
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

INTELLIGENT SYSTEMS:

A BRIEF OVERVIEW

Aaron Sloman

1983

Cognitive Science Research Paper

Serial No: CSRP 02 7

The University of Sussex,
Cognitive Studies Programme,
School of Social Sciences,
Falmer,
Brighton BN1 9QN

INTELLIGENT SYSTEMS: A BRIEF OVERVIEW

Aaron Sloman
Cognitive Studies Programme

University of Sussex
Brighton England

NOTE:
This is a slightly modified version of a paper written for a study
group set up by the Science and Engineering Research Council and the
Department of Industry in October 1982.

This paper, like many others produced in Britain during 1982-3 uses
the initials fIKBSf to stand for 'Intelligent Knowledge Based
Systems*. My personal view is that what people were really concerned
with would have been better described as 'Applied Artificial
Intelligence'. There were historical reasons why some supporters of
AI were afraid to use the term 'Artificial Intelligence* in Britain.
However, it has since become clear that there was no reason for the
fear, and the barbaric mouthful 'IKBS' remains merely as an
embarassment.

The original remit of the study group was to investigate
architectures required for IKBS. The group soon decided that there
was little of interest worth saying about architectures in general,
and broadened its discussions, ultimately producing a set of
recommendations on how to fund research in AI.

This paper was included in the annexes to Volume 1 of the report:
lnteX)Agent. Knowledge Based Ŝ ŝ temis: A Programme for AjCtjxm In The
UK' published by the SERC and Dept. of Trade and Industry in 1983.
The report is available from I.E.E.

This version of the paper has a number of minor changes, to enable
it to be read in isolation.

Introducti on
The study of intelligent knowledge based systems (IKBS) is now widely
acknowledged to be of crucial importance for the future of Information
Technology. As computing systems become increasingly powerful and
complex they will need to be given knowledge and intelligence, both to
make good use of the new power in performing complex tasks, and also to
enable people to instruct, control, interrogate or modify them:
significant improvements to the man-machine interface will require
machines sharing human knowledge and reasoning powers.

This document is an attempt to characterise the field. It builds on the
working papers presented by Alan Bundy, Yorick Wilks and myself to the
SERC IKBS workshop on Jan 6-7 1983, and on submissions by other
participants. It also builds on some aspects of the papers submitted by
Karen Sparck Jones to the Alvey Committee. It is intended to summarise
matters which are widely agreed by workers in the field, but it suffers
from having been produced in too short a time, and inevitably describes
the field from only one of several possible viewpoints: so omissions and
errors are to be expected. The paper can therefore, at best, have an
illustrative function rather than a definitive one.

A.S -1- March 28 1983

Version-4 Page 2

Although the study was originally meant to characterise architectures
for IKBS, several contributors to the study argued that it was not (at
present) possible to attempt a general characterisation of such
architectures, partly because there are already too Htany different
architectures being explored with no common pattern emerging, and partly
because we don't yet know enough to give a general characterisation.
Nevertheless it is possible to make some illustrative remarks giving a
tentative, provisional, approximate, characterisation of the field. And
it is possible to identify some research problems concerning possible
structures for intelligent systems.

Our strategy is top down. We start by placing the field of IKBS in a
broader context, namely work in Artificial Intelligence. First we
characterise long term aims of AI, then describe some ideas which have
emerged so far, and go on to mention some unsolved problems, including
some which may yield to investigations over the next decade, and which
could play a role in applied work. It is hoped in this way to counter-
act a rather narrow view of the scope of IKBS which might be generated
by the considerable publicity recently given to the 'expert systems'
sub-field.

The Context, oj: work on IKBS: Scijence and Engineering

Previous documents have stressed the applied nature of the field of
IKBS. However, in order to understand the prospects for the field it is
important to see its relations to the wider scientific study of
intelligent systems.

This includes both
(a) the empirical study and modelling of existing intelligent

systems (mainly human beings) and

(b) the theoretical analysis and exploration of possible intelligent
systems and possible mechanisms, representations, etc. used by
such systems.

This scientific work informs and is informed by engineering activities.
These fall into two main classes:
(c) attempting to deal with problems of existing intelligent systems

(e.g. human learning or emotional difficulties) and

(d) designing new useful intelligent or semi-intelligent machines.

Theoretical and applied work in this area produces various by-products
such as new tools for software engineering and new computing resources
for education. The term 'Artificial Intelligence' is variously used to
refer to the combination of all these activities, or to some subset. In
the former sense it is equivalent to 'Cognitive Science'. However, it is
most commonly thought of as encompassing (b) and (d), though sections
devoted to the others can be found in conferences on AI. The recently
introduced term 'IKBS' seems to be mainly focussed on (d). However,
merely designing systems without ever studying the general princples
they illustrate, e.g. without attempting to understand the relative
merits of different representations, algorithms, architectures, is a
recipe for chaotic and unprincipled proliferation of systems. So (d)
should not be pursued in isolation from (b). Moreover, insofar as part
of the aim of (d) is to define machines which can communicate with human

A.S -2- March 28 1983

Version-4 Page 3

beings, and display some of the kinds of intelligence which human beings
display, work on (d) should include some study of human beings, both so
that the systems are adequately matched to the people who have to use
them, and also because some of the methods used by the human «ind may be
better than what can be dreamed up by even the cleverest programmers. So
(d) needs to be related to (a). The interaction is two-way, e.g.
because the observed inadequacy of programs based on theories about how
people work may indicate a need to revise the theories.

Both the scientific and the applied work are in their infancy, though
the infants seem very robust. In particular, there has recently been an
explosion of activity in an applied subfield known as "Expert Systems"
or "Knowledge Engineering". Early applications have shown the commercial
and industrial potential of expert systems, and attracted considerable
funding, which is one of the reasons why the field of IKBS is receiving
so much attention. The short term benefits are clear but existing
systems are inherently limited and longer-term research and development
are required to extend the range of applications. This will require
major quantitative and qualitative extensions of the underlying
capabilities, for instance to enable systems to combine several kinds of
knowledge in order to solve new problems.

In order to understand the scope and limits of this work, and to get a
feel for the medium term problems, it is useful to put them in the
context of the long term goal of understanding and designing really
intelligent systems, described in the next section.

k9HfL £££5. Sil£ QL &L: understanding/designing intelligent systems

Intelligent systems designed during the next decade will at best exhibit
only a subset of what may be required in the long term. Different
subsets may be relevant for different applications. What follows is an
attempt to describe, at a very general and abstract level, the union of
the kinds of abilities which people in the field of AI have begun to try
to understand and replicate. This gives a very rough and provisional
characterisation of an intelligent system as one which has some
combination of the features listed below. It is perhaps worth stressing
that although the list may seem very ambitious, it actually reflects the
spread of research which is already in progress, though not all aspects
have been pursued to the same depth. Thus, the list represents, from an
AI viewpoint, an answer to the question: what are the features of human
beings (and some other animals) which make them different from inanimate
mechanisms and unintelligent plants and animals, and which are currently
hard to explain and replicate.

