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Abstract

Since 1981, the Mobile Robot lLaboratory of the Robotics Institute of Carnegic-Mcllon University has
conducted basic rescarch in arcas crucial for autonomous robots. We have built three mobile robots as
testbeds for new concepts in control, vision, planning, locomotion and manipulation. 'T'his report rccounts
our work in 1985. Included are two papers describing two-dimensional sonar mapping and navigation, and a
proposal for a three-dimensional sonar. Three papers cover recent results in sterco visual nuvigatiun.; We
have achicved a tenfold speedup and a tenfold increasc in navigational accuracy over our first generation
system, and have a much deeper understanding -of some of the mathematical foundations. Three papers
describe results in a road navigation task: We are now able to navigate a simple road network at walking
speeds with a single color camera on a roving robot, using a varicty of image processing and navigation
mcthods. Three papers describe aspects of motion control, motors, wheeled kincmatics and vehicle dynamics.
Two papers present our newest robots, Neptune and Uranus. A final article gives some long term motivations

and expcctations for mobile robot research, and the report cnds with a bibliography of our publications.
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Towards Autonomous Vehicles

The Mobile Robot Laboratory Staff

Introduction

The CMU Mobile Robot Lab was started in 1981 to pursue
research in perception, planning and control for autonomously
roving robots. The short and long range practical applications
of robot mobility aside, we think our work directly addresses the
problem of building a generally intelligent machine. Among
living things, only mobile organisms exhibit the sensory and
behavioral characteristics that are the basis of our own intelli-
gence. A roving entity encounters a wide variety of circum-
stances, and must perceive and respond with great generality to
function effectively. We feel our research makes discoveries that
parallel the evolution of intelligence in mobile animals. The
selection function in both cases is the same—the effective func-
tioning of a physical mobile entity in a varied and uncertain
world. We think this experimentally guided bottom up approach
can find some solutions, such as the secret of effective common
sense reasoning, more effectively than the seemingly direct
traditional top down approach to artificial intelligence.

Our first funding came from an Office of Naval Research con-
tract to develop land-based technology for eventual application
to autonomous underwater robots. The subprojects were design
and construction of highly maneuverable vehicles, develop-
ment of stereo and sonar vision algorithms, and algorithms
for path planning and higher level control. New developments
were to be demonstrated in working systems that performed
various tasks.

We chose two tasks, one simple and one complex. In the first,
the vehicle was to travel to a goal location specified relative to its
starting point, avoiding obstacles en route. This would encour-
age efforts in stereo, sonar, path planning, and vision-based
vehicle motion estimation. The second task—finding, opening,
and passing through doorways—was to serve as a longer term
focus for work on maneuverable vehicles, object recognition,
and distributed control.

Our first generation of obstacle avoidance s s now work,
and we have taken first steps toward door-opening. We've built a
simple vehicle to support obstacle avoidance work and a more
complex vehicle to serve our longer term plans. Two obstacle
avoidance systems have been tested, one relying solely on stereo
ind the other on sonar. An initial design for a distributed
control system has been tested in simulation. We are preparing
to start a second phase of our work which will extend the stereo
capability towards shape extraction and merge stereo and sonar
into a single system.

Overview
Our main subprojects pertain to vehicles, manipulators, servo

control, stereo, sonar, and distributed processing. We will dis-
cuss each of these briefly before launching into the details.

Our long term plans call for an accurate, very maneuverable,
self-powered vehicle carrying a small manipulator. Pluto
(generically the CMU Rover) was designed to meet these
requirements. Among its several innovations was an omnidirec-
tional drive system for accurate control of robot motion in three
independent degrees of freedom (forward/backward, lefvright,
and rotation). Our design used three complex wheel assemblies,
each with two motors to independently drive and steer its own
wheel. Coordinated control of the six motors was a more diffi-
cult problem than we had anticipated, and is now being attacked
as a research problem in its own right.

