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ABSTRACT

Parallel computing structures consist of many processors operating simultaneously. If a concurrent

structure is regular, as in the case of a systolic array, it may be convenient to think of all processors as

operating in lock step. This synchronized view, for example, often makes the definition of the structure and its

correctness relatively easy to follow. However, large, totally synchronized systems controlled by central clocks

are difficult to implement because of the inevitable problem of clock skews and delays. An alternative means

of enforcing necessary synchronization is the use of self-timed, asynchronous schemes, at the cost of increased

design complexity and hardware cost. Realizing that different circumstances call for different synchronization

methods, this paper provides a spectrum of synchronization models; based on the assumptions made for each

model, theoretical lower bounds on clock skew are derived, and appropriate or best-possible synchronization

schemes for systolic arrays are proposed. In general, this paper represents a first step towards a systematic

study of synchronization problems for large systolic arrays.

One set of models is based on assumptions that allow die use of a pipelined clocking scheme, where more

than one dock event is propagated at a time. In this case, it is shown that even assuming that physical

variations along dock lines can produce skews between wires of the same length, any one-dimensional systolic

array can be correctly synchnmized by a global pipelined dock while enjoying desirable properties such as

modularity, expandability and robustness in the synchronization scheme. This result cannot be extended to

two-dimensional arrays, however—the paper shows that under this assumption, it is impossible to run a dock

such that die mflTiminn dock skew between two communicating cells will be bounded by a constant as

systems grow. For such cases or where pipelined docking is unworkable, a synchronization scheme

incorporating both docked and "asynchronous" dements is proposed.
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1. Introduction
Parallel computing structures consist of many processors, or cells in the terminology of this paper,

operating simultaneously. If a concurrent structure is regular, as in the case of a systolic array [3], it may be

convenient to think of all cells as operating in lock Step. This synchronized view, for example, often makes the

definition of the structure and its correctness relatively easy to follow—indeed, synchronized, moving

transparencies arc typically used in talks to illustrate systolic arrays. Perhaps the simplest means of

synchronizing an ensemble of cells is the use of broadcast docks. A clocked system in general consists of a

collection of functional units whose communication is synchronized by external dock signals. A variety of

schemes are possible; the essential point is that by referring to die global time standard represented

by the dock, communicating cells can agree on when a cell's outputs should be held constant and when a cell

should be sensitive to its input wires. When different cells receive dock signals by different paths, they may

not receive docking events at die same time, potentially causing synchronization failure. These

synchronization errors due to dock skews can be avoided by lowering dock rates and/or adding delay to

circuits, thereby slowing the computation. The usual docking schemes are also limited in performance by the

time needed to drive dock lines, which will grow as circuit feature size shrinks relative to total circuit size.

Therefore, unless operating at possibly unacceptable speeds, very large systems controlled by global docks are

difficult to implement because of die inevitable problem of clock skews and delays.

An alternative approach is self-timing [7J, in which cells synchronize their communication locally with

some variety of "handshaking" protocols. It is easy to convince oneself that any synchronized parallel system

where processors operate in lock step can be converted into a corresponding asynchronous system of this type

that computes die same output—the asynchronous system is obtained by simply letting each processor start

computing as soon as its inputs become available from other processors. The self-timed, asynchronous

sdieme can be costly in terms of extra hardware and delay in each cell, but it has the advantage that the time

required for a communication event between two cells is independent of die size of the entire processor array.

A serious disadvantage of fully self-timed systems is that they are difficult and expensive to design and tesL

An advantage that self-timed systems often enjoy, in addition to die absence of dock skew problems, is a

performance advantage that results from each cell being able to start computing as soon as its inputs are ready

and to make its outputs available as soon as it is finished computing. This aDows a machine to take advantage

of variations in component speed or data-dependent conditions allowing fcter computation. This advantage

will seldom exist in systolic systems, however, for two reasons:

• Usually, eadi cell in a systolic array performs the same kind of computation as every other cell;
thus there is little opportunity for speed variation.

• In cases where variations do exist, the throughput of computation along a path in an array is



limited by the slowest computation on that path. The probability that a worst-case computation
will appear on a path with k cells is 1 — />* where p is the probability that any given cell will not be
performing a worst-case computation. This quantity approaches unity as k grows, so large arrays
will usually be forced to operate at worst-case speeds.