Having compiled a list of features of intelligent systems, we can then
move on to ask what underlying mechanisms or capabilities seem to be
required for the production of these features.

NB it must not be assumed that all AI workers would agree with this
list, since any general characterisation of intelligence, if possible at
all, must be the result of research yet to be done.

A.S -3- March 28 1983

Version-4 Page 4

^k^L§££§£istl£§ 2l i2l§iiig§JQt ^Z§l£M : §. i§LQL§LLil£ overview
(The order is not significant.)

(1) Having a general range of abilities, including
(a) the ability to cope with varied objects in a domain
(b) the ability to cope with a varj£t:£ of domains of objects
(c) the ability to perform a varj.ej:;j£ of tasks in relation to any
object,
(d) the ability to recognise which sub-ability to use.

NOTE: 'object1 here is a neutral term, covering such diverse things
as physical objects, spoken or written sentences, stories, images,
scenes, mathematical problems, social situations, programs, etc.
'Coping' includes such diverse things as perceiving, interpreting,
producing, using, acting in relation to, predicting, etc.

(2) Various forms of discovery, learning, or self-improvement,
including: qualitative extensions to new domains, new kinds of
abilities, and quantitative improvements in speed of performance,
complexity of tasks managed, etc. Important special cases include
the discovery of new concepts, heuristics or generalisations within
a domain, the creation of new domains, and the novel combination of
information about several different domains to solve a new class of
problems. The more complex examples overlap with what we ordinarily
refer to as 'creativity'.

(3) Performing inferences, including not only logical deductions but
also reasoning under conditions of uncertainty, non-monotonic
reasoning (e.g. making use of implicit assumptions which may be
cancelled by new information), reasoning with non-logical
representations e.g. maps, diagrams, networks.

(4) Being able to communicate and co-operate with other intelligent
systems, especially human beings.

(5) Being able to co-ordinate and control a variety of sensors and
manipulators in achieving a task involving physical movement or
manipulation.

(6) Coping flexibly with an environment which is not only complex and
messy, but also partly unpredictable, partly friendly, partly
unfriendly and often fast moving. This includes the ability to
interrupt actions and abandon or modify plans when necessary, e.g.
to grasp new opportunities or avoid new dangers.

(7) Self-awareness, including the ability to reflect on and communicate
about at least some of one's own internal processes. This includes
the ability to explain one's actions.

(8) Coping with a multiplicity of "motivators", i.e. goals, general
principles, preferences, constraints, etc. which nay not all be
totally consistent in all possible circumstances. This need can
arise either because a single high-level goal can generate a
multiplicity of inter-related sub-goals, or because a system has a
collection of independent sources of goals, requirements, etc.

A.S -4- March 28 1983

Version-4 Page 5

(9) The ability to generate, or appreciate, aesthetic objects. This is
often thought of as distinct from cognitive abilities, but there are
reasons for thinking that aesthetic processes are involved in many
cognitive processes, and vice-versa. E.g. elegant proofs not only
give pleasure: they generally provide more insight than messy ones.

The notion of intelligence is bound up not only with what can be done,
but also with how it is done (i.e. the style, or manner). For example:

(1) When confronted with messy, ill-defined problems and situations, and
incomplete or uncertain information; an intelligent system should
degrade gXsLCJLfiilli a s the degree of
difficulty/complexity/noise/incompleteness etc. increases, rather
than merely 'crashing', or rejecting the problem. Degrading
gracefully may involve being slower, less reliable, less general,
less accurate, or producing less precise or complete descriptions
etc.

(2) Using insight and understanding rather than brute force or blind and
mechanical execution of rules, to solve problems achieve goals, etc.
E.g. instead of exhaustive trial and error searching there should
be selection of alternatives based on some analysis and description
of the current state of a problem-solving process. This is closely
connected with a requirement for speed and generality.

(3) Plans should not be created simply by applying pre-defined rules for
combining primitive actions to achieve some goal, but should rely on
the ability to use inference to answer hypothetical questions about
'What would happen if..1. This should also play a role in the
ability to make predictions, or test generalisations.

(4) Conflicting goals should not be dealt with simply by means of a
pre-assigned set of priority measures, but for example by analysing
the reasons for the conflict and making inferences about the
consequences of alternative choices or compromises.

These lists are not proposed as a definition of 'intelligence'. The list
merely summarises salient aspects of the most intelligent systems we
already know, namely (adult?) human beings. It also summarises kinds of
AI research already being pursued in a more or less fragmentary fashion.

No existing AI system fulfils even a subset of these criteria, except in
very restricted domains, with rather generous interpretations of
concepts like 'generality1, 'graceful degradation', 'flexibly', etc.
Nevertheless there are many examples of fragmentary progress concerned
with such varied topics as:

A.S -5- March 28 1983

Version-4 Page 6

vision, robotics, speech processing, natural language (text)
understanding, abstracting and generation, (including the
comprehension and generation of stories), machine translation,
plan formation, inferring plans from actions, intelligent
tutoring systems, problem-solving, non-monotonic reasoning,
mathematical theorem proving, automatic programming, automatic
debugging, concept learning, game playing, the analysis of
music, and of course a growing collection of "expert system"
activities such as interpreting mass-spectrographs, medical
diagnosis, oil prospecting, fault diagnosis in machines, the
planning of computer configurations, etc.

There is no sharp boundary between such work and other fields of
computer-science and engineering, and perceived boundaries change as our
understanding deepens. For instance compilers capable of accepting
algebraic expressions were once thought of as intelligent because
previously only human beings had been able to do such things.

Practical and theoretical work in these subfields has begun to indicate
some of the underlying enabling features required for systems which have
the sorts of intelligent capacities listed above. The design and
analysis of such enabling abilities tends to distinguish work in AI from
other fields, even though the boundaries are fuzzy and mobile!

Wha_t haŝ to be buiK ijn Vo ijntjeHlgent systems?

By analysing the requirements for intelligence listed above, and
especially by looking in great detail at specific examples and trying to
model them, we can begin to formulate and test hypotheses about
underlying abilities and mechanisms required for intelligence. To
illustrate this, I shall present some of the requirements which have
emerged so far. The connections with features of intelligent systems
listed previously should be evident in most cases.

