NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:

The copyright law of the United States (title 17, U.S. Code) governs the making

of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

SOME ISSUES IN PROGRAMMING MULTI-MINI-PROCESSORS

A. Newell and G. Robertson
January, 1975

Department of Computer Science
Carnegie~Me110n University
Pittsburgh, Pennsylvania

This work uas Supported by the Advanced Research Projects
Agency of the Office of the Secretary of Defense (F44823—79~C—8187}
and is monitored by Air Force Office of Scientific Research. Authors’

address; Department of Computer Science, Carnegie-Mei ton Universitg.
Pittsburgh, Pa. 15213.

SOME ISSUES IN PROGRAMMING MULTI-MINI-PROCESSORSs

A. Neuwell and G. Robertson

INTRODUCTION

Large computer systems can be constructed by joining together
many minicomputers ~= creating what can be cal led
multi-mini-processors, The first such systems are just reaching

the point where problems of programming and use dominate problems of
design and construction. This paper attempts to share some of our
early perceptions about what these problems of programming and use
are. It aiso ailows us to capture a historical record of cur current
vieuwpoint.

We are not the architects of the multiprocessors we wijll
describe. We are not even the primary systems programmers, who create
the operating system and operating environment within which the user
operates. We are users of the system. But we are not arms-length
users, as are the users of a typical university computation center.
For to use such a system one must indeed create a special programming
system on it., Thus we are, shatl we say, systems axploiters. We

are just coming deeply into contact With our muttiprocessor. We
find ourselves facing many issues of how to exploit the system and to
program it -- of how to make it yield to our wiit,

First we wjll sketch the multiprocessors that we are
concerned with. There are only two of them, and we, the authors, are
actually working on only one. With this as background, we wiii

discuss seven programming issues,

The role of minicomputers as components of multiprocessaor
systems is quite different from their classical role as laboratory

computers, Though some of these seven issues wuwill seem quite
familiar to those whose world is the on-line laboratory use of
computers, some of them will seem quite foreign. Hopeful ty,
houever, they will paint an interesting picture of a use of
minicomputers that wil| become increasingly common.

% This paper wnas given as an invited talk at the 13974 Conference on
the On-Line Use of Computers in Psychology.

MUL T1PROCESSORS

There are only two genuine multi-mini-processors, as far as
we know, though there may be others in design. A multiprocessor is
characterized not only by the existence of many processors, but by
the sharing of primary memory, i.e., the processors address common
memory. 1This sets them apart from networks of computers, which have
many computers, but where the intercommunication is essentially from
secondary memory to primary memory, j.e., each computer sees all the
other computers as peripheral devices. Multiprocessors permit a
degree of computational intimacy not available with networks.

C.MMP: THE CMU MULT1-MINI-PROCESSOR

C.mmp is the multiprocessor at the Computer Science
Depar tment of Carnegie-Mel ion University [Mulf, 1972]. As shoun in
Figure 1, C.mmp consisis of 16 PDP11 computers connected through a
crosspoint suitch to 16 primary-memory ports. Each primary memory is
2416 words, for a total memory of a million words. Each processor
sti}l looks fike a POPLl with a 16 bit word and an address space of
2415 words (actualiy, 2716 bytes). In fact, a modest modification
must be made to a processor to operate within the system.

Each of the processors can lay its address space anyuwhere in
the miltion words of the primary memory. 1t does so through an
address relocation box {(Umap in the figure), which breaks the address
space of the processor into eight 4,096 word pages. Thus the system
has a small number of large pages, each of which may be independent iy
relocated through Dmap.

Each Pc has its oun Unibus, the standard bus structure of the
PDP11. On this hangs 4K of focal memory as well as all the
peripheral gear of disks, drums, printers, and connections to the
external world. The last includes a connection to the POP18, which
is the large general-purpose time-shared computer system in the
Computer Science Department. As the figure shous, there is also a
jarge (B@-bit i-microsecond} clock (K.clock), uhich provides a common
reference frame, and an interrupt (K.interrupt) which connects all
processors. There is at the moment no suwitching betueen secondary
devices and the various processors. A disk, for example, is
permanentiy jocated with one Pc.

Not shoun in the figures is the ability to partition the
system, either dynamically or statically (manually}, so that it
consists of independent subsystems. Thus it is possibie, for
example, to have hardware maintenance going on at the same time that
a user system is operating Wwith other Pc's and Mp's.

The system, though made up of minicomputers, constitutes a
|arge computer. Taking processors to be 11/68s yields about .3 to
.4 million instructions per second (mips) per processor, for a total
of 5 to 7 mips. This compares approximately with an 18M 368/158.
There must be some contention for memory as the number of processors
increase, but this is not expected to be jarge (the Omap's for the

Mp 9
. Smp
.—-—
Mp i5
0 oee 15
Pc Dmap Pc Dmap
Mp Mp
—Kc Kc
r— T J —
] K.clock B
Kia g __ __ » Kia
K.innterrupt
. T ./

Figure 1: C.mmp Architecture

11/48s contain a cache).

The system has been operational in parts for some time. The
16x16 switch has been running since March, 1974, We currently have
five 11/28 Pc’s operational with 588K of memory. HWe do not have any
modified 11/48s.

PLURIBUS IMP: THE BBN MULTI-MINI-PROCESSOR

~ The second multi-mini-processor system, the PLURIBUS iMP
[Heart, 19731, has been developed by Bolt, Beranek and Newman to
serve as a high speed moduiar IMP linterface message processor) for
the ARPA computer network. Figure 2 shows its structure, . The
processors are Lockheed SUE minicomputers, which are 16-bit machines
with a 1B-bit word address, and which are about the speed of the
11/28. They have a bus structure which is similar to the DEC Unibus.
As shown in the figure, two processors are located on each bus, each
with 4K of local memory. Thus the figure illustrates a l4-processor
system, the maximum size for which the PLURIBUS [MP was designed.
{The number uwas determined by the application, not by harduare:
limits.} The primary memories come in 8K units With tuo units on each
memory bus. The switch is distibuted, untike the C.mmp which is a
monolithic device, Thus, links run between the buses of the
processors and the buses of the memories:; any pattern of access can
be obtained. As the figure shows, there are aiso /0 buses uhich are
Jinked in similar fashion.

