
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

PROGRAM SYNTHESIS BY INDUCTIVE

INFERENCE

Matthew M. Huntbach

1986

Cognitive Science Research Paper

Serial No. CSRP 059

Cognitive Studies Programme,
School of Social Sciences,
The University of Sussex
Brighton BN1 9QN

Cognitive Studies Programme
University of Sussex

Brighton, BN1 9QN
England.

L. INTRODUCTION

En his thesis 'Algorithmic Program Debugging' C163, E.Y.Shapiro
Dresents a theoretical -framework -for program debugging using an
inductive inference mechanism. The general nature of this
framework means that, by specifying an init ial empty program, i t
nay also be used for the inier&nce of programs from examples of
Input/output behaviour.

4e have implemented Shapiro's Model Inference System, and made a
lumber of changes and additions to i t . In particular, we no longer
-egard i t as specifically a tool for Prolog programmers, but as a
general program synthesis system. Our ef forts have been
concentrated on producing a practical refinement operator C173.

Phis paper describes our system without using logic programming
:erminology. We also indicate how we see this system becoming par
Df a collection of tools to provide automated assistance to the
computer progranvner.

2. DATA FLOW PROGRAMS

Shapiro's framework adapts most easily to the logic programming
anguage Prolog, and his system uses Prolog as both the
mplementation and target language. The work presented here reli«
:>n Shapiro's framework, and does in fact use a subset of Prolog c
:he target language. But we find it easiest to think of our targe
programs in the form of generalised data flow diagrams C43. We an
nfluenced particularly by the plan notation of the Programmer's
Apprentice C193. Our system is implemented in a combination of
Volog and Pop-11, using the Poplog system C133.

h our notation, a procedure is shown by a set of data flow
liagrams, each representing one particular path through the
>rogram. All diagrams for a particular procedure have the same
lumber of input and output ports representing that procedure's
>arameters. A diagram consists of a number of segments which
Lhemselves have input and output ports, linked by data flow lines.
^ procedure may be incomplete, in which case there are possible
>aths through the program for which no diagram is present.

he segments represent calls to subprocedures or tests. A
•rocedure segment when presented with input values or
okens produces output tokens which are assumed to flow along th
lata flow lines. A test produces no output tokens but instead
either succeeds or fails. If any test fails, the control path
epresented by the diagram is the wrong one for the given input,
tnd another is tried, until one succeeds in which case the tokens
ihich arrive at the output ports of the diagram are the output o
he whole procedure. The program fails if no program path

subprocedures may themselves b̂ represented by further data floi
diagrams, they may be recursive calls, or they may be system
primitives. Any program path on which a subprocedure -Fails also
fails.

A program path is said to cover' a given input/output pair if,
when presented with the given input, i t succeeds and produces the
given output when the execution of the program path is simulated
by executing only system primitives and asking the user for the
output he would expect from the other subtests and subprocedure^
We term this 'query execution'. I t is equivalent to Shapiro's
definition of 'cover' using the 'eager strategy' — we do not
consider his other search strategies here.

Figure 1 gives an example -far a program which inserts an integer
in position into an ordered list of integers (the program is in
fact incomplete ^nd contains bugs). The system primitives
"head", "tail", "isnil", ">", "cons", and "createnil" which takes
no inputs and always returns the empty list as output. If "tn is
test we also have "not(t)" which succeeds when t fails and vice
versa. For convenience we will assume in future that "head" and
"tail" have a built-in test iar "not(isnil)".

L i

Figure 1

fo tes t whether the f i r s t program path covers the pair
nsert(2,Cl,2,33) -> Cl,2,2,31 the program path would be executed
jn t i l i t came to the recursive call 'insert(2,C2,33>'. The user
*ould then be asked for the result . He would enter C2,2,31 (this
s the expected result rather than the one that would be produce*
*ere the program fully executed) and the execution would continue,
giving the output Cl,2,2,33, so the input/output pair is covered
:>y the path.

