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ABSTRACT 

The solution of a general block tridiagonal linear system by a cyclic 

odd-even reduction algorithm is considered. Under conditions of diagonal 

dominance, norms describing the off-diagonal blocks relative to the diago

nal blocks decrease quadratically with each reduction. This allows early 

termination of the reduction when an approximate solution is desired. The 

algorithm is well-suited for parallel computation. 





1. Introduction 

We propose to solve the block tridiagonal linear system Ax = v, 

i.e. , 

N = 2 m + 1 - 1, m > 1, e = f = 0. 

The components are nxn matrices and n-vectors, so the overall dimension of 

A is (Nn)x(Nn). The algorithm considered is related to the cyclic odd-

even reduction algorithm developed for the numerical solution of Poisson's 

equation on a rectangle, [3], [5]-» and to the more general cyclic reduction 

technique of Hageman and Varga [U]. 

The two fundamental operations of cyclic odd-even reduction are the 

elimination of odd-indexed unknowns and their eventual recovery through 

back-substitution. If we multiply equation 2j-l by - e ^ d ^ ^, equation 

2j+l by -f d?\ , and add these to equation 2 j , the result is 

( - e 2 j d i i e 2 j - l ) x 2 j - 2 

+ ( d 2 j " e2j d2j-l f2j-l " V ^ + l W ^ j 

+ ( - f 2 j d ^ + l f 2 j + l ) x 2 j + 2 

= V 2 j " e 2 j d V 2 J - l " f 2 j d ^ + l V
2 J + l -

These new equations, for j = l,...,2 m-l, are again a block tridiagonal 

system, involving only the even indexed unknowns of x. This is the reduc

tion step. Once x and x are computed, they may be substituted into 

equation 2j-l to compute x . This is the back-substitution step. 



Setting A^ - A, x ^ - x, v ^ = v, we generate a sequence of 

problems A ( l ) x ( l ) = v ( l ) , of block dimension ( 2 m ~ i + 1 - l) x ( 2 m " i + 1 - l ) . 

At any stage we can stop the reduction, solve the system at hand and begin 

the back substitution. Since A ^ is composed of a single block, the 

reduction stops there. If A ^ x ^ = v ^ is solved exactly, and x = 

x ^ is computed exactly from the back substitution based on x ^ , we 

have complete cyclic reduction. Now suppose we pick 0 < k < m and solve 

A x = v approximately by computing y x . If y = y 
(k) 

is computed exactly from the back substitution based on y , we have 

incomplete cyclic reduction. The major goal of this paper is an analysis 

of incomplete cyclic reduction. 

If A satisfies certain diagonal dominance conditions, then good 
(k) 

approximations y exist, are easily computed, and the errors incurred 

are not dangerously propagated to the entire solution. It is also possible 

to pick k based on a few simple a priori calculations. In particular, 

norms describing the off-diagonal blocks relative to the diagonal blocks 

decrease quadratically with each reduction. This fact justifies the use 

of incomplete cyclic reduction. 

The cyclic reduction algorithm is well-suited for use on a parallel 

or pipeline computer, as many of the quantities involved may be computed 

independently of the others. The special case n = 1 has been studied by 

Lambiotte and Voigt [6], with attention to a pipeline computer, and by Stone 

[7] who uses a slightly different formulation of the elimination step. 

2 



The cyclic reduction algorithm was originally developed by 

Hockney [ 5 ] for the discrete version of Poisson !s equation. In this 

case it is possible to replace the solution of systems by matrix 

multiplication. It was Hockney 1s observation that, in the case n = 1 

and constant diagonals (c.f. remark 7 , Section 3 ) , the reduction could 

be stopped when the ratio of the off-diagonal elements to the diagonal 

elements fell below the machine precision. Then the tridiagonal system 

was essentially diagonal and could be solved as such without damage to 

the solution. 

The Buneman algorithm for Poisson's equation [3] also generates ap

proximations to the solution in the course of the reduction. A quadra

tic convergence result (equations 13.*+, 13.6, of [3]) is given but only 

used in the stability proof. Buzbee [2] developed this to obtain a 

truncated Buneman algorithm much like our incomplete cyclic reduction, 

but only applicable to the case A = + dl, where is the discrete 

Laplacian operator. It was then shown how to use this special case in 

an iterative method to solve the discretization of u = V(aVu) + S on a 

rectangle. 