An initial system has been running at BBN since mid-74. It
has operated with a range of configurations {up to the 14 shauwn). A
basic design objective was to create & nodutar series of IMPs, which
could be tailored to the processing load of the network node. Though
deliberately designed for a specific application, the harduare
structure is gquite general. It poses many of the same basic issues
we face on C.mmp, and the approaches taken on the PLURIBUS IMP offer
interesting contrast points with those taken on C.mmp.

PROCESSOR BUSSES (7)

POWER [BIC; [C, (4K | 4k [B]B]B
suPpLYaf ‘uf ‘uimem|mewm|S|SIC
POWER |8/Cn €5 [4k | 4k [B]E
suppLY|a| "l ‘U{mem|mem|S[C S
LE
POWER Baggecs cgak 8K
suppLy[alElelS o o SIS |G [MEM | MEM
POWER (B[C, |Co | ak [4k [E]B]B
supPLY|a| ‘yl i MEM|MEMS|EIC !
Llﬁ MEMORY
BUSSES
POWER|B|C, |C, | 4K |4k [B[8[B
Pip c|clc
supPLYia Tyl Gimem [MEm| S[S|C
(= roveR TSI E o o
B sUPPLY |aiclulc e Cle (SIS MEM|MEM
POWER |BIC, |C | 4k | 4k |B]B]B t
P ¢|cle
suppLY|a]) Flmem|mem] S[C|C
[_L
POWERBCP Co [4K 4Kggg
suppLy Al fy| B IMEM|mEM Tj,
PoweR|8[G; [c T4k 4,(,935
P clcle
suppLYjA| 'y | fy{MEM|MEM|S]CIC
LL
POWER (8(8(81881B1BIBI o [» Tg PoweRr [B[E|Bf ¢ | ¢ [PIR|T 1/0 BUS
cic
1/0 BUs [FMER “‘ﬁﬁccﬁﬁﬁ' (| 1je] [sueeeyiefslsl Tl T [exTENSION

S NN

Figure 2: PLURIBUS IMP
(Adapted from Heart, 1973)

ISSUE 1: HOW TO EXPLOIT A MULTT-MINI-PROCESSOR

The first issue is simply hou to exploit a multiprocessor,
since it is a large system in terms of power, memory and banduidth.
It has special structural characteristics, which are easy enough to
state, but not so easy to translate into performance consequences.

One might say there is no issue -- gimply use the machine.
But the question is not laid to rest so easily. Different
strategies of exploitation require that effort be spent in different
ways, thus precluding following alternative paths with any

efficiency. Indeed, the issue as posed makes it sound like the
multiprocessor arrived sui generis With the question of use fully
open. That is not the case. The exploitation strategy is chosen
before the design even begins and effects many of the structural
features of the sustem. The actual situation is more |ike making a
movie. Constructing the harduware system is like filming. Using it is
iike producing the movie in the editing room. The final editor is

free to make any kind of movie he wants, but he must work with the
film given him by the director.

There are three main strategies for exploiting
multi-mini-processors. We take up each in turn,

PROGRAM 1T FOR A SPECIAL TASK

The first strategy is to vieu the multiprocessor as 4a
specialized device created to do a specialized task. Harduware and
software are to be combined optimally to perform that specialized
task.

This in essence is the stategy followed by the BBN group in
designing the PLURIBUS IMP. The task existed ahead of time in a well
defined form -- the ARPA Net is a functioning system uwith a
minicomputer (the Honeywe!l 516 and 318) as IMP, and mwuch
experience, both statistical and qualitiative, has been gained with
the requirements for an IMP, What was needed was an efficient and
highiy reliable implementation that could be scaled to the task. All
this information existed prior to design time, and the software and
harduare were designed togsther in apparent total harmony.

The effects of this can be illustrated by what is surely a
striking feature of the PLURIBUS IMP -- it has no interrupt! There.is
no way in which an arbitarily ocecuring external signal can cause the
system to attend to another task. Since the interrupt uwas
introduced in the late Fifties, 1t has been considered as manadatory:
as [/0 channels. Abandoning the interrupt is an important design

decision.

The underlying rationale is very simple. The algorithm
to be programmed uas well understood and existed in code form before
the harduare design began. Detailed analysis of the program revealed
that it could be partitioned into segments that never take longer
than 3088 microseconds. Since the responsiveness of the system

fits the grain of 388 usec, all processes can run to compietion
without interruption.

Co-equal with the short program segments is the necessity of
getting new tasks assigned to a processor. [f this takes any
appreciable fraction of 388 usec, then the overhead defeats the
scheme. The BBN group developed a device called a PID (Pseudo
Interrupt Device). This harduare device holds a set of numbers,
corresponding to tasks, wWhich have bpeen given it at arbitrary
moments, The device instantly delivers (and deletes} the highest
number, corresponding to the highest priority task,

Interrupts take appreciable time (e.g., for changing
processing contexts), which is avoided by the PLURIBUS IMP, along
With a fair amount of operating system code, In fact, the system
does not have an cperating system in any general sense of the word.
The necessary functions are distributed carefully, such as by the
PID.

This seems highly special ized. Indeed, that is the point. If
viewed as a device to achieve a narrou, uell-defined total task, such
specialization is possible. Furthermore, though we know of no
estimates 'of the Ggains made to the PLURIBUS IMP by such
specialization, we sstimate that they are impressive.

As a finat footnote, the motive of specialization does not
condemn the results to be equally specialized, though that must be
the fate of most specializations. But the PID and the associated
concept of presegmenting the code into run-to-completion steps may
not be of such Iimited generality -- though it does pose an
interesting compiler problem.