What follows is at best the tip of an iceberg. It may prove to be an
unimportant or misunderstood tip. Further, the list is still somewhat
heterogeneous and disorganised.

(1) Rich stores of domain-specific knowledge.
Some early AI researchers hoped to base intelligence on a few
algorithms or axioms or general principles producing intelligent or
semi-intelligent behaviour. This approach is now discredited. A
large amount of knowledge of different kinds seems to be required,
for almost any intelligent ability. This includes both general-
purpose know-how relevant to different domains, and domain-specific
knowledge. The latter includes factual generalisations about the
domain, particular facts, and procedural or heuristic knowledge
relevant to the domain. It seems that if reasonably fast responses
are to be achieved, the stores will often have to be redundant, in
that information which could in principle be inferred from other
information will be stored explicitly when first inferred, since
re-discovering the appropriate derivation will often take too long
compared with accessing the store.

(2) Powerful and varied descriptive resources.
Not all knowledge is best expressed in the same way, and in

A.S -6- March 28 1983

Version-4 Page 7

particular, unlike many computing applications, AI systems cannot
make do with collections of numerical measurements or strings of
text either for long term storage or for the short term
representation of problems, hypotheses, plans, etc. A variety of
formalisms and representational structures is needed for storing
assertions (including assertions with variables, for Instance),
condition-action rules, and a variety of special purpose structures,
e.g. speech waves, images, maps, diagrams, etc. Procedural
information often needs to be stored in such a fashion that the
procedures can be both executed and examined, for instance for
self-debugging. It is arguable that predicate logic should play a
dominant role because of its power and generality, though some would
object that it is not rich and powerful enough to capture all the
kinds of subtleties which can be expressed in images or natural
language. Thus some argue that really intelligent systems will have
to make use of natural language for some of their internal
representations.

Any claim that ONE formalism is suitable for all purposes would seem
to be unfounded at present. In the history of the human intellect
the development of a multiplicity of notations has had an enormous
intelligence-amplifying role, including, besides natural language,
logical notation, arabic numerals, chemical formulae, matrices,
tensor calculus, cross-reference tables, musical notations, maps,
circuit diagrams, transition nets, pie-charts, histograms,
programming languages.... If people need a variety of formalisms,
then intelligent machines may do so for the same reasons.

(3) Inference procedures: general and specific.
These are required for extracting information implicit in knowledge
stores, such as logical databases, stored sentences, maps, or
whatever. Besides general purpose inference mechanisms (e.g. logical
deduction) various task-specific and domain-specific mechanisms are
required, e.g. for geometrical reasoning, for propagating
constraints, for propagating measures of probability or certainty,
for solving equations, for inferring the possible consequences of
executing strategies, etc. The need for a variety of inference
methods follows in part from the need for a variety of formalisms.
In addition there is the further possibility of using specialist
knowledge about a domain to short-cut inferences in that domain:
thus inference itself becomes a process that uses knowledge as
opposed to merely being a process which extends knowledge in a
knowledge-free manner. Some forms of creativity require procedures
for mapping knowledge from one domain onto another, i.e. inferring
analogies and new applications for old information. A current
research issue is how to combine different types of knowledge, e.g.
knowledge of the geometry of a circuit and knowledge of electrical
properties of circuit elements, in solving problems.

While logical inference is extremely general and powerful, non-
logical inferences are often required, such as those required for
inferring a route from a map, or a construction plan from a picture
of what is to be constructed.

(4) Self monitoring
Self awareness was described as one of the features characterising
intelligent systems. However it is also one of the abilities

A.S -7- March 28 1983

Version-4 Page 8

underlying some of the other features. E.g. the ability to learn may
depend on awareness of features of one's strategies and
performances, as does the ability to explain one's actions. Programs
which synthesise and debug programs need to be able to relate the
static structure of the programs and structure of the execution
process. An intelligent system which has to relate to others may
have to be able to observe some of its own internal processes in
order to interpret some of the behaviour of others. So»e forms of
self monitoring may be best implemented using parallel processors.
(See below.)

(5) Meta-principles
Although notions like a single general purpose problem solver, or a
uniform learning algorithm have been discredited, there does seem to
be scope for a variety of types of domain-independent »eta-rules or
meta-principles to play a role in intelligent systems. Examples
would be rules for preferring plans with few steps to plans with
several, rules for searching for bugs in strategies, strategies for
generating modifications to partially successful plans, rules for
assigning priorities when there are conflicts between goals (e.g. if
Gl and G2 can't be pursued simultaneously, but experience shows that
pursuing Gl often produces side-effects which subsequently
facilitate G2, then do Gl first). It is not clear how large the set
of generally useful meta-rules is, nor whether they need to be
programmed in from the start or whether they can be learned or
derived from still more general principles.

(6) Strategies for controlling search
Often, finding a solution to a problem or performing a task requires
exploration of branching sets of possibilities. The combinatorial
explosion needs to be constrained by a variety of techniques,
including means-ends analysis, heuristic search, use of meta-rules,
processing in parallel at different levels of abstraction or in
different domains, constraint-propagation (Waltz-filtering,
relaxation), changing to a new representation of the problem. Once
again a large collection of problem-specific and domain specific
techniques seem to be needed. Sometimes, a combinatorial explosion
is de-fused by added information. Low level vision is the prime
example, where it has been found that at least in good viewing
conditions there is far more disambiguating information in natural
images than was previously thought, reducing the need for search.
Sometimes a total change of technique can, at least in special cases
remove the explosion, for instance using relaxation to simulate
breadth-first search, and more recent work on highly parallel
machines reported in papers by Ballard and Hinton in IJCAI-1981.

Work on such diverse topics as language understanding, vision and
plan formation has led to the discovery that it is often useful for
a problem to be tackled at different levels of detail in parallel,
where the lower-levels are relatively myopic and manipulate minutiae
whereas higher-levels enable strategic decisions to be taken about
the overall direction of processing, e.g. assessing the relative
importance of some of the options available at lower levels, or
producing sketchy global solutions to problems and leaving lower
levels to sort out details subject to the need to fit the higher
level plan. This can enormously reduce the amount of combinatorial
searching which would have to be done if processing occurred only at

A.S ~8- March 28 1983

Version-4 Page 9

the lower level, or if the lower levels had to complete their task
before higher level structures were examined.

