
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

The Role of Databases
in Knowledge-Based Systems

Mark S. Fox and John McOermott

CMU-RI-TR-86-3

Computer Science Department
and

The Robotics Institute
Carnegie-Mellon University

Pittsburgh, Pennsylvania 15213

February 1986

Copyright © 1986 Carnegie-Mellon University

This research was supported, in part, by Digital Equipment Corporation, Air Force Office of Scientific
Research under contract F4962Q-82-K0017, and Westinghouse Electric Corporation.

This paper will appear in On Knowledge Base Management Systems: Integrating Artificial
intelligence and Database Technologies, M. L Brodie and J. Mylopoulos, EdsM Springer-Verlag, 1986.

Table of Contents
1. Introduction 1
2. Database Requirement Analysis 1

2.1. R1: Computer Configuration 1
2.2. ISIS: Job-Shop Scheduling 4
2.3. Callisto: Project Management 7

3. Analysis 10
3.1. Issues at the Symbol Level 12

3.1.1. Efficiency of Search 12
3.1.2. Efficiency of Data Management 14

3.2. Issues at the Organization Level . 14
3.2.1. Security and Synchronization 15
3.2.2. Incompleteness and Inconsistency 15

4. SRL 16
4.1. Language Overview 16
4.2. Extensions to the Language • 19
4.3. Analysis 19

4.3.1. Efficiency of Data Management 20
4.3.2. Efficiency of Search 20
4.3.3. Security and Synchronization 21
4.3.4. Incompleteness and Inconsistency 22

5. Conclusion 23

List of Figures
Figu re 2 - 1 : R1 Database Architecture
Figu re 2-2: ISIS Process Architecture
Figu re 2-3: Callisto Distributed Architecture
Figu re 3 - 1 : Al and DB Levels
Figure 4 - 1 : hi-spec Schema
Figure 4-2: h1-spec Schema

3
8

11
13
17
17

ABSTRACT

This paper explores the requirements for database techniques in the construction of
knowledge-based systems. Three knowledge-based systems are reviewed: XCON/R1,
ISIS and Callisto in order to ascertain database requirements. These requirements result
in the introduction of the Organization level, an extension to the symbol and knowledge
levels introduced by NewelL An implementation of these requirements is explored in the
SRL knowledge representation and problem-solving system.

1

1. Introduction
This paper explores the requirements for database techniques in the construction of knowledge-

based systems (KBS). While early work in Artificial Intelligence (Al) has focused on techniques such

as representation and problem-solving, scant attention was paid to the issues to which database (DB)

research has focused (e.g., data sharing, query optimization, transaction processing). Our principal

premise is that although it has appeared that there was little intersection between the particular focus

of each group, there is a significant overlap in needs. The maturing of Al techniques has recently led

to their application outside of the laboratory, thus thrusting upon them problems requiring DB

solutions. On the other hand, DB needs have expanded to include more expressive data models and

more powerful query languages (e.g., supporting inference).

To ascertain KBS requirements for DBs, three KBSs are described. Each is analyzed from the

perspective of the symbol and knowledge level concepts developed by Newell [NEWE81]. Limitations

inherent in this perspective are identified. A new level, the organization level, is proposed as a means

of identifying and dealing with these limitations. Lastly, we discuss implementations of some of the

requirements in the SRL knowledge enginering system.

2. Database Requirement Analysis
In 1979-80 work began in both the Computer Science Department and Robotics Institute at

Carnegie-Mellon University exploring the application of Al to engineering and manufacturing

problems. Over the years at least 15 KBSs have been created and are in various stages of

development and production use. From this set we have chosen three systems which exhibit a variety

of DB requirements.

2 . 1 . R1 : Computer Configuration

The configuration task that R1 performs takes, as input, a list of components ordered by a customer

and produces, as output, a set of diagrams that display the interrelationships among those

components- If the initial list of components is incomplete (i.e., it may not be possible to configure a

functional system with that set of components) the configurer adds appropriate components in the

course of determining what the interrelationships among the components should be. Because the

various combinations of components that might be ordered is too large to enumerate, the only

approach to a configuration task of this type is to construct (as opposed to select) an appropriate

system configuration.

It would appear that constructive tasks require heuristic search, that Is, a combinatorial search in

which candidate partial solutions are constructed and their potential evaluated. The nature of RVs

knowledge of its task is such that R1 can for the most part avoid the combinatorial search (and thus

avoid backtracking) by using small local searches at steps where there is ambiguity about what next

action is most appropriate [MCDE82]. In other words, local cues are ordinarily sufficient to drive R1

along a path to a solution. RVs search techniques make only one sort of informational demand on its

environment: it requires information that will allow it to determine which of several competing actions

within the same or within competing subtasks ought to be performed next. Viewing the task from this

perspective, there are at most two roles that knowledge can play. One of the roles is as selector of

the next action within some subtask. The other role is as initiator of a local search when there is

ambiguity about which subtask and which action to select.

RVs problem-solving method always selects the next piece of knowledge (i.e., rule) to apply from

among those pieces of knowledge associated with the currently active subtask. Ordinarily only a few

pieces of knowledge are relevant at any given time; a piece of knowledge is considered relevant

whenever the pattern defining its relevance can be instantiated by elements describing the current

state of the world. When more than one piece of knowledge is relevant, the problem-solving method

relies on very general heuristics such as the recency of the elements instantiating each pattern and

the degree of specificity of each pattern to determine which piece of knowledge to apply. Thus RVs

problem-solving can be characterized as follows: Given that it's involved in some task, it will take

whatever next step (ie, apply whatever knowledge) is relevant (and the step could be to initiate some

subtask); if more than one piece of knowledge is potentially relevant, the choice of which step to take

will be made on the basis of very general considerations. If there is no more knowledge relevant to

the current task, RVs attention returns to the parent task. Whenever R1 does not have enough

information to confidently prefer one possible step to all other candidates, it does some local

problem-solving (searching) until sufficient information has been collected.

