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Abstract

Since 198L the Mobile Robot Laboratory of the Robotics Institute of Carnegie-Mellon University has

conducted basic research in areas crucial for autonomous robots. We have built three mobile robots as

testbeds for new concepts in control, vision, planning, locomotion and manipulation. This report recounts

our work in 1985. Included arc two papers describing two-dimensional sonar mapping and navigation, and a

proposal for a three-dimensional sonar. Three papers cover recent results in stereo visual navigation: We

have achieved a tenfold speedup and a tenfold increase in navigational accuracy over our first generation

system, and have a much deeper understanding-of some of the mathematical foundations. Three papers

describe results in a road navigation task: We are now able to navigate a simple road network at walking

speeds with a single color camera on a roving robot, using a variety of image processing and navigation

methods, llirec papers describe aspects of motion control, motors, wheeled kinematics and vehicle dynamics.

Two papers present our newest robots, Neptune and Uranus. A final article gives some long term motivations

and expectations for mobile robot research, and the report ends with a bibliography of our publications.
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the computer simulated robot without the need for time-
consuming hardware construction.
On the software side, we have concentrated on obstacle avoid-
ance and distributed processing. We have two obstacle avoid-
ance systems, one using stereo and the other using sonar. Both
use a new path planner first developed for the stereo system. We
have also designed and simulated the operation of a communica-
tion mechanism for distributed processors.

The stereo work improves on the system built for the Stanford
Cart [7], which digitized nine images at each robot location and
used correlation to track isolated feature points as the robot,
moved. We have reduced the number of images digitized per
location, added constraints that improve the feature tracking
ability, and are now modifying the motion estimation algorithm.
In the process, we have reduced the runtime of the system by an
order of magnitude. The robot can now visually navigate across
a large room in under an hour on a VAX-11/780,

The sonar system uses data from a ring of twenty-four wide
angle Polaroid range finders to map the surroundings of an
autonomous mobile robot. A sonar range reading provides
information concerning space occupancy in a cone subtending
30 degrees in front of the sensor. The reading is modelled as
probability profiles projected onto a rasterized map of occupied
and empty areas. Range measurements from multiple points of
view (taken from multiple sensors on the robot, and from the
same sensors after it moves) are systematically integrated in the
map. Overlapping empty volumes reinforce each other, and
empty volumes serve to condense the profiles of occupied
volumes. The map resolution improves as more readings are
added. The final map shows regions probably occupied, proba-
bly unoccupied, and unknown areas, with weights in each raster
cell showing the confidence of these inferences. The method
deals effectively with clutter, and can be used for motion plan-
ning and for extended landmark recognition.

The sonar and stereo systems both plan robot paths with a new
algorithm called path relaxation. It was first developed for the
stereo vision navigator, but coincidenxally has a structure per-
fectly suited to our sonar mapper. Space is represented as a
raster of weights as in the sonar maps. Costs are assigned to
paths as a function of their length and the weights through
which they pass. A combinatorial search on the raster grid
coarsely finds a least cost path, then a relaxation procedure
perturbs the coordinates of the vertices of this path to smooth it
and reduce its cost.
Our work on distributed processing began with a design for a
distributed planning and control system for the several proces-
sors of Pluto. A system has been designed around a network of
message-passing kernels, a central blackboard module to repre-
sent state, and a notion of master/slave processes wherein mas-
ters monitor the blackboard while slaves handle external events.
A small version of this system has been tested in simulation. We
plan to give the design a more rigorous test soon with a distri-
buted version of the sonar navigation system*

We have begun a new effort under the DARPA Autonomous
Land Vehicles project in cooperation with other groups in the
Robotics Institute led bv William Whittaker and Takeo Kanade.

The short term goal of this project is to build a system to follow
roads; the long term goals include obstacle avoidance, off-road
travel, object recognition, and long range navigation. The vehi-
cle for this project is the Terregator, a large mobile robot built by
Whittaker's group.

Vehicles
Our research plans called for a flexible vehicle to support work
on vision, vision-guided manipulation, and the planning issues
that come with mobility. Part of the design philosophy was the
perception that a mobile wheelbase could be considered part of
an attached arm. The weight and power of the arm can be
reduced by using the mobility of the vehicle as an enormous
reach substitute for the arm's shoulder joint. Such a strategy
works best if the vehicle is given a full three degrees of freedom
(forward/backward, left/right and compass heading) in the plane
of the floor. Conventional steering arrangements as in cars give
only two degrees at any instant. This approach to manipulation
is most effective when the wheels can be servoed very accurately
and rapidly.

Other properties we desired in a robot were that it run
untethered, that it use multiple sensory systems, and that it
cany some onboard processing power to reduce the communica-
tions bandwidth and perform some local decision-making.

Pluto, our first vehicle, was built to the above specifications. A
second, simpler vehicle called Neptune was subsequently built to
support obstacle avoidance work. A third vehicle, Uranus, is cur-
rently being designed to test a new concept in omnidirectionally.

Pluto
Physically, Pluto is cylindrical, about 1 meter tall, 55 centimeters
in diameter, and weighs about 200 pounds (Figure la). Its three
individually steerable wheel assemblies give it a full three degrees
of mobility in the plane (Figure lb). The control algorithm for
this arrangement steers the wheels so that lines through their
axles always meet at a common point. Properly orchestrated,
this design permits unconstrained motion in any (2D) direction
and simultaneous independent control of the robot's rotation
about its own vertical axis.

To permit low-friction steering while the robot is stationary,
each assembly has two parallel wheels connected by a differen-
tial gear (Figure lc). The drive shaft of the differential goes
straight up into the body of the robot, and a concentric hollow
shaft surrounding the drive shaft connects to the housing of the
differential. Turning the inner shaft causes the wheels to roS
forward or backward; turning the outer one steers the assembly,
causing the two wheels to roll in a circle.

Each shaft is driven by a brushiess DC motor with samarium-
cobalt permanent-magnet rotors and three-phase windings. The
motor sequencing signals come directly from onboard micro-
processors, one for each motor, which read shaft encoders to
servo the motors to the desired motion. A seventh processor, the
conductor, coordinates the action of the six motor sequencing
processors. Another processor reads the shaft encoder outputs
and monitors the motor torques to provide an onboard dead-
reckoning estimate of the vehicle's position. Power for this ensem-
ble is provided by a set of sealed lead-acid batteries.



Figure la. Pluto

Pluto was to be equipped with a collection of sensors including
cameras, sonar, and bump detectors and was to be used in a
series of advanced experiments in vision, navigation and
planning. The bulk of the computation would be performed on
a remote VAX-! 1/780, with communication taking place over a
microwave link for video and a radio link for other data. Extra
processors were included in the design to service the sensors
and manage the communication link.

This plan has been waylaid by a difficult and unexpected prob-
lem in controlling the six motors of the omnidirectional
wheelbase- We are able to drive the robot successfully when one
wheel at a time is energized, but large oscillations occur when aU
are running simultaneously. H ie problem is caused by interac-
tions between the servo loops of the individual actuators through
the redundant degrees of freedom in the wheels. A similar
situation arises in a milder form in other locomotion systems
with redundant degrees of freedom, especially legged vehicles.
Mfe are now investigating control algorithms and processor archi-
tectures for this problem, but in the meantime Pluto is unavailable
for experimental work with our vision systems, Neptune was
built to fill the gap.

Electronics
Rack

Middle Plate
of Robot

Motor Stacks

Bottom Plate
of Robot

Wheel
Assemblies

Figure 1b. Pluto subassembly: card cage, wheel assemblies, etc.

Neptune

We decided to build quickly, but carefully, a simple and robust
platform for obstacle avoidance experiments. Neptune (Figure
2) was designed to eliminate many potential problems. It is a
tethered, remotely powered tricycle with a lone onboard



Figure lc Diagram of a wheel assembly illustrating differentia!
gear, concentric drive shafts

processor* To simplify lerootng awl reinwe the need for shaft
encoders* synchronous AC motors drive and steer the front
wheel wble the rear wheels oral. The vehicle k about 2 feet tall,
4 feet b»g» and 2 fiat wide. It weighs about 250 pounds* It is
currently configured with mm Hack and white vkitcon cameras
on fixed mounts and i ring of twenty-four Polaroid sonar range-

Figure 2. Neptune with sonar and stereo

finders. The range-finders have a useable range of about 35 feet
and a 50 degree beam width, so that the beams of adjacent
sensors owrlap by about 50 percent. The vehicle moves at a
constant velocity, with angles and distances controlled by timing
the motors with an onboard MC68000.
Neptune is an unqualified success. It has been our workhorse
for obstacle avoidance and indoor road folowinjj experiments
and wffl be msed m the future to 'test extended vision algorithms
and to merge stereo and sonar into one system.

Uranus
CtenidirecA»aBty appears to be an idea whose time has come*
Whie Fltno was. in gestation, several new methods for a - K ^ « ^
oinnidirectionafity were published and patented, One, d
at Stanford* is based on novel wheels that have pMtbe u
instead of tires, oriented at right angles to the wheel (Figure So).
The rollers permit the wheel to be pusberi^ passively in the
broadside direction. Three sudi wheek, each wimx&otm motor,
mounted around a round wheelbase allow smootti motion fat
three 'degree* of freedom. Regardless of the direction of tnwei
•one wheel or another is afaqn trawlBng nearly bn»d$Met and
this is a weakness of the system. It requires' an otpeusiw and
potentially troublesome bearing system for the roicrs, and suf-



Figure 3a. Sketch of Stanford wheel

fers from a low ground clearance limited by the roller diameter,
and inability to travel on soft ground. Despite these limitations,
it would have been a far more fortunate design choice than the
individually steerable wheels of Pluto.

Another new design for omnidirectionality was invented recently
in Sweden. It too uses wheels surrounded by passive rollers, but
the rollers are angled at 45 degrees to the wheel plane (Figure
3b). One of these wheels can travel broadside on its rollers, but
the whole wheel must simultaneously turn, resulting in a screw-
like motion, like screws, these wheels are not mirror symmetric
and come in right handed and left handed varieties. An omnidi-
rectional vehicle is built with four of these wheels, mounted like
wagon wheels, but with careful attention to handedness. The
right front wheel is right handed and the left front is left
handed, but the right rear is left handed and the left rear is right
handed (Figure 3c). Each wheel is turned by its own motor. To
move the vehicle forward, all four wheels turn in the same
direction, as in a conventional wagon. However, if the wheels on
opposite sides of the vehicle are driven in opposite directions,
the vehicle moves sideways, like a crab. By running the front and
back wheels sideways in opposite directions, the vehicle can be
made to turn in place. Because the rollers are not required to
turn when the vehicle moves in the forward direction, the Swedish
design has good bump and soft ground handling ability in that
direction* In our experience-scarred judgement, the Swedish
design is the most practkal omnidirectional system. It is being
used outside of an experimental context, in commercially availa-
ble wheelchairs and factory transport vehicles.

Uranus, the Mobile Robot Lab's third construction, is being
designed around this proven drive system to carry on the long
range work staled in Pluto. We obtained the wheels from
Mecanum, Inc. of Sweden, which holds the license. Pluto's many
lessons guide us in this project. In just about every way Uranus is
simpler than Pluto, There are four motors, not six, no concen-
tric shafts and only a single, benign, redundant interaction
mode among the wheels.

Figure 3b. Swedish designed wheels

Figure 3c. Sketch illustrating handedness of wheels

A Manipulator for Door-opening
We have decided that visually locating, opening and passing
through a door is an excellent task to guide development of
advanced vision, planning and control work- To this end, we've
designed and are building a special arm to be mounted on
Uranus (Figure 4a).

The arm design is simultaneously strong, Eght and low-power
because it er~>k>its the mobility of the robot. The arm has four
joints: a vertical translational joint, rotational shoulder and
elbow joints with vertical axes, and a rotating wrist. The redun-
dancies between the shoulder and elbow joints and the rotation
of the vehicle permit the robot to hold the door in a stable, open
position while the body of the robot passes through the doorway.



Figure 4a. Ann to be mounted on Uranus

figure 4b. Gripper and collar

Hie arm design uses the robot's straigth ID handle doom The
manipufaioi'ft joiots are only Bgbdjr actuated^ since the motors
MI the joints are used only for pom&wmg tie arm under no
load. Once the gripper secures a doortadb, the elbow jdbt
becoiaes a: totally passive pbm and the base join* it afaemaiely
iocl^itiso position
seed ag^m until the arm releases the door.
The gripper itself h coniprtilta} front a juottoml Kdtafadb
«Qnaetpr{I%tire,4bKTte
with a siding colax. With the tritaur morkied; tie 'gripper k
pushd h %htl ( d t £

i n g colax. With the tritaur morkied; tie g
pushed o w the %httwl> (or dboctnob); wfeen (be
fighfwted die gr iper holds fiut Our minipkribtDr uses
gfippor wto a iwxor^ia&R ' '

Mdbaity Control for Wheeled M@Mk Robots

highly ONUMtimafate whedfed moUk rob«sf «udb

Uranus, require sophisticated coordinated controllers for effec-
tive motion control. Over-constrained multiple-wheeled robots,
in particular, are a major challenge. We initially approached the
problem by neglecting the motor interactions and designing
independent control algorithms for each of the motors on Pluto
We found that only minimal mobility control was possible in this
framework [9]. The severe motor interactions we observed pro-
vided a motivation to develop better control algorithms.

Pulse-Width Modulation
Control of Brushless DC Motors

We implemented pulse-width modulation for controlling the
brushless DC motors which actuate the wheels of Pluto [10].
The brushless DC motors utilize strong samarium-cobalt perma-
nent magnets and are desirable for use on a mobile robot because
of their high torque-to-weight ratio, ease of computer control,
efficiency, and simple drive circuitry. We control each motor
directly from a microprocessor using semiconductor power
transistors. These devices operate very efficiently in the switching
mode needed for pulse-width modulation.

Our theoretical and experimental results show that the motors
can be modeled by linear discrete-time transfer functions, with
the pulse-width playing the role of the control signal, if the
pulse period is chosen much smaller than the time-constants of
the motors. These models allow us to apply classical control
engineering to the design of the motor control system. We have
successfully designed controller structures and calculated feed-
back gains whkh provide each wheel with the ability to servo to a
desired position and velocity within a specified time interval.

Wheeled Mobile Robot
Simulations for Controller Design Studies

Our experience with Pluto prompted a systematic study of the
problem of controlling wheeled mobile robots, both for Pluto's
sake and for future designs. Our present approach to the prob-
lem is to develop precise kinematic and dynamic models of the
robots. These models will form the basis of computer simula-
tions of the robots on which proposed control strategies can be
tested. Using computer simulations, we wH! have the ability to
evaluate the performance of a robot/controller combination
before spending much effort and expense in hardware
comoructioii. Adapdve control algorithms show promise for
providing better robot control because they are able to adapt to
coupfiag' torqpes from other motors and to a changing floor
surface or robot load. The controllers which demonstrate the
best performance in simulations will be implemented on actual
robots to wrify both the accuracy of the simulations and the
pcrformaece of the controllers.

Stereo Vision
The obstacle avoidance task prompted our Erst major work cm
robot perception. At the broader % level die perception problem
has two main components; understanding how to use individual
sensors and undemanding how to combine multiple sensors to
a single system. We have addressed 'the first problem by develop-
ing rudimentary navigation systems that use vision and sonar
separately, These systems are described in this and the foUowiag



section. Our work on integrating these two systems is only just
beginning and will not be described in this paper.
Our stereo system continues the work done by Moravec with the
Stanford Cart [7]. The basic task requires the robot to navigate
from its initial position to a specified goal location, avoiding any
obstacles in between. Stereo is used to detect obstacles and
estimate the motion of the vehicle (actually avoiding the obsta-
cles is discussed later under path planning). The Cart approach
is to detect local, high variance features in one image, to use
stereo correspondence to determine the three-dimensional posi-
tions of the features, and to track the features over time to
determine the motion of the vehicle. Our work with these algo-
rithms has focussed on the following issues:
• the number of stereo images used at each point in time
• the interest operator used to pick features
• the algorithm used for tracking
After reviewing the algorithms used by the Stanford Cart, we
will discuss each of these issues in turn.

Vision in the Stanford Cart
The Stanford Cart used nine-way stereo at each robot position
to detect and track obstacles. These images were obtained by
stopping the robot and translating a single camera in two inch
steps along a slider mechanism. An interest operator was applied
to the center image to pick features, then a coarse to fine
correlation process was applied to locate the features in the
other eight images. Histogram-based triangulation from the set
of match locations provided the initial three-dimensional obsta-
cle positions. Obstacles were tracked as the robot moved by
applying the correlator to the new center image to reacquire the
old features. Then the features were matched in the other eight
new images to obtain distances to the obstacles from the new
robot location. Finally, least squares was used to find a best fit
transformation mapping the old feature locations into the new,
thereby obtaining the vehide motion. Figure 5a illustrates the
process of picking, matching, and tracking features through two
steps of vehide motion. The whole system moved the Cart in
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one-meter steps, taking about 15 minutes per step on a DEC
KL-10.

Number of Images
The great expense of using nine images prompted the use of
only two-camera stereo in our current system. Since the redun-
dancy provided by the nine images was a major strength of the
original system, this decision initially lowered the reliability of
the matching algorithm; to compensate, the stereo matcher now
makes fuller use of constraints which reduce the search area in
the second image. The constraints are as follows (Figure 5b).
Between a stereo pair, the known camera geometry restricts
possible matches to lie on a single line in the second image (the
"epipoiar line")- This line is the intersection of the image plane

Figure 5a. Scanford Cart stereo matching
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of the second camera with the plane containing the obstacle and
the two centers of projection. Near and far limits on the distance
to an obstacle of 1.5 meters to infinity impose "disparity limits"
that further restrict the search to a segment of the epipolar line.
None of these constraints perse are available when features are
reacquired in a new set of images. However, the known position
of the obstacles together with an estimate of the vehicle motion
still permit searches to be restricted to subwindows of the new
images.

We have found that when all of the constraints are used, the
qualitative system performance, measured in terms of tne per-
centage of features matched correctly and the accuracy of motion
estimates, is as good with the two-camera system as it was with
the old system of nine images. The new system runs in about 35
CPU seconds per step (three to four minutes of elapsed time) on
aVAX-11/780.

Although this experience demonstrates the effectiveness of two-
camera stereo, the use of redundant images remains an interest-
ing question. Two particular areas to be explored are the use of
three cameras, which offers the ability to detect mismatches,
and the use of the redundancy provided by motion. We expect
to examine these areas in the future, both theoretically and
empirically.

Interest Operators
The interest operator is designed to pick small patches or fea-
tures in one image that can be reliably matched in another. In
general, this requires that the patch exhibit high intensity varia-
tions in more than one direction to improve its localizability in
another image. For example, edges show high variation in the
direction of their gradient, but litde variation in the direction of
their length, making them poor to localize in that direction.

Ostensibly, a better interest operator will lead to a higher likeli-
hood of correa matches. Many operators have been reported in
the literature [11,4], but no convincing evidence shows that any
one operator is superior. Therefore, we evaluated the relative
performance of a number of operators in the context of our
system [16]. The operators used were those of Moravec [7],
Kitchen and Rosenfeld [4], and several new operators we
developed witMn our Sab. As a control, a set of features were also
picked by hand. Hie criterion used in assessing the perform-
ance of an operator was the number of features, from an initial
set of forty picked by the operator, that could be correctly
matched in another image. Here correct means that the match
location was within a pixel or two of the best match subjectively
as judged by the experimenter. Results were averaged over a
number of trials with different images. Experiments were also
run with and without the constraint offered by epipolar lines
and disparity limits.

We found that rates of matching success showed very Hale
variation between the better operators, whkh included the
Moravec and Kitchen and Eosenfeld operators, and t*o of our
new ones* The rates vzried from about 60% correa in difficult
images with no matching constraint, to over 90% when aH con-
straints were used in less difficult Images. On the whole, the
Moravec operator performed slightly betier than other opera-
tors and anlv a little worse than manual feature selection. More

importantly, we found that the improvement bought by the use
of search constraint was much more pronounced than that
obtained by using different operators. We conclude that our
research emphasis should no longer be placed on operators
(since the Moravec operator is cheaper than, and at least as
effective as other candidates), but should be placed on getting
the most out of the available constraints and image redundancy,

Tracking and Motion Estimation

The Stanford Cart tracked features and estimated the motion of
the vehicle as separate operations. Tracking was performed by
searching for features one at a time in new images. Bad matches
were then pruned with a heuristic that required the three-
dimensional distances between pairs of features to remain the
same over time. That is, objects that appeared to drift relative to
other objects were deemed incorrect and were ignored. Motion
estimation was then done by finding the transformation that
minimized the least squared error between new and old feature
positions.

This approach is unsatisfactory for two reasons. First, it makes
poor use of the assumption that objects in the environment do
not move. This is a valuable assumption and it underlies a large
part of the Cart software; for example, it shows up in the
pruning heuristic just mentioned and in the fitting of a single
transformation to all feature points. The problem is that the
constraint this assumption offers is employed only after feature
match positions have been decided, which is too late. The
correlator matches one feature at a time, without considering
the locations of features matched previously; however, each new
match decision implies constraint on possible locations for subse-
quent matches. Thus, the Can algorithms allowed inconsistent
matches to be made initially, then tried to catch them later. It
would be preferable to ensure from the outset that matches were
mutually consistent.

The second objection to the Cart approach is that it throws away
image intensity information too early. Despite the best efforts of
the interest operator, correlation peaks for individual features
may be fairly broad, so that it makes little difference locally
which pixel in a small region is chosen as the match. The actual
location of the peak may be strongly influenced by noise in such
cases. However, the correlator will pick the best peak and pass it
on; a poor choice at this stage has the potential to skew both the
depth estimate for the feature and the vehicle motion solution.
It would be better to somehow capture the uncertainty in die
match location and reflect that in other calculations.

We have addressed the first objection by using dead-reckoned
estimates of vehicle motion to constrain the searches made by
the matcher. This requires some tolerance to allow for errors in
the dead-reckoned estimate, however, and in Neptune the toler-
ance must be fairly large. A better approach thai addresses both
objections has been developed by Lucas [5]. This is an iterative
registration method that directly incorporates the assumption
of stationary objects. An error measure for a trial transforma-
tion is defined to be the squared difference of image intensity
between a feature in the previous image and its prajeoed loca-
tion in the new image, summed over all features. Starling from a
dead-reckoned motion estimate, the known three-dimensicnai



feature positions are projected into the new image, the error
measure is computed, and Newton iteration is employed to
modify the transformation to minimize the error measure.
Greater tolerance for errors in the initial estimate is obtained by
applying the algorithm first to blurred versions of the image,
then to successively sharper images. Lucas has shown that the
algorithm works well, with synthetic and real images, for a single
step of motion when the feature distances are given a priori. We
are currently adapting the algorithm for use in our system.
We should note that another answer to our second objection is
given by the work of Gennery [3], who used a correlator that
estimated a two by two covariance matrix for the match location
of a feature; that is, the matrix captured that broadness of the
correlation peak. These matrices were propagated into covari-
ance estimates for three-dimensional feature positions and for
camera motion. We have not determined what role this idea will
play in our future systems.

Sonar Mapping
Primarily because of computational expense, practical real-world
stereo vision navigation systems [7, 14] build very sparse depth
maps of their surroundings. Even with this economy, our fastest
system [6] takes 30 to 60 seconds per one meter step on a 1 mips
(millions of instructions per second) machine. Direct sonar range
measurements promised to provide basic navigation and denser
maps with considerably less computation. The readily available
Polaroid ultrasonic range transducer [13] was selected, and a
ring of 24 of these sensors was mounted on Neptune. We find
sonar sensors interesting also because we would like to investi-
gate how qualitatively different sensors, such as a sonar array
and a pair of cameras, could cooperate in building up a more
complex and rich description of the robot's environment.

Approach
Multiple wide-angle sonar range measurements are combined
to map the surroundings of an autonomous mobile robot. A
sonar range reading provides information concerning empty
and occupied volumes in a cone subtending 30 degrees in front
of the sensor. The reading is modelled as probability profiles
(Figure 6a) projected onto a rasterized map, where occupied
and empty areas are represented. Range measurements from
multiple points of view (taken from multiple sensors on the
robot, and from the same sensors after robot moves) are system-
atically integrated in the map. As more readings are added, the
area deduced to be empty expands, and the expanding empty
area encroaches on and sharpens the possibly occupied region.
The map becomes gradually more detailed. The final map
shows regions probably occupied, probably unoccupied, and
unknown areas. The method deals effectively with clutter and
can be used for motion planning and for extended landmark
recognition. It was tested in cluttered environments using
Neptune.

For navigation and recognition we developed a way of convolving
two sonar maps, giving the displacement and rotation that best
brings one map into registration with the other, along with a
measure of the goodness of the match. The sonar maps are very
useful for motion planning. They are denser than those made

Figure 6a. Sonar beam probability profiles

by our stereo vision programs and computationally about an
order of magnitude faster to produce. We are using them with
the path relaxation method [15] to plan local paths for our
robot.

The Sensor
The sonar devices being used are Polaroid laboratory grade
ultrasonic transducers [13]. These sonar elements have a useful
measuring range of one to thirty-five feet. The main lobe of the
sensitivity function corresponds to a beam angle of 30° at -38
dB. Experiemental results showed that the range accuracy of
the sensors is on the order of 1%. We are using the control
circuitry provided with the unit, which is optimized for giving
the range of the nearest sound reflector in its field of view and
works for our purpose.

The Array
The sonar array, built at Denning Mobile Robotics and mounted
on the Neptune, is composed of:
• a ring of 24 Polaroid sonar elements spaced 15° apart and

mounted at a height of 31 inches above the ground (see
Figure 2);

• a Z80 controlling microprocessor which selects and fires the
sensors, times the returns, and provides a range value;

• a serial line over which range information is sent to a VAX
mainframe that interprets the sonar data and performs the
higher level mapping and navigation functions.

Representing the Sonar Beam
Because of the wide beam angle, individual rangings provide
only indirect information about the location of the detected
objects. We combine the constraints from individual readings to
reduce the uncertainty. Our inferences are represented as
probabilities in a discrete grid.
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A range reading is interpreted as providing information about
space volumes that are probably EMPTY and somewhere OCCUPIED.
We model the sonar beam by probability distribution functions
(Figure 6a). Informally, these functions model our confidence
that the various points inside the cone of the beam are empty
(Pe(r)), and our uncertainty about the location of the point,
somewhere on the range surface of the cone, that caused the
echo (P0(r)). The functions are based on the range reading and
on the spatial sensitivity pattern of the sonar and are a maxi-
mum near the center axis of the beam and taper to zero near the
edges. These probability density functions are projected on a
horizontal plane to generate map information. We use the pro-
files that correspond to a horizontal section of the sonar beam.

Building Maps

Sonar Maps are two-dimensional arrays of cells corresponding
to a horizontal grid imposed on the area to be mapped. The
final map has cell values in the range (-1,1), where values less
than 0 represent probably empty regions, exactly zero repre-
sents unknown occupancy, and greater than 0 implies a proba-
bly occupied space (Figure 6b). This map is computed in a final
step from two separate arrays analogous to tlie empty and
occupied probability distributions introduced above. Tlie posi-
tion and die orientation of the sonar sensor at the time of the
reading arc used to register the profiles of each beam with the
map. In Figure 6b, each symbol represents a square area six
inches on a side. Empty areas with a high certainty factor are
represented by white space; lower certainty factors by M-hw sym-
bols of increasing, thickness. Occupied areas are represented by
*V* symbols, and unknown areas by M.w. The robot positions
where scans were taken are shown by circles, and the outline of
the room and of major objects by solid lines.

Different readings asserting that a ceil is EMPTY will enhance
each other, as will readings implying that the cell may be
OCCUPIED* while evidence that the cell is EMPTY will weaken the
certainty of it being 'OCCUPIED and vke-versa. The operations
performed on 'the empty and occupied probabilities are not
symmetrical. Hie probability distribution for mpt$ areas repre-
sents a solid volume whose totally is probably empty, but the
©cct̂ tirf probability disfiibutioa for a angle reading represents a
lack of knowledge about, ihe location of a single reflecting point
somewhere in tbe range of the distribution. Empty regions are

probafciistisc addition formula. Hie occupied
* for a single reading, an ihe other hand, are reduced

In the areas that the other data suggests is emptv, then oonnat-
izect -to male tfeek sum unity. Only after thi* nanromng process
are the occupied probabilities from each reading combined using
die addition formula.

One range measurement contains only a smai amount of
in fbrmation, By combining the evidence from ntmny readings as
the robot motes in its cmwreiwieiti* die area Jtnwfitobeempty
» exptrakd* The number of regions somewhere containing an
oot i tpy cci incrctso, while the range of uncertainty in each
rack ft£ion decreases. The overall effect* as mmt readings arc
added* a a gradually incitasing covtpgc along with an increas-
ing ptccM» in ©Igcct locitians. Typical? after a few hundred
reacting! (and ten than a second of computer time), our process

I t y • • «• *

4, , ^ ^ 4 X ' t ' * • "••*•>

Figure 6b. A two-dimensional sonar map

is aWc to **cwi€knse oiitw a a>mpfehemlvr map cowering a
thousand square feet with better than one foot position accuracy
of tlie directs detected. Note that such a result does not violate
mfbnnaixm theoretic or degree of freedom constraints, since
tlie detected boundaries of objects teed to be fceart HOC quad-
ratic in the dimensions of the map. A thousand square fooc map
typically contains as little as a hundred linear feet of boundary.

We haw also developed a procedure that can match two maps
and report the displacement and mation that best takes one
into tlie other. We begin with tlie maps described abovef with te§
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values that are negative if the cell is empty, positive if occupied,
and zero if unknown.

A measure of the goodness of the match between two maps at a
trial displacement and rotation is found by computing the sum
of products of corresponding cells in the two maps. An occupied
cell falling on an occupied cell contributes a positive increment
to the sum, as does an empty cell falling on an empty cell (the
product of two negatives). An empty cell failing on an occupied
one reduces the sum, and any comparison involving an unknown
value causes neither an increase nor a decrease. This naive
approach is very slow. Applied to maps with a linear dimepsion
of n, each trail position requires O(n2) multiplications. Each
search dimension (two axes of displacement and one of rotation)
requires 0(n) trial positions. The total cost of the approach thus
grows as 0(n5). With a typical n of 50, this approach can use up a
good fraction of an hour of VAX time.

Considerable savings come from the observation that most of
the information in the maps is in the occupied cells alone.
Typically only O(n) cells in the map, corresponding to wall and
object boundaries, are labelled occupied. A revised matching
procedure compares maps A and B through trial transforma-
tion T (represented by a 2 x 2 rotation matrix and a 2 element
displacement vector) by enumerating the occupied cells of A,
transforming the coordinates of each such cell through T to find
a corresponding cell in B. The [A, B] pairs obtained this way are
multiplied and summed, as in the original procedure. The
occupied cells in B are enumerated and multiplied with
corresponding cells in A, found by transforming the B coordi-
nates through T1 (the inverse function of T), and these products
are also added to the sum. The result is normalized by dividing
by the total number of terms. This procedure is implemented
efficiently by preprocessing each sonar map to give both a raster
representation and a linear list of the coordinates of occupied
cells. The cost grows as O(n4)9 and the typical VAX running
time is down to a few minutes.

A further speedup is achieved by generating a hierarchy of
reduced resolution versions of each map. A coarser map is
produced from a finer one by converting two by two subarrays of
cells in the original into single cells of the reduction. Our existing
programs assign the maximum value found in the subarray as
the value of the result cell, thus preserving occupied cells. If the
original array has dimension n9 the first reduction is of size n/2,
the second of n/4, and so on. A list of occupied cell locations is
produced for each reduction level so that the matching method
of the previous paragraph can be applied. The maximum num-
ber of reduction levels is Iog2n, A match found at one level can
be refined at the next finer level by trying only about three
values of each of the two transSational and one rotational
parameters, in the vicinity of the values found at the coarser
level, for a total of 27 trials. With a moderate a priori constraint
on the transformation this amount of search is adequate even at
the Erst (coarsest) level Since the cost of a trial evaluation is
proportional to the dimension of the map, the coarse matches
are inexpensive in any case* Applied to its fullest, this method
brings the matching cost down to slightly larger than 0<n), and
typical VAX times to under a second.

We found one further preprocessing step is required to make
the matching process work in- practice. Raw maps at standard
resolutions (6 inch cells) produced from moderate numbers
(about 100) of sonar measurements have narrow bands of cells
labelled occupied. In separately generated maps of the same
area, the relative positions of these narrow bands shift by as
much as several pixels, making good registration of the occu-
pied areas of the two maps impossible. This can be explained by
saying that the high spatial frequency component of the posi-
tion of the bands is noise; only the lower frequencies carry
information. The problem is fixed by filtering (blurring) the
occupied cells to remove the high frequency noise.
Experiments suggest that a map from 100 readings should be
blurred with a spread of about two feet, while for maps made
from 200 readings a one foot smear is adequate. Blurring
increases the number of cells labelled occupied. So as not to
increase the computational cost from this effect, only the final
raster version of the map is blurred. The occupied cell list used
in the matching process is still made from the unfikered raster.
With the process outlined here, maps with about 3000 six inch
cells made from 200 well spaced readings can be matched with
an accuracy of about six inches displacement and three degrees
rotation in one second of VAX time.

Results
We incorporated the sonar map builder into a system that
successfully navigates the Neptune robot through cluttered obsta-
cle courses. The existing program incrementally builds a single
sonar map by combining the readings from successive vehicle
stops made about one meter apart. Navigation is by dead
reckoning—we do not yet use the sonar map matching code.
The next move is planned in the most recent version of the map
by a path planning method based on path relaxation [15]. Since
this method can cope with a probabilistic representation of
occupied and empty areas and does path planning in a grid, it
fits natually into our present framework. The system has success-
fully driven Neptune the length of our cluttered 30 by 15 foot
laboratory using less than one minute of computer time.

Local Path Planning
Path relaxation is a two-step path planning process for mobile
robots. It finds a safe path for a robot to traverse a field of
obstacles and arrive at its destination. The first step of path
relaxation finds a preliminary path on an 8-connected grid of
points (Figure 7). The second step adjusts, or "relaxes,*5 the
position of each preliminary path point to improve the path.

One advantage of path relaxation is that it allows many different
factors to be considered in choosing a path. Typical path plan-
ning algorithms evaluate the cost of alternative paths solely on
the basis of path length. The cost function used by Path
Relaxation, in contrast, also includes how close the path comes
to objects (the further away, the lower the cost) and j malties for
traveling through areas out of the field of view. The effect is to
produce paths that neither clip the corners of obstacles nor
make wide deviations around isolated objects, and that prefer to
stay in mapped terrain unless a path through unmapped regions
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Grid Search

Ooce the grid size has been fixed, the next step is to assign costs
to points on the grid and then to search for the best path along
the grid from the start to the goal. **Rest,M in this case, has three
conflicting requirements: shorter path length, greater margin
away from obstacles* and less distance in uncharted areas. These
three are explicitly balanced by the way path costs are calculated.
A path's cost is the sum of the costs of the nodes through which
It passes, each multiplied by the distance to the adjacent nodes*
In a, 4-connected graph ail lengths are the same, but in an
8-connected graph we have to distinguish between orthogonal
and diagonal links, The node costs consist of three parts to
explicitly represent the three conflicting criteria.

• Cmtfwdktomce, Each node stare out with a cost of one unit, for
length traveled.

• Cmifmr nmr objects. Each object oear a node adds to that node's
cost. The ncirer the obstacle* the more cost it adds. The exact
slope of the cmt function will depend on the accuracy of the
wthkie (a mote accurate vehicle can afford to come closer to
objects), and the vehicle's speed (a faster vehicle can afford to
go farther out of Its wy), among other factors*

• Cmifw m^m or nmr an mnmmp^d mgim. The cost for traveling
in an unmapped region will depend on the vehicle's mission.
If this B primarily an exploration trip, for example, the cost
might be relatively km There is also a cost added for being
near an, unmapped region, using the same sort of function of
distance as 1$ used for obstacles. This pnxide$ a buffer to keep
paths from coming to© do#c to potentiaiJy unmapped ftaaards*

The first «cp of Rath EekMtw* is to set up the gric!f construct
the iisi of ̂ Mmh%, and determine the vehicle's current poikkm
and field of vtcm1 The svrtem calculates the cost at cadi node,
feared 0n the distances to nearly dbft&cies and whether ttiac
node is within the field of view «- not. The next step is to create a
graph with link* firoan each node lo its 8 neighbors. The start
«o« goal locations do not necessarily tie on grid points, so special'
nod** ncied to fee cteaterf for them and United into the graph*

The $pie» then wmmtm this graph for tht minimum-cost path
from the n u t to the gc*i The search itself is a $tand*rd A* f 12}
st»relt, TM estimated total cost of a path, used by A* m pfcfc
which i»Ae I© «cp§jid iw*t, if the %mm ̂ Cifse cost s# far plus ifee
m$i*fat*hm dtitAfsct (torn the curwni fccfcifai 10 the goal This
{a* & tffittt, 1*1 ffgMHts of equal emit of finding the pith that
atom cloirfy approtifttjics the itraigfti-toe pa-th 10 the go*t*
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equations and solve them simultaneously to analytically deter-
mine the optimal position of each node. This approach is not, in
general, computationally feasible. The approach used here is a
relaxation method. Each node's position is adjusted in turn,
using only local information to minimize the cost of the path
sections on either side of that node. Since moving one node may
affect the cost of its neighbors, the entire procedure is repeated
until no node moves farther than some small amount.
Node motion has to be restricted. If nodes were allowed to move
in any direction, they would all end up at low cost points, with
many nodes bunched together and a few long links between
them. This would not give a very good picture of the actual cost
along the path. So in order to keep the nodes spread out, a
node's motion is restricted to be perpendicular to a line between
the preceding and following nodes. Furthermore, at any one
step a node is allowed to move no more than one unit.

As a node moves, all three factors of cost are affected: distance
traveled (from the preceding node, via this node, to the next
node), proximity to objects, and relationship to unmapped
regions. The combination of these factors makes it difficult to
directly solve for minimum cost node position. Instead, a binary
search is used to find that position to whatever accuracy is
desired.

The relaxation step has the effect of turning jagged lines into
straight ones where possible, of finding the "saddle" in the cost
function between two objects, and of curving around isolated
objects. It also does the "right thing*' at region boundaries. The
least cost path crossing a border between different cost regions
will follow the same path as a ray of light refracting at a bound-
ary between media with different transmission velocities. The
relaxed path will approach that path.

Example Run
In Figure 8 we see a run using real data. Objects are represented
as little circles, where the size of the circle is the positional
uncertainty of the stereo system. The numbers are not all
consecutive, because some of the points being tracked are on the
floor or are high off the ground, and therefore are not obstacles.
The dotted lines surround the area not in the field of view; this
should extend to negative infinity. The start position of the
robot is approximately (0, -.2) and the goal is (0,14.5). The grid
path is marked with 0*s. After one iteration of relaxation, the
path is marked by l's. After the second relaxation, the path is
marked by 2's. The greatest change from 1 to 2 was less than .3
meters, the threshold, so the process stopped. The size of the
"hills** in the cost function is 1 meter, which means that the robot
will try to stay I meter away from obstacles unless that causes it to
go too far out of its way.

Ail Architecture for Distributed Control
Mobile robots pose a number of fascinating problems from the
point of view of overall software system design. A large number
of semi-independent activities are necessary to achieve autono-
mous mobility. These tasks include controlling actuators,
monitoring several qualitatively different sensors, interpreting
and integrating data from the sensors, and performing plan-
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Figure 8- An example run

ning and problem-solving activities in several different areas
and on various levels of abstraction.

These problems are aggravated by the fact that, to achieve
real-time response, large amounts of processing power are
necessary. One way of achieving this is to apply several proces-
sors to the problem. All this, however, brings the need to develop
new and adequate distributed control and problem-solving
mechanisms.

To face some of these concerns, we have designed a distributed
software control structure [ 1 ] for mobile robots equipped with a
variety of sensors and actuators. In this architecture, Expert
Modules run as independent processes and exchange informa-
tion over a Mackboanl (Figure 9a). The modules are distributed
over a processor network and communicate through messages.
We are now working on an experimental implementation of this
system.



