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ABSTRACT

The solution of a general block tridiagonal linear system by a cyclic
odd-aven reduction algorithm is considered. Under conditions of diagonal
dominance, norms describing the off-diagonal blocks relative to the diago-
nal blocks decrease quadratically with each reduction. This allows early
termination of the reduction when an approximate solution is desired, The

algorithm is well-suited for parallel computation,






1. Introduction
We propose to solve the block tridiagonal linear system Ax = v,

il.e.,

e,x, +d.x, + f x, = v,
J oJ=-1 JJd JJtl VJ

The components are nxn matrices and n-vectors, so the overall dimension cof
A is (Nn)x{¥n). The algorithm considered is related to the eyclic odd-
even reduction algorithm developed for the numerical sgolution of Poisson's
equation on a rectangle, [3], [5], and to the more general cyeclic reduction
technique of Hageman and Varga [L].

The twe fundamental operations of cyclic odd-even reduction are the
elimination of odd-indexed unknowns and their eventual recovery through

1 .
_1° equation

back-substitution. If we multiply equation 2j-1 by -e2jd5j

-1
D4 _ . . .
J*l by f2jd2j+1’ and add these to equation 23, the result is

-1
-e_.d
(-e05925-1%25-1 %252

* {dy - ezjd;§—1f23-1 ' f2jd;§+le2j+l)x2j
* ("fejd;§+1f23+1)x23+2
T Vo T eegd;§-1V23—1 B f2jd;§+lvgj+l'
These new equations, for j = 1,...,2m-l, are again a block tridiagonal

system, invelving only the even indexed unknowns of x. This is the reduc-

ticn step. Once xgj o and X2j are computed, they may be substituted into

equation 2j-1 to compute X2j 1" This ig the back-substitution step.



(0) _ (0) (0)

Setting A = A, X = X, v = v, we generate a sequence of

(1) (1) (1)

problems A'T'x = v'"’, of block dimension (2™ 1*1

m-i+1

- 1) x(2 - 1).

At any stage we can stop the reduction, solve the system at hand and begin

(m)

the back substitution. Since A is composed of a single block, the
reduction stops there., If A(m)x(m) = v(m) is solved exactly, and x =
A0 ]

x( ) is computed exactly from the back substitution based on x(m), we

have complete cyclic reducticn. Now suppose we pick O < k < m and solve

k) {k =
A( )x( ) = v(k) approximately by computing y(k) ~ x(k). If vy = y(O)

(k)

is computed exactly from the back substitution based on ¥ s, we have

incomplete cyclic reduction. The major goal of this paper is an analysis

of incomplete cyclie reduction.

If A satisfies certain diagonal dominance conditions, then good
approximations y(k) exist, are easily computed, and the errors incurred
are not dangerously propagated to the entire sclution. It is also possible
to pick k Dbased on a few simple a priori caleculations. In particular,
norms describing the off-diagonal blocks relative to the diagonal blocks
decrease quadratically with each reduction. This faet justifies the use
of incomplete cyclic reduction.

The cyclic reduction algorithm is well-suited for use on a parallel
or pipeline computer, as many of the quantities involved may be computed
independently of the others. The special case n = 1 has been studied by

Lambiotte and Voigt [6], with attention to a pipeline computer, and by Stone

(7] who uses a slightly different formulation of the elimination step.



The cyclic reduction algorithm was originally developed by
Hockney [5)] for the discrete version of Poisson's equation. In this
case it is possible to replace the solution of systems by matrix
multiplication. It was Hockney's observation that, in the case n =1
and constant diagonals (¢.f. remark 7, Sectinn 3), the reduction could
be siopped when the ratio of the off-diagonal elements o the diagonal
elements fell below the machine precision. Then the tridiagonal system
was essentially diagonal and could be solved as such without damage to
the solution.

The Buneman algorithm for Poisson's equaticn [3] also generates ap-
proximations to the solution in the course of the reduction. A quadra-
tic convergence resﬁlt (eguations 13.1L, 13.6, of [3]) is given but only
used in the stability proof. Buzbee [2] developed this to obtain a
truncated Buneman algorithm much like our incomplete cyclic reduction,
but only applicable to the case A = Lh + 4, where Lh is the discrete
Laplacian operator. It was then shown how to use this special case in
an iterative method to solve the discretization of u = Y(aVu) + S on a
rectangle.

