
N O T I C E W A R N I N G C O N C E R N I N G C O P Y R I G H T R E S T R I C T I O N S :
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

CMU-CS-83-115

The Role of User Modelling
in Natural Language Interface Design

Ja ime G. Carbone l l
Computer Science Department

Carnegie-Mellon University

May 29,1983

Abstract
The design of friendly, robust man-machine interfaces is of paramount importance as computers
become widely available to non-expert users. This paper examines the role of modeling the
capabilities and knowledge of the expected user population as an important step in the design
process. The development of robust natural language interfaces is advocated for casual or
inexperienced users. Design criteria for effective natural language communication with existing
software products and expert systems are proposed. 1

Copyright © 1983 Jaime G. Carbonell

Presented in the symposium "Artificial Intelligence: Its Science and Application" at the AAAS annual meeting on May 29,
1983 in Detroit, Ml.

References

Table of Contents
1. Introduction
2. User Modelling

2.1. Empirical Quantitative Models
2.2. Analytical Cognitive Models

3. User-Friendly Interfaces
4. Criteria for a Friendly Natural Language Interface
5. Towards Robust, Multi-Strategy Parsing
6. Concluding Remark
7. References

1

1. Introduction
As the widespread availability of computers for office, home, school and industry increases, so does

the need for human-oriented, friendly interfaces. Whereas not too long ago professional

programmers formed the bulk of the computer user community, more recently large numbers of office

workers, managers, students in diverse fields, and other "casual users" are becoming the

numerically-dominant segment of the user population. The micro-computer revolution has made

computing hardware universally available', now a similar revolution in software is needed to make the

computer universally usable. A significant part of the required software advances must take place in

the area of friendly, robust man-machine interfaces.

Many a user has had to contend with the intricacies and idiosyncrasies of operating system

interfaces, or the nightmare of a job-control language. Mostly, one just mimicked the incantations of

more experienced users, and, after many readings of ambiguous manuals and much trial and error,

one gradually became an expert user. Then, if a new system came on line, the entire familiarization

process had to be repeated. This painstaking process was accepted as necessary by programmers

and frequent users of packaged systems; it was a requisite investment whose dividends were

measured in terms of services provided by the computer. However, many professionals in fields not .

requiring extensive use of the computer concluded that the familiarization cost was greater than any

potential benefits, and hence chose not to use the computer. Thus, a primary factor restricting the

utility and widespread acceptance of computers is the difficulty that non-expert users encounter in

mastering the intricacies of unnatural man-machine interfaces. Clearly, it is imperative to design and

implement interfaces to existing software systems that do not require excessive training or familiarity

in relation to the expected frequency of usage by a particular user population. Equally clear is the

fact that diverse users place different demands upon the interface, have different knowledge of the

underlying system, and have different modes of interaction that enhance their comfort or productivity.

2. User Modelling
In order to ascertain the needs and abilities of a user vis a vis a particular interface design, it often

proves useful to model the user in a manner that predicts how well a particular interface design will

function. But, exactly what does a user model entail? There are two general classes of user models:

2.1. Empir ical Quant i tat ive Models

The empirical models are abstract formalizations of a general class of users defined in terms of the

the design parameters of a user interface. For instance the KEYSTROKE model of Card, Moran and

Newell [6] falls under this category. Loosely stated, that model asserts that the number of keystrokes

is a determinant criterion of how productive a user can be at a not-very-demanding task, such as

searching for information or performing a well-defined text editing procedure. Of course, this

2
Natural Language Interface Design

characterization is an oversimplification of the quantitative modeling technique, and the reader is

referred to [6] for a comprehensive discussion of an entire class of models of this genre.

The quantitative models are based on empirical data compiled over many sessions with users and

encode quantitative relations between the individual primitive steps a user takes to perform a

potentially large task (given a fixed interface design) and the total time or accuracy of his

performance. Such models are used to improve upon a proposed design by predicting the time

required to perform a task, or its expected error rate with a given set of design parameters. Then,

these parameters are changed in a direction indicated by the model to minimize time or performance

errors. For instance, the Z O G system [11], a menu-selection frame-based interface for rapid data

access and update was subjected to this type of analysis.