5. PROGRAM DIAGNOSIS

Shapiro presents three algorithms to diagnose faults in three
different cases where bugs are found. Each of these will
nteractively query the user during execution.

input/output pair which the user de-fines as true but which is not
covered by any existing path in the program.

rc:r example, the program in figure 1 will fa i l when called with
input insert<2,El,2,33>, expected output £1,2,2,33, because there
is no program path to cover the case of inserting an integer intc
a l ist whose head is equal to the integer. The algorithm will
-eturn insert(2,C2,33) ~> C2,2,33 as the uncovered input/output
sair.

Algorithm 2 is used when the program succeeds on a given input,
Dut the output produced is different from that expected. I t takes
the program with the input and incorrect output produced. I t
returns a program path which covers a false input/output pair.

ror example, the program in figure 1 if called with input
Lnsert<4,Cl,2,33> will return Cl,2,3,4,43 rather than the expected
II,2,3,43. The algorithm will find that the third program path
lovers the input output pair insert(4,C3) —> C4,43 which the user
indicates should be false.

Algorithm 3 is used when the program fails to terminate. I t
"eturns a program path which is looping. I t works by keeping a
stack of procedure calls to a -fixed limit. When this limit is
exceeded, the program is assumed to be looping. The stack is
searched to find any point where a procedure with a given input
rails i tself with the same input, or where some violation of a
^ell-founded ordering on procedure calls occurs C53. The algorithm
~eturns the program path responsible for the violation.

\. PROGRAM SYNTHESIS

Shapiro's diagnosis algorithms have been fairly widely implemented,
lot only for Prolog, but also for other languages such as Pascal
143. Less attention has been given to his use of these algorithm;
.n inductive program synthesis.

fhe basis of this system is that a series of input/output example
.s presented by the user. Each of these is tested in turn againsi
:he current conjectured program. If an example indicated as true
Fails, or one indicated as false succeeds, the diagnosis
algorithms Bre used to detect a bug, and the conjectured program
s replaced by one with this bug corrected which also behaves
:orrectly with respect to all other input/output examples
jresented previously. If the conjectured programs are restricted
:o be any recursively enumerable class of programs that are
everywhere terminating then, using concepts introduced by Gold
73, the correct program may be identified in the limit.

'he inference algorithm is incremental, that is any path which was
emoved for covering a false input/output example is never added
igain to the program. The complete algorithm is shown in figure 2.

"he diagnosis algorithms generate a considerable number of
jueries, the answers to which are added to the l is t of known
nput/output pairs. Whenever a query is made, this l is t is -first
searched to check whether the answer has been given previously,
:hus cutting the number of queries made directly to the user.

repeat
read the next input/output pair
repeat

if the program P fails on a true example then
use Algorithm 1 to find an uncovered input/output

pair A
search for an unmarked program path p that covers I
add p to P

endif;
if the progrmm P succeeds on a false example or

produces an output different from that expected
then

use Algorithm 2 to detect a false program path p
remove p from P, And mdd it to the set of marked
program paths

endif;
until P is correct with respect to all known input/output

pairs;
until no input/output pairs are left to read;

interrupt if the depth of a computation on some input/output
pair A exceeds some limit
use Algorithm 3 to find a program path p which
is looping
remove p from P, add it to the set of marked
program paths
restart the computation of A

endinterrupt

Figure 2

5. SEARCHING FOR NEW PROGRAM PATHS

rhe major par t of our research has been to improve the method u
to search for a new program path to cover a given input /output
?air. In an e a r l i e r paper, we describe Shapiro's method with
"espect to Prolog in deta i l , and suggest some improvements C103.
Here, we give a simple method of searching the space of possible
program paths using our data flow notat ion . Our simplif ications
are due mainly to our use of separate "hd", u t l " and "cons"
operations, ra ther than the l i s t templates of Prolog clauses.