For the sake of the vision and navigation research we constructed
a much simpler second vehicle, Neptune. Power and control
information come via a tether. Two synchronous AC motors
steer and drive the robot, switched by a single onboard processor.
Equipped with two vidicon cameras and a ring of sonar range
finders, Neptune is robust and has been used in visual and
sonar mapping, navigation and obstacle avoidance experiments.

There are several other hardware efforts in progress. We are
building a third vehicle, Uranus, with a new, more easily con-
trolled omnidirectional drive system to carry on the longer
range work stalled in Pluto. We are working on a special-purpose
manipulator for grasping doorknobs and have nearly com-
pleted a video digitizer/display that shares memory witha VAX.
In addition, we are exploring processor and digitizer configura-
tions for use on board the vehicles.

Pluto has been the center of our work on servo control. To
control the motion of Pluto, we successfully designed and
implemented an independent motor controller for each of its
six motors. However, when we attempted to run the controllers
simultaneously to obtain coordinated motion, the robot experi-
enced severe oscillations because of dynamic coupling torques
in the overconstrained wheelbase. These coupling effects could
not be practically compensated using independent controllers
executing on independent processors. The undesirable per-

inspired us to work on the more general problem of
the modeling and control of whecled mobile robots. We are
beginning the investigation by developing precise kinematic
and dynamic models to be used as a basis for an integrated
control strategy for Pluto’s entire wheelbase. We plan to apply
our modeling methodology to simulate wheeled mobile
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the computer simulated robot without the need for time-
consuming hardware construction.

On the software side, we have concentrated on obstacle avoid-
ance and distributed processing. We have two obstacle avoid-
ance systems, one using stereo and the other using sonar. Both
useanew path planner first devel oped for the stereo system. We
have dso designed and simulated the operation of acommunica:
tion mechanism for distributed processors.

The stereo work improves on the system built for the Stanford

Cart [7], which digitized nineimages at each robot location and

used correlation to track isolated feature points as the robot,
moved. We have reduced the number of images digitized per

location, added congtraints that improve the feature tracking

ability, and are now modifying the motion estimation algorithm.

In the process, we have reduced the runtime of the sysem by an

order of magnitude. Therobot can now visudly navigate across
alarge room in under an hour on a VAX-11/780,

The sonar system uses data from a ring of twenty-four wide
angle Polaroid range finders to map the surroundings of an
autonomous mobile robot. A sonar range reading provides
information concerning space occupancy in a cone subtending
30 degrees in front of the sensor. The reading is modelled as
probability profiles projected onto arasterized map of occupied
and empty areas. Range measurements from multiple points of
view (taken from multiple sensors on the robot, and from the
same sensors after it moves) are systematically integrated in the
map. Overlapping empty volumes reinforce each other, and
empty volumes serve to condense the profiles of occupied
volumes. The map resolution improves as more readings are
added. Thefinad map shows regions probably occupied, proba-
bly unoccupied, and unknown areas, with weightsin each raster
cdl showing the confidence of these inferences. The method
deals effectivdy with clutter, and can be used for motion plan-
ning and for extended landmark recognition.

The sonar and stereo systems both plan robot paths with anew
algorithm caled path relaxation. It wes first developed for the
stereo vision navigator, but coincidenxaly has a structure per-
fectly suited to our sonar mapper. Space is represented as a
raster of weights as in the sonar maps. -Costs are assigned to
paths as a function of their length and the weights through
which they pass. A combinatorial search on the raster grid
coarsdly finds a least cost path, then a relaxation procedure
perturbsthe coordinates of the vertices of this path to smooth it
and reduce its cost. .

Our work on distributed processing began with a design for a
distributed planning and control system for the severa proces-
sors of Pluto. A system has been designed around a network of
message-passing kernels, acentral -blackboard moduleto repre-
sent state, and a notion of master/dave processes wherein mas-
tersmonitor theblackboard while daveshandl eexternal events.
A smdl version of this system has been tested in smulation. We
plan to give the design a more rigorous test soon with a distri-
buted version of the sonar navigation sysem*

We have begun a new- effort under the DARPA Autonomous
Land Vehides prgject in cooperation with other groups in the
Robotics I nstitute led by William Whittaker and Takeo Kanade.