Another formulation of cyclic reduction for the general case that
does not require solving systems at each stage is given by Stone [71:

multiply equation 2j-1 by —e23d2j+l, equation 2j by d2j—1d2j+l’ equation

2j+1l by —fojd _4» and add. Ir d = e23d2j+1d2j 1 and

23-1

d
23-1%23+12;

the set of new equaticns is again tri-

a d £ a
pj-1 23+1 2] 23 0j-1%25+1°



diagonal., If n = 1 this commutativity condition is no restriction;

in fact, our method differs only by a scaling factor. However, for

n > 1 the added cost of solving Ln+2 linear systems per new equation
may be a small price for systems without commutativity., 1In addition,
Stone's version cannot handle variable block sizes, nor is symmetry
breserved except in the case of constant diagonals.

An odd-even reduction for block pentadiagonal systems arising from

the discrete biharmenie operator is given in [1]. This problem could

also be treated by partitioning into a block tridiagonal form.



2, The Algorithm in Detail and its Relation to Gaussian Elimination

We describe the means of generating a sequence of problems

A(i)x(i} = v(i) such that x(1+l) = xéz), and a back substitution to recover

J
. ey
the odd-indexed unknowns of x{l) given x(l ).
Suppose we have Ax = v, an NXN system with nxn blocks, N = St 1,
a f
1 1
e 62 f2
L= = (ej,dj,fj)NxN,
fN—l
ey Iy
el = fN = §. The axtension to general values of N and varisble block
sizes is immediate but will nnt be considered here. Setting N, = 2m—i+l -1,
i
(i) (i) (1) (i) (i) (i) (1) (i)
let A = {ertd, adt ) ety . X = (x77) .,V = {v:"7)
J J JoTNgx N J Ny R P
(0
with A ) = A, X(O) = X, v(o) = v. Then, for i = 0,..., m — 1,
and j = 1, ’Ni+l’ define
(i+1) (1),.(1) =1 (i)
j = —82:' (dgj—l) e?j‘l,
(i+1) (1) (1), (1) =1.(1) (1),.(1) =3 (i)
- — - f " : k]
% doy’ = €23 (dp501) Togta T Ta (dpje1) "eoy4
f(.1+l) - ~f(1)(d(l) )—lf(l)

J 2] 2j+l 2j+1°



X(i+1) x(i)

J 23’
P41 3 . - _ . - . B .
G ) ) () 1) ey () e G
J 23 2J 2j-1 2j-1 2j “Tej+l 2j+1
i+l) | . . i
Now, suppose y(l ) is an approximation to x(1+1), perhaps the true

(1) (1)

value. Then y , an approximation to x , is found by

(i) _ _{i+1)

25 Y5 Looeees Bogps
yii) - (dii))—l(vii) _ f(i)yél)),

(1) _ (1) =1, (i) (1) (1) (i) (i)
Io5-1 7 (ay504) (Vosl1 = €a31¥05m2 ™ Toyl1Y0s s

Of course, it must be shown that d;l) is non-singular; this will be
done in Section 3 under certain assumptions about A. In addition we show

that the factors used in the reduction and back substitution form a quad-

ratically decreasing sequence.

(m)_{m) _ _(m)

Complete cyclic reduction reduces Ax = v to A x = v , solves
this exactly and proceeds through the back substitution to an exact
(0,00 o 00 oy Lo

sclutien. Incomplete cyclic reduction stops with A X = <

solves this approximately and begins the back substitution as described above.



Cyclic reduction is eguivalent to block Gaussian elimination without
T
{block) pivoting on a permuted system (PAP )(Px) = (Pv). P reorders the
vector (1,2,3,...,N) so that the odd multiples of 20 come first, followed

2
by the odd multiples of 21, the odd multiples of 2, etec.