STANDARD USER ENVIRONMENT

The second strategy is to view the multiprocessor as
providing a standard user environment, much as any other computer
does. Thus, when completed with operating system and user faciiities

such as file systems and language processors, the system will {ook no
different to the user than your local computation center, Only down
in the boiler room, so to speak, Will the multiprocessor design

become apparent.

Indeed the two specialized flavors of mul tiprocessors that do
exist in quantity are used in exactly this way. One is the use of
1/0 processors; the other is the use of dual central processars. In
both cases, they simply handle more efficiently the total set of
tasks that has to be done for a general user shop. An interesting
example of this is the COC BBB8 which has a large central processor
surrounded by ten miniprocessors. With feuw exceptions that we know
of, it shows up simply looking like a very pouwerful general computing
system.

With this view the real questions are the economics of
multiple smaller processors versus the single larger processor for

7.

obtaining a given number of mips per dallar. That is of course
aluways the question in computation, but here no specialization comes
from specific applications.

MULTIPLE SPECIALIZED APPLICATION SYSTEMS

The final exploitation strategy is to view the multiprocessor
as a system in which a number of specialized application systems Will
be realized, both simultaneously and over time, Each of the
application systems will be adapted to the structure of a
mul tiprocesser in order to take as much advantage of it as possible.
This is the vieu taken with C.mmp, and our discussion reflects
essentially the considerations that have arisen with respect to
C.mmp. ‘

First of all, this strategy leads to a general operating
system, since several applications will be running simul tanecus!y.
Even if we envision some "production mode" where one application
might dominate the system for a period of time, throughout most of
the |ife of an application system one is coding, debugging,
modi fying, developing and exploring. For this one neither needs nor
wants the entire multiprocessor. The operating system of C.mmp is
called HYDRA [Wulf, 1974); we Will describe some of its features
after introducing another important consideration.

1f¢ small address spaces {those of the Pc's) are to move
around in large memory spaces (that of the miliion-uord Mp), then
there must be a memory mapping. O.map (see Figure 1) accomplishes
this for C.mmp and BCP (see Figure 2} does so for the PLURIBUS IMP.

The important design guestion is the nature of that mapping. An
attempt to build a general user system leads to making that mapping a
general demand-paging scheme, Thus all addresses go through @

dynamic process of discovering whether the page is in memory and if
not bringing it into memory, translating the processor address into
the physical address in the memory. Thus has evolved the general
virtual machine concept in modern computing.

C.mmp does not have a demand-paging scheme (nor does the
PLURIBUS IMP). One reason arises from the strategic view under
discussion. Paging schemes are expensive {in time), more so than
simple relocation schemes. Thus, to put a paging scheme in the
harduware is to agree to make every user pay this cost. At this point
one has eliminated some of the important possibilities for
adaptation. For not only the cost goes up, but everyone uill be
subject to the same paging system with its particular cost profile,
whether it fits the needs of their particular system or not.

Thus what we find in C.mmp is a so-called "large page"
scheme, in which there are onily eight pages, each targe enough to
hold a substantial subsystem (4K words}. The use of this page system
is then left to the user. There is a cast, for insofar as paging is
necessary, it must be detected and executed by software. But in
return, we obtain the possibility of fitting the paging system to the
application system. That is, insofar as pages can be left in place He

X

(POLICY SYSTEM INTERFACE)

Direcfor File
ubsysfem Sysfern

Command
Interpreter

I/0
Subsystem

1 //

KERNEL INTERFACE)

%

KMPS

Figure 3: HYDRA System Organization

pay minimal addressing overhead.

HYDRA: The C.mmp Operating System. Let us now return to
describe the operating system, which has been designed in part With
the strategic choice of making multiple application systems possible.
There are several aspects to HYORA that strongly reflect this
strategu. One can be seen in its overal! system organization,
shown in Figure 3, There is a Kernel to the system, shoun in the
bottom part of the figure. This performs two essential functions that
cannot be delegated to subsystems. One is the protection and
security of the resources in the system. This is indicated in the
figure by the Global Symbol Table (GST Active and GST Passive, the
latter being the collection of those resource entities not currentty
in usel. The other is a basic multiprocessing system that
divides up the resources in a simple Way. This is indicated by
Kernel Multiprocessing System (KMPS), and by the processes that
manage the set of pages in core {CPS), a primitive 1/0 suystem (1/0},
and an interprocess communication system (MSGI .

Thus HYDRA allows different high-level operating systems,
called poticy-sustens, to co-exist. A policy-system has
associated with it a poiicy module which makes decisions for KMPS
about scheduling and paging, and a set of user facilities (e.qg.,
command interpreter, file systiem, terminal handling system). When a
user of HYDRA first logs into the system, he may request a particular
policy-system. In this uay, operating systems can be tailored to the
specifications of individual applications systems.

An application system: Speech Understanding., An illustration
of an application system will shou the reason for an entire
co-operating system, and also what it might mean to fit an
application to a multiprocessor organization.

A speech understanding system is a system that takes in an
utterance and determines the meaning of the utterance in the light of
a specific task context. Such systems are being constructed at
several places [Newell, 1373}. One of these efforts is at CHMU and
we are pursuing it independently of any interest in multiprocessors.

But we are also attempting to construct a mul tiprocessor
version for C.mmp, and it forms the initial application system.
Figure 4 shous the conceptual structure of this system, called
HEARSAY-2 [Lesser, 1974)]. The basic structure of the system revolves
around a global data structure {the blackboard} and a set of
cooperating parallel processes (the knouledge sources) . Each
know|edge source has expertise in dealing with some particular aspect
of speech understanding. A knowledge-source process is invoked when
some particular pattern in the biackboard is noticed (a
precondition). The knowledge source then deals uith data in the
blackboard and usually makes weighted guesses about what it has seen.
There is a controlling process that watches the activity of the

10.