14

Control Plmn

Planner

Staperviaor
Expert Modules

BImckboard

rH Master h H 81**® t

Slave Actuator

Blackboard Monitor
Master r j

Figure 9a. General aunchkecttire of the distributed control sysiera

The Architecture

Expert Modules are »pecblaed subsystems used to control the
operation of the sensors and actuators, interpret sensory and
feedback data* build an internal model of the robot's environ-
ment; plan strategies to accomplish proposed tasks, and super-
vise the esmidoii of the plan* Each Expert Module is composed
of a waster ptmem and a stmm process? where the master process
controls toe scheduling and the activities of the skw process
ami provides an interface toother modules. The master retrieves
dala from the bfadtixMKt that m needed by the $bwt dhantges
tiie status Irmmismpmiiimmw^ifmwMe) of the slave, and posts
ndrauit fiwrftt f r a m e d by the latter on tie bbckboianL, Tfee
dme procrsi is responsible for the processing and problem*
mhmq activities as such*

One of the B*ociiiict# the njpimwn dynamically abstracts sched^
ubig hifimiiatiotck ftir the Expert Moiliiies from a 'Concrd rtan.
The Control Plan p iwido informatwi specific to the tzetntkm
of A giwt task by $pcciftrii?| »^Mki and1 constraintf in tixrfr
eaiiecution* K%h4evei mlormatioii ^ * c W % tbe difiiriient safe*
^ ^ « ? ^ » diamt W**T thr ^KkbGwi |f | This mdadet inform*-
timm m A t r^»«fi ^^»»» itievant i»»rppncd sextsor>' and
fee#iicl 4Mtft and omio l i a f e n M n . Actual aocot to ibc
:^KW»Sfct m ism onff % the itaM««nf M M ! * ; 10 $a«iw the
^ * f i ^ * MUdkMr schtdukt the

»iufcttici witli1 the blaciboani, mxm^n$ to
|Mmritilc9 ami tbt priortutt of data mid mmn faring
t

p
teed 10 €mh proctiMHr ti iwpwttlbif for procwis

using the W « l t e a r i , process** alto
data of mmt s|wcifk interest diiecill1 among
The svitewi 1* buife ^e lop of a set of pninifivi» that

k r f l » m e t i a ^ h t s r d iittcrpr«;c*i iomwsi1"

An Example: Sonar-based Navigation

To provide an experimental testbeel for the proposed architec-
ture, we arc re-implementing our sonar-based navigation $ys^
tern [8J as a disuibuced system. The main m'odules of the sonar
s^tcm are sonar control, the scanner, the mapper, the path,
planner, m& the conductor; for the distributed version we add
10 iheie a guardian and a supervisor process. The functions of
these modnicf are:

Sonar Control: Interfaces to, and controls the sonar sentore.
Ptw«t« range readings.

Mapper:

i Wanner;

Conductor;

PrcpnQcesscs the incoming sonar data
Citems erroneous readings. Annotates sonar
tradings with sensor position, generating whac
is tailed i vwm.

Integrates the view into a sonar map.
Using the xnfonnation about free, unknown ami
occupied amm ftored In a soaat map, generate*
safe paths few the mboc*
Brrfortm the filial1 tmemmmm of the roboc
whkk Along the pfop«»tti path.
^ c $ a limpfc cb«k 00 die mmm r anp ciaia
that it being acquired conttnuousiy anr i»0
^0tts«K)n, to make stir© thai eoOTgfe distance
is wtaificained nelattvie 10 object* In the rdbert
cnvimnment. This is a safety svstem 10 tMkt caant
of r a p i h moving «it»j#eii thai were not
tetrd in the »nar map.

Tiiium cart of the overall behavior of the ?
aa i entractf %chedufang mformaiiQn
Controi Ptjfl

Tie ©ripii»Js momibthic wnum of the §%'««» worlunl b%' ^
ing cfmirtrf to each madufc in W|uc«ce. Hc^ct-cr, such a semi-
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Figure 9b. A distributed implementation of the sonar-based mobile robot navigation system

ization is inconvenient when the processes involved are logically
distinct or when they operate on different time-scales. For
example, the path planner certainly requires the output of the
mapper, but the planning activity is distinct from mapping and
there is no reason why planning and mapping should follow a
rigid pattern. They can be viewed instead as working on differ-
ent sides of a shared database, with one process adding to and
correcting the database while the other draws inferences from
the information therein. As an example of different time-scales,
both the guardian and the scanner act on sonar readings, but
the guardian runs continuously whereas the scanner waits until
its views come from sufficiently different positions of the robot.

In the distributed version of the system, each of the modules
described above is an expert, with a master process that watches
the blackboard for conditions that warrant a change in status
(run/terminate/suspend/resume) of its slave. Information con-
cerning the availability of data or results, the status of the robot,
the activities of the Expert Modules and other relevant high-
level data and control information is shared over the blackboard.
The supervisor provides additional scheduling information to
achieve an overall integrated and coherent behaviour. The bulk
of the data is still passed directly between the modules themselves,
since it consists of information relevant only to specific routines.
Figure 9b illustrates the main flow of data control.

In a typical run, sonar ranging is done continuously. All read-
ings are checked by the guardian to see whether any object is
dangerously near. Selected sets of readings, taken from
sufficiently distinct positions, are processed by the scanner and
the mapper to provide an improved sonar map. Path-planning
is done, and the existing path is updated. Locomotion proceeds;
if the guardian issues a warning, the robot stops immediately
and only proceeds after reassessing the situation of its
environment. With this architecture, the system is able to respond
in an asynchronous fashion to the various needs for data
processing and problem-solving as they arise.

New Work
We have begun work in a major new area; road following systems
for the DARPA Autonomous Land Vehicles program. The goals
of the DARPA program begin with following well defined roads
with no intersections or obstacles, then progress to navigation
and obstacle avoidance in road networks and eventually to navi-
gation in open terrain.
We are working on this in cooperation with other Robotics
Institute groups led by William Whittaker and Takeo Kanade.
The vehicle for this project is the Terregator, a large mobile
robot built by Whittaker's group. Powered by an onboard gaso-
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Ene fueled generator, It is designed for long outdoor journeys
and is equipped with a television camera and microwave TV
ink. We have written a program that drives it along benign,
well-defined roads in real time, visually tracking the left and
right edges. We are extending this work to more difficult roads,
longer journeys, and faster speeds, and plan to incorporate
obstacle detection, landmark recognition and long range
navigation. The effort complements our other projects and is a
natural application of a number of the techniques we haw been
developing.

Conclusion and Philosophy
The most consistently interesting storks are those about journeys,
and the nr»§t fascinating organisms are those that move from
place 10 place, These ohmrmtmms are more than idiosyncrasies
of human psychology* but illustrate a fundamental principle.
Hie world at kr§e has great diversity* and a traveler constantly
encounters imm drewmscances and is consequently daHenged
to respond in new ways. Or^nhmm and mechanisms do not exist
in isolation, but are systems with their environments* and those
on the prow! in getterml have a richer environment than those
ro#ted to one place* Mobility supplies danger along with
excitement* Inappropriate actions or hck of mrcttaiiiied appro-
priate mescan result in the denube of a Free roamcrt say over the
edge of a cliff* Far more easily than of a stationary entity for
whom particular actions arc more likely to have fixed1 effects,
Cb*§«tge combine! with opportunity In a strong selection pres-
sure that drives am evolving species that happens to find itself in
m iwofeifc mm of life in certain directions quite different from
those of MMtmmtf organisms* The las* billion year* 00 the
surface of the earth has been a fraud experiment exploring
time pressures*Besides the fortunate consequence of our own
eminence, »we universal* are apparent from the results to date
and from the record. Is paniculftr, inteltfcfwe seems to fctiktw
from mobility

The same ortsaum mm to be m wmk in the tedinofagkat
ewotntiDit m mhom and k may be thai ntetbie robots an? the best
torn* » ^ n ^ ^ "for some of the mosi
kms oil ibe *my aa vtum arufiao) i » » l i ^ i i c e ^
h ! to jprogram wwffwii sense rauooin^ mid teiraiag from

Tb i i fep p y p p g
nribets arr wot* dtflicute » ftc tight titan

I fi fe i di ld ! «

y
conmi f

MMt* and dte s ^ * It fite t# ^»cfe tie divem wor
fe>

iji« tfct -c^i to i*^ that m& W the piaos of it* dmpw
T ^ (til 1 to^ May i# go.
] ^ pp
i i f us imfpmtmt ^ ^ i « * It is our a c p e m c e i w f ^ J
ttw w«§ ̂ t t i ^ pi^te»$ nxrttfto to simple tech»^ii»* but
Ail cMrihr 1 uwt- soufl frictmi of thr ptotsme mtm^k method!

'It ^
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High Resolution Maps from Wide Angle Sonar

Hans P. Moravec Alberto Elfes

The Robotics Institute

Carnegie-Mellon University

Abstract
We describe the use of multiple wide-angle sonar range measurements

to map the surroundings of an autonomous mobile robot A sonar range
reading provides information concerning empty and occupied volumes in
a cone (subtending 30 degrees in our case) in front of the sensor. The
reading is modelled as probability profiles projected onto a rasterized
map, where somewhere occupied and everywhere empty areas art
represented Range measurements from multiple points of view (taken
from multiple sensors on the robot, and from the same sensors after robot
moves) are systematically integrated in the map. Overlapping empty
volumes re-inforce each other, and serve to condense the range of
occupied volumes. The map definition improves as more readings are
added. The final map shows regions probably occupied probably
unoccupied, and unknown areas. The method deals effectively with
clutter, and can be used for motion planning and for extended landmark
recognition. This system has been tested on the Neptune mobile robot at
CMU.

1. Introduction
This paper describes a sonar-based mapping system developed for

mobile robot navigation. It was tested in cluttered environments using
the Neptune mobile robot [8], developed at the Mobile Robot
Laboratory of the Robotics Institute, CMU. The Neptune system has
been used successfully in several areas of research, including stereo
vision navigation [5,10] and path planning [11]. Other research in the
laboratory includes die investigation of adequate high-level robot
control structures, the use of distributed and parallel processing
methods to improve the real-time response of the system, navigation in
outdoor environments and the design and construction of more
advanced robots with higher mobility.

Primarily because of computational expense, practical real-world
stereo vision navigation systems [7,10] build very sparse depth maps of
their surroundings. Even with this economy our fastest system,
described in [5], takes 30 - 60 seconds per one meter step on a 1 mips
machine.

This work has been supported in part by Denning Mobile Robotics,
lac, by the Western Pennsylvania Advanced Technology Center and
by Ac Office of Naval Rcseaich under contract number N00014-81-
K-0503. The second author is supported in part by tfa& Consc&o
National die DcscnvolvkneiiSD CfcmtfUco e Tccnologw - CNPq, Brazil,
under Grant 2G0.9S6-SO; in part by tbe Institute Tccfioldgico de
Aeronautics - FIX Brazil; and in pan by Tbe Robotics InscifPte*
Carncgife-Mcflon University.

The views awl conclusions contalacd in this document are those of
the authors and should not be interpreted as representing the official
pultocs, cfther expressed or implied, of the funding agencies.

Direct sonar range measurements promised to provide bask
navigation and denser maps with considerably less computation. The
readily available Polaroid ultrasonic range transducer [9] was selected
and a ring of 24 of these sensors was mounted on Neptune.

We find sonar sensors interesting also because we would lilec to
investigate how qualitatively different sensors, such as a sonar array and
a pair of cameras, could cooperate in building up a more complex and
rich description of the robot's environment.

1.1. Goals
We expected sonar measurements to provide maps of the robot's

environment with regions classified as empty, occupied or unknown,
and matches of new maps with old ones for landmark classification and
to obtain or correct global position and orientation information.

1.2. Approach
Our method starts with a number of range measurements obtained

from sonar units whose position with respect to one another is known.
Each measurement provides information about empty and possibly
occupied volumes in the space subtended by the beam (a thirty degree
cone for the present sensors). This occupancy information is projected
onto a rasterized two-dimensional horizontal map. Sets of readings
taken both from different sensors and from different positions of the
robot are progressively incorporated into the sonar map. As more
readings arc added the area deduced to be empty expands, and the
expanding empty area encroaches on and sharpens the possibly
occupied region. The map becomes gradually more detailed.

For navigation and recognition we developed a way of convolving
two sonar maps, giving the displacement and rotation that best brings
one map into registration with the other, along with a measure of the
goodness of the match.

The sonar maps happen to be very useful for motion planning. They
are denser than those made by our stereo vision programs; and
computationally about an order of magnitude faster to produce. We
presently use them with the Path Relaxation method [11] to plan local
paths for our robot.

1.3. Related Work
Sonar is a developed technology but few applications until recently

involved detailed map building. Traditional marine applications,
camera amofbeus systems, and some simple robot mrcigatkm schemes
[2,6] rely on sparse proximity measurements &o accomplish their
narrow goals.

.00 © ties IEEE
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Hie most advanced sonar systems used in marine Intelligence
operations locate sound sources passively [1]. Ultrasound systems used
in medicine are typically active and build maps for human perusal, but
depend on accurate physical models of the environments that the sound
traverses [4], and work with very small beam widths, about 1° - 3°.
Narrow beam widths, formed by phased array techniques, are also used
in advanced side looking mapping sonar system for submersible*. An
independent CMU sonar mapping effort [3] also used a narrow beam,
formed by a parabolic reflector, in its attempts to build a line-based
description.

In contrast the sonar sensors that we choose to CITIDIOV have a wide
beam, with an effective angle of about 30°.

2. The Sonar System

2.1 • The Sensor
The sonar devices being used are Polaroid laboratory grade ultrasonic

transducers [9]. These sonar dements nave a useful measuring range of
OS m 35.0 ft The main lobe of the sensitivity function corresponds to a
beam angle of 30° at - 3 8 dB. Experimental results showed that the
range accuracy of the sensors is on the order of 1 %. We are using the
control circuitry provided with the unit, which is optimized for giving
the range of the nearest sound reflector in i s field of view, and works
well for shis purpose.

2.2* The Array
Th-e sonar array, built at Denning Mobile Robotics, and mounted om

the Neptunemohilt robot is composed of:

• A ring of 24 Polaroid sonar dements, spaced 15® apart, and
mounted at an height of 31 inches above the grotntd (see
Fig. IX

• A Z£0 controlling microprocessor which selects and fires

• A l o w fee over wisitlt imps ia,l©iaatifflE Is sent to a VAX

w mgiicr K W ni^yiii^ asu laviyrowwi

• Averaging: Several independent readings from the same
sensor at the same position arc averaged. The sonar
readings arc subject to error not only from reflections but
also from other causes such as fluctuations in the effective
sensitivity of the transducer. As a result readings show a
certain dispersion. Averaging narrows the spread.

# Clustering: A set of readings from one sensor at a given
position sometimes shows a clustering of the data around
two different mean values. This happens when different
readings arc being originated by objects at staggered
distances. We apply a simple clustering analysis to the data*
and extract a mean value for each cluster for use in
subsequent processing.

3 . 2 . Representing the Sonar Beam
Because of the wide beam angle the filtered data from the above

methods provides only indirect information about the location of the
detected objects. We combine the constraints from individual readings
to reduce the uncertainty. Our inferences are represented as
probabilities in a discrete grid.

A range reading is interpreted as providing information about space
volumes that are probably EMPTY and somewhere OCCUPIED. We
model the sonar beam by probability distribution functions. Informally,
these functions mode! our confidence that the various points inside the
cone of die beam are empty and our uncertainty about the location of
the point, somewhere on the range surface of the cone, that caused the
echo. The functions are based on the range reading and on the spatial
sensitivity pattern of the sonar.

Consider a position P =
sonar beam, Lee

belonging to the volume swept by the

3. Sonar Mapping

3.1« Qbl&mmz Reiiafele Range Data from ttt* ®wmt Senscr
We begin « r n i p twftlag by p f t p m n i a i t * tawiiisg m d i i p

s® f d i o w cMnnic ©TOTS. 1 M M O I I ^ nsps a

Jt be Ac ran§e measurement returned by the sonar sensor,
€ be ihe mean sonar deviatioB error,
m -be the beam aperture;
S = (s£,ys.zs) be the posidon of the sonar sensor,
5 be *J}e d W . c e from? to 5,
§ be te aagle between the mam axis of ®e beam and SP.

of being* prababitty

: Ocnipied Region: Foiiss on She sonar beam
fait ( BtlR-tR-i] wad # i i» /2 X that have a

m iwta

Rg, 2 ihows te p profits far a sowir 'b@a» thai rmneda

m oftes worn to i
^ « r Mow tffl|B^ i

iff *QSmCwm v j mmsfiM% SIC

I ^ tit

corrsspondmg IO tm empty and the

fcoA» fcr a point F kMkk ibe soaar

is f»W )mEjtoBjn (1)
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Figure 1: The Neptune mobile robot, with a pair of cameras and the
sonar ring, in our laboratory. Sonar maps of this lab
can be seen in Figures 3 through &

where:

And:

(2)

=0 otherwise.

(3)

The occupied probability density function for a point P on the beam
front is given bye

position (xya) is occupied ]=OJfiyOa(0) (4)

(5)

wtieic:

otherwise

And:

»y tor #€ f -

These pntettt% density fenctioiis are now projected on a horizontal
plane to gaaecne map kfbnnatioiL We use die proxies that
c«f«^«id m a taianml scctfat of the sour bean {*» ipt

3.3. Representing Maps
Sonar Maps are two-dimensional arrays of cells corresponding to a

horizontal grid imposed on the area to be mapped. The grid has MxN
cells, each of size Ax A. The final map has cell values in the range
(—UX where values less than 0 represent probably empty regions,
exactly zero represents unknown occupancy, and greater than 0 Implies
a probably occupied space. This map is computed in a final step from
two separate arrays analogous to the empty and occupied probability
distributions introduced above.

A cell is considered UNKNOWN if no information concerning it is
available, Cells can be EMPTY with a degree of certainty or confidence
£mp(X,\) and OCCUPIED with a degree of certainty 0cc(X.Y) both
values ranging from Q to L

The a priori empty and occupied certainty values for a given grid cell
(X.Y) and reading arc determined by taking the minimum of the
reading's pf and maximum of p^ respectively, over the ceil through a
horizontal slice through the beam center.

3 . 4 . Composing Information from Several Readings
Trie m*p is built by projecting the beam probabilities onto te

discrete ceils of the sonar map and there combining it with Inrbrmatkm
from other beams. The position and the orientation of site sonar sensor
are used w register die beam with the snap.

Different readings assertsg due a ceO is EMFTY wiH enhance each
other, as will readings Implying that she ce i may be OCCUPIED while
evidence that the cell is EMPTY will weaken sisc cenaiasar of k being
OCCUPIED and vke-versa,
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Figure 2: The Probability Profiles corresponding to the probably Empty
and somewhere Occupied regions in the sonar beam.
The profiles represent a horizontal cross section of
the beam.

The operations performed on the empty and occupied probabilities
are not symmetrical. The probability distribution for empty areas
represents a solid volume whose totality is probably empty but the
occupied probability distribution for a single reading represents a lack
of knowledge we have about the location of a single reflecting point
somewhere in the range of the distribution. Empty regions arc simply
added using a probabilistic addition formula. The occupied probabilities
for a single reading, on the other hand, are reduced in the areas that the
other data suggests is empty, then normalized to make their stun unity.
Only after this narrowing process are the occupied probabilities from
each reading combined using the addition formula.

One range measurement contains only a small amount of
information. By combining the evidence from many readings as the
robot moves In its environment, the area known to be empty is
expanded. The number of regions somewhere containing an occupied
cell increases, while the range of uncertainty in each such region
decreases. The overall effect as more readings arc added is a gradually
increasing coverage along with m increasing precision in the object
locations. Typically after a lew hundred readings (and less than a
second of computer time) our process is able to "condense out** a
comprehensive map covering a thousand square feet with better than
one foot position accuracy of the objects detected. Note that such a
result does not violate k t m a t t a theoretic or degree of freedom
constraints, sines ihe detected boundaries of objects ait linear, not
quatoilc^ LV.C dir!cn£;cMofthc!nap, A Utonsani square foot map
stay contain only a iwodied loear feet of boundary.

process procccos sfoug me

1. RESET The vAofc Map is sot lo UNKNOWN by mating

1 summxmm OF awnr AMAS: For any
is Maautkm over its preiecttaa fey;

3. SUPERPOSITION OF OOCLl'll-D AREAS: For each reading Jfc,
shift the occupied probabilites around in response to the
combined emptyness map using:

CANCEL: 0cck(XY): = OcckQL.Y) - (1 - £mp(X,Y))

NORMALIZE: Occk(X\):

ENHANCE: Occ<XtY): =
Occ<X.Y)-h OccJk(XY)-

4. "THRESHOLDING: The final occupation value attributed to a
cell is given by a thresholding method:

THRESHOLD: A/fl/<XtY): =

(OcdJLY) if Occ(X.Y)^£m/<XY)

l-£i i0(X.Y) if Occ(XY)<£/np(XY)

3.5. Maps
A typical map obtained through this method is shown in Fig. 3, and

the corresponding certainty factor distributions are shown in Figs. Fig.
4 and 5. These are the maps obtained before the thresholding step.

The final maps obtained after thresholding arc shown in Figs. 6, 7
and 8.

••«>»*«- . . . . • • • - . •• >•••«.«•«•***••«••**••••«•»•-•

• 5 5 " 2

Figure 3: A Two-Dimcnsional Sonar Map. Each symbol represents a
square area six inches on a side in the room pictured
in Figure L The right edge of this diagram
corresponds to ihe far wall in the picture. Empty
areas with a fiigh certainty factor are represented by
white space; tower certainty fectors by " + "
symbols of increasing thickness, Occupied areas are
represented by m x w symbols, and Unknown areas by
*****. The robot positions where scans were taken are
shown by circles and the outline of the room and of
the major objects by solid lines.

4. Matching
lid beoclk from a procedure mat can match two

maps aoi report the displacement *wi rotation that best takes one ten

Cte mm ncceMil -rcgra^s begin with the thre<-c!dec
itecribed £te vt, wiih c t i vatos that are negative if Ac ee l Is

f occupied awl zero if unknown.
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Figure 4: The Occupied Areas in the Sonar Map. This 3-D view shows Figure 7: The Occupied Areas in the Sonar Map After Thresholding,
the Certainty Factors 0ec(X, Y).

Figure 5: The Empty Areas in the Sonar Map. This 3-D view shows the
Certainty Factors EmpQCJO.

F t e « €: Tlie Two-moeasiaial Sonar Map After

Figure 8: The Empty Areas in the Sonar Map Afto Thresholding

A measure of the goodness of the match between two maps at a trial
displacement and rotation is found by computing the sum of products
of corresponding cells in the two maps. An occupied cell falling on an
occupied cell contributes a positive increment to the sum, as does an
empty cell M i n f on an empty e e l (the product of two negatives). Am
empty cell Ming on an occupied one reduces die sum, ami any
comparison involving an unknown value causes neither an increase ms€
a decrease. This naive approach is very slow. Applied to maps with a
linear dimension of n, each trial position requires O(^) multiplications.
Each search dimension (two axes of displacement and one of rotation)
requires O{n) trial positions. The total cost of the approach thus grows
as Gf*5). With a typical * of 50 this approach can bum up a food
fracuonofanhourofVaxEime-

Considerable savings come from the observation &at most of Ihc
information isi she maps is In Ihe occupied cells alone. Typically OESV
£^n) cells m the map, corresponding ^ wall and object boundaries, arc
labelled occupied. A revised maldiing procedure compares maps A and
B through trial tnmsfcnmaticR 7 (represented by a 2x2 rotation matrix
sad a 2 dement displacement vector) by cw»ieratwc ttie occtipfed eels
of A. uaf^forwlmg ttic co-oftfe»ies of eacfe sucn eel iiroi^li F» I K ! »



corresponding cell in B. The [A, B] pairs obtained this way are
multiplied and summed, as in the original procedure. The occupied
cells in B arc enumerated and multiplied with corresponding cells in A,
found by transforming the fi co-ordinates through 7*"1 (the inverse
function of 7), and these products arc also added to the sum. The result
is normalized by dividing by the total number of terms. This procedure
is implemented efficiently by preprocessing each sonar map to give
both a raster representation and a linear list of the co-ordinates of
occupied cells. The cost growns as O(n\ and Che typical Vax running
time is down to a few minutes.

A further speedup is achieved by generating a hierarchy of reduced
resolution versions of each map. A coarser map is produced from a
finer one by convening two by two subarrays of cells in the original into
single cells of the reduction. Our existing programs assign the
maximum value found in the subarray as the value of the result cell,
thus preserving occupied cells. If the original array has dimension ft,
the first reduction is of size nfL the second of n/4 and so on. A list of
occupied cell locations is produced for each reduction level so that die
matching method of the previous paragraph can be applied The
maximum number of reduction levels is Iog2/t A match found at one
level can be refined at the next finer level by trying only about three
values of each of the two translation*! and one rotational parameters, in
the vicinity of the values found at the coarser level, for a total of 27
trials. With a moderate a-priori constraint on the transformation this
amount ofscarch is adequate even at the first (coarsest) lcveL Since the
cost of a trial evaluation is proportional to die dimension of the map,
the coarse matches are inexpensive in any case Applied to its fullest,
this method brings the matching cost down to slightly larger man O(n\
and typical Vax times to under a second.

We found one farther preprocessing step is required to male the
matching process work in practice. Raw maps at standard resolutions (6
inch cells) produced ton moderate numbers (about 100) of sonar
measurements have narrow bands of cells labeled occupied la
separately generated maps of the same area the relative positions of
these narrow bands shifts by as much as several pixels, making good
registrauon of the occupied areas of the two maps impossible. This can
be explained by saying that the high spatial frequency component of
the position of the bands is noise, only toe lower frequencies carry
information. I l ie problem is fixed by filtering (blurring) the occupied
cells to remove the high frequency noise Experiment suggests that &
map made from 100 readings should be blurred with a spread of about
two feet, while for map made fronra 200 readings a one foot smear is
adequate. Bluning increases the flismber of cells Sabcllcd ocaipfed So
as not to increase fte compoatimai cost How this effect only te final
raster version of Lhe map is blurred. The occupied cell M used in the
matching pnxessksiill made from the unfTstcrcd raster.

Wife to p r a m coined tec, maps *m atxnif JMS§ sft iiictt cells
made from 200 well spaced readings can be matched with an accuracy
of about six indies displacement <m<S three degrees rotation in one
secern of Vax m n t

5. Results
We mcorporsied fee s w rap hpUdcf Into a sysxem Uttt

succtssisly navigates §m Nep&mc robot through tluncred obstacle
courses. The octafeif pftqgmi incKWiaiiiiy betels a -sfagie %xmt mmp

til© rsulififp. Hun successive vcfeclc Mops raw about
one meicr apart Nfv|§tfida k fcy dead rcctonliig - we do tot | « w&
LHe s€T.2r map rnasfesrig •cods. The ssxt rriove is ^tanaed in zktmm.
m a n version of thz n a p by a paiM-plmnrng wae&md bood a t path

d n oope wrj: a

representation of occupied and empty areas and docs path-planning in
a grid, it fits naturally into our present framework. The system has
successfully driven Neptune the length of our cluttered 30 by 15 foot
laboratory using less than one minute of computer time.

6. Conclusions
We have described a program that builds moderately high resolution

spatial maps of a mobile robot's surroundings by combining several
hundred range readings from unadorned Polaroid ultrasonic units. The
main innovation is an efficient mathematical method that reduces the
position uncertainty of objects detected by wide angle sonar beams by
combining interlocking constraints in a raster occupation probability
map. We have also developed a fast algorithm for relating two maps of
the same area to derive relative displacement, angle and goodness of

We have used this mapping method in a system that navigates t
mobile robot to a desired destination through obstacles and clutter, and
are preparing a more elaborate navigation system that depends on
matching of the sonar maps to recognize key locations and on higher-
level representations to navigate over long distances.
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A Sonar-Based Mapping and Navigation System

Alberto Elfes

The Robotics Institute
Carnegie-Mellon University

Pittsburgh, PA 15213

Abstract
This paper describes a sonar-based mapping and navigation system for

autonomous mobile robots operating in unknown and unstructured
surroundings. The system uses sonar range data to build a multi-leveled
description of the robots environment Sonar maps are represented in the
system along several dimensions: the Abstraction axis; the Geographical
axis, and the Resolution axis. Various kinds of problem-solving activities
can be performed and different levels of performance can be achieved by
operating with these multiple representations of maps. The major modules
of the Doiuljin system are described and related to the various mapping
representations used. Results from actual runs are presented, and further
research is mentioned The system is also situated within the wider context
of developing an advanced software architecture for autonomous mobile
robots.

1. Introduction
The Do!pl)oi system is intended to provide sonar-based mapping and

navigation for an autonomous mobile robot operating in unknown and
unstructured environments. The system is completely autonomous in
the sense that it has no a priori model or knowledge of its surroundings
and also carries no user-provided map. It acquires data from the real
world through a set of sonar sensors and uses the interpreted data to
build a multi-leveled and multi-faceted description of the robot's
operating environment. This description is used to plan safe paths and
navigate the vehicle towards a given goal

The system is intended for indoor as well as outdoor use; it may be
coupled to other systems, such as vision, to locate landmarks that would
serve as intermediate or final destinations.

In the course of mis paper, we will briefly identify some of the
conceptual processing levels needed for mobile robot software, relate the
present system to this framework, discuss the multiple representations
developed for sonar maps as well as their use In different kinds of
problem-solving activities, describe the overall system architecture and
show some results from actual runs. We finish with an outline of further
research.

2. Conceptual Processing Levels for an
Autonomous Mobile Robot

The sonar mapping and navigation system discussed here is part of a
research effort thai investigates various issues involved in the
dciciopmcBi of the software structure of an autonomous mobile robot

To situate the Dolpbin system within this wider context, we characterize
in this section some of the conceptual processing levels required for an
autonomous vehicle (see Fig. 2-1). Each is briefly discussed below:

VII. Global Control

VI. Global Banning

V. Navigation

IV. Read-World Modelling

HI. Sensor Integration

It Sensor Interpretation

I. Robot Control

Figure 2-1: Conceptual Activity Levels in a Mobile Robot Software
Architecture.

• Robot Control: This level takes care of the physical control of
the different sensors and actuators available to the robot It
provides a set of primitives for locomotion, actuator and
sensor control, data acquisition, etcM that serve as the robot
interface, freeing the higher levels of the system from tow-
level details. This would include dead-reckoning motion
estimation and monitoring of internal sensors. Internal
Sensors provide information on die status of the different
physical subsystems of the robot while External Senmrsdie
used to acquire data from the robot's environment.

• Sensor Interpretation: On this lew! die acquisition of sensor
data and i s interpretation by Sensor Modules is done. Each
Sensor Module is specialized in one sype of sensor or even in
extracting a specific kind of information from the sensor
data. They provide mfarmatioa Jo the higher kvels using a
common representation and a common firatne of reference.

• Smmr Integration: Due to the intrinsic limitations of my
sensory device, it is essential to integrate mfbnnation coniiag
from qualitatively different sensors. Specific assertions
provided by the Sensor Modules arc correlated to each other
on tils levd. For example, geometric boundaries of an
obstacle extracted by sonar can be presetted onto an wiage
provided by the vision subsystem and can help in identifying
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a certain object. On this level information is aggregated and
assertions about specific portions of the environment can be
made.

• Real-World Modelling: To achieve any substantial degree of
autonomy, a robot system must have an understanding of its
surroundings, by acquiring and manipulating a rich model of
its environment of operation. This model is based on
assertions integrated from the various sensors, and reflects
the data acquired and the hypotheses proposed so far. On
this level, local pieces of information arc used in the
incremental construction of a coherent global Real-World
Model; this Model can then be used for several other
activities, such as landmark recognition, matching of newly
acquired information against already stored maps, and
generation of expectancies and goals.

• Navigation: For autonomous locomotion, a variety of
problem-solving activities are necessary, such as short-term
and long-term path-planning, obstacle-avoidance, detection
of emergencies, etc. These different activities are performed
by modules that provide specific services.

» Global Planning: To achieve a global goal proposed to the
robot this level provides task-level planning for autonomous
generation of sequences of actuator, sensor and processing
actions. Other necessary activities include simulation, error
detection, diagnosis and recovery, and replanning in the case
of unexpected situations or failures.

• Global Control: Finally, on this level Supervisory Modules
are responsible for the scheduling of different activities and
for combining Plan-driven with Data-driven activities in an
integrated manner so as to achieve coherent behaviour.

This conceptual structure provides a paradigm within which several of
OUT research efforts are situated [6,11,12]. It has influenced, in
particular, the architecture of the Dolpfrsi system for sonar-based
mapping and navigation, as mentioned in Section 5.

3. Sonar Mapping

3 . 1 . Introduction

The Ddpm m a r system is able m toid dense maps of die robot's
mmtmmeA and use them for autawwHXis navigation. The central
rcpfcscmatton of sonar mapping infixmatioa is the PmimhUbik or
SmtmrLifei boat Map, wfett uses a mediwn-rcscriution grid (with a
epical aocttracy of 0151). H e cells of a mwSkmmmxak array spanning
ihe a m of interns arc toed to store occupancy information (EMPTY,
OCCUPIED or UNKNOWN % M we!] as uhe <2ssocia:ed cor.nderxe factors.

Ckiftentty, the t i d e erf o p e r a t e of the soa r systtm k m fellows:
tram i s ciBTOit positioiL if* tctet a o p i r a a set of range measurements
pwxteS by the sonar s e w array: these readings* are then faterpietei
m matmm concerning mpiy and mx%tpi@d m a t , and serve to update
fhe mm sap* Hie ratp m n w used to plan a safe path snotiwi
obsttdcv and the rot>ts motes a certain distance along the path. Ii
apfcies its, pmaaR awl efwiM»ti c s w m e aad repeats the cycle.

The sonar sensor array is composed of 24 Polaroid laboratory grade
ultrasonic transducers. These devices are arranged in a ring and
controlled by a microprocessor that also interfaces to a VAX mainframe.
For experimental runs, the array was mounted on two different robots
(Neptune [13] for indoor runs, and the Terragator [12] for outdoors).

The mapping system processes range measurements obtained from the
sonar transducers, annotated with the positions of the corresponding
sensors, which arc derived from the position and orientation of the
robot. Each measurement provides information about probably empty
and possibly occupied volumes in the space subtended by the beam (a
30° cone for the present sensors). This occupancy information is
projected onto a rastcrized two-dimensional horizontal map. Sets of
readings taken both from different sensors and from different positions
of the robot are incrementally integrated into the sonar map, using a
probabilistic approach. In this way, errors and uncertainties are reduced
and the map becomes gradually more detailed.

The sonar beam is modelled by probability distribution functions.
Informally, these functions describe our confidence that the points
inside the cone of the beam arc empty and our uncertainty about the
location of the point that caused the echo. The functions are based on
the range value and on the spatial sensitivity pattern of the sonar device,

These sonar maps are very useful for motion planning. They are much
denser than those made by typical stereo vision programs, and
computationally at least one order of magnitude faster to produce.

3 . 3 . Belated Work

In the Robotics area, ultrasonic range transducers have recently
attracted increasing attention. This is due in part to their simplicity, low
cost and the fact that distance measurements are provided directly. Some
research has focused specifically on the development of more elaborate
beam-forming and detection devices (see. for example, [81), or on the
applrcation of highly sophisticated signal processing techniques [1] to
complex sonar signals.

Specific applications of sonar sensors in robot navigation include
determining the position of a robot given a known map of the
environment [9.10.5) and some ml hoc navigation schemes [2]. Aa
independent CMU sonar mapping and navigation effort [3,4} uses a
narrow beam, formed by a parabolic reflector, to build a fee-based
description of the environment

4. Multiple Axis of Representation of Sonar
Mapping Information

F r a n the Probabilistic Ijoai Maps described m the previous sectkMu
several other data structures are derived We use die following

4-1):

• THE AKTOACTON AXIS: Along iiis axis we move from a
sensorbtsed. dao*intci)sirc representation ID increasingly
higher levels of in«rpretat»n a id JitmrattiQiL Three lewis
mt 4eli«d: the Senmr Lewi the Geometric Lew! and the

I t* Local Map tanking process » discussed h detail In fill aad n
d here only bne%, We proceed to describe how other

nied tan &

• THE G&OG&AFHICAL KXm Along this, axis we define Views,
Lmai Map& and Global Maps* depending on the extent and
Axmammm of At area c o w e d

• THE RBOiLTlON AXE: S « » r MftjK are genenoed at
iiffamt values of grid resolution for different ippiieatjam
Soi» amputations cas be ptrformed satisfactorily at tow
l e w i of dtetait, while « t e s need isigfeer or e%cn
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Symbolic Level

Abstraction
Axis

Global Map

Low Resolution

Figure 4-1: Multiple Axis of Representation of Sonar Maps.

4.1. The Abstraction Axis

The first kind of sonar map built from the sonar range data uses the
Probabilistic representation described earlier. A two-dimensional grid
covering a limited area of interest is used. This map is derived directly
from the interpretation of the sensor readings and is, in a sense, the
description closest to the real world. It serves as the basis from which
other kinds of representations are derived. Along the Abstraction Axis,
this data-intensive description is also defined as the Sensor Level Map.

The next level is called the Geometric Level, It is built by scanning the
Sensor Level Map and identifying blobs of cells with high OCCUPIED
confidence factors. These arc merged into uniquely labeled objects with
explicitly represented polygonal boundaries. If needed, the same can be
done with KMPTY areas.

The third is the Symbolic Level where maps of larger areas (typically
Global Maps) arc described using a graph-like representation. This
description bears only a topological equivalence to the real world. Nodes
represent "interesting" areas, where more detailed mapping information
is necessary or available, while edges correspond to simpler or
"uninteresting" areas (navigationally speaking), such as corridors.

Different kinds of problem-solving activities arc better performed on
different levels of abstraction. For example, global path-planning (such
as how to get from one building wing to another) would be done on the
symbolic level while navigation through a specific office or lab uses the
sensor-level map, where all the detailed information about objects and
free space, as well as the associated certainty factors, is stored.

4.2. The Geographical Axis

In order to be able to focus on specific geographical areas and to
handle portions of as well as complete maps, we define a hierarchy of
maps with increasing degrees of coverage. Progressing along the
Geographical Axis, we start with Views, which are maps generated from
scans taken from the current position, and that describe the area visible
to the robot from that place. As the vehicle moves, several Views are
acquired and integrated into a Local Map. The latter corresponds to
physically delimited spaces such as labs or offices, which define a
connected region of visibility. Global Maps are sets of several Local
Maps, and cover wider spaces such as a whole wing of a building, with
labs, offices, open areas, corridors, etc.

4.3. The Resolution Axis

Finally, along the Resolution Axis, we again start with the Sensor-
Level Local Map and generate a progression of maps with increasingly
less detail. This allows certain kinds of computations to be performed
either at lower levels of resolution with correspondingly less
computational expense, or else enables operations at coarser levels to
guide the problem-solving activities at finer levels of resolution.

The most detailed sonar maps that can be obtained from the method
outlined in Section 3 (considering the intrinsic limitations of the sensors)
have a cell size of 0.1 x 0.1 ft . For navigation purposes, we have
typically been using a 0.5 ft grid for indoors and a 1.0 ft grid for
outdoors. Nevertheless, several operations on the maps are expensive
and are done more quickly at even lower levels of resolution. For these
cases we reduce higher resolution maps by an averaging process that
produces a coarser description. One example of an application of this
technique is the Map Matching procedure described in [11], where two
Local Maps being compared with each other are first matched at a low
level of detail. The result then constrains the search for a match at the
next higher level of resolution.

5. Overall System Architecture

To provide a context for these multiple descriptions, we present in this
Section the overall architecture of theDolpfom Sonar-lfciscd Mapping and
Navigation system (Fig. 5-1). The function of the major modules and
their interaction with the various sonar map representations [7] is
described below:

Locea»tiM

Figure 5-1: Architecture of the Sonar Mapping and Navigation
System.
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Sonar Control: Interfaces to and runs the sonar sensor array, providing
range readings.

Scanner: Preprocesses and filters the sonar data. Annotates it with the
position and orientation of the corresponding sensor, based on the
robot's motion estimate.