RVs rule base is written in OPS5 [FORG81] and contains over 4000 rules. It performs goal-directed

forward chaining in order to synthesize a configuration. Information on Digital's standard parts is

contained in the DBMS database system. It contains over 9000 part descriptions with anywhere from

25 to 125 different attributes describing each part. A subset of R1 's rule base implements an interface

to the DBMS system. When parts and/or their attributes are required during the configuration

process, the DB interface rules' actions query the DB and provide the retrieved information in the

format required by OPS5 and R1, In order to support RVs processing the DBMS provides query

processing on a transaction basis. In the situation where more than one R1 is running, the DBMS

supports transactions from more than one process.

OPS5

GOAL DIRECTED

OVER 4000 RULES

Request by
name or
class or
simple
pattern

Objects

DBMS

•9000 OBJECTS
•20-125
ATTRIBUTES

A Sample Rule
IF: The current subtask Is assigning

devices to unlbus modules
And there Is an unasslgned dual port disk drive
And the type of controller It requires Is known
And there are two such controllers neither of

which has any devices assigned to it
And the number of devices which these controllers

can support Is known

THEN: Assign the disk drive to each controller
And note that each controller supports one device

Figure 2-1: R1 Database Architecture

2.2. ISIS: Job-Shop Scheduling

ISIS is a knowledge-based system designed to provide intelligent support in the domain of job shop

production management and control [FS84]. Job-shop scheduling is a "uncooperative" multi-agent

(i.e., each order is to be "optimized" separately) planning problem in which activities must be

selected, sequenced, and assigned resources and time of execution. Resource contention is high,

hence closely coupling decisions. Search is combinatorially explosive; for example, 85 orders moving

through eight operations without alternatives, with a single machine substitution for each and no

machine idle time has over 10880 possible schedules. Many of which may be discarded given

knowledge of shop constraints. At the core of ISIS is an approach to automatic scheduling that

provides a framework for incorporating the full range of real world constraints that typically influence

the decisions made by human schedulers. This results in an ability to generate detailed schedules for

production that accurately reflect the current status of the shop floor, and distinguishes ISIS from

traditional scheduling systems based on more restrictive management science models. ISIS is

capable of incrementally scheduling orders as they are received by the shop as well as reactively

rescheduling orders in response to unexpected events (e.g. machine breakdowns) that might occur.

The construction of job shop schedules is a complex constraint-directed activity influenced by such

diverse factors as due date requirements, cost restrictions, production levels, machine capabilities

and substitutability, alternative production processes, order characteristics, resource requirements,

and resource availability. The problem is a prime candidate for application of Al technology, as

human schedulers are overburdened by its complexity and existing computer-based approaches

provide little more than a high level predictive capability. It also raises some interesting research

issues. Given the conflicting nature of the domain's constraints, the problem differs from typical

constraint satisfaction problems. One cannot rely solely on propagation techniques to arrive at an

acceptable solution. Rather, constraints must be selectively relaxed in which case the problem

solving strategy becomes one of finding a solution that best satisfies the constraints. This implies that

constraints must serve to discriminate among alternative hypotheses as well as to restrict the number

of hypotheses generated. Thus, the design of ISIS has focused on

• constructing a knowledge representation that captures the requisite knowledge of the job

shop environment and its constraints to support constraint-directed search, and

• developing a search architecture capable of exploiting this constraint knowledge to

effectively control the combinatorics of the underlying search space.

tSIS constructs schedules by performing a hierarchical, constraint-directed search in the space of

aitematiwe schedules. The search is divided into four levels: order selection, capacity analysis,

resource analysis, resource assignment. Each level is composed of three phases: a pre-search

analysis phase which constructs the problem, a search phase which solves the problem, and a post-

search analysis phase which determines the acceptability of the solution. In each phase, ISIS uses

constraints to bound, guide, and analyze the search.

Level 1 is responsible for selecting the next unscheduled order to be added to the existing shop

schedule. Its selection is made according to a prioritization algorithm that considers order type and

requested due dates. The selected order is passed to level 2 for scheduling.

Level 2 performs a dynamic programming analysis of the plant based on current capacity

constraints. It determines the earliest start time and latest finish time for each operation of the

selected order, as bounded by the order's start and due date. The times generated at this level are

codified as operation time bound constraints which serve to influence the search at the next level.

Level 3 selects a particular routing for the order and assigns reservation time bounds to the

resources required to produce i t Pre-search analysis begins with an examination of the order's

constraints, resulting in the determination of the scheduling direction (either forward from the start

date or backward from the due date), the creation of any missing constraints (e.g. due dates, work-in-

process), and the selection of the set of search operators (e.g., choose next operation, choose

machine for the operation) which will generate the search space. A beam search is then performed

using the selected set of search operators. The search space to be explored is composed of states

which represent partial schedules. The application of operators to states results in the creation of

new states which further specify the partial schedules under development. Depending on the results

of pre-search analysis, the search proceeds either forward or backward through the set of allowable

routings for the order. An operator that generates states representing alternative operations initiates

the search; in which case it generates alternative initial (or final) operations.

Once a state specifying an operation has teen generated, other operators extend the search by

creating new states which bind a machine and/or execution time to the operation. A variety of

alternatives exist for each type of operator. For example, two operators have been tested for

choosing the execution time of an operation. The **eager reserved operator chooses tfie earliest

.possible reservation for the operation's required resources, and- the "wait and: see* operator

tentatively reserves as much time as available, leaving the final decision to ievei 4. This enables the

adjustment of reservations in order to reduce work-in-process time. Alternative resources (e.g. tools,

materials, etc) are generated by other operators. Each state in t ie search space is rated by the set of

constraints found (resolved) to be relevant to the state and its ancestors. This set is determined by

6

collecting the constraints attached to each object (e.g. machine, tool, order, etc.) specified by the

state and applying resolution mechanisms. Each constraint assigns a utility between -1 and 1 to a

state; -1 signifies that the state is not admissible, 0 signifies indifference, 1 maximal support. -The

rating of a state with multiple constraints is the mean of the utilities assigned by the constituent

constraints, each weighted by the the importance of the assigning constraint.