Another formulation of cyclic reduction for the general case that 

does not require solving systems at each stage is given by Stone [ 7 ] : 

multiply equation 2j-l by - ^ j ^ j + l * e ( l u a ' t i o n 2J by ^ j - l ^ j + l * e c l u a t i o n 

2j+l by -f .d^. - and add. If d^. d A, e A , = e^.d^. d A, n , and J J 2j 2J-1 5 2J-1 2J+1 2j 2j 2j+l 2j-l' 

2j-l d2j+l f2j = f2j d2j-l d2j+l 5 
j A f = f a d , the set of new equations is again tri-
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diagonal. If n = 1 this commutativity condition is no restriction; 

in fact, our method differs only by a scaling factor. However, for 

n > 1 the added cost of solving hn+2 linear systems per new equation 

may be a small price for systems without commutativity. In addition, 

Stone's version cannot handle variable block sizes, nor is symmetry 

preserved except in the case of constant diagonals. 

An odd-even reduction for block pentadiagonal systems arising from 

the discrete biharmonic operator is given in [l]. This problem could 

also be treated by partitioning into a block tridiagonal form. 

k 



2. The Algorithm in Detail and its Relation to Gaussian Elimination 

We describe the means of generating a sequence of problems 

A(i) x(i) = s u c h t h a t x 5 i + 1 ) = and a back substitution to recover 

(i) . (i+1) the odd-indexed unknowns of x given x 

Suppose we have Ax = v, an NxN system with n*n blocks, N = 2 - 1, 

A = 

1 1 

\ 

d 2 f 2 
5 ( w f j w 

d 
"N N 

e^ = f = 0. The extension to general values of N and variable block 

sizes is immediate but will not be considered here. Setting = 2 m - 1, 

l e t A(D = ,JD f(ih X(D = (x(i)) V U ) = (VU)) 

(0) 
with A - A, x x

( 0 ) - x, v ^ 0 ) = v. Then, for i = 0,.. . , m - 1 » 

, define 

(i+l) r 1 . ( i ) 

.(i+l) .(i) r 1 f U )  

d j - d 2 j " 6 2 j ( d 2 j - l ) f2j-l 
„(i),,(i) r l (i) 

" f 2 j ( d 2 j + l J 62j+l' 

(i+l) _ f(i) ( d(D )-l f(i) 
f j " " f 2 j ( d 2 j + i ; f2j+l' 
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x ( Í + l ) - ¿V. 

(i), (i) r i (i) J ± ) ( A i ) r i (i) 

j '23 ~ G 2 j ( d2j-l } V2J-1 - f 2 J ( d 2 J + l ) V 2 j + 1 
v < i + 1 > = v ( i ) 

Now, suppose y ^ + ~ ^ is an approximation to x ^ + 1 \ perhaps the true 

value. Then an approximation to x ^ , is found "by 

(i) (i+D . n  
y 2 j = yj » J = X' Ni +1' 

y ( i ) = ( d ^ f V 0 - f ( l ) y ( i ) ) , Jl 1 V 1 1 ^2 ; ' 

(i) _ , (i) rl/ v(i) (i) (i) (ih 
y 2 j _ ! " ( a j y V ( v

2 j _ ! " e 2 j - i y 2 j - 2 " f 2 j - i y 2 j >' 

j = 2, N . + 1 , 

y ( i ) - ,„(i),-l,„(i) _ J D „(i) 
N, " ( d N . ) ( V N . " 6 N . ^ . - l ^ 

Of course, it must he shown that d["^ is non-singular; this will be 
J 

done in Section 3 under certain assumptions about A. In addition we show 

that the factors used in the reduction and back substitution form a quad-

ratically decreasing sequence. 

Complete cyclic reduction reduces Ax = v to A^ m^x^ m^ = v^ m \ solves 

this exactly and proceeds through the back substitution to an exact 
(k) (k) (k) 

solution. Incomplete cyclic reduction stops with A x = v , 0 < k < m , 

solves this approximately and begins the back substitution as described above. 
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Cyclic reduction is equivalent to block Gaussian elimination without 
T 

(block) pivoting on a permuted system (PAP )(Px) - (Pv). P reorders the 

vector (1,2,3,...,N) SO that the odd multiples of 2^ come first, followed 
1 2 by the odd multiples of 2 , the odd multiples of 2 , etc c 

For N ~ 7, 

T 
PAP = 

f 6 

The block factorization of PAP = LU is 

L = 

e 2 d i 1 f 2 d f 

e 2 (d 1 ) 4 i ) ( 4 i ) r 1 
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u = 

,(1) 

,(1) 