4e introduce the concept of an incomplete program path. This is a
program path in which there are no data flow lines leading to the
Dutput por ts of the main procedure. In the search t r e e fo r
covering program paths, the non- leaf nodes Are incomplete program
:>aths, the leaves Arm complete. The r o o t node is an incomplete
program path consisting of Just the input and output por ts with ri
i a t a flow lines at a l l .

fhere Arm th ree refinement operations by which children may be
generated:

L) Add a subprocedure. This involves constructing data flow l ines
e i ther from the input ports of the main procedure or the outp
ports of existing subprocedures. The output ports of the new
subprocedure Arm unconnected.

constructing aaia now lines to tne output port» OT tne main

procedure from either its input ports or the output ports of
tubproccdures.

lo subprocedure may be added that exactly duplicates the main
procedure (as this would lead to a looping path) or exactly
kiplicates a subprocedure already added. No program path may be
rlosed in such a way that there exists a subprocedure which has
lataflow lines from any of its output ports (since such a
iubprocedure would be superfluous).

:or each procedure used, the user must declare
) The number of input and output ports it has, and the type of

the data items each port uses.
I) The subprocedures and tests it may call.

:or example, the insert procedure of figure 1 is declared to have
:wo input ports: N type integer, LI type list(integer) and one
Hitput port: L2 type list(integer). It is declared to make use of
>ne test ">M and one subprocedure, "insert11 (that is, itself
:alled recursively). In addition it is assumed that each procedure
lay make use of various system procedures and tests such as sir
ist operations.

Figure 3

^)

\

f
{

/
Wtl|

i

i

> l

1
Figure 4

u y r lyur
Df the second node of figure 3.

Heuristic values may be assigned to program paths to guide the
search, though we do not consider this further here. When a
complete path is found during the search, it is tested to see
whether it covers the input/output pair. For example, if we mrm
searching for a path to cover insert(3,Cl,2,43) -> Cl,2,3,43 the
fifth path in figure 4 does not cover it since it leads to
Lnsert(3,Cl,2,43) -> C2,4]. An incomplete path may also be tested
to see if it covers a pair. It fails to cover it if it contains a
test which fails. The third 4knd fourth paths in figure 4, for
example, fail to cover insert<3,Cl,2,43) -> Cl,2,3,43 since they
Lead to the tests 1>3 and isnil(C2,4]> respectively. Any
descendant of an incomplete path which fails to cover a pair will
also fail to cover it, so it need not be searched and the tree c«
>e pruned. A complete covering path may be found which is,
lowever, marked, that is it has already been removed from the
Drogram because it leads to false output for another input. In
this case, search continues for an alternative covering path.

b. GOAL DIRECTED CLOSURE

Consider the program path shown in figure 5. This might be
generated during the search for a program path to cover the pair
dbl2nd(Ca,b,c,d,e,«) -> Cafb,b,c,d,d,e,f,«, Ndbl2nd>a being a
procedure to double every second element in a list. If this
Incomplete path were query executed (resulting in the user being
queried for the result of dbl2nd(Cc,d,e,fJ», the values shown
iiould be produced at each output port.

/
pi

b

I
[c.d.d.z

i

r.f,

/
[Mil

/MX

\ \ l C o n 3

\ |con5

|Cons|

Figure 5 Figure 6

or more \\.nm system wouio generate sspiraie patns to cover nn
cases of the empty list or a list of one element).

tfe add to our search algorithm an operation which query executes
»ach incomplete program path using the input for the pair which
>eeds to be covered. The values produced at each of the output
)orts are stored, and a test is made to see if these may be use
:o construct the output for the pair and thus produce a covering
>ath. If there is more than one way of constructing the output,
»ach is produced in case some are marked paths.

Jsing this technique, heuristic search of program paths produced
>y adding construction operations and closure is unnecessary.

?. CREATING AUXILIARY PROCEDURES

f, while testing for a goal directed closure, it is found that it
.6 possible to create only part of an output value, the program
>ath may be closed by creating An auxiliary procedure which
produces the rest. Figure 7 shows such a closure for the procedi
combs" which takes a list as input and produces as output a list
jf all two-element combinations of items in the list.