Once a set of candidate schedules have been generated, a rule-based post search analysis

examines the candidates to determine if one is acceptable (a function of the ratings assigned to the

schedules during the search). A set of schedules may be found to be unacceptable due to the lack of

satisfaction of the more important constraints. If no acceptable schedules are found, diagnosis is

performed. First, the schedules are examined to determine a type of scheduling error and the

appropriate repair. Intra-level repair may result in the re-instantiation of the level's search. Pre-

analysis is performed again to alter the set of operators and constraints for rescheduling the order.

Inter-level repair is initiated if diagnosis determines that the poor solutions were caused by constraint

satisfaction decisions made at another level. Inter-level diagnosis can be performed by analyzing the

interaction relations linking constraints. A poor constraint decision at a higher level can be

determined by the utilities of constraints affected by it at a lower level. That is, a poorly satisfied

constraint at a lewl 3 may be linked to a well satisfied constraint at level 2. Only by going back to

level 2 and choosing another value for the constraint at that level, which is less optimal, can the level

3 constraint's utility be increased (e.g., adding more shifts at level 2, which is a costly decision, will

increase throughput and reduce work in process time at level 3).

Level 3 outputs reservation time bounds for each resource required for the operations in the chosen

schedule. Level 4 then establishes actual reservations for the resources required by the selected

operations which minimize the work-in-process time.

In addition to incrementally scheduling orders for production as they are received by the shop, the

ISIS search architecture can be exploited in a reactive manner. As unexpected events (e.g., machine

breakdowns) cause disruptions in the existing shop schedule, ISIS needs only to reschedule the

affected orders. This results in a minimal amount of change, and provides continuity in the shop

schedules generated over time.

The application to which ISIS has been applied is the production of steam turbine blades. The plant

has over 30,000 part numbers, 200 machines and over 800 orders active at any time. In addition, the

knowledge base contains information about operations to produce each part number (about 10

operations per part), tooling, resources, and constraints. A separate schema in SRL, a knowledge

representation language, is required for each piece of information.

The ISIS knowledge base must support parallel access by plant staff other than the schedulers.

These include managers, tooling personnel, resource personnel, marketing and sales. These

accesses are made via separate terminals on the same or distributed computers. Accesses are both

read and write and are addressed by schema name (i.e., unique record key). Hence a DBMS which

support multi-read/multi-write access is required if more than one process is to be supported. The

need for an extensive query language is somewhat reduced because of similar facilities provided in

SRL directly.

2.3. Callisto: Project Management

A major portion of the product development cycle is consumed in the performance and

management of activities. For example, in high technology industries such as the computer industry,

thousands of activities are required to be performed in the design and prototype build of a new

product. Poor performance or poor management of an activity can result in critical delays. If product

development time is to be reduced, then better management and technical support should be

provided to each of the activities.

The Callisto project [SFG85] [SRM8G] examines the extension and application of artificial

intelligence techniques to tire domain of large project management Managing large projects entails

many tasks, including:

Activity Management: Plan generation, scheduling, monitoring and control of activities. This
involves selecting activities, assigning resources to accomplish these activities,
chronicling or recording the status of activities as they are performed, diagnosing
deviations from the plan and repairing the plans.

Product Management maintaining a current description of the product (which is usually the
outcome of a project), and determining the effects of changes to its definition
(e.g., engineering change orders).

Resource Management: acquisition, storage, and assignment of the many resources required to

support a project

A close observation of project tasks shows that errors and inefficiencies increase as the size of the

project grows. The successful performance of project tasks are hindered by:

Complexity: due to the number and degree of interactions among activities (e.g., resources,
decisions, etc.).

Uncertainty: of direction, due to the unknown state of other activities and the environment
Change: in activities to be performed and products to be produced, requiring project flexibility and

adaptability.

White CPy and PERT techniques provide critical path and scheduling capabilities, the bulk of the

Q1Q:

MANAGER DSS

SCHEDULER OSS

•Multi-agent Planning
and Scheduling

•Constraint Directed
•Hierarchical
•Opportunistic

1000
• > 10 Possible

Schedule^

SRL AND LISP

Tooling DSS

OB

Factory Systems30,000 Parts
200 Machines
1000 Orders
Tools
Personnel
Operation
Constraints

Order Entry

Constraints
• Goals cost, quality, due date,

stability
• Availability - resources
• Causality - activity, state
• Preferences - operations, machines,

personnel

Figu re 2- 2: ISIS Process Architecture

tasks are performed manually.

Callisto provides decision support and decision making facilities in each of the above tasks. The

ability to extend the capabilities found in classical approaches is due to Callisto's project model.

Starting with the the SRL knowledge representation language, a set of conceptual primitives

including time, causality, object descriptions, possession, organizational authority and responsibility

are used to define the concept of activities, product and the project organization. The language is

further extended by the inclusion of a constraint language which represents the constraints among

activities. The modeling language provides Callisto with the ability to model both products and

activities in enough detail that inferential processing may be performed.

Callisto's decision support and decision making capabilities include:

• interactive generation of plans,

• interactive change order management for products,

• multi-level scheduling of activities,

• chronicling of activity status,

• rule-based analysis and maintenance of activities,

• automatic generation of graphic displays of project models, and

• communication of project information among project members.