SEMANTIC

PROCE SSES
SYNTACTIC
PROCESSES
BLACKBOARD
K
ENVIRONMENTAL
PROCESSES
PARAMETRIC
PROCESSES
INDUCTION MODEL

Data Directed
Information Gathering
Hypothesize and Test

Parallel and Independent

Deactivation Simple

LEXICAL
PROCESSES

FEATURE
EXTRACTION
PROCESSES

Figure 4: HEARSAY-2 Conceptual Structure

11,

varicus knowledge sources and uses the collectively weighted guesses
to eventually understand an utterance.

The HEARSAY structure lends itself to a direct decomposition
into parallel processes to take advantage of a multiprocessor
architecture. Each knowiedge source can be a seperate process and in
many cases multiple copies of a given knowledge source can be used.
Having several sources of knouledge simul taneously working yields
significant improvements in the time it takes to recognize an
utterance. This is particularly important since the ultimate goal of
such systems is to recognize speech in real time. The HEARSAY
structure thus allows for effective use of a closely coupled
mul tiprocessor where a large common data base can be sasily accessed
by a large collection of processes.

In a large system |ike HEARSAY, it may be necessary for
special scheduling algorithms or paging strategies to be amp toyed.
For example, the initial operating system puilt on top of HYDRA does
not provide for priority classes in scheduling. The large collection
of processes the make up’ the HEARSAY system may very well need to be
priority ordered to obtain the desired effects. The important point
s that HYDRA does allow for another operating system to co-exist
Wwith the initial one that most users Will use. Thus, ue expect
HEARSAY to develop and use its own operating system built on top of
HYDRA.

CONCLUSION - STRATEGIES

It is important to realize that pf these choices, nO
particular one is "right", Fach is an attempt to maximize the
payoff for specific, but different, goals. The first choice, that
taken by the PLURIBUS IMP, attempts to maximize the efficiency and
reliability for a specific task. With the second choice, that of
building a general computing environment, one is trying to find the
most efficient way to construct a certain environment. 1f
mul tiprocessors can compete for that environment, they can be an
implementation of choice and mul tiprocessers should be designed to
meet that demand. The third choice, that taken by C.mmp, attempts to
gain the advantages of specialization but over an unknoun range of
application systems. 1t must necessarily trade off some
possibilities of specialization against a system that can handie
several such applications simul taneousty. Similarly, it must trade
off the best scheme for general computing in order to permit
adaptations to occur.

Nor are the choices mutually exclusive in the sense that if
you choose X you are precluded from the same applications that choice

Y permits. Speech systems will he prought up on general purpose
systems. (We are creating a version of HEARSAY-2 on our PDP18.) We
uill be creating a general wuser environment on C.mmp, which will run

simul taneousty With our work in speech. And we would certainly not be
surprised to see the PLURIBUS IMP used for other applications quite
remote from the message processing task.

12.

13.
The choice of strategy does bias the application potential of
a given systenm. It gives reasons for making design choices

consistently so that the system adds up to something, at least along
some dimensions.

ISSUE 2: HOW TO GET ALL THE SOFTWARE

The second major issue is hou to obtain all the softuare that
is needed for such a system. By now we are al! aware that it takes
an immense amount of software to make a computer system livabie, In
practice such software only arises with the development of a iarge
and active user community, plus the continued efforts of the
manufacturer over several years. No general preaching on this fact
should be necessary in a minicomputer user community where neu
systems arrive from the manufacturer rather bare, despite advertizing
claims. '

The multi-mini-processors are composed from existing minis
(C.mmp from an extensively used system, the POP1l; PLURIBUS IMP from
a new machine, the Lockheed SUE} and programs exist for these minis
as stand-alone systems (many for the POP1l, fewer for the SUE}. Yet
these do not go very far toward satisfying the need. First, all such

systems must be reconditioned to work in a multiprocessor
environment. To do this in a way that explcoits the multiprocessing.
is a genuine system-programming problem. But further, these

multiprocessors are big systems 'with big memories and they can use
software systems commensurate with that power. All this adds up to a
major problem.

There are several approaches to obtaining the softuare. Even
more than with the strategy of exploitation, these are not mutual by
exclusive. In fact they form an armatorium and all shouid be used
{and pretty much are on C.mmpl}.

CODE 1T IN ASSEMBLY LANGUAGE

The first approach is to use the minimal tools provided by
the manufacturer. BBN has implemented the PLURIBUS IMP in this way.
A simple assembler was used for all programming. A straight-forward
ioader wuas used to transfer code to the machine. And finally, a
relatively simple debugging system was used. The debugging system
had no multiple-process capabilities, 1f the amount of softuare
that must be produced is small, this is certainly the quickest
approach,

CODE IT IN A HIGH LEVEL LANGUAGE

The main approach used by the implementers of HYDRA for C.mmp
was the use of a high level language -- BLISS [Wul £, 19711. BLISS is
an ALGOL-!ike system implementation !anguage Wwhich is available for
both the PDP18 and the POPll. it has an optimizing compiler that
produces object code which in some cases is better (more efficient)
than code produced by a system programmer using assembly language.
For larger softuare systems, it is desirable to use a high level
language. Such a language usual ly allows for much greater programmer
productivity and for systems that are much easier to assimilate and
maintain. In conjunction with the high level language, one generally
finds more elaborate relocating loaders and debugging packages. The

14.

BLISS debugging package, called SIXi2, allous for symbol ic debugging
of multiple processes, and for source language routine lavel
debugging.