(7) Matching and describing
Many kinds of structures, e.g. 'input' structures, general knowledge
structures, and temporary internal structures generated during
processing, all need to be matched with other structures as part of
the process of analysis, recognition, inference, testing conditions
for action. The simplest sort of match is an equality test. In
addition it is often useful to be able to match different objects
against the same general template, e.g. in applying a general
logical rule to particular instances. More generally it is necessary
to be able not merely to say that two things don't match, but rather
to describe both what they have in common and how they differ.
Intelligent systems seem to require a collection of general purpose
and special purpose techniques (e.g. unification, parsing, network-
matching), some of which may be built on others.

(8) Communication between sub-systems
Where different sub-systems concerned with different tasks use
overlapping sets of information, it is often convenient to have
databases which are shared between several different sub-processes.
These are sometimes referred to as 'blackboards', though normally
the term is used when there is only one blackboard in a system, as
in the Hearsay speech understanding system. Such databases may
merely be passive structures which are accessed by various processes
when they need information. Alternatively, some sub-systems may
attach active 'demons' to a database. Such demons will monitor
changes to (or possibly interrogations of) the database, and in
certain circumstances will react by starting a new sub-process, or
interrupting an existing process. (More on this below.) Such demons
provide one way of implementing self-awareness.

(9) Very large very fast flexible memory stores
If intelligence requires very large amounts of knowledge, capable of
being deployed very flexibly, e.g. using sophisticated matching
techniques rather than simple comparisons, then that seems to
require some sort of fast content-addressable file store, where the
contents can be addressed by means of patterns or schemas as well as
by simple keys such as are found in current database systems.

(10) Rapid re-organisation of part of memory
Besides long term storage of information of many kinds, an
intelligent system will need to be able to represent current
percepts, hypotheses, goals, plans, derivations, etc. These will
change partly because the environment changes (e.g. perceptual
hypotheses), partly because of the intrinsic nature of intelligent
processes. This requires a memory mechanism which allows complex
temporary structures to be built rapidly, and then discarded after
use, making space for new ones. One strategy commonly used for this
purpose is garbage collection, though others are possible in
principle, e.g. constantly clearing the temporary work space and
re-building structures from scratch, which may be better suited e.g.
to visual systems.

(11) Parallelism: fine-grain and coarse-grain
Coarse-grain parallelism is required for systems which decompose

A.S -9- March 28 1983

Version-4 Page 10

into a small number of modules which have to perform different tasks
concurrently, e.g. controlling or monitoring motors or sensors.
Certain sorts of self-monitoring may be achieved by allowing some
processes to examine the data-structures and activation frames of
others, which continue independently. Fine-grain parallelism nay be
useful on a large scale when a process naturally decomposes into a
large number of relatively independent sub-processes, e.g. in low-
level vision and perhaps some kinds of long-term memory Mechanisms.
In addition an essentially serial process may be speeded up if each
of the steps is made up of a number of sub-steps which are
independent, e.g. perhaps unification in a prolog like language. If
each main step is composed of n sub-steps on average, then
approximately an n-fold speed up can be achieved, in theory. In
theory, many kinds of search can be speeded up by the use of
parallel processing: e.g. using a breadth-first strategy is
guaranteed to find the shortest route to a solution if there is one.
However, in practice problem spaces often branch too fast and the
combinatorial explosion can re-appear in space instead of time. Some
problems may allow a combination of breadth-first and depth- or
best-first search to benefit from massive parallelism, though it is
still unclear what the range of problems is for which time to find a
solution will be significantly improved by such techniques.
Moreover, the management of ever growing sets of processes may
itself take up time and communication bottlenecks can occur. So it
remains an important open question how far inlSlliS^Ql processes can
be helped by new architectures with massive parallelism.

Many intelligent processes seem to have a global structure which is
inherently serial. E.g. in constructing a long proof, although it is
possible to branch forwards from the axioms and backwards from the
theorem in parallel, it is not possible to work on all the steps
simultaneously, since which steps are required depends on the
results of other steps. There is a need for considerable research on
such topics. The Japanese fifth generation project seems to be based
in part on the assumption that massive parallelism at a low level
can always be relied on to produce a massive increase in speed.

(12) Interrupt mechanisms
These seem to be required for systems which act in complex and
partly unpredictable environments, where rapid action may sometimes
be called for. The use of interrupts can also aid modularity: a
relatively simple general purpose strategy may be used in a variety
of different circumstances, if a monitoring process is able to
interrupt it from time to time and make adjustments. Using different
monitoring processes with different tasks and circumstances makes it
unnecessary to clutter up the general strategy with large numbers of
conditional instructions. (Homeostatic systems can be seen as a
limiting case of this??) When parallelism is used to explore
alternative routes to solving a problem, it will be necessary to
interrupt the still unsuccessful processes when a solution has been
found. Plan execution systems operating in a complex and partly
unpredictable environment may need to be interruptable by monitoring
processes analysing sensory information. The alternative to allowing
interrupts is constant polling, which is acceptable when not too
many different kinds of monitoring are needed and reactions don't
have to be very fast. However, the polling alternative can lead to
non-modular, messy programs, whose only advantage is that it »ay be

A.S -10- March 28 1983

Version-4 Page 11

easier to prove theorems about them!

If the processes which can generate interrupts can vary in
importance, and the processes they interrupt can vary in importance,
the interrupt mechanisms may have to use different 'priority'
levels. In the simplest cases this may rely on pre-assigned
numerical priorities, but in more complex cases the decision about
which sorts of interrupts to accept and which to suppress »ay itself
have to rely on knowledge based inferences.

EliiilUS £MJ22L§ £j2£u§t!}!=L£: §2£§JBEl§L§ 2LL architectures
Some fragmentary versions of the sorts of abilities characterised above
have been assembled into working programs. A few principles and
strategies for organising knowledge-based programs have begun to emerge,
though all are still controversial, and at best relevant only to the
design of relatively simple systems. What follows is a somewhat
disorganised collection of examples. There may be some underlying
general architectural principles waiting to be formulated, but so far
they have eluded me.

* 2j*£ji!l§IL§ El!i§ i2£§L§Q£§ engine
One sort of architecture, which works well for relatively simple
problems, is to have a database of facts and rules, together with an
inference engine' which repeatedly selects items from the database and
uses them to make changes to the database. In some cases the processing
is 'data-driven' in that any item which can be a basis for an inference
is capable of being selected to generate a change. In other cases the
processing is 'goal-driven1, i.e. besides the facts and rules there is a
collection of unsatisfied goa3s and only items which relate to these
goals can be selected to generate new actions (including creation of new
goals).