These functions are constructed from a combination of five problem-solving architectures:

Object programming: Each project concept is described in terms of its information contents, as
well as procedures for a variety of operations (e.g., creation, deletion, display).
Thus, manipulation of these objects is achieved by sending specific messages to
these objects.

Robject-based*. Robjects, or responsibility objects, are program modules capable of communicating
with other modules, reasoning to generate a procedure for solving their problems
and having mechanisms for generating, filtering and archiving messages. They
form an organization structure within Callisto for handling a task given by the
user.

Event/Agenda-Based: Callisto robjects interpret a user's process, represented as a network of
activities and states, by setting up and maintaining an agenda of goals and
monitored events. The agenda facilitates or inhibits the execution of certain
actions depending on the goals. This processing facility is used in the scheduling
and chronicling activities.

10

Rule-Based Programming: SRL-OPS, a production system language built on top of SRL, is used to
implement managerial heuristics for project management SRL-OPS can monitor
and act on arbitrary conditions in project environment. The rule-based

' programming is used to evaluate activity structures and for the specification of
status reports.

Logic Programming: HSRL, a Home clause theorem prover, is used as a question answering
mechanism for perusal and reporting. HSRL represents assertions and theorems
within SRL.

Current research focuses on a distributed Callisto system. Each member .of a project has a "mini-

Callisto" to aid in managing his or her task. Each mini-CalJisto is able to communicate with other

mini-Callisto's to collectively manage the entire project. The project management tasks supported by

the mini-Callisto network are:

• Communication of which phase the project is in, requests for participation, and
commitment to a phase.

• Definition of activity networks for others. These networks define, at different levels of
abstraction, the activities to be performed by each project member.

• Distribution of activity network to others,

• Record of Negotiation of the activities to be performed.

• Monitoring of employee performance by receiving status of milestones, and perusing
activities.

• Alteration and extensions to previously defined activity networks.

The knowledge base for distributed Callisto does not reside in a central location. Instead, portions

of it are distributed among the project members. Communication is performed via message sending.

Parallel access to a single knowledge is not provided. Access is mediated by the owning process.

3. Analysis
This section identifies issues of common interest to the data base and artificial intelligence

communities using the paradigm put forth by Newell [NEWE81]. The key idea is that an intelligent

system can be viewed at a variety of levels; two of the levels identified by Newell are the symbol level

and the knowledge level:

• Symbol levek the concern at this level is with what processing is required to bring
relevant knowledge to bear in solving a problem' in real time and real space. Thus the
issues at this 'level are focussed around knowledge structures and mechanisms for
accessing and maintaining these structures.

11

O
• alternative

designs

SRL & LISP

Activity
- state, act
- causality
- time
• manifestation
- abstraction, aggregation
- goals, milestones, constraints

> 10K parts

> 1000 activities
> 10K schemata

• simulation
• rule-based analysis
• constraint-checking

Objects
- components
- versions, revisions
- aggregation
- transformation

o

o

Figure 2-3: Callisto Distributed Architecture

12

• Knowledge Level: the concern at this level is with what knowledge is required to solve a
problem, rather than with how that knowledge can be effectively used. Thus here, the
issues are focussed around the content of the knowledge base, rather than its structure

We share the views of Brachman and Levesque [BL84] that at the knowledge level, a DB is a limited

form of knowledge base; its limits are determined by the functionality it can provide an agent. But if

we examine the role DBs actually play in the world, it is clear that this knowledge level view is

incomplete. Intelligent problem-solving tends to be a group effort involving more than one agent. A

variety of issues in group problem-solving situations that are not considered at the knowledge level

can only be resolved at a higher level, the organization level

Organization Level: the concern at this level is with how agents, each with limited
knowledge, can cooperate to solve problems.

Most DB research has focussed on providing capability at the organizational level and the symbol

level. At the symbol level, the primary DB concern has been with time and space efficiencies. At the

organization level research has focused on the support of access to a single DB my multiple agents

(i.e., processes). Most artificial intelligence research has focussed on providing capability at the

knowledge level and the symbol level. At the symbol level, the primary Al concern has been with

flexibility and power. During the past several years, there has been a growing interest within the

artifscia! intelligence community in issues at the organizational level and with issues of efficiency at

the symbol level. Within the section we first point to some of the areas of DB research at the symbol

level that Al researchers should attend to and then discuss the intersection of interests between the

two communities at the organization level. The next section discusses ways that various results of

data base research could be realized in the knowledge representation language, SRL.

3.1. Issues at the Symbol Level

Traditionally, efficiency has not been a criterion by which to measure the effectiveness of a system

a! the knowledge level. In fact, the knowledge level ignores the issue of how knowledge is to be

structured by relegating it to the symbol level. Nevertheless, efficiency, particularly time efficiency, is

a major problem in knowledge-based systems.. There are two parts to the efficiency issue: efficiency

of search and efficiency of data management

3.1,1. Efficiency of Search

Consider the case of a frame or semantic network-based knowledge representation language, such

as SRL [FWA84] or KL-GNE [BRAC77], These representations implement a form of default reasoning

by means of inheritance. The time to access a unit of information is dependent upon the amount of

search that is to be .performed in the network, linear speed-ups in computer power do not match the

13

Organizational Level
• multi-agent
• distributed problem-solving

Knowledge Level
• single agent
• problem solving

Symbol Level
• structure of knowledge
• access

Figu re 3-1: Al and DB Levels

possibly exponential growth in the search space of some knowledge networks.

Similarily, rule-based systems, in which the condition portion of rule is to be matched against data in

working memory, may perform a great deal of search before a match is found. Systems such as R1,

which has over 4000 rules and typically deals at any given time with 500 objects each of which may

have up to 125 attributes [BM84J, have begun to push the limits of conventional architectures. To

date, symbol level solutions have been investigated. The RETE algorithm [FORG82] is one technique

for compiling the patterns (i.e., conditions) of rules into a network in order to reduce the time to test

whether a rule's condition is true. But this technique has serious shortcomings when the number of

objects that need to be attended to at any given time (ie, the number of objects in working memory) is

14

large.

