraph [8], which is the number of
edge cuts needed to bisect the graph. For example, by Lemma 4 the minimum bisection width of an nxn
mesh-connected graph is Qjn). We have the following general result: ' '

Theorem 6. Suppose that dieminimum bisection width of an iV-node graph is Q(W{N)) and
WMN)= O(V7T XThen

8= Q(MN)).
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Since under the summation model of clock skew two-dimensional nxn systolic arrays cannot be efficiently”
implemented by clocked contrals, their implementation should be assisted by some-self-timed scheme as

discussed in the next section.

6. Hybrid Synchronization

In the absence of the invariance condition (A8), provisions must be made to ensure that a clock event does
not "catch up with" a previous event This requires diat each clock buffer refrain from passing on an event
until die processing of die previousevent has been acknowledged. In order to implement this constraint, we
can essentially replace the buffers of die previous sections with a handshaking network which operates on

dock events.

In this abproach, we break up the layout into bounded-size segments, and provide each segment with a
local clock distribution node. The clock distribution nodes empldy a handshaking protocol to pass clock
events among themselves. Given assumptions about the maximum delay of acomputation node and its wires
and the maximum delay for a handshake transaction in the dock distribution network, we can dock the cells
in each neighborhood in constant time. As before, we balance the delay within each ‘element with die wire
delays between elements. Thisstructureisillustrated in Figure 6-1, in which the heavy lines and black boxes
represent die self-timed synchronization network, and die narrow lines represent local dock distribution to

the cells near each synchronizing element.

a5l
Gelap 200

S
Qe Ao

Figyre6*li Hybrid synchronization scheme.

This provides the performance of a sdf-timed system by making all synchfonization paths local, while
isolating the self-timed logic to a small subsystem and alowing the computational elements to be designed as
if the entire system were gIobaIIy docked. The hybrid approach has the additional advantage that a single
synchronization design can be used for many different structures. This simplifkation of die usual self-timed




1

scheme is made possible by the fact that we are willing to assume a maximum delay for the computational
elements; thisisthe same assumption made in ordinary clocked schemes. Note that we are willing to let the
entire array operate at wors-case cell speed, since even a fully sdf-timed array would usually wind up
operating at that speed regardless.

7. Concluding Remarks’ .

We have described a seriesof modelsin which synchronization schemes can be sudied, and have indicated
some of the implications of these modds. Future work should include refinement of the modes and some
quantiffcation of when they apply to real systems; aswell as further weak on their implications. This paper
has concentrated on the interaction of clock skew models with the communication gructure of arrays with
bounded communication delay; future work should also examine cases where asymptatically growing delays

occur.

One interegting such case is that where the communication graph COMM, neglecting edge directions, is a
binary tree. It has been shown that a planar layout of a tree with N nodesof unit area must have an edge of
length Q(V7T /log N)'[6\. Under die summation model of Section 5, then, if we make the additional
assumption that communication delays are proportional to path length, a tree may be docked at no lossin
asymptatic performance smply by digributing dock events along the datapaths.

Furthermore, if COMM isacyclic asin the tree machine algorithms described in a paper by Bentley and
Kung[2], and die ratio between lengths (in the layout) of any two edges at the same levd in the graph is
bounded, pipdine regigerscan be added on the long edges, with the same number of regigers on all of die
edgesin agiven level. Thismakes all wires have bounded length, thus causing die time needed for acdl to
operate and pass on its results to be indgpendent of the size of the tree. Adding the registers increases die
layout area by at most a constant factor, since they in effect just make wir es thicker. For example, an H-tree
layout hasdiis property, and allowsatree machineof//nbdesto belaid oat in area O(N) with delay through
thetree of O(VW" ) and congtant pipeline interval.
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