To summarize, the empirical predictive models do not attempt to simulate the internal reasoning or

knowledge of the user, but rather correlate his or her external performance with given design

parameters in a quantitative fashion. In contrast, the analytical models discussed below, attempt to

simulate aspects of the users cognitive behavior in a more qualitative manner.

2.2. Analyt ica l Cogni t i ve Models

A major concern in Cognitive Science research is the simulation of human thought processes.

Therefore, it is only natural that simulation techniques be applied to the task of understanding some

of the user's relevant cognitive processes in order to better design and build effective interfaces.

Rather than measuring external quantifiable variables (such as number of keystrokes, errors, or

reaction times), cognitive modeling starts with a formal representation of the user's knowledge of the

underlying task. For instance, in designing a data-base query interface, the cognitive modeller asks

first and foremost the following types of questions:

• "How does the user's understanding of the information stored in the data base differ from

the manner in which it is encoded?"

• "Is the user aware of the types of information encoded? (facts?, relations?, processes?)"

• "Does the user know what operations are available to extract the information (e.g.,

relational algebra operators)?"

In order to answer these questions, one must study the user more closely. First, it is unlikely that

anyone's internal knowledge representation parallels the encoding of relational data bases. Thus,

part of the user's task is to perform this encoding conversion when data is extracted. And, a useful

measure consists of examining how easily and how accurately users are able to perform the encoding

transformation. Second, there are users who may need to browse through the data base in order to

ascertain the type of information encoded, whereas other users may well be more knowledgeable or

directed and may wish only to access specific facts. Third, it has been found that it is extremely

User Modelling
3

difficult for untrained users to become experts at generating formal queries, but it is quite simple for

them to state their query in natural language. Therefore, in this example, the user interface must

facilitate the translation of information from natural language to formal query and from formal

relational data base encoding back into natural language. Furthermore, a mechanism must be

provided for enabling a user to query the categories of information available in a particular data base

a mechanism analogous to a table of contents in a book.

In addition, a general analytical user model must address the following issues critical to the
interface design:

• The familiarity of the user with the functionality of the underlying system -- An new
interface to an operating system such as UNIX would be designed differently if it must
accommodate users who know nothing of operating systems in general (in fact
constructing such an interface would be an extremely difficult task requiring that the
interface instruct the user on basic principles of interacting with operating systems).

• The long-term commitment of the user -- If the user is likely to use the system over a long
period of time, it may prove cost-effective for him to learn a precise, terse interaction
language. Whereas, if he is only an occasional or one-time user, an interface more akin to
natural language is in order, requiring no training.

• The range of sophistication of the expected user population - If experts and novices
must share a common interface, it should be designed to hide much of the complexity
from the novice but provide all the functionality required by the expert. Moreover, the
interface capabilities should grow gradually as the novice gains experience and becomes
an expert.

• The user as an interface designer - If the user is likely to be experienced, the system
should provide a facility for personalizing and extending the interface. In natural
language interfaces this may take the form of allowing the user to input new dictionary
entries or grammatical structures. In a text editor such as EMACS, it can take the form of
allowing the user to define his own key-board macros and additional commands.
However, such complexity is precisely the type of information that must remain hidden
from the novice user. Furthermore, the system should not encourage divergent user
personalization in the function performed by the underlying system, lest the actions of
multiple users become incompatible at a more fundamental level.

• Mixed-initiative capabilities - A well-designed interface should enable the user to ask for
help ay any point in his interaction. The form of this help depends on the sophistication
of the user. An expert may only wish to be reminded of his options at a given point, and
would be annoyed and delayed by a lengthy explanation, whereas a novice may require
examples of the basic options (and may be confused by a lengthy enumeration and
explanation of all possible options). Hence, in providing help, in formulating responses
and in presenting more of the complexities of the system, the interface must have some
knowledge of the level of expertise of the user.