3.1.2. Efficiency of Data Management

The issue of how to manage large volumes of data has been largely ignored by Al. The approach

traditionally taken is to increase the address space and store all data in virtual memory, letting the

operating system worry about the rest.1 With the application of Al to problems such as factory

management, the need to*store and access large volumes of data outside of virtual memory is critical.

A portion of DB research has been concerned with managing the efficiency of access over a variety of

storage devices.

The RETE algorithm, for example, assumes that the entire knowledge base fits in memory2. The

issue of how to match patterns against large amounts of knowledge stored on a variety of storage

devices is an issue that needs to be addressed. The problem can be broken into two parts: static and

dynamic pattern matching. To the extent that a pattern is static, it is predefined and available at

"compile" time for matching optimization. However, to the extent the pattern is dynamic, it is not

defined until run time and is not available for compilation. DB research in indexing methods may play

a significant role in solving this problem.

Inheritance and the more general relation-based search also raise data management issues. The

cost of such searches increases dramatically when much of the knowledge is not contained in main

memory but in a DB. If such operations are to be supported, then we must reduce the time to swap

data in so that it appears invisible. Better DB fetching must also be sought. DB systems available

today do not appear to provide a solution; access times to records are quite high relative to memory

access times. Solutions which include parallelism, multiple levels of caching, and intelligent pre-fetch

need to be investigated.

3*2. Issues at the Organization Level

Some Al researchers have already had to address issues at the organization level. For example,

Ptrans [MCDE83], ISIS, and Callisto share Information with other agents (or processes), and Hearsay-

It's [EHLR8Q] knowledge sources share knowledge via a blackboard. Consequently, issues of

security and synchronization as well as issues of incompleteness and inconsistency arise. At the

knowledge level, one views a knowledge base as being M owned" by a single process. The problems

Currently twalabte isp machines Wee i i ia approach and do not offer DB support

Tht effect of the RETE algorithm, which worfsa In mam memory, is similar to materialized views in DBs which are supported
in secondary memory.

15

of security and synchronization are removed by restricting access via messages. It is then up to the

process to decide what information is to be seen, when, and by whom. But distributed problem

solving systems require a variety of methods of sharing knowledge (e.g., blackboards) and thus

require that the problems of security and synchronization be faced. At the symbol level, the problems

of incompleteness and inconsistency are taken as a given. At the knowledge level, the problems

require providing the system with the knowledge of how to qualify its judgements. But distributed

problem solving systems are collections of agents the sum of whose knowledge may be more

complete than that of any individual agent. Moreover, the nature of the inconsistencies in the sum of

the knowledge may allow judgements of relative reliability. Thus at the organization level, the task of

developing a system requires providing the system with the knowledge of how to extend its own

knowledge by interacting appropriately with other agents.

3.2.1. Security and Synchronization

Blackboard mechanisms such as found in Hearsay-II provide a means by which a group of agents

may jointly peruse and modify a common pool of information. Obviously, issues of synchronization

occur. In addition, depending upon the role of an agent, limitations may be placed on what

information may be seen and/or modified. DB security and synchronization techniques such as

transaction models and optimistic concurrency control can be readily applied to shared knowledge

structures such as blackboards or production system working memories. While it is at the

organization level that the issue arises, it is at the symbol level that the solution will have to be

implemented.

The problem of security appears in distributed systems which lack global data structures. If each

agent possesses its own knowledge base and information flows only via message passing, how is an

agent to determine whether to honor requests for information from other agents? The problem of

synchronization also appears when agents cooperate to solve problems. How must an agent manage

the synchronization of knowledge and actions of multiple agents when cooperatively working on a

problem?

3.2.2. Incompleteness and Inconsistency

In a situation when multiple agents are problem-solving in parallel, each agent may generate new

knowledge. To maintain full access to the generated knowledge, each agent may have to broadcast

ait it knows or make its knowledge available in a global knowledge base. The former may quickly

result in saturation of the broadcast medium, while the latter may saturate the storage device and

become an access bottleneck. Alternatively, an agent may not want ail of the knowledge it generates

available to the entire organization. In any of these casest it is clear that one agent's model of the

16

"world" may rapidly become incomplete. Techniques are required to decide:

• what knowledge to store locally,

• what knowledge to communicate,

• to whom to communicate this knowledge,

• how to restrict access by other agents, and

• where to look for knowledge if you don't have it.

In the case when knowledge is shared among multiple agents and stored locally, an agent may

extend or alter the knowledge in a manner which makes it inconsistent with another agent's

understanding of the same knowledge. For example, an agent may share a description of a person

with other agents, but during its problem-solving it may alter its description (e.g., guessing of the

person's age) so that it is inconsistent At some time during problem-solving, another agent may

request that person's description from other agents and receive differing descriptions. How is this

inconsistency to be resolved? It is not enough to maintain separate belief models; this only maintains

a separation,

4. SRL
This section presents one knowledge representation and problem-solving system, SRL3, and

examines how it implements solutions to some of the above problems.

4 .1 . Language Overview

SRL is a frame-based language with the "schema" as its primitive. A schema is a symbolic

representation of a single concept. Its definition is the summation of its slots and values. Slots are

used to represent attributive, structural and relational information about a concept. A schema is

composed of a schema name (printed in the bold font), a set of slots (printed in smaJI caps) and the

slofs values (lisp printing conventions are observed). Values can be any lisp expression and

reference schemata when they are strings, When printed, a schema is always enclosed by double

braces with the schema name appearing at the top. The h i -spec schema (figure 4-1) contains six

slots, each of which contains a value.

of SRL began in 1977. Ms contents evolved during its application to industrial problems In the tntefigent
System Laboratory. Since 1985* mtny of the concepts investigated in SRL have been implemented In Knowledge Crrft t
Stiwwfedg* engineering system available from Carnegie Group Inc. Pittsburgh PA.