Examples of these 'data-base plus inference-engine' architectures
include production-systems and prolog, though each can be used as a
virtual machine on which to construct more complex virtual machines.

More complex examples associate numerical probabilities or likelihood
values with database items, and include in the inference engine
algorithms for propagating such values.

Such systems are useful where domain-specific knowledge can be broken
down into a collection of relatively isolated chunks which can be
combined in different ways for different purposes.

Although such systems have the advantage of simplicity and modularity,
they can be hard to understand and control when the databases grow
large. Their very modularity implies that potentially anything can
interact with anything else, and preventing unwanted interactions can
involve the use of ad hoc tricks. In some cases it might be better for
designers to think in terms of higher level organising principles.
Research is needed on good design aids to facilitate this.

The status of the numerical representations of uncertainty and the
algorithms for propagating them is often very unclear. It »ay often be
better to represent alternative sets of hypotheses explicitly, and use

A.S -11- March 28 1983

Version-4 Page 12

explicit domain-specific meta-rules for selecting between them, or at
least determining partial orderings, rather than ill-defined
quantitative concepts and dubious general-purpose algorithms.

Further, these systems are intrinsically suited only to types of
processing which operate only at one level, whereas we have already seen
that sometimes it is desirable that processing at different levels of
abstraction should go on in parallel.

Despite these critical comments, useful systems have been built using
the simpler models, some of which have proved very profitable
investments. In some cases the designers have subsequently abstracted
'shells': i.e. collections of domain independent tools for building
expert systems, often including a formalism, algorithms for propagating
uncertainty measures, mechanisms for generating explanations, a rule
editor, and a collection of debugging aids.

* §!~LH§£§1 RI2L££i>££§.: blackboards and actors
Another popular strategy, mentioned previously, is to have collections
of active modules, possibly with different internal architectures,
communicating through a global 'blackboard', i.e. a globally accessible
database. This is one way of implementing systems in which processing at
different levels proceeds in parallel, as in Hearsay.

An objection to this is that often the blackboard is effectively
partitioned by the formats of the assertions stored there, and
therefore, for some systems, it may be both simpler and also far more
efficient instead to use a mechanism for broadcasting messages to a
named class of modules (where the members of the class need not be known
individually to the sending process). Instead of one central
bottleneck, there is then one bottleneck per class of recipients, which
can enhance opportunities for parallelism.

An extreme version of the latter is Hewitt's 'actor' architecture, also
found in SMALLTALK, where each module essentially has a fixed set of
acquaintances to which it can send messages. However, such architectures
are so general that it is hard to say anything useful about them.

* iJl§L§L£ky §M heterarchy
During the late 1960fs and early 1970fs it became fashionable to
criticise programs which had the following organisation:

input -> Ml -> M2 -> M3 -> -> Mn -> output

where each module waited until the previous module had completed its
transformation of the data. For instance, Ml might be an edge-detector,
M2 a line-finder, M3 an image segmenter, M4 a 2-D to 3-D interpretation
program. Or Ml might find phonemes in speech, M2 might find words, M3
might do syntactic analysis, M4 semantic interpretation, etc. Instead of
this hierarchic organisation programmers attempted to allow control to
flow between modules in a much less rigid fashion, for instance allowing
higher level knowledge to be used to disambiguate some of the data at a
lower level, and thereby reducing the total search space. This
alternative program organisation was referred to as 'heterarchy1.
Unfortunately, such programs proved very hard to control. Moreover, when
they worked it was difficult to understand why, or to analyse the
conditions under which they would or would not work. One reaction (see
below) was to claim that ambiguity at low levels could be eliminated, or

A.S ~12- March 28 1983

Version-4 Page 13

at least reduced, by doing more elaborate low-level processing, based on
a good theory as to the nature and origins of the input data. Much
recent work on vision has taken this line. Another approach has been to
try to achieve better designs by thinking of sub-processes as running in
parallel on separate machines, rather than as competing for control on a
single serial processor. Where each process has its own processor, and a
well-defined interface to the rest of the system, and no one module can
gain control and hog the whole machine, it is in principle easier to
analyse the behaviour of the system. For instance, termination under
all circumstances can be proved if one module has the power to send an
abort signal to all the others if they have not solved the problem
within a certain time.

* A^Mi^cjtures; t2L Yi§i2Q.: A2JS levels
Recent work in vision reported in the vision tutorial suggests that at
the low levels the required architecture may take the form:

2.5-D
I — > Ml — — - — — - — ~ > S
M — > M2 > K
A — > . . — > E
G — > . . > T
E — -> . . — — > C
S -—> Mn -.*--> H

In other words, a collection of modules of different sorts, with their
own internal architectures and their own processors, take information
from the retinal array(s) and store new information in a common database
of 'visible surface descriptions1, sometimes called a 2.5 D sketch.
Higher-level processes would operate on this database to produce a
collection of different databases based on a variety of reference
frames. It is an open question whether something like the above
organisation is useful for lower levels of speech. In fact it may turn
out to be a form of architecture useful for a variety of problems.
Where there are classes of problems to which many forms of knowledge are
potentially relevant, it may be useful to allow a collection of
different modules all to study a problem in parallel, and store whatever
cues or clues they find in a shared database (a 'blackboard'). Another
module could then be examining the database for patterns suggesting a
good strategy to solve the problem.

In the case of vision, and perhaps speech understanding, it is worth
noting that the modules which find and interpret low level features,
e.g. finding edges or inferring shape from shading or depth from
binocular disparity, may have a great deal of implicit knowledge about
physics and geometry compiled into them in a procedural form. In
principle it would be possible to express all the knowledge explicitly
in general rules and assertions. However, the resulting system would run
far too slowly, at least using current implementation techniques. It
has been suggested that some of the algorithms are compiled down into
the 'wiring' in animal visual systems, and that the same will be
required for artificial visual systems with a speed constraint. However
this does not in principle rule out the specification of such systems in
(e.g.) a logical form. The logical form would not be used at run-time,
however.

A.S -13- March 28 1983

Version-4 Page 14

* Architecture of an intelligent perceiver?
So far there has been little study of the way in which a visual system
should relate to the rest of an intelligent agent. It is arguable that
there should be a variety of different routes between different sub-
databases of the visual system and non-visual modules (e.g. hearing,
touch, planning, problem-solving, control of movement, etc.), but this
is a wide-open research area. Similar questions arise about speech:
besides the recognition of words and syntactic structures it seems clear
that many other features of speech can play an important role in
communication, or in making inferences about the speaker. For instance,
pitch, intonation contours, stress patterns, speed, etc. may all be
relevant. So again there may be a need for many routes from low level as
well as high level modules of a speech understanding system to other
modules in an intelligent understander.