For N - 7,
4 21
a3 °3 f3
PAPT = K a 25 E
T 7
& 15 95
66 f6 d6
ey fﬂ dh

The block factorization of PAPT = LU is

I
I
I
L = I
ey fgd;l 1
e6d;1 f6djf;1 I
ehd;l fhd;l eél)(dil))_l fél)(dél))_l 1



1 1
a3 3
U5 fs
U= dT eT
e
)

If we let dgl) = le)ugl)
J J J
then the ordinary LU factorization of PAPT = L'U' is

jz’_'i_
e
ts
L' = %
eguil f gu;l Ril )
I
it s R

be an LU factorization, Rgl)

[ aad

with unit diagconal,



il Yt
Uy e s
u5 RslfS l;les
U = uT l}leT
uil) (Qil))-lfil)
UL;1) (2;1))ule§1)
2
This facteorization gives rise to a related method, first solving
L'z = v, then U'x ~ z. It is easily seen that zgi) = (Qéi))_lvj(i).

We may now apply any of the theorems about Gaussian elimination to
PAPT and obtain a corresponding result about this modification of cyclic
reduction for A. In particular, if A 1is strictly diagonally dominant
or positive definite, so is PAPT and thus Gaussian elimination is well-

defined and stable [10].

¥inally, note that a Cholesky factorization of d;l) = 2§1)2§1)1 may
be used if A is positive definite. The result is a Cholesky factorizaticn
PAPT = LLT.

We now turn to the question of storage requirements. If we use block
Gaussian elimination in the natural ordering of A (see, for instance, [8]),
then no additional block storage is required since there is no block fill-
in. However, it has already been seen that cyclic reduction does generate

£fill-in. The amount of fill-in is the number of off-diagonal blocks of

—k+
A(l) . A(k), which is 2§= m-k+e Lk. Since the

2 L

2N, - 2=2N++ 2 -2
1 i



matrix A requires 3N - 2 storage blocks, this is not excessive. Of
course, we have not considered the internal structure of the nXn blocks,
as this is highly dependent on the specific system. Alsoc note that

i . i . i
vg ) may overwrite v_ 1., and that xgl) = x,.1, may overwrite vgl). Thus

J 27 J 27 3
no additional storage is required for these vectors.

A time estimate for cyclic reduction is somewhat more difficult.

(i)

(i+1)

Suppose we are going to make the reduction from A to A . Each of

the Ni+ new equations may be formed independently of the others, so

1
cyclic reduction may be used effectively on a parallel or pipeline com-
puter. For a particular computer, the executicn time may or may not
depend on the number of arithmetic operations actually performed, as
many of them would be done simultaneously. A first approximation shows

that 19/3 n-

N multiplications are used in complete cyclic reduction.
This compares with 7/3 n3N for block Gaussian elimination in the given
ordering [8].

The use of synchroncus parallelism, as with the IIlisc IV and CDC
Star, creates some constraints which are not so important on a seguential
computer. First, pivoting causes inefficiencies when the pivot selections
differ between the diagonal blocks. If A is strictly diagonally dominant
or positive definite, then no pivoting is required. ©Secondly, the choice
of data structures to represent the matrices and vectors must conform to
the machine's reguirements for the parallel or vector operations. In the
cagse of the Illiac IV, the problem of communicaticn of data between

processing elements must alsc be considered. Tt may be that the construc-

tion of a program is more important to the success of the whole than the

10



construction of a numerical method.

Thornugh discussions of the use of cyclic reduction on parallel and
pipeline computers for the case n = 1 may be found in [6] and [7T]. The

basic method given here is a matrix analogue of the methed examined in the

former paper.

11



3. Convergence Theorems

In this section we examine the errors due to approximation in incom-
plete cyclic reduction. The off~diagonal biocks of A(l) are measured

by considering norms of

> >

) = @) o (),
dJ J dJ

and the multipliers used in the reduction from A(l) to A(l+l) are measured

by considering norms orf

(1) 2 (_egi)(d(l)

-1
J J-l)

(i}, (i),-1
-fj (dj+l) ).