4
Natural Language Interface Design

The cognitive approach to modeling is the first step in deciding the overall structure of an interface,

whereas the quantitative approach attempts to optimize parameters within a certain chosen design.

Hence, both types of user modeling are necessary in designing convivial user interfaces. Now, let us

turn to additional design criteria relevant to user-friendly interfaces in general, and natural language

interfaces in particular.

3. User-Friendly Interfaces
The type of user-friendly interface we envision is targeted at the user who is either computer-naive

or at best unfamiliar with the particular system he needs to use. However, an understanding of the

underlying task the user sets out to perform is assumed. Thus, a statistician or an economist who

interacts with a statistical analysis package should know what operations to perform on his data, but

need not worry about subroutine calling sequences, details of the file management subsystem,

argument passing conventions, etc. Similarly, a secretary interacting with an operating system

interface should know its general function, but need not learn an artificial stylized command

language. For instance, the following dialog exemplifies a user-friendly, natural language interface:

(User input appears in italics, and the translation of the natural language command into the system's

formal command language appears in [square brackets].)

What fortran files do I have?
[D i r * . f o r < c r >]

GAUSS.FOR
GAUSS2.FOR
MATRIX.FOR

>Transfer GAUSS.FOR from my directory to the system library.
[Copy GAUSS.FOR <SUBSYS>GAUSS.FOR<cr>]
[D e l e t e GAUSS.FOR<cr>]

ERROR: DIRECTORY ACCESS PRIVILEGES REQUIRED
'Copy* and ' D e l e t e ' commands not p e r f o r m e d .

>print that file on the Diablo
' T h a t f i l e ' = GAUSS.FOR? (Yes o r Mo) : yes
[D i a b l o < c r >]
[* G A U S S . F O R / p r i n t / n o t i f y < c r >]

<SMITH>GAUSS.FOR queued

>Has my file been printed yet?
[I n f o d i a b l o < c r >]

<JONES>LETTER. JAN
<SMITH>GAUSS.FOR

No, GAUSS.FOR i s s t i l l on the D i a b l o queue.

>Cancel it
' I t ' = Your command t o p r i n t GAUSS.FOR on the D i a b l o ? : yes
[D i a b l o < c r >]
[*GAUSS.FOR/cance l<cr>]

<SMITH>GAUSS.FOR c a n c e l e d

User-Friendly Interfaces 5

The dialog above illustrates a cooperative natural-language interface that we have built with present

natural language processing technology (Using a variant of the DYPAR-II parser [5, 9]). The interface

system can echo the command or command sequence that is executed as a result of interpreting the

natural language utterance. Thus, a novice user can be trained on the use of a formal, more terse

command language all the while he is performing useful tasks by communicating in a subset of

natural language. Additionally, one should note that natural language allows for referential ambiguity

and a system must be capable of handling such input in a graceful manner. In the example illustrated

above, the system asked for confirmation of its referential hypotheses when there was room for

ambiguity.

The interface exemplified above is indicative of the type of robust, task-oriented natural language

processing that can be developed with present-day technology. In addition to the DYPAR-II project at

Carnegie-Mellon University, we have two other experimental systems targeted at developing similar

interfaces. The COUSIN project (Cooperative USer INterface) provides a uniform interface with the

UNIX operating system, as well as the SPICE (Scientific Personal Integrated Computing Environment)

single-user computers. It is close to becoming operational, but it exhibits rather limited natural-

language communication. The MULT1PAR project [4,8] addresses the problem of robust task-

oriented naturaf language interfaces. The rest of our discussion centers on the development of robust

natural language communication as an extremely useful tool for implementing flexible man-machine

interfaces.

4. Criteria for a Friendly Natural Language Interface
In order for a natural language interface to be usable and friendly to non-expert users, as well

exhibit a degree of large-scale applicability, it should meet the following criteria:

• Syntactic coverage - A parser not capable of syntactic segmentation of simple English
utterances is of little use in any application. Fortunately, computational aspects of
syntactic parsing are well understood. Moreover, the syntactic structure of commands,
queries and assertions that typify user interactions with a natural language interface is
invariably simple. Experience has shown that the much more complex syntax present in
textual or other written material is simply not found in task-oriented man-machine dialogs.