* program path to cover the new pair aux(Ca,b,cfdl> —>
Ia,b3,Cafc3,Ca,d33 must now be synthesised. However, the user has
Kit specified the use of the procedure "aux" and so cannot be
expected to answer queries on it (as would be necessary if query
executing a recursive path in the search for a covering path). It
s however possible to use a backwards reasoning to give the
inswer to queries involving auxiliary procedures. In the case of
:igure 7, the answer to any query involving the procedure flaux"
nay be found by applying the same input values to the path in
:igure 8 and query executing it. The system procedure "bsub11 take
:he seconds argument from the back of the first, that is if
ippend(A,B) « C then bsub(C,B) « A-

i

tl
i
1 /

aux

bppenc

i
JUWSL

Figure 7

>o to find the output of aux(Ca,b,c3) the user would be asked
:irst for the output of combs(Cayb,c3) then for the output of
:ombs(Cb,cl) that is [Ca,b3,Ca,c3,Cb9cH and CCb,cH respectively.

not already a member of that l ist, otherwise it returns the l ist
unchanged. Then if we present the system with the pair
addnew<e,£a,b,c9d3) — > £e9a9b9c,dl it will produce the program
path shown in -figure 9 to cover i t .

However, this program path will be removed when the system is
presented with the pair addnew(c,Ca9b9c,dl) —> Ca,b,c,d] since it
leads to the false input/output pair addnew(c,r.a,b,cfd3> —>
r.c9ayb9c,dL The system then needs to search for a new path which
covers addnew(e9Ca,b9c,d3) -> Ce9a9b9c,d3 but not
addnew<c9Ca,b,c,d3) -> Cc9a,b,c,d3.

One possibility is to modify the removed path by adding an
auxiliary test as in figure 10. The two input/output pairs
auxtest<e,Ca9b,c,d3> -> true and auxtest(c,r.a,b,c,d3) -> false are
added to the databse of pairs, and the system will search for a
program to cover them.

For any queries of auxtest<X9Y) the user is asked for the result
of addnew(X9Y). auxtest(X,Y) is defined as true when addnew(X9Y) «
cons(X,Y), false otherwise. This may be used to sythesise
"auxtest11 (in fact9 our system would identify it as being
equivalent to the system test "not(member)11).

Although the generation of auxiliary procedures and tests may le<
to inefficient or unusually structured programs, we envisage
program transformation techniques C33 being applied to them. We
have already implemented a simple transformation which
incorporates the program path to cover some auxiliary into the
parent path if the program for the auxiliary is found to be a
single path.

t l

[bf

Cowttf

/

fbsub

3

[Cb.d]

Figure 8

8. PROGRAM PATHS TO PROGRAMS

A s e t of program paths may be represented and executed as a se
Prolog clauses by representing each path as a clause, and each
subprocedure and t e s t segment in a path as a subgoal. Each outp«
por t is represented by a new Prolog var iable . A data flow l ine is

owever, as we have indicated, our intention im that each program
ath should be thought of as one particular flow of control
hrough a program. Our program paths may be combined to form plar
iagrams as used by the M.I.TV Programmer's Apprentice C153. This
Ian notation is claimed to represent all the essential details of

program while suppressing those incidental features which stem
rom particular programming languages. Translators to and from th€
Ian notation and several standard programming languages have bee
iritten. Thus, with the appropiate translator, our system could be
sed to synthesize programs in any standard language.

e envisage our program synthesis system being incorporated as o
lement in a larger programmer's assistant type system such as ha
een suggested with PBI [83. We agree with Kant C123 that
incorporating an inductive inference capability into a program
ynthesis system makes sense; expecting i t to solve the entire
rogram synthesis problem does not'. I t may best be used perhaps
or filling in gaps or correcting mistakes that inevitable arise
hen programs are methodically derived from specifications C6D
specially from informal specifications C13.