The result of these considerations is that clocking is generally preferable to self-timing in the

synchronization of systolic arrays. The techniques described below use clock-based approaches, sometimes

with a self-timed assist, to allow convenient synchronization of large arrays.

2. Basic Assumptions
The basic model that we will use for considering synchronization of systolic arrays is as follows:

(Al) Inter-cell data communications in an ideally synchronized systolic array, in which all processors
operate in lock step, are defined by a directed graph COMM, which is laid out in the plane. Each
nixie of COMM, also called a cell, represents a cell of the systolic array, and each directed edge of
COMM, called a communication edge, represents a wire capable of sending a data item from the
source cell to die target cell in every cycle of the system. Any two cells connecting by a
communication edge are called communicating cells.

(A2) A cell occupies unit area.

(A3) A communication edge has unit width.

We now add assumptions which provide die basis for docked implementations of ideally synchronized

arrays.

(A4) A dock for a docked systolic array is distributed by a rooted binary tree CLK, which is also laid
out in the plane. A cell ofCOMM can be docked ifthe cell is also a node of CLK.

(A5) A docked system may be driven with dock period 5 + A + r , where 8 is the maximum dock skew
between any two communicating cells, A is the maximum time for a cell's outputs to be computed
and propagated, and T is the time to distribute a docking event on CLK.

This assumption can be justified by appeal to a more detailed model which deals with the periods of time in

which cells hold their output edges invariant or are sensitive to the values on their input edges. The

constraints between dock events, which are enforced in implementation by the pattern of die dock signals

and circuit delays, may be adjusted so that any communicating pair is property synchronized with a dock

period 4 + A + T . Induction on the size of an array then shows that the docked system correctly implements

the ideally synchronized array. .

Note that if we adopt the usual convention that die dock tree is brought to an equipotential state before a

new dock event is transmitted, eliminating dock skew can lead only to a constant factor increase in

performance, since it must always be true that 5 < T. In particular, speed of light considerations impose the

following condition:

(A6)The time r required to distribute a docking event on a dock tree CLK in a particular layout is
bounded bdow by a-Pf where a>0 is a constant and P is the (physical) length of a longest
root-to-leaf path in CLK.



Thus, since die clock tree must reach each cell in the array, large arrays which are synchronized by

equipotential clocking must have clock periods at least proportional to their layouts9 diameters. Note that in

the remainder of this paper, we will relate transmission delays to wire length; delays are caused by other

factors, of course, but we choose to treat them together as a "distance" metric

In die case where an array grows too big for its dock tree to be driven at the desired speeds due to the time

needed to bring long wires to an equipotential state, it is possible to take advantage of the propagation delay

down a long wire by having several clock cycles in progress along its length1. The electrical problems of

passing a clean signal in this fashion are severe, due to analog phenomena such as damping and reflections.

We can instead simulate this behavior by replacing long wires with strings of buffers, which will restore signal

levels and prevent backward noise propagation. These buffers are spaced a constant distance apart; a good

candidate is that distance which will cause wire delays between buffers to be of the same size as a buffer's

propagation delay. This allows us to replace assumption (A6) with the following:

(A7) If CLK is a buffered clock tree, the time r required to distribute a clocking event on a particular
unbuffered segment of CLK is the maximum delay through a buffer and its output wire. Thus, r
is a constant independent of the size of the array.

To ensure that successive clock events remain correctly spaced along die dock path, we make die following

lption:

(A8) The time for a signal to travel on a particular path through a buffered clock tree is invariant over

The following section describes two models based on die above assumptions, and Sections 4 and 5 explore

die problem of docking under these models. Section 6 considers die case where assumption (A8) does not

hold, and hence condition (A6) holds rather than condition (AT).

3. Two Models of Clock Skew
Given a basic model consisting of conditions (Al) through (A5), plus (A7) and (A8), die following sections

consider die implications of two models of dock skew. First, in Section 4 we consider die case where dock

skew between two cells depends on die difference in their physical distance from the root of die dock tree.

This difference model corresponds reasonably well with the practical situation in high speed systems made of

discrete components, where dock trees are often wired so that delay from the root is the same for all cells.