Mapper: Using the information provided by the Scanner, generates a
View obtained from the current position of the robot. This View is then
integrated into a Local Map.

Cartographer: Aggregates sets of Local Maps into Global Maps.
Provides map handling and bookkeeping functions.

Matcher Matches a newly acquired Local Map against portions of
Global Maps for operations such as landmark identification or update of
the absolute position estimate.

Object Extraction: Obtains geometric information about obstacles.
Objects are extracted by merging blobs of OCCUPIED cells and
determining the corresponding polygonal boundaries. A region-coloring
approach is used for unique labeling.

Graph Building: Searches for larger regions that are either empty or
else have complex patterns of obstacles, labeling them as "free" or
"interesting" spaces.

Path-Planning: Three levels of path-planning are possible: Symbolic
Path-Planning "is done over wider areas (Global Maps) and at a higher
level of abstraction (Symbolic Maps); Geometric Path-Planning is done
as an intermediary stage, when the uncertainty in Local Maps is low;
and Sensor Map Path-Planning is used to generate detailed safe paths.
The latter performs an A* search over the map cells, with the cost
function taking into account the obstacle certainty factors and the
distance to the goal. The planned path is provided to the Navigator.

Navigator: Takes care of the overall navigation issues for the vehicle.
This includes examining already planned paths to determine whether
they are still usable, invoking the path-planner to provide new paths,
setting intermediary goals, overseeing the actual locomotion, etc.

Conductor: Controls the physical locomotion of the robot along the
planned path. The latter is currently approximated by sequences of line
segments, using a line-fitting approach. Provides an estimate of the new
position and orientation of the robot

Guardian: During actual locomotion, this module checks tine incoming
sonar readings and signals a stop if the robot is coming too close to a
(possibly moving) obstacle not detected previously. It serves as a "sonar
bumpeT.

Supervisor: Oversees the operation of the various modules and takes
care of the overall control of the system. It also provides a user interface.

Comparing this architecture with the activities outlined in Section 2,
we see that the Sonar Control and Conductor modules belong to the
Robot Control level; the Scanning and Mapping modules operate on the
Sensor Interpretation level; the Object Extraction, Graph Building,
Cartographer and Matcher modules provide functions on she Real-
World Modelling level; Path-Planniiig, the Guardian and Navigation
are situated cm the Navigation level; and the Supervisor belongs to the
Control level

8* Tests of the System
The I h ^ P system iksci iW here was tested in seven! indoor nits k

du&crod ejmromnents using t i e Septum mobile ratal {131 developed
at the Mobile Rdxx laboratory of the Rebecks Institute. C M l l It was

also tested in outdoor environments, operating among trees, usi$:
Terragalor robot in the context of the CMU ALV project. Thegi
operated successfully in both kinds of environments, navigator:
robot towards a given destination.

In Fig. 6-1, an example run is given. The sequence of mapsprw
shows how the sonar map becomes gradually more detailed andipi
path is improved, as more information is gathered. The cw
corresponds to an indoor run, done in our laboratory. A distance-
approximately 25 ft was covered; the grid size is 0.5 ft. Objects pirn
the lab included chairs, tables, boxes, workstations, filing cabinets,e
Empty spaces with high certainty factors arc represented by whitem
lower certainty factors by "•" symbols of increasing thickness. Oee^t
areas are shown using "x" symbols, and Unknown areas using "".H
planned path is shown as a dotted line, and the route actually fofe
by the robot as solid line segments. The starting point is a solid +i
the goal a solid x.

In Fig. 6-2, an outdoor run is shown, together with an example of*
Object Extraction algorithm. 'Hie objects arc uniquely identified anil
polygonal boundaries arc shown, llic map corresponds to a run!
among trees. A distance of approximately 50 ft was traversed. Ttef
size was 1.0 ft, which proved adequate for navigation, but did not ate
more precise description of the real boundaries of the detected object

7. Further Research
We conclude our discussion by outlining in this Section some re$a

lines to be further pursued.

7 . 1 . Handling Position Uncertainty

Our current system presupposes that the position and orientate:
the robot (and by that, of the sonar sensors) as it acquires sonar da
known with reasonable precision. This is crucial for integrating K±
taken over shorter distances, which arc combined as previously outfe
Drifts over longer distances are inevitable, but lead only to a topofe
distortion of the map.

To update the current position of the robot, we presently $ :
dead-reckoning estimates based on wheel encoders and an oifc
inertia! navigation system. These drift with travelling time and dte
As a result ground truth (the real-world environment} and the &
map drift apart This problem is characteristic of navigation w&
access to absolute position in formation. In stereo vision navigation,:::
traditionally been addressed by estimating motion based on k;
matching.

We are currently investigating two complementary approaches to?
problem: incorporating the uncertainly in the position of the robot;
the map-making process and do motion solving by matching newss
readings against the map being incrementally built

7 .2 . Extending the Archi tecture

The architecture described above embodies a sequential
oqjpnizaxion, This, however, does not reflect the
c!waci«i$iic$ inherent to mobile rolx>t software, The vsrious woL
involved in the problem-solving effort arc frecjticntfe qttasi-iBdqw&
and hive a tow degree of coupling; therefore, they siweid coicq&
proceed in parallel, interacting with each other as seeded We*
recently started the implementation of a disoributgd \cmm of 3s
{12J along the lines discussed m|6J, where multiple a§eai$wi:

CDOOiire&t activities.
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Figure 6-1: An Example Run. This run was performed indoors, in the
Mobile Robot Lab. Distances are in ft Grid size is 0.5 ft
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Another issue we are currently investigating is the development of a
task-level Global Planner that would automatically generate a Control
Plan, establishing sequences of parallel and sequential actions. We are
considering a hierarchical approach similar to NOAH [14], using a graph
to represent the plan and explicitly storing alternatives and sensor-
dependent conditions as part of it. The elementary operations of sensor
information gathering, interpretation, actuator control and specific
problem-solving activities are the primitives used by the planner.

8. Conclusions

We have described a system that uses a Sensor Level, probability-
based sonar map representation of medium resolution to build several
kinds of maps. Three different dimensions of representation are
defined: the Abstraction Axis, the Geographical Axis and the Resolution
Axis. These maps are used by a sonar mapping and navigation system
that performed successfully in indoor and outdoor environments. We
are now investigating motion recovery techniques and expanding the
system to test distributed control and global planning mechanisms.
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1 Introduction
We propose to build and use moderate resolution three dimensional space occupancy maps built from

multiple measurements from cheap sonar sensors. By cheap sonar I mean range readings obtained from

unmodified Polaroid sonar transducers driven by the original Polaroid circuit board, or by an improved

board (allowing closer minimun ranges) from Texas Instruments. This is a simple, but highly developed

and reliable, not to mention inexpensive, system that returns the distance to the nearest reflector in a

certain wide cone of sensitivity. Though much more information can be obtained, in principle, from single

sound bursts by modifying the aperture, phase relationships, frequencies and processing, such an

approach ignores the present very good solution.

2 Past Work
In earlier work [Moravec&Elfes 1985] we described the use of multiple wide-angle sonar range

measurements to map the surroundings of an autonomous mobile robot. A sonar range reading provides

information concerning empty and occupied volumes in a cone (subtending 30 degrees in our case) in

front of the sensor. The reading is modelled as probability profiles projected onto a rasterized map, where

somewhere occupied and everywhere empty areas are represented. Range measurements from multiple

points of view (taken from multiple sensors on the robot, and from the same sensors after robot moves)

are systematically integrated in the map. Overlapping empty volumes re-inforce each other, and serve to

condense the range of occupied volumes. The map definition improves as more readings are added. The

final map shows regions probably occupied, probably unoccupied, and unknown areas. The method deals

effectively with clutter, and can be used for motion planning and for extended landmark recognition. This

system was tested on our Neptune mobile robot, and recently outdoors on the Terregator robot.

3 Experimental Approach
Processing a single reading from a standard unit fe computationally cheap; only one number is

generated. Smiting the computations necessary or possible. The range accuracy of a typical reading is

better than a centimeter, but because of the wide angle of the pulse, the lateral position of the reflection is

uncertain to on tr$e order of a meter. By exercising multiple units repeatedly, readings from multiple

viewpoints may be combined to deduce the location of the reflecting surfaces more precisely. The

oombining process is a kind of deconvotutton - each1 point in the final high resolution map1 is a

consequence of many of the individual readings combined in a particular, unique way and each reading

participates In many map points.
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Our existing approach uses the idea that the interior of each sonar reading cone (bounded by the

sensitivity profile laterally, and by the range surface lengthwise) is known to be empty, and that the

reflecting point is somewhere on the range surface in this cone. The empty interiors of other readings

overlapping this range surface reduce the region of uncertainty of the location of the echoing point in a

probabilistic way, while intersecting range surfaces reinforce each other at the intersections. The

deconvolution is essentially non-linear.

The old programs work in two dimensions, collapsing the measurement cones vertically into flat pie

wedges that are combined in a two dimensional map array that ultimately holds numbers giving the

confidence that a given cell is empty or occupied. We have experimentally noted that maps with a range

of 10 meters and a resolution of 15 to 30 cm can be reliably constructed with data from a ring of 24

robot-mounted transducers looking out horizontally at 15 degree intervals and pulsed at six locations a

few meters apart in the robot's travels (144 independent measurements). The sharpness of the map can

be seen to improve as more readings are added. Many readings are combined to form one map

probability point, and this process makes our method quite tolerant to the occasional range errors

encountered in the sonar data.

A highly optimized version of the program, using fixed point arithmetic, can process 144 points in

roughly 1 second on a big Vax, 2 seconds on a Sun2 and 4 seconds on a Macintosh, building a 32x32

map of eight bit probabilities. A companion program correlates two such maps, using a coarse to fine

hierarchy of reductions and a dual representation (raster and list of occupied cells) to search over X, Y

shift and angle, in similar times. Another program devises good robot paths through the probability maps.

3.1 3D mapping

Our approach generalizes very naturally to three dimensions - in fact the collapse of cones to wedges

in the 2D program is its greatest single approximation, and information waster.

The sensors must be configured differently, however. The only height information in the present planar

ring comes fnom the vertical divergence of the cones of sensitivity, whose symmetry makes It impossWe

in princ^>!e to distinguish reflections from above the ring plane from those an equal distance below the

plane. Even without this ambiguity, the present arrangement could provide very little vertical resolution.

An arrangement of sensors on the surface of a partial sphere would be much better. The 15 degree

spacing of the 24 sensors on the planar ring was chosen to give some overlap of fields of view, ft was

discovered that this spacing allowed multiple sensors to be fired simultaneously without stiixis

interference, in lhme9 or even two, interleaved banks, greatly speeding data gathering. Using the same

idea and spacing to fill a sphere Instead of a circle leads to the following calculation.

A sphere represents 4K of solid angfe. Spacing the sensors 15 degrees from each ether assigns a

cons wfth 15 degree apex to each sensor. A cone with apex angle T subtends 2^{1-cos(T/2)l sold angk,

ami we can (glossing over packing problems) arrange about 4nf{2x(1<os(T/2)) - 2/(1-cos(T/2}} of !fc
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into a sphere. With T=15 degrees 233 transducers fill a sphere. If we content ourselves with a 90 degree

wedge (almost a fisheye if you note that the beams fan out an additional 15 degrees on all edges, for a

net coverage of 120 degrees) then this gets reduced to a more manageable 34 transducers.

If actually packed onto a spherical cap, the sensor group would greatly resemble a compound insect
eye, each facet being a Polaroid transducer. The insect would be a monster. The transducers are
somewhat less than 5cm in diameter, which would demand a sphere radius of about 40cm. A 90 degree
cap from this sphere would be a shallow bowl 56cm in diameter and 12cm deep.

One such sensor array on the nose of a vehicle, tilted down somewhat, should be adequate for many
tasks, but imagine getting better side coverage, say for obstacle avoidance, by placing two, one on each
side of the head, enhancing the giant insect effect.

3.2 How Many Readings, How much Computation?
The 3D map we hope to derive from this array has more cells than the 2D maps we have worked with,

and will require more data. How much?

Suppose we build our maps to a range of about 10 meters in the vehicle forward direction, 5 meters

laterally and 3 meters in the vertical direction, and to a resolution of 30cm in each direction. There will be

33x17x10 cells, each holding a number, in the final map. This is 5,610 numbers. A naive degrees of

freedom analysis suggests that a similar number of readings each returning one number are necessary to

determine this many variables. Fortunately our 2D experience suggests that far fewer will suffice.

We have noted experimentally that 144 readings nicely spaced around our cluttered laboratory is just

enough to give us good 32 cell by 32 cell maps covering a square area 10 meters on a side. There are

1024 points in such maps, so we seem to be accomplishing the impossible, extracting 1024 unknowns

from 144 equations. Actually, the 1024 numbers are not very informative as their magnitude represents

our certainty (or uncertainty) about particular cells being occupied, not something intrinsic about the

scenery. Most of the cells in the final mape are labelled an unsurprising "unknown" (represented by 0) or

"probably empty* (represented by a negative number). The real information is concentrated in the

locations of the reflecting boundary seen by the robot, i.e. the minority of cells labelled "probably

occupied". To first approximation this boundary is a one dimensional contour embedded in the 2D map.

Its length in cells is on the order of the boundary length of the map, 4x32. The information is not in the

contents of these cells (positive probability numbers), but in their location. Each cell represents about one

number - think of the boundary expressed in polar co-ordinates - the information is in the radius at each

angle, the angle itself is just the independent variable. SO - we have 144 equations to determine about

4x32 = 128 variables - just about right! Mathematics is great.

In 3D the contour becomes a surface. In our example of-two paragraphs ago the map size was

33x17x10 cells. The surface of this volume has about 2,100 cells, and thus requires about 2s100

readings by the above analysis, or 62 full scans of the 34 transducers in the 90 degree eye. The sensors
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can be pulsed about twice per second. With two way interleaving, a full eye poll takes a second. The 62

readings would thus take about a minute. Computation times on a big Vax, extrapolating from the fast 2D

program, would also be at about 30 seconds to a minute. It is assumed that the robot travels about ten

meters during this minute (a speed of 0.6 km/hr) to give each reading set a fresh vantage point, and that

adequate dead reckoning is provided to correctly relate the 60 sets geometrically. Of course, lower

resolution maps, or simple obstacle detection, can be accomplished faster, in as little as one (half second)

pulse gathering period.

These numbers suggest that high speed travel is best left to longer range sensors, and perhaps

simpler techniques. The sonar mapping could toe very useful for slow, close in, tight maneuvering in

complicated environments and on very rough ground. The very general path passability grid route

planners demonstrated by the group extend in a natural way to the dense 3D data this approach will

provide.

4 Research Plan
AH our sonar experiments so far have been conducted with early prototype sonar rings provided by our

sometime collaborator, Denning Mobile Robotics, Inc. of Wobum, Massachusetts. Because of a rather old

fashioned (small buffer) serial interface on our Vax computers, the processors on these rings cant reliably

communicate with the Vaxes in the present configuration, and this has been a serious hinderarsee to

sonar experimentation. We will begin the work by building new interfaces for the transducers using Texas

Instrument driver boards funnefing into an MC68000 microprocessor. Denning has agreed to help in this

effort - they have been using a TI board based design successfully for six months.

A second stage is design and construction of the physical array. This will 'require a mathematical

optimization and an evaluation by simulations of the Individual sensor placements.

The bulk, ami point, of the work will be an extended series of experiments with 3D map building and

navigation programs. One small but interesting subprablem in the early stages is 3D raster fill of conicatiy

bounded sphere surfaces and volumes. A more significant problem is the handling of posifon uncertainty

in the measurements made during an extended run. Our probabiiy raster permits a very direct

representation for uncertainty - it can simply be added to the 'probability distribution, increasing the spread

of each reading in the appropriate directions.

We'd like to try an approach that projects the incremental uncertainty of each move onto old

measurements rather than new ones. The result would be a map that is always detailed for the beat area

around the vehicle, and fades to fuzziness under the cumulative effect of errors in the distance. Very oW

readings that provide almost no information because of uncertainty in their location could eventually be

eliminated from the mapmaking.

The three dimensional nature of the Images will permit some work in identification of large objects.

Recognition of small objects is ruled out by the coarseness {about 10cm) of the anticipated maps*
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Experiments and Thoughts on Visual Navigation

C. Thorpe, L. Matthies, and H. Moravec

Carnegie-Mellon University

Abstract

We describe a second generation system that drives a camera-
equipped mobile robot through obstacle courses. The system,
which evolved from earlier work by Moravec [6], incorporates a new
path planner and has supported experiments with interest
operators, motion estimation algorithms, search constraints, and
speed-up methods. In this paper we concentrate on the effects of
constraint and on speed improvement We also indicate some of
our plans for a follow-on system.

1. Introduction
FIOO is a navigation and vision system for a robot rover. Using

only stereo vision, it locates obstacles, plans a path around them,
and tracks the motion of the robot as it moves. FIDO's main loop
repeatedly:

• picks about 40 points from one member of a stereo
image pair

• stereo-ranges those points by a hierarchical correlation
technique

• plans a path that avoids those points
• moves forward
• takes two new stereo pictures
• relocates those same points and stereo ranges them

again
• deduces vehicle motion from apparent point motion.

This paper desera>es our experimental investigations and
improvements tn ROO'S performance. Early version® of FIOO and its
predecessor, the Stanford Cart programs, used 9-eyed stereo, took
15 minutes or more per step, and were not always reliable. By using
additional geometric constraints, we have been able to increase the
refetoWty while using only 2 stereo images instead of a With fewer
images and several optimizations, we reduced the run time from 15
minutes to less than a minute per step. We also explored using
parallel hardware for further speedup®.

Section 2 of this paper discusses the constraints used and their
effects on system precision. Section 3 presents optimSzatioriS for
speed and prospects «or paralteism. Finally, section 4 presents
some extrapolations on the BOO experience.

Tl i * Hoo system has supported experiments in other aspects of
visual navigation, notably fatemsf operators, used' to pick points to
b@ tracked from image to image, and path planning. The result
time 'been presented elsewhere [6, t j . We found that ft© s^pie
Interest operator used in the ordinal Cart program worked as wal
as mom expensive ones, and it was retained with only sKgt*
changas. BOO does incorporate a new, mow flexible, path planner
baaed on a grid corotoictatoriai search and incremental path

l

1.1 Constraints
RDO uses a variety of constraints to improve the accuracy of its

stereo vision and motion solutions. Most reduce the area of the
image to be searched by the correlator. A smaller search window
reduces the chance of finding a false maich and improves system
performance in several ways. First, as more points are tracked
correctly it becomes easier to identify those incorrectJy tracked and
delete them. Secondly, more points (and higher precision) improve
the accuracy of the motion calculations [10]. Finally, points can be
successfully tracked through more images, and over longer
distances, for more accurate long term navigation.

Some of the constraints arise from the known relationship
between the cameras and the vehicle. Other constraints come from
vehicle motion estimates: the image location of an object that has
been stereo ranged on a previous step is constrained by
approximate knowledge of the vehicle's new position.

We tested FIDO using various combinations of constraints in order
to judge their effect We usually made a live vehicle run with the
current best settings, and saved all the images and position
predictions in a file. Subsequent runs were done off-line using this
stored data, with different constraint settings. Such runs were
compared for accuracy of the final calculated position, number of
features successfully tracked at each step, and occurrence of any
catastrophic failures.

1.2 Imaging Geometry Constraints
These constraints are the simplest to understand and to apply.

They depend only on camera and robot geometry, and they are
applicable to stereo point matches of both new and previously
ranged points.

Near and Far Limits. Point distances are not permitted to be
greater than infinity (by the real world) or less than a certain
distance (by the nose of the robot). This determines a maximum
aid minimum stereo disparity of the feature match.

EpipoJar Constraint. This is the standard stereo epipclar
constraint: If the point of view moves purely sideways the image of
a point wll also move sideways fin t ie opposite direction)' but not
tip or down. In t i e real world of misaligned cameras and distorted
vi&consi the image might appear to move a itUa vertically, so we
allow some stop (10% of nm Image Mghttyptael),

1.3 Motion Geometry
The estimated motion of # » vehicle from step :o step places a

tfrongocminfatf on point maicta, It C M 'be used etther a prkwi to
fenlt t ie search area wfltfifet an image, or a p®s$&riiQr$ to gauge the
reasofiabterwss of a much. The predicted posftfan of t ie ¥#ifc§e
can afro be oons**wd * t t i tht points tracked by vielon hi the
vehicle motion calculation, woo uses the motion geometry
constraints m me Ic'i^wmg 4 wmy%:

C»21S^7/BSO00Q«830S01.00 © 1985 IEEE
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Two 0 Motion. We usually run our robot on locally flat ground. In
which case we know it will not pitch, roll, or move vertically. This
reduces the problem of determining vehicle motion from 6 degrees
of freedom to 3, simplifying the computation and tightening the
constraints.

Reacquire Constraint. Given the 3D location of a point relative
to a previous vehicle position, and a dead reckoned new position
and heading for the vehicle, it is possible to predict where that point
should appear in the new stereo pair of images. If this constraint is
active RDO will use the prediction to limit the stereo matcher's
search. Three user-settable variables control the error estimates in
robot position and orientation, and consequently the size of the
search box around the predicted image position.

Prune. When ail points from a previous position have been
reacquired at a new vehicle location and stereo-ranged, there is a
pruning step that looks for points that do not move rigidly with the
rest of the points. The points that do not appear to move rigkfry
have probably been tracked incorrectly, and can be deleted before
the teast-squares process that solves for vehicle motion. Activating
the Prune constraint causes the predicted vehicle position to be
included as one of the points in the rigidity test, perhaps weighting
the selection to the correctly matched points rather than a
coinctdentally consistent incorrect set

Motion Solution. The motion solver determines the motion that
minimizes the error between where points have been seen and
where they should have been seen given that motion. The
predicted vehicle position can be included as one of the points in
this least-squares process, weighted more or less depending on the
assumed precision of the prediction.

1.4 Results
We made several runs of the FIDO system on Neptune, with fairly

consistent results. Data from June 24,1984 was most extensively
analyzed. On that run a single targe obstacle was placed a dose 2
meters ahead of Neptune's cameras, with the destination set to the
far side. St was a tough test for noo, since it required the maximum
allowed turn limited by the need to have sfgn£fk»it overlap in the
views from successive positions) on each step to get around the
obstacle and back on course. We ran R DO with each constraint m
what we thought to be its best state, and saved images and dead
reckoning m formation, Then we made a series of offline runs on
the stored datarvarymS settings and watching the results, Several
rum differed in only one parameter from the original, a few others
changed two or three The last grqup of runs began with one using
none of the eonsMnfe, followed by a series each with only one
constraint on.

Figure 0 tie results. Tnei mp< ire of
a njn's success is the (program s) calculated position at ttieeml of
me ftMK tne nearer m me aduat fpwniwjfj measureo pos&ioe, pi

The relative success of t ie
t ia accidental During ^El

Sone cayiionajy notes are in order.
run with 'Oi% the far distance constrai
mm» there wpttne two steps nfhwettte ffiotiorisotytiĉ i w2®
wrong bul tort *y «*«icie*we nearly offset eacft ofben Many of
the ether si:!^!eccf5Strtimmns mat appear worse actiia% had only

Some of ihe rttoutant cowsfraSit nm also appear to© good
W 0WCHWCNO*Mng

times and relied on dead reckoning while the latter placed too much
reliance on small numbers of tracked points.

Based on our experiences, we make the following observations:

• The epipolar constraint is the single most powerful
constraint Turning it off, and all the others on,
significantly decreases the minimum and average
number of features tracked and the accuracy of the
motion solution. Turning it on, with all others off,
significantly increased the number of points tracked. In
a sense, this is not surprising, since the epipolar
constraint rules out 90% of the image, more than any
other constraint

• No single constraint makes the difference between a
successful and a catastrophic outcome.

• In none of the runs was vision as accurate at
calculating translation as straight dead reckoning
based on motor commands, though in the best runs
vision determined the rotation more correctly. It would
have been better to use the dead reckoned motion
rather than the visually determined one if the number of
features tracked dropped below 6 or 7, rather than 4
which was the threshold, at least for the level of ground
roughness and mechanical accuracy in the
experiments.

• We noticed that even the best runs have about a 20%
error in caicuiated translation, aJways on the short side.
We suspect a small camera calibration error, and
possibly systematic errors in representing uncertainty.
FIDO calculated a point's 30 location by projecting rays
through t ie centers of the pixels m the stereo images,
which gives a location on the near side of the range of
uncertainty of distance.

• There is a problem in using all the geometric
constraints to cut down tie search area since it leaves
none for verification and pruning. If we had very
accurate fnotion prediction, we would have to resort to
photometry instead of geometry to identify points that
'had been occluded1 or otherwise lost.

2. Speed-up Methods
noo now takes 30 to 40 seconds per step on a Vax 11/780 under

Unix, To run trs reaUE^e, we wcykj have tc reduce that to about 1
second per step. We have looked a! several speedup techniques;
ificluding fester processonsf dedicated hardware, coding hacks,
and pa^iei process, 05.

Faster General Purpose Computers
Our VAX i® tot a one^P (neMon instructions Per second)

machine* It is tedwilcaiy potaWt to gH the respired speedup by
fctacn^g a 30-w:» or faster co.rr.pi.ner. Budget and logistics

Commercial Array Processors
Buymg a mmmmsM ansy processor to more faasftte to* us than

buying a faster csmp^ie?, Ataut 90 petteft of tie runtime in RDO
occurs hi krone vfay •GpsrSiions and geometric caiCylaticns,

if , These are done by

lack* i tracts potm at m®

psscss of code #i«f work on large amounts of -data, and are
to Wm fHpulfwi itvcfar « # u ^ f c of aralabi® array
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processors. We estimate, for instance, that a 100 MIP array
processor could give us the desired factor of 30 speedup. We've
made several serious attempts to acquire one; so far, this remains
another tantalizing possibility.

Coding optimizations
Much effort has been*- expended on speeding up the Vax

implementation. We feel there is -little room for left for significant
improvements in a time-shared, paged-memory environment The
basic routines, such as the correlator and the interest operator, fit
all the criteria for good candidates for optimization [2]: the code is
fairly well understood, stable, small, and accounts for a large
amount of run time. For instance, the implementation of the
correlator uses the following coding techniques:

• The calculations of parameters of the correlating
window are done once, outside the main loop.

• Sums and sums of squares for consecutive columns
and rows are calculated by Price's technique [7]. The
next window total is calculated by adding in the total for
the column that just entered the window and
subtracting off the total for the column that just left the
window.

• Squares are calculated by table lookup. Since the
squares are of sums of two pixel values, the table
needs only 511 entries.

• Image windows are moved by pointer swapping, rattier
than by data transfers.

• Loop indices count down to 0t since the VAX hardware
has an efficient test-for-not-O- and -branch instruction.

• Formulas are rewritten to eliminate extra calculations.
For example,
2 * 2(img1 * img2) *

Z((img1 +img2)t2) - 2(img1t2) - 2(img2t2)
gives a way of calculating the sum of the products of
the pixel values by additions (which are cheap) and
squares (which can be done by table lookup) rather
than multiplications. The individual sums are also used
in other parts of the calculation, so in this case the sum
of products comes for free.

• Loop unrolling. The code in the innermost loop is
written n times in line, rather than written once inside a
loop that counts to n. This saves n increments of the
counter and n tests for the end of the loop.

• Register use. The most frequently used vanab.es are
located in hardware registers.

These programming techniques reduce the ram time of trie
correlator from 140 ms per call for a straightforward implementation
to 4 to 5 ins per call Similar optimizations have 'been performed on
tie other tight (oops, such as in t ie Interest operator and f ie image
fee to coarse reduction routine. The userlevel routines have been
eptimfefid to the point that the single routine that uses the most
CPU time is mm an image yn packer.

Dedicated hardware
A dedicated microcomputer running rioo with enough mermxy to

store a§ tie relevant images offered seme hope. We tried ant

implementation of the correlator on a 10-MHz MC68000 system,
with all the images held in integer arrays. After eliminating ail
floating point operations the resulting code still took 29
microseconds per call to the correlator, compared with 4 to 5 on the
VAX.

2.1 Parallelism
There are several ways to break FIDO into separate processes that

can run in parallel on different machines, including pipelining on
macro or micro scales or the use of a master/slave system.

Macro Pipelining
One process might do the reductions, the next could do

reacquires, the next the match, another motion-solving, and the last
path planning. This organization improves throughput but not the
latency. The problem with this method is the sequential nature of
FIDO. Since all the image reductions have to be finished before the
reacquires can start, all the matches done before the path planning,
and so forth, each pipeline stage has to wait for the previous stage.
Since each step takes as long as on a serial machine, and since the
steps are done sequentially, the time to process any one set of
images is the same as on a single processor system.

Micro Pipelining
The processes could be subdivided more finely. For instance,

one processor might do the first level of match-for one point after
another, handing its results to the process that does the next level
of match. When matches are finished, the pipeline could be
reconfigured for path planning, and so on. This approach requires
huge communication bandwidth between processes.

Master/slave
This method has one master process and several identical slave

processes. Each slave handles every image processing task:
reduction, matching, and interest operator. At any time all the
slaves work on the same task with different data. For example,
during image reduction, each slave reduces part of the image, and
during matching each slave processes its own queue of points.
The master process does tasks that require global knowledge such
as path-planning or motion-solving, and coordinates the slaves.
This more flexible organization avoids several delays inherent in
pipelines.

We implemented variants of this idea in our Ethernet-connected
multi-Vax environment Given the existing uniprocessor code, the
task was not difficult. The slaves required new code for
communication with the master, but the actual work is done by calls
to the old image processing routines. The master contains the old
path planning and display code, and new communication code and
dispatch tables to keep track of each slave's activities. When a
slave completes a task the master updates its dispatch table, finds a
new task and puts the slave to work again. For instance during
point matching each slave is initially given one point to correlate.
When a slave finishes its correlation, the master hands it a new
point to find. When ail the points are handed out the master
redundantly hands out points that are still in process on other
slaves, and accepts the first answer to be returned, giving some

* protection against overloaded or crashed processors.

A version of the system that used several VAXes In parallel was
swamped, as expected, by the overhead of squeezing images
between machines through the Ethernet, Another version that used
multiple processes on a single Vax gave us some Idea of the
performance that might be possible if faster communicator*,
perhaps through shared memory, were available.
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The single machine version uses the same decomposition as the
multiple machine version, and the same genera}* purpose
interprocess communication package. Because of limitations in the
communications package, each stave calculated its own image
pyramid.

2.2 Timings for a 28-Step Run

Single Processor 978

One Stave
Master
Siavel

Five Slaves
Master
Slave 1
Slave 2
Slave 3
Slave 4
Slaves

Notes:

216

234

626

403
402
403
402
400

• The time for the Master varies ittte with the number of
slaves*

• Without image acquisition or communication package
overhead the time for a single slave would be about 325
seconds or 12 seconds per step.

• Without image or communication overhead, and with
tie time for picture reduction shared evenly, the toe
for each of the five slaves would be 65 seconds, or
about 2.5 seconds per step.

• The work spreads very evenly among the slaves. With
5 stev^ the workload is balanced to within mm
accuracy of ©or measurements.

# i ttte master process die not handle images, had zero-
cost communfcatfon, and1 doWt have to do image
distortion corrector, if conk* nm In 75 to 80 seconds,
or about 3 seconds per step,

• By comparison* t i t original uniprocessor system runs
in 373 seconds, or 35 seconds per step. With tm
ad v a r i e s we ass—ed above {no image handing

It wmM silt haw mm 503 seconds, m 18

2.3 Remarks
Our wpir imnl t suggest t i n t Is pcssbie to<

irtte a S to 10 fold: poraitf set of ^ffciefiify co^p©catî 9 parts
m^nmg »i csnvt^onal processors. To reaiae t» n̂ n

•ytege tigti to h o l d * toot two

• A device able to digitize images directly into the shared
memory*

• Cameras with less image distortion than our current
vtdicons, so image warping would not be needed.

3. The Next System
Some simple hardware enhancements could improve FIDO's

performance. A pan mechanism for the stereo cameras would
permit larger turns while still maintaining continuity of field of view.
Motion and heading sensors would improve navigational accuracy
and eliminate some catastrophic misperceptions.

Navigational accuracy could also by improved by modifying the
motion estimation algorithm. The current algorithm reacquires
features in new a image by searching for the features within
windows predicted by an a priori motion estimate. This makes poor
use of the assumption that objects do not move; that is, that they
appear to move rigidly from frame to frame. Since all search
windows are defined before any search begins, constraint is not
propagated from one match to another. A seemly better approach
is the iterative registration method [1], [3], [4]. In this method, 3-D
feature positions are projected onto a new image using an initial
motion estimate, then the motion estimate is refined to optimize
some measure of match in the Image. We are currently
experimenting with the variation proposed by Lucas [4] and plan to
report em pineal results in the near future.

Two bugbears in our systems to date have been the calibration of
camera and motor parameters and the representton of uncertainty
in the 3-D locations of perceived objects. We are considering an
adaptive approach that calibrates the cameras (semi-)continuously
on the fly and adjusts the motor control parameters from
observations of past vehicle motions. A simple technique like this
was used successfully in an early program that drove the Stanford
Cart in straight lines [5]. We are also looking at carrying along
uncertainties in feature locations and updating the uncertainty as
new measurements are taken. Eventually, we hope to automate the
process to the point where calibration simply requires turning on
the vehicle and ietttng It run by itself for a while.
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Path Relaxation: Path Planning for a Mobile Robot

Charles E. Thorpe

Computer Science Department, Carnegie-Mellon University

Abstract Path Relaxation is a method of planning safe paths around
obstacles for mobile robots. It works in two steps: a global grid search
that finds a rough path, followed by a local relaxation step that adjusts
each node on the path to lower the overall path cost The representation
used by Path Relaxation allows an explicit tradeoff among length of
path, clearance away from obstacles, and distance traveled through
unmapped areas.

1. Introduction

Path Relaxation is a two-step path-plnnning process for mobile robots.
It finds a safe path for a robot to traverse a field of obstacles and arrive at
its destination. The first step of path relaxation finds a preliminary path
on an eight-connected grid of points. The second step adjusts, or
"relaxes"* the position of each preliminary path point to improve the
path.

One advantage of path relaxation is that it allows many difFerent
factors to be considered in choosing a path. Typical path planning
algorithms evaluate the cost of alternative paths solely on the basis of
path length. The cost function used by Path Relaxation, in contrast, also
includes how close the padi comes to objects (the further away, the lower
the cost) and penalties for traveling through areas out of the field of view.
The effect is to produce paths that neither dip the corners of obstacles
nor make wide deviations around isolated objects, and that prefer to stay
in mapped terrain unless a path through unmapped regions is
substantially shorter. Other factors, such as sharpness of comeis or
visibility of landmarks, could also be added for a particular robot or
mission.

Path Relaxation is part of Rdo. the vision and navigation system of the
CMU Rover mobile robot. [7] The Rover, under Fido's control navigates
solely by stereo vision, It picks about 40 points to track, finds them in a
pair of stereo images, and calculates their 3D positions relative to the
Rover. The Rover then moves about half a meter, takes a new pair of
pictures, finds the 40 tracked points in each of the new pictures and
recalculates their positions. The apparent change in position of those
points gives the actual change in the robot's position.

Fido's world model is not suitable for most existing path-planning
algorithms. They usually assume a completely known world model with
planar-faced objects. Fido's world model, on the other hand, contains
only the 40 points It is tracking. For each point, the model records its
position, the uncertainty in that position, and tlie appearance of a small
patch of ihc image aroynd that point Furthermore, Hdo only knows
about what k has seen; points that have never been within its field of
view are not listed in Ihc world model Also, the vision system may fail
IO track points correctly, so therc may be phantom objects in the world
model thm have been seen once but arc no longer being tracked. All this
indicates the need for a data structure chat can represent uncertainty and
snaccyraty, m& for algorithms chat can use such data.

Section 2 of this paper outlines the constraints available to Fido's paih

planner. Section 3 discusses some common types of path planners, and
shows how they are inadequate for our application. The Path Relaxation
algorithm is explained in detail in Section 4, and some additions to the
basic scheme are presented in Section 5. Finally, Section 6 discusses
shortcomings of Path Relaxation and some possible extensions.

2. Constraints

An intelligent path planner needs to bring lots of information to bear
on the problem. This section discusses some of the information useful
for mobile robot path planning, and shows how the constraints for
mobile robot paths differ from those for manipulator trajectories.

Low dimensionality. A ground-based robot vehicle is constrained to
three degrees of freedom: x and y position and orientation. In particular,
the CMU Rover has a circular cross-section, so for path planning the
orientation does not matter. This makes path planning only a 2D
problem, as compared to a 6 dimensional problem for a typical
manipulator.

Imprecise control. Even under the best of circumstances, a mobile
robot is not likely to be very accurate: perhaps a few inches, compared to
a few thousandths of an inch for manipulators. The implication for path
planning is that it is much less important to worry about exact fits for
mobile robot paths. If the robot could, theoretically, just barely fit
through a certain opening, then in practice that's probably not a good
way to go. Computational resources are better spent exploring alternate
paths rather than worrying about highly accurate motion calculations.

Cumulative error. Errors in a dead-reckoning system tend to
accumulate: a small error in heading, for instance, can give rise to a large
error in position as the vehicle moves. The only way to reduce error is to
periodically measure position against some global standard, which can be
time-consuming. The Rover, for example, does its measurement by
stereo vision, taking a few minutes to compute its exact position. So a
slightly longer path that stays farther away from obstacles, and allows
longer motion between stops for measurement, may take less time to
travel than a shorter path that requires more frequent stops. In contrast
a manipulator can reach a location with approximately the same error
regardless of what path is taken to arrive there. There is no cumulative
error, and no time spent in reorientation,

Unknown areas. Robot manipulator trajectory planners usually know
about all the obstacles. The Rover knows only about those that it has
seen. This leaves unknown areas outside its field of view and behind
obstacles. It is usually preferable to plan a path that traverses only
known empty regions, but if that path is much longer man me snoitcst
path it may be worth looking at the unknown regions.

Fuzzy objects. Not only da typical manipulator path-planners know
about all the objects, they know precisely where each object is. This
io formation might come, for instance, from the CAD system that
designed ihc robot workstation. Mobile robots* on the other hand,
usually sense die world as they go. fido, instead of having precise
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bounds for objects, knows only about fuzzy points. The location of a
point is only known to the precision of the stereo vision system, and the
extent of an object beyond the poinc is entirely unknown.

in summary, a good system for mobile robot path planning will be
quite different from a manipulator path planner. Mobile robot path
planners need to handle uncertainty in the sensed world model and
errors in path execution. They do not have to worry about high
dtaeasioiialty or extremely high accuracy. Section 3 of this paper
discusses some existing path planning algorithms and their shortcomings.
Section 4 ten presents the algorithms used by Path, Relaxation, and
shews how they address ihese problems.

3. Approaches to Path Planning

This seawa outlines several apfwiadies lo path i^anni^ and sorne of
the drawbacks of each approach. All of these methods except the
pocemal fields abroach abstract Ac search space to a graph of possible
paths. This graph Is then searched by some standard search technique,
sucfe as bfcadtb-fir* or A* fSJ, tod the shortest path is returned. The
snpoftaot thing to note in ttie following is the information made explicit
bf eadi mpmtMMMM a id ihe information thrown away.

Free Sgace Mrfbnfc. p, X 9J d i e type of path planner explicitly deals
with die spice between obstacles. Paths are forced GO mi down the
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short paths and obstacle avoidance is the Regular Grid method. This
covers the world with a regular grid of points, each connected with its 4
or 8 neighbors to form a graph. In existing regular grid implementations,
the only information stored at a node is whether it is inside an object or
not. llien the graph is searched, and the shortest grid path returned.
This straightforward grid search has many of the same Mtoo dose"
problems as the vertex graph approaches.

4. Path Relaxation

Path Relaxation combines the best features of grid search and potential
fields. Using the rolling marble analogy, the first step is a global grid
search that finds a good valley for the path to follow. The second step is
a local relaxation step, similar to the potential field approach, that moves
the nodes in the path to the bottom of the valley in which they lie. The
terrain (cost function) consists of a gradual slope towards the goal, hills
with sloping sides for obstacles, and plateaus for unexplored regions.
The height of the hills has to do with the confidence that there really is
an object there. Hill diameter depends on robot precision: a more
precise robot can drive closer to an object, so the hills will be tall and
narrow, while a less accurate vehicle will need more clearance, requiring
wide, gradually tapering hillsides.