. CONCLUSIONS

ur work represents a further step from theoretical work on
nductive inference C73,C23 towards a tool which may be of
ractical use to computer programmers. The link is Shapiro's Model
nference System Q63. We have demonstrated that there is great
cope for improvemnets to be made to this system, part icular ly t<
he program synthesis part.

e have also tried to separate Shapiro's work from the field of
ogic programming. Although the use of Prolog was important in
llowing the construction of a demonstratable system, we feel the
lork needs to be seen more in i ts own right.

n the field of program synthesis from examples, we have produced
; system which can cope with most of the examples dealt with by
•ther systems C93, C183, C113 as well as some not previously
ynthesised entirely from examples.

0. ACKNOWLEDGMENTS

inancial assistance for this work was given by the Artif icial
ntelligence group at the G.E.C. Marconi Research Centre. I also
hank my supervisor, Rudi Lutz, and other people in the Cognitive
Itudies Programme at Sussex University for helpful comments.

1. REFERENCES

C13 R.Balzer, N.Goldman, D.Wile. Informality in program
specification. IEEE Trans. Soft. Eng. SE-4,2 pp.94-103. 1978.

C23 L.Blum & M.Blum. Towards a mathematical theory of inductive
inference. Information and Control 28. 1975.

C33 J.Darlington. Program transformation. In 'Functional
Programming and i ts Applications", pp.193-215. Eds.
J.Darlington, P.Henderson, D.A.Turner. Cambridge Univ. Press,
U.K. 19B2.

C43 J.B.Denni*.Dataflow supercomputers. IEEE Computer 13,11
pp.4B-56. 1980.

C53 R.W.Floyd. Assigning meaning t;o programs. In Proc. Symp. on
App. hath. Ed. J.D.Schwartz. American Math, Soc. 1967.

C63 S.L.Gerhart & L.Yelowitz. Observation* of fall ibil ity in
applications of modern programming methodology. IEEE Trans.
Soft. Eng. SE-2,3 pp.195-207. 1976.

C73 E.M.Gold. Language identification in the limit. Information
and Control 10 pp.447-474. 1967.

C83 C.Green. A summary of the PSI program synthesis system.
IJCAI-77 pp.380-381. 1977.

C93 S.Hardy. Synthesis of Lisp programs from examples. IJCAI—75
pp.240-245. 1975.

C103 M.M.Huntbachu An improved version of Shapiro's Model Inference
System. Third International Logic Programming Conference,
London 1986.

C113 J.P.Jouannaud and G.Guiho. Inference of functions with an
interactive system. Machine Intelligence 9, pp.227-250. 1979.

Q23 E.Kant. Understanding and automating algorithm design. IEEE
Trans. Soft. Eng. SE-11, 11. pp.1361-1374. 1985.

C133 C.Mellish Sc S.Hardy. Integrating Prolog into the Poplog
environment. In 'Implementations of Prolog', ed. J.A.Campbell.
Ellis Norwood 1984.

C143 S.Renner. Location of logical errors in Pascal programs with
an appendix on implementation problems in Waterloo Prolog/C.
Internal report UIUCDCS-F-82-896. Knowledge Based Programme
Assistant Project, University of Illinois, 1982.

C153 C.Rich. A formal representation for plans in the Programmer's
Apprentice. IJCAI-B1 ppJL044-1052. 1981.

C163 E.Y.Shapiro. Algorithmic Program Debugging. M.I.T. Press 1982.
C173 E.Y.Shapiro. Inductive Inference of Theories from Facts. Yale

Univ. Dept. of Computer Science. Research Report 192. 1981.
C183 D.E.Shaw, W.R.Swartout, C.Breen. Inferring Lisp programs from

examples. IJCAI-75, pp.260-267. 1975.
C193 R.C.Waters. The Programmer's Apprentice: knowledge based

program editing. IEEE Trans. Soft. Eng. SE-8,1 pp.1-13. 1982.