Even above the phonetic level the same considerations may apply: there
are many features of style or communicative strategy besides those which
contribute to literal meaning. Detection of such features may have to
proceed in parallel with such things as word-recognition and parsing or
semantic analysis, and may feed into a variety of higher level
processes.

Little is known about the possible architectures for the higher levels
of vision or any other perceptual system, though there is much
exploratory work. There is a lot of work on strategies for using
general, or domain-specific, visual knowledge to guide higher-level
interpretation processes.

* Arcljrtectures of language understanders
There is a wide variety of approaches to the design of language
understanding systems. Language understanding, like vision, often
involves the problem of interpreting ambiguous fragments, subject to
global consistency constraints and there are many different approaches
to this including simple depth-first search with backtracking, and
parallel breadth-first search.

The architectures vary so much as to defy any brief overview. For
instance some do syntactic parsing as a conceptually distinct process
from inferring meaning, whereas others make no such distinction. Those
which do include parsing may either have a complete initial parsing
process before semantic interpretation begins, or else may (like
Winograd) interleave the two in order to constrain the combinatorics of
syntactic ambiguity. Another distinction is between parsers which
separate an explicit 'declarative' representation of a grammar from the
procedures which operate on the grammar and the input sentence, and
those which use only a procedural representation of the grammar, which
operates directly on the input sentence. A different dimension again
involves the distinction between parsers which work top down, those
which are bottom up, and those which combine top-down and bottom up
processing. Further distinctions can be made according to the degree of
parallelism employed.

The distinction between parsers with an explicit grammar and those
without becomes blurred again when we consider that some of the former
don't have a procedure to interpret the grammar, but instead compile it
into a collection of procedures which are then run.

A.S -34- March 28 1983

Version-4 Page 15

Another distinction concerns the extent to which non-linguistic
knowledge, e.g. knowledge about the physical environment, or other
particular features of the context, enters directly into the process of
understanding a sentence, as opposed to being invoked only after a
representation of the meaning has been derived solely on the basis of
syntactic and general semantic knowledge.

* 'Lojcaj.1 constraint-propagation
Constraint-propagation mechanisms have attracted a lot of attention as
devices for controlling the attempt to resolve ambiguous data, subject
to the requirement of global consistency, or global optimality where
some consistency has to be sacrificed. Waltz filtering is the very
simplest case, where each ambiguous fragment looks at possible
interpretations of its neighbours and eliminates those of its own
interpretations which are not compatible with any neighbouring one. But
this does not cope with propagation of constraints involving
inequalities, or relations between several nodes of a network. It can
also lead to 'gangrene' in the case of noise, occlusion, etc., as Hinton
pointed out in 1976. I.e. if a possible interpretation is eliminated
wrongly as a result of noise, etc, the effect can be eventually to
eliminate all interpretations.

A slight generalisation of this is to use relaxation, in which
alternative hypotheses, instead of being completely eliminated acquire a
lower 'credibility' value if inconsistent with their neighbours. In some
cases the process of repeatedly allowing nodes to raise or lower the
credibilities of other nodes linked to them by constraints, will
converge to a single stable solution.

* Connection machines
Related forms of computation are being investigated in which instead of
using definite chunks of memory to store items of information, the
system represents information in the form of a pattern of activation of
a collection of units, and different items of information may be stored
by superimposing different activation patterns. Inference then occurs by
allowing patterns of activation to spread using excitatory and
inhibitory links. These sorts of architectures may not be well suited to
all sorts of problems. E.g. they may be very good for perceiving or
interpreting structures or patterns embedded in large collections of
information, as in speech or vision and some forms of problem solving.
But they may be less well suited to deep chains of reasoning such as
those required for proving mathematical theorems.

* £2IDEl£i£ llllSlliS^nl systems?
Probably the nearest things to a complete intelligent system are mobile
robots. However current robots are architecturally very crude. Simple
robot plan-formation systems exist which essentially have a library of
plans, a collection of plan-constructing techniques, a factual knowledge
base, and an inference engine which can be used by the plan-constructor.
When presented with a 'goal' the plan-constructor makes a plan, possibly
invoking a variety of sub-modules in the process. Plan formation and
evaluation may require the ability to simulate the execution of the plan
in a hypothetical world. (This influenced the development of back-
tracking languages, context mechanisms, etc.) For executing the plans in
the real world, a plan executing module is required which takes a
(possibly incomplete) plan description and arranges for appropriate
signals to be sent to motor sub-system(s). Some kind of visual or

A.S -15- March 28 1983

Version-4 Page 16

tactile monitoring subsystem operates in parallel with all this, feeding
information to the factual knowledge base. Then depending on whether
speed is crucial, either the plan executor can repeatedly poll the
knowledge base to ensure that the plan is still appropriate, or else a
'demon mechanism1 can be used to monitor it in parallel with execution
and interrupt when necessary.

At that stage a new module or collection of Bodules may have to be
invoked to analyse the situation and decide whether to continue or
revise the plan, and in the latter case call the plan constructor (or
perhaps a special plan-modifier) to produce the new plan.

When there is not just a single top-level goal but a more complex system
of 'motivators' including several short and long term goals, general
principles of ethics, prudence, etc., then things can become far more
complicated, especially if the environment permits both dangerous and
fast-moving situations. However, as far as I know, nobody has begun to
build an intelligent system of this sort, though unintelligent versions
are to be found in a variety of automatic control systems.

This brief and sketchy survey of architectures indicates the variety of
forms which have so far been investigated. At the most abstract level it
is easy to give a general characterisation of such architectures in
terms of composition of modules using standard concepts from computer
science. E.g. there are procedure-calling hierarchies, pipe-lines,
concurrent processes. There are different kinds of control hierarchies,
schedulers, interrupt mechanisms. There is a variety of types of
communication between modules, e.g. procedure arguments and results, a
g]obaJ database, dedicated message channels, etc. These general-purpose
architectural concepts may be applied in describing either the fine
grain, or the more globa] features of intelligent systems.

But the only genera^ characterisations which seem to be applicable are
not specific to intelligent systems: rather the same architectural
concepts can be illustrated in other computing applications. This is
not to say that there is nothing general to be said about intelligent
systems, only that no clear pattern has emerged so far. (Perhaps someone
should attempt a comparative survey of different sorts of complex
systems constructed in different branches of computing. This may help to
highlight distinctive features of intelligent systems, if there are
any.)