3 >

We use the vector and matrix infinity norms

vl = max v,
j= ,"‘BP
- q
I,M,{m i=IJr-lzj").{..’P Zj=leijls

and the matrix one norm

,lM,,l = max EP IM_,I,
J=l,...,q

where v is a p-vector and M is P*q. It will be convenient to define

- 5 .
p; (M) = Zj=leiJl, i=1, ..., p.

Recall that the incomplete cyclic reduction algorithm reduces

Ax = v to A(k)x(k) = v(k), 0 <k < m, computes an approximation



L) () (0) ., ,(0)

, finally arriving at an approximation y = ¥ = x.

- Q
Theorem. ©Suppose djl exists, J=1, ..., N, and l‘B( )|[oo < 1l. Then

1. Cyeclic reduction is well-defined; i.e., (d;i))_l exists,
1=0, oo ms J =1, ey N
2. In incomplete cyclic reduction, ||x - y||_ = ]Ix(k) - y(k)|]w.
(k) (k)
i} = -y,
3. 1e ) o @y ey < 18]
b =, T §
X Q0
v EEY < e <1, 020, o m- 1
5. If ||c(0)||l < 1, then llc(iﬂ)lll < H(C(i))gill <1,

i=0,...,m=1.

Proof. We first show parts 1, b, and 5, then 2 and 3. Assume that

A(l} has invertible diagonal blocks, ||B(l)]|DD <1, ||C(1)]|l < 1.

The induction hypothesis [[c(l)lil < 1 will be used only in the proof of
part 5. Superscripts will be deleted for convenience, and are assumed to be
(1) unless otherwise stated. Define

_ ol -l
Ol dl leg 5o

11 -1, -1
g.=d e d . f,  +dTfd e . d =2, e, N -1,
SRS TR et 1 PO T T ot 5 It 5
_ 1 -1
oy, = %y, °n %, -1'w -1
1 1
-1
=d.04,", 3= :
R R T e &

13



= E. = =
El 03 J eJ J"le;l l’ J 23 E Ni’
DJ = dJ(I -—c,)=(I-1.3d,, 5=1, , N,
F, = -f.a.t.t =1 N.-1, F. =0
'j |j J+3- J+l, J bl LR ] i > Ni -

Now, Uj is the diagonal block of the jth block row of Bz, so we have

lo. < B2 < ||E 2 < 1. BSimilarly, T, is the diagonal block of
J 00 —em oo o J

the jth block row of C°, so ||Tj|f1 5_||C2||l §_||C||§ < 1l. Thus, from

either ccndition, (I - Uj)_l and (I - Tj)wl exist, as does Dgl = (I - Gj)_ldgl
dgl(I - Tj)_l. But d§i+l) = ng, so part 1 is proven.
We also have
2
| 18], = max o], < [E7] ], < 1,
J=l....,N.
i
2
[l = max ||Tj||l < e[l <.
S PN

Now, define

-1 -1
J = (-Dj Ej, 0, 0, 0, —Dj Fj),
_ -1 -1
K = (-Eij_e, 0, 0, 0, -Fij+2).
Since e€i+l) = E . s d€1+l) =D_., f(1+l) = F_., it is easily shown that
23 J 2] J 2]
. -
B, < Hally ena [P < JIx]] . ve also have
BS = (I - 8)J + 8, and C° = K(T - T) + T. Thus, for & = 1, ..., N.n,

115211, > 0, (8%) = p,(8) + p, ({1 - 8)3)
> pg(8) + 0,(3) - gy (8]0t

= p,(3) + p (832 - []J]],)

We now show by contradieticon that 1 > [{J||m. Suppose ||J|lm= l. For

1h



some %, we have |[J||DD = pR(J) = 1, and for this g, 1 > ||B2||Oo > DR(J)

= 1, a contradiction. Suppose |[J||m > 1. For some §, IIJ||00 = pl(J)>1;
using 1> p,(J) + 0, (S)(1 - [131].), we have 1 < Py (S}. But we showed

earlier that DR(S) < |[S|[Do < 1, s0 this is also a contradiction. Thus
1911, < 1 ena [|B°]], > pp(3) + p,(8)(1 - [|7}],) > p,(J). Since this holds for
each £, ]|32||Oo > ||J|[m, establishing part 4. A similar proof holds for