17

h1-spec
is-A: "engineering-activity"
SUB-ACTIVITY-OF: "develop-board-h1"
INITIAL-ACTIVITY-OF: "develop-board-h1"
ENABLED-BY: "TRUE"
CAUSE: "hi-spec-complete"
DESCRIPTION: "Develop specifications for the cpu board" } }

Figure 4 -1 : hi-spec Schema

Many ideas found in other representation systems have been incorporated into SRL including meta-

information, demons, restrictions on*legal slot value and a context facility.

Meta-information may be associated with schemata, their slots, and values in the slots. It is

represented by another schema, called a meta-schema, that is attached to the schema, slot, or value.

Representing meta-information as schemata provides a uniform approach to representation. The

user is provided with access functions for'retrieving meta-schemata. Once retrieved, they are

manipulated just as'any other schema. The meta-information is printed in italics beneath schema, slot

or value to which it is attached:

h1-spec
Creator: "mark foxtf

To -Create:: schemac

is-A: "engineering-activity"
SUB-ACTIVITY-OF: "develop-board-h1M

range: (type "instance" "activity1*)
INITIAL-ACTIVITY-OF:

 Mdevelop-board-h1"
ENABLED-BY: "TRUE"
CAUSE: "hi -spec-complete"
DESCRIPTION: "Develop specifications for the cpu board" } }

Figure 4-2: hi -spec Schema

Any slot may have facets associated with it Four facets are defined in SRL: DEMON, DOMAIN, RANGE,

and CARDINALITY. The DEMON facet allows lisp procedures to be associated with a slot. The

execution of demons is keyed to particular SRL access functions, such as filling or retrieving the

value of a slot, RANGE and DOMAIN facets are used to restrict the values that may fill a slot and the

schemata in which a slot may be placed, respectively. The CARDINALITY is used to restrict the number

of values that a slot may contain. Values for each facet may be inherited from slots in other schemata.

18

As in other representation languages, a standard set of relations are provided to the user to form

taxonomic and part hierarchies. Slots and values may be inherited automatically between schemata

along these relations. One of the novel representational ideas introduced by SRL is user-defined

inheritance relations [FOX79]. In most other knowledge representation systems, several relations for

inheriting slots and values are defined as part of the representation (eg. AKO, is-a, virtual-copy). In

contrast, SRL offers a facility by which users can define their own inheritance relations, allowing only

slots and values of the user's choice to be inherited. In addition, slot structures can be elaborated

between schemata, and slots and their values mapped arbitrarily between schemata, as need

demands. Inheritance relations are represented by additional slots in a schema. A dependency

mechanism is integrated into the inheritance facility that notes, as meta-information, the source of

inherited slots and values. Here again, the user can define the dependency relations that are put into

place.

Another novel feature provided by SRL is a means of controlling the search performed by the

inheritance process. Any query of the model may optionally use a path to restrict which, relations may

be traversed while searching for a suitable value to inherit Paths may also be used to specify the

transitivity properties of relations. For example, a PART-OF hierarchy for describing a car might

represent the battery as PART-OF the electrical system, and the electrical system is PART-OF the

car. The implicit notion that the battery is PART-OF the car (ie. that PART-OF is transitive with itself)

is represented using paths.

Contexts in SRL act as virtual copies of DBs in which schemata are stored. In the copy, schemata

can be created, modified and destroyed without altering the original context. Contexts are structured

as trees where each context may inherit the schemata present in its parent context. Hence, only

schemata that are used in a context need be explicitly represented there. This avoids copying

schemata that will never be used in the context. The context provides for version management and

alternate worlds reasoning with SRL models.

Error handling is also schema-based. An instance of the error schema is created1 to describe each

error encountered by the system, error-spec schemata may be defined that specify how to recover

from each kind erf error.

In order to support large applications, a simple DB system is integrated into SRL. The DB system

provides two key access (i.e., context arid schema name) to varying length records each containing a

single schema. Concurrent access is supported only for a single writer and multiple readers.

Schemata are stored in a DB until they are accessed, at, which time they are brought into lisp* A

19

cache of the most recently accessed schemata are kept in lisp for quick access. When the cache

becomes too large, schemata are swapped back to the DB using recency algorithm.

4.2. Extensions to the Language

SRL serves as the core of a knowledge engineering environment called Islisp [ISL84]. It offers a

number of inference tools that operate on schemata: HSRL, PSRL, OSRL, ESRL, and KBS. HSRL

[AW83] takes HCPRVR, [CHES80] a logic program interpreter, and alters it to use SRL models as its

axioms. The system combines the modus ponens inference of logic programming systems with the

representation power of SRL. In addition, the inheritance mechanism provides default reasoning, not

available in logic programming environments. Similarly, PSRL is a production rule interpreter that

operates on SRL models [RYCH84]. Production rules and their parts are represented by schemata. A

subset of PSRL provides the form and execution pattern of OPS5 rules [FORG81]. OSRL provides a

schema-based object programming. ESRL provides an event mechanism which enables the user to

schedule events to occur either in a simulated or normal operating mode. KBS, a knowledge-based

simulation system [RF82] uses ESRL to perform discrete simulations of systems modeled in SRL.

Simulation objects are represented as schemata. An object's associated events and behaviors are

represented as slots and values in the schema. An object's event behavior may be inherited along

relations which link it to other schemata.

In addition to inference tools, system building tools are provided. RETINAS [GREE83],is a schema-

based window system. Schemata for windows, displays, and canvases are instantiated to build an

interface. Default specifications for windows, etc., may be inherited from the prototype schemata.