More formally, we assume the following:

(A9) The dock skew between two nodes of CLK, with respect to a given layout, is bounded above by
J{dX where/is some monotonically increasing function and d is die positive difference between
tbe (physical) lengths of the paths on CLK that connect die two nodes to die root

TJie attbon wot told tint this ~pipdmed" fonn of dodrii^



This assumption is illustrated in Figure 3-1. The two circles connected by the dashed line have clock skew

between them which is no more than a constant times the length of the crosshatched segment This segment

represents the difference between the cells' distances to their nearest common ancestor in the clock tree.

Figure 3-1: Skew in the difference modeL

As systems grow, small variations in electrical characteristics along clock lines can build up unpredictably to

produce skews even between wires of the same length. In the worst case, two wires can have propagation

' delays which differ in proportion to die sum of their lengths. Especially since it is not possible to tune the

dock network of a system on a single chip, Section 5 considers a model in which the skew between two nodes

depends on the distance between them along die dock tree. Formally, die summation model (so called

because die distance between two nodes is the sum of their distances irom their nearest common ancestor,

while die difference measure used above is the difference between those distances) uses die following upper

(A10) The dock skew between two nodes of CLK, with respect to a given layout, is bounded
above by g(s) where g is some monotonically increasing function and s is the (physical) length of
the path on CLK that connects the two nodes.

(All) The dock skew between two nodes of CLK, with respect to a given layout, is bounded
below by fis where fi >0 is some constant and sis die (physical) length of the path on CLK that
connects die two nodes.

Figure 3-2 illustrates these assumptions; here both die upper and lower bounds on the skew between die

two rryffmniiniraring cells depend on the entire length of the path between them, which is die sum of their

distances to their nearest common ancestor in die tree.

The two models of dock skew introduced above can be formally derived as follows, for the case when both

functions/and g are linear. Let hx and A* with h&h* be the distances of any two cells to their nearest

Common ancestor in the Clock tree. Lft m + ? and m— f **» *fr» immmiiin and minimum rimg, respectively, tn

transmit a dock signal across a wire of unit length, where e corresponds to the variations in electrical

characteristics along dock lines. Then the clock skew between the two ceils can be as large as

dock skew = ^ ( m + e h A / m - e ) = (A1-A2)m+(A l+hje.

Noticing that </= ^ - h* s= hx+h* and s£ d> 0, we have



Figure >2: Skew in the summation modeL

(m+ e>5 > dock skew = ntd+ e-5 £ «•*

We see that die upper and lower bounds correspond directly to assumptions (A10) and (All) used in the

summation model, whereas the difference model corresponds to the case when terms involving e can be

4. Clocking under the Difference Model
Assuming die basic modd defined above along with condition (A9), which states that the skew between

two cells is bounded by a function of the difference between their distances from the root, it is apparent that

no dock skew will accur if we assure that all nodes in COMM are equidistant (with respect to die dock

layout) from die root of CLJC This can be achieved for any layout for COMM of bounded aspect ratio,

without increasing die area of die layout by more than a small constant factor, by distributing the dock

through an H-tree [5J. This scheme is illustrated for linear, square, and hexagonal arrays in Figure 4-1, in

which heavy lines represent dock edges and thin lines represent communication edges.

(a) (b) (c)

Figure 4-1: H-tree layouts for docking (a) linear arrays, (b) square arrays, and (c) hexagonal arrays.

More precisely, we have die following result:



Lemma 1: For any given layout of bounded aspect ratio, it is possible to run a clock tree such
that all nodes in the original layout are equidistant (with respect to the clock tree) from the root of
the tree, and the clock tree takes an area no more than a constant times the area of the original
layout

By a theoretical result [1] that any rectangular grid can be embedded in a square grid by stretching the

edges and the area of the source grid by at most a constant factor, we have the following theorem:

Theorem 2: Under the difference model of clock skew, any ideally synchronized systolic array
with computation and communication delay A bounded by a constant can be simulated by a
corresponding docked system operating with a clock period independent of the size of the array,
with no more than a constant factor increase in layout area.

