
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

010
Integrating Prolog

in the PopLog Environment

C.S. Hellish & S. Hardy

1982

UMIVEHSiTY UBSAF
CARNEGIE-MELLON UNI1

PITTSBURGH. PENHSYLVAi

Cognitive Science Research Paper

Serial no: CSRP 010

The University of Sussex
Cognitive Studies Programme
School of Social Sciences
Falmer
Brighton BN1 9QN

010 ROOM USE ONLY
UNTIL

I *i:

INTEGRATING PROLOG INTO THE POPLOG ENVIRONMENT

Chris Hellish and Steve Hardy*
Cognitive Studies Programme,

University of Sussex,
Falmer,

BRIGHTON, UK.

ABSTRACT

Although Prolog undoubtedly has its good points, there are some
tasks (such as writing a screen editor or network interface controller)
for which it is not the language of choice. The most natural
computational concepts C23 for these tasks are hard to reconcile with
Prolog's declarative nature. Just as there is a need for even the most
committed Prolog programmer to use "conventional" languages for some
tasks, so too is there a need for "logic" oriented components in
conventional applications programs, such as CAD systems C73 and
relational databases LSD. At Sussex, the problems of integrating logic
with procedural programming are being addressed by two projects. One of
these C4D involves a distributed ring of processors communicating by
message passing. The other project is the POPLOG system, a mixed
language AI programming environment which runs on conventional hardware.
This paper describes the way in which we have integrated Prolog into
POPLOG.

I THE POPLOG ENVIRONMENT

The POPLOG system is an AI programming environment developed at
Sussex University [3D. It supports Prolog, POP-11, a dialect of POP-2
C13, and a basic LISP. POPLOG currently runs on the DEC VAX series of
computers under the VMS operating system, but other implementations are
in progress.

In POPLOG, the link between the programming languages and the
underlying machine is the POPLOG virtual machine. The compilers produce
POPLOG virtual machine instructions, which are then further translated
into the machine code for the host machine. At the level of host
machine code, it is possible to link in programs written in languages
such as FORTRAN. Procedures for "planting" instructions for the virtual
machine are fully accessible to the user. Thus the Prolog compiler is
just one of the many possible POPLOG programs that create new pieces of
machine code. In particular, it is easy to create procedure closures.
For the purposes of this paper, a closure is a structure which contains
a pointer to a procedure plus a set of arguments for that procedure. The
closure can then be applied as if it were a normal procedure with no
arguments. Some "syntactic sugar" has been provided in POP-11 to make it
easy to create closures; an expression such as:

II BACKTRACKING AND CONTINUATION PASSING

In this section, we illustrate, using examples written in POP-11,
how backtracking programs are implemented in POPLOG using a technique
called continuation passing. Although examples are shown in POP-11 for
clarity, in practice Prolog programs are compiled directly to POPLOG
virtual machine code.

Continuation passing is a technique in which procedures are given
an additional argument, called a continuation. This continuation (which
is a procedure closure) describes whatever computation remains to be
performed once the called procedure has finished its computation. In
conventional programming, the continuation is represented implicitly by
the "return address" and code in the calling procedure. Suppose, for
example that we have a procedure, called PROG, that has just two steps:
calling the subprocedure F00 and then the subprocedure BAZ, thus:

define progO;
foo();
baz();

enddefine;

We can rewrite this procedure with an explicit continuation, thus:

define prog(continuation);
fooO;
bazO;
continuationO

enddefine;

This definition presupposes that F00 and BAZ do not themselves take
continuations. If they do, then we must arrange for BAZ to be passed
CONTINUATION and for F00 to be passed an appropriate closure of BAZ,
thus:

define prog(continuation);
foo(baz(%continuation%))

enddefine;

Thus F00 gets as argument a closure. This closure, when applied,
will cause BAZ to be invoked with CONTINUATION as its argument.