C, establishing part 5.
(1) (i)

Consider the vector x -y . We have

=1 (i+1} (i+1)
x) -y = -4 Gy -y )

_ (i) (i+1)

¥oy TV25 TXy T ¥y 2 d T e iy
.1 (i+1) (i+1)
o341 T Yoj41 T 'd23+1623+1(xj Yy )
-1 {(i+1) (i+1)
g fogn e~ ¥y )
j:la L) Ni"'l-l’
- i+ i+
xN - YN = leeN ( él 1) - (1 l)).
i i i+l i+l
Define z by
i (i+1) (i+1) (i+1) (i+1)
Zz = (09 1 - 1 H] ] xg - 2 EH Os s
(i+1 (i+1
) Yy ), o).
i+l i+l
i + i+
We have l[x(l 1) - y(l l)llm = |fz]|oo by construction. Alsoc by construction,

15



I|_X(1) - y(l)llm - max(lllx(i"‘l) - y(1+l}|lm, ||BZ|I00)'

(41 .
put [[52]1, < 11311, Vall, < el = 118 2y e

|]x(1) - y(1)||oo = |]x(l+l) - y(i+l)]|m. This proves part 2. Suppose

our approximation for incomplete cyclic reduction is ygk) = (d‘gk))_l ng)_ Then

(x)_ (k)

x(k) - y(k) =B 'x » SC ||x

R IR R T

.
o}

Q.E.D.

Remarks and Corollaries.

1. Forn=1 and A irreducibly diagcnally dominant, there is a

similar result, but now I|B(i+l)||Oc < II(B(i))2|| < 1. The example A

o]

= (1,2,1), for which |]B(i)||m =1,1i=0, ..., m=1, ||B(m)l|m = 0,

shows that striect inequality is necessary for incomplete cyclic reduction

to be effective. Note that ||B(m)||Oo = 0 for any A, since A(m) is enly &

single block.
T . . -
2. Let PAP” = LAU be the unigue factorization with A block diagonal,

L and U lower and upper unit triangular. (c.f. Section 2.) Then

In L there are at most 2m blocks

0)
oty < e <1 e [l

per row off tue diagonal, so ||L||_ < 1 + 2mm [|C .- Similarly,
. (0

Hull, <2+ enm 13 )

3. If B = |[B(O)l|oo <1, 0 < g <1, then

log2 £
k = max{C, min(m, 1082 log2 B ))
() _ 1 _.-20 . . -6 _ ,

guarantees ||B ||m <e. Ifg= S £ =2 =10 7, then k = 5 and we

16
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should have N > 32 for incomplete cyclic reduction to be applied.
In fact, ||B(5)||m <273 = 10_9'5, so the results of incomplete

cyclic reduction would be much better than required. In the case

n=1, ej = fj = e, dj = d, some improvements may be made 1n es-
timating the B 1 norms. Since HB(i)H00 = 2ef/d, E=F = -eE/d,

D=4 . Pe/d, we have ||B(i+1)[|m = 2E/D = ||B(i)|]2/(2 - ||B(i)}|2)
< ]lB(i)|]2. This observation has been made by Stone [7]. Since

2

x2/2 < x2/(2 -x7) < x2 for 0 < x < 1, k must be larger than

log2(E/2)
1082 log238/25
k
in order to have [|B( )||m < E.
L, Superconvergence does occur, as indicated in the proof. 1In

figure 1 we illustrate the errors by component for N =31, n =1, k =

3, A= (-1,4,-1), x, = 1. If the linear system arises from discretiz-

J

ing a continucus problem with the function values specified on the

m+]1

boundary, e.g., XO and x the choice N = 2 - 1 is very desirable.