If we let d. = i . u. be an LU factorization, SL. with unit diagonal, 
J J J J 

T 
then the ordinary LU factorization of PAP = L'U' is 

L 1 = 

-1 
e u 
2 1 

f u " 1 

2 3 

v , 1 

(1) 

(1), (Dx-l 
e 2 (u x ) 

,(2) 
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U 1 = 

\ F I 

S e 3 

u 

v f
5 

*T T 

u (1) 

u (1) 

( , ( I ) R I F ( D 

u .(2) 

This factorization gives rise to a related method, first solving 

L !z = v, then U f x - z. It is easily seen that z ^ = (^ 1^)~ 1v/ 1^. 
J J J 

We may now apply any of the theorems about Gaussian elimination to 
.T PAP" and obtain a corresponding result about this modification of cyclic 

reduction for A. In particular, if A is strictly diagonally dominant 
T 

or positive definite, so is PAP and thus Gaussian elimination is well-

defined and stable [10]. 
Finally, note that a Cholesky factorization of df 1^ = J l ! 1 ^ 1 ^ 

J J J may 

be used if A is positive definite. The result is a Cholesky factorization 
T T PAP = LL . 

We now turn to the question of storage requirements. If we use block 

Gaussian elimination in the natural ordering of A (see, for instance, [8]), 

then no additional block storage is required since there is no block fill-

in. However, it has already been seen that cyclic reduction does generate 

fill-in. The amount of fill-in is the number of off-diagonal blocks of 

A ^ , A ^ k \ which is £ k , 2N. - 2 = 2N -* 2 - 2 m " " k + 2 - 1+k. Since the 
1=1 l 
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matrix A requires 3N - 2 storage blocks, this is not excessive. Of 

course, we have not considered the internal structure of the n*n blocks, 

as this is highly dependent on the specific system. Also note that 

v ^ may overwrite v i., and that = x i. may overwrite v f * \ Thus 

no additional storage is required for these vectors. 

A time estimate for cyclic reduction is somewhat more difficult. 

Suppose we are going to make the reduction from A ^ to A ^ i + 1 \ Each of 

the new equations may be formed independently of the others, so 

cyclic reduction may be used effectively on a parallel or pipeline com

puter. For a particular computer, the execution time may or may not 

depend on the number of arithmetic operations actually performed, as 

many of them would be done simultaneously. A first approximation shows 
3 

that 19/3 n N multiplications are used in complete cyclic reduction. 
3 

This compares with 7/3 n N for block Gaussian elimination in the given 

ordering [ 8 ] . 

The use of synchronous parallelism, as with the Illiac IV and CDC 

Star, creates some constraints which are not so important on a sequential 

computer. First, pivoting causes inefficiencies when the pivot selections 

differ between the diagonal blocks. If A is strictly diagonally dominant 

or positive definite, then no pivoting is required. Secondly, the choice 

of data structures to represent the matrices and vectors must conform to 

the machine !s requirements for the parallel or vector operations. In the 

case of the Illiac IV, the problem of communication of data between 

processing elements must also be considered. It may be that the construc

tion of a program is more important to the success of the whole than the 

10 



construction of a numerical method. 

Thorough discussions of the use of cyclic reduction on parallel and 

pipeline computers for the case n = 1 may be found in [6] and [ 7 ] . The 

basic method given here is a matrix analogue of the method examined in the 

former paper. 
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3. Convergence Theorems 

In this section we examine the errors due to approximation in 

plete cyclic reduction. The off-diagonal blocks of 

by considering norms of 

incorn

are measured 

J J J 

and the multipliers used in the reduction from A ^ to A ^ 1 + 1 ^ are measured 

by considering norms of 

c ( i ) * t - e ! 1 ' ^ ' ) - 1 , o , - t i ' h ^ J r 1 ) . 

We use the vector and matrix infinity norms 

l v M 0 0 = max | v J , 
j=l,...,p J 

l l M I L = max ^ |m |, 
i=l,...,p J X 1 0 

and the matrix one norm 

I |m | I, = max Z? J m . . I , 

where v is a p-vector and M is p xq. It will be convenient to define 

P, (M) = ^ |M |, i = 1 , p. 

Recall that the incomplete cyclic reduction algorithm reduces 
(k) (k) (k) 

Ax = v to A x = v , 0 < k < m, computes an approximation 
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(k) 0 0 m • • - 4 - . (0) (0) y - x , finally arriving at an approximation y = y ~ x - x. 