There is little doubt about the success of this approach. Not
only is the operating system running, but we have some measurements
which shou the productivity of the HYDORA softuare team to be very
good, both in terms of number of debugged machine instructions per
man-month and in terms of the number of BLISS statements,

COUPLE TO LARGE COMPLETE MACHINE

If a large computer is connected ta the multi-mini, much of
the softuare development can be done using the convenient user
facilities of the large computer, Cross-assembiers, cress—-campilers,
elaborate linking loaders, a file system, and simulation packages can
alt be implemented and used more easily on a large computer than on a
mini. The HYDRA development made use of all of these capabilities
with a PDP1B that is connected to C.mmp. Thus a large computer
greatly simplifies the probiem of software development, This is
especially true in the early period when the harduware system is still
under development and somewhat unstabie,

But the key to making use of a coupled large computer is that
some of the software can he delayed or avoided altogether by using
existing systems on the targe computer. For instance, one can take
advantage of the file system on the large computer in liey of one on
the multi-minj. I'f the multi-mini also has a file system, files
could be transferred betueen the two, and the facilities used in the
large computer become more directly accessible to the multi-mini. As
another example, there are no immediate plans to create a BLISS

compiler on C.mmp. Use of a BLISS compiter on the PDP18 appears to

be stable and efficient. Ultimately, we wish to explore how to adapt
compilers to a multiprocessing environment; but the important point
is that such a project is completely off the critical softuare path,

GOOD-KERNEL HYPOTHESIS

There is an (as yet untested) hypothesis that if one builds
the kernel of the operating system correctly, the higher level
operating system facilities and application programs become much
easier to impiement. To some extent, HYDRA is the first test for this
hupothesis, If the HYDRA kerne!l has the right set of basic
facilities, building operating systems on top of it should be very
simple compared to building the same operating systems on the bare
machine,

The implementation of a file system is an example of this
phenomonon. HYDRA’s Global Symbol Table in conjunction with a simple
directory structure aflous one to maintain permanant storage of
simple objects. In order to build a file system on top of this, one
simply needs to define a peuw object, called “file", which contains
the representation of the file. The directed graph structure of the

15.

16.

TOOLS

Recognition
Print Compiler

Structure
Building

LANGUAGE
ENVIROMENTS

Macro
Assembler

External
Interface

Accounting

Space
Accounting

Breakpoint

Figure 5: L* Facilites

GST allows for easy construction of hierarchical file structures,
To build the equivalent hierarchical file structure on the bars
machine is a very time consuming project,

INTERACTIVE SYMBOLIC IMPLEMENTATION SYSTEM

Another approach is to use an implementation system that
provides a total operating environment within which one can build the
application system interactively. We have been experimenting with
such a system, calied L {Newel !, 1971), for several years, Figure
5 illustrates the kinds of facilities that are available to an L
user. The system has a kernel which provides an initial set of types
and facilities for manipulating each type. [t also provides three

initial languages which are used to construct a farge set of user

facilities (e.g., editors, debuggers, compiler, assembler). The ma jor
features of Ly that make it attractive are:
1) Lw is a total environment so that one need not rely
~on other systems to produce the required softuare.
2) L is completely accessible to the user to modify
and adapt to his own needs,
3} The surface syntax of the language is easily
modified by the user.
4) The system is interactive and built around a symbol
manipulation language.
One has much the same feeling as in a system |ike interactive LISP,
even though one is working on implementing extremetly basic systems
programming features.

We performed an experiment with Lwx on C.mmp during Aprii,
1874 [Robertson, 19741, A small team of programmers (varying
betueen one and three) was given the task of building a speech
pre-processor that would take input from a real-time audio spectrum
analyzer, sample the data, segment it into phonemes, and label the
segments; the result to be displayed in real-time on a graphics
display processor (see Figure B). The demonstration Has intended to
graphically illustrate the speed-up when more processors were added
to the multiprocessor system,

The experiment lasted for one month. UWe initially wanted to
run the L system under HYDRA, but were unable to because HYDRA uas
not yet ready for end users. We constructed a stand-alone L system
for Commp and within that system build the speech demonstation. ke
designed an interface between Ly and BLISS so that the samp |l er,
segmenter, and labeler could be written in BLISS., We also built a
specialized muttiprocessing system which had the unusual
Characteristic that it was not also a multiprogramming system. The
end result of the experiment was a demonstratable multiprocess speech
pre-processor. The important point is that a large amount of software
was produced in a short period of time by capitalizing on the
advantages of a good interactve symbalic implementation system.

17.

GDP
11

>GDP

TTY /

7

(o §-
\

\

N\

\

Mic—»ASA

Figure 6: April-74 Software Experiment

18.

CONCLUSION - SOFTWARE PRODUCTION

All the various approaches to producing requisite software on
a multi-mini-processor are important. Far each approach there is a
set of software tasks where it is better than any of the other
approaches. It is thus important that the multi-mini environment be
rich enough to allow the use of any or all of these approaches.

19.

1SSUE 3: SMALL-ADDRESS PROBLEM

The third major issue is how to teke advantage of the large
memory in a multi-mini With the small physical address space of a

mini. On C.mmp, - for instance, each processor can directly address
onty 32K words while the primary memory capacity of the system is one
million words. Anyone who Wants to grou programs larger than 32K
is forced to make serious design decisions about his programming
effort. Furthermore, since the large memory is available, targe
applications will be attracted to the multi-mini and the problem Wili
occur frequently. A large number of solutions have been suggested
and attempted. For small or well-behaved systems, there are
solutions that work well, However, for a large, dyramic

programming system, all the solutions considered so far tend to be
either restrictive or costly in overhead.

STATIC OVERLAYS

The most successful solution to this problem has been to
over lay pages using relocation registers (Dmap on C.mmp). HYORA and
the latest version of L both use this solution. The overlays must
always be in the same place to avoid address translation. I[f the
over lays contain only data, as in large arrays, there is no address
translation problem. However, most large programming systems have

data which contains many address references, and these must either be

overlayed statically or incur address translation costs. In any
case, code pages aiuways face the problem, This solution seems to
work well, particularly for small or wel i-behaved sustems.

However, there are cases .in Lwx and in some large programming
systems where code in an overlay attempts to access data or code in
another overlay which must reside in the same phusical addresses.

Static overlays prevent this from working correctly. The other
problem with this solution is the overhead incurred in changing
relocation registers, Large systems are likely to want to change

relocation registers freguently, thus making the overhead critical.