This section first presents results on how large the grid size can be
without missing paths. It next discusses the mechanism for assigning cost
IO ihe nodes and searching to grid. Finally, it presents the relaxation
step HIM adjusts the positions of path nodes.

Grid Size. How large cm a grid be and still not miss any possible
paths? That depends on the number of dimensions of the problem, on
the connectivity of the grid, and on the size of the vehicle. It also
depends on t te vehicle's shape: in this section, we discuss the simplest

. which is a vehicle with a circular cross-section.

1 2 1 2

lC« h*omm& wife agrid to wtika eacti node
Focafbur-

te ttffeai ste

int m p^u m missed. Hie gnd spacing
^ ^ H p n e L Ttmtfc

iac ptnnices amn .; c:,g:.^:y opposite

,: / ,. . v.— te» :
At iik

m m iff ̂ ^ * i t f * w ^ « ^ *t»i k » find 4B pomtife pum; rrtw AM to find

if te pM is afta<c9f»iKc&d,« fo the riffet of Ftgsr© 4, (eacft aock
i, mmMm mkmmA mt^ibmh tim pnUcm

The grid ipKlm c^ ^ * M *; white
thai if tet m a ptfh « wil be toirfL



Grid Search. Once the grid size has been fixed, the next step is to
assign costs to paths on the grid and then to search for the best path
along the grid from the start to the goal. "Best", in this case, has three
conflicting requirements: shorter path length, greater margin away from
obstacles, and less distance in uncharted areas. These three are explicitly
balanced by the way path costs are calculated. A path's cost is the sum of
the costs of the nodes through which it passes, each multiplied by the
distance to the adjacent nodes. (In a 4-connected graph all lengths arc
the same, but in an 8-connected graph we have to distinguish between
orthogonal and diagonal links.) The node costs consist of three parts to
explicitly represent the three conflicting criteria.

1. Cost for distance. Each node starts out with a cost of one
unit, for length traveled

1 Cost for near objects. Each object near a node adds to that
node's cost The nearer the obstacle, the more cost it adds.
The exact slope of the cost function will depend on the
accuracy of die vehicle (a more accurate vehicle can afifoYd to
come closer to objects), and the vehicle's speed (a faster
vehicle can afford to go farther out of its way), among other
factors.

3. Cost for within or near an unmapped region. The cost for
traveling in an unmapped region will depend on the vehicle's
mission. If this is primarily an exploration trip, for example,
the cost might be relatively low. There is also a cost added
for being near an unmapped region, using the same sort of
function of distance as is used for obstacles. This provides a
buffer to keep paths from coming too close to potentially
unmapped hazards.

The first step of Path Relaxation is to set up the grid and read in the list
of obstacles and the vehicle's current position and field of view. The
system can then calculate the cost at each node, based on the distances to
nearby obstacles and whether that node is within the field of view. The
next step is to create links from each node to its 8 neighbors. The start
and goal locations do not necessarily lie on grid points, so special nodes
need to be created for them and linked into the graph. Links that pass
through an obstacle, or between two obstacles with too little clearance for
the vehicle, can be detected and deleted at this stage.

The system inen searches this graph for the minimum-cost path fromi

the start to the goal. The search itself is a standard A* [8] search. The
estimated total cost of a path, used by A* to pick which node to expand
next, is the sum of the cost so far plus the straight-line distance from the
current location to the goal This has the effect, in regions of equal cost,
of finding the path that most closely approximates the straight-line path
to the goal.

The path found is guaranteed to be the lowest-cost path on the grid,
but this is not necessarily the overall optimal path. First of all, even in
areas with no obstacles the grid path may be longer than a straight-tine
path simply because it has to follow grid lines. For a 4-connected grid,
the worst case is diagonal lines, where the grid path is sqrt(2) times as
long as the straight-line pain. For an 8-connected grid, the equivalent
worst case is a path that goes equal distances forward and diagonally.
This gives a path about LOS times as long as the straight-line path. In
cases where the path curves around several obstacles, the extra path
length can be even more significant. Secondly, if the grid path goes
between two obstacles, it may be non-optimal because a node is placed
closer so one obstacle than to the other. A node placed exactly half way
between the two obstacles would, for most types of cost functions, have a
fewer COSL The placement of the node that minimizes the overall path
cost will depend both on node cost and on path length, but in any case is
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unlikely to be exactly on a grid point. If the grid path is topologically
equivalent to the optimal path (i.c. goes on the same side of each object),
the grid path can be itcrativcly improved to approximate the optimal
path (see Section 5). But if the grid path at any point goes on the
"wrong" side of an obstacle, then no amount of local adjustment will
yield the optimal path. The chance of going on the wrong side of an
obstacle is related to the size of the grid and the shape of the cost vs.
distance function. For a given grid size and cost function, it is possible to
put a limit on how much worse the path found could possibly be than die
optimal path. If the result is too imprecise, the grid size can be decreased
until the additional computation time is no longer worth the improved
path.

A few details on the shape of the cost function deserve mention. Many
different cost functions will work, but some shapes are harder to handle
properly. The first shape we tried was linear. This had the advantage of
being easy to calculate quickly, but gave problems when two objects were
close together. The sum of the costs from two nearby objects was equal
to a linear function of the sum of the distances to the objects. This
creates ellipses of equal cost, including the degenerate ellipse on the line
between the two objects. In that case, there was no reason for the path to
pick a spot midway between the objects, as we had (incorrectly)
expected. Instead, the only change in cost came from changing distance,
so the path went wherever it had to to minimize path length. In our first
attempt to remedy the situation we replaced the linear slope with an
exponentially decaying value. This had the desired effect of creating a
saddle between the two peaks, and forcing the path towards the midpoint
between the objects. The problem with "exponentials is that they never
reach zero. For a linear function, there was a quick test to see if a given
object was close enough to a given point to have any influence. If it was
too far away, the function did not have to be evaluated. For the
exponential cost function, on the other hand, the cost function had to be
calculated for every obstacle for each point. We tried cutting off the size
of the exponential, but this left a small ridge at the extremum of the
function, and paths tended to run in nice circular arcs along those ridges.
A good compromise, and the function we finally scaled on, is a cubic
function that ranges from 0 at some maximum distance, set by the user,
to the obstacle's maximum cost at 0 distance. This has both the
advantages of having a good saddle between neighboring obstacles and
of being easy to compute and bounded in a local area.

Relaxation. Grid search finds an approximate path; the next step is
an optimization step that fine-tunes the location of each node on the path
to minimize the total cost One way to do this would be to precisely
define the cost of the path by a set of non-linear equations and solve
them simultaneously to analytically determine the optimal position of
each node. This approach is not, in general, computationally feasible.
The approach used here is a relaxation method. Each node's position m
adjusted in turn, using only local information to minimize the cost of the
path sections on either side of that node. Since moving one node may
affect the cost of its neighbors, the entire procedure is repeated until no
node moves farther than some small amount

Node motion has to be restricted. If nodes were allowed to move in
any direction, they would all end up at low cost points, with many nodes
bunched together and a few long links between them. This would not
give a very good picture of the actual cost along the path. So in order to
keep the nodes spread out, a node's motion is restricted to be
perpendicular £o a line between the preceding and following nodes.
Furthermore, at any one step a node is allowed to move no more than
one unit

As a node moves, all three factors of cost are affected: distance traveled
(from the preceding node, via this node, to the next node), proximity to
objects, and relationship so unmapped regions. The combination of
these factors makes it difficult to directly solve for minimum cost node
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position. Instead a binary search is used to find that position to
whatever accuracy is desired.

The relaxation step has the effect of turning jagged lines into straight
ones where possible, of finding the "saddle" in the cost function between
two objects, and of curving around isolated objects. It also does the
"right thing" at region boundaries. The least cost path crossing a border
between different cost regions will follow the same path as a ray of light
refecting at a boundary between media with different transmission
velocities. The relaxed path will appfoach that path.

5. Additions to the Basic Scheme

One extension we have tried is to vary the costs of individual obstacles.
The current vision system sometimes reports phantom objects, and
sometimes loses real objects that it had been tracking correctly. The
solution lo this is to "fade" objects by decreasing their cost each step that
dicy are wkhin the field of view bet not tracked by the vision module.

Another extension implemented is to re-use existing paths whenever
possible. At any one step, the vehicle will usually move only a fraction of
the length of die planned path- If no new objects are seen during that
step, tnd if the vehicle is not too far off its planned course; k is possible
to use the «M of the p®* as planned Only if new objects have been
seen that block die planned path is it necessary to rcplan from scratch.

Hie relaxation step can be greatly speeded up if it ram in parallel on
several computers. Although m actual parallel iopteiciitation has not
yet been tee, a simulation has been writes a&d tested.

6. Remaining Work

Example RIUL Figure 2 is a run from scratch, using real data
extracted from images by the Fido vision system. The circles are
obstacles, where the size of the circle is the uncertainty of the stereo
vision system. The dotted line surrounds the area out of the field of
view. The start position of the robot is approximately (0, *.2) and the
goal is (0, 14.5). The grid path found is marked by 0Ts. After one
iteration of relaxation, the path is marked by l's, and after the second
(and, in this case, last) relaxation, by 2's.

Relaxation would be easy to extend to higher dimensions. It
could be und, Jbr example* for a 3D setrcti to be used by underwater
vdiicks maneuvering tfuough a drffing platform. Another use for

sextettes would be to include rotation for
velikfa. Yet aiwticr application would be to model mmitg
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Modelling Uncertainty
in 3D Stereo Navigation

Larry Matthies
Computer Science Department

Carnegie-Mellon University

Abstract
We are studying the accuracy with which stereo vision can guide a mobile robot In stereo

navigation, a robot uses a sequence of stereo images to estimate its own motion as it travels through

a world of stationary objects. A set of landmarks is established by finding corresponding features in

one stereo pair. This yields an initial 3-D model of the local environment of the robot defined in

robot-centered coordinates. As the robot moves, it periodically digitizes another stereo pair, finds the

landmarks in the new images, and computes their coordinates relative to its new location. The motion

of the robot since the last stereo pair is determined by fitting a transformation mapping between the

new and the old coordinate values.

Previous algorithms for stereo navigation have suffered from poor accuracy and low tolerance to

correspondence errors. This is partly due to inadequate models of stereo triangulation error.

Typically, scalar reliability factors are associated with landmarks to indicate the uncertainty in their

3-D coordinates. These scalars are used to weight the contribution of each landmark in the motion

solving algorithm. This paper argues that stereo triangulation error is better modelled by treating

landmark locations as random variables with 3-D normal distributions. This leads to revised

algorithms for motion solving in which the covariance matrices weight the contribution of each

landmark. Preliminary simulation results show that the matrix weights achieve substantially more

accurate motion estimates than scalar weights. These results should carry over into applications of

3-D vision outside of navigation.

1. Introduction
Mobile robot navigation is a problem of growing interest and practical importance. A travelling

robot must be able to detect the shapes and positions of nearby objects and to monitor its own

position in a global reference frame. This requires range sensors ami motion sensors; we are

currently exploring stereo vision for use as both.

Cur paradigm for stereo navigation operates as follows [13]. For simplicity, assume that nothing in

the environment moves except for the robot. A set of landmarks is defined in a robot-centered

coordinate system by matching features in a pair of stereo images. The robot then takes a step, finds
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the landmarks in a new pair of images, and calculates their coordinates relative to its new location.
The motion between stereo pairs is reflected in the difference between the new and the old landmark
coordinates; an estimate of this transformation is found with least squares. The whole process is
repeated periodically to monitor robot motion over long distances.

We have previously used this paradigm in systems that were able to guide a robot through short
obstacle courses [13], [17]. In one set of experiments, the robot accumulated approximately half a
meter of error in its global position estimate over a course six meters long [11]. However, the motion
estimates were rather unstable. This instability is reflected throughout the computer vision literature:
algorithms for visual motion estimation are generally very sensitive to noisy data [2].

Part of this sensitivity is due to inadequate modelling of stereo triangulation error. Triangulation
induces an uncertainty on 3-D coordinates that is greater for distant points than for near points and
greater in the direction of the line of sight than perpendicular to it (see figure 2). This phenomenon
has been recognized and modelled for a long time in photogrammetry[15], but has been
comparatively ignored in computer vision. In photogrammetry it is common to model all
measurements as corrupted by normally distributed noise. 3-D positions inferred by triangulation
have an uncertainty modelled by 3-D normal distributions. In computer vision, Blostein and Huang
[2] have recently derived other probabilistic models of triangulation error, but they appear not to use
them in their algorithm for motion solving. Moravec's system [13] approximated triangulation error
wth scalar coefficients used to weight the contribution of each landmark to the motion solution.
However, this does not capture the elongated and oriented nature of ttie uncertainty.

The purpose of this paper is to demonstrate the importance of modelling trianguiation error. The
next section shews how 3-D normal distributions modelling the uncertainty in landmark positions can
be inferred from stereo data. This mode! is used in section three to derive new equations for
estimating motion. In these equations the covariance matrices of the normal distributions replace the
scalar weights of previous methods. Section four shows how to update the local 3-D model with
measurements from successive stereo pairs. It proposes to keep the representation in robot-centered
coordinates and shows how to we the error model to weight successive range measurements of
point locations. Oily transl&tional motion is treated. In section five we discuss the cascading of
increttseirttl robot motion estimates to obtain an estimate of the global robot position and positional
tucertaiftty. The results of simulations ©ft synthetic date are presented in section six. These compare
t ie mm mrm model with a scalar weighting scheme and show substantially better pertormance with
the new model Finally* the last section discusses the significance of these results, the difficulties we
expect to have m transferring them to real Images, and our plans for extending the work.

2* Modelling Stereo Trianguiation Error
Ttttfttpit^ Fm^&momm^mammieriwsitim2-D

«»h#iic*tiw Two cameras areplaced
at ©Units erf ±b from ft coordinate spiera centered between f » cameras. Given the coordinates jr.

j i i J l
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Xl"Xr
(1)

This estimate can be in error for several reasons. The finite resolution of the images contributes a
quantization uncertainty shown in figure 2a. A point projecting to pixels JC. and xr can lie anywhere in
the shaded region. As shown in figure 2b, this region grows with the distance to the point, becomes
more skewed with increasing distance, and is always directed along the line of sight to the point.
Besides this quantization effect, the stereo matcher can return slightly incorrect values of xx and xf

due to perspective and photometric distortions of the image. On top of this their may be geometric
distortions in the image or calibration errors between the two cameras. These errors are of a more
random nature, but they all contribute uncertainty similar to that shown in figure 2.

Our goal is to find a model that accurately reflects the nature of this uncertainty and that can be
used conveniently to constrain algorithms for motion solving. Scalar weights can capture the "size"
of the uncertainty, but nothing of its shape. In a slightly different context, Baird [1] used polygons to
outline the border of the uncertainty region. These became constraints in a motion solving algorithm
based on linear programming. In our situation the random nature of the errors makes a statistical
approach more appropriate. Motivated largely by the example of photogrammetry and the stereo
calibration work of Gennery [7], we model the image coordinates as random variables with known
distributions and derive distributions on the point coordinates. For simplicity, we use linear models
and normal distributions throughout, rather than try to determine exact distributions from nonlinear
functions.

We begin by treating x{ and xr in equation (1) as corrupted by zero-mean, gausstan (normally
distributed) noise; that is,

where £;~ #(0,^), tr~N(0tur)f and x;and xrare the true values of x7and xf Since (1) is nonlinear, Xp

and Yp will not be normally distributed. However, we will approximate them as binormal, with means
given by (1) and covariances obtained by linearization. Thus,

(1-5)

Here P fe the true value of P* tp is its random component, / i s the Jacobian of (1). and V is the 2x2
ccvariance matrix of the image coordinates. In the mode] we have described, F will have ĉ  and <rf on
the diagonal and zeroes off the diagonal, since we are assuming them is no ccrreiation between

images.
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Figure 2
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Note that constant probability contours of the error distributions describe ellipses that approximate
the shape of both the non-random (figure 2) and the random contributions to landmark uncertainty.
The principal shortcoming of the model we have proposed is that it is not long-tailed as the true
distribution would be. Figure 2 hints at this; the uncertainty regions have a skew that isn't modelled
by a symmetric distribution. The skew is not significant for nearby points, but grows with distance.
We have not analyzed the effect of this other than by way of the simulations presented later. The
extension of this error model to 3-D points projecting onto 2-D images is straightforward.

3. Solving for Robot Motion
With the procedure above, 3-D coordinates and covariance matrices are estimated for a number of

points matched in the first stereo pair. After the robot moves and digitizes another stereo pair, we find
the same features in the new images, triangulate, and compute new covariance matrices. This leads
to two models of the same points, with coordinates differing by the motion of the robot If the robot
approached a landmark there will be less measurement error in the landmark coordinates, so the
terms of its covariance matrix will be smaller. The opposite will be true if the robot receded from the
landmark. See figure 3.

We now wish to determine the motion of the robot between stereo pairs. Suppose for the moment
that the motion is purely translational. Let P. represent landmark coordinates with respect to the first
robot position, Q. represent the coordinates with respect to the second position, and r= [Tx T Tz]
be the unknown translation vector. The motion is described amply by

In (2) we have observations of Pf and Qf and wish to find T. The standard method is to apply least
squares to minimize

(3)
Differentiating, setting the result to zero, and solving for T we obtain

/=!

When one has information on the reliability of each point, as we do here, the terms in the sum are
typically weighted according to their reliability. For scalar weights the modifies expression (3) to be

(4)

with the resulting motion solution given by
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Figure 3

Cameras

Figure 4
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r=

With the new error model we proceed differently. Since P. and Q. are treated as normally distributed
vectors, the motion equation (1.5) can be rewritten as

(5)
where D. will be a normal vector with distribution NiOy^^ VQi) = N(Q,V,). Equation (5) is a linear
statistical model whose optimal solution can be reached several different ways [5]. One of these is to
minimize the following least squares expression:

(6)

This is equation (4) with the scalar weights wf replaced by the matrix weights Wf (the inverses of the
covariance matrices Fp. The solution for T is

/1 / !

m
The inverse covariance matrices in (6) have the effect of replacing the usual Euclidean distance

norm, represented by the vector dot product in (4), with new norms for each point that stretch the
space as appropriate for the error in that point. This is shown in figure 4. Without the matrix weights,
residual vectors lying on circular contours have equal contributions to the total error of fit; with the
matrices, these contours become elliptical. This effectively gives more weight to errors perpendicular
to the line of sight than parallel to it, which intuitively is what we want. In fact, scalar weights are just
the special case of matrices in which the matrix is diagonal with alt diagonal elements equal, ie.

Since the translation T is given as a linear combination of normal random vectors, it will itself be a
normal random vector. The mean of its distribution is simply the value computed by equation (7). The
covariance matrix is given by

This matrix can be analyzed to determine the quality of the motion estimate.

AH of the foregoing was derived assuming thai the robot motion was purely fran&iatlonaL This is
convenient because the equations remain linear, allowing solutions to be obtained: simply ami
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preserving the normal error model. In the case of general motion, the presence of rotation introduces
anonflnearitythatcomplicatesmatters. The motion is now expressed by

Qt=RP,+ T

(8)

where R h a 3x3 rotation matrix. The standard least squares approach would find R and Tby

fntnbfrizifiQ

iml , (9)

Since the matrix R is a compJteated function of the rotation angles, the equations obtained by
differentiating are nonlinear. The original approach to solving them was to linearize and iterate;
however, recently two methods have been found to obtain a solution directly. In first, Hebert
[10] expressed the rotation as a quaternion and found a direct solution by applying certain identities
in quaternion algebra. The other is a technique from statistics called Procrustes analysis that solves
the matrix formulation cfrecfy [14]. Both of these methods apply to equations such as (9) that involve
only scalar weights, but fail when matrix weights are used. Applying our error model to general
motion leads to minimizing

(10)

The only method we have found for solving this equation is iterative. An initial approximation is
obtained using i w Procrustes method with scalar weights, then several iterations are performed on a
lioeanied vwsioo of (10). Since the initial approximation is dose to the solution, weight matrices Wt

are caftcuiatad only one* w#i the initial approximation for/?, rather than recalculated every iteration.

A* In toe purely transWoral case, me computed motion parameters are random vectors, but
because of i w nonlmearity of the rotation they are no longer normally dtstrfouted. A normal

4. Updating the Local Model
The foregoing inanimation and motion solving algorithms provide a series of 3-D models defined

ftttlmt to successive robot locations. Combining these models can serve two purposes. First,
averaging landmark stfutnss from several views should provide more accurate estimates of the

poaMom, which should in turn lead to more accurate esthetes of robot motion. Second,
•I of t i t moot* can t» incorporated into a single map of the entire area traversed. Previous
appfOKtw lo 9mm mm dfflw accord^ to wr«tnertr^ rave an incrementaJ or a bate* nature.

One o» fw tmt etaraplm of • batch approach Is the classical photogrammetric btock adjustment

ii
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[15]. The problem here is to find the 3-D coordinates of ground points from their correspondences in

a block of overlapping aerial photographs. The solution involves writing a set of simultaneous

equations relating all of the image coordinates to the unknown ground points and camera positions,

then solving for the unknowns via least squares. Typically, all of the measurements and all of the

unknowns are treated as normally distributed random variables, much as we have just done. A large

aerial survey may involve several hundred unknowns.

The drawbacks of this approach are that it is expensive in time and space, it is difficult to find errors

in the mass of data, and its off-line nature makes if inappropriate for continuous, real-time navigation.

Photogrammetrists have responded to these problems with an incremental technique called on-line

photogrammetry [8]. This method processes new measurements sequentially to update previous

estimates of camera and ground point positions, rather than first accumulating all measurements and

then estimating the unknowns. Kalman filters are used for the update process. On-line

photogrammetry is used as an automation aid when processing aerial images and as an initial screen

for erroneous measurements, but it appears that the batch solution is still used to deliver the final

values for coordinates.

In computer vision, the best example of an incremental technique is the system developed by

Haliam [9]. This involved a 2-D world in which a moving submersible used sonar to track moving and

stationary targets. The positions and velocities of the robot and the targets were modelled as state

vectors defined in a fixed, global coordinate system. Incoming sonar readings created a local model

of the targets in robot-centered coordinates. The current robot parameters were estimated from the

difference between the local and global target models, then added to the local target models to

update the global target positions and velocities. Kalman filters were the basts for the state updates.

Errors in the sonar data were modelled by 2-D normal distributions. This system was found to work

quite well on simulated data, but has not yet been applied to real data.

Broida and Cheilappa [3] have taken a similar approach to motion estimation from a monocular

image sequence. They estimate the position and velocity of a single moving object seen by a

stationary camera. Feature correspondences are used as input to a Kalman filter-based state update.

Chatila and Laumond have developed an incremental navigation system for a robot equipped with a

laser range finder and an odometer [4]. The robot is modelled as travelling through 2-D world of

stationary, polygonal obstacles. The key features of their system are that It uses a scalar model of

uncertainty similar to Moravec [13] and that object models are rooted in a common global coordinate

frame. Their approach to world model update is intermediate between classical photogrammetry and

recursive filtering; when new information on robot position arrives, they percolate this backward to

update positions of previously seen objects. This effect "fad&s", so that the percolation stops after a

short time.

In our problem we are concerned with stationary points (landmarks) seen from a moving vehicle.

We adopt an update method similar to HaMam, b i t keep the landmark coordinates In robot-centered

rattier ttian global coordinates. For example, consider the situation after solving for the first step of
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robot motion (figure 5). We have landmark sightings obtained from the previous robot location,
sightings from the current robot location, and an estimate of the intervening motion. Covariance
matrices are associated with all landmark positions and the robot motion. We propose to transform
the previous sightings into the current coordinate frame, average the two sets of coordinates, and use
the result as a new, robot-centered estimate of the landmark locations. The transformation and
averaging will result in new covariance matrices for the landmarks that should represent diminished
uncertainty in their robot-centered coordinates.

The rationale for this approach lies in the uncertainty of the motion estimate. For a robot travelling
in an unknown environment, its position relative to any fixed reference frame must become more and
more uncertain. If new landmark sightings are related back to this fixed frame, then their positions in
the fixed frame also become more and more uncertain. Thus, if we transform new measurements
bade to an old frame for ttie sake of averaging, we inflate the uncertainty of the new measurements
and degrade their contribution to the average. Unfortunately, for a robot travelling forward the most
recent stereo measurements will be the most accurate and should be weighted the most heavily;
transforming backward will weight it the least heaviy. Therefore, in what follows we transform
information forward to maintain the landmark coordinates in robot-centered coordinate frame. We
expect that this will tead to better estimates of step-by-step robot motion, although other procedures
may be preferred for mapping the area covered in several robot steps.

We wi treat only translation^-motion. Let P. be the robot-centered coordinates of a landmark at
time/and ? i +1 be its updated, robot-centered coordinates at time /+ 7. P. is transformed to the i + l
coordinate frame by

ft
(11)

whart T is tie Intervening robot motion. Since we are modelling both Pf and T as corrupted with
zero-meen, gaussian noise with known covariance, Pf will also have a zero-mean, gaussian noise

I ®m noise in P§ is t^NQXV) and in T is « r~N^V^, then the uncertainty tf in Pf is

¥*' s

(12)

woartainty in the transformation itself, in this we have overlooked some correlation induced by (11}.
Our WtStl assumption is that the errors in any landmark location are independent from all other
Imcifiifica Equation (11), by applying the mme uncertain transformation to all landmark locations,
i t * cauaa f i t new axmttmtes Pf to be correlated between landmarks [12]. Taking such correlations
Into acomifit would increase the cost of the update ipadmticsiy for a small performance
li^»<^wwt» eo we choose to ignore It

Ut f te mtttwement of the iamdmmk taken from the mm robot location 'be QiwMt covariance VQr

W§ «mh obtain en updated estimate of the landmark1® coordinates by containing Pf and Qf Treating
^"~i m two ts i fw i is erf (he mmn and awarfanc© erf an unknown 3-D 'normal distribution ami
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applying standard linear statistical theory leads to the following updated estimates of the point

location and its uncertainty:

(13)

Recall that the V's are 3x3 covariance matrices. The intuition behind (13) is as follows. The elements

of the covariance matrices Vf and VQ. will be large if the uncertainty of the corresponding estimates

P' and (2 is large. The larger the elements of a covariance matrix, the smaller (loosely speaking) will

be the elements of its inverse. Hence, the more uncertain a measurement the less weight it receives

In estimating ? . Laumond and Chatila[4] have described the analogous averaging scheme for

scalar quantities.

Another way to formulate the point location update is to use Kalman filters. Taking Qf as the new

measurement and P( as the state to be updated, we obtain [6]

K * + 1 ~ V I / ^YQH y

(14a)

(14b)

K/+2 here is the same as in equation (6); furthermore, it can be shown that the estimates of ? / + 1

arrived at by (13) and (14) are identical. There is, however, a difference in the cost of the two

fomrnifations; using (13) requires three matrix-vector products and one vector-vector add, whereas

(14) requires two matrix-vector products and two vector-vector adds. The latter is cheaper overall.

The Intuition behind (14b) is fairly simple. The second term takes the difference of the new

measerenient from the old state estimate (Q. - Pf), weights the difference by (K / + 1 VQ~l\ and applies

t as an update to the old state estimate P/. Matrix V~l will be "larger" for more accurate new

mtamffeinenfs, giving them more weight, and "smaller" for less accurate measurements, giving them

less weight Conversely, F | + 1 will be "small" for an accurate old estimate, so that the new update is

weighted less, and vice versa for an inaccurate old estimate. We have used the filter formulation of

(14) in our implementation.

5. Updating the Global Robot Position
P n t o i » t i i t e v i ( t e i t with estimating each step of the robot's motion and' updating the local

wettf model in tfi$ section we am concerned with estimating the robot's global position and

poiiiwiil mMmtim^f. This Involves summing or integrating the step-wise motion estimates. Smith

•nd C3it«§iffiart |t©J have recently shown how to do this for motion In the plane, involving two

i ^ p ^ i r f f r w ^ a t o i »KJ on© degree erf rotation. They give the details of a Kalman filter formulation

©i the probtem. Htitam [9| appears to tew used a similar approach, a!though detailed equations we
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computer vision and robotics literature. We will illustrate the approach for translational motion,

summarize the Smith and Cheeseman treatment of planar motion, and discuss the difficulties with

extending this to unconstrained motion.

Suppose that after / steps the robot's position is T. with covariance V. and that the next step is

estimated to be 7^ with covariance Vg. The new global position is

(15)

Since (15) is linear and involves gaussian variables, the error in T.+x will be gaussian with covariance

The difficulty in extending this to motions involving rotation is that the update equation (15) is no

longer linear, so the error propagation is no longer strictly gaussian. Smith and Cheeseman solve this

for planar motion by linearizing. Each step-wise motion is represented by an uncertain translation

(XfY) in the floor plane and an uncertain rotation 8 about the vertical axis. Given two such motions

(X^Y^J and (X2T2,#2), they obtain closed form expressions for the variables X^ Yv<mdB% of the

combined motion in terms of the variables I, . . . ,#2. The equations are nonlinear and result in a

non-gaussian distribution for the combined motion. They approximate this with a gaussian

distribution obtained by linearizing. They also show how to use Kalman filter methods to incorporate

motion estimates from several sensors into one overall position estimate.

When the motion involves all six degrees of freedom, the linearization approach is harder to apply

because it is difficult to obtain closed form expressions for the combined motion in terms of the

component motions. We speculate that expressing the rotation as a quaternion may lead to a

manageable formulation. It seems likely that this problem has been addressed before in aerospace

applications.

6. Simulation Results
A number of simulations were run to compare the performance of the 3-D normal error model to the

performance of scalar weights. These experiments first examined the performance on a single step of

robot motion, then the performance over several steps. The methodology attempted to mimick the

configuration of cameras, objects, and motions used in our previous experiments with a real vehicle

and real images [17]. The simulated cameras had a resolution of 512x512 pixels, a focal length of

12mm, and a field of view of 53 degrees. The baseline between cameras was 0.5 meters. The zscene

consisted of random points uniformly distributed in a 3-D volume in front of the cameras. Typically

this volume extended 5 meters to either side of the cameras, 5 meters above and below the cameras,

and from 2 to 10 meters in front of the cameras. Image coordinates were obtained by projecting the

points onto the images, adding gaussian noise to the floating point image coordinates, and rounding

to the nearest pixel. These coordinates would be the input to the algorithms described above for

triangufation, motion solving, and model update.
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To obtain covariance matrices for point locations, image coordinates were assigned a distribution
with standard deviations of one.pixel for each of *vyvxT>yT and no correlation between any two
coordinates. These were propagated through the triangulation as described in section 2. Scalar
weights were derived by taking the Z variance from the covariance matrix. Scalars obtained by
several other methods were tried and found to give very similar results. These include the volume and
length of the major axis of the standard error ellipsoid and Moravec's half-pixel shift rule [13].

6.1. Single step motion
Planar motion estimation was tested first. After a step of one meter directly forward, the robot

estimated its lateral translation (X axis), forward translation (Z axis), and rotation about the vertical (Y
axis). Experiments were done varying the number of points tracked and the distribution of the points
in space. For any one experiment averages and standard deviations were calculated for the results
erf 5000 trials. In this set of simulations no noise was added to the image coordinates, so that
quantization of the image was the only source of error.

When all points were 2 to 10 meters away, which corresponds to disparities of 13 to 64 pixels
(roughly 3% to 11 % of the image width), the mean estimate of the forward motion was within 0.1 % of
correct for both scalar and matrix weights and for anywhere from 6 to 50 points tracked. Since the
true motion was 1 meter, this implies average estimates of about 0.9995 meters. The error that did
occur showed a slight bias to underestimate the true motion.

Standard deviations of the motion estimates as a function of the number of points tracked are
plotted in figures 6 and 7. Figure 6 shows the results for rotation. Estimates based on scalar weights
have about 10 tones the spread of estimates based on matrix weights. With 20 points tracked, the
standard deviation with matrix weights is about 0.03 degrees. Figure 7 shows the results for X and Z
translations. Them is a factor of 10 difference in spread between the scalar and matrix cases for X,
but oniy a factor of 5 for Z. This is explained by the fact that lateral translations and vertical rotations
have a coupled effect on errors of fit, so that small lateral translations strongly resemble small
rotations about the vertical axis. It is significant that the coupling is reduced by wing matrix weights.
W/Hh matrix weights, traddng 20 points yields standard deviations in X and Z of approximately OJQ04
meters over a 1 meter motion, or 0.4% of the distance traveiied. This compares to 3.5% and 1.9% for
X and Z5 respective^ with the scalar aigonthm.

The results for motion solving in space are comparable to the results for motion in the plane. Tim
prwrfmis ocperimftnt was re-mo with the motion solver ^ t o i ^ t ^ ^1 ̂  i ^ ra i i ^ws of indtoii. The
weragesohrtl^ Figures 8 and 8
show the standard deviations of the rotations and the translations, respectively. Hie pattern is very
^T^ia-to the three degree cf freedom case. The devat^ons are royghiy the same size and the raises
between scaiar-based and matrix-based motion solving are the same. The scalar-based algorithm
srows a owpttig between lateral translation and penning rotation, vertical translation and tfffofl
rotation* but not between forward translation and raffing rotation* Using f u | covanance matrices
moderated t i ls effect
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estimates. After 10 meters of simulated motion, the standard deviation of the matrix-based estimates

of total distance travelled was 1.6 cm, versus 4.4 for the scalar method.

7. Discussion
The goal of this paper was to show that using a model of stereo triangulation error based on 3-D

normal distributions would lead to more accurate motion estimation than scalar error models. The

simulations have verified this claim. Step-wise motion estimates, global position estimates, and

landmark location estimates are better with the new method than the scalar method. Other motion

solving algorithms from the literature [2], not based on probabilistic error models, had performance to

our scalar-weighted algorithm and poorer than the matrix-weighted version.

Three dimensional normal distributions model triangulation error better than do scalars, but they are

not entirely faithful to reality either. This shows up in the biased estimates obtained in the simulations.

However, these biases are small enough that it may be acceptable to ignore them.

One of the most striking aspects of the new model is the improved performance is gives with distant

points. This implies that the new method permits shorter stereo baselines to be used without

sacrificing accuracy of the motion estimate. Since the length of the baseline directly affects the

difficulty of stereo matching, this may offer a way to alleviate the correspondence problem.

Our first priority for future work is to verify the simulation results with tests on real images. Should

the results hold up on data free of correspondence errors, the next step will be to pursue the idea of

shortening the baseline to reduce the likelihood of mismatches. This will be augmented with

statistical tests to filter any remaining mismatches. Further extensions include coping with general

rotation in the global position update, tracking lines as well as points, and estimating velocity as well

as position.
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Abstract
The new Carnegie*Mellon Autonomous Land Vehicle group has

produced the first demonstrations of road-following robots. In this
paper we first describe the robots that are part of the CMU
Autonomous Land Vehicle project. We next describe the vision
system of the CMU ALV. We then present the control algorithms,
including a simple and stable control scheme for visual servoing.
Finally, we discuss our plans for the future.

Introduction
CMU has formed the Autonomous Land Vehicle (ALV) group to

develop a perceptive outdoor robot We have produced the first
demonstrations of an autonomous vehicle able to follow a road
using a single on board black and white television camera as its
only sensor Our robot has made several successful runs over a
curving 20 meter path, and 10 meter segments of staright
sidewalk, moving continuously at slow speeds, by tracking the
edges of the road.

The research described in this paper is a first complete system,
covering everything from low-level motor drivers to the too-levet
control loop and user interface. We took a ^depth-firsT approach
to building our testbed: we picked one rough design and built aSI
«be pieces of a functioning system, rather than spending a lot of
time at the beginning exploring design alternatives.

Related research at me Unversfty of Maryland [6] has focused on
the problem of visually finding and tracking roadways- The
•̂ bootstrapping19 phase of me Maryland road finding program, in
which me robot detects a road on start- up with no a priori position
information, currently has no counterpart in our system, Our
vehicle Is always started with an orientation more or less aligned
with me direction of me road and with knowledge of an initial tmd
model The Maryland road finding module h expected to be
tasted soon on an ALV buit at Martin Marietta Denver Aerospace.

tot tfrtw paper we fir* describe me robots mat are part of ft© G&iU
AiifccwofitotJsLafid'VetiscJe project We next desctfoe the vista*

» fMs pr^ict hi furnkd in part toy Cmm$®***0lm tWw@«%*fcytt»
Oife® of Ntttfl «®s®t«Gi* s«ter contract mmtow ND0O14*i-K-a5«, fey «&•

Ftarmt^nt* Admmcmi Tectwotogy Gv«v. fey O^mm Mmmd
Pw*tc» Agincy (D00>. ARPA On*w No, 36§7, Mntorad by «tt Mr

ifefte iMmmwf wtfor oonM* F W t & ^ M M M a , md fey
Mobil FWwfes, Inc. Awhard Write* t t e *s NASA for » * * * * «
m&h G^a^i? 8t»d«ftt Bmrnfcimt Program foMmm^pQmt*

system of the CMU ALV. We then present me control algorithms,
including a simple and stable control scheme for visual servoing.
Finally, we discuss our plans for me future.

Terregator and Neptune

No mobile robot system is complete without a mobile robot, The
primary vehicle of me CMU ALV protect is the Terregator, built In
me Civil Engineering Department. The design and construction of
me Terregator (for terrestrial navigator} is documented in [7J. It is
a 6-wheeled vehicle, 64 inches long by 39M wide by 37" tall. All
wheels are driven, with one motor for me 3 left wheels and one for
me 3 right wheels. Shaft encoders count wheel turns, but the
vehicle skid-steering introduces some indeterminacy.

The Terregator is untethered. Power Is provided by an on-board
generator. Communications with a host computer are via a bi-
directional 1200 baud radio link for vehicle status and commands,
and a 10 megahertz microwave link for television signal from the
vehicle to a digitizer. A remote VAX 11/780 runs programs for
symbolic processing of visual data and navigation, A Gnr.nell
GMR 270 attached to me Vax computes low- level visual
operations such as edge detection. A Motorola 68000 on the
Terregator translates steering commands from me VAX Into wheel
velocities for me left and right wheels.

Earlier work also used me tethered robot Nep^snef buit by the
Mobile Robot Lab. Neptune is a simple tricycle, with a powered
and steered from wheel and two passive wheels in me rear. Sts
sensors consist of two cameras ffcr stereo vision work), plus a
ting of 24 sonars, While It was intended primarily for indoor work,
it has large enough wheels to am outside on gentte terrain* With
suitable modifications (an umbrella taped to me camera mast), it
even has limited ail-weather

Our first successful continuous motion road foiowtng was
achieved with Neptune runnmg i® our fob on a road marked wsift
black electrical tape on t ie floor. This 5 mater roaJ had mm left
turn and one right turn* which U&ptune navigated successfuiv* At
me end of t ie road, Neptime made a sharp right turn and drcve
arouod in circles*

IJC AI-85
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The Vision and Navigation Program

The primary task of our vision and navigation program is to keep
the vehicle centered on tiie road as it roils along at a constant
speed. The program accomplishes this task by repeatedly
eigi&iing road images, locating the road edges in the image,
calculating the deviation from the center line, and steering to
realign the vehicle.

The program was designed to be fast yet reliable. While the
vsni&e is moving along a planned path, an image is digitized.

Fif. 2. Terreyator
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Since images are digitized frequently, the appearance of the road
edges does not change appreciably across successive images;
consequently, searching the entire image is unnecessary. In order
to constrain the search, the program maintains a model of the
road The model contains the position and orientation of the left
and right road edges seen in a recent image. The program uses
these model edges to generate two small subimage rectangles in
which to search for the left and right road edges. Since the
approximate direction of each road edge is known a priori, the
program uses directed curve tracing to reduce processing time
and to preclude spurious edges. Generally the program finds
more than one edge in each subimage rectangle. The model is
used to select the pair of extracted edges most likely to be road
edges. This new pair replaces the old pair in the model. From the
model pair, the program computes a center line, the vehicle's drift
from the center line, and a steering command to bring the vehicle
closer to the center line. As the vehicle executes a steering
command another image is digitized and the cycle repeats. Figure
3 depicts the program control flow. In the remainder of the paper
we explain each component of the program in greater detail.