The short term goal of this project is to build a system to fdlow
roads; the long term gods include obstacle avoidance, off-road
travel, object recognition, and long range navigation. The vehi-
clefor thisproject isthe Terregator, alarge mobile robot built by
Whittaker's group.

Vehicles

Our research plans caled for a flexible vehicle to support wak
on vision, vision-guided manipulation, and the planning isues
that come with mobility. Part of the design philosophy wes the
perception that a mobile wheel base could be considered part of
an attached arm. The weight and power of the arm can be
reduced by using the mohility of the vehicle as an enormous
reach substitute for the arm's shoulder joint. Such a drategy
works best if the vehicleis given afull three degrees of freedom
(forward/backward, |eft/right and compass heading) in the plane
of thefloor. Conventional steering arrangements asin cars gve
only two degrees at any instant. This approach to manipulation
is most effective when the wheels can be servoed very accurately
and rapidly.

Other properties we desired in a robot were that it run
untethered, that it use multiple sensory systems, and that it
cany some onboard processing power to reduce the communica
tions bandwidth and perform some locd decision-making.

Pluto, our first vehicle, was built to the above specifications. A
second, simpler vehicle caled Neptune was subsequently built to
support obstacle avoidancework. A third vehicle, Uranus, iscur-
rently being designed to test anew concept in omnidirectiondly.

Pluto

Phydcdly, Pluto iscylindrical, about 1 meter tall, 55 centimeters
indiameter, and weighs about 200 pounds (Figure 1a). Itsthree
individually steerablewhed assembliesgiveit afull three degrees
of mohility in the plane (Figure Ib). The control agorithm for
this arrangement steers the wheels so that lines through their
axles dways meet at a common point. Properly orchestrated,
this design permits unconstrained motion in any (2D) direction
and simultaneous independent control of the robot's rotation
about its own vertical axis.

To permit low-friction steering while the robot is stetionary,
each assembly has two parallel wheels connected by a differen-
tia gear -(Figure Ic). The drive shaft of the differential goes
straight up into the body of the robot, and a concentric hallow
shaft surrounding the drive shaft connectsto the housing of the
differential. Turning the inner shaft causes the wheels to roS
forward or backward; turning the outer one steers the assambly,
causing the two wheels to rall in acircle.

Each shaft is driven by a brushiess DC motor with samarium-
cobalt permanent-magnet rotors and three-phasewindings. The
motor sequencing signals come directly from onboard micro-
processors, one for each motor, which read shaft encodersto
servothe motorstothedesired motion. A seventh processor, the
-conductor, coordinates the action of the sx motor sequencing
processors. Another processor reads the shaft encoder outputs
and monitors the motor torques to provide an onboard dead-
reckoning estimateof the vehicl€'s position. Power for thisensem-
bleis provided by a st of sedled lead-acid batteries.



Figure la. Pluto

Pluto was to be equipped with acollection of sensors including
cameras, sonar, and bump detectors and was to be used in a
series of advanced experiments in vision, navigation and
planning. The bulk of the computation would be performed on
aremote VAX-! 1/780, with communication taking place over a
microwave link for video and a radio link for other data. Extra
processors were included in the design to service the sensors
and manage the communication link. '

This plan has been waylaid by a difficult and unexpected prob-
lem in controlling the six motors of the omnidirectional
wheelbase- We are abletodrive therobot successfully when one
wheel at atimeisenergized, but large oscillations occur when aU
are running simultaneously. Hi e problem is caused by interac-
tions between the servo loopsof the individual actuatorsthrough
the redundant degrees of freedom in the wheels. A similar
situation arises in a milder form in other locomotion systems
with redundant degrees of freedom, especially legged vehicles.
Mfe are now investigating control algorithmsand processor archi-
tecturesfor this problem, butinthemeantime Pluto isunavailable
for experimental work with our vision systems, Neptune was
built to fill the gap.

Electronics
Rack

Middle Plate
of Robot

Motor Stacks

Bottom Plate
of Robot

Figure 1b. Pluto subassembly: card cage, wheel assemblies, etc.