POSITION INDEPENDENT OVERLAYS

Another solution similar to the previous one is to wuse
over lays that contain position independent code and data. This frees
you from the restriction of aluays bringing the overtay into the same
physical location. The primary problem with this solution is that
position independent code and data tend to take more space, execute
more slowly, and be harder to produce. The solution assumes that the
under lying processor in the multi-mini allows for relatively low cost
position independent code (as does the POP1l}.

SOF TWARE DEMAND-PAGING

Another kind of solution is to provide softuare
demand-paging. This involves accessing data wuith "fat addresses",

20.

€.9., 32 bits of effective address that determine a page and an
offset within that page. It also invoives making any code that
€rosses page boundaries go through both demand-paging and address
translation. We tried this solution in an garly version of L%, This
solution takes more Space and has some position independent code
which is harder to produce. It also suffers from severe overheads for
the demand-paging and address translation. Its great virtue is that
it provides a truely general system; one uwhere the entire large
memory is directly addressable,

MIXED SOLUTIONS

The most promising approach appears to invoive mixing several
of the previous solutions. There are tuo basic ways to do this. One
method would start with a softuare demand-paging system (fat
addresses) and alfow for Some pages to be specialized {t.e., have
smal! addresses for efficiency). The other method would start with a
static overlay structure and build up mechanisms to alion for
arbitrary virtual addresses (pseudo-fat addresses). We are currently
Working with the latter of these methods. We have constructed the
latest L system with a simple static overlay structure. We are now
in the process of designing the mechanisms necessary for certain
facilities (e.g., compiler) to be able to access arbitrary virtual
addresses. The main problem now is to determine whether a large
application system |ike HEARSAY-2 can be decomposed into small
overlays that don’t need direct access to each other except on rare
occasions. It remains to be seen whether this solution is adequate
for large systems.

21.

ISSUE 4: PROTECTION

The forth major issue is protection. The style and amount of
protection in a muiti-mini operating system depends greatly on which
strategy is chosen for exploiting the multi-mini.

NO PROTECTION

The PLURIBUS IMP represents one end of the spectrum. The
decision to build a specialized system for a specialized multi-mini
led BBN to provide no protection at ali, The assumption here is
that there is only one application system running and it was bhuilt by
a small, closely-knit programming group. Every module in the system
must be aware of other modules and their conventions so that they
don’t get in each others way. There is also an assumption that the
system is small enough to be easily debugged. A module with a bug
could accidentally destroy another module. [f there are too many

modules {(or they are too complex), it may be very difficult to find

the incorrect module. This solution generally works well only for
small and wel!l understood applications. '

‘AUTHOR1 TY-BASED PROTECTION

At the other end of the spectrum, the decision to alliow many
(Unknown) applications to run, with program development occurring
simul taneously, leads to great concern Wwith protection, both betueen
users and betueen various processes being run by one user.
Protection can be vieuwed as a central issue of operating systems;
i.e., the control of resources, the distribution of the rights to use
these resources to various processes on 4 moment-to-moment basis, and
the guaranteeing of these rights. Most of the first and second
generation operating systems, such as the existing DEC systems
(TOPSTEN and TENEX) and the BN 05360, are so-called authority-based

systems. In these systems, protection is associated with the data
and not Wwith the processes accessing the data. This tends toward
crude categorization of protection (e.g., the familiar
read/urite/read-write distinction}, There are currently no

multi-mini systems that use authority-based protection, atlthough it
is clearly the alternative that would have been used a few years ago.

CAPABILITY-BASED PROTECTION

HYORA is a capability-based system, which means that it
associates rights to use resources with individual processes and not
With individual data. Capability systems permit much finer
distribution of rights, essentially on arbitrary processes. We are
only just beginning to see capabi | i ty-based operating systems, and
this aspect of HYDRA represents an independent research effaort.

HYDRA has an abstract view of the entities that can be
protected and the rights to manipulate these entities. Because of
this, it is possible to build higher level protection into

22.

special ized subsystems, This is another aspect of the HYDRA design
that reflects the basic exploitation strategy of multiple speciatized
application systems.

There is a subtie disadvantage with capability-based systems
that we are learning the hard way. You generally must do much
planning in a session to insure that you uwilt have ali of the
capabilities you need, [f your program has a strange bug and you
don’t have the proper rights or capabilities, you may not be able to
explore the bug. At this point, we lack the experience uith HYDRA to
know whether the advantages of such a protection system outweigh the
disadvantages or not.

General ty, there is a computing cost associated with
protection and the more protection, the higher the cost. This leads
the wuser of an over-protected system to find Hays of avoiding the
protection mechanisnms. However, with an under-protected system, the
user tends to lose much work when something that belongs to him is
destroyed by someone eise. He also tends to lose time trying to
debug compliex systems when the various parts of the systems are not
protected from each other, Finding the correct balance of protection
is both important and difficult, and we expect this issue to become
more visible as C.mmp gets more and more use,

23.

1SSUE 5: TIME-CONSTANT PROBLEM

The fifth major issue has to do with the time constants for
basic functions that must be performed on any multi-mini-processor.
This is actually a class of problems, one for each application system
against the pattern of basic time constants. For this reason ue
cannot enumerate general alternatives, but must select illustrative
issues that arise for particular examples. The important point is
that the time constants have an immense influence on programming
style and system design.

Consider tuo basic uays of building a large programming
system: 1) have one process that has many overliays and does a great
deal of relocation register changing: or 2} have many small processes
that communicate with inter-process communication and don’t ever
change relocation registers. In HYDRA, relocation register changes
are about an order of magnitude faster than inter-process
communication, so the correct choice is the first way. Functional iy,
many intercommunicating processes may be the preferred wWay to
organize the systenm, but the time constants preciude it. The time
constants may have wore impact on design decisions than the
functional characteristics of the operating system.