• Task-oriented semantic coverage - Each application domain for natural language
interfaces exhibits a well-defined semantic model. For instance, the commands given to
an operating system, or the set of permissible updates to a data-base file manager form a
bounded set of well understood operations. The natural language interface can exploit
these restrictive domain semantics creating a much more effective and robust system
than one can hope to create for unrestricted English.

Natural Language Interface Design

• Flexibility in the presence of extra-grammaticality ~ Experiments show that almost half of
all utterances typed at a natural language interface are grammatically deficient. Problems
range from misspelled words to ellipsed sentence fragments, missing punctuation,
interjections, and transposed words or* phrases. The vast majority of these problems
present no problem to a human interpreter, and therefore ought to be tractable by an
automated analyzer.

• Semantic resilience - Knowledge of the underlying domain should be exploited to
resolve ambiguity. For instance the utterance "cancel it" in the preceding dialog is many-
ways ambiguous. In general, almost anything can be cancelled. In the operating-system
domain, only a restricted class of commands can be cancelled. Moreover, in the context
of the preceding utterances, it only makes sense to cancel the queued printing request.
Making this deduction requires knowledge of the domain as well as the structure of a
dialog.

• User friendliness Fulfilling the dual goals of providing maximal assistance to a naive
user, and being unobstrusive to a more experienced user is a difficult challenge. One
possibility is to enable the user to mix natural language commands with the terser system
commands as he learns them. Another avenue to resolve this issue is to present the user
with default options when ambiguity or other troubles arise -- saving the user from
retyping the entire input while retaining control over all actions generated by the
interface.

• Transportability - An interface must be applicable to many different domains, in order to
justify the software, development costs, and to provide uniform access to multiple
software facilities. This objective clashes with the semantic resilience goal, which
requires that the interface have access to an underlying semantic domain model. Here,
we advocate the representation of the semantic model as a data structure read in by the
interface along with the dictionary at load time. Thus, the parser, syntactic knowledge,
dialog-structure knowledge, and domain semantics are separate modules -- the latter
being an interchangeable data file. An interface need only understand commands to a
given subsystem at one time (plus an ability to switch subsystem and interface), therefore
no problems of unforeseen interactions across domains need arise.

5. Towards Robust, Multi-Strategy Parsing
Current work in computational linguistics indicates that it possible to design a friendly natural

language interface in accordance with the criteria listed above. The approach we have taken is

primarily a synthesis of previous natural language parsing techniques, together with a set of "fail-

soft" recovery heuristics. Whereas syntactic parsing methods (e.g. ATNs[13]) capture linguistic

regularities in a general manner, semantic grammars [10, 2] encode domain-specific semantics, and

expectation-based parsing [12,1] is quite useful for general semantic disambiguation, no single

technique is capable of handling all aspects of natural language analysis. Moreover, experience has

shown that the strengths of one technique overlap with the shortcomings of other parsing techniques.

Therefore, taking a pragmatic approach, we have chosen to synthesize the best aspects of each

Towards Robust, Multi-Strategy Parsing 7

technique into an integrated multi-strategy parser MULTIPAR [9].

Although, MULTIPAR is still under development, its predecessors have taught us some useful
lessons and have themselves served as flexible natural language interfaces. Past systems
developed at CMU include:

1. FLEXP A recursive pattern-matching flexible parser applied to an advanced message
system [7] demonstrated the need for combining bottom-up and top-down parsing
strategies when faced with input that deviates from a prescribed grammar.

2. CASPAR - A case-frame parser demonstrated the power of domain semantics in parsing
both correct and extragrammatical input [9]. Moreover, selective treatment of
constituents on the basis of ease of recognition has proven a great help in realigning a
parse when an incomprehensible segment is encountered.