Neptune

We decided to build quickly, but carefully, a simple and robust
platform for obstacle avoidance experiments. Neptune (Figure
2) was designed to eliminate many potential problems. Itisa
tethered, remotely powered tricycle with a lone onboard
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Figure Ic Diagram of a wheel assembly illustrating differential
gear, concentric drive shafts

processor* To amplify lerootng aw! reinwe the need for shaft
encoders* synchronous AC motors drive and steer the front
wheel wbletherear wheelsoral. The vehiclek about 2 feettall,
4 feet b»g» and 2 fiat wide. It weighs about 250 pounds* It is
currently configured with mm Hack and white vkitcon cameras
on fixed mountsandi ring of twenty-four Polaroid sonar range-

Figure 2. Neptune with sonar and stereo

finders. Therange-finders have a useabl e range of about 35 feet
and a 50 degree beam width, so that the beams of adjacent
sensors owrlap by about 50 percent. The vehicle moves at a
constant velocity, with angles and distances controlled by timing
the motors with an onboard MC68000.

Neptune is an unqualified success. It has been our Workhorse
for obstacle avoidance and indoor road folowinjj experiments
and wffl be msed mthe future to test extended vison algorithms
and to merge stereo and sonar into one system...... .., . -

Uranus-

Ctenidi recA»aBty appears to bean ideawhoseti me has oome*
Whie Flthowas. ingestation, several new methods for @4
oinnidirectionafity were published and patented, One, cﬁﬁ
at Stanford* is based on novel wheels that have pMtbe
instead of tires, oriented at right angles ta thewhee! (Figure S0).

" The rollers permit the wheel to be pusberi” passively in. the

broadsidedirection. Threesudi wheek, each wirnk& otm motor,
mounted around a round wheelbase alow smootti motion fat
three 'degree* of freedom. Regardless of the direction of tnwei
«one whee! or another is afagn trawlBng nearly bn»d$Me, and
this is a weakness of the system. It requires an otpeusiw and
potentially troublesome bearing system for the roicrs, and suf-



Figure 3a. Sketch of Stanford wheel

fers from alow ground clearance limited by the roller diameter,
and inability to travel on soft ground. Despite these limitations,
it would have been a far more fortunate design choice than the
individually steerable wheels of Pluto.

Another new design for omnidirectionality was invented recently
in Sweden. Ittoo uses wheels surrounded by passiverollers, but
the rollers are angled at 45 degrees to the wheel plane (Figure
3b). One of these wheels can travel broadside on its rollers, but
the whole wheel must simultaneously turn, resulting in a screw-
like motion, like screws, these wheels are not mirror symmetric
and come inright handed and left handed varieties. An omnidi-
rectional vehicle is built with four of these wheels, mounted like
wagon wheels, but with careful attention to handedness. The
right front whed is right handed and the left front is left
handed, buttheright rearislefthanded andtheleft rear is right
handed (Figure 3c). Each wheel isturned by its own motor. To
move the vehicle forward, all four wheels turn in the same
direction, asin aconventional wagon. However, if thewheels on
opposite sides of the vehicle are driven in opposite directions,
the vehicle movessideways, likeacrab. By runningthefront and
back wheels sideways in opposite directions, the vehicle can be
made to turn in place. Because the rollers are not required to
turnwhen thevehicle movesin the forward direction, the Swedish
design has good bump and soft ground handling ability in that
direction* In.our experience-scarred judgement, the Swedish
design is the most practkal omnidirectional system. It is being
used outside of an experimental context, in commercially availa
ble wheelchairs and factory transport vehicles.

Uranus, the Mobile Robot Lab's third construction, is being
designed around this proven drive system to carry on the long
range work staled in Pluto. We obtained the wheels from
Mecanum, Inc. of Sweden, which holdsthelicense. Pluto's many
lessons guideusin thisproject. Injust about every way Uranusis
simpler than Pluto, There are four motors, not six, ho concen-
tric shafts and only a single, benign, redundant interaction
mode among the wheels.