Another example of this problem has to do With prevention of
deadlocks, a pervasive problem in all muitiprocessor systems. The
HEARSAY system wWwishes to have a large data base shared between many
processes. In order to prevent a process from having the data it is
working With changed by another process, semaphores are used to build
jocking structures around relatively small pieces of code.
(Semaphores are a standard device to aveid interference betueen
processes; they are flags that indicate whether an object, e.g., a8
piece of code or a piece of data, is in use by anaother process.) The
probiem is that the operations on semaphores that HYDRA provides are
much too slow relative to the frequency of use and size of code they
are locking. Because of the time constant, we had to build another
leve! of semaphore that would onty make use of the HYDRA semaphore on
rare occasions. This is an example of a functional capability that
could not be used because of the time constant problem,

Another place where the time constants become critical is in
real-time appl!ications. The basic functions like context swap,
relocation register change, inter-process communication, and
interrupt hand!ling take much more real time on a mini than on a large
computer. The difference can be attributed to the differences in the
raw processing power and in the complexity of instruction sets. When
these differences are taken into account, the relative overhead on a
mini and a large computer are about the same. However, the real-time
overhead becomes critical when doing real-time computation, or when
minimizing terminal response time.

The time-constant problem thus comes doun to understanding
the time constants and their relationships With respect to a given
application system. This understanding is necessary if the
application system is to make effective use of the multi-mini. The
problem exists in all computer systems, of course. But it is much

24,

more critical in systems with highly flexible and general operating
systems (such as HYDRA). Such eperating systems provide functional
Capabilities of great power and elegance, but the time constants
often deny their usa. The situation is especially critical in
multiprocessors where exploitation of the system requires Horking
With many processors in some coordinated scheme., This can oniy be
done by working through the operating system. It is almost impossible
in a multiprocessor to avoid the time-constant problem by Withdrawing
to your own world to avoid interaction Hith the operating system.

25.

1SSUE 6: RELIABILITY

The sixth major issue. s total system reliability.
Multi-mini-processors are complex, and much can go Wrong in both
hardware and softuare. Also, the harduare that provides for

mul tiprocessing provides redundency, Hhich 1f exploited can permit
more flexibility in recovering from harduare failures. Because of
these factors, reliability plays an important role in all
multi-minis. Thers are several Knouwn approaches to the
retiability problem.

CRASH AND DUMP

The most common approach in gexisting large computer operating
systems is to bring the system to a grinding halt uhen a failure 18
detected., The system is usually dumped at this paint so that system
maintainers can try to determine what caused the failure. Then a
fresh copy of the system is brought up. The obvious flauw With this
strategy is that all users lose their current run, 8ven if the
failure would not have otherwise affected them. This approach is
slowly disappearing as more experience is gained with smooth recovery
from failures.

AMPUTATION AND EXTERNAL BACKUP

The * PLURIBUS IMP stresses reliability as its most important
attribute. Their system is highly modular and redundant. Every
structure in harduare and softuare is isolated and duplicated. The
system makes periodic validity checks and amputates any structure
that appears suspicious. [f the amputation causes some data to be
lost, an external backup provides the data to be dealt with again,
The interaction between an IMP and the ARPA Net invalves much
handshak ing. When data is accepted by an IMP, it acknouledges the
reception. If no acknow!edgement is received within a certain time
frame, the data is sent again. In this way, data is distributed
across all IMPs in the network. Thus, the specialized nature of the
application, in this case the ARPA Net, provides an external backup
for lost data, no matter Wwhat the cause for the loss. This permits
good soclutions to the loca! reliability problem.

The reliability of the PLURIBUS IMP is so high that the
first time the system was ever brought up they discovered that the
only way to stop it was to pull the plug on the whole suystem. Since
then, their system has groun to be one of the most reliable knoun to
us.

RECOVERY BY RECONSTRUCTION

The nature of reliability on C.mmp and HYDRA is qui te
different but still very important. The stress in HYDRA is on
recovery after a failure has been detected. C.mmp does not have the
kind of backup that PLURIBUS IMP has with the ARPA Net. The method in

26.

HYDRA is to maintain a global symbol table (GST} which contains
information about every structure in the system, The GST s
maintained so that any destroyed structured can be recreated,
including parts of the GST. To detect failures, the harduare has
been modified to do parity checking and the softuare maintains
checksums of ali critical structures, In addition, whenever an error
is detected while running a user system, the error information is
Passed back to that system, Thus, the end user can build reliable
application systems. HYDRA' s reliability is sti|] under research and
its success has not been fully determined.

PARTITIONED SYSTEMS

Another aspect of reliabiiity in C.omp is the ability to
partition the system into several smalier systems. This alious
concurrent system deve|opment, general user facility use, and
harduare maintance and deveiopment, The PLURIBUS IMP can also be
partitioned, but only by recabling. The C.mmp partitioning is
controlled by swijtches and is changed on very short notice (a couple
of minutes). This ability is being used on a day-to-day basis to aid
is selecting a stabie configuration of C.mmp. We also use jt
freguentiy to allow several groups to work independentlg.

27.

[SSUE 7: PERFORMANCE EVALUATION

The last major issue is hou to analyze and evaluate the
per formance of running systems on a mufti-mini-processor. This issue
is perhaps the least understood of all of the issues. Programmers are
notoriousiy wrong in guessing what their programs are actual ly deing
and where the time is really going. There s reason to believe that
on a multi-mini, the problem is going to be much, much worse. The
decomposition of aigorithms. to take advantage of paraliel processing
‘g currently a rich research field. Imagine hou difficult it will be
to determine the dynamic characteristics of several cooperating
paraliel processes.

Traditionally, the analysis of performance aof a computer
system or a program is undertaken as a study. Often this study is
primarily of academic interest, though sometimes with a vied to
balancing the computer system or making the algorithms run more
efficiently. Houwever, e believe that for mul tiprocessors there Will
be a major shift in emphasis of performance evaluation from analysis
tools to operational tools. They wWill become as important to 2
muitiprocessor user as the traditional debugging tools.

The solution to the problem on C.mmp has been to start a
research project on a harduware device, called a harduare moni tor
[Fuller, 19731, which will allow us to measure speci fied kinds of
activity on one processor’s bus. This device, wused in close
conjunction with software in HYDRA, should give the user a chance of
obtaining the dynamic job statistics he needs to analyze the
per formance of his programs. e also hope to use the device to help
understand the real performance characteristics of HYDRA in order to
improve system per formance.