Constraining the Search
Each time the program digitizes an image it chooses two

subimage rectangles to constrain the search for left and right
edges. The representation of the rectangle is two horizontal and
two vertical bounding line segments. The vehicle always "looks"
a fixed distance ahead; therefore, the placement in the image of
the horizontal bounding segments is predetermined and remains
fixed across successive images. The placement of the segments
is partly determined by two parameters selected manually: the
height of the rectangle (typically 50 to 100 pixels) and rectangle
overlap, that is, the percentage of the road in a rectangle seen in
the preceding image (typically 50%). These two parameters
present important trade offs: If a large height is chosen, the
extracted road edges will be longer, thus providing more accurate
information about the road; however, the processing time will be
increased, and the road will be scrutinized less often. If a large
overlap is chosen, more information is available from the previous
image and spurious edges are less likely to deceive the algorithm;
however, the vehicle's speed must be slowed to enable such
overlap. The two parameters, coupled with the vehicle's speed,
the image processing time, and the camera's tilt determine the
placement of the horizontal bounding segments in the Image.

The vertical bounding segments change from image to image.
The program selects bounding segments so that the road edges,
based on predictions from the model and a preset error tolerance,
will appear within the rectangle. This error tolerance arises from
two sources: First, the program obtains its estimates of trie
vehicle's motion by dead reckoning, which Is somewhat
inaccurate. Second, the program assumes the road is straight,
that is, predictions are made by linearly extending the road edges.
Road curvature introduces a discrepancy between tiese
predictions and the actual road; consequently, the rectangle must
be wide enough to see the road edge within a preset tolerance.

Selecting the Cest Edges
The fee finding routine generally returns more than one in©

from wmch rectangle. The program passes these fines through a
number of filters to determine which, if any, are road edges. The
new road edges are used to plan a path for the vehicle and to
update the model. The 16 best left and Tight edge candidates
fbased cm weights supplied by the line finding routine) are
retained, and the rest are discarded. The program assumes that
the camera's calibration, position, and orientation with respect to
the road are known, that the ground Is locally level and that all
candidate edges arse from ground features. These assumptions

allow the program to project each candidate edge into a unique
line in the ground plane. We establish a righthanded coordinate
system with the vehicle at the origin and the xy-plane on the
ground, with the positive x-axis directed to the right of the vehicle
and the positive y-axis directed forward. For each transformed
edget the program calculates the following parameters: the
perpendicular distance r measured from the origin to the edge and
the angle 0 measured from the positive x-axis. The differences in r
and $ between each transformed candidate edge and the
corresponding model edge are calculated (call these values dr
and d$ respectively). The quantity dr is the difference in
displacements of the vehicle from the model edge and from the
candidate edge. The quantity dQ is the angle between the model
edge and the candidate edge. Test runs have shown that the
vehicle tends to remain aligned with the center line; most of the
error is in the form of lateral drift from this line. Hence, dr provides
the most information for evaluating candidate edges. The quantity
66 tends to be small (less than 10 degrees); consequently, an
early filter uses it to eliminate spurious edges. After this round of
edge elimination, one of three cases remains:

1. All edge candidates have been eliminated

2. All edge candidates have been eliminated for a
particular road edge (either left or right)

a At least one edge candidate remains for both the left
and right road edge

In the first case, the program obtains no new information and the
vehicle continues to execute the path planned from the previous
image. In the second case, only one road edge is visible. The
other road edge is occluded, shadowedt or poorly defined.
Suppose for example the program found a set of candidate road
edges on the right side but none on the left. From the candidate
edges on the right side the program selects the one with the
minimum dr value. It inserts this new edge into the model, retains
the old model edge for the left side, and generates a new steering
command. In the third case, both road edges are visible. The
program selects one edge from each list of road edges (left and
right) by comparing each left edge to each right edge candidate
and choosing the pair that minimizes the difference in their dr
values, that is, it selects the two edge candidates that differ from
their corresponding model edge in the same way. Rgure 3
illustrates road edge selection in this case. This decision is based
on the observation that vehicle motion error and road curvature
shift the location of each edge in the image in the same way. The
program inserts the two new road edges into the model and plans
a new path.

Line and edge extraction
At the lowest levels of the vision system for our vehicle, the edge

and line extraction modules, we found that for detecting road
edges we could rely on the principle "almost anything works in me
simple cases.w That is, any of a number of simple edge and line
finding techniques could be used to extract road edges, in various
situations. Our approach then was to try everything. We tested
various edge and line finding programs on static road images and
on images acquired by me vehicle m actual runs. Simple
techniques proved adequate in many situations we encountered.

The basic approach of all the vision modules we tried was to find
the left and right boundaries of the road and represent them as
lines. Therefore, the task of the low tevel vision modules is to find
line segments which are plausible candidate road edges. We
sought to make only the roost general assumptions about what
might constitute a road «i an image. The technique used to
extract road1 edges and represent tiem as lines depends on
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whether we think of a road as an intensity change from
background, a texture change, a color change or a combination.
We experimented with 7 methods for extracting road edges from
images and three methods for fitting lines to the edges. The seven
techniques we used to find edges in road images were:

1. Correlation, Assuming that a road edge is a more or
less vertical feature in a subimage it can be followed
by selecting a small sample patch of the edge and
correlating this on a row-by-row basis with the
subimage. Where the correlation is strongest in each
row a road edge element is assumed. The result is a
list of points where the road edge appears' in each
row. A line can be fit to these directly. The
correlation approach worked very well when the
sample road edge patch was hand selected.

2. DOG operator. A Difference of Gaussian edge
operator was tried at a wide range of spatial
resolutions on road images. Road edges tend to be
low spatial frequency signals so large DOGs were
required to find them directly. Two-dimensional DOG
filters tended to break up the road edges even at low
frequencies. One dimensional DOG operators applied
horizontally in the image produced more connected
road edge pieces, since the road boundaries were
almost vertical features in the image. High spatial
frequency DOG operators can be used as the basis of
a texture-based segmentation of road images,
however.

3. Temporal Edge Detector. Subtracting two
successive image frames is an inexpensive method for
detecting image features that change from one
moment to the next. If a vehicle is traveling down an
ideal road (where the intensity of the road is uniform,
the intensity of the surrounding region is uniform and
the road edges are straight and parallel) then the
difference of two successive road images is zero.
When the vehicle begins to turn left or right off the
road, however, simple image differencing finds the
road edges. This strategy was used in one
experiment to servo Neptune visually down a hallway*
Here the road edges were particularly distinct so the
ideainess assumption was more or less satisfied.

4. Roberts Operator. A 2x2 Roberts edge operator
was sufficient to find road edges where they were
relatively welt-defined intensity step functions, such as
when the vehicle traveled down a hallway or when we
artificially marked the road edges with tape.

5. Intensity Segmentation. A simple binary intensity
segmentation of the road image works in many cases
where the road is a set of pixels most of whose
intensities are grouped together in the image
histogram. We used a simple segmentation technique
based on classifying ail the pixels in the bottom 50%
of the histogram as one region and those in the upper
50% as another. Standard procedures for expanding
and shrinking the resulting segments to join closely
spaced segments and eliminate small ones are
applied. Road edges are assumed to lie along the
boundaries of the resulting regions.
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6. Texture Segmentation. Texture based
segmentation often proves better than intensity based
segmentation for road edges where the road is
relatively smooth and the surrounding region is not,
such as when the road is asphalt against a grass
background. A simple texture operator which we
have found useful in detecting road edges is one
which counts the number of edges per unit area and
classifies all those areas where the edge count is high
as a single region.

7. Row Integration. Summing the intensities column-
by-column in a set of scanlines in the image results in
a single-scanline intensity image where the road "is
roughly a one dimensional box function, given that the
road is a more or less vertical feature and the road
and surrounding area each have fairly uniform but
different intensities. Finding the boundaries of the
box amounts to finding the average position of the left
and right road edges over the scanlines summed.
Repeating the procedure for another set of rows in the
image locates another pair of road edge points which
can be joined with the first to approximate the road
boundaries as line segments.

The three line-extraction techniques we used were:

1. Least Sqaures Line Fitting. When we had only one
possible line in an edge image, such as the result of
running a correlation operator over the rows or
collecting a number of road edge points by row
integration, a line could be fit to the points by least
squares.

2. Muff Transform. A modified Hough (Muff) transform
was used to fit lines to edge data where the edge
extractor returned points that could plausibly be parts
of several lines. The Hough transform has been used
to detect road edges in other road finding programs
[6] [1], The Muff transform uses a new
parameterization for lines in images. The Muff
transform has several implementational advantages
over the conventional p-6 parameterization. The
details and implementation of the Muff transform are
presented elsewhere [5].

a Line Tracing. Most of the subimages we processed
to fnd ines were bands about 50 pixels tail and 250
pixels wide. A simple raster tracking algorithm found
in [3] proved sufficient to trace the road edges.
Basically, if an edge point P above some high
tfmeshhold of is found while scanning the sublmage,
Mien we search on scan lines below for connected
edge points above seme lower threshhoJd t The tost
such point found in the subfenage is called Q and we
assume PC as a line segment. The line [racing
procedure is much ttke toe inverse of a Bresenharn
algorithm for drawing -lines, with the similar limitation
that we can find tines that are only with 45 degrees of
vertical. We f" IKJ ines more than 45 degrees from
petpeftdicufatr and irtes with gaps 'by searching in a

'below art edge point for the next
@dg« point. Strictly speaking, out tracing

program r^«rn« the endpoints of a curve which may
not necessarily be a line, but over the ̂ snrtaft distances
In torn autamages we search for Hoes we have found
this fast tracing procedure yields mn adequate
tppmxmttton. The tin* tracing procedure was used
m Br4 of the naa) time continuous motion ryns of our
usfocte mudm vision control.

A combination of three factors enabled us to reduce the image
processing time for each image sample to about 2 seconds. First,
special image processing hardware in our Grinnell GMR 270
display processor was used for the low-level correlation and
convolution. Second, only small subimages (50 by 250 pixels)
were searched for road edges by the line finding routines. Third,
selection from among the possible set of candidate road edges of
the actual road edges was accomplished by simple means (q.v.).

The next step in our plans for development of low-level road-
finding vision is to integrate several types of feature detectors in a
blackboard data structure. We want to evaluate the success of
combining intensity, texture and color edge and region features to
find road edges. Earlier we said that we relied on the principle
"almost anything works in simple cases**. For complicated cases,
such as we have encountered in actual outdoor road scenes, we
have found that none of the techniques we have tried always
works. We believe that a combination of techniques wil enable us
to find road edges reliably in a wide range of situations.

Control

The control procedure translates the visual measurements Into
vehicle motor commands that if successful, keep the vehicle
moving along the road. We evaluated a half-dozen approaches
experimentally with our vehicles and analytically. One approach,
servoing to keep the road image centered in the forward field of
view, excelled in ail the measures, by such a margin that we feel it
deserves to be considered a fundamental navigational principle
for mobile robots.

Figure 5: Processing Graphcs. Here a road image is
shown after processing to enhance intensity changes.
The vision program selects a window in which to
search for road edges. Candiate left and right road
edges are lines fit to the raw edge data, shown here as
black lines. Heavy black lines Indicate the left and
right road edges selected by the program. The
computed road center line is shown as a double tine.
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Let x represent the shortest distance between the center of our
vehicle and the centedine of a straight road. 0 is the angle
between the heading of the robot and the road direction, i.e. when
@ m o the robot Is drrving parallel to the road. Suppose the vehicle
travels at a constant scalar velocity v, and that control is achieved
by superimposing a steering rate, 66 / 6t (where t is time) on top
of the forward motion, if there Is no slippage, the following
kinematic relationship wtl hold:

(D
dx/dt -vsinl

The general problem for continuous road following is to find a
steering function F such that by setting 69 / d t • F(x,0) the
vehicle approaches t ie road center. We tried several functions
and noticed a number of recurring problems. Estimating & and x
from- the image requires both a precise calibration of the cam-era
and accurate (tetermlnatkyi of the position and orientation of the
road edge® m t ie mage. Both are difficult to achieve In practice,
and the higt* note level in these Quantities made most of our
fuocfoiw unstable. A second problem led directly to our solution.
The road linage sometimes drifted out ol t ie camera's 40 degree
ffiefcl of view, and in t ie nmt sampling period the program would
m to find • road, or (worse) identified some ether feature, »ce a
dcor edge, as road. Ttecfovfoua solution wee to servo to keep the
read image centered. Experimentally this approach was a
sliiiif5,ifig success. Besides helping the vision, It seemed to be
fosanetttie to even large caflbcatiofi errors and misestimates of the

The ifttor«§Gx§ analysis was mmrk&b^ swees alto, and bom
CM the ©fwptWcaf obtec^wttenc A first order analysis, where we
assume the road Image ia kept perfectly centered, gwes trie
ralalftoii

CO
x/r

wvtwro r It tfie «iste»t# im front of t i e robot where a ray through
t w emmm image center M m e d i t i e ground f1*«* t ie nug© at
wMcft we cto cw toad finding). The parameter r can be changed
% rising or 'swerr-9 f i t cnwm, dtartgJng its l i t , or by ueing a
#§«mit g o n i n t « ta emm of tNi ragtafiki i # w * road

EQuMtofi CQ em Im « A ^ h ^ j into (1) U 0m

- v
X

«tKiclt of iht

mmmm wtmdm* ^m umm mmm

writ*

l i l
f itft i . x/r)/ooi#

where g is the servo loop gain. The full behavior of the robot can
be found by solving (1) with (6) simultaneously. These equations
are made linear and easily solvable by the substitution Q * sin*,
giving

(7)

d x / d t « -vO

dO/dt * - g ( O - x / r )

By co-incidence or cosmic significance of all the servo functions
we considered, only this one yielded a fully general analytic
solution.

The solution has three cases distinguished by the sign of the
expression

(8)

g r - 4v

In alt cases the solution converges to x » 0, Q (and $) » 0
exponentially with time. When g < 4v/r the convergence is 1
decaying oscillation • the sluggish steering causes repeated
overshoots of the road center. When g>4v/r the solution
contains a second exponential, and the robot approaches the
road center more slowly. When g » 4v/rf the critically damped
case, we have the fastest convergence and no overshoot, and the
behavior is given by the equations

(10)

Q m e-2v t / f(2vt/r(2x0 /r-Q0)

The gain sets the turn rat© required of the robot Mote that to
retail the criticafty damped situation while increasing v without
changing g, it is necessary only to increase r, i.e. arrange to have
t ie vtaion took fwrther ahead.

The method te successful for several reasons, ft Keeps the road
in mew at all times. Because the system always converges, errors
in g or camera calibration do not jeopardize performance.
Because the parameter being servoed is the most robust direct
measurable* -namely road positron in the image, t i e noise
probieffis of the other approaches are almost totally eliminated. )n

r3 § (or O) and x though they occupy a centra! position in
ffieoreicsl analysis, m@d never be calculated in the actual

Conclusions

We hmm developed a vision and control system lor a mobile
robot capctie erf driving t i e vehicle down a road m continuous

fo T I M system t m been tested on two mobie robots,,

fm Ttrregjtor, In 'both indoor (hallway snd artificial
fasptwit paths In a park and cement skle^atk)

In our best run to dale the Tesre$ator traversed a
33 fttfttr outdoor path at 2 cm/sec, image processing lwr*e has
b*m rtduced to 2 wc/§nrt«g».

our vehicle fwv» included oVivfog off the
ml© trews and wafc and driving around k% circles. Sucti

mostly clue to bugs in our programs, imprecise
procedures, and §mi«#©fts of current tathvara f * . g ^

, not fw-ndaiwntai Mmimtlona
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There are several areas that we plan to address. First is the
construction of a true test bed. This involves mostly software
engineering, such as cleaning up and documenting the interfaces
between vision and control. This will enable us to try other vision
methods, such as texture and color operators.

Further work will require the use of a map, along with program
access to a magnetic compass and a gyro. The map will list
road direction, width, appearance, and intersections, which will
provide strong cues to both the image processing and the
navigation system. The compass, along with the map information,
will help predict road location in the image. This will become
increasingly important as we venture onto curved and hilly roads,
and as we encounter intersections and changes in the" road
surface.

The next step is obstacle avoidance, which will require limited
3D- processing. Projects in the CMU Mobile Robot Laboratory
have already demonstrated obstacle avoidance with sonar [2] and
stereo cameras [4]; we intend to integrate these into the testbed.
Later work may add a laser rangefinder and programs to handle
that data.

Finally, as the testbed becomes more complicated, system
control will become a major issue. We plan to work on a
blackboard system with cooperating and competing knowledge
sources. All the data, from the lowest level signals to the highest
level models and maps, will be on the blackboard and available to
all processes.
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Figure 6: Blackboard System. We have begun the
design of a blackboard system to integrate the
multiple sensors, knowledge sources and vehicle
actuators planned for the CMU ALV system. Our
future work is to embed the modules we already have
In the blackboard system, with multiple parallel
knowledge sources accessing a global data base, and
also to add other modules.
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A Modified Hough Transform for Lines
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Abstract

A n«rw parameterization for lines in images is presented
w i t h application to the Hough transform. The modified
H o u g h (Muff) transform has several implementational ad-
van ntages over the conventional p—0 parameterization. The
MufF transform parameter space is better suited to com-
p u t e r graphics line drawing routines. The Muff transform
requires no transcendental function calls or table lookup.
T h e relation between the tesselation of the parameter space
and the resolution of the lines represented is discussed. The
sha.pe of the Muff space is amenable to compaction into a
rectangular array. The implementation of the Muff trans-
form is presented.

The new Hough line parameterization is illustrated in fig-
ure 1. We assume for simplicity that the image is bounded
by a rectangle parallel to the x~ and y-axes and extend-
ing from the origin to some (zmax> I/max)- A bounding box
extending around the image provides the basis for the pa-
rameterization. A line passing through the image is pa-
rameterized by the two points where the line intersects the
perimeter of the bounding box. These points are given by
their distance along the perimeter of the bounding box,
where distance is measured counterclockwise along the box
starting at the origin. Thus a line has two parameters, &\
and s 2 , representing the two points where the line inter-
sects the box. To preserve uniqueness of the representa-
tion, we assume s\ < 52- The range of possible value are
0 < *i < 52 < 2(x m a x + y m a x ) . This new parameterization
is called the Muff transform.

The Hough transform can be used to find lines in images1' .
Each edge element in the picture votes for all of the lines
that could possibly pass through it. The voting takes place
in a two-dimensional parameter space, where each line is
represented as a point. This space is tcsselated into a
grid of rectangular cells, and each cell accumulates votes
for Hues represented by values in that cell. In implemen-
ta t ions of the Hough transform the tesselated parameter
spnee is an accumulator array. To extract the lines in an
ima.ge, the Hough parameter space is searched for peaks
wkieh He above some thrcsshhold: these are assumed to
correspond with lines m the image. Two problems which
Firise in the implementation of the digital Hough trans-
form are the selection of the Hough parameters and the
choice of granularity of tesselation for the parameter space.
The usual parameters selected to represent lines in Hough
space are p and 0t where lines are given by the expression
p = ac cmi H- f̂ sin 9. These parameters have the advantage
over rn and b in the y = mz~hb form that they arc bounded,
it i s easy to sec that for an rectangular image extending
Groin (gmm>ymi»)t» (gmoxijftMi) t h « values of p and § are
bounded hy - \Z*2»tw + V^,,' < P < \/*2u« + v£Z »<*
0 < 0 < ar, whereas m and b are unbounded. This paper
presents a different bounded parameterization of lines in
an iuaage and several advantages of this new representation

the p - 0 parameters.

An immediate advantage of the Muff transform is purely
graphical. The transform parameters easily map back into
points on the image's bounding rectangle. The line repre-
sented by (*!, 52) in figure 1, for example, passes through -
the image at («i,0) and (2xmax +yTOnz - *2,9m«z)- These
points can be passed directly to a computer graphics rou-
tine to draw the line. No clipping is needed. The cal-
culation of the end points for a line p — 9 requires more
work. First, the peak value indecies in the accumulator ar-
ray must be mapped back into their corresponding p — 9
values. These are then used to write a line equation of the
form Ax + By + C = 0, which then must be solved for x
and y at each side of the rectangle. The Muff representa-
tion requires at most two subtractions to determine both
endpoints.

xmax •
2 ymax

2 xmax •
2 ymax

xmax+ymax

xmax
Figure 1.
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Implementations of the Hough transform for Hues can suffer
from two problems related to the use global edge informa-
tion a the image to find local Ikes. First, edge elements on
coJiatM* bat not connected line »egments vote for tne same
lift*. Second, the transform of an image with many noisy
edn points m m*ay irregular blobs may contain spiinous
lints finking distant edge elements Weans* tne tnressnhold
on j»»i detection in the Hougii space most be set low in
order U obuin any lines. The pare Hoogh transform does
tot p m « m kforwation about which edge points voted for
a particular Ike and hence tie transform cannot find di-
rectly the midpoints of line segment!. One obvious solution
a to store in eadi bin of the Hough space not only the count
of tdge elements voting for a particular line, but abo a list
of the pimt C0«di»tef of the edge elements themselves.
Later processing awt then fit lint segments to connected
sets of pixels k p#ak Hough bias. Another approach is
I© dtfv«S# t i t image into a number of smaller rectangular
regions, and compute t i t transform for each. The Muff

f m bts* snited to tht latter.

T ie iptasfom if impkmented fey the foBwkg procedure.
«n edft elemst (a, I ) fad tk« point (cfd) oo the

bex •© thai (0,0), {*,*) sad (cf d) are cotraear.
ic,4] is jpNMTMml«ris«d by n idfoe #««*. Tbea for each tx>

0 < $i < *m«, asd tfc« point ateag t ie box a»©ckfced with
f i f inert §§ aaelbcr p^Mi gkm & #a so that #i*s pokt,
:,; :- «a4 9%% -pc,zt a n c o i » ^ , The cakolatwa of #3 k

sWn^hlfswvnini and depend* ea whkh tHe of the rtctaagle
* km zifT^cii; l:i mf caat tfc« c^ipzizXizz 01 $% (mm s 1
a«i {a# i ) r ^ w to ih* proUta -of k t« i^ tag a line In
tvo-potoi form will a i©ri«»tj^ m wrtfcal Mat3, Thai am
advnntagn «l the Miff traasf«m mm Hi® # - # tranfform k
it.;::; : ifaiiiieftJfIIJII l«scim c^i an attdtd. The need
for mtmi UMMM9mimtd fa»ct»a c*& can bt eihninnied ia

tk*p-9irnnslbnn nSgorltninby tebfe
p* fcoPffer- 1 % ̂ *-# tr«rf«w iwiniiiet otJty i i W

ikt

Tht ckrftit rf ^ ^ r f ^ » for l i t ^r*»tte- npnet nffecta
tfc# retofiissi if titt iiswt wkach c ^ be feaai* felwltivtly,
ifct Ism t i t tmriaikw, 'lit jbir Ikt mtmmj el tht Knen
vltkk «M INI w|H»s«»tiil, Ont n»enmft of ivtolnixm k tbt
dsiMuK* lotatiffitli htliitwi tw« ̂ w witrt they intefsfct

ont mim «f l i t swift, Fw At- x*niin, Itl'i cnB tbi» dkUtet
AK Ttgm I tWwi thai lev tkt # - # itprtstntati«n <A«

i A i « n feactitifi ef f Ti# flurtker the bur &§«
tlw €mmm tk« f t f f ^ l r t m * la At M f f

s«rewr% tite itwwlntftin A« k CMMCIMI
t | Hf mum, b • ! &ybr««Hi» tkt M f i h r

tf iinM9 « At M i l ttprtntMatitfi k Intr mm
tk nttr il# ctsltr tf tk» ktnft. T h M ^

^ ^ , b m , opttw«t txnet^ tkt tt i e* HMM
t i t i urn Vt irww % €§ispit#f ^ ^ t e t fr«« eat pttel t *
ikt mltsurtt i t tmmtm, i f to ikis iitri«ik«i tf tkt ta*
»i#t«« T i t ̂ r t«t« tprntr ^ ^ tei tkt «Hfd nkt rf
l i t Mfaf iwiMMrttr t|NMt m l**** • j ^ ) * , wkm *»^ ,
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A peculiarity of the p - B form for the Hough space ia
that, although it is bounded, it has an irregular shape (see
fig. 3). Not all pairs of (p99) in the rectangle given by

-y/*2min+yii« < P < V*2ma*+V?naz *nd - * / 2 < 9 < *
represent possible lines in the image. If minimizing stor-
age were an issue in a Hough transform implementation,
the compaction of the p - 9 space would prove difficult.
Figure 3 shows the set of possible values in the MufF rep-
resentation. It is clear how these could be compacted into
a rectangular array if necessary. Also, it is simple to write
an algorithm which efficiently scans only the MufF array's
possible cells for peaks or local maxima. For each row in
the accumulator array, the cells can be scanned from left
to right starting at the first possible value in that row.

Figure 2. In the p-9 representation the resolution

of lines that can be represented is a function of

p and 0- TMs diagram illustrates two lines that

appear adjacent in the tesselated transform space.

The distance between these lines where theg intersect

the x-axts grows as p increases.

in the Huff representation the resolution of lines

represented ts consttnt throughout the space.

The muff representation captures exactty the set

of lines that can be drawn across tht rectangle

by computer graphics*
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The Muff transform has been implemented and tested on
images of roads. In the road following application, it is not
usually necessary to find the endpoints of line segments in
the image. It is the road edges which are important, and
these can be assumed to extend from one side of the image
to another. Thus neither the technique of storing pixel
locations in the Hough accumulator array nor the method
of dividing the image up into smaller rectangles is used.
Road edges tend to be strong and extend over the whole
image, so tJie Muff transform picks them out easily. The
design of special purpose voting hardware^ has made the
use of the Muff transform more practicable for real-time
vision tasks.

[1] Duda, Richard O. and Peter E. Hart "Use of the Hough
Transform to Detect Lines and Curves in Pictures" C A C M
vol. 15 no. 1, January, 1972. pp. 11-15.

[2] Bailard, Dana H. "Generalizing the Hough Transform
to Detect Arbitrary Shapes," Pattern Recognition vol. 13
no. 2, 1981. pp. 111-122.

[3] Bowyer, Adrian and John Woodwark A Progrmmmer's
Geometry, Butterworths, 1982.

[4] Sher, David and Tevanian, Avidas T h e Vote Tallying
Chip: A Custom Integrated Circuit", Custom VLSI Con-
ference, Rochester, May, 1984.

Figure 3« The set of possible values of p and 9
for lines passing through a rectangular image
defines an irregular shape in the p-0 plane.
The irregularity makes it difficult to compact
the useful values into a rectangular array.

S4

The set of plausible pairs of parameters in the
Muff space can be easily compacted into a
rectangular array. In this diagram, s 1 = xrnax
s2 = xmax+ymax, s3 = 2xmax+ymax, sA = s(xmax*ymax).
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Progress in Robot Road-Fallowing

R. Wallace, K. Matsuzaki, Y. Goto,
J. Crisman, J. Webb, T. Kanade

Robotics Institute, Carnegie-Mellon University

Abstract

We report progress In visual road following by autonomous robot
vehicles. We present results and work in progress in the areas of
system architecture, image rectification and camera calibration,
oriented edge tracking, color classification and road-region
segmentation, extracting geometric structure, and the use of a
map. In test runs of an outdoor robot vehicle, the Terregator, under
control of the Warp computer, we have demonstrated continuous
motion vision -guided road-following at speeds up to 1.09 km/hour
with image processing and steering servo loop times of 3 sec.

1. Introduction
Research in robot navigation on roads is part of the Autonomous

Land Vehicle Project (ALV) at Carnegie-Melton University. Broadly,
our work is aimed at creating autonomous mobile robots capable of
operating in unstructured environments. To this end, our research
program involves a variety of sensors, programs and experimental
robot vehicles. This paper is focused on recent progress In
detection of and navigation on roads, using a TV camera as our
sensor and a six-wheeled outdoor autonomous robot, the
Terregator [?], as our test vehicle. We present results and work in
progress in tho areas of system architecture, Image rectification
and camera calibration, oriented edge tracking, color classification
and road-region segmentation, extracting geometric structure, and
the use of a map.

For robot navigation of roads, we use a single television camera
as our primary sensor, in this application, the monocular TV
camera Is considered superior to ranging sensors such as laser
scanners or sonar for three reasons. First, reads we are Interested
in following do not necessarily have prominent S-dimenstanal
features at their shoulders; most often there is no depth
discontinuity between the road surface and the surrounding
roadside. Second, we have developed one steering strategy that
servos the vehicle based on measurements in the image plane
Itself, rather than on measurements in a world coordinate frame.
Third, we have so far relied on a local ground plane assumption,
that the ground around the vehicle is locally planar, so that any time
we do need to transform Image points to world coordinates, the
transformation Is trivial.

To attain the broad goats of our project, we haw split ftio
research Into two efforts. The goaf of the first effort is to develop a

1 Cunenty, « • pf©t*sct fa fwdod In part toy Carnegie Meion University, toy 0 »
OKfc* of MJWSI mmmtib w*$m os^r&a mmfo* Nqni*8HtQS03» fe* *m Weslem
P*®mMtfh»*&a fi>d*mm*$ Tozhn&ow Center, by Detmm MvmtsasA B®mrctt
f^isiectm A « m y 10013). AS1PA Order HaB 35S7, fmmitor©d toy • » Air Force totoplcs
La tmte r* umter contract F3361S ti t-tC-tsaa, a»d fey 0 e m ^ MoMis Botsoto, Inc.

VfeKac* that*a HASA for supportia® Wm mm a NASA Qradsrat® SUidmt

road-following system which usgs a map to navigate around a
highly structured and visually simple network of sidewalks on the
CMU campus. The goal of the second effort is to develop vision
routines for. road-following in a less structured and visually more
complex environment in a nearby park.

2. Sidewalk Navigation
The sidewalk environment at CMU is a network of mostly straight

concrete pathways joined at intersections of various shape. The
sidewalks have fairly uniform color and texture and are always
surrounded by well-groomed grass, giving them consistent high-
contrast edges. The goal of our research in this environment is to
develop algorithms for geometric reasoning, shape-matching and
navigation with a map.

2.1 Map and Blackboard
The overall system architecture to which a vision-based road-

following subsystem interfaces is a blackboard [5], a shared
memory structure containing a local map of the robotfs
environment Other sensing processes, such as those interpreting
range data, and other knowledge-based processes, such as those
updating the local map, are also tied to the blackboard.

2.1.1 Dialogue Model
The road-following subsystem consists of four modules; Vision,

Map, Navigator, and Motion Control. These modules communicate
with each other by sending and receiving tokens through the
Blackboard. In selecting this decomposition of our system into
modules, we followed the principle of information hiding. The
Vision module contains expertise needed for extracting features
from images. The Map module knows the structure of the robot's
environment and its position. The Navigator is responsible for
planning paths. The Motion Control module insures that the vehicle
executes navigation commands. Thus each module has a different
domain of expertise. For example the vision module does not know
the robot9s map or route. That information Is kept hidden and Is
used only by the Map module to make predictions to the Vision
module.

Communication between the various modules looks like a
dialogue. Figure t shews the dialogue model of the road-following
subsystem. This model reflects the information hiding principle of
the design. In II>e example, the Map hides information from the
vision module, except for the facts which arc relevant for the
current scene. The Map tells the Vision module only about the
predictions it makes, for the current scene.

map data, the Map module produces the token. Predicted
Object whicn shows what the Vision system shall see. Far
example, a Predicted Gb§ect can be a road or an intersection.
Using Predicted Object, Vision sees and makes the token, Detected
Object, which shews Hie shapes of objects In front ol the vehicle.
Using Delected Object, the Map decides the vehicle's Current
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vcbtcto.

Using Current Position and the map data, the Navigator
!he token. Motion Command, which tells how to dnvc the
Using Motion Conwanrf. tho Motion Conlrof drives the
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using knowledge from map, interest segments, which are key to
decide an position of an intersection, are found.

2.2.1 Reproducing the Rood Region
To eliminate the disturbing factors, two phase image processing

is done; extracting high-confidence road regions and then
connecting them.

The result of region segmentation includes four types of
segments: 1}actua!ly road and classified ns read, factually not
road and classified as not road, 3)actually road but classified as not
road, factually not road but classified as road. At the first image
processing phase, the program selects a conservative classification
threshold so that only ideal road surface is classified as road. This
result includes much type 3 region but tittle type 4 region, and
region classified as road is confidently road. Then, to cover type 3
region, we did a combination of reducing resolution and
expansion/contraction of image.

The expansion/contraction method is known as a good method
to eliminate gaps or small holes, but calculation time is long when
the size of defects are large and large number of
expansion/contraction is needed. We have to use this method In
real time during vehicle running. So, we reduced resolution before
expansion/contraction. This method absorbs several pixels into
one pJxel, and decides the the new pixel value by a threshold on the
proportion of original pixels classified as road to nonroad. We use
a reduction ratio of 8*8 to 1 pixel followed by 1 or 2 iterations of
expansfon/contraction. Tills obtained both sufficient shape
estimates and qufck calculation.

2.2-2 Polygon Fitting
To recognfee m tntefsectfcm from the reproduced shape, we fit a

polygon to the Intersection contour. Shape analysis based on
polygon h much quicker than one based on whole pixels or run-
teoflfh data The processing includes following steps.

t. Extracting Straight Line. Most of roads imaged are
straigtt! ten if they include curves, these can be
represented asasetof segmented straight lines. So,
vm apply n polygonal approximation to original precise
polygon to extract major straight components. The

is set so that the Interest segments can be

Z lea f ing Lines. We have developed a program which
labels 'mss. At fsrst.ihis program identifies viewing
fnnmt edge lines by searching tines which are
contaSrstd in the Coordinate of vfe^bg frame. Second,

program ciaspfies lues by angle and gives same
m for m akkm tmU iines. The -Map module

products also tie description of interest segments
«Mdi mmm tm segment mtftstfis and t i e ratationshtp
between secerns. Using this description, zhte
jyonmm cift match tfts classified lines to the predicted
.Merest seg~snis easily. The list showing the delected
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straight portion of the road is in the view frame, the measurement
from Ihe Vision module* can constrain the vehicle- position and
orientation only perpendicular to the road. In such case, the
location along the road is calculated using the vehicle motion. The.
positional error which might accumulate along the path will be
corrected as the vehicle approaches to the intersection and can
see tho road edges in multiple orientations.

Figure 2 shows a result of CMU campus sidewalk run. Along the
vehicle approaches an intersection, the vision module detects
different parts of road contour which are predicted as major tine
segments by the map module.

R-19

R-15

Navigation en the campus sidewa& using a map: (b) the smages taken wtten
approaching intersection i-5. The trapezoidal te&on m (a) represents me predicted
view of the ViSAcn. (c) the results of road region extraction cf the mages in (b). The
swages are Tecisfed mi© tine map coord" i£es from Ihe Imsge coordinates. The
edges mstctied m®% precision mm indicated by bold lines.

Figure 2: Navigation cm Campus Sidewalk using Map

3* Park Road Following
Our p a * mwkmmmt ccmtains & i Mfamtisr oirvteg « ^ i t f | pi^n

part erf * M d i la always ttwitfiiftisd directly and part of which b
*tiacJ«i fay wm% Th# peti toolff vqfea to texture from nws%

smooth and featureless to cracked and pot-holed, and in color from
blue-gray to black. The shoulder around the path consists mostly
of grass, but there are also some sections of dirt and rock
Seasonally, both road and shoulder are obscured by leaves, snow
or Ice. Trees and their shadows are also present Tho main goal of
our research in the park environment is to develop vision algorithms
capable of steering the vehicle reliably in this unstructured
environment • *°

3.1 Road-Edge Following
We have developed a technique for tracing the edges of a road

using an oriented edge detector. Like the tracker discussed in [9]
our algorithm begins with an estimate of the start position from
which is the edge is to be traced. Unlike that tracker, ours
integrates or smooths the edge along the edge direction
integrating the signal along the direction of the edge has the effect
of smoothing and reducing noise content. Then, the position of the
edge is localized by matching an ideal step edge model with the
one-dimensional cross-section.

Oriented edge detection operators have been explored in
computer vision, with perhaps the best results found in [2]. We
chose an oriented operator since it is more reliable than an
unoriented one. For example, if the road in the image is oriented at
15 degrees, then a conventional edge detector will find gradually
sloping intensity values, see figure a However, if the same detector
Is oriented at AS degrees, then the oriented detector would see a
sharp change In intensities, and therefore, the edge location is
detectable. We have implemented edge operators at a number of
different orientations so that we can obtain a reliable response
regardless of the orientation of the road in the Image.

Road Image and
Edge Operator

Edge Profile

Nondirectional Operator

Oriented Operator

Figure 3: An Oriented Edge Operator

3.2 Implementation
The edge tracer constructs a list of road edge points In an image

given a position (rQ, CoJ and orientation, 0Q of a road edge. Th®
orot^ed edge operator Integrates the signal along its columns. If
the operator docs not align with the Image columns, then it selects
pixel values nearest to tha position of its columns for tfis
summation. This one dimensional result of the edge operator Is
called the mige signature or edge profile.

Thm a mw road edge potat8 (r t C p ) , is predicted to lie a dlslanca
from (r^ c }̂ at ait angle of 0. A search window Is created centered
m *V V1 o r l e m e d ** ^® * * » • • 9. Th« edge operator creates an

profile In ®m search window. The road edge, (r,t cJ« to
to be where the an Weal step edge and the M o w

p the best oxretpWKkoc®^ The ori#ntat§Qfi oT.fNi road
Is watoiteled by § - wtctimZic^ • c^ , r|t. rX TWs algortttw to
Iterative If (rp c^ -> (rM , c^). This process is repeated imtil tfts
sssrch window fate outside of the Image bounds,
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•V iif B § y re 4; Road Edge Tracking with an Oriented Operator (

3 . 2 . 1 RastaUs
The tdoo tracer has feeai! tested en 4 ® X 512 g w tevel images.

The dimen&cns used for the search window w^e 64 rows by 128
columns Hgure 4 shews a typical result of the €d§@ tracer, The
ift&id position s g f«n near ihe bc!Som of fit® image and She
cnerstad edge detector proceeds upward in the Image. The larger
boxes mttiine &te search wm4&m, and %he sma&er, kinm boxes

Hi© pos&Gfts ©J best cerretafeon., The ©dgt profiles are shown

We have tSevefeped a vehicle driver system based on oriented
tracing The &&&! passion and orientation of Ihe tell and
?oad «f§es are input Is Ihe syslt^ awl uaed for lite first

the 09Wanted « % s tracer. Alter finding the rosd edn@s In
she image., iftey are feack'pr&j«c!ed to &e grcimd f*i&ne. The
veh<c:e nsctHsn between images & used to toest© the previously
f o y « l !rs*fJ edge* reta&ve to the vehicle Then the previews @df@s
are projected m fm mm mmgm, These edge Socattona are used for%

She ^ ^ ? i o ^ and oricstte&on estsnaHons « p « r i d for Hie eife©
she rosdE edges aiao afSow the right «KS

Th«s sys*e<n works * t i on images wfts*e flws Ss a to wwin! of
co?5tra«t b€r^»^ foe road edg• and !t» raad ahaddar. We have
been sbfe tc tfr*we owf «a*«cie c^^a r«l«^# o« gen^y oiw«§ rc^s,
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3.4 Color
Early in our work on visual detection of roads we recognized the

Importance of utilizing color vision sensors. We found in black-
and-white images of our test site that the perceived intensity of the
asphalt road differed very little from the intensity o/ (he surrounding
grass, although the color was very different Gray-level histograms
of the images were either very flat, or they had peaks caused by
shadows and highlights, rather than road or nonroad features.
Histogram-based segmentation techniques and edge operators
failed for the same reason. We considered texture energy
measures to segment road and grass, since the grass has more
edges per unit area, but the noise introduced Into the images by an
Inferior TV transmission system confounded attempts to measure
high-frequency texture information. Even in the presence of high
spatial frequency image noise color information is retained.