Figure 3b. SNishd%i gned Weels

AN i

Figure 3c. Sketch illustrating handedness of whedls

A Manipulator for Door-opening

We have decided that visually locating, opening and passing
through a door is an excellent task to guide development of

- advanced vision, planning and control work- To thisend, weve

designed and are building a specia arm to be mounted on
Uranus (Figure 4a).

The arm design is simultaneously strong, Eght and low-power
because it e~>k>its the mobility of the robot. The arm has four
joints: a vertica translational joint, rotational shoulder and
elbowjointswith vertical axes, and arotating wrist. The redun-
-dancies between the shoulder and elbowjoints and the rotation
of the vehicle permit therobot to hold the door in astable, open
position while the body of the robot passesthrough the doorway.




Uranus, require sophisticated coordinated controllers for effec-
tive motion control. Over-constrained multiple-wheeled robots,
in particular, are a major challenge. We initially approached the
problem by neglecting the motor interactions and designing
i ent control algorithms for each of the motors on Pluto,
We found that only minimal mobility control was possible in this
framework [9]. The severe motor interactions we observed pro-
vided a motivation to develop better control algorithms.

Pulse-Width Modulation
Control of Brushless DC Motors

We implemented pulse-width modulation for controlling the
brushless DC motors which actuate the wheels of Pluto [10].
The brushless DC motors utilize strong samarium-cobalt perma-
nent magnets and are desirable for use on a mobile robot because
of their high torque-to-weight ratio, ease of computer control,
efficiency, and simple drive circuitry. We control each motor
directly from a microprocessor using semiconductor power
transistors. These devices operate very efficiently in the switching
mode needed for pulse-width modulation.
Our theoretical and experimental results show that the motors
can be modeled by linear discrete-time transfer functions, with
the pulse-width playing the role of the control signal, if the
pulse period is chosen much smaller than the time-constants of
thcmoton.'l'hcscmodclsallowuswapp%ydassicalcontmi
- engineering to the design of the motor control system. We have
- successfully designed controller structures and calculated feed-
back gains which provide each wheel with the ability to servoto 2
desired position and velocity within a specified time interval.

with Pluto prompted a systematic study of the
trolling wheeled mobile robots, both for Pluto’s
dﬁigns_()urpmsm@pmtothepmb-
_ . tested.. Using nulations, we will have the ability to
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section. Our work on integrating these two systems is only just
beginning and will not be described in this paper.

Our stereo system continues the work done by Moravec with the
Stanford Cart [7]. The basic task requires the robot to navigate
from its initial position to a specified goal location, avoiding any
obstacles in between. Stereo is used to detect obstacles and
estimate the motion of the vehidle (actually avoiding the obsta-
clesis discussed later under path planning). The Cartapproach
is to detect local, high variance features in one image, to use
stereo correspondence to determine the three-dimensional posi-
dons of the features, and to track the features over time to
determine the motion of the vehicle. Our work with these algo-
rithms has focussed on the following issues:

« the number of stereo images used at each point in time

o the inierest operator used to pick features

« the algorithm used for tracking

After reviewing the algorithms used by the Stanford Cart, we
will discuss each of these issues in turn.

Vision in the Stanford Cart

The Stanford Cart used nine-way stereo at each robot position
to detect and track obstacles. These images were obtained by
stopping the robot and translating a single camera in two inch
steps along a slider mechanism. An interest operator was apphed
to the center image to pick features, then a coarse to fine
correlation process was applied to locate the features in the

other eight images. Histogram-based triangulation from the set

of match locations provided the initial three-dimensional obsta-
cle positions. Obstacles were tracked as the robot moved by
applying the correlator to the new center image to reacquire the
old features. Then the features were matched in the other eight
new images to obtain distances to the obstacles from the new
robot location. Finally, least squares was used to find a best fit
transformation mapping the old feature locations into the new,
t}wmbyobtmnmgthcvehﬂcmmn Figure 5a illustrates the

atching amduachngfeamresthmughm
he whole system moved the Cart in

one-meter steps, taking about 15 minutes per step on a DEC
KL-10.

