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Abstract 

We consider the problem of finding the minimum number K(n,c) of total switching 

functions of n variables necessary to cover the set of all switching functions which are 

specified in at most c positions. We find an exact solution for K(n,2) and an upper bound for 

K(n,c) which is better than a previously known upper bound by an exponential factor. 
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1. Introduction 

The problem considered here can be stated as follows: 

P I : Given the set F of all c-specified boolean functions of n variables, i.e., all 

functions which are specified in at most c positions, to find the cardinality 

K(n,c) of a set G of total functions such that 

P l - 1 : For all f in F, there is a g in G such that g covers f, Le., if f(x) is • 

specified then g(x) » f(x). 

P I - 2 : K(n,c) - |G|, is minimal. 

This problem relates the number of additional exterior connections (besides input 

and output) that are required in a circuit which is to be c-universal. (A circuit is c-universal 

if it is capable of simulating the behavior of any partial function which is specified in c or 

less points of its domain.) 

This problem was studied in [1] in connection with adaptive networks, where an 

upper bound for K(n,c) was shown to be 

K M * *( PTK&> 
k 

where m « 2 n , p • |c/2J mod 8, £> » m+1 -c 

This upper bound agrees with the exact solutions for c«l (i.e., K(n,l)=2) and 

c « 2 n - l (Le., K (n ,2 n - l )=2 2 n " 1 ) . For c=2 we have S=2n-1 and, for any n > 1, p=l so 

K(n,2) < I ( ijjfan-i) W *?+( | S - 2 n • 1 

and in general, for small c, this bound is of the order of 2 n c / 2 . 

I n this note we show that for c»2, K(n,2) » 0(n) and present an upper bound 

which, for fixed c is a power of n. 
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2. An Exact Solution for K(n,2) 

Consider the following problem: 

P2: Given n and c, find the dimension s(n,c) of a vector space over GF(2) such 

that there is a set P of at least 2 n vectors in it satisfying: 

P2-1: (V P l ,p 2 , . . . ,p c ) < P, (Vb l 9 b 2 9 M 9 b G ) < {0,1}, P j b l p 2
b 2 ... P c

b c * 0 

P2-2: s(n,c) is minimal 

Notation: We will use the following convention 

1) (Va,br..,z) S M means for all elements a,b,...,z in M. 

2) p b « if b « l then p else ~p 

The first result we present shows that essentially, PI and P2 are equivalent 

problems. 

Lemma U For all c > 1, K(n,c) « s(n,c). 

Proof: We show that any solution to PI satisfying PI-1 is a solution to P2 

satisfying P2-1 and conversely. This implies that the minimality conditions are a!so satisfied. 

Let G - fel>S2>->SK(n,c)} b e a s o l u t i o n t o P 1 satisfying P i - h Consider the set 

P - I p M - f e ^ ^ t x W K ^ c j W J I x < {0,1 } n } . Let x,y i {0,1 } n with x * .y . Then 

p(x) » p(y) - > (Vg) $ G, g(x) - g(y). But since c > 1, this implies that there is a c-specified 

function f with 0 « f(x) * f(y) * 1 which is not covered by any g t G which is a 

contradiction. Thus p(x) * p(y), which shows that |P| • 2 n . 

Assume now that there are c different elements pj,P2>~>Pc in P such that, for some 

b l f b 2 , . . . ,b c < {0,1}, P ! b l p 2
b 2 . . . p c

b c * 0. Let Pj * p(Xj) - (8i(Xj),g2< xj>»-*K(rv:) ( xjM f o r 

some n-tuple Xj f {0,1 } n . Let f be a c-specified function such that f(xj) - b j for j - l,2,~.,c. 

Since p 1
b l p 2

b 2 . . . p c
b c = 0, for each k = 1,2r..,K(n,c), there is a j , 1 S J £ c such that 

g k(xj) - 1 -bj . Thus, for this value of j we have gk(xj) * f(Xj) so g k does not cover f. Since 
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this holds for all k, we have that G does not satisfy Pl -1, a contradictioa Thus, P2-1 is 

satisfied. 

Conversely, let P be a set of 2 n s-dimensional vectors P • {p0,Pi,P2>~>P2n-l) 

satisfying P2-1. Consider the set G « {gi>g2>->gs} °* b o o , e a n functions of n variables 

defined as follows: 

For each 1 < j < s, (Vi) i {0 , l r . . ,2 n - l } , gft&i* (l2>2' ™ t&r) s (Ppj w h e r e ¡2 

denotes the binary representation of i with n bits, ( ^ denotes the r-th bit and for an 

s-dimensional vector p, (p) r denotes the r-th component. 