3.4.1 Pixel Classification
In color images each pixel U. y) has an associated color vector

(Rb, yh G(x* yh B(x. y)). The set of all possible fif?.Gf8j values forms
a color cube RGB. The RGB cube can be divided in various ways
SQ that pixels having certain color vector values can be classified as
road or nonroad. A simple region classification involves selecting a
sample road region and grass region from a training image, and
using the average values (^^^O^^ixd^J and
(^gmss'fL?Qra*s'lLBQraJ w k l e a l feature points in RGB space. If
the covariance matrices 2 m f i . and 2 j r a a^ are also measured then
the colors can be modeled as tnvanaie normal distributions
(TVMDs). The result of a TWO model is to divide color space into
regions separated by quadratic surfaces. Figure 5 shows a result of
classifying a sequence of rectified road images from the park site.

3.4.2 Color variation
Unforttmately Ihe color of road mtd shoulder do not remain

constant from one Image to the next Variation in color arises for a
variety of reasons, such as Hfuminatson changes (e.g. shadow
versus direct BiwnktMkm} and material changes (e.g. dry asphalt
versus wet, green grass versus yellow). Additionally; oyr test
vehicle Is equipped with a TV broadcast station, through which
Images are transmitted to a flsted-based computer. The chromatic
component of the TV signal vanes depending en such factors as
Urn prnMon of !h« robot vehicle with rmpec£ to the TV receiver.

We tmm begun to explore ihe use of adaptive color models to
reduce the probtaw arising from color variation.

3.4.3 Shadows and ncrmaSfzed color
Shadow cause usaity of dp feiures of our vk$m system, 'Edge*

based scheme* for dittoing cotd edges are footed by Mgtt-
c o n i i sltudow e c ^ as shadow edges often have a greater

ss4o*d»l(7W mio ften material e^ges. even regtoji
aion ®chmm b«ed m color mm oontoundodbyttoclom

^! m
*9tf*e 5: Color Segrcentabon of Rectify Par< Scs^s
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because images of objects in shadow contain color values
clustered around different points in RGB space.

Consider an object imaged with color C; in a sunlit part of the
scene and color C2 in a shadowed region. To a first approximation,
C j a kC2 for some constant k. This, is because the object reflects
the same color in shadow, it is just imaged at a different intensity.
Thus a preprocessing step is to normalize all the color vectors of an
imaget by transforming each point (R(x. yl G(x. y), B(x, y)) Into (r(x.
y). g(x. yl bix. y)) such that

f m R/(R + G + Bl g * G/(R + G + 8l 0 s B/(R
Then all the color points lie on the plane R+G+B* U

Although the transformation from RGB to rgb Is sufficient for
erasing shadows in many cases, it is not always successful. There
are two factors limiting its usefulness. First, the dynamic-range of a
TV camera Is not very large (a maximum brightness:darkness ratio
of 7:1) compared with film (a maximum brightness:darknesa ratio of
20:1) or the human eye (a maximum brightness:darkness ratio of at
least 1000:1). Thus TV images containing of shadowed regions
may have splotches of maximum bright or dark, in which all spatial
detail and color information is lost. Color normalization will not
work in these areas. The second factor is less important, but easier
to work around. Nonshadow areas in our outdoor road scenes are
illuminated by direct sunlight, which has a more-or-less constant
spectral distribution. Shadowed regions are illuminated by skylight
and by sunlight reflected off surrounding objects (such as tree
leaves and tree trunks in our case). Thus the reflected color of a
shadowed part of a region Is ngt quite the same as the color
reflected from that part of the region in direct sunlight In practice
the difference is small enough not to matter for our classification
techniques.

Color normalization reduces the dimensionality of color
classification to two, in which case a bivariate normal distribution is
used as a color feature model.

3.5 Image Rectification
We have implemented programs for nonlinear warping of an

perspective of a road to transform it into a view (See what we would
see if we were flying over the road and looking down on it This
transformation, called imago rectification, produces a map-like
image In which the structure of the road is made explicit The result
Is an imago which is in vehicle coordinates and can bo used for
camera calibration, debugging of ground-plane operations,
detection of ground-plane features, and display of planned robot
paths.
3,5.1 Definition

Figure 6 shows the process of image rectification, ft is most easily
described by considering a rectangular grid projected onto the
qmund plane. Grid points can be considered as pixels of the
rectified image. Rectification consists of back-projecting the grid-
points in the ground plane to the original image, in order to see
vtftat intensity value should be placed at that point Once the back-
prelection is computed, it is stored as a lookup table so that
autotquetit images can be rectified quickly.

Figure 7 shows ftm process of image rectification for a wide-angle
fiah-€y» tens. This tens is superior to a standard reflex lens (which
w® mum? model as a pin-hole) for imaging the road ̂ because the
road always remains In ^ew even when the vehicle makes sharp
Sums off the centerfine. The point ( - 1 . / / ) on the ground plane
Is first projected onto me unit sphere centered at tho origin, then
psjpeiidetjfaHy to mm fmaoe pfime which is tangent to We sphere at
CEL& 11 The overall tran^ormafiori is

This transformation is more useful if it can be done quickly: we
anticipate carrying out this transformation on the CMU Warp

VANISHING POINT

IMAGE
PLANE

Figure 6: Image Rectification for PSn-Hole Lens and
Determination of Camera Tilt

GIOtTWD PLAKl

wtars A m the rectified image and C is the original image.

Figu re 7: Image Rectification for Rsh-Eye Lens

3.5.2 Camera calibration
The Image rectification process (for the pin-hole lens model) can

be used for camera calibration. By "camera calibration- we mean
deriving-the necessary parameters for transforming image points to
the local ground plane around the vehicle. By Intersecting a pair of
tines In the ground plane around the vehicle a point on the horizon
(vanishing line) can be detected. Note that the actuhi horizon need
not be In view, only a pair of lines in the local ground plane. In fact,
the lines need only lie In any plane parallel to the ground plane,
except the planes containing the camera axis. In practice we use a
pair of forward-pointing straight metal poles bolted to the side of
the Terregator as a calibration "hood ornament**. We hand-select
these points from a calibration image.

Once the horiron fine Is known, the tilt of the camera is easily
derived as in figure 6 Given the tilt £ of the camera and an estimate
of the camera focal length I, the transformation from ground plane
points to image points is obtained directly as in figure 6.

A second aspect of camera calibration is determining the x and y
scale factors for the image, where x indicates distance along an
axis parallel to the vehicle forward direction and y is distance along
an axis parallel to the wheel rotation axes. To measure these
parameters, we place meter sticks on the ground plane in camera
view, digitize and rectify a test Image, and then measure the lengths
of the meter sticks along tho x and y dimensions.

3,6 Warp Runs
In test runs of an outdoor robot vehicle, the Terregaton under

control of the Warp computer, we Stave demonstrated continuous
motion vision-guided road-foiowing at speeds up to 1.08 Rm/hoor
with irnase processing and steering servo loop times of 3 sec.
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3.&.1 Warp Hardware Description
The Warp machine has three components: the Warp processor

array, or rimply Warp, the (rtterfice will, and the host, as depicted
In Figure a W© detcribe this mchme only Wefiy here; more detail
is tw««Wtt separately fij. Hit Warp processor array performs the
bufc of the compttfatioffiin this case, tow-few! vfetoo routines f2).
The interface unit handles (he input/output between the array and
ihe host The hoet tm two functions: carryfrto out high-level
appIoitJcw rwitfe«s and supplying data to tie Warp processor

The Warp prommof array & * prografprtwbfe; or»4lmensional
•ysioic «rr«yt In which afl cetit are rtpicw of each other. Data
Hew through (he my on tm dtta paths (X and Y), «Mt» addresses
end ayetoOc control sffimis travel on Che Adr path (as shown in the
F§gw« a). "Hit Warp edit ere sptcfafced for floating-point
openxuoaa. The data path erf i Warp cefl is depicted in Figure 9,
Eich c«ft containe two Aoeting*point processors: or» muitipder and
one ALU (8J, These are MgNy pipelined; they mch can deliver up
to 5 MflOPS each, This pexiommice translates to a peak
pmtcsafeg mm of 10 MFLOP8 per erf or 100 MFLOPS lor a 10-cef
^'zzm^z*- mmy. To wummm iirt ctela am be mippiM at the rate
tfwy mm cmmMm4$ m epmmd teffor is dedicated to ecch d the
atitftmettc wite, w^ a om^m h w®4 to support Wgh kitra-ceR
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averaged together individually to find the estimated
road edges. An earlier approach was to find the left
edge by finding the first long sequence of ones moving
to the right from the left side of the image and the right
edge similarly. This did not work as well as the second
approach, since the vehicle tended to steer into the
center of forks in the road,

8. Steering. Our servolng strategy is to steer the vehicle
to keep' the center of the road centered In the image.
Basically we start with a large (512 x 512) image array
and reduce it as quickly as possible to a point (x, y).
This is the point considered to be the center of the road
some fixed distance in front of the vehicle. It is also the"
point to which the vehicle steers. Assuming that the
center of the image is the point (0. 0)% the steering
command is to turn left or right at some dr/dt • yx
where y is a gain constant related to the distance
ahead imaged and to vehicle speed, dr/dt Is rate of
turn of the vehicle (giving path curvature) in degrees
per second. See [6]for details.

3.6.3 Hardware Configuration
In addition to programming an efficient road following algorithm

on Warp, we have made improvements in our video transmission
system and vehicle interface that have increased the reliability of
our system and further reducted time between image digitizations.
Time reductions between in the image processing cycle increase
the servo rate of the vehicle steering control loop, and enable the
vehicle to drive at higher speed

We chose to digitize the image of the blue band only, in order to
obtain the highest possible contrast between the test road and the
surrounding grass in tfwi image. Since grass absorbs almost alt
blue Sight and the asphalt road reflects a lot of blue light the TV
Image in the blue band shows a very bright road surrounded by very
dark gross. The blue filtering of the signal is tied to the particular
road on which we are testing the vehicle. The next step in
hardware configuration Improvement is to selectively digitize the
red. green and blue bands and to combine them using our Matrox
frame buffers and the Warp.

4. Conclusion
We have presented a comprehensive view of a vision-based road-

fcitowmg system for an autonomous vehicle. Various parts of this
system exist and have been tested both off-line on -canned-
Images and during real-time tests using the Terregator.

An overall picture of our system can be seen by considering the
path of a single image through me entire processing loop. First, the
Map module announces a set of predictions for the current scene,
knowing the vehicle's position. The Vision module then
dynamically applies color and texture segmentation techniques to
extract the predicted road region. An oriented edge tracker uses
iht geometry of me extracted road region and the predicted
interest segments to either localize the position of the road or reject
me region and report failure. If road or intersection region
detection Is successful, Jhe Navigator is alerted and generates a
steering plan from me road region, if riot successful* the Vision
system halts and signals the blackboard so that another module (or
person) lo tafce control. The steering plan is received by the low-
feral motion control module, which interfaces to me vehicle's gyros
zrt rftaft encoders and executes me steering strategy.
73mes*antps on data caff led through me entire system enable the
vofttete to be controlled in real time, with oW steering plans aborted
m tht Nawgator creates new ones. To work for continuous motion

road-following even at the slowest speed the Terregator has run in
any road-follQwing experiment (10 cm/sec) the entire processing
loop must complete every 10 seconds.

Warp has proved to be a useful high-speed processor for vision
tasks. An important advantage of Warp over other image
processing computers is its floating-point capability. Many of the
processes we have discussed, such as image rectification, color
segmentation, and oriented edge tracking, are Implemented as
floating-point algorithms and can run efficiently on Warp. Using the
Warp, we have already demonstrated one efficient and robust road-
following algorithm.
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Pulsewidth Modulation Control of Brushless DC Motors
for Robotic Applications

PATRICK F. MUIR, STUDENT MEMBER, IEEE, AND CHARLES P. NEUMAN, SENIOR MEMBER, IEEE

Abstract—Pulsewidth modulation (PWM) control of brushless dc
motors is implemented with digital servo mechanisms for robotic
tppiications. Under the assumption that the poise period is much smaller
than the motor time-constants, the motor is modeled by a discrete-time
transfer function with the pulsewidth playing the role of the control
signal. This model enables the application of classical linear control
engineering to die design of a digital position servo for the brushless dc
steering motors on the CMU Rover. The controller is implemented with a
microprocessor and programmable timer to calculate concurrently the
actuating signals, time sampling periods, and pulsewidths, as well as to
provide commutation. Computer simulation and real-time hardware
implementation of the servo demonstrate the efficacy of the approach.

i. INTRODUCTION

HT HE DESIGN and implementation of digital servo control-
"*• tes for brushless dc motors, utilizing pulsewidth modula-

tion (PWM), has become a significant control engi-
neering task because of the desirable characteristics of these
motors for robotic applications. Brushless dc motors (using
samarium-cobalt permanent magnets) are appropriate for
robotic applications because of their high torque-to-weight

Maracrif* received April 25, 1984. This paper was supported by an R. K.
MsHkm FeEowship granted to P. R Muir by Carnegie-Mellon University, the
Office of Nsval Research under Contract NO0O14-8I-0503, and the Depart-
meat sf Electrical and Computer Engineering, Cansegie-Mellon University.

flie mshors SSG with the Department of Electrical and Computer Eagiiieer-
s g , Carnegie-MeHon University, Pittsburgh, PA 15213.

ratio [1], ease of computer control, efficiency, and simple
drive circuitry. Semiconductor power transistors can drive the
motor directly from a microprocessor. Power transistors
operate most efficiently in a switching mode. Velocity control
of a brushless dc motor is accomplished (in the switching
mode of operation) by the PWM of the stator coil voltages.

If the motor position is measured by a digital shaft encoder,
the feedback control system, with the exception of the motor,
is digital. The brushless dc steering motors on the CMU Rover
[2] (described in Section HI) exemplify such a system. The
Rover is a mobile robot which rolls on three wheels that are
actuated by brushless dc motors. In this paper, digital servo
controllers are designed using PWM to provide mobility. The
steering motors are modeled, position controllers are de-
signed, and die control system is simulated and implemented
in hardware. Simulation and experimental results demonstrate
that the design goals of zero overshoot and a 100-ms settling
time are achieved.

The PWM control of a linear analog system is assessed.
Under the assumption that the pulse period is much smaller
than die time-constants of the system, the system can be
modeled by a linear discrete-time transfer function, with the
pulsewidth playing the role of the control signal. This model
enables the application of classical control engineering [3]-[6]
to the design of pulsewidth-modulated systems for the control

0278-O046/83/Q8G0-G222$01.0O © 1985 IEEE
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of braUessand conventional brushed dc moms, and etectro-
magoetk solenoids.

This paper Is of^anized as Mows. The operation of
brnsisiess dc motors h reviewed in Section II, and their
application m tbe CMU Rover is described in Section EL
PWM control o€ linear mlog systems is highlighted (in
Section IV) and applied tc model the steering motor on the
Ttmr wmg experimental dm (m Section V). This modeling
process a d the ensuing controller design are accomplished

m tbe discrete-tune domain, An algorithm is then
for tsinrfbmifig the discrete motor model into an

egiforiaat m 2: a sampling period which is different than
the ttmpiig period of the experimental data, since die
smplag pence erf the controller is not specified at the

& f i stage Cer^CJently; when a loworder transfer
identified from the original data, the modeling

apoiiieiM wed aot be tepefied ax the controller sampling
period to feSdmtity He nsodtel

Gs^roier design (stdwlng the choice of sampling period)
mined in Section VI. The contrcUer sampling period is
d g d i» terns of proce»lig toe, motor response time,

ofaiicm, mi timer operational Bntaticm. Because
exceeds; one-half of die sampling

process isg cissc is nratpofiitod (as a computational
dd t thereby Iscreasiiig the

©tier «f te qnMft. iio^mmMm m the control system
leased ty Mclta, motor s u n t k , and position quastiza-
tktt) 'Vi negjc^dl ib tfee costrolcr design. Controller gains
mm cr inted m mUdj 1m dwip gods of woo oveohoof and
a lvDa>^^s licSiijiJiiii suss* jifie iWCBMftBffPonflc o* titic c»osefl"xOOP
^isrol sj s^S'i, ^sinj th&s£° guns, s sinMl&isd m the presence

ft© pfiios»«« ipeci&^itti (h ±e p ^ ^ ^ of
,*. ,.,wâ ^™™.*.,»J-Sj m< selected 'for ihc kardwars^ evaluation.

The l i l i v i zzipitzT&tz&dvn of the cootroller is evaluated
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pcn:{x!s, and to provide
t e r n
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mm.

and current amplifiers), or, more simply, by adjusting the
current duty cycle (using power transistors and PWM). To
reverse the direction of rotation, the stator windings are
scquenced in reverse order, rather than reversing die current
polarity.

Even though the operation of a brushless dc motor is more
complex than thai of a conventional brushed dc motor,
practical advantages accrue. The removal of heat produced in
die windings of brushless dc motors is more easily accom-
plished because die path to the environment is shorter.
Problems with brushes, such as wear and brush noise, are
eliminated. Brushless dc motors require mjnjfn î interface
circuitry for microprocessor control. Power transistors are
operated in a switching mode, as coil drivers are more
efficient than the analog power amplifiers used with conven-
tional motors. Minimizing weight and power consumption is
essential for mobile robots because die capacity of self-
contained power sources is limited. Disadvantages of brush-
less dc motors are the need for electronic commutation, its
high cost, and low availability. As die demand for brushless dc
motors grow, these motors will become more available and
less expensive.

ID. THE CMU ROVER

The CMU Rover [2] is a mobile robot currently bong
designed wad constructed in the Robotics Institute of Carnegie-
Mellon University, Pittsburgh, PA. The CMU Rover is
cylindrical in shape, 1-m tall, ami 55 cm in diameter. Mobility
is provided by three wheeb upon which the robot is supported.
Thee bnishless dc steering motors [8] control the orientation
of the wheels and three additional brushless dc drive motors
controi the rotation of the wheels. The motors are directly
coupled to the wheels. A Motorola 6805 microprocessor [9] is
dedicated to the control of each motor. Servo reference
positions are communicated to the individual motor processors
via a common serial line from high-level processes [2]
executing CM independent onboard processors. Power MOS-
FET devices drive the motor coils from the microprocessor
output ports through optoisolators which protect the processor
froin electrical noise generated in the motor. The motor shaft
position is fed back to the processor via a digital shaft encoder

IV. PWM OF A LINEAR SYSTEM

There we practical; why die dynamic models of dc
: Ix: applied directly to mode! the motors on the

CMU Rover. Although many of the characteristic parameters
we potided by the motor nnonftcturav tare mt parameters
(tvg,, tht moment of inertia of ih load. Motional torque, and
damping constant) thai must be obtained experimentally alter
tht motor & hi l t into the robot. Furthermore, the input to a
a w r a ^ m l dc wmmx is the volume applied to the motor
wiwtap; whereas, tic wMMgt ptflsewiirti phys the role of the
iepl for a ototor .emmikd wttstg PWM.

Hie PWM control at mmm k oityxed for the;
noiel rf ±* JVinator linear tta»4Bmriuc i

IOA 3f" (1)
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L»(nT)i

nT (n+2)T

Hg. 1. Pulscwidth modulation.

where the (N x 1) state vector is x and the scalar input is u.
The (AT x N) motor matrix is A and the (N x 1) input vector
is ft. The solution of (1) is [5]

exp{A(t-\)}bu(\) dk

(2)

where exp {At} is the matrix exponential [3, 5].
The scalar pulsewidth modulated signal u{t) is shown in

Fig. 1. The input t*(/) is the constant K (volts) for the fraction
s/T of each period, and zero for die remainder of each
period* The pulsewidth is the magnitude of the control signal
and is, therefore, positive. Negative control signals reverse the
commutation sequence of the motor (as discussed in Section
VI). The goal is to find conditions under which (2) is linear in
the pulsewidth s. The digital controller samples the states at
discrete-time instants. Instead of the continuous state vector
x(f), attention focuses on the state vector x(nT) at the
sampling instant nTf where T is the constant sampling period
and n is the iteration index. In (2), the sampling period, from t
« nT to / = ( / ! + l )r , is divided into two subperiods. The
first rum from tQ « nT to t - nT + s(nT); where the
pulsewidth s(nT) can vary from sampling period to sampling
period, ami the pulse height is constant. In the second, from t0

= nT + s(nT) to / = (n + 1)7*, the input«(/) is zero. Thus

(3)

(4)

exp{A\} dk b

j$(n +1)7]

Upon substituting (3) into (4), the state-vector x[(n + 1)71, at
the (» + l)ih sampling instant, is related to the state-vector
jeQn T) according to

JCH« +1)7]

+JT

Ik b. (5)

Tocoztzzz the development, the matrix exponentials in (5)
^sposbinied b>' theW frst-order series expansions [4];

^ f tip {At} m I + i4£t under the assumption thai the

sampling period Tand consequently the pulsewidth s(nT) <
r are much smaller than the system time-constants. In first-
order systems, this assumption ensures that the scalar expo-
nential exp{T/r} can be adequately approximated by 1 + 77
r, where r is the system time-constant. By applying a
similarity transformation [3] to diagonalize the system matrix
A, the first-order condition generalizes for approximating the
matrix exponentials in (5). Upon substituting the first-order
matrix approximation and retaining the linear terms in s(nT),
(5) leads to

1)7] = {7+v4 T}x(nT)+Kbs(nT) (6)

where / is the (N X N) identity matrix. The discrete state-
space FWM model in (6) is linear in the pulsewidth s(nT)
which plays the role of die control signal. The state, and hence
the outputs (which are linear combinations of the states),
depend linearly on the pulsewidth s(nT). The only assumption
made in leading to (6) is that the sampling period is much
smaller than die time-constants of the system. This assumption
is practical because conventional digital control systems
operate on a sampling period which is much smaller than the
response time of the system under control. This engineering
assumption and interpretation of the linear model in (6) lay the
foundation for the design (in Section VI) of control systems for
die motors CM the CMU Rover.

V. MODELING THE STEERING MOTOR

A. Introduction

The framework of Section IV is applied to the practical
problem of modeling the brushless dc steering motors on the
CMU Rover. The analog transfer function, from input voltage
to output velocity of a dc motor is linear [7]. Consequently, the
motor under PWM control can be characterized by the linear
discrete-time state-space model in (6), and a corresponding
linear transfer function, from pulsewidth to velocity, if the
sampling period is small compared to the tune-constants of the
motor. Since the motor parameters are unknown, experimental
data are acquired (in this section) to identify the discrete-time
model. The order of the model is chosen to ensure acceptable
accuracy, without increasing the complexity of the servo
controller.

B. Experimental Data

The velocity step-response of a steering motor is easily
measured and sufficient to identify the transfer function (from
pulsewidth to velocity). Velocity measurements are acquired
every 2 ms, since this is a convenient sampling period to
implement. Data are taken until the step-response settles (160
data points are stored for model identification). The dominant
time-constant of the motor is found to be 58 ms. The motor
exhibits nonlinear saturation at tic maximum velocity (6.25
revolutions per second) am! a frictional dead zone at small
command ioputs. The data used to identify the model MZ taken
at a command value that is within the active linear range of
motor operation. The transfer function selected to mode] the
motor has the simplest structure which closely approximates
the experimentally obtained step-response of the motor.
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Fig. 2. Steering motor model.

C. Model Order
The input-output transfer function of a conventional or

brushless dc motor, from voltage input to velocity output is
second-order [7]. The discrete model (6) of the motor under
PWM control is also second-order. One mode of the motor
dynamic response is characterized by its mechanical time-
constant and the second mode by its electrical time-constant.
Since the electrical time-constant of the motor is much smaller,
than the mechanical time-constant, a first-order model should
be sufficiently accurate for controller design.

First- and second-order discrete-time transfer functions are
introduced to model the steering motor (from pulse width input
to velocity output). The first-order transfer function is

Kiz~l

and the second-order model is

(7)

(8)

A computer prograin was written to simulate the step-response
of these models using user-specified model parameters (i.e.,
Ku ami p: and K2i z®> P\ and p£. The program calculates the
accumulated squared-error between the simulated output of
each model ami the experimentally obtained step-response.
Hie user systematically adjusts die model parameters to
reduce the accumulated scjuaxed-error for both die first- and
second-order models. Finally, tbe nmrfffm* s^uared-errcr of
the first-order model is compared with the minimum
error of the second-order model to decide whether tbe second-
order model is significantly more accurate to warrant the
additional implementation^ complexity.

Tbe second-order model of the steering motor produces a
squared-error which is only 4,7 percent less than thai of the
first-order model. This small improvement, in our opinion,
does wot warrant its corresponding increased complexity.

D. Identified Steering Motor Model

Tbe transfer function model G:(z'v) of the steering motor,
which is wed in the controller design (m Section \T), fa
depicted in Fig. 2. Tbe motor velocity is measured in units of
shaft encoder counts (there wet 2n « 4096 counts/resolution)
per sampling period (2 ms). The mods! has a dc ggk of 0.187
and a pole at z •* 0.966 corresp0Bdisg to a time-constant of 58
ins. Hie second-oider model has the same dc gain, poles at z
= 0.965 and z = 0.436 f correspcndisg to tine-constatf! of
56 ms arni 2 ms, respectively}, and a sero ate = 0.397. Siooe
thepekat - ^
pole m z - 0.965, which mmchm the pole of the
model, die response of ibe frst^rd? r model closed resembles
thai of Lht

£. Sampling Period of the Model

The sampling period of the motor controllers is not
specified when experimental data are collected to model the
motors. The controller sampling period may differ from the
sampling period of the experiments. Since a discrete transfer
function model of an analog system is an explicit function of
the sampling period [11], the discrete motor model used in the
controller design must correspond to die controller sampling
period.

To change the sampling period of the motor model, the
discrete transfer function G\(z~l) in (7) is assumed to be the
step-invariant transformation [11] of the first-order analog
transfer function

w + l
Tims

and

(9)

(10)

(11)

When die sampling period is changed from 7* to Tu the
digital transfer function in (9) becomes

where

and

(12)

(13)

(14)

VI. CONTROL SYSTEM DESIGN

A. Introduction

The objective of this section is to design a position servo for
the steering motor. The linear discrete-time transfer function
model identified in Section V enables die application of
classical linear control engineering to PWM controller design.
The design goals are zero overshoot ami a 100-ms settling
time.

B. Sampling Period

Motor du ^eristics and pi apabilities lead to the
selection of the controller sampling period. The controller
must operate with a sampling period lhat is much smaller
(e.g., 10 times smaller) tfcynt the motor time-constants, so tint
the pulsewidth-modiilafed motor cm be modelled by the
discrete transfer fimcdon in 1%. 2. Since the time-coiisiar/, of
the steering niotor is 58 rns, the ccntrcHer sampling penod
should »3t zxc&sc 5.8 ms. Exzciitiori of a prototype servo
program is timed and found to set i lower limit at dc
sampling period a! 1.2" ms, because the program must be able

within each sampling potod. Tbe
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Fig. 3. Steering motor position servo controller.

sampling period is also limited by the precision of velocity
calculations. Velocity measurement precision is l ow if the
sampling period is small, because velocities are calculated as
the difference between position readings at successive sam-
pling periods. By experimentation with the prototype servo
program, the lower limit (1.85 ms) on the sampling period is
found to provide sufficient velocity precision and thereby
avoid undesirable nonlinear quantization effects which result
in jerky motor operation. The controller sampling period of 2
ms is chosen because it satisfies the aforementioned con-
straints and because it is convenient to implement sampling
periods that are multiples of 0.25 ms with the programmable
timer. Since the pulse period of the PWM is one sampling
period, the choice of 2 ms as the sampling period guarantees
that the linear modeling assumption of Section IV (i.e., the
pulsewidth is much smaller than the time constant 58 ms of the
motor) is satisfied.

C Control System Structure

The position servo (in Fig. 3) is implemented by incorporat-
ing position and velocity feedback. The control signal is the
palsewidth modulated voltage applied to the motor coils. The
pul sewidth In the mh sampling period is the magnitude of s(n),
where

(15)

sod where

- 1)
Pin- 1)

E^n-l)
- 1)

*,

current reference motor position,
current shaft position as read from die shaft
encoder,
current position error,
current velocity calculated as [P(n — 1) —
Pin - 2)],
position gain (in Section VI-D),
velocity gain (in Section VI-D).

The position and velocity gains Kp and Kh control die
fcUBSaeat response of the servo. The height of each pulse is
constant CM V) and the pulsewidth is calculated as die
magnitude of (15). The sign of (15) specifies (in Section VK)
te motor ceil commutation sequence. This is analogous to

• polarity of the voltage appl led to a brushed dc
The delay z'1 is introduced in the forward path to

• o d d Ac d r a i n time of the controller program. The
cdtariMm of the control signal is not completed until 1.27 ms

inputs are received, due to die program execution

time (as explained in Section VI-B). To ensure that the
actuating signal is synchronized with the sampling period, the
calculated control signal is stored until the beginning of the
next sampling period, when the magnitude of the control
signal is used as the pulsewidth and the sign specifies the
commutation sequence. The motor parameters K{ and p are
calculated at the controller sampling period of 2 ms using the
formulae in Section V-E, In this design, the controller
sampling period and sampling period of the modeling experi-
ments coincide and the transfer function in Fig. 2 is applied for
the controller design.

D. Gain Calculation

The closed-loop transfer function of the position servo (in
Fig. 3) is thiid-onier

- 2

(16)

The controller gains Kp and Kv are calculated to meet the
design specifications of zero overshoot and a 100-ms settling
time. The transfer function in (16) is factored into the cascade
of a second-order component and a first-order component

-i ~-i

where

The objective is to force the critically damped second-order
component (with two equal real poles at z = a) to dominate
die closed-loop response. The closed-loop system is thus
designed to respond as fast as possible without overshoot. By
equating (16) and (17), the third system pole p3, feedback
gains Kv and Kpr and gain K3 are computed in terms of a and
the motor constants K{ and p according to

Km-

Kp-

and

(18)

(19)

(20)

(21)
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Kg. 4. Simulated step-response of steering i tion servo.

The settling time of the closed-loop system is then calculated
from (17) for different values of a. The servo gains Kp and Kv

are calculated from (19) and (20) for values of a which
produce settling times less than 100 ms. The choice of gains is
finalized by simulating the control system, with the calculated
gain combinations, on a computer in the presence of nonlinear
motor saturation and quantized position feedback values. Hie
feedback gain values

K=32andKp=3 (22)

provide acceptable simulated response characteristics and
satisfy the design constraints in computer simulation. The
value of a = 0.838 (corresponding to a time-<x)nstant of 1L3
ms) is substituted into (18) to calculate the location of the third
poie/?3 = 0.290 (corresponding to a time-constant of 1.6 ms).
The third pole thus responds much faster than the two equal
dominant poles, as desired.

E. Control System Simulation Results

The simulation program implements the block diagram of
Fig. 3 to calculate (at discrete time instants) the step-response
of the steering motor servo. The simulated step-response of
die steering motor position servo controller, using the gains in
(22), is shown in Fig. 4 . Hie step-response does not overshoot
and displays a iOG-ms settling time, and thus satisfies the
design specifications (with zero steady-state error).

W . HARDWARE IMPLEMENTATION AND
EXPERIMENTAL RESULTS

A. Hardware Overview

The steering motor coateoier it implemented as as assem-
bly laiiginge program mmung in real time on a Motorola 6805
micropi'occssor. Reference posinoBS Me c^^wfiffffKî fd (over
a serial communication link) to the processor from high-level
processors. The processor communicates, the pulsewidih-
roodutocd control signal to the motor vis EB output port to ihe
wnoum c o i drivm. T ie motor daft poiitiait is fed back io the
input port of the processor from sn optical shaft encoder. In
each n a m i n g period, the program calculates dse pdsewidsfa
asd the motor ooB excitation jMttent, md prexfaoes a pulse-
wi&±~mod*dizi2C sigrai to control ifae -

B. C^mtmBer Proprnn

Two ;
the servo IHOVWI • 1^* 5* Tht own roiiUBc M

shcwii in the

• progfE

of
the

width), and requires approximately 1.27 ms of each 2-ms
sampling period to execute. The interrupt routine handles only
those functions that require accurate timing, such as reading
the shaft encoder, sending signals to the motors, and control-
ling the timer. The software is structured so that the most
urgent tasks (those serviced in the interrupt routine) are
processed when necessary, and the tasks for which timing is
not critical (those serviced in the main routine) use the
remaining processing time.

The programmable timer is used to time the pulsewidth and
sampling period, and synchronize the control signals in the
following manner. The timer is loaded with the pulsewidth
(which was calculated by the main routine in the previous
sampling period); and die proper motor coils are energized by
loading the microprocessor output port with the excitation
pattern (die excitation pattern was also detennined by the main
routine in the previous sampling period); and die position of
the motor shaft is stored. The timer counts down die
pulsewidth, while the main routine calculates the pulsewidth
and coil excitation pattern for the next sampling period. When
the pulsewidth has elapsed, die timer generates a hardware
interrupt to the processor. The processor immediately stores
the present state of execution of the main routine and begins
executing the interrupt routine. The interrupt routine calcu-
lates the time remaining in the sampling period, loads this
value in the timer, and turns off all of the motor coils by
storing a 0 in the output port. Control is then returned to die
main routine, which resumes execution at the point at which it
was interrupted. After the programmable timer has counted
(town the remaining time in the sampling period, a second
interrupt is generated. By this time, the main routine has
completed its calculations, and the cycle repeats each succeed-
ing sampling period.

Implementation of the multiplication operation in assembly
language code is accomplished using shift and add instruc-
tions. Addidon and subtraction of 12-bit quantities on the 8-bk
processor is acMeved by double-precision calculadons. Calcii-
ktions involving cyclical shaft position readings must be
checked and corrected for wraparound errors. Position read-
ings mm& Ik within the range 0-4095, If the calculated
position error is outside this range, a multiple of 4096 must be
added to or subtract^ from the value (as appropnate), to bririg
the result within tht allowable range. A similar correction
procedure must be executed if the calculated velocity value is
ou^ide of the range - 2 0 4 8 i® 2018.

H e main program kqiaoealg electronic commutation of
the motor coil voliages by a table look-up to detenrune the
excitation pittcm which produces the n a n n torque m uis
desired direction for the present daft peskier The table is m
list of ranges of ititft posino.is; each wA tm assoe^t^j
Bsotor-coil excit&iloa prttmK. The first excitation pattern!
produces wmxkmm motor lorqut m the ci oekw ;se ii»ctiG& if
the motor position is wiitia i te ian§e. The second produces

te torque IE the cmniztdcck^isz dirt^zz'n, Ibe
mz:zt in wfakfa a shan pmMm CKXSTI h id

the glnft p o ^ t e w ^ i » range bonadtff
ctkalatioot m i tope wfcich produce die amor col

<Le.f aranattticm) (ix»v pulse-
tkm. If ifce ititft posikiii k fwte* * « or tquri

cf t r^ge mmt lt^ thar, t ie upper f ikm
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START SERVO

X
Tn1t1«Hxe variables
Initialize I/O port and
timer control registers

T~ Has tht next tawpHng H noj
1 period begun? I

Set Sfalg - 0

Calculate the velocity.
V(n) - •(«) - P(n-lJ

Check for wrap-around

Calculate position *rr*r
Ep(n) - Rp(n) - f(n)

Check for vrap-arou«tf

Calculate actuating signs

1

L-fem actuating signal
«(*) frosi -150 to t§0

Look-up cell excitation
pattern using present
position and direction

vL
Update past position

- ._ ., ,. ,.. J

Main Routine

on

TIMFR

, — J

Are motor

INTERRUPT

rolls to be
turned on or off ?

^ Cflag -• 1 or 0 ? |

r— ^ — - ^dlLJ Is the actuating signal]

Load tiner «1th time
remaining 1n this

sampling period

Turn motor colls off

Set Cflag - 1

rTstfce actui
L^^^ieroT J

Load timer with vtlue of

actuating signal

X
Send co11 excitation

pattern to motor
(Turn colls on)

X
Read the shaft encoder

1
Set Sfalg • 1
Sot Cflag - 0

J
RETURM FRO

Intcrrup

(

I
M iNTtintirr

t Routine

Fig. 5. Flowchart of assembly language servo program.

40 mo m too
ting Periods (T' 2 ms)
J of steering mote

the shaft position is in dial range. The excitation value for the
desired direction of rotation is read from the table under the
tatty for A M range.

C Experimental Results

A typical experimentally obtained step-response of the
stserisg motor servo controller (with the Rover stationary and
mly m e motor operating) is plotted in Fig. 6. The plot shows
that the servo msponse satisfies the design specificatioiis of
z o o cvershooi and 1100-ms setilmg time. The shape oi the
rrspo:sse is similar ID the simulated step-response {dot in Fig.
4 . tfebfaor f.ot exhibits third-<3rder characteristics, which

verifies that, by design, the third system pole p^ in (17)
responds significantly faster than the two dominant equal poles

VIIL CONCLUSION

The modeling, design, and implementation of a controller
utilizing a pulsewidtfa-modulated actuating signal is high-
lighted in this paper. A brushless dc moioi (actuated by a
pulsewidth-modulated signal) is modeled (using experimental
data) as a discrete linear system whose control signal is the
pulsewidth, under the assumption that the pulse period is much
smaller than the time-constants of the motor. The controller
sampling period and PWM pulse period are equal in this
implementation. This model enables the application of classi-
cal linear control engineering to the design of a digital
controEer for the motor.

A position servo controller designed for the steering motors
on the CMU Rover meets the specified performance objec-
tives. The controller is implemented on a microprocessor
which uses a programmable timer and an interrupt driven
routine, and calculates the pulsewidth, provides commutation,
ami times concurrently the sampling period and pulse width.
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Simulated and experimental step-response data demonstrate
that the desired servo operation is realized.

The servo can be enhanced by measuring the shaft encoder
pulse period to provide a more precise velocity measurement
[12]- The position servo on the CMU Rover steering motors
has recently been modified to servo simultaneously to a
desired position tad velocity [13]. The framework of this
paper am be applied to the PWM control of hrushless dc
motors for robotic manipulators, conventional bxushed dc
motors, and electranagisetic solenoids.
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Kinematic Modeling

Of Wheeled Mobile Robots

(A Summary)

Patrick F. Muir t and Charles P. Neuman t

Department of Electrical and Computer Engineering

The Robotics Institute
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Pittsburgh, PA 15213

Abstract
We summarize our methodology for formulating the kinematic cquations-of-motion of a wheeled

mobile robot. The complete paper[l], which is currently being prepared for publication, is over

one-hundred pages in length. Wheeled mobile robots having conventional, omnidirectional, and

ball wheels are modeled. While our approach parallels the kinematic modeling of stationary ma-

nipulators, we extend the methodology to accommodate such special characteristics of wheeled

mobile robots as multiple closed-link chains, higher-pair contact points between a wheel and a

surface, and unactuated and unsensed degrees-of-freedonu We apply the Sheth- Uicker convention

to assign coordinate axes and develop a matrix coordinate transformation algebra to derive the

equations-of-motion. We calculate the forward and inverse solutions and interpret the conditions

which guarantee their existence. Applications of the kinematic model are also described.

* Graduate student, Department of Electrical and Computer Engineering; and Member, Autonomous Mobile

Laboratory, The Robotics Institute.

®£ Electrical and Computer Engineering.
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1. Introduction

The wheeled mobile robot literature shows that the documented investigations have concen-

trated on the application of mobile platforms to perform intelligent tasks rather than on the develop-

ment of methodologies for analyzing, designing, and controlling the mobility subsystem. Improved

mechanical designs and mobility control systems will enable the application of WMRs to tasks were

there are no marked paths and for autonomous mobile robot operation. A kinematic methodology

is the first step towards achieving these goals.

Even though the methodologies for modeling and controlling stationary manipulators are appli-

cable to WMRs, there are inherent differences which cannot be addressed with these methodologies,

such as:

1.) WMRs contain multiple closed-link chains; whereas, manipulators form closed-link chains

only when in contact with stationary objects.

2-) The contact between a wheel and a planar surface is a higher-pair, whereas, manipulators

contain only lower-pair joints.

3.) Some degrees-of-freedom of a wheel on a WMR are not actuated or sensed; whereas, all

degrees-of-freedom of each joint of a manipulator are actuated and sensed.