Continuations have proved of great significance in studies on the
semantics of programming languages C6D. This apparently round about way
of programming also has an enormous practical advantage - since
procedures have explicit continuations there is no need for them to
"return" to their invoker. Conventionally, sub-procedures returning to
their invokers means "I have finished - continue with the computation".
With explicit continuations we can assign a different meaning to a sub-
procedure returning to its invoker, "Sorry - I wasn't able to do what
you wanted me to do".

This can be illustrated if we define a new procedure NEWPROG, whose
definition is try doing FOO and jif_ that doesn't work then try doing BAZ,
thus:

define newprog(continuation);
foo(cont i nuat i on);
baz(cont i nuat i on);

enddefine;

If we now invoke NEWPROG (with a continuation) then it first calls
FOO (giving it the same continuation as itself). If FOO is succesful
then it will invoke the continuation. If not then the call of FOO will
return to NEWPROG which then tries BAZ. If BAZ too fails (by returning)
then NEWPROG itself fails by returning to its invoker.

Ill INTRODUCING UNIFICATION

Consider the following Prolog program:

happy(X) :- healthy(X), wise(X).

healthy(X) :- jogs(X).
healthy(X) :- eats(X, cabbage).

jogs(chris)•
jogs(jon).

This says that X is HAPPY if X is HEALTHY and WISE. Someone is
HEALTHY if they JOG or EAT CABBAGE; CHRIS and JON both JOG. If these
are complete definitions for these predicates, then we can translate
them into POP-11 as follows:

define happy(x, continuation);
healthy(x, wise(%x, continuation*))

enddefine;

define healthy(x, continuation);
jogs(x, continuation);
eats(x, "cabbage*1, continuation);

enddefine;

define jogs(x, continuation);
unify(x,"chris",continuation);
unify(x,"j on11, cont i nuat i on)

enddefine;

UNIFY is a procedure that takes two data structures and a
continuation. It attempts to unify (that is, "make equal") the two
structures. If it is unsuccessful, UNIFY immediately returns to its
invoker. If, however, it is successful, then it applies the continuation
and when that returns, UNIFY undoes any changes jrt̂ made t£ the two
structures and then itself returns t£ its invoker.

Before we can present a definition of UNIFY, we must consider the
representation of Prolog variables. In Prolog, variables start off
"uninstantiated" and can be given a value only once (without
backtracking); moreover two "uninstantiated" variables when unified are
said to "share", so that as soon as one of them obtains a value, the
other one automatically obtains the same value.

In P0PL06, a Prolog variable is represented by a single element

sxruciures canea a Ktr. Ktrs are creaxea oy m e procedure
and their components are accessed by the procedure CONT. An
uninstantiated Prolog variable is represented by a REF containing the
unique word "undef". If a variable is assigned some value, this value
is placed into the CONT. If two variables come to "share11, we make one
point to the other. To find the "real" value of a variable, especially
one that is sharing, it is necessary to "dereference" it (look for the
contents of the "innermost" REF).

Here now is a simple definition of UNIFY written in POP-11:

define unify(x,y,continuation);
if x ss y then

continuationO
elseif isref(x) and cont(x) s "undef" then

y -> cont(x);
continuationO;
"undef" -> cont(x)

elseif isref(x) and cont(x) /= "undef" then
un i f y (cont (x), y , c ont i nua t i on)

elseif isref(y) then
unify(y,x,continuation)

elseif ispair(x) and ispair(y) then
unify(front(x),front(y),

unify(%back(x),back(y),continuation%))
endif

enddefine;

The procedure first sees if the two given data structures, X and Y,
are identical. If so, it immediately applies the CONTINUATION. If the
structures aren't identical then UNIFY looks to see whether X is a REF
and if so whether it is uninstantiated (ie. whether its CONT is the word
"undef"). If so, UNIFY sets its value to Y (by assigning to the CONT;
assignment works from left to right in POP-11), does the CONTINUATION
and if this returns (ie fails) unbinds the REF by setting the CONT back
to "undef". The final case of UNIFY deals with the possibility that X
and Y may be list pairs. A complete definition of UNIFY must have a case
here for each type of datastructure recognised as a Prolog complex term.
Note that there is no ELSE part to the IF statement. The default action
is simply to return (ie indicate failure).