Theorem. Suppose d T 1 exists, j = 1 , N, and M b ^ I I ^ < 1 . Then 
J 

1 . Cyclic reduction is well-defined; i.e., (d. 1 ) 1 exists, 

i = 0, ..., m; j = 1 , ..., N . 
2. In incomplete cyclic reduction, | |x - y| = | | x ^ - y ^ | | a 

l l x ( k ) v ( k ) l l 

3. i r y w . i^r^K ' - < H B ( k ) l L -

l | B V i " M L t M ( B V A ; r | „ < 1 , i - 0 , m - 1 . { i + 1 ) \ L < _ l l ( B ( i ) ) 2 | 

5 . If I I C ^ H ^ l , then I I C ^ M ^ | | ( C ( i ) ) 2 M 1 < 1 , 

i = 0 , . . . , m - l . 

Proof. We first show parts 1 , k 9 and 5, then 2 and 3. Assume that 

A ^ has invertible diagonal blocks, H b ^ H ^ < 1 , | | C ^ | | < 1 . 

The induction hypothesis | | c || ^ < 1 will be used only in the proof of 

part 5. Superscripts will be deleted for convenience, and are assumed to be 

unless otherwise stated. Define 

° 1 = ^ V i S ' 

a. = d / e . d . 1 f. + d . V C J ; e , + 1 , j = 2, N - 1 , 

1 1 1 1 1 

T . = d.a.d. 1, j = 1 , ..., N., 
J J J J i 

S = diag(a.), 
J 

T = diag(x.), 
J 
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Ei = °' Ej = -ejdj-iej-r i = 2' V 

D = a (I - a ) = (I - x )d j = l, N 
d d d J J 1 

Fj = - fj djii fj +r J s l » V 1 ' F
H l = °-

th 2 Now, a. is the diagonal block of the j block row of B , so we have J 
l l a - l l o o l I l B I L 1 I N L < 1- Similarly, x . is the diagonal block of 

4-"U q O Q 
the j block row o f C , so I I x . I L < I I C I L < I I C I I < 1. Thus, from 
either condition, (I - a.) 1 and (I - x . ) 1 exist, as does D. 1 = (I - a.) "^d.1 = 

J J J J J 
d. 1(l - x . ) 1 . But d ( i + 1 ^ = D p., so part 1 is proven. 

We also have 

S = max a. < B 2 < 1, 
OO • I 00 — oo I oo • 1 1 1 

0=1,...,^ J 

|T| I = max I | T J I < I|C2|| < 1. 
j=l,...,N, J 

Nov, define 

J = (-D^E., 0, 0, 0, -D . ̂ "F. ) , 

K = (-E.D?^, 0, 0, 0, - F . D ^ ) . 

Since e f 1 + 1 ^ = E_. , d [ 1 + 1 ^ = ., f f 1 + 1 ^ = F r., it is easily shown that 

I | B ( i + l ) | L < | |J| L and | i C ( i + l ) | < | |K| | 1 . We also have 

B 2 = (I - S)J + S, and C 2 = K(I - T) + T. Thus, for I = 1, ^ n , 

I|b2|L 1 p £(b 2) = p £(S) + p£((l - S)J) 

> p a(S) + p £(J) - P A(S)||J| L 

= p £(j) + p A(S)(l - | |J| |J. 

We now show by contradiction that 1 > | | j | !„• Suppose ||j|1^= 1- For 

lU 



some %, we have | | j | | w = p &(J) = 1, and for this £, 1 > | | b 2 | 1 ^ > p^(j) 

= 1, a contradiction. Suppose | | j | 1 ^ > 1. For some £, | | j | 1 ^ = p^(J)>l; 

using 1 > p^(J) + P £(S)(1 - | Mll^), we have 1 < p (S). But we showed 

earlier that p (S) < IIslI < 1, so this is also a contradiction. Thus 
% - 0 0 

I l J l L < 1 a n d I l B I I o o 1 P£( J) + P£( S)(! " I l J l L ) - P £ ( J ) ' S l n C e t h l S h ° l d S f ° r 

each £, ||B | | > || Jlloo' establishing part k . A similar proof holds for 

C, establishing part 5-

Consider the vector x ^ - y ^ . We have 

,- 1 , / (i+1) 
X l " y i = A f l U l " y l >» 

(i+1) (i+1) . 
X 2 j - y 2 j = X j - y j . J = 1 . .... N ± + 1 

.-1 / (i+1) (i+lK 
X2j+1 ' y2j+l a 2 j + l e 2 j + l V X j " y j ; 

- d" 1 f ( x ( i + l ) - y ( i + l ) ) ^ j + l ^ j + l ^ j + l y j + l ; ' 

J = 1 , N . + 1 - 1, 

, - 1 f ( i + 1 ) ( i + l ) v 
X N . " y N . = - d N . e N . ( x N . A 1 " y N . _ K 

l l l i l+l l+l 
Define z by 

„ _ ( n v ( i + l ) (i+1) n (i+1) (i+1) n 

z - (0, x 1 - y x , 0, x 2 - y 2 0, .... 