Let f be a c-specified function of n variables. Without loss of generality, assume 

that f is specified at ( ^ J j i (l2^2» ••• f° r ' s 0j 1 >—>c-1 • We claim there is at least one 

g which covers f. Define, for i = 0,l,...,c-l, bj • f((ig) 1 > («2^2» - ^ 2 ^ - ^ i n c e ^ s a * ' s f ' e s 

P2-1, p 0
b 0 p i b l . . . p c _ j b c - l * 0. Thus, there is a j < {l,2 r..,s} such that, for all 

i * {0 , l , . . . ,c- l} , (pj^iJj • 1. (Note that Pjbi is either pj or its complement, and this means 

the j - th component of this vector is 1.) This means that (pj)j = bj. By the definition of bj 

and the definition of G we have 

gj((l2)l> (12)2' - »02 W * fKl2h> (i2}2> - ' ^ n * 

for all i £ {0,l , . . . ,c-l}. Thus, gj * G covers f. This completes the proof of Lemma 1. | 

Now we focus our attention to Problem 2. In what follows, we assume s is 

restricted to be even and we will show that K(n,2) can be determined exactly (to within 1). 

We first prove an auxilliary result. Since P2 can be interpreted as: Find the smallest s such 

that there are at least 2 n points in the s-cube satisfying P2-1, we will now show that the 

search for points in the s-cube satisfying P2-1 can be reduced to the set of all points in the 

middle plane (i.e., having weight s/2). 
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Lemma 2 : Let c • 2, s be an even positive number, and P be a set of s-dimensional 

vectors satisfying P 2 - 1 . Then, there is a set Q of s-dimensional vectors, each of which has 

weight s/2 and such that |Q| « |P|, satisfying P2-1 . 

Proof: We can assume, without loss of generality, that all vectors in P. have 

weight £ s/2. (It is clear that changing a vector by its complement in any set satisfying 

P 2 - 1 also produces a set satisfying P2-1. ) I f all vectors have weight s/2 we have proved 

the lemma. Assume then that P contains t vectors pj,P2,».,Pt with maximal weight u > s/2. 

We will construct a set P* such that all vectors in it will have weights w such that 

s/2 < w < u. Since u - s/2 is finite this will prove the lemma. 

Choose any set of t vectors q j ^ f - r f t ^ e P r oP e r*y that qj < Pj f ° r • B l|2,...,t 

and such that the weight of each qf is u-1. 

Claim: The set P » P U { q j ^ j - j q t } " {Pi>P2>~>Pt} ' s ^ e r e q u , r e d set. 

To show the claim, we first note that there are always t vectors qj as above. This 

follows directly from the relationship which exists between points in the s-cube. 

Next we show that for any pj, j « l,2 r..,t and for any p b , p « P - {p|iP2i-iPt)s 

w(pjpk) £ 2, where w(p) denotes the weight of a boolean vector p. This follows because 

w(pjp b) - w(pj) • w(p b) - w(pj+pb) > u • (s-u+1) - (s-1) - 2. We then have that 

w(gjP b) * w(pj(~aj)pb) = w(pjpb)+w(-aj) - w(pjpb+-aj) > 2 • (s-1) - s = 1 and so 

g jp b * 0. (Here aj is an atom such that aj < pj and qj * Pj(~aj).) Similarly, 

w ( - q j p b ) = w((-pj+aj)p b) = w(~pjpb+ajpb)> w(~pjpb) > 1. 

This means that any vector q and any vector in P - { p ^ P f } satisfies P 2 - 1 . 

Clearly, any two vectors in P - {pj,...,p t} satisfy P2 -1 , so it remains to be shown that any 

two vectors in {qi,q2r->qt) satisfy P2 -1 . 

We have w(-qj ~qj) » w((-pj+aj)(~pj*aj)) £ w(~pj ~Pj) £ 1. 



Also w(~qjqj) £ 1 since qj + qj and w(qj) « w(qj) > s/2. Finally, 

w(q ;qj) - w(pj(-aj) Pj(-aj)) « w(pjPj) • w(~aj~aj) - w(pjPj*~aj~aj). 