Further work might perhaps attempt to relate architectures to types of
computational functions, for instance distinguishing functions of the
following sorts and their architectural requirements:

(a) systems which merely take a decision (e.g. recognition nets)

(b) systems which analyse complex structures (e.g. sentences)

(c) systems which synthesise complex structures (e.g. plans)

(d) systems which do both (e.g. generating parse trees or proofs)

A.S -16- March 28 1983

Version-4 Page 17

(e) systems which continuously monitor a stream of incoming information

(f) systems which continuously control changing objects

lHl£lii£§Sl H£2wLedge Based Systems
So far I have not attempted to separate IKBS from AI. IKBS have been
defined as:

'semi-intelligent systems for carrying out a single complex
task. This implies working with a large, incomplete, uncertain
and rapidly changing knowledge store, use of inferential
procedures for applying this knowledge in reacting to variegated
and unreliable inputs in a changing environment, and the use of
sophisticated and flexible control mechanisms'.

Depending on which words in this definition are stressed, this can sound
more or less ambitious. I don't believe there are any major boundaries
between the simplest rule-based systems and the most complex intelligent
systems. Rather there are very many different boundaries: the space of
possibilities has many discontinuities. So perhaps the best way to
interpret this definition, in the context in which it was produced, is
to regard IKBS as those systems which are difficult but not impossible
to design within the next five to ten years, and which may potentially
have some practical use. The field of IKBS design could therefore be
described as 'Applied AIf.

All of the points I have listed under long term aims are potentially
capable of playing a role in such designs.

WHITHER NOW?

The l5LE2Xt§ILce of domain sgec-ifj>c knowledge
The most difficult type of task in designing an intelligent system is
usually finding out what the domain specific knowledge is that needs to
be deployed in the system. By contrast designing new languages, shells,
virtual machines, is comparatively easy. Curiously, the hardest kinds of
knowledge to articulate in a useable form are those which are shared by
all ordinary people, not the esoteric knowledge of experts in science,
medicine, chess, or whatever. How the meanings of sentences in ordinary
language are inferred and how they are represented, how ordinary vision
works, what it is that we know about spatial and physical properties of
objects that enables us to manipulate them in every day life — these
familiar and widely shared, yet strangely inaccessible forms of
knowledge need to be actively explored if we are to make good use of the
potential of computers in the next decade or two. But we can't assume
that such research will produce commercial payoffs in the near future.
Thus provision should be made to support such research independently of
applications-oriented projects.

A.S -17- March 28 1983

Version-4 Page 18

ZH£iJ}££ developments
All the systems and architectures mentioned so far have known
weaknesses. For instance the simple system of rules plus inference
engine used in 'expert systems' seems to work (so far) only for very
narrow domains, where it is possible to get by with very shallow
knowledge in the form of rules which more or less exhaustively cover
possible situations. Coping with more complex tasks, for instance
diagnosing a whole variety of computer faults, requires the ability to
creatively combine different types of knowledge of the function of the
system, the structure of the system, the functions and structures of
components, and the relationships between such things as electrical,
mechanical, and geometrical properties of parts.

We do not yet know how to represent much of this knowledge (e.g. spatial
relationships are in general hard to represent in a useful way, except
for mathematically simple structures). We don't know what the knowledge
is that needs to be represented. And we don't know how to arrange for
intelligent control of the deployment of such knowledge, e.g. deciding
when to combine different sorts of information about a machine, or
deciding at what level of detail to think about it. Projects which
address the issue of how to combine different kinds of knowledge are
therefore worth supporting.

There are many other issues on which research is desirable. Some of them
have to do with rather general problems like how to reason with
uncertain information, or how to represent complex networks of causal
relations. Some have to do with the need for far more domain-specific
knowledge (e.g. knowJedge of the syntax and semantics of English,
knowledge about the structures and behaviour of physical objects,
knowledge of anatomy physiology and pharmacology, etc.) Some have to do
with the design of good representations for a task. Some have to do with
how to make inferences using particular sorts of representation. Some
have to do with how to control inferences. Some have to do with ways of
putting the various sorts of components together into complete working
systems. All these issues require considerable theoretical and practical
study.

£ § i g EI2Jl§ct_s to support
There are two very different strategies the SERC or Alvey directorate
might adopt in planning a directed national research programme. One is
to select particular application areas and invite bids for funds to work
on these areas. Another is to identify a collection of research issues
and invite people to propose projects which address those issues. The
two strategies might both be adopted. I propose a concentration on the
latter, for the following reasons.

There are many different kinds of 'demonstrator' projects which would
provide a good framework for addressing important research issues. Among
candidates which have already been proposed are projects concerned with
intelligent database managers, projects concerned with trying to combine
different visual modules in a working system to guide a mobile vehicle,
projects concerned with developing intelligent software tools, projects
concerned with developing one or more expert consultants, projects
concerned with computer-based education, projects concerned with various
medical problems, etc.

Since so many different kinds of projects are all capable of addressing

A.S -18- March 28 1983

Version-4 Page 19

important research issues, and leading to useful applications, there
will be no easy way of deciding ijn advance which are to be specially
encouraged, unless a considerable amount of research is done to assess
the potential usefulness of the alternatives. This might involve, for
example, attempting to weigh up the usefulness of intelligent teaching
aids in schools and the home, against the usefulness of Intelligent
advisers for doctors. Any such evaluation if done properly would have to
be an elaborate exercise, consulting potential users, costing the
different kinds of benefits, assessing the chances of success, etc.
Moreover, the assessment would necessarily involve making complex
ethical or political judgements about the best way to spend tax-payers
money. For these reasons, it would not be appropriate for a small study
such as this to select application areas to concentrate on.

I would propose therefore that instead of selecting a particular set of
application areas, the SERC should spell out the kinds of general
problems for IKBS design which are worth addressing, and require people
who submit proposals to indicate which such problems they are
addressing. In addition, people may be asked to give evidence of the
usefulness or even commercial exploitability of the tasks they are
undertaking.

This is not an attempt to restrict the programme to fundamental
research. On the contrary, there are many issues which are of great
theoretical interest yet are both suitable for relatively short term
research, and relevant to potential applications. Some are domain-
specific, such as issues concerning the kinds of knowledge of
programming required by an intelligent debugging aid. Others are more
general, such as issues concerning how to represent and make inferences
about uncertainty.

1 therefore propose that a central task for stage three of the study
should be to create the list of issues concerning the design of IKBS
which are generally thought to be important, and to use them as the
basis for formulating a partial set of criteria for assessing
demonstrator projects.