Wheeled mobile robot control requires a methodology for modeling, analysis and design which

extends the principles applied to stationary manipulators. In this paper, we advance the kinematic

modeling of WMRs, from the motivation of the kinematic methodology, to its development and

applications. In Section 2, we present the three wheels (conventional, omnidirectional and ball

wheels) utilized in all existing and foreseeable WMRs. We present a definition of a wheel mobile

robot and enumerate our assumptions in Section 3. Coordinate systems are assigned to prescribed

positions on the the robot (Section 4). We develop transformation matrices to characterize the

translations and rotations between coordinate systems (Section 5). Matrix coordinate transforma-

tion algebra is developed as a means of calculating position, velocity, and acceleration relationships

between coordinate systems in Section 6. We apply the axioms and corollaries of this algebra to

model the kinematics of WMRs.

The equations-of-inotion relating robot positions are developed in Section 7, and we develop

the velocity and acceleration relationships in Section 8. We relate the motion of a wheel to the

motion of the robot body by calculating a wheel Jacobian matrix. From the simultaneous motions

of the wheels, we obtain the motion of the robot in Section 9. Specifically, we obtain the inverse

solution, and the forward solution. We discuss the application of the kinematic methodology in
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Section 10 and summarise tbe kinematic modeling procedure in Section 11. We outline our plans

for continued research in Section 12*

Many sections and details of the original paper had to be omitted from this summary for

brevity. The full paper contains: a survey of documented WMRs, detailed derivations of the

inverse and forward solutions, detailed applications, the development of the kinematic model of

several example WMRs, and a nomenclature and symbolic representation for WMRs. Further

details on the topics presented in this summary are also included.

2. Wfaeel Types

Three bade types of wheels are used in WMRs: conventional, omnidirectional, and ball wheels.

In addition, conventional wheels often are mounted on a steering link to provide an additional

degree-of-freedom. The degrees-of-freedom of each wheel are indicated by the arrows in Figure 1.

The kinematic equations relating the angular velocity of the wheel to its linear velocity along the

surface of travel are also compiled in the figure.

Hie soristeered conventional wheel is the simplest to construct having two degrees-of-freedom.

It §Uows travel along a surface in the direction of the wheel orientation, and rotation about the

point-of-contact between the wheel and the floor. We note that the rotational degree-of-freedom is

ilippage, since the potato-contact is not stationary with respect to the floor surface. Even though

we denne tbe relational slip as a degree-of-freedom, we do not consider slip transverse to the wheel

orientation a degree-of-freedom. because the magnitude of force required for the transverse motion

is much larger than that for rotational dip.

>mmmMmctim&t whmi has three degreefKrf-ftwdkxn. One dqpeeHof-fretdom is in the di-

rection ®£ the wheel orientation. The eeoond degree^sf-freedoiii u proidded by motion of rollers

inoiHtted anm&d tbe im^phery of tibe main wheel In principle, 0m roller axles can be mounted

at any mwivo angle f with roptct to tie wheel orientation. The tMrd degreeHaf-frcedoin fa rota-

tkmal dip about the pctetHotcimtact It is pogtlfeie, but act comnxm, to' actuate Ike rollers of an

wheel, with a complex driving arrangement.

The most maneinrcrafcle r\bee! is a left which is actuated to poem three

withoat dip. &h^»«' Jmm been devised for actuating mud wuing of 1ml wheebt but we

waaw«w^«ay eoditittf inpleBieiitetioM An omniclirttrticMial wlwd w ^ h fa iteered about its point-

of-coatact it M»'f»*licaif equivalent to a boll wheel, and may be m practical ctenigi! alternative.
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Conventional

Reference Coordinate Axes

• >

Omnidirectional

«,„,. p

Bal l

roller orientation

Wheel Degreee-of-Freedom

R tnd r

) w r Pcos(7j)

*>„

Legend

x and y components of the linear velocity of the wheel at the point-of-contact

2 component of the angular velocity of the wheel at the po1nt-of-contact

angular velocities of the roller about their axles

it, y, and z angular velocities of the wheel about Its center

angle of the roller axles with respect to the wheel orientation

radii of a wheel and a roller

Figure 1

Wheel Equations of Motion
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8. Definitions And Assumptions j
I

We introduce an operational definition of a WMR to specify the range of robots to which the :

kinematic methodology presented in this paper applies. i

Wheeled Mobile Robot - A robot capable of locomotion on a surface solely through the

actuation of wheel assemblies mounted on'the robot and in rolling contact with the surface. A wheel

assembly is a device which provides or allows relative motion between its mount and a surface on

which it is intended to have a single point of railing contact.

Each wheel (conventional, omnidirectional or ball wheel) and all links between the robot body

and tie wheel constitute a wheel assembly. We introduce the following practical assumptions to

make the modeling problem tractable.

Assumptions

1.) The WMR does not contain flexible parts.

1 Hie WMR moves on a planar surface.

£•) Tbmm m ser© or one steering Hnk per wheel.

4} AS fleering axes are perpendicular to the surface.

$4 The traadatianal friction at the point of contact between a wheel and the surface is large

«»gl i so that no transktional dip may occur.

€ The rotational friction at the point of contact between a wheel and the surface is small

« # so that rotational slip may occur.

4* CtowdliivUi System Assignments I

sgnrtem assignment k the first ftep in Hie Mnematic modeling of a mechanism.

(inch as ntvofcite and prismatic joints) function with two surfaces in

illative wtfiou, la contrast, the whmk of a WMR are higher-pain; they function ideally by point

contact Bteatase the A-Matrk« which model loampfiilalots depend upon the relative position

mi Cftaiaticiij of two wetetalw joints, the Peimvit-BartefibCTg convention leads to ambiguous

traarfOTamticm matrices in multiplt dosed-lixik thmm which are present

are pairs of roiapcmciits whom relative motions arc constrained by a
cannon surface contact; whereas, hightf-paars «re cvxistraiiied by poiot or lac contact.
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in WMIts. We apply the Sheth-Uicker convention to assign coordinate systems and model each

wheel as a planar pair at the point of rolling contact. This convention allows the modeling of the

higher-pair wheel motion and eliminates ambiguities in coordinate transformation matrices. The

planar pair allows three degrees of relative motion: x and y translation, and rotation about the

point-of-contact as shown in Figure 2.

Planar Pair Conventional Wheel

Figure 2

Planar Pair Model of a Wheel

This modeling of a WMR leads to the coordinate system assignments defined in Table 1 . The

floor coordinate system is a reference frame for robot motions. The robot coordinate system is

assigned to the robot body so that the position of the WMR is the relative translation from the

floor coordinate system to the robot coordinate system. The hip coordinate system is assigned at

a point cm the robot body which intersects the steering axis. The steering coordinate system is

assigned at the same point along the steering axis, but is fixed relative to the steering link. We

assign a contact point coordinate system at the point-of-contact between each wheel and the floor.

We define an instantaneously coincident robot coordinate system for describing motions (i.e.,

velocities and accelerations) of the robot relative to its own position and orientation. We also

define a function R[tm) which returns a coordinate system that is stationary relative to the floor

coordinate system and coincident with the robot coordinate system at the time t = tm:
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Table 1: Coordinate System Assignments

N Number of wheels on the robot.
F Floor : Stationary reference coordinate system with the z-axis orthogonal to the surface of

travel.

R Robot: Coordinate system which moves with the WMR body, with the z-axis orthogonal to

the surface of travel.

Hi Hip (for t = 1,..., N) : Coordinate system which moves with the WMR body, with the z-axis

coincident with the axis of steering joint i if there is one; coincident with the contact point

of coordinate system • if there is no steering joint.

Si Steering (for s = 1,..., N) : Coordinate system which moves with steering link t, with the

ds coincident with the z-axis of JSi, and the origin coincident with the origin of H{.

C% C@mt&£t Pmni (for i = 1,..., N) : Coordinate system which moves with the steering link

t, with tbe oripn at the poinl-of-contact between the wheel and the surface; the y-axis is

to the wheel (if the wheel has a preferred orientation; if not, the y-axis is arbitrarily

and the x-y plane tangent to the surface.

«wjly Coincident Robot: Coordinate system instantaneously coincident with the

system at the time i* and stationary relative to the F coordinate system (i.e.,

f i t tfct mhm of R i t the time f*; 1 = JJ j ^ . ) .

3J1 Imdmlmmmdf Coincident Contact Point (fm i = 1,,-^JV) : Coordinate system instanta-

:,>-...;„v ciiiiciclfifit with the Ct roordirate system at tbe time i" mid stationary relative to

tfct F mmOmMiB system (ie.» IT* = d }«»*•)•

T i t torttal&^midy cmacidottt rolK>t 'Coordinate system is thus a discrete sample of the con-

lobot woriiaate ^ s t ^ at tbe time 4*. Similarly, the in$t@mtam0%d§ coincident contact

coGNnfifiite qritant is coincident with tbe contM;t point coordinate system a t the time t = t*t

w d iUAkuurr f ^ ^ v e to tbe floor «»rdiiiate

Pt«reiM&t d tbe cwsriiaate wynttmM k iSnstrited in Figure 3, where we show a pictorial view

if * WMR. HOT • WMR witb N wbeeist we as«ga 4N+2 coordmate ^sterns to the robot and one

frame.
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Wheel 2

Floor

Figure 3

WMR Model Showing Placement of Coordinate Axes

5. Transformation Matrices

HoinogeneoiLS (4x4) transforinatioii matrices mm conventionally denned to express the position

and orientation of one coordinate system relative to another. The transformation matrix AHB

transforms the coordinates of point B r in coordinate frame B to the corresponding coordinates Ar

in th.e second coordinate frame A

Wt adopt the fcrowing notation* Scalar quantitiQi are denoted bj lower case type (e.g.. w).

V«eton mm IIWM^^ % lower caae Iwldfacc type (e.g., r). Matric^ are denoted by upper case

boldface (e*g.t II}* P»*«ii^^ript« denote rrferoice coor«Ba&te iystems. Hie pre-sup^scxipt may

be oauttad if the ddba&ag ax»rilnaie frwac is traaipareit from the discm^oo. Pmt-«ib«ripts may

be vmA to d ^ ^ « mordimie vysttnn or ^«ific compoacats of a vector cw matrix.

w« UM> between the coordinate ^sterns of our
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moddv we defbe in Table 2 nomenclature for rotational and translation^ displacements, velocities

and accelerations.

Table 2

Scalar Rotational and Translational Variables

A0B : The rotational displacement (counterclockwise by convention) between the x-axis of the A

coordinate system and the x-axis of the B coordinate system about the z-axis of the A

coordinate system, A$B = AVB and *B = A&B-

3 € [s,y, *]) : The translational displacement between the origin of the A coordinate

and the origin of the B coordinate system along the j-axis of the A coordinate

matrix in am WMR model embodies a rotation A#JJ about the z-axis

«x>rdm»tt qrrtcoi A and trandatkmB îjBxt ^ B » ̂ ^d A ^ B * along the resp-ective coordinate axes

(
0 0

0
Tfct aarifosmtt cf wowlkate ^ i toas nmltt in two typoj erf taransfonnation matric^ between

coodfatite ^ ^ w » : eiMAmt wd mrkkk. I b t faraorfOTnalkm matrix between coordinate system

Ikdl i t t m Hff««t ^^t ioM ca tibe wow Ink it omiiaait Uranrfwination matrices relating

tht ^ ^ a»dl MtotetiaD of coordinate ifBtani on different links include joint variable and

itrst art nriaUt. GonUat mi md»bh Ummhmmikm m&bkes are denoted by ATB and

M i t r k C#©t€i»«tt I t e w l b n a a t i m Algebra

1W htMMMtki of ^ t i « w y naaiptilaton a n cmv«tioiiaHy modded by explmting the pr

mtim of trattfarmatioa mitifett. Wo fiMnulbo tho maoi|naatioii of trantfwmatioii matrim

to p m c ^ of » M « t n m r i y c^^ i i t e t co«^imt« ^ t r a a by defining mains taonfmtfc Irw

plf A A ^ k c«it»ii of » n t of o p e r a s and a ^ t erf operations which may be
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applied to the operands. The operands of matrix coordinate transformation algebra are transforma-

tion matrices and the operations are matrix addition, multiplication, differentiation and inversion.

Matrix coordinate transformation algebra allows the calculation of the relative positions, velocities

and accelerations of robot coordinate systems (including instantaneously coincident coordinate sys-

tems) without physical insight. The following axioms define the special properties of transformation

matrices (i.e, those properties which arbitrary matrices do not posses).

Axioms

Cascade : AXIC = AHB B n c

Inversion : AHB = B n ^ x

Identity : AHx = I

Instantaneous Coincidence : (^11 A)It—*• = I

JXhe matrix coordinate transformation axioms lead to the following corollaries which we apply

to the kinematic modeling of WMRs.

Corollaries

Cascade Position : AUZ = A I 1 B BHQ CHD -••

Cascade Velocity : ^11* = AJlB
 BUZ + AUB

 BTlc
 CTiz + . . . + AHY

We make extensive use of the axioms and coroHaries of matrix coordinate transformation

algebra for deriving the wheel equations-of-motion.

7* Position Kinematics

We apply the transformation matrices and matrix coordinate transformation algebra to calcu-

late :Le following positional kinematic relations:
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1.) the position of a point r relative to one coordinate system A in terms of the position of

the point relative to another coordinate system Z, and

2.) the position and orientation of a coordinate system Z relative to another coordinate system

A.

Problem 1 is solved in (7.1) by applying the property of matrix transformation.

When the transformation matrix AHZ is not known directly, we apply the cascade position corollary

to calculate it from known transformation matrices in (7.2).

Anz = AnB
 B n c

 c H i > . . . Yuz (7*2)

We most determine whether there is a complete set of known transformation matrices which can be

cascaded to create the desired transformation matrix. We apply transformation graphs to resolve

tMs problem. In Figure 3, we display a transformation graph of a WMR with one steering link per

The origin of mx&k coordinate system is represented by a dot, and transformations between

if item ire depicted by directed arrows. Hie transformation in the direction opposing

aa arrow » calculated by applying the inversion axiom. Finding a cascade of transformations to

calculate a ietked traoafeon&fcion is thus equivalent to finding a path from the reference coordinate

qpritaft of the da«red transformation A to the destination coordinate system Z. Hie matrices to

be cascadtd are Sited by travowng the path in order. Each teaarfomation in the path which is

tewoned firom the tall to the head of an arrow is listed as the matrix itself5 while transformations

tnvorwd tea the head to the tail axe listed as the inverse of the matrix.

We fotte problem 2 by equating components erf the matricet on both tides of matrix equation

(T J) f mmi mMng for the podfeai AdMm
 AiMw and AdZm «ad the ©rfesxtiitioii H%M of coordinate

printSire to coordinate qvteni A.
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Transformation Graph of a WMR

8. Velocity and Acceleration Kinematics

We relate the velocities of the WMR by differentiating the position equations in Section 7.

The wheel Jacobian matrix is developed by applying the cascade velocity corollary. The wheel

Jacobian matrix, analogous to a manipulator Jacobian matrix, relates the component velocities of

the robot *v&s, Vfty* and ^wj^ to the velocities of the steering link Bi^$4 &&& the wheel contact

point ^vcix» ^Wftf i and «c*** Some wheels do not have steering links and some do not allow

motion perpendicular to the wheel orientation; thus, the number of degxecs-of-freedozn for wheel i

m mi < 4 Hie Jacobian matrix fen* wheel i is of dimensions (3 x mx).
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We begin development of the Jacobian matrix by applying the cascade position corollary to

write a matrix equation with the unknown dependent variables (i.e., robot coordinates, R$R) on

the left-hand side, and the independent variables (i.e., wheel i coordinates, H'*Si and Ci$d) on

the right-hand side:

*nH = 'T^1 FT^9Ci *T^J * # ^ *T*J . (8.1)

To introduce the velocities, we apply the cascade velocity corollary. We apply the axioms and

corollaries of matrix coordinate transformation algebra to solve for the robot velocities in term of

the wheel velocities:

- 1

"«<*» , (8.2)

where t = 1 •. . N is the wheel index, *p is the vector of robot velocities in the robot frame, J* is

the psetido-Jacobian matrix of wheel t, and q, is the pseudo-velocity vector for wheel i. The actual

velocity vector for typical wheels does not contain the four component velocities in (8.2). Typical

wheels posses fewer than four degrees-of-freedom and thus fewer than four elements in the velocity

vector. Further, since all actual wheel motions are rotations about physical wheel axes, the wheel

velocity vector contains the angular velocities at the wheels rather than the linear velocities of the

point-of-cont&ct along the surface of travel We relate the (4 x 1) pseudo-velocity vector to the

(mi x 1) actual velocity vector %* by a (4 x mi) wheel matrix Wt-:

4- = Wi % . (8.3)

We substitute (8.3) into (8.2) to calculate the robot velocities in terms of the wheel velocity vector

In (&4).
¥ p = 3i Wi fc (8.4)

The kinematic wheel f^uatioK-cf-inoticn (8,4) is of the form:

where J | = J*Wt Is the (i x m,*) wheel Jacobian matrix for wheel I.

The acceleratic-s ai the WME are calculated by applying the cascade acceleration corollary
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to write the second derivative of the position equations in Section 7.

*aH*A /cosR6Ci -sanR9Ci
 RdciV -RdHiv

RaRv = I saxLR6Ci cosR6Ci -RdCiX
 RdHiX

W / V 0 0 1 - 1
(8.6)

The robot accelerations in (8.6) are composed of three acceleration components: the wheel acceler-

ations (^adsi ^Ctt aad aC»)i th€ centripetal accelerations (^u;^ and H*w|.) having squared

velocties; and the coriolis accelerations p a ; ^ Bi^Si) having products of different velocities.

0. The Composite Robot Equation-of-Motion

We combine the equations-of-motion of each wheel on a WMIt to form the composite robot

equation. Two solutions of the composite robot equation have practical applications. The inverse

solution computes the actuated wheel velocities in terms of the robot velocity vector. The forward

solution is the least-squares solution of the robot velocity vector in terms of the sensed wheel

velocities.

The inverse solution is calculated independently for each wheel on a WMR by applying the

inverse Jacobian matrix. The actuated velocities are extracted from the solution for application to

robot control.

The least-squares forward solution provides the optimal solution of the robot velocities in the

presense of sensor noise and wheel slippage in the sense that the sum of the squared errors in the

Telocity components is minimized. We may insure that the solution can be calculated by proper

WMR design. We find that the forward solution may be simplified by eliminating the eqiiations-

oC-motion of any wheel having three non-sensed degrees-of-freedom (e.g., a castor) because they do

sot change the solution.

A study of the nature of the solutions of the composite robot equation illuminates robot

motion, actuation and sensing characteristics, Of particular importance are the conditions under

whkh actuation erf" a set of the wheel degrees^of-frcedom causes undesirable ovcrdetennined and

mufaiennmed solutions. We prefer determined actuation structures because they allow control over
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all robot degrees-of-freedom and do not cause undesirable actuator conflict. We also propose that

overdetermined sensing structures arc preferable because the least-squares forward solution tends

to reduce the effects of sensor noise with redundant measurements.

We calculate the inverse and forward solutions by applying the kinematic equations-of-motion

of each wheel in three dimensions x, y, and 0. If a WMR is constrained by the wheel arrangement

to move in only two dimensions, we may calculate the inverse and forward solutions in an analogous

manner by eliminating the third dimension from the wheel Jacobian matrices.

10. Applications

The kinematics of WMRs play important roles in modeling, design and control. We introduce

five practical applications of our kinematic methodology in this section. We apply the results of our

study of the composite robot equation-of-motion to the design of WMRs. WMRs can be designed

to satisfy desirable mobility characteristics such as two and three degrees-of-freedom and the ability

to actuate and sense the degrees-of-freedom. Dead reckoning is the real time integration of the robot

velocity calculated from wheel sensor measurements. Kinematics-based WMR control systems are

implemented by applying the inverse solution in the feedforward path and dead reckoning in the

feedback path such that the error between the actual robot position and desired robot position

is continually reduced. An improved controller is possible by applying knowledge of the robot

dynamics. Our kinematic methodology is the foundation of dynamic modeling of WMRs. Accurate

robot control systems rely on both kinematic and dynamic models. We also apply the kinematic

equations-of-motion to the detection of wheel dip. When a WMR detects the onset of wheel slip die

current robot position is corrected by utilizing slower absolute locating methods such as computer

vision before continuing motion. The control system is thus able to track desired trajectories more

accurately by continually insuring an accurate measure of robot position.

11* Summary of Kinematic Modeling Procedure

We have formulated a systematic procedure for modeling the kinematics of a WMR. In this

section we gaimnariie the modeling procedure to outline a step-by-step enumeration of the method-

ology to facilitate eoipiieering applications.

1.) Mmk« m sketch ©f the WMR* Show the relative positioning erf the wheels aod the

•leering Enls* The sketch need not be to scale A top and a ode rtew are typicaiy sufficient

2 Assign the coordinate systems. The robot, Mpf steer:::::, contact point and loor
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coordinate systems are assigned according to the conventions introduced in Table 1.

3.) Assign the (4 x 4) coordinate transformation matrices. The robot-hip, hip-steering,

and steering-contact transformation matrices are assigned as described in Section 5.

4.) Formulate the wheel equations-of-motion. The position, velocity and acceleration

wheel equations-of-motion are developed by applying transformation graphs and matrix coordinate

transformation algebra. The specific equations required will depend upon the application.

5.) Formulate the composite robot equation-of-motion. The individual wheel equations

are combine to model the motion of the robot.

6.) Solve the composite robot equation. The inverse solution and the forward solution

may be calculated depending on the application.

The reader is refered to the full paper for further details.

12. Continuing Research

Our study of wheeled mobile robots is motivated by the need for designing robust feedback

control algorithms for their accurate motion control. We are proceeding by paralleling the de-

velopment of robust dynamic manipulator control systems. The first step, that of developing a

kinematic model, is documented in this paper[1]. We are applying the kinematic model to develop

dynamic models of WMRs. The composite kinematic-dynamic WMR model will lay the foundation

for WMR control. We will apply the robot models in simulation to facilitate the design of control

systems. The performance of candidate WMR control systems will be evaluated in simulation prior

to time-consuming hardware implementation. In parallel with our engineering activities, we are

implementing a practical control system for the newly constructed WMR Uranus. The theoretical

practical studies are proceeding concurrently, each, reinforcing the the results of the other.

flj ?• F. Muir and C. P. Neuman, "Kinematic Modeling of Wheeled Mobile Robots,* Technical

ts The Robotics Institute, Carnegie-Mellon University, Schenley Park, Pittsburgh, PA. 15213,

January 1986.
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Abstract
Constraints for the feasible dynamic trajectories of the mobile robot are considered and conditions

on the slippage between wheels and terrain are presented for testing the feasibility of dynamic

trajectories. Slippage constraints are devided into two cases, the translation slippage and the loss

of the traction and each case is investigated using newtonian mechanics and coulomb's friction law.
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1 Introduction

This paper concerns the feasibility of the dynamic trajectories used for the supervisory steering

control of the wheeled mobile robots. The steering control objective is to navigate the robot among

obstacles to reach the specified destination. A usual steering control problem of a mobile robot

consists of three hierachical structures [4] [5] [1] which are illustrated in Fig 1.

P J ?

collision free path

reference input; function of time

Fig. 1. Hierarchical structure of the supervisory
steering control

The first level of the control hierachy is to plan a collision free path which is usually a sequence of

nodes from the current positin to the destination, A dynamic trajectory is then generated which takes

into consideration system dynamics and limits or? control inputs. This trajectory is converted into

reference control trajectories lor the servo -control Jed actuator inputs.

The issues addressed in this paper is the feasibility condition of the dynamic trajectories of the

mobile robot Since the feasibility of the trajectories depend on the constraints of the control system,

constraints of f i e mobile robot are discussed and especially, slippage constraints which are the

crucial and characteristic constraints for the feasible trajectories of the mobile robot are investigated.

The remainder erf this paper is organized as follows. The feasibility problem erf the trajectory is

formulated in section Z The potential sou roes of inisaslhMy me discussed in section a Section 4

presents the Feasibility condition due to slippage constraints. The concluding section identifies

severai directions for future research.

2 Problem Formulation

The dynamics erf a mobile robot with n degrees of freedom can be represented by n cmipted second

order differential equation (1).

= 0
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where

/= ! , . . . ,#i

- n generalized coordinates
' n generalized velocities

^ ^ • n generalized acceleration
r=[ r x , . . . .TJ • n generalized forces

if we let Q be the In dimensional set of feasible generalized coordinates and velocities, physical

operating region of system is expressed as

€ Q (2)

Since the generalized forces are combination of components of control input forces/torques, they

are also limited as

r - s r S r + (3)

where, i = l , . . . jt

The task of the mobile robot is normally specified in the global coordinate frame where the

destination and the obstacles can be most easily represented. Thus computation of the steering

control in terms of the generlaized coordinates requires mapping the destination and the obstacles

into the generalized coordinate frame and solving a nonlinear control problem with state variable

constraints. But it is not easy. A tractable approach to steering control is to plan the collision free

path in the global coordinate frame independently of the dynamic constraints, A dynamic trajectory is

then generated in global coordinates as a function of time with respect to the specific point of the

robot.

(4)

where, X={Xf... JTJ : trajectory in global frame

These dynamic trajectory

the tower level servo controller.

/ « rift (5)

whsr©

felt*.,*
a : !;ra;ectory in generalized frame

olmMon under the o>fiitraifis (2) and (3}-
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As an example, we consider a simplified model of a tricycle which moves on a planar surface and is

configured in Fig 2. It goes only forward and has one steered and driven front wheel and two rear idle

wheels with same radius.

where,

T
T

Fig. 2, Simple model of a tricycle

are the inertial global coordinate®
are the body coordinates which is fixed to the mass center of the robot

and translates with velocity V and yaws with angular velocity Qz

with respect to the inertia! coordinate frame.
: steering angle of the driven wheel
: rolling angle of the driven wheei
: torque to steer the wheel
: toirpe to turn the wheel

tf we consider the degrees erf freedom for the tricycle model, the three coordinates XJ ami 6%

istitute a complete set to express the position and the orientation cf the robot The variation dXJY

40 mm not, however, Indepemlmi* ^nce the nequinnent that any transtation must be In the

head?ng d^ectJcn irr^es the constraining Nation.

In other M>rdsf there is one nooholonomic constmirrt. Thus the degrees of freedom erf t ie tricycle

model for the planar motion is two, which is known as the minimum degree of freedom for the two

cjiiriefisiofiaf planar motiojn [6], as the conventional steered vehicle has two degrees of freedom*



116

Then, two generalized coordinates and forces for the tricycle model can be taken as

The simple operating region of the tricycle can be represented as

0 S *>, • I f l * 9 ^ (6)
m < m , \m I <

And the limit on control inputs can be specified as

0 * T

The dynamic trajectory with respect to the mass center of the tricycle can be generated in the

inertia! coordinate frame as

and these trajectories can be converted into the generalized coordinates as

3 Potential Sources of Infeaslbliity

sect^n c:-ves a brie? discussions of each major potential source of the infeasibiiity of the

.:c tra^ectcy. K^arpotentsai sources are as follows.

3. LknNi an m b d input forofi/torque

Tfw r^:J * ^r-rr:, m t t a i f ^ c^i be i).oi^}ht as equation (2) m (6), feasible generalized
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coordinates and velocities. This is one of the major constraints problem for the steering control of

manipulator because it limits the working space and velocities in terms of the generalized coordinates

and constraints are coupled with each generalized coordinates and velocities. But, generally there is

no significant problem to deal with these constraints of the mobile robot because they are not

coupled seriously like the constraints of the tricycle model (6). The overturn of the mobile robot

during turning around or acceleration would be thought as another constraint from the view point of

the vehicle stability. This constraint depends on the height of mass center, geometric composition of

wheels, angular velocity and acceleration, etc.

The control input forces/torques are limited by the servo motor which is specified in the local

generalized coordinate frame as equation (3). If the input forces/torques required by the trajectory

(4) or (5) exceed the limit on control input, the trajectory will not be feasible. Control input constraint

problem is wry important to enable the robotic manipulators to perform their maximum capability and

efficiency, which lead to high productivity. So the industrial manipulator control problem against

these constraints has been the issue and trajectories even optimized with respect to time and energy

was reported Î J f3 |

Last, slippage constraints are the characteristics of the mobile robot problem. A wheel rolls due to

the driven torque and frictional force between the wheel and terrain* If the actual fractional force is

not sufficient, the wheel will dip. Thus the slippage constraint of a wheel is expressed as (using

Coulomb's friction tew)

F S fN (7)

where, F : frictional force
g(m} : friction coefficient
N : no rma! force

if the wheels of the mobile robot slip5 t ie robot will dip and leave the given dynamic trajectory, that

ise the trajectory will not be feasible. Thus the dynamic trajectory must be constrained to guarantee

tm slip of the wheel of the robot Slippage constraint problem is thought as the most Important for the

feasible dynamic trajectories of the mobile robots because of the following reasons.

1. iQrt«iia§c constraints are the most crucial for t i e ieasfcfe trajectories but generally can
be represented easily because tttey ere not coupled seriously in the mobile robot
problem. Also it can be easily checked.

2. Vehicle stability constraints, Le. the overturn of the robot, would not be serious, I ft is
token care of at the design of t ie robot Then, slippage of wheels will occur befom a
overturn as the conventional vehicle does.
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Next section will present a approach to deal with the slippage constraints.

4 Slippage Constraints

It is difficult to solve the general slippage constraint problem and to obtain the required frictional

force erf each wheel for the feasible dynamic trajectory. If the trajectory is feasible, there is no slip at

the point of contact between any wheel and terrain. In other words, the point of contact is

iWMiwiteriy at rest. Then, shoe no work is done by the frictional forces, there is no explicit term of

t i t ftictkmal forcee in t i e equation erf the motion (1). Hence, the frictional forces can not be

cwupjtsd with the equation1 erf the motion (1) ami the given trajectory (4) or (5). Those forces would

be obtained awpicatediy with the geometric constraints of the robot and the equations of the motion

of the mib§pt«m To mate f ie problem tractable, slippage constraints are divided into two cases

under the folowing tsstimptfom

1* The robot does not tmm arty ftextrfe pert

C f Translation^ Slippage

W# featcmmldm the tranalattonal alpptea erf fftt wheel when there is no slip due to the loss erf

traction. A p n n n i m irftetited mobm robot with the Motional forces required by the trajectory are

afcnply a » i § t J « I ki Fig a

frictional force

Fig. 3. a wheeled mobile robot and frict ion

i i w « v p « f * « i i *

So,¥r«makeK»imptJon4w
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4. Any wheel do not slip transJationa/ly unless the mass center of the robot slips.

In other words, the required frictional force of any wheel, F , will not exceed fiN. unless the total

um of F

satisfied.

sum of F exceeds the total sum of /IJV- If there is no translation slip, the next equation should be

m m
(8)

Since the positions and orientations of the mass center of the robot in the body coordinate frame

can be computed from by the dynamic trajectory, we obtain velocities o| He m*ss

And we can obtain relations from the equations of the motion of the m wheeled mobile robot

where M is the mass of the robot
g is the gravitational constant

Then, the equation (8) becomes

(9)

As mamplMt we w r i t e r mmpie circular motions of Urn tricycle model in section 2. First, If a

circular motJon with' constant angular velocity, 8z=u< is considered as in Rg 4

Then,

Fig. 4, Simple circular motion of tricycle
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Vy=0
F0

We obtain ft relation from equation (9)

which agrees with the physical Understanding.

Second, if a circular motion with constant angular acceleration, Q= at, is considered, then

Vx=atR Vy=0

R VQ

And we obtain the relation from equation (9)

4.2 Lots of Traction

Next, we consider the slippage of one driven wheel due to the loss of traction. A simplified driven

wheel under torque Hs figured

Fig* $. Driven wheel aid external forces

Tht frictions! force required by the trajectory can be decomposed into the longitudinal and the

trowrae focet with raped to a wheel; F^ and from equation (7), the wheel slips if next equation is

not satisfied
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As the driven torque is increased for the ecceleration, the frictional force Fwill be increased and

eventually become the maximum feasible frictional force jiN. Then the torque is increased more and

the wheel, however, does not slip until F, alone exceeds the pN if the assumption 4 holds: there is no

movement of the wheel due to slippage without the slippage of the whole robot Physicaliy.as F. is

increased, F will be decreased while F\$ pN. Thus if there is no translational slippage.of the robot,

any wheel does not slip provided

Ft < jitf (11)

From the Fig 5, the equation of the motion is

Then, equation (11) becomes

* * (12)

So* the mobie robot wii not dip as long as equation (9) and (12) hold.

5 Conclusion and Future Research
In this paper, we have discussed the constraints for the feasible dynamic trajectory and presented

an approach for a slippage constraints which are the most important and characteristic contraints to

the mobile robot dynamic trajectory. Directions for future research include

• Derivation of constraints cm vehicle stability.

• Methods for the generation erf the feasible dynamic trajectory considering constraints
discussed in section 3.

• Implementation of feasibility constraints to the dynamic steering control of the mobile
robot

• Modification of the dynamic steering algorithm so that it may be applied to the navigation
®f the current mobile robot

• integral;en erf tfte dynamic steering algorithm with higher level planning or previous

m Navigation of the mobile robot using the dynamic Meeting control.
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The NEPTUNE Mobile Robot

Gregg W. Podnar
Robotics Institute

Carnegie-Mellon University
Pittsburgh, PA 15213

Neptune is a functional vehicle for autonomous mobile robot research. As a reliable mobile base, it supports

experiments in perception, real-world modeling, navigation, planning and high-level control. It is self-propelled,

with computer control of direction and motivation.

One of the prime design goals was the minimization of the number of subsystems. By doing so, reliability was

enhanced.

Structure

Neptune's basic structure is best likened to a child's tricycle. The three 10-inch (25cm) pneumatic tires are used to

provide spring, compliance, and traction on soft ground.

Steering of the fork is accomplished by one motor. The fork-mounted wheel is driven by a second motor. This

allows sharp turning which facilitates navigation in cluttered environments. The otter two wheels are parallel and

rotate freely. The fork can turn at least 90° left and right, and the wheel can be driven forward or back. Together,

these two features enable the vehicle to rotate about a vertical axis through a point located directly between the two

passive wheels. The overall width is 22.5 inches (57cm), and the length is 32.5 inches (83cm). The turning length

'curb-to-curb' is oily 42 inches (107cm).

Power

To eliminate on-board power storage and recharging, mains power is supplied through an umbilical This 120VAC is

distributed for all on-board electrical equipment via outlets mounted in the vehicle frame. Each piece of equipment

provides Its own power conversion/protection.

Motors

Using 120VAC motors eliminates the need for massive power conversion equipment Synchronous motors were

chosen for drive and steering as this replaces a feed-back and servoing system (Run a motor for a length of time, and

calculate the revelations.). The elimination of optical encoders or resolvers enhances reliability.
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Control

An on-board pmcessor accepts commands from a serial data link through the umbilical. This processor controls the

motor mlays and monitors fork position. It also provides control and monitoring for other vehicle-mounted

equipment (such as switching between two television cameras).

Communication

Together with the Power, the umbilical carries cables,for digital and video signals to and from off-board computers.

Construction

Neptune Is nude from two basic assemblies, the Fork and .the Frame. Both parts were designed to have an excess

of structural fortitude to withstand abuse and provide secure mounting points for auxiliary experimental equipment

Hie frame is made of four pieces of four inch square aluminum tubing which are are welded together. Likewise, the

four mpt fa* pieca m aluminum and are welded. This was done mainly for strength but it also reduced the

requited f»sdtiitiftg» Once all the pieces woe made, assembly of the mechanical parts took less than a week.

Prefabricated Components

For maimting tfee rotating shafts (two ados md the fork neck), off-the-shelf, housed bearings are used. In the same

way, to chain md sprockets for driving and steering are standard components. The wheels and tires are units

maftttfictiired for laadiraeks» Deivciy time on these items is short, on the order of one to three weeks. By

gznpfcying pre-ftbrscated conymnts, shop time was minimized. It took one machinist about one full week to make

all the ether pans.

Performance

The Drcve mafeir provides 1500 eiim of toque. With the 4:1 reduction gearing, about 90 pounds of pull is

t & die Aive wheeL Faliy leaded with cameras and a ring of 24 sonar sensors, Neptune weighs about 200

aad easily Mnagts a 10° slcfe* Ii travels at abeat nine Inches per second; about 1/2 MPH.

• diifere-m ca^gura t^ i of sensor systems mounted on it to perform a variety of experiir^fits. It

^ .. ,. 'Sarmr.K clattered Ist* and videwalks. If was even used in the rain with the addition of an

^ i/ r-"•'^: :**•« *'"?*;rr̂ rhiis It ha^ reliably ssn-ed our research purposes since early in 1984.
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NEPTUNE
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The URANUS Mobile Robot

Gregg W. Podnar
Robotics Institute

Carnegie-Mellon University
Pittsburgh, PA 15213

Uranus is a sophisticated vehicle for autonomous mobile robot research. As an omni-directional mobile base, it
makes possible experiments in perception, real-world modeling, navigation, planning and high-level control. It is
self-propelled and can support a wide variety of sensor and manipulator packages. True autonomy is possible as
electrical and computing power are carried on-board.

The most unique feature of Uranus is its four wheels. Developed by a Swedish company, 3MECANUM, for
omni-directional movement of factory floor pallets and wheel chairs, we have adapted them for use in mobile robots.
With respect to the wheels' Swedish origin, we pronounce Uranus: Oo-ron'-oos.

Wheels

Each wheel has twelve free-spinning rubber rollers around its circumference. The axle of each roller is at a 45°
angle to a line parallel to the wheel's axle. When viewed from the side, the end of each roller overlaps the
beginning of the next, and due to the barrel shape of each roller, the wheel presents a circular silhouette. As a wheel
rolls, its contact with the ground changes from one roller to the next smoothly.

There are right-handed and left-handed wheels which can be thought of as woridiig in pairs, with each pair on a
common axis. When both wheels are rotated in the same direction* the sideways components generated by die
rollers cancels and the wheels move forward or back. However, when tie wheels are rotated in opposite directions*
the sideways components add and the wheels move sideways.

Structure

Uranus describes a rectangular envelope which is 30" (76cm) long by 24* (61cm) wick by \T*QQcm) high, with
additional height of O.5"-3L5" (L3-63cm) due to ground clearance. The primary frame components are 3wx6w

(7.6xl5.2cnt) rectangular ahtmimun tubing* The suspension components ire all stainless steel.

The vehicle has three layers* The first six Inches (15cm) includes the wheels, drivetrain, motors* batteries and power
control* As this Is the majority of the weight, the center of gravity is very low*

The second six Inches (15cm) Includes computers and control electronics a!oag with thek associated power supplies,,
The four comers of this level arc for springs and dampers of the suspension*

The third level consists of the top plate or deck. It is 2T (58cm) by 27* (69cm); slightly smaller than the vehicle
envelope. This allows the wheels to contact a vertical obstacle f rst The deck provides structural support for ip to
250 pounds {113kg) of additional equipment. It Is full of 1/4" -20 holes on a grid of one inch (2 Jem) centers.
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Motors

Each of the four wheels is driven by a samarium-cobalt brushless D.C. motor. An on-board computer controls
motor position, speed and rotation by monitoring shaft position with an optical encoder. The motors are mounted in
the side frame pieces of the first layer between the wheels. The shaft end of the motor protrudes into the frame and
connects with the drivetrain. The power electronics for switching a motor's coils is housed in a heat sink mounted
directly to the outboard side of the motor housing. This is to minimize EMI and allow convection cooling.

•i

Suspension

Each wheel is mounted on what can most easily be described as a trailing-arm. Vertical movement of two inches
(5cm) maximum is possible. Initially, the vehicle is suspended on stiff coil springs which allow just enough
compliance to ensure that all four wheels have adequate contact with the ground. Space is available for the option of
an active suspension. By computer control of pneumatic or hydraulic actuators, the vehicle can be leveled, raised
and lowered to facilitate certain environments.

Power

Power is supplied by an on-board sealed lead-acid battery. The motors operate directly from the 24VDC battery
power, whereas the computers and other equipment convert and condition power through dedicated switching power
supplies.

An umbillical provides 24VDC from an off-boaid supply. This supply is capable of powering the entire vehicle and
simultaneously charging the batteries. In this way, experimentation which does not require full wireless operation
and indefinite operating dims are facilitated.