(i+1) _ (i+1) 
i+1 i+1 

r j I , (i+1) (1+1) I I I I I I 
We have ||x - y l l C 0

= M z l l c o
t , y construction. Also by construction, 
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I l x ' 1 ' - / 1 ' ! ! . - ^ ! ^ 1 * 1 ' . / 1 * 1 ' ! ! . . . i i b . i i . ) . 

But | | B z | L < | |B| |_ | | z | L < | | z | L = | | x ( i + l ) - y ( l + l ) | L , so 

| | x ( i ) - y ( i ) | | 0 O = l | x ( l + l ) - y ( i + l ) | L . This proves part 2. Suppose 

our approximation for incomplete cyclic reduction is = (^j^) v j *̂ T h e n 

(k) (k) _(k) (k) |, (k) (k)|| < M T , ( k ) | | | , (k),, x - y = B x , so | |x - y IL f I IB 11«, I |x I 1^. 

Q.E.D. 

Remarks and Corollaries. 

1 . For n = 1 and A irreducibly diagonally dominant, there is a 

similar result, but now | | B ^ 1 + 1 ^ | 1 ^ < | | ( B ^ ) 2 | 1 ^ < 1 . The example A 

= ( 1 , 2 , 1 ) , for which | | B ( l ) | 1 ^ = 1 , i = 0, m - 1 , | | B ( m ) | \ m = 0, 

shows that strict inequality is necessary for incomplete cyclic reduction 

to be effective. Note that | | B ^ | 1 ^ = 0 for any A, since A ^ is only a 

single block. 
T 

2. Let PAP = LAU be the unique factorization with A block diagonal, 

L and U lower and upper unit triangular. (c,f. Section 2 .) Then 

| |L| \1 < 1 + | | c ^ | | | |u| < 1 + | I 1 ^ . In L there are at most 2m blocks 

per row off tut diagonal, so j | L | 1 ^ < 1 + 2nm ||C^ U || . Similarly, 
\ \ U \ \ 1 < 1 + 2nm | | B ( 0 ) | 1 ^ . 

3. If e = | | b ^ | | < 1 , 0 < e < 1 , then 

k = max ( 0 , min(m, 
( l Q g 2

 £  

1 0 § 2 \ T ^ t 
) ) 

guarantees | | b ^ | | < e. If 3 = \, e = 2 2 0 = 10 6 , then k = 5 and we 

16 
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should have N > 32 for incomplete cyclic reduction to be applied. 

In fact, | | B ^ | I < 2 ~ 3 2 = l C f 9 ' 5 , so the results of incomplete 

cyclic reduction would be much better than required. In the case 

n = 1, e = f = e, d. = d, some improvements may be made in es-

timating the B ^ norms. Since | | B ^ ' | 1 ^ ^ 2e/d, E = F = -e 2/d, 

D = d - 2e 2/d, we have | | B ( i + l ) | | o o = 2E/D - ||B ( i )|| 2/(2 - | | B ( i ) | | 2 ) 
(i) 2 

< ||B || . This observation has been made by Stone [ 7 ] . Since 
2 2 2 2 x / 2 < x / ( 2 - x ) < x for 0 < x < 1, k must be larger than 

/log 2(e/2)\ 
l o g 2 \ l o g 2 ( B / 2 ) / 

in order to have | | B ^ | | < e. 

k . Superconvergence does occur, as indicated in the proof. In 

figure 1 we illustrate the errors by component for N = 31, n = 1, k = 

3, A = (-l,l+,-l), x. = 1. If the linear system arises from discretiz-
J 

ing a continuous problem with the function values specified on the 

boundary, e.g., x and x._ , the choice N = 2 m + 1 - 1 is very desirable. 