Number of Images

The great expense of using nine images prompted the use of
only two-camera stereo in our current system. Since the redun-
dancy provided by the nirie images was a major strength of the
original system, this decision initially lowered the reliability of
the matching algorithm; to compensate, the stereo matcher now
makes fuller use of constraints which reduce the search area in
the second image. The constraints are as follows (Figure 5b).
Between a stereo pair, the known camera geomertry restricts
possible matches to lie on a single line in the second image (the
“epipolar line”). This line is the intersection of the image plane
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Figure 5a. Stanford Cart stereo matching

Figure 5b. Diagram of the epipolar and disparity constraints




of the second camerawith the plane containing the obstacle and
thetwo centers of projection. Near and far limitson the distance
to an obstacle of 1.5 meters to infinity impose "disparity limits"
that further restrict the search to a segment of the epipolar line.
None of these constraints perse are avalable when features are
reacquired in anew set of images. However, the known position
of the obstacles together with an estimate of the vehicle maotion
dill permit searches to be restricted to subwindows of the new
images.

We have found that when dl of the congraints are used, the
qualitative sysem performance, measured in terms of the per-
centage of features matched correctly and the accuracy of motion
estimates, is as good with the two-camera sysem as it wes with
the old system of nineimages. Thenew sysem runsin about 35
CPU seconds per step (threeto four minutes of el apsed time) on
avAX-11/780.

Although this experience demonstrates the effectiveness of two-
camerastereo, the use of redundant images remains aninterest-
ing question. Two particular areas to be explored are the use of
three cameras, which offers the ahility to detect mismatches,
and the use of the redundancy provided by motion. We expect
to examine these areas in the future, both theoretically and
empiricaly.

Interest Operators

The interest operator is designed to pick smadl patches or fea
tures in one image that can be reliably matched in another. In
general, thisrequiresthat the patch exhibit high intensity varia
tions in more than one direction to improve its localizability in
another image. For example, edges show high variation in the
direction of their gradient, but litde variation in the direction of
their length, making them. poor to locdize in that direction.

Ostensibly, abetter interest operator will lead to a higher likeli-
hood of correamatches. Many operators have been reported in
theliterature[11,4], but no convincing evidence showsthat any
one operator is superior. Therefore, we evauated the relaive
performance of a number of operators in the context of our
system [16]. The operators used were those of Moravec [7],
Kitchen and Rosenfeld [4], and severd new operators we
devel oped witMn our Seh. Asacontrol, aset of featureswere dso
picked by hand. Hie criterion used in assessing the perform-
ance of an operator was the number of features, from an initial
set of forty picked by the operator, that could be correctly
matched in another image. Here correct means that the match
location was within a pixel or two of the best match subjectively
asjudged by the experimenter. Results were averaged over a
number of trials with different images. Experiments were also
run with and without the .constraint offered by epipolar lines
and disparity limits.

We found that rates of matching success showed very Hae
variation between the better operators, whkh included the
Moravec and Kitchen and Eosenfeld operators, and t* o of our
new ones* The rates vzried from about 60% correain difficult
images with no matching constraint, to over 90% when aH con-
straints were used in less difficult Images. On the whole, the
Moravec operator performed dightly betier than other opera-
torsand anly alittle worse than manual feature selection. More

importantly, we found that the improvement bought by the use
of search constraint was much more pronounced than that
obtained by using different operators. We conclude that our-
research emphasis should no longer be placed on operators
(since the Moravec operator is cheaper than, and at leegt as
effective as other candidates), but should be placed on getting:
the most out of the available constraints and image redundancy, .

Tracking and Motion Estimation

The Stanford Cart tracked features and estimated the motion of
the vehicle as separate operations. Tracking wes performed by
searching for features one at atime in new images. Bad matches
were then pruned with a heuristic that required the three-
dimensional distances between pairs of features to remain the
sameover time. That s, objects that appeared to drift rdaive to
other objects were deemed incorrect and were ignored. Mation
estimation was then done by finding the transformation that
minimized the least squared error between new and old feature
positions.