An example wuithin HYDRA illustrates the use of the harduare
monitor. We have a real-time device that connects C.mmp to the roP18.
We recently discovered that characters uere occasionally being lost,
presumably because HYDRA was running blind to interrupts for too

long. We wuere able to verify this with an oscilloscope. Houever,
e have not been able to find the code in HYDRA responsible for the
excess blind time. We expect the harduare monitor to be able to

isolate the offending code. The important point is that a mutti-mini
is so complex that neu techniques must be developed to aid in
per formance gvaluation.

28.

CONCLUSION

Though other programming issues could be discussed, seven is
all anyone should be calied upon to remember. Let us sum up.

We believe that multi-mini-processors such as C.mmp and
PLURIBUS IMP will come to provide a substantial amount of
Computational power, Although the technical capabitity for
creating multiprocessors has existed for quite awhilie, only Wwith the
development of the minicomputer {and now the microprocessor) has the
cost-benefit structure pointed to multiprocessors as an impor tant

technical solution. As a result we know aimost nothing at this
point about the actual Programming and use of genuine
multiprocessors, ive., those where the multiprocessor structure is

sufficiently general and available to affect the structure of
apptication systems,

Several of the issues we have discussed fn our list, e.g.,
how to get all the softuare, protection, reliability, and per formance
analysis, are pel| recognized problems and are subject to intensjve

independent research. The work with multiprocessors gives them a new

twist, however, raising to consciousness aspects that are of f{ittle
interest in other kinds of systems. Though sti|| speculation on our
part, performance analysis as a real-time dynamic debugging tool
represents a new worid.

Tuo items on our list, the smal |l -address probiem and the
time-constant problem, do not represent areas that are well explored
in computer science. We have seen no solutions to the underiying
Programming issues in the literature. Both items seem critical and
worthy of considerabie attention.

The smal | -address probiem seems inherent in mulitprocessors

built with mini- or micro-computers, Possibly the problem wili be
solved by avoiding it. Some new minis are appearing on the market now
Hith Jarge physical address spaces but maintaining the other

attributes of a mini. However, a large address requires many bits,
both in memory to retain it and in banduidth to communicate it,

We might point out to Psychologists that the probiem ig in
essence faced by a population of intercommunicating humans, No one
has internal symbols (i.e., addresses) designating alil the things
that all individuals designate internally., That is, they do without
'arge addresses in the harduare. Instead they use language, which
is a set of software-maintained large addresses, for their
intercommunication. They continue to think their private thoughts in
separate representational wor!ds. Thus the problem of communicating
With small addresses s a fundamental one not restricted to the wor | d
of multi—mini—processors.

The time-constant problem seems critical if wue are to nake
effective use of multiprocessor architectures, We must
understand what various patterns of relative and absolute time
Cconstants imply for the processing systems built on top of them. Only
then can wue design multiprocessors ujth a balance between their

29.

functiona!l capabilities and the dynamic capabilities {i.e., the speed
Wwith which they carry out various functions). What can be done within
a system which has already been designed is still guite unclear. Some
overheads, such as suapping time, are built into the harduare.
Others, such as protection, may be subject to ingenious trade-offs
between flexibility and computing cost (for checking protection). For
example, one can think of compiling out restricted protection schemes
so that a minimum of checking has to be done dynamical ly.

lie have attempted to expose 4 set of programming issues that
we have encountered in beginning to use a multi-mini~-processor. We
confess our fundamental ignorance of the correct formulations -- to
say nothing of the correct solutions -- for most of these problems in
this neux environment. Perhaps these will no longer look |ike the
impor tant problems after we obtain more exper ience. That experience
is now enveloping us day after day.

30.

REFERENCES

(Fuller, 1973]
S.H. Futler, R.J. Swan, and W,A. Wulf
The Instrumentation of C.mmp: A Multi-Mini-Processor
Proceedings of COMPCON 73, New York, N.Y., March 1973,
pp. 173-178

[Heart, 1973)
F.E. Heart, S.M, Ornstein, W.R, Crouther, and W.B.: Barker
A New Hinicomputer/ﬂultiprocessor for the ARPA Network
Proceedings of the National Computer Conference, 1973,
pp. 529-537

[Lesser, 1974)
V.R. Lesser, R.D. Fenneil, L.D, Erman, and O.R. Reddy
Organization of the HEARSAY] Speech Understanding System

Proceedings of the [EEE Symposium on Speech Recognition,
Aprii 1974, pp. 11-21

[Newel |, 1971]
A. Newell, P, Freeman, D. MeCracken, and G. Rober tson
The Kernel Approach to Building Softuare Systems
1978-71 Computer Science Research Review
Cargegie-Mel lon Univ,

[Newel!, 1973)
A. Newell, J, Barnett, J. Forgie, C. Green, D. Kiatt,
J.C.R, Licklider, J, Munson, R. Reddy, and W. Woods
Speech Understanding Systems: Final Report of a Study Group
Pub. by North-Ho!land, 1973

(Rober tson, 1974)
G. Robertson, A. Newell, and Q. McCracken
On Doing Softuare Experiments
1873-74 Computer Science Research Reviewu
Carnegie-Mel ion Univ.

lWutf, 19713

Communications of the ACM, December 1971 ‘
See aiso; "BLISS-11 Programmer's Manual!", DEC, December 1972

Wulf, 1972]
W.A. Wulf, and C.G. Bell

C.mmp -- A Hulti—ﬂini-Processor
Proceedings AFIPS 1972, Fucc. Yal. 41, AFIPS Press,
pp. 765-777

Wul f, 1974)

W. Wulf, E. Cohen, W. Coruin, A, Jones, R. Levin,

C. Pierson, and F. Pollack

HYDRA: The Kerne| of a Multiprocessor Operating System
Communications of the ACM, Jdune 1974, pp. 337-345

31,