5. Clocking under the Summation Model
This section relaxes the assumption of the previous section by using the summation model rather than the

difference model for dock skews. The clock skew between two nodes of CLK, with respect to a given layout,

is related to the (physical) length of the path on CLK that connects the two nodes. Note that because the

summation modd is weaker than the difference model, any clocking scheme working under the summation

modd must also work under the difference modeL The reverse of the statement is not true, however. For

example, the docking scheme illustrated in Figure 4-l(a) for linear arrays may not work under die summation

model, since two communicating cells (such as the two middle cells on the left side of the layout) could be

connected by a path on CLK whose length can be arbitrarily large as the size of the array grows. In the

following we give another docking scheme for linear arrays that works even under the summation model for

dock skew; in addition, we show that it is impossible, under this model, to dock a two-dimensional array in

time independent of its size. In this sense, linear arrays are especially, suitable for docked implementation.

5.1 . Clocking one-dimensional systolic arrays

Given any ideally synchronized one-dimensional systolic array (Figure 5-1 (a)), we propose a

corresponding docked array (Figure 5-1 (b)) obtained by running a dock wire along die length of die one-

dimensional array. By (A10) die maximum dock skew between any two neighbors is bounded above by a

constant g(s\ where s is the center-to-center distance between neighboring cells. Thus we have the following

result:

Theorem 3: Under the summation model of dock skew, any ideally synchronized one-
dimensional systolic array with computation and communication delay A bounded by a constant
can be s"™l1af|>H by a corresponding docked system, as illustrated in Figure 5-1, operating at a
dock period independent of the size of the array.

Skew between die host and the ends of the array can be handled similarly by folding the array in the

middle (Figure 5-2), and the array can be laid out with any desired aspect ratio by using a comb-shaped layout

(Figure 5-3).
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Figure 5-1: (a) Ideally synchronized one-dimensional systolic array and (b) corresponding clocked array.

With the clocking schemes illustrated, we see that the dock period for any one-dimensional systolic array

can be made independent of the size of the array. As a result, die clocked array may be extended to contain

any number of cells using the same clocked cell design. Therefore, we can say that these clocked schemes are

most suitable for synchronizing one-dimensional arrays due to their simplicity, modularity and expandability.

Note that one-dimensional arrays are especially important in practice because of their wide applicabilities and

their bounded I/O requirements [3].

host clock

Figure 5-2: Array folded to bound skew with host

5.2. A lower bound result on clock skew

We show here that the result of Theorem 3 for die one-dimensional array cannot be extended to two-

dimensional structures. Consider any layout of an nxn array and a global dock tree CLK whose nodes

include all cells of die array. Let 8 be the maximum dock skew between two communicating cells of the

array. We want to prove that 8 can not be bounded above by any constant independent of n. We use die

following well known result {4J:

4: To bisect an nxn mesh-connected graph at least on edges have to be removed,
where c>0 is a constant independent of IL

Bisecting a graph means partitioning die graph into two subgraphs, each containing about half of die nodes of



Figure 5-3: Comb layout

die original graph. Here for die nxn mesh-connected graph we assume that none of die subgraphs contain

more dian (23/30>n2 nodes. We also use die following trivial but useful lemma without giving a proof.

Lemma 5: For any subset M of nodes of a binary tree, thereexistsan edge ofthe tree such that
its removal from the tree win result in two disjoint subtrees, each having no more than two-thirds
ofthe nodes in A/.

The n2 cells of the nxn array form a subset of nodes of CLK. By Lemma 5 we know that by removing a single

edge, CLK can be partitioned into two disjoint subtrees such that each subtree has no more than (2/3>n2

cells. Denote by A and B the sets of cells in die two subtrees. Let w be tte root of the subtree that contains

cdbmA. Consider the circle centered at u and witii radius S/fi9 where fi is defined in (All). If there are >

(l/lOy/i2 cells inside the cirde, then by (A2)

and thus S cannot be bounded above by any constant independent of JL Suppose now that there are <

(l/lO)-/!2 cells inside the aide. Note diat any of diosecelis in i4 which are outside die aide cannot reachany

cell in 5 by a path on CLK with (physical) length <8/p. Thus these cells cannot have any communicating

cells in B (with respect to the nxn array), since by (All) die dock, skew between these cells and any cell in £



is >fi*8/fi = 8 and the clock skew between any two neighboring cells is assumed to be < 5. These sets are

illustrated in Figure 5-4(a). Let A be the union of A and the set of cells in the circle, and S be B minus the set

of cells in the circle. See Figure 5-4(b). Then A and B form a partition of the nxn array, and each of them

has no more than ( 1 / 1 0 > / I 2 + ( 2 / 3 > / I 2 = (Unoyn1 cells. From Figure 5-4(b), we see that any edge in the

nxn array connecting a cell in A and a cell in S must cross the boundary of the circle. Since the length of the

boundary is 2v5//?t by (A3) A and B are connected by no more than 2*8/ft edges. By Lemma 4 we have