This approach is unsatisfactory for two reasons. First, it mekes
poor use of the assumption that objects in the environment do
not move. Thisisavaluableassumption and it underliesalarge
part of the Cart software; for example, it shows up in the
pruning heuristicjust mentioned and in the fitting of a Sngle
transformation to al feature points. The problem is tha the
constraint this assumption offersis employed only after feature
match positions have been decided, which is too late. The
correlator matches one feature at a time, without considering
thelocations of features matched previoudy; however, each new
match decision implies constraint on possible locations for subse-
guent matches. Thus, the Can agorithms adlowed inconsistent
matches to be made initidly, then tried to catch them later. It
would be preferabl e to ensurefrom the outset that matches were
mutually consistent.

The second objection to the Cart approach isthat it throwsaway
imageintensity information too early. Despite the best efforts of *
the interest operator, correlation peaks for individual festures -
may be fairly broad, so that it makes little difference locdly
which pixel in asmall region is chosen as the match. Theactud -
location of the peak may be strongly influenced by noisein such

cases. However, thecorrelator will pick the best peak and pessit

on; apoor choice at this stage hasthe potential to skew both the -

depth estimate for the feature and the vehicle motion solution.

It would be better to somehow capture the uncertainty in die -
match location and reflect that in other calculations. :

We have addressed the first objection by using dead-reckoned
estimates of vehicle motion to constrain the searches made by
the matcher. Thisrequires some toleranceto dlow for errorsin
thedead-reckoned estimate, however, and in Neptunethetoler- -
ance must befairly large. A better approach thai addresseshboth
objections has been developed by Lucas [5]. Thisisan iteraive
registration method that directly incorporates the assumption
of stationary objects. An error measure for a tria transforma-
tion is defined to be the squared difference of image intensity
between a featurein the previous image and its prajeoed loca
tion in the new image, summed over al features. Starlingfroma
dead-reckoned motion estimate, the known three-dimensicnai



feature pogtions are projected into the new image, the error
measure is computed, and Newton iteration is employed to
modify the transformation to minimize the error measure.
Greater tolerancefor errorsin theinitial etimateisobtained by
applying the algorithm firgt to blurred versions of the image,
then to successively sharper images. Lucas has shown that the
algorithm workswell, with syntheticand real images, for asingle
step of motion when the feature distances are given apriori. We
are currently adapting the algorithm for usein our system.

We should note that another answer to our second objection is
given by the work of Gennery [3], who used a correlator that
estimated a two by two covariance matrix for the match location
of a feature that is, the matrix captured that broadness of the
correlation peak. These matrices were propagated into covari-
ance esimates for three-dimensional feature positions and for
cameramation. We have not deter mined what rolethisideawill
play in our future systems.

Sonar M apping

Primarily because of computational expense, practical real-world
dereo vison navigation syssems [7, 14] build very sparse depth
maps of their surroundings. Even with thiseconomy, our fastest
sygem [6] takes30to 60 secondsper onemeter steponal mips
(millionsof ingructions per second) machine. Direct sonar range
measurements promised to providebasic navigation and denser
mapswith consderably less computation. The readily available
Pdlaroid ultrasonic range transducer [13] was selected, and a
ring of 24 of these sensorswas mounted on Neptune. We find
onar sensors interesting also because we would like to investi-
gate how qualitatively different sensors, such as a sonar array
and a pair of cameras, could cooperate in building up a more
complex and rich description of the robot's environment.

Approach

Multiple wide-angle sonar range measurements are combined
to map the surroundings of an autonomous mobile robot. A
sonar range reading provides information concerning empty
and occupied volumesin aconesubtending 30 degreesin front
of the sensor. The reading is modelled as probability profiles
(Figure 6a) projected onto a rasterized map, where occupied
and empty areas are represented. Range measurements from
multiple paoints of view (taken from multiple sensors on the
robot, and from thesame sensor safter robot moves) aresystem-
atically integrated in themap. Asmorereadings areadded, the
area deduced to be empty expands, and the expanding empty
area encroaches on and shar pensthe possibly occupied region.
The map becomes gradually more detailed. The final map
shows regions probably occupied, probably unoccupied, and
unknown areas. The method deals effectively with clutter and
can be used for mation planning and for extended landmark
recognition. It was tested in cluttered environments using
Neptune.