Since w(pj) « w(pj) * u > s/2, 

w ^ p j ) « w(pj) • w(pj) - w(p^pj)> (s/2*l) * (s/2+1) - (s - l ) « 3 

So w(qjqj) > 3 • (s-2) - s « 1. This completes the proof of the lemma. | 

Lemma 2 makes the conditions in P2-1 to reduce iu 

(Vpi,P2) < P) P1P2 * & and ~pj~P2 * 0 

(The other two conditions which imply pj < P2 or P2 < Pj are satisfied trivially if 

w(p j ) • w(p2-)). But these conditions are equivalent to saying that pj or p2 are each the 

complement of the other. Since the maximum number of points with weight s/2, satisfying 

this condition is 

1 /2( we have shown: 

Theorem U The solution to problem P2, for c=2, is given by s satisfying 

s « m i n [ l / 2 ( s ^ 2 ) > 2 n ] . 

I 
Since 1/2 ( s

s
/ 2 ) * * —W . s » 0(n) 

S / 2 (2ns) 0 - 5 

Thus we get K(n,2) * 0(n) as was to be showa 

3. A Polynomial Bound on K(n,c) 

I n this section we will show that for each c, K(n,c) grows not more than with a 

polynomial of n, namely K(n,c) < 2 c n c " 1 . This is a substantial improvement over the 

previously mentioned bound. To obtain this bound we will construct a set G of functions 

satisfying P l - 1 . The construction is a modification of one suggested to the author by R. 

Rivest who pointed out the existence of polynomial bounds for this problem. 
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Let U and V be sets of functions of n-1 variables. Let U x V be the set of functions 

of n variables defined as U x V - {f|3u (. U, 3v < V, V (b 2 , - , b n ) € { 0 , l } , 

f(0,b 2v . . ,b n) - u(b 2^.,b n) , f ( l ,b 2 r . . ,b n ) = v(b2,.„,bn)}. Note that |UxV| = |U||V|. Let 

U » {uj,u 2,...,Up} and V « (vj,v2^..,Vp) be sets of functions of n-1 variables with 

p • |U| • |V|. Let U • V be the set of p functions of n variables defined as 

U * V - {f i|V(b 2 ,b 3 , .„,b n)({0 ,l}, f i(0,b2 >... )bn) - U|{b2„b n), f s(l,b 2,„.,b n) - v ^ , . . . ^ ) } . 

Let G(n,c) be a set of functions satisfying PI-1 for some n and c G(n,c) can be 

constructed as follows: 

1) Find all G(n-l,d), for d - l,...,c. 

c-1 
2) G(n,c) = {G(n-l,c) • G(n-l,c)}U U G(n-i,k) x G(n-l,c-k). 

k=l 

The following is an immediate consequence of this definition. 

Lemma 3: The set G(n,c) constructed as above satisfies Pl -1 . 

From the above construction we get the following recurrence for K(n,c): 

K(n,c) £ K(n-l,c) • I K(n-l,k). K(n-l.c-k) 
l<k<c-l 

Using this recurrence we now show 

Theorem 2: K(n,c) S 2 c n c _ 1 . 

Proof: For c=l we know K(n,l) » 2 so the theorem holds. Assume the result holds 

for all values of the second parameter less than c. Then, using the above recurrence, 

K(n,c) S K(n-l,c) • I 2 k ( n - l ) k _ 1 .2C-Hn-Uc*~l 

lSkSc-1 

Since the term inside the summation does not depend on k we get a new recurrence: 

K(n,c) S K(n-1 ,c) • 2c(c-1 )(n-1 ) c ' 2 ,so 

K(n,c) S 2 c(c-1) "i1 f 2 < 2 c(c-1) (n-1 ) c " 1 /(c- i ) S 2 c n c " 1 

H 
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which proves the theorem. I 

Since the number of control lines to select any of the K(n,c) functions is log K(n,c) 

we get as a corollary: 

Corollary h The number of exterior connections (besides those used for input) to a 

c-universal circuit is no more than (c-1) log n + c. 

Conclusions 

I n this note we have reexamined the problem of the number of exterior connections 

needed to control a circuit which is to be c-universal. For c • 2 we have found an exact 

solution and shown an upper bound for this number in the general case. The small bound 

found (of the order of c log n for the number of exterior connections) makes the 

implementation of these circuits very practicable. 
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