KBCI [ISL84] is a schema-based command system. Again, the command schema is instantiated to

create commands. A command interface is defined by a collection of command schemata organized

in a SUB-COMMAND-OF hierarchy. CPAK [ISL84] is a 2D graphics package based on the CORE

definition. A business graphics facility is provided on top of CPAK.

4.3. Analysis

The SRL system has served as both a production inference engine and an testbed for ideas to solve

the problems raised in sections 2 and 3. Hence, we have had to worry about solving efficiency

prdblems while investigating solutions to the more difficult incompleteness and inconsistency

problems. In the following, we re-examine the problems raised earlier. Our "solutions'* to these

problems raise at least as many questions as they answer.

20

4.3 .1 . Efficiency of Data Management

Early on in the development of SRL, it became apparent that efficient access to large volumes of

data would have to be provided to multiple agents. Applications such as job-shop scheduling (i.e.,

ISIS) and project management (i.e., Callisto) require very large DBs to be maintained, of which only a

small portion is ever used by any agent at any given time. We searched for a DB system available

under UNIX which had the following attributes:

• very fast two key retrieval (schema name and context) of varying length records, and

. • supporting multiple readers and writers.

The search failed, so a DB system was created in house which provided b-tree access to varying

length records while supporting multiple readers and a single writer. A re-design of SRL's internal

structure was performed to integrate better the DB system with the knowledge representation. A

layered ap proach was taken:

1, Implementation Layer: This is the core layer at which the structure of schemata are
defined in terms of of nodes, links and metalinks. It is at this layer that indexing of static
patterns is performed and maintained.

2. Context Layer. The definition of contexts and binding of schema/context pairs to
schema structures is performed here.

3, Database Layer. Access to the DB is performed at this layer whenever a schema is not
contained in virtual memory. Schema are cached in main memory on demand and are
swapped out according to frequency of usage.

4, Context Inheritance. Inheritance of schemata between contexts is performed at this
layer.

5. Schema Inheritance. Inheritance of slots and values is performed at this level.

6. Distributed Knowledge Bases. Retrieval from other separate knowledge bases is
performed at this level.

The DB system has provided a significant extension to SRL's knowledge base. Large volumes of data

can be maintained reliably without wasting virtual memory. Nevertheless, the cost of a DB retrieval is

significantly more than a simple virtual memory access. Better methods for storing and retrieving

large numbers of schemata are still required. DB machines may hold promise in this area.

4-3,2. Efficiency of Search

A version of SRL was constructed in which rule conditions were compiled into a RETE-ltke network*

The network was indexed direciy into schemata at the implementation • layer. No Indexing of

schemata in the DB was performed. In the case of dynamic patterns, brute force search was

performed and was slow. The problem of how to index patterns has not been fully resolved in a

21

general sense. With inheritance being a basic capability of a representation, indexing techniques

have to be aware of changes not only within a schema but in schemata from which it may inherit slots

and values. This is achievable in representations where inheritance is performed along classification

relations (e.g., is-a, ako, virtual-copy) and slots and values are propagated to descendents upon

creation. But for more complex inheritance such as found in SRL, the problem is much more difficult;

slots and values are propagated on demand and inheritance is user definable and context sensitive.

Either more dynamic pattern matching techniques are required, or restrictions will have to be placed

on the functionality of the rule-base.

This still does not address the problem of whether to index schemata both in memory and in the DB,

or only those in memory. An argument for the latter is that memory contains only those schemata

which have been changed and require patterns to be checked. The problem here comes with the

introduction of new rules: should the rule be indexed only in memory, or across the entire DB? The

latter is a truly expensive operation for large DBs. We suspect a solution to this problem lies in

parallel hardware specialized for knowledge base applications.

4.3.3. Security and Synchronization

The Callisto project provided us a context in which to investigate the issues of security and

synchronization. We were concerned with the construction of a distributed project management

system where each project member had his own version of Callisto to manage his own activities and

those of the people for whom he was responsible (if any). Communication of activities to be

performed and their status among these Callisto systems was required.

The DB system provided for single writer and multiple reader access with a semaphore for

synchronization. In the case of multiple agents, each with its own non-shareable DB, each agent

could send messages to each other requesting information. The basic information access functions

of SRL were extended to include the name of the agent from which to retrieve the information. This

resulted in a message being sent to the appropriate agent. The agent receiving the message then

determined if the sender should have access to the information and sent the appropriate reply. While

this mechanism was sufficient for security purposes - an agent managed access to its own

information -- it was insufficient with respect to synchronization.

The problem of synchronization arose at the application level. The process of developing project

activity networks is iterative, requiring many agents to review, critique and modify them. Keeping

track of the current stage of the process and activity network versions is a significant task. Much of

the work we have performed in the area is nascent and is focusing on the development of protocols,

22

multi-agent review,.critiquing, negotiation, and modification4. This issue is truely an organization

level problem requiring further development of the concepts of communication, cooperation and

negotiation.

4.3.4. Incompleteness and Inconsistency

The problem of incomplete and inconsistent knowledge arose also in the distributed version of

CalKsto. If during an agent's problem-solving a schema was referenced which was not contained in

virtual memory nor in its DB, an attempt was made to communicate with other agents to determine the

whereabouts of the schema in question. Three approaches were taken to guide the sending of

messages:

1. A schema can be referred to only via another schema (i.e., the value of a slot). Since
each schema contains meta-information describing the agent with whom it originated, the
origin of the referring schema was used as the initial agent to communicate with.

2. Each organization contains a profile describing what type of schemata various agents in
the organization contain. An agent looking for a schema can determine the
corresponding agent by checking type description - but only if they possess the type
information to begin with.

3. Lastly, each agent possesses a list of "acquaintances11. As a last ditch effort, it could
send a message to each of them.