3. DYPAR -- A three-strategy parser demonstrated the feasibility of combining more than
one parsing strategy into a unified system. Strategy selection occurs on the basis of the
expected form of embedded constituents. DYPAR is currently in use as natural language
interface to a simple semantic-network data base access and update, a factory
scheduling and simulation expert system, and a light-bulb manufacturing process data
base and simulation system. The field-testing of DYPAR has indicated a need for a more
flexible interface, one in which sophisticated ellipsis and anaphora resolution - as well as
additional focused recovery methods can be implemented. More recently, DYPAR-II has
been extended to servers a natural language interface to the XSEL/R1 expert system at
Digital Equipment Corporation [5]. This experience is instrumental in the current design
of MULTIPAR.

The type of natural language phenomena that one must handle in a robust flexible interface include
the following set:

• Spelling correction About 40% of all user errors are careless misspellings. Context-free
spelling correctors can handle a large number of cases; however, more sophisticated
methods are required for human-like performance. For instance, the following sentence
was encountered in one of our studies: "Transfer the fortran flies to the accounts
directory." It is obvious that the person meant to type "files", but accidentally
transposed letters. However, "flies" is a correctly spelled word - one present in the
task-domain which happened to be statistics on med-fly infestation. No self-respecting
spelling correction algorithm would then try to correct a correctly spelled word
appropriate in the general context. Clearly, we need context-sensitive spelling correction.
The word "flies" is semantically inappropriate in its specific location in the sentence. We
must have a spelling correction method capable of making this type of judgment.

• Definite noun phrases and anaphora -- The sample dialog in the previous section
illustrated both of these phenomena. When a user types "that file", or "my file", the
system must resolve the referent to a specific entity in the preceding dialog. The same
problem occurs (without explicit type restrictions) when the user types "it" or "that" as
an anaphoric referent. It is imperative for a user-friendly interface to resolve these

Natural Language Interface Design

referents. Merely complaining to the user that he is not being specific enough is a non-
operational solution. We attempted such a solution, but only succeeded in creating
frustrated and irate users. For example, a user typed "Do I have a FOO.REL file?" And,
after an affirmative response, he typed "OK, now load it into core." The system
complained that "it" could not be resolved, whereupon after a long pause, the user typed
"Do a load." Clearly the latter sentence is more terse, and harder to interpret (Load
what? Load it where?). It was obvious to the user what file he was referring to; therefore it
ought to have been obvious to the system as well.

• Ellipsis and fragmentary input -- It is often the case that people utter sentence fragments
which make sense only in the context of an on-going dialog. The same phenomenon

' occurs in natural language interfaces. The vast majority of these fragments can be
resolved by reinstantiating the preceding utterance with the new fragment substituting for
the semantically corresponding constituent of the previous sentence. For instance, a
typical ellipsis occurs as follows:

Copy the fortran files to my directory.
Now the data files.

It is clear that "data files" substitutes for "fortran files" and a reexecution of the previous
command is called for. A case frame strategy with semantic constraints can handle this
type of ellipsis easily. However, more difficult forms of ellipsed commands occur, such

as:

Copy the fortran files to my directory.
I meant to the accounts directory.

Here, the system must understand how to undo its previous command (e.g., deleting the
object case from the destination case of a "copy" undoes the effects of a copy") as well
as performing the prior ellipsis resolution.

• Fail-soft recovery Heuristics - When a fragment of a user's utterance is unparsabie, the
interface system should not abandon hope. We are developing heuristics for bridging
difficult segments, realigning the parse in a bottom-up manner, and returning to the
troublesome part later with additional syntactic and semantic constraints from the rest of
the sentence. For instance, case-selection restrictions can be relaxed if other cases have
been correctly instantiated, and pattern matches can be made partial matches, as long as
the set of possible constituents that could match has been reduced to a small set by the
surrounding context [3].

• Focused interaction When recovery heuristics or semantics-based disambiguation fail,
a robust interface must interact with the user to produce appropriate clarifications. These
interactions should be focused on the source of the problem, and the system should
present alternatives or default choices in a concise manner.