N+1’
This is because the spikes in the error curve are as far from the

-+
boundary as possible. The choice N = 2" . is perhaps the least desirable,

as it places a spike next to the boundary. See also remark 8, below,
i k) . . X .
5. Since B( " is the matrix asscciated with the block Jacobi
iteration for A(k), [?], and ||B(k)||oo will be small, we may use this iter-

(k) (k) _ (d(k))-lvng

ation to improve the estimate y In fact, the choice yj

J J
is the iterate following the initial choice ygk) = 0, If y(k’o) is an
A (k) (k,i+1) (k),-1, (k) (k) (k,i) (k) (k,i)
approximation to x , and y. °’ = (d, (v. ' - e, NSO e
P Vi ( ) J j -1 i Vil )

17



loglO xj

- ¥,

J

-8

| | l l i L |

5 10 15 20 25 30 35
Component number j

Figure 1.~ Loglo ]xj - yJ| vs. J.
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enen 1) =y < e ) 5O Lk and 2

should be chosen to minimize computation time subject to the constraint
(0), 2%

||B ‘lw < ¢. Any of the other standard iterative methods may be

used in place of the Jacobi iteration. For related results using the

theory of non-negative matrices end regular splittings, see [4].

6. varah [8] uses the condition lid}l‘]([1ejll + ||fjll) <1,

'll an nxn matrix norm, to show that block Gaussian elimination in the

natural ordering is well-defined and stable. Let 6;1) = |l(d§i)}_ll|
(]Iegi)ll + l|f§i)|]}, G(i) = max Ggi). Using a proof similar
J

f 41
to the one given here, it may be shown that, if 6(0) < 1, then 6(1 1)
< 5(1)2. Again, an irreducibility condition may replace strict in-
equality, but for this case incomplete cyeclic reduction might not be
effective.
7. 1f A is symmetric, then C(l) = B(l)T, so that ]IC(I)Hl =

(1) i s o : (1) | o

]|B IIw. If A is positive definite, then since A is also positive

definite, the spectral radius of B(l) is less than 1,[9].

8. Consider the matrix

%4 31 “1
€2 4 £
A= ) o o ,w=2"
ep-r Y1 el
£y ey ay

19



and the lirear system Ax = v, This matrix form typically arises from
discretizing an elliptic equation with periodic beundary conditions.

If we medify the row operations of cyclic reduction to include

1

ROW(N) - e d“}lRoth - 1) - £ a  Row(1),

NN N1

it 1s seen that the reduced system has the same form as A, and again only

the even-indexed unknowns appear. The reduction may be continued until

(m) (m) _  (m)

we have A » @ block 2x2 system. Moreover, if B(l)and C(i) are

‘appropriately_redefined all the conclusions of our main result hold. The
proof is nearly identical. The superconvergence effects are only slightly
less dramatic.

9. In view of the Previous remark, there ought to be a more genersl

underpinning to the quadratic convergence Phenomenon.

(0)

Theorem. Let H be any matrix with invertible diagonal blocks. Define
D(l) = the block diagonal part of H(l),
FA DA pli)-1,(1)

_p(pm

=
|
—

o R O PO N EO P E T

If IIJ(O)]]w < 1 then HJ(iﬂ")[]oo < [fJ(i)ellw.

12 161901 < 2 tnen 3] < TS

Proof. Tote that 1'7) = pliler _ ;1) _ (1 - k') o glivt) |
D(i)(I - J(i)e) = (I - K(i)E)D(i). Let s(i) = the block diagonal part
ot 792, 21 L e bioek atagonal part of ()2 oo plitD) |

D(i)(I - s(i)) = (1 - p(H)ypd), Now, ][s(i)]lm §_|]J(i)2{]

ey, < petide

oo<l’

i+
||l <1, so D(l 1) is invertible. We have

20



S0z g gy, ()

NCSERIMCTD PR CO I CS

The rest of the proof is as before.

Q.E.D
In figure 2 we show the H(l) matrices for m = 3, starting with
0
H( ) = A, for both the blnck tridiagonal and periodic forms. In each
+1
case H(m 1) is block diagonal. For the first matrix, the (8,8) block

of H(3) has separated from the others in that there are no other blocks
(3)

in its row and column. This blnck, in fact, is A . For the second

matrix, A(3) is composed of the (8,8), (8,16), (16,8) and (16,16)

(3)

blocks of H . Cyeclic reduction, it is seen, computes only selected

(1)

rows and columns of the H
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Figure 2.- H
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