These three approaches provide a reasonably powerful means of finding a schema, but does not

guarantee its retrieval. Much work remains at the organization level to solve this problem

satisfactorily.

The concept of agent responsibility was proposed as a means of aiding in inconsistency reduction.

For each schema an agent was assigned the responsibility of maintaining that schema's consistency.

All problems concerning a schema's inconsistency would be resolved by the agent responsible. To

support the agent's analysis, a record of transformations and communications of schemata was kept

at the meta-level. If an inconsistency arose, it would be possible to trace the problem back to the

source, Giving an agent the responsibility to resolve inconsistencies is only half a solution; how the

inconsistencies are resolved is the other half, and that half requires further research.

To appear m the thesis erf Arviod SatN.

23

5. Conclusion
The integration of Artificial Intelligence and Database technologies is a problem whose "time has

come11. As Al systems are extended to more complex problems requiring large volumes of

information and knowledge, the need for DB support becomes apparent The three examples

described in this paper demonstrate both the ease and difficulty of this integration; R1, ISIS and

Callisto all interface either loosely, via transactions, or tightly, via direct integration with the

knowledge representation system. Though each demonstrates a successful integration of the

technologies, issues of theoretical and practical importance arise.

First, a tighter integration of knowledge and data representations are required in order to allow

pattern matching and search to be performed more efficiently. Without a solution to these problems,

a natural complexity barrier may arise which will restrict the size and complexity of intelligent systems.

Secondly, problems arise in the design of distributed systems. In particular, issues of

incompleteness and inconsistency bring into question the efficacy of current representational

theories. In particular, the theory of the knowledge and symbol levels needs to be extended to

include a third level, the organization level, whose focus is on the multi-agent distributed problem-

solving. A sound theory of the organization will ultimately lead to solutions in distributed problem-

solving.

24

References
[AW83] Allen, B-R, and Wright, J.M., (1983),"Integrating Logic Programs and Schemata."

Proceedings of the 8th International Joint Conference on Artificial Intelligence,
Karlsruhe, West Germany.

[BM84] Bachant, J. and J. McDermott, (1984). MR1 revisited: four years in the trenches". The Al
Magazine, Vol. 5, No. 3.

[BRAC77] Brachman R.J., (1977), "A Structural Paradigm for Representing Knowledge,11 (Ph.D.
Thesis), Harvard University, May 1977.

[BL84] Brachman R.J. and H.J. Levesque, (1984) "What Makes a Knowledge Base Knowledgeable? A
View of Databases from the Knowledge Level", Proceedings of the First
International Workshop on Expert Database Systems, Kiawah Island, SC.

[CHES80] Chester, D., (1980), "HCPRVR: an Interpreter for Logic Programs," Proceedings of the
National Conference on Artificial Intelligence.

[EHLR80] Erman L.D., F. Hayes-Roth, V.R. Lesser, and D.R. Reddy, (1980), "The Hearsay-ll Speech-
Understanding System: Integrating Knowledge to Resolve Uncertainty",
Computing Surveys, Vol. 12, No. 2, June 1980, pp. 213-253.

[FORG81] Forgy, C.L,*(1981) "OPS5 User's Manual11, Technical Report, Department of Computer
Science, Carnegie-Mellon University.

[FORG82] Forgy, C.L, (1982) "Rete: a fast algorithm for the many pattern/many object pattern match
problem", Artificial Intelligence, Vol 19, No 1.

[FOX79] Fox M.S., (1979), "On Inheritance in Knowledge Representation", Proceedings of the Sixth
International Joint Conference on Artificial Intelligence, pp. 282-284, Tokyo
Japan.

[FS84] Fox M.t and & Smith, (1984), "ISIS: A Knowledge-Based System for Factory Scheduling1',
International Journal of Expert Systems, Vol. 1, No. 1.

[FWA84] Fox M.S., J.M. Wright, and D. Adam, (1984), "Experiences with SRL: An Analysis of a
Frame-based Knowledge Representation", Proceedings of the First International
Workshop on Expert Database Systems, Kiawah Island, SC.

[GREE83] Greenberg M., (1983), "RETINAS User's Manual", Internal report, Robotics Institute,
Carnegie-Mellon University, Pittsburgh PA.

[1SL84J ISLS (1964), "Intelligent Systems Laboratory Software Systems Manual11, Internal report,
Robotics Institute, Carnegie-Mellon University, Pittsburgh PA.

[MCDE82] McDennott, J. (1982), WR1: A Rule-based Configurer of Computer Systems11, Artificial
Intelligence, Vol. 19, No. 1.

25

[MCDE83] McDermott, J. (1983), "Extracting Knowledge from Expert Systems", Proceedings of
IJCAI-83, Karlsruhe, West Germany.

[NEWE81] Newell A., (1981), "The Knowledge Level", The Al Magazine, Vol. 2, No. 2.

[RF82] Reddy Y.V. and M.S. Fox, (1982), "KBS: An Artificial Intelligence Approach to Flexible
Simulation", CMU-RI-TR-82-1, Robotics Institute, Carnegie-Mellon University,
Pittsburgh PA.

[RYCH84] Rychener M., (1984), "PSRL User's Manual'1, Technical Report, Robotics Institute,
Carnegie-Mellon University.

[SFG85] Sathi A., M.S. Fox, M. Greenberg, (1985), "Representation of Activity Knowledge for Project
Management", IEEE Transactions on Pattern Analysis and Machine Intelligence,
Vol. PAMI-7, No. 5, September, 1985, pp. 531- 552. Also appeared as Technical
Report CMU-RI-TR-85-17, Robotics Institute, Carnegie-Mellon University.

[SRM86] Sathi, A., T.E. Morton, and S. Roth, (1986), "Cailisto: An Intelligent Project Management
System ", Al Magazine, to appear.