In the MULTIPAR project we are striving to achieve these objectives. We are developing a flexible

control structure in order to enable different parsing strategies to be brought to bear at appropriate

times in the parsing process, hence facilitating the introduction of ellipsis resolution, anaphora

resolution, and fail-soft recovery mechanisms.

Concluding Remark 9

6. Concluding Remark
In order for a natural language interface to be truly useful and accepted by a wide user community it

must be robust and tolerant of user errors especially when the user does not consider terse

grammar and fragmentary input to be in error. Rather, users typically wish to type as little as

necessary to get their message across. Therefore, natural language interfaces must accept anaphora,

ellipsis and other means of abbreviating utterances. Moreover, a natural language interface that is

incapable of understanding simple, if ungrammatical utterances causes a naive user do distrust the

system as a whole. Hence our argument in favor of natural language interfaces must be augmented

with the proviso that the interfaces be substantially well designed and robust enough to gain general

acceptance. As our present work indicates, the basic technology required to build flexible interfaces

in semantically well-defined domains exists, but must be refined and developed into working systems.

The design constraints on the natural language interfaces were developed by examining and

modeling the capabilities and performance of users, especially the novice users that constitute a

rapidly expanding segment of the user population.

10 Natural Language Interface Design

7. References
1. Birnbaum, L. and Selfridge, M., "Conceptual Analysis in Natural Language," in Inside

Computer Understanding, R. Schank and C. Riesbeck, eds., New Jersey: Erlbaum Assoc.,
1980, pp. 318-353.

2. Burton, R. R., "Semantic Grammar: An Engineering Technique for Constructing Natural
Language Understanding Systems," Tech. report 3453, Bolt Beranek and Newman, 1975.

3. Carbonell, J . G., "Towards a Self-Extending Parser," Proceedings of the 17th Meeting of the
Association for Computational Linguisticst 1979, pp. 3-7.

4. Carbonell, J . G . and Hayes, P. J . , "Dynamic Strategy Selection in Flexible Parsing,"
Proceedings of the 19th Meeting of the Association for Computational Linguistics, 1981.

5. Carbonell, J . G., Boggs, W. M., Mauldin, M. L. and Anick, P. G., "The XCALIBUR Project, A
Natural Language Interface to Expert Systems," Proceedings of the Eighth International Joint
Conference on Artificial Intelligence, 1983, (Submitted).

6. Card, S. K., Moran, T. P. and Newell, A., The Psychology of Human-Computer Interaction,
Erlbaum Assoc., Hillsdale, NJ , 1983.

7. Hayes, P. J . and Mouradian, G. V., "Flexible Parsing," Proceedings of the 18th Meeting of the
Association for Computational Linguistics, 1980, pp. 97-103.

8. Hayes, P. J . , and Carbonell, J . G. , "Multi-Strategy Construction-Specific Parsing for Flexible
Data Base Query and Update," Proceedings of the Seventh International Joint Conference on
Artificial Intelligence, August 1981, pp. 432-439.

9. Hayes, P. J . and Carbonell, J . G. , "Multi-Strategy Parsing and it Role in Robust Man-Machine
Communication," Tech. report CMU-CS-81-118, Carnegie-Mellon University, Computer
Science Department, May 1981.

10. Hendrix, G. G., Sacerdoti, E. D. and Slocum, J . , "Developing a Natural Language Interface to
Complex Data," Tech. report Artificial Intelligence Center., SRI International, 1976.

11. Newell, A., McCracken, D. L., and Akscyn, R. M., " Z O G and the USS Carl Vinson," in
Computer Science Research Review, Carnegie-Mellon University, 1980-1981.

12. Riesbeck, C. and Schank, R. C , "Comprehension by Computer: Expectation-Based Analysis
of Sentences in Context," Tech. report 78, Computer Science Department, Yale University,
1976.

13. Woods, W., Kaplan, R. and Nash-Webber, B., "The Lunar Sciences Natural Language
Information System: Final Report," Tech. report 2378, Bolt Beranek and Newman Report,
1972.