Performance

Four motors, developing peak torque of 3J ftfbs. (4.7nm) drive the wheels through a 4:1 reduction. With a 9**
(23cm) wheel diameter, about 150 lbs. (660nt) of fhnist h developed. This is the theoretical maximum; about half
this number is a practical value.

With these rooters the maximum speed is about three feet (1m) per second or 2MPII (3.2KPH) which is adequately
fast for i cluttered envixooment TM$ can be increased if need be.

With on-boaid batteries* about four hours of wlneless opemioe h possible. TMs estimate must be reduced if the
vehicle requires more power for rosgb terrain or interaction with objects In the environment. Similarly, more time Is
tvaiable for a single experiment if the movements arc more sedate.
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Robots That Rove

Hans P. Moravec
Robotics Institute

Carnegie-Melton University
Pittsburgh, PA 15213

August, 1985

The most consistently interesting stories are those about journeys, and the most fascinating organisms
are those that move from place to place. I thjnk these observations are more than idiosyncrasies of
human psychology, but illustrate a fundamental principle. The world at large has great diversity, and a
traveller constantly encounters novel circumstances, and is consequently challenged to respond in new
ways. Organisms and mechanisms do not exist in isolation, but are systems with their environments, and
those on the prowl in general have a richer environment than those rooted to one place.

Mobility supplies danger along with excitement. Inappropriate actions or lack of well-timed appropriate
ones can result in the demise of a free roamer, say over the edge of a cliff, far more easily than of a
stationary entity for whom particular actions are more likely to have fixed effects.

Challenge combines wfth opportunity In a strong selection pressure that drives an evolving species that
happens to find itself in a mobile way of life in certain directions, directions quite different from those of
stationary organisms. The 'last billion years on the surface of the earth has seen a grand experiment
exploring these pressures. Besides the fortunate consequence of our own existence, some universal are
apparent from the results to date and from the record. In particular, intelligence seems to follow from
mobility.

I believe the same pressures are at work in the technological ©volution of robots, and that, by analogy,
moble robots are the most litefy route to solutions to some of the most vexing ynsolvad problems on the
way to true artificial intelligence - problems such as how to program common sense reasoning and
teaming from sensory experience* This opportunity carries a price - programs to control mobile robots are
more dttflcult to get right than most - the robot is free to search the diverse world looking for just the
oottfcinatbn that wli mess up your plan. There's still a bug way to gos but 'perhaps my experiences thus
far pursuing thte line of thought will convince you as they have me* Among the conclusions that surprised
tm is that future Intelligent robots will of necessity be more like animals and humans that f used to
bftttev*. for instance they will exhibit recognizable emotions and human irrationalities. On lo cases.

Mobility and Intelligence in Nature

Two billion years ago our uniceiled ancestors parted genetic company with the plants. By accident ol
energetics and heritage* large plants now live their lives fixed in place. Awesomely effective in their own
right the plants have no apparent inclinations towards intelligence; a piece of negative evidence thai
supports my thesis that mobility is a parent of this trait,.
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Animals bolster the argument on the positive side, except for the immobile minority like sponges and

clams that support it on the negative.

A billion years ago, before brains or eyes were invented, when the most complicated animals were

something like hydras, double layers of cells with a primitive nerve net, our progenitors split with the

invertebrates. Now both clans have intelligent members. Cephalopods are the most intellectual

invertebrates. Most mollusks are sessile shellfish, but octopus and squid are highly mobile, with big brains

and excellent eyes. Evolved independently of us, they are different. The optic nerve connects to the back

of the retina, so there is no blind spot. The brain is annular, a ring around the esophagus. The green

blood is circulated by a.systemic heart oxygenating the tissues and two gill hearts moving depleted blood.

Hemocyanin, a copper doped protein related to hemoglobin and chlorophyll, carries the oxygen.

Octopus and their relatives are swimming light Shows, their surfaces covered by a million individually

controlled color changing cells. A cuttlefish placed on a checkerboard can imitate the pattern, a fleeing

octopus can make deceiving seaweed shapes coruscate backward along its body. Photophores of deep

sea squid, some with irises and lenses, generate bright multicolored light. Since they also have good

vision, there is a potential for high bandwidth communication.

Their behavior is mammal like. Octopus are reclusive and shy, squid are occasionally very aggressive.

Small octopus can learn to solve problems like how to open a container of food. Giant squid, with large

nervous systems, have hardly ever been observed except as corpses. They might be as clever as

whales.

Birds are vertebrates, related to us through a 300 million year old, probably not very bright, early reptile.

Size-limited by the dynamics of flying, some are intellectually comparable to the highest mammals.

The intuitive number sense of crows and ravens extends to seven, compared to three or four for us. Birds

outperform all mammate except higher primates ami the whales In learning set" tasks, where the idea is

to generalize from specific instances. In mammals generalization depends on cerebral cortex size. In

bircfe forebrain regions called the Wulst and the hyperstrialum am critical, while the cortex is smal and

unimportant

Our last common ancestor with the whales was a primitive rat-ike rnammai alive 1GG million years .ago.

Some dolphin species have tody and brain masses identical to OUTS, and have had1 them for more

generations. They are as good as us at many kinds of problem solving, awl can grasp and communicate

complex ideas. Kffler whales have brains five times human size* and their ability to formulate plans Is

tetter than the dolphins*, who they occasionally eat. Sperm whales, though not the targes! animals, have

the world's largest brains, intelligence may be an important part of their struggle with large squW9 their

main food. Elephant brains are three times human size. Elephants form matriarchal tribal societies and

exhftrft complex behavior. Indian domestic elephants team over 500 commands, and form voluntary

mutual benefit relationships with their trainers, exchanging labor for baths. They can solve problems such
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as how to sneak into a plantation at night to steal bananas, after having been belled (answer: stuff mud

into the bells). And they do have long memories.

Apes are our 10 million year cousins. Chimps and gorillas can learn to use tools and to communicate in

human sign languages at a retarded level. Chimps have one third, and gorillas one half, human brainsize.

Animals exhibiting near-human behavior have hundred billion neuron nervous systems. Imaging vision

alone requires a billion. The smartest insects have a million brain cells, while slugs and worms make do

with a thousand, and sessile animals with a hundred. The portions of nervous systems for which tentative

wiring diagrams have been obtained, including nearly all of the large neuroned sea slug, Aplysia, the flight

controller of the locust and the early stages of vertebrate vision, reveal neurons configured into efficient,

clever, assemblies.

Mobility and Intelligence around the Lab

The twenty year old modem robotics effort can hardly hope to rival the billion year history of large fife on
earth in richness of example or profundity of result Nevertheless the evolutionary pressures that shaped
life are already palpable in the robotics labs. I'm lucky enough to have participated in some of this activity
and to have watched more of it at first hand, and so will presume to Interpret the experience.

The first serious attempts to fink computers to robots Involved hand-eye systems, wherein a computer-
interfarced camera looked down at a table where a mechanical manipulator operated. The earliest of these
(ca. 1965) were built while the small community of artificial intelligence researchers was stil flushed with
the success of the original AI programs - programs that almost on the first try played games, proved
mathematical theorems and solved problems in narrow domains nearly as well as humans. The robot
systems were seen as providing a richer medium for these thought processors. Of course, a few minor
new problems cfcJ come up.

A picture from a camera can be represented In a computer as a rectangular array of numbers, each
representing the shade of gray or the color erf a point in the image. A good qualty picture requires a
mRBon such numbers, icfeotfytng people, trees, doors* screwdrivers and teacups in such an
urxflfferertiated mass of numbers Is a ionnidabfe problem - the first programs did not attempt ft. Instead
they were restricted to working with bright cubical blocks on a dart tabletop; a caricature of a toddler
tanning hand-ay© co-ordinatbn. in this simplified environment computers more powerful than those that
had earlier aced chess, geometry and calculus problems, combined with larger, more developed,
programs were able to sometimes, with luck, correctly locate and grab a block.

The genera! hand-eye systems have now mostly evolved into experiments to study smaller parts of the
problem, for example dynamics or force feedback, or into specialized systems aimed at industrial
applications. Most arm systems have special grippers, special sensors, and vision systems and
controllers thai work only in limited domains. Economics favors this, since a fixed arm, say on an
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assembly line, repetitively encounters nearly identical conditions. Methods that handle the frequent

situations with maximum efficiency beat more expensive general methods that deal with a wide range of

circumstances that rarely arise, while performing less well on the common cases.

Shortly after cameras and arms were attached to computers, a few experiments with computer controlled

mobile robots were begun. The practical problems of instrumenting and keeping operational a remote

controlled, battery powered, camera and video transmitter toting vehicle compounded the already severe

practical problems with hand-eye systems, and conspired to keep many potential players out of the game.

The earliest successful result was SRPs Shakey (ca. 1970). Although it existed as a sometimes functional

physical robot, Shakey's primary impact was as a thought experiment. Its creators were of the first wave

"reasoning machine" branch of Al, and were interested primarily in applying logic based problem solving

methods to a real world task. Control and seeing were treated as system functions of the robot and

relegated mostly to staff engineers and undergraduates. Shakey physically ran very rarely, and its blocks

world based vision system, which reqired that its environment contain only clean walls and a few large

smooth prismatic objects, was coded inefficiently and ran very slowly, taking about an hour to find a block

and a ramp in a simple scene. Shakey's most impressive performance, physically executed only

piecemeal, was to "push the block" in a situation where it found the block on a platform. The sequence of

actions included finding a wedge that could serve as a ramp, pushing it against the platform, then driving

up the ramp onto the platform to push the block off.

The problems of a mobile robot, even In this constrained an environment inspired and required the

development of a powerful, effective, s t l unmatched, system STRIPS that constructed plans for robot

taste. STRIPS' plans were constructed out of primitive robot actions, each having preconditions for

applicability ami consequences on completion. It could recover from unexpected glitches by incremental

repJaraiing. The unexpected is a major distinguisMng feature of the work! of a mobile entity, and is one of

the evolutionary pressures that channels the mobie towards intelligence.

MobBe rabote have otter requirements that guide the evolution of their minds away from solutions

seemingly suiabfe for fixed manipulators. Bnpk visual shape recogntlon methods are of little use to a

macMna that travels through a cluttered three dmensfonaf world. Precision mechanical control of position

cant be achieved by a vehicle that traverses rough ground. Special giippers don! pay off when many

dVferent and unexpected objects must 'be handed linear algorithmic contra! systems are not adequate

for a rover that oten eocottrtteis surprises In Is wanderings.

The1 Stanford Cart was a mobile robot l u l l about the same time as Shedcoy, on a tower budget. From the

start the emphasis of the Cart project was on tow level perception and control rather than1 planning, and

the Cart was actively used as a physical experimental testbed to guide the research. Until Ite retirement In

19801 facfyaify the targe mainframe computer that remote controlled ft) was programmed to:

• Follow a white Ine In real lime using a TV camera mounted at about eye level on the robot.
The program had to find the line in a scene that contained a tot of extraneous 'imagery, and
cotiid afford to digitize only a eelected portion of the iroag«i I processed.



135

• Travel down a road in straight lines using points on the horizon as references for its compass
heading (the cart carried no instrumentation of any kind other than the TV camera). The
program drove it in bursts of one to ten meters, punctuated by 15 second pauses to think
about the images and plan the next move.

• Go to desired destinations about 20 meters away (specified as so many meters forward and
so many to the left) through messy obstacle courses of arbitrary objects, using the images
from the camera to servo the motion and to detect (and avoid) obstacles in three dimensions.
With this program the robot moved in meter long steps, thinking about 15 minutes before
each one. Crossing a large room or a loading dock took about five hours, the lifetime of a
charge on the Cart's batteries.

The vision, world representatbn and planning methods that ultimately worked for the Cart (a number were

tried and rejected) were quite different than the "blocks world" and specialized industrial vision methods

that grew out of the hand-eye efforts. Blocks world vision was completely inappropriate for the natural

indoor and outdoor scenes encountered by the robot. Much experimentation with the Cart eliminated

several other initially promising approaches that were insufficiently reliable when fed voluminous and

variable data from the robot. The product was a vision system with a different flavor than most. It was "low

lever in that it did no object modelling, but by exploiting overlapping redundancies it could map its

surroundings in 3D reliably from noisy and uncertain data. The reliability was necessary because Cart

joumeys consisted of typically twenty moves each a meter long punctuated by vision steps, and each step

had to be accurate for the journey to succeed.

At Carnegie-Melton University we are building on the Cart work with (so far) four different robots

optimized for different parts of the research.

Pluto was designed for maximum generality - tts wheel system is omnidirectional; allowing motion in any

direction while sbnuMaMously permitting the robot to spin Hke a skater, ft was planned that Pfoto would

continue the Hie of vision research of the Cart and also support woric in dose-up navigation with a

manipulator (we woiAl'Mte a fully visually guided procedure that permits the robot to find, open and pass

through a dooi). The fpal world has changed our plans* To our surprise, the problem of controlling the

three independently stpereble and drfveabte wheel assemblies of Pluto is an example of a difficult, so far

unsolved, problem In control of overconstrained systems. We are wotting on % but In the meantime Pluto

Is nearly Immobile.

When the dNfiafty with Ptoto became apparent, we built a simple robot, Neptune, to carry on the long

r&O00 vWon wotfc* fm happy to announce thai Neptune is now able to cross a room in under an hour, five

t imes more quickly than the Cart,

Uranus is the third robot in the CMU Hoe, designed to do well the things that Pluto has so far failed to do,

i l will achieve omnidirectionally through curious wheels, tired with rollers at 45 degrees, that, mounted

like lour wagon wheels, can travel forward and backward normally, but that screw themselves sideways

when wheels on opposite sides of the robot are turned in opposite directions.
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Our fourth mobile robot is called the Terragator, for terrestrial navigator, and is designed to travel

outdoors for long distances. It is much bigger than the others, almost as large as a small car, and is

powered by a gasoline generator rather than batteries. We expect to program it to travel on roads, avoid

and recognize outdoor obstacles and landmarks. Our earlier work makes clear that in order to run at the

speeds we have in mind (a few km/hr) we will need processing speeds about 100 times faster than our

medium size mainframes now provide. We plan to augment our regular machines with a specialized

computer called an array processor to achieve these rates.

Our ambitions for the new robots (go down the hall to the third door, go in, look for a cup and bring it

back) has created another pressing need - a computer language in which to concisely specify complex

tasks for the rover, and a hardware and software system to embody ft. We considered something similar

to Stanford's AL arm controlling language from which the commercial languages VAL at Unimation and

the more sophisticated AML at IBM were derived.

Paper attempts at (Mining the structures and primitives required for the mobile application revealed that

the blear control structure of these state-of-the-art arm languages was inadequate for a rover. The

essential difference fe that a rover, in its wanderings, is regularly "surprised" by events it cannot

anticipate, but with which ft must deal. This requires that contingency routines be activated in arbitrary

order, and run concurrently. We are experimenting with a structure where a number of specialist

program communicating via a common data structure called a blackboard are active at the same time,

mim operating stfisora* mme oontroHng effectors, some integrating the results of other modules, and

scent providing overai direction As conditions change the priority of the various modules changes, and

control may be passed from one to another.

The Psychology of Mobile Robots

SyppQSi vm ask Uranus, ©quipped with a coif roller based on the blackboard system mentioned in the

last section to, in fact, go down the h t i to the third door, go In, bdc for a cup and bring it back. This wit

be hTptemented as a process that looks wry inch ike a program written for the arm 'Control languages

(ttlit in turn taok v«y much §c§ Algol, m mm Basic!, except that the door recognizer routine would

pnbtbtf b t acttated ̂ w i t ^ Consider the iGfowing caricature of such a program.

UfGTOLE Cto-FelclvCiip
W9k$ up Dcw^taagntetr with instrucSons

{On HndbHHtotf Add 110 Ooor44umber
ReCDftf DOQf^JMttfofl J

Rfcord Start-iocf{Son
SttOoc^-NunttrtoO
mat Ooer-Nunber < 3 WaS-Poftow
Ft»*Door
fF Door-Open TWIN Oe*71rajgh<)ptning

EiSE ^ D ^ ^ T i
S i ! C « 4 « a t « n to tmto of
Travel to

Travel to Oocr-Locstcn
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F a c e - L _
IF Door-Open THEN Go-Through-Opening

ELSE Open-Door-and-Go-Through
Travel to Start-Location
End

So far so good. We activate our program and Uranus obediently begins to trundle down the hall counting

doors. It correctly recognizes the first one. The second door, unfortunately is decorated with some garish

posters, and the lighting in that part of the corridor is poor, and our experimental door recognizer fails to

detect it. The wall follower, however, continues to operate properly and Uranus continues on down the

hall, its door count short by one. It recognizes door 3, the one we had asked it to go through, but thinks it

is only the second, so continues. The next door is recognized correctly, and is open. The program,

thinking it is the third one, faces it and proceeds to go through. This fourth door, sadly, leads to the

stairwell, and poor Uranus, unequipped to travel on stairs, is in mortal danger.

Fortunately there Is a process in our concurrent programming system called Detect-Cliff that is always

running and that checks ground position data posted on the blackboard by the vision processes and also

requests sonar and infrared proximity checks on the ground. It combines these, perhaps with an a-priori

expectation of finding a cliff set high when operating in dangerous areas, to produce a number that

Indicates the Iskeiybood there is a drop-off in the neighborhood.

A companion process DeaMtfttvCHff also running continuously, but with low priority, regularly checks this

number, awl' adjusts I s own priority on the basis of i t When the cliff probability variable becomes high

enough the p t o % of DeaMvlfiHGW wR exceed the priority of the current process In control, Go-Fetch-

Cup In a i r example, ami Deatawttt-Cllf takes over control of the robot. A properly written Deal-with-Cliff

w l ! then profited to etop' m gmedy 9km damn the movement of Uranus, to increase the frequency of

sensor mmmmmmiB of the cMf, and to slowly bade away from 1 when I has been reliably identified ami

located

Mow them's a owtous thing about tWs sequence of actions* A person seeing them, not knowing about the

internal twdmttom of the tobot might offer the l i t eipretatfoo "First the robot was determined to go

ttvough t h i door, but then I nottopdl the ttsbs awl btctfne so frightened ami preoccupied I forgot all

about * h * I had been ffafonf* Knowine what we cto about what realty happened In the robot we might be

tempted to bemte thin poor pemon for using such sloppy anthropomorphic concepts as deterrntninatlon,

fear, pmcxttipetion and (faf0ttyffits8 in describing the actions of a machine. We could berate the person,

but I would be wrong,

S think the robot came by the emotions and foibles indicated as honestly as any living animal An octopus

in pursuit of a mtai can be diverted by hints of danger in jus! the way Uranus was. An octopus also

happens to have a nervous system that evolved entirely independently of our own vertebrate version. Yet

most of us feel no qualms about ascribing concepts like passion, pleasure, fear and pain to the actions of
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the animal.

We have In the behavior of the vertebrate, the mollusc and the robot a case of convergent evolution. The

needs of the mobile way of life have conspired in all three instances to create an entity that has modes of

operation for different circumstances, and that changes quickly from mode to mode on the basis of

uncertain and noisy data prone to misinterpretation. As the complexity of the mobile robots increases I

expect their similarity to animals and humans will become even greater.

Among the natural traits 1 see In the immediate roving robot horizon is parameter adjustment learning. A

precision mechanical arm in a rigid environment'can usually have its kinematic self-model and its dynamic

control parameters adjusted once permanently. A mobile robot bouncing around in the muddy world is

leafy to continuously suffer Insults 'ice dirt buildup, tire wear, frame bends and small mounting bracket

sips that mts$ op accurate a~priori models. Our present visual obstacle course software, for instance,

has a camera calibration phase where the robot is parked precisely in front of an exact grid of spots so

that a program can determine a function that corrects for distortions in the camera optics. This allows

other programs to make precise visual angle measurements in spite of distortions in the cameras. We

have noticed that our present cote is very sensitive to mis-calibratfons, and are working on a method that

will continuously calibrate the cameras just from the images perceived on normal trips through clutter.

With such a procedure In place, a bump that slightly shifts one of the robot's cameras will no longer cause

systtntaiie errom in Is navigation Animate seem to tune most of their nervous systems with processes of

this kind, and such accomodation may be a precursor to more general kinds of learning.

Perhaps tmm conbwemiafly, I see the begkrinnfags of self awareness in the robots. All of our control

programs have internal representations, i t varying teveis of abstraction and precision, of the world around

ths robot, and erf tfie mbofe position wfthin that world. The motion planners work with these world models

lit cofisict§i*i§ aftematfve future actions for the robot tf our programs had verbal interfaces we could ask

cptsttoni tftat receive anmrers such as "I turned right because I didn't think I could fit through the

opening on ths left "• As I b we get the sama information In the form of pictures drawn by the programs.

So What's Missing?

There may mm to be a contnribtbn in Che various f p res on the speed of computers. Oroe b led as

*Qient i r ^ » * cernpuMn can da some things, l a arithmetic, rations of times faster than human beings.

"Expert system^ doing qutftative f i n n i n g in narrow pnobtem solving areas sun on these computers

af^xtmatefy i t human speed. Yet i took such a computer five hours to simply drive the Cart across a

worn, down to an hour for Neptune* Um cm such numbers be reconciled?

The human m^Mmgty record provides the due, While oor sensory and muscle control systems have

been m devetoprrw* for a fatten years, are! common ssuse reasoning has been honed for prababiy

fom a mm**, reaSy high Jevel, deepr thinking is l i l t rrort than a parlor trick, cuituratfy devefof»d over a

ttioueand yeans, which a few humane, operating largely against their natures, can team. As with



139

Samuel Johnson's dancing dog, what is amazing is not how well it is done, but that it is done at all.

Computers can challenge humans in intellectual areas, where humans perform inefficiently, because they

can be programmed to carry on much less wastefully. An extreme example is arithmetic, a function

learned by humans with great difficulty, which is instinctive to computers. These days an average

computer can add a million large numbers in a second, which is more than a million times faster than a

person, and with no errors. Yet one hundred millionth of the neurons in a human brain, if reorganized into

an adder using switching logic design principles, could sum a thousand numbers per second. If the whole

brain wen© organized this way i could do sums one hundred thousand times faster than the computer.

Computers do not challenge humans in perceptual and control areas because these billion year old

functions are carried out by large fractions of the nervous system operating as efficiently as the

hypothetical'neuron adder above. Present day computers, however efficiently programmed, are simply

too puny to keep up. Evidence comes from the most extensive piece of reverse engineering yet done on

the vertebrate brain, the functional decoding of some of the visual system by D. H. Hubel, T. N. Weisel

and colleagues.

The vertebrate retina's 20 million neurons take signals from a million light sensors and combine them in a

series of simple operations to detect things like edges, curvature and motion. Then image thus processed

goes on to the much bigger visual cortex in the 'brain.

Assuming the visual cortex does as much computing for its size as the retina, we can estimate the total

capability of the system. The optic ntrve has a mlton signal carrying fibers and the optical cortex is a

thousand Smes deeper than the neurons which do a basic retinal operation. The eye can process ten

images a stOHtd, so the cortex handfoe the equivalent of 10,000 simple retinal operations a second, or 3

rnUon an hour.

Am effldfsff program running on a epical computer can do the equivalent work of a retinal operation in

about two minutes, tor a rate of 30 per hour. Tins seeing programs on present day computers seem' to be

100,000 'times slower than ueftftbnftft vision. Ttt© whole brain is about ten times larger than the visual

system, so, I,should be posstA* to write reat-tfme human equivalent programs for a machine one milfoil

tfcrms mm pamwttvi than todays medum $fz©d computer. Even todays largest supercomputers am about

1000 Itenes «few«f than this chNfrafum. How long before our research medium is rich enough for full

Since the 1950s compytera have gained a factor of 1000 In speed per onstant dollar every decade.

There am enough developments In the technological pipeline, and certainly enough will, to continue this

pace for the forseeable future

The processing power available to Al programs has not increased proportionately. Hardware speedups

and budget Increases have been dissipated on convenience features; operating systems, time sharing,
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high level languages, compilers, graphics, editors, mail systems, networking, personal machines, etc. and

have been spread more thinly over ever greater numbers of users. I believe this hiatus in the growth of

processing power explains the disappointing pace of Al in the past 15 years, but nevertheless represents

a good investment. Now that basic computing facilities are widely available, and thanks largely to the

initiative of the instigators of the Japanese Supercomputer and Fifth Generation Computer projects,

attention worldwide is focusing on the problem of processing power for Al.

The new interest in crunch power should insure that Al programs share in the thousandfold per decade

increase from now on. This puts the time for human equivalence at twenty years. The smallest

vertebrates, shrews and hummingbirds, derive interesting behavior from nervous systems one ten

thousandth the size of a human's, so we can expect fair motor and perceptual competence in less than a

decade. By my calculations and impressions present robot programs are similar in power to the control

systems of insects.

Some principals in the Fifth Generation Project have been quoted as planning "man capable" systems in

ten years. I believe this more optimistic projection is unlikely, but not impossible. The fastest present and

nascent computers, notably the Cray X-MP and the Cray 2, compute at 109 operations/second, only 1000

times too slowly.

As the computers become more powerful and as research in this area becomes more widespread the rate
of visible progress should accelerate. I think artificial intelligence via the "bottom upM approach of
technological recapitulation of the evolution of mobile animate is the surest bet because the existence of
independently evolved intelligent nervous systems indicates that there is an incremental route to
intelligence. It is also possible, of course, that the more traditional lop down" approach will achieve its
goals, growing from the narrow problem solvers of today into the much harder areas of learning, common-
sense reasoning and perceptual acquisition of knowledge as computers become large and powerful
enough, and the techniques are mastered. Most IBcely both approaches will make enough progress that
they can effectively meet somewhere in the middle, for a grand synthesis into a true artificial sentience.

This artificial .person will have some Interesting properties. Its high level reasoning abilities should be
astonishingly better than a human's - even today's puny systems are much better in some areas - but its
tow tevef perceptual ami motor abilities will be wrr^rabf© to ours, Most interestingly it wii be Wghfy
changeable, both on an (ndvfcfcial basis and from one of its generations to the next. And it wii quickly
become cheap.

The Future

What happens when increasingly cheap machines can replace humans in any situation? What wil I cto
when a computer can write this article, ami dfo research, better than me? These questions face some
ocoipaioris mm. They wB aiect everybody in a few decades.
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By design, machines are our obedient and able slaves. But intelligent machines, however benevolent,
threaten our existence because they are alternative inhabitants of our ecological niche. Machines merely
as clever as human beings will have enormous advantages in competitive situations. Their production
and upkeep costs less, so more of them can be put to work with given resources. They can be optimized
for their jobs, and programmed to work tirelessly.

Intelligent robots will have even greater advantages away from our usual haunts. Very little of the known
universe is suitable for unaided humans. Only by massive machinery can we survive in outer space, on
the surfaces of the planets or on the sea floor. Smaller, intelligent but unpeopled, devices will be able to
do what needs to be done there more cheaply. The Apollo project put people on the moon for forty billion
dollars. Viking landed machines on Mars for one billion. If the Viking landers had been as capable as
humans, their multi-year stay would have told us much more about Mars than we found out about the
moon from Apollo.

As if this weren't bad enough, the very pace of technology presents an even more serious challenge. We
evolved with a leisurely 100 million yearn between significant changes. The machines are making similar
strides in decades. The rate will quicken further as multitudes of cheap machines are put to work as
programmers ami engineers, with the task of optimizing the software and hardware which makes them
what they are. The successive generations of machines produced this way will 'be increasingly smarter
and cheaper. There 'is no reason to beieve that human equivalence represents any sort of upper bound.
When pocket calculators -can out-think humans, what will a big computer be lite? We will simply 'be
outclassed.

Then why msh 'heacSortg into the ht f t igt i f machine era? Wouldn't any sane human try to delay things as
long as ponbte? The answer is dWmit, I unpalatable on the surface. Societies and economies are as
surely subject to ewMbnary pmaanm m bbfogteaft organisms. Fating social systems wither and dtev to
be reptaad by ifflQ sticotssiijj txwQrttoon, Those that can sustain the most rapid expansion dominate
sooner or later*

We compete wih each other for tm ftscwrees of the accessible universe. If automation is more efficient
than hand Mbor, ©igtfifastew and coctetfse which embrace ft will be wealthier and better able to survive
in dff iai i t ints, and wqptnd in fawnt t t ones, i the U.S. were to unilaterally halt technological
^ i k p f W t f an ©ocwtentiy ItsMombte letea* 1 mould soon succumb either to the military might of the
S©v§ttt» or t i t economic m o w s of its trading partners. Either way the social ideals that led to the
decision would t w » f n unimportant on a work) scale.

lft by some evil and unlikely miracle, the whole human race decided to eschew progress, the long term
result would be almost certain extinction. The universe is one random event after another. Sooner or later
an unstoppable vims deadly to humans will evolve, or a major asteroid will collide with the earth, or the
sun will go nova, or we will be invaded from the stars, or a black hole will swallow the galaxy.
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The bigger, more diverse and competent a culture is, the better it can detect and deal with external

dangers. The bigger events happen less frequently. By growing sufficiently rapidly it has a finite chance of

surviving forever. Even the eventual collapse or heat death of the universe might be evaded or survived if

an entity can restructure itself properly.

The human race will expand into the solar system soon, and human occupied space colonies will be part

of it. But the economics of automation will become very persuasive in space even before machines

achieve human competence.

I visualize immensely lucrative self-reproducing robot factories in the asteroids. Solar powered machines

would prospect and deliver raw materials to huge, unenclosed, automatic processing plants. Metals,

semiconductors and plastics produced there would be converted by robots into components which would

be assembled into other robots and structural parts for more plants. Machines would be recycled as they

broke. If the reproduction rate is higher than the wear out rate, the system will grow exponentially. A small

fraction of the output of materials, components, and whole robots could make someone very, very rich.

The first space industries will be more conventional. Raw materials purchased from Earth or from human

space settlements will be processed by human supervised machines and sold at a profit. The high cost of

maintaining humans in space insures that that there will always be more machinery per person there than

on Earth. As machines become more capable, the economics will favor an ever higher machine/people

ratio. Humans will not necessarily become fewer, but the machines will multiply faster.

When humans become unnecessary in space industry, the machines' physical growth rate will climb.

When machines reach and surpass humans in intelligence, the intellectual growth rate will rise similarly.

The scientific and technical discoveries of super-intelligent mechanisms will be applied to making

themselves smarter still. The machines, looking quite unlike the machines we know, will explode into the

universe, leaving us behind in a figurative cloud of dust Our intellectual, but not genetic, progeny will

inherit the universe. Barring prior claims.

Tills may not be as bad as ft sounds, since the machine civilization will certainly take along everything we

consider important, including the information In our minds and genes. Real live human beings, and a

whole human community, could be reconstituted i an appropriate circumstance ever arose. Since we are

biologically coowntted to personal death, immortal only tihimigh our children and our culture, shouldn't we

rejoice to see that culture become as robust as possible?

An Alternative

Some of us have very egocentric world views* We anticipate the discovery, within our lifetimes, of

methods to extend human Hfespans, and took forward to a few eons of exploring the universe. We ddrit

take kindly to being upstaged by our creations.
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The machines1 major advantage is their progress rate. Our evolution is largely cultural, but is tightly

constrained by our Darwinianly evolving biological substrate. Machinery evolves 100% culturally, culture

itself being a rapidly evolving process that feeds on and accelerates itself. How can we, personally,

become full, unhandicapped, players in this new game?

Genetic engineering is an option. Successive generations of human beings could be designed by

mathematics, computer simulations, and experimentation, like airplanes and computers are'now. But this

is just building robots out of protein. Away from Earth, protein is not an ideal material. It's stable only in a

narrow temperature and pressure range, is sensitive to high energy disturbances, and rules out many

construction techniques and components. Anyway, second rate superhuman beings are just as

threatening as first rate ones, of whatever they're made.

What's really needed is a process that gives an individual all the advantages of the machines, at small

personal cost. Transplantation of human brains into manufactured bodies has some merit, because the

body can be matched to the environment, it does nothing about the limited and fixed intelligence of the

brain, which the artificial Intellects will surpass.

Transmigration

You are in an operating room. A robot brain surgeon is in attendance. By your side is a potentially human

equivalent computer, dormant for lack of a program to tun. Your skull, but not your brain. Is anesthetized.

You are fuffy conscious. The smgeon opens your brain case and peers inside, its attention is directed at a

small dump of about 100 neurons somewhere near the surface, ft determines the three dimensional

structure and chemical mafctup of that dump noiKlestructfrely with high resolution 3D NMR holography,

phased array ratio enceptaritygraphy, and uftrasonte radar. It writes a program that models the behavior

of the clump, and starts I running on a smaf portion of the computer next to you. Fine connections are

run from the migm ef ths neuron assembly to the computer, providing the simulation with the same inputs

as the neurtMs* You and the surgeon dwelt the «x«racy of the simulation. After you, are satisfied, thy

relays we Inserted b§tp#§rt t » t d jps of the dump and the rest of the brain. Initially these leave brain

unchanged, tut on command May can connect the simulation hi place of the clump. A button which

acthwtas the fttays when pressed is placed In your hand. You press I , release ft and pmss ft again.

Them should be no cfiffertrm As soon m you ar« satisfied, the simulation connection is established

firmly, and the now unconnected clump of neurons is removed. The process is repeated over1 and over for

adjoining dumps, until the entire brain has been deal wllh. Occasionally several clump simulations are

combined Into a single eqyivafert but more efficient program* Though you have not tost consciousness, or

even your train of thought, your mind (some woufcl say soul) has been remowed from the brain and

transferred to a machine.

In a final step your old tody Is disconnected. The computer is installed in,a shiny new one, in the style,

cotor and material of your choice. You are no longer a cyborg ha!fbreedf yoyr metamorphosis is complete.
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For the squeamish there are other ways to work the transfer. The high resolution brain scan could be

done in one fell swoop, without surgery, and a new you made, "While-U-Wait". Some will object that the

instant process makes only a copy, the real you is still trapped in the old body (please dispose of

properly). This is an understandable misconception growing from the intimate assocation of a person's

identity with a particular, unique, irreplaceable piece of meat. Once the possibility of mind transfer is

accepted, however, a more mature notion of life and identity becomes possible. You are not dead until

the last copy is erased; a faithful copy is exactly as good as the original.

If even the last technique is too invasive for you, imagine a more psychological approach. A kind of

pocket computer (perhaps shaped and worn like glasses) is programmed with the universals of human

mentality, with your genetic makeup and with whatever details of your life are conveniently available. It

carries a program that makes it an excellent mimic. You carry this computer with you through the prime of

your life, and it diligently listens and watches, and perhaps monitors your brainwaves, and learns to

anticipate your every move and response. Soon it is able to fool your friends on the phone with its

convincing imitation of you. When you die it is installed in a mechanical body and smoothly and

seamlessly takes over your life and responsibilities.

What? Still not satisfied? If you happen to be a vertebrate there is another option that combines some of

the sales features of the methods above. The vertebrate brain is split into two hemispheres connected by

a very large bundle of nerve fibers called the corpus callosum. When brain surgery was new it was

discovered that severing this connection between the brain halves aired some forms of epilepsy. An

amazing aspect of the procedure was the apparent lack of side effects on the patient. The corpus

caibsum is a bundle far thicker than the optic nerve or even the spinal cord. Cut the optic nerve and the

victim is utterly blind; sever the spinal cord and the body goes limp. Slice the huge cable between the

hemispheres and nobody noftces a thing. Well, not quite. In subtle experiments it was noted that patients

who had this surgery were unable, when presented with the written word "brush", for instance, to identify

the object in a collection of others using their leff hand. The hand wanders uncertainly from object to

object, seemingly unable to decide which is "brush". When asked to do the same task with the right hand,

the choice is quick and unhesitating. Sometimes in the left handed version of the task the right hand,

apparently in exasperation, readies over to guide the left to the proper location. Other such quirks

Involving spatial reasoning and motor co-ordination were observed.

The explanation offered is that the caibsum indeed is the main communications channel between the

brain hemispheres. It has flbets running to every part of the cortex on each side. The brain halves,

however, are fully able to function separately, and call on this channel only when a task involving co-

ordination becomes necessary. We can postulate that each hemisphere has its own priorities, and that

the other can request, tut not demand, information or action from ft, and must be able to operate

effectively I the other chooses not to respond, even when the caltosum Is intact. The left hemisphere

handles language and controls the right skle of the body. The right hemisphere controls the left haif of the

body, and without the cailosum the correct interpretation of the letters "b r u s h" could not be conveyed to

the controller of the left hand.
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But what an opportunity. Suppose we sever your callosum but then connect a cable to both severed ends

leading into an external computer, if the human brain is understood well enough this external computer

can be programmed to pass, but also monitor the traffic between the two. Like the personal mimic it can

teach itself to think like them. After a while it can insert its own messages into the stream, becoming an

integral part of your thought processes. In time, as your original brain fades away from natural causes, it

can smoothly take over the lost functions, and ultimately your mind finds itself in the computer. With

advances in high resolution scanning it may even be possible to have this effect without messy surgery -

you would just wear some kind of helmet or headband.

Whatever style yoy choose, when the process i$ complete advantages become apparent. Your computer

has a control labelled speed. It had been set to stow, to keep the simulations synchronized with the old

brain, but TOW you change ft to fast. You can communicate, react and think a thousand times faster. But

wait, there's more!

The program in your machine can be read out and altered, letting you conveniently examine, modify,

improve and extend yourself. The entire program may be copied into similar machines, giving two or more

thinking, feeling versions of you. You may choose to move your mind from one computer to another more

technically advanced, or more suited to a new environment. The program can also be copied to some

future equivalent of magnetic tape. If the machine you Inhabit is fatally clobbered, the tape can be read

into an blank computer, resulting in another you* minus the experiences since the copy. With enough

copies, permanent death would be very unlikely.

As a computer program, your mind can travel over information channels, A laser can send ft from one

computer to another across great distances and other barriers. M you found l ie on a neutron star, and

wished to make a field trip, you might devise a way to build a neutron computer and robot body on the

surface, then transmit your mind to it. Nuclear reactions are a million times quicker than chemistry, so the

neutron you can probably think that much faster. It can act, acquire new experiences and memories, then

beam Is mind bade home. The original body oouid be kept dormant during the trip to be reactivated with

the new memories when the return message arrived. Alternatively, the original might remain active. There

would then be two separate versions of you, wfth different memories for the trip interval.

Two sets of memories can be merged, if mind programs are adeqyateiy understood* To prevent

confusion, memories of events would indicate in which body they happened. Merging should be possible

not only between two versions of the same individual by! also between different persons. Selective

mergings, involving some of the other person's memories, and not others would be a very superior form

of communication, In which recollections, skills, attitudes and personalities can be rapidly and effectively

shared-

Your new body will be able to carry more memories than your original biological one, but the accelerated

information explosion wi!i insure the impossibility of Jugging around ail of civi'featicn's knowledge. You wil!

have to pick and choose what your mind contains al any one time. There wil! often be knowledge and
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skills available from others superior to your own, and the incentive to substitute those talents for yours will

be overwhelming. In the long run you will remember mostly other people's experiences, while memories

you originated will be floating around the population at large. The very concept of you will become fuzzy,

replaced by larger, communal egos.

Mind transferal need not be limited to human beings. Earth has other species with brains as large, from

dolphins, our cephalic equals, to elephants, whales, and giant squid, with brains up to twenty times as

big. Translation between their mental representation and ours is a technical problem comparable to

converting our minds into a computer program. Our culture could be fused with theirs, we could

incorporate each other's memories, and the species boundaries would fade. Non-intelligent creatures

could also be popped into the data banks. The simplest organisms might contribute little more than the

information in their DNA. In this way our future selves will benefit from all the lessons learned by terrestrial

biological and cultural evolution. This is a far more secure form of storage than the present one, where

genes and ideas are lost when the conditions that gave rise to them change.

Our speculation ends in a super-civilization, the synthesis of all solar system life, constantly improving

and extending itself, spreading outwards from the sun, converting non-life into mind. There may be other

such bubbles expanding from elsewhere. What happens when we meet? Fusion of us with them is a

possibility, requiring only a translation scheme between the memory representations. This process,

possibly occuring now elsewhere, might convert the entire universe into an extended thinking entity, a

probable prelude to greater things.
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