As a more complex example, here is a translation of the Prolog
MEMBER predicate into POP-11. The Prolog definition is:

member(X,CX|YD).
member(X/CY|ZD) :- member(X,Z).

When translated into POP-11, it will be necessary to make explicit
the unifications which are implicitly done when a Prolog predicate is
invoked. It may therefore be easier to understand the POP-11 translation
if we rewrite the Prolog definition to make the various unifications
explicit:

member(X,Y) :- Y = CX|M3.
member(X,Y) :- Y = CL|MD, member(X,M).

This translates into the following POP-11 procedure:

DD435 74DE

define member(x, y, continuation); ::}..
vars I; consref("undef") -> I;
vars m; consref (Mundeffl) -> m;
unify(y, conspair(x,m), continuation);
unify(y, conspair(l,m),

member(%x/m/cont i nuat i on%))
enddefine;

ss:: 010
Hellish, C* S.
Integrating prolog in
environment

The first two tines of this definition create new Prolog variables
(REFS with contents flundeffl) L and M. The next line checks if the value
of Y can be unified with a newly created pair whose FRONT is the value
of X and whose BACK is the new variable M; if so, UNIFY will perform the
continuation. The last line of the definition tries unifying Y with a
pair whose components are the new variables L and M; if successful,
UNIFY will invoke its continuation which, in this case, is a closure of
MEMBER itself.

IV CONCLUSIONS

We have presented a simplified version of how Prolog is implemented
in the P0PL06 environment. We believe that this system provides a basis
for true mixed-language AI programming because:

(1) The POP-11 and Prolog compilers are just two of potentially many
procedures which generate code for the P0PL06 virtual machine. This
means that the two languages are compatible at a low level, without
there being the traditional asymmetry between a language and its
implementation.

(2) The continuation passing model provides a semantics for
communication between these two languages which allows for far more
than simple "subroutine calling11.

(3) The control facilities available within POPLOG (not shown here) make
it possible to implement a system which is faithful to the
theoretical model, but which is nevertheless efficient.

ACKNOWLEDGEMENTS

We would like to thank John Gibson, the main implementer of the
POPLOG virtual machine and the POP-11 compiler, for providing us with a
powerful programming environment, without which this work would not have
been possible. We would also like to thank Aaron Sloman and Jon
Cunningham for many useful discussions.

REFERENCES

C13 Burstall, R.M., Collins, J.S. and Popplestone, R.J., Programming in
POP-2, Department of Artificial Intelligence, University of
Edinburgh, 1977.

C23 Hardy, S., "Towards More Natural Programming Languages" Cognitive
Studies Memo 82-06, University of Sussex, 1982.

C3D Hardy, S., "The POPLOG Programming Environment", Cognitive Studies
f\f C I

Interactive Distributed Computing Environment for the
Implementation of AI Programs11, SERC grant application, School of
Engineering and Applied Sciences, University of Sussex, 1982.

C53 Kowalski, R., "Logic as a Database Language11, Department of
Computing, Imperial College, London, 1981.

C63 Strachey, C. and Wadsworth, C.P., "Continuations: A Mathematical
Semantics for Handling Full Jumps11, Technical Monograph PRG-11,
Programming Research Group, Oxford University, 1974.

C7D Swinson, P.S.G, "Prescriptive to Descriptive Programming: A way
ahead for CAAD", in Taernlund, S.-A., Proceedings of the Logic
Programming Workshop, Debrecen, Hungary, 1980.

•Steve Hardy is now at Teknowledge Inc, 525 University Ave, Palo Alto,
CA 94301, USA.