This is because the spikes in the error curve are as far from the 

boundary as possible. The choice N = 2 m + 1 is perhaps the least desirable, 

as it places a spike next to the boundary. See also remark 8, below, 
(k) 

5. Since B ' is the matrix associated with the block Jacobi 

iteration for A ^ , Q9J , and | | B ^ | will be small, we may use this iter

ation to improve the estimate In fact, the choice = ( d ^ ) ' 1 ^ 1 ^ 
J J J (k) (k 0) is the iterate following the initial choice y. = 0. If y 5 is an 

approximation to x ( k ) , and y < k ' 1 + l ) = ( d ° ° f 1 ^ - e { * V * ; ± ] - f ^ y i Y * ) , 
J J J J J-l J J+l 
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,, (k) (k,£),, . , l T 5(k)£,, ,, (k) (k,0)«, . then | |x v - y v | 1 ^ < I |B I L I |x - y I L - k a n d % 

should be chosen to minimize computation time subject to the constraint 

||B ||^ < e. Any of the other standard iterative methods may be 

used in place of the Jacobi iteration. For related results using the 

theory of non-negative matrices and regular splittings, see [ k ] . 

6. Varah [8] uses the condition | [ d T ^ | ( | | e . | | + | | f . | | ) < 1 , 

| | # ] | an n><n matrix norm, to show that block Gaussian elimination in the 

natural ordering is well-defined and stable. Let = | | ( d ^ ) ^"|| 

(I l e ^ l I + | I f i 1 ^ | ) , = max 6 ^ . Using a proof similar 

to the one given here, it may be shown that, if < 1 , then 6 ^ + 1 ^ 

(i)2 

< 6 . Again3 an irreducibility condition may replace strict in

equality, but for this case incomplete cyclic reduction might not be 

effective. 

7. If A is symmetric, then = B ^ T , so that | | c ^ | | = 

| | B ^ ^ | | . If A is positive definite, then since A ^ is also positive 

definite, the spectral radius of B ^ ^ is less than 1, [ 9 ] . 

8. Consider the matrix 
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and the linear system Ax = v. This matrix form typically arises from 

discretizing an elliptic equation with periodic boundary conditions. 

If we modify the row operations of cyclic reduction to include 

ROW(N) - e ^ d ^ R O W C N - l) - f ^ R O W U ) , 

it is seen that the reduced system has the same form as A, and again only 

the even-indexed unknowns appear. The reduction may be continued until 

we have A ^ x ^ = v ^ m \ a block 2^2 system. Moreover, if B ^ a n d c ^ are 

' appropriately redefined all the conclusions of our main result hold. The 

proof is nearly identical. The superconvergence effects are only slightly 

less dramatic. 

9. In view of the previous remark, there ought to be a more general 

underpinning to the quadratic convergence phenomenon. 

Theorem. Let be any matrix with invertible diagonal blocks. Define 

D ^ ^ = the block diagonal part of H ^ ^ , 

K ( i ) = I - H ( i ) D ( i ) - \ 

H ( i + 1 ) = (I + K ( i ) ) H ( i ) = H ( 1 ) ( I + 

if | | j ( 0 ) i L < i t h e n | | j ( i + 1 ) i L < | | j U ) 2 I L . 

If M K ^ I ^ < 1 then 1 | K ( i + l ) j | 1 < | | K ( i ) 2 | ! 1 . 

Proof. Note that H ( i ) = D ( i ) ( l - J ( i ) ) = (I - K ( i ) ) D ( i ) , so H ( ± + l ) = 

D ^ ( I - J ^ 2 ) = (I - K ^ 2 ) D ^ . Let = the block diagonal part 

of J ^ 2 , T^ 1 ^ = the block diagonal part of K ^ 2 , so D ^ 1 + 1 ^ = 

D U ) ( I - = (I - T ( i ) ) D ( i ) . Now, U s ^ I L l | | j ( i ) 2 | L < 1, 

I I t ^ ^ M - l I | | k ^ 2 | | < 1, so D ^ 1 + 1 ^ is invertible. We have 
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(I - s 
(i)wU+l) + S (i) 

K (i)2 _ ..(i+l) (I - T (i) ) + T (i) 

The rest of the proof is as before. 

Q.E.D 

In figure 2 we show the H (i) matrices for m = 3 , starting with 
(0) H = A, for both the block tridiagonal and periodic forms. In each 

of H V : W has separated from the others in that there are no other blocks 
(3) 

in its row and column. This block, in fact, is A . For the second 

matrix, A v o y is composed of the ( 8 , 8 ) , ( 8 , l 6 ) , ( l 6 , 8 ) and ( l 6 , l 6 ) 

(3) 

blocks of H . Cyclic reduction, it is seen, computes only selected 

rows and columns of the H ^ ^ . 
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