NOTE:
This proposal was accepted by the workshop, and I was asked to
produce a paper listing research issues, in consultation with other
members of the study group. This was done (though with undue haste)
and the paper, entitled 'IKBS Research Issues' included in the
annexe to Volume 1 of the final report'. A slightly modified version
is available as a Sussex University Cognitive Science Research
Paper.

A.S -19- March 28 1983

Version-4 Page 20

Acknowledgements

Early drafts of this paper were circulated to members of the IKBS
architecture study and some of my graduate students. The following made
helpful suggestions for improvements: Alan Bundy, Bob Kowalski, Guy
Scott, Bob Searle, Ronan Sleep, Karen Sparck Jones.

APPENDIX
The rol_e of logic

Despite comments about logic programming above it should be noted that
predicate logic provides the most generally applicable formalism and
inference system known so far. Although there is plenty of evidence that
human beings, despite their great intelligence, are not very good at
doing logical inference unless specially trained, it may still turn out
that logic will play an important role in the design of artificial
intelligent systems.

However, it is important to distinguish a number of different uses of
logic.

(a) Logic can be used by theorists analysing the problems of designing
an intelligent system. E.g. they may find it useful to formulate
axioms characterising the nature of the task, and prove theorems
about the properties of certain strategies, or certain
representations. There is no doubt that this is an important role
for logic, though it must not be forgotten that other notations and
inference methods will always have a role. For instance, nobody
would tolerate having to use logical notation for doing long
multiplication: instead we prefer the analogical properties of the
arable numeral system, where spatial relations represent numerical
relations.

(b) Logic may be used as a specification language for designing
intelligent systems. This may prove to be a very important addition
to the current collection of programming formalisms, especially when
intelligent programming systems have been constructed which can
directly interpret such specifications. Even before then, the use of
logic may be a considerable aid to clarity of thought, and may
facilitate co-operation between teams of designers. However, this is
the use of logic discussed previously. Moreover, it seems clear that
for some applications, alternative representations will be more
convenient and less prone to errors. To take a simple example,
someone designing an interactive system using graphical
communication may find it very easy to characterise a hexagonal
spiral pattern he wishes to be drawn, if he can write something like

repeat 120 times draw(length); turn(60);
length :=- length + increment endrepeat;

Better still if he can use graphical input to characterise the
pattern. There is no doubt that such things can be expressed in
logic. But it seems pointless to try to force people always to use
the logical notation when others are simple, clear and reliable.
This is also an example of a type of program which is not amenable

A.S -20- March 28 1983

Appendix Page22

R. Davis fExpert systems: where are we? and where do we go from here?'
MIT AI Memo No 665 June 1982 (expanded version of IJCAI-1981 paper)

K.S. Fu, Syntactic methods of fiattern recognition (????) (1982)

K. Fuchi 'Aiming for knowledge information processing systems1

S. Hardy, 'Toward more natural programming languages' 1982 (in
preparation)

ICOT 'Outline of research and development plans for fifth generation
computer systems'

G.Hinton 'Using relaxation to find a puppet' In AISB Conference
Proceedings, Edinburgh 1976.

G. Hinton, papers in Proceedings 7th IJCAI, Vancouver 1981 S. Isard,
'Tutorial paper on speech for SERC IKBS study' 1982

J. Mayhew 'Tutorial paper on vision for SERC IKBS study' 1982

C.S. Mellish and S. Hardy 'Integrating Prolog in the POPLOG Environment'
(in preparation) 1983.

D. Michie Consultative documents

D. Michie (ed) Expert Sĵ tjems rn the Micro-Electronic Age Edinburgh Univ
Press 1979.

A. SIoman The Computer Revorutĵ on rn PhUosojDhj;: Philosophy Science and
M i i 2l M M ' Harvester Press 1978.

A. Sloman 'The way ahead in image processing?' in Proceedings conference
9H Eilllica], and biological AffijigS £I2££S§lQ£ e(*« °- Braddick and A.
Sleigh, 1982. [Forthcoming]

K. Sparck Jones 'Intelligent Knowledge Based System: Papers for the
Alvey Committee', 1982

G. Sussman A cjoniEiltational model of skHl, acquisition American
Elsevier/North Holland 1975

Consultative papers circulated to group leaders

A.S -22- March 28 1983

Appendix Page21

to parallel execution, especially if its output is made less
predictable, e.g. by using commands like: draw(length +
random(delta)) turn(60 + random(delta))

(c) The ability to construct and manipulate logical formulae may be
built in to an intelligent system, for storing information and
making inferences. Because of the power and generality of logic, it
is clear that this is likely to be very useful. (E.g. it played a
central role in the STRIPS problem solver.) However, it also seems
clear that for many applications where speed is important and
complex search spaces have to be cut down using domain-specific
heuristics, it will be useful to make use of specialised inference
strategies tailored to the domain, e.g. building specialist
arithmetic procedures into the system rather than just axioms for
arithmetic plus general logical rules. Of course, the use of
specialised inference strategies may be specified by the designer
using logic, but that use of logic is the one discussed previously.

(d) New machines may be constructed whose machine language is logic, in
the sense that the most primitive symbols available to the
programmer use logical formulas and the most primitive processes are
logical inference procedures. An example would be a machine whose
basic language was something like Prolog. There is no doubt that
for many applications such a machine would be very useful. However,
as with existing Prolog systems it is already clear that such a
machine will have to have various additional features built in, at
the bottom level e.g. arithmetic abilities. And of course extra-
logical primitives would have to be built in for inter-process
communication, file handling, etc. As a component of a larger system
such machines could play a central role in the development of IKBS.
However it is far from obvious that all sub-systems are best
programmed in this fashion. In particular some of the operations
required for low-level vision and speech might be very slow if
implemented on such a machine (though there is no doubt that they
ccnijUl be so implemented).

Further some recent work on parallel neural-net like systems, cited
above and in previously circulated papers may prove very important
in the long run, and not only for low-level vision. These systems
have little in common with logic machines. However, there is nothing
to stop us describing them using logic, and trying to analyse their
properties or prove theorems about them. This will again be an
example of the first use of logic.

References (INCOMPLETE)

Hideo Aiso 'Fifth Generation Computer Architecture'

D. Bobrow and D. Norman fSome principles of memory schemata1 in Bobrow
and Collins Repres^nta^ti^n and Understanding

D. Ballard, papers in Proceedings 7th IJCAI, Vancouver 1981

B.G. Buchanan and R.O. Duda Principles of Rule-Based Expert Systems',
Report STAN.CS.82.926, Stanford Dept of Computer Science, 1982.

A.S -21- March 28 1983