Therefore as n increases, 8 grows at least at the rate of n; we see that it is impossible to run a global dock for

the nxn array such that the maximum clock skew 8 between communicating cells will be bounded above by a

constant* independent of /L

(a) (b)

Figure 5-4: (a) original partition and (b) new partition of die communication graph.

The above proof for two-dimensional mesh graphs can be generalized to deal with other classes of graphs.

For the generalization, we need to define the minimum bisection width of a graph [8J, which is the number of

edge cuts needed to bisect the graph. For example, by Lemma 4 the minimum bisection width of an nxn

mesh-connected graph is Qjn). We have the following general result:

Theorem 6: Suppose that die minimum bisection width of an iV-node graph is Q(W{N)) and
O(V7T XT
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Since under the summation model of clock skew two-dimensional nxn systolic arrays cannot be efficiently

implemented by clocked controls, their implementation should be assisted by some self-timed scheme as

discussed in the next section.

6. Hybrid Synchronization
In the absence of the in variance condition (A8), provisions must be made to ensure that a clock event does

not "catch up with" a previous event This requires diat each clock buffer refrain from passing on an event

until die processing of die previous event has been acknowledged. In order to implement this constraint, we

can essentially replace the buffers of die previous sections with a handshaking network which operates on

dock events.

In this approach, we break up the layout into bounded-size segments, and provide each segment with a

local clock distribution node. The clock distribution nodes employ a handshaking protocol to pass clock

events among themselves. Given assumptions about the maximum delay of a computation node and its wires

and the maximum delay for a handshake transaction in the dock distribution network, we can dock the cells

in each neighborhood in constant time. As before, we balance the delay within each element with die wire

delays between elements. This structure is illustrated in Figure 6-1, in which the heavy lines and black boxes

represent die self-timed synchronization network, and die narrow lines represent local dock distribution to

the cells near each synchronizing element.

Figyre 6*li Hybrid synchronization scheme.

This provides the performance of a self-timed system by making all synchronization paths local, while

isolating the self-timed logic to a small subsystem and allowing the computational elements to be designed as

if the entire system were globally docked. The hybrid approach has the additional advantage that a single

synchronization design can be used for many different structures. This simplifkation of die usual self-timed
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scheme is made possible by the fact that we are willing to assume a maximum delay for the computational

elements; this is the same assumption made in ordinary clocked schemes. Note that we are willing to let the

entire array operate at worst-case cell speed, since even a fully self-timed array would usually wind up

operating at that speed regardless.

7. Concluding Remarks
We have described a series of models in which synchronization schemes can be studied, and have indicated

some of the implications of these models. Future work should include refinement of the models and some

quantification of when they apply to real systems, as well as further weak on their implications. This paper

has concentrated on the interaction of clock skew models with the communication structure of arrays with

bounded communication delay; future work should also examine cases where asymptotically growing delays

occur.

One interesting such case is that where the communication graph COMM, neglecting edge directions, is a

binary tree. It has been shown that a planar layout of a tree with N nodes of unit area must have an edge of

length Q(V7T / log N) [6\. Under die summation model of Section 5, then, if we make the additional

assumption that communication delays are proportional to path length, a tree may be docked at no loss in

asymptotic performance simply by distributing dock events along the datapaths.

Furthermore, if COMM is acyclic as in the tree machine algorithms described in a paper by Bentley and

Kung [2J, and die ratio between lengths (in the layout) of any two edges at the same level in the graph is

bounded, pipeline registers can be added on the long edges, with the same number of registers on all of die

edges in a given level. This makes all wires have bounded length, thus causing die time needed for a cell to

operate and pass on its results to be independent of the size of the tree. Adding the registers increases die

layout area by at most a constant factor, since they in effect just make wires thicker. For example, an H-tree

layout has diis property, and allows a tree machine of//nodes to be laid oat in area O(N) with delay through

the tree of 0( VW" ) and constant pipeline interval.
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