For navigation and recognition wedevel oped away of convolving
two sonar maps, giving the displacement and rotation that best
brings one map into regigtration with the other, along with a
measur eof the goodnessof the match. The sonar mapsarevery
useful for motion planning. They aredenser than those made
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Figure 6a. Sonar beam probability profiles

by our stereo vision programs and computationally about an
order of magnitude fagter to produce. We are using them with
the path reaxation method [15] to plan local paths for our
robot.

The Sensor

The sonar devices being used are Polaroid laboratory grade
ultrasonictransducers[13]. These sonar elementshaveauseful
measuring range of one to thirty-five feet. The main lobe of the
sensitivity function corresponds to a beam angle of 30° at -38
dB. Experiemental results showed that the range accuracy of
the sensors is on the order of 1%. We are using the control
circuitry provided with the unit, which is optimized for giving
the range of the nearest sound reflector in its field of view and
worksfor our purpose.

The Array

Thesonar array, built at Denning M obile Robatics and mounted
on the Neptune, is composed of:

earing of 24 Polaroid sonar elements spaced 15° apart and
mounted at a height of 31 inches above the ground (see
Figure 2);

* a Z80 controlling microprocessor which sdlects and fires the
sensor s, times thereturns, and provides a range value,

e a serial line over which range information is sent to a VAX
mainframe that interprets the sonar data and performs the
higher level mapping and navigation functions.

Representing the Sonar Beam

Because of the wide beam angle, individual rangings provide
only indirect information about the location of the detected
objects. Wecombinetheconstraintsfrom individual readingsto
reduce the uncertainty. Our inferences are represented as
probabilitiesin adiscrete grid.
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A range reading is interpreted as providing information about
spacevolumesthat are probably EMPTY and somewhere OCCUPED.
We model the sonar beam by probability distribution functions
(Figure 6a). Informally, these functions model our confidence
that the various points inside the cone of the beam are empty
(P«(r)), and our uncertainty about the location of the point,
somewhere on the range surface of the cone, that calised the
echo (Py(r)). Thefunctions are based on the range reading and
on the spatial sengitivity pattern of the sonar and are a maxi-
mum near the center axis of the beam and taper to zero near the
edges. These probability density functions are projected on a
horizontal plane to generate map information. We usethe pro-
files that correspond to a horizontal section of the sonar beam.

Building Maps

Sonar Maps are two-dimensiona arrays of cdls corresponding
to a horizontal grid imposed on the area to be mapped. The
fina map has cdl values in the range (-1,1), where vaues less
than O represent probably empty regions, exactly zero repre-
sents unknown occupancy, and greater than 0 implies a proba-
bly occupied space (Figure 6b). Thismap iscomputed in afina
step from two separate arrays analogous to tlie empty and
occupied probability distributions introduced above. Tlie posi-
tion and die orientation of the sonar sensor at the time of the
reading arc used to register the profiles of each beam with the
map. In Figure 6b, each symbol represents a square area six
inches on a side. Empty areas with a high certainty factor are
represented by white space; lower certainty factorsby MH' sym-
bolsof increasing, thickness. Occupied aressare represented by
*\/* symbols, and unknown areas by M. The robot positions
where scans were taken are shown by cwde& and the outline of
the room and of major objects by solid lines.

Different readings asserting that a ceil is EMPTY will enhance
each other, as will readings implying that the cel may be
occuPIED* whileevidence that the cell isemPTY will wesken the
certainty of it being ‘occUPIED and vke-versa. The operations
performed on ‘the empty and occupied probabilities are not
symmetrical. Hie probability distribution for mpt$areas repre-
sents a solid volume whose totally is probably empty, but the
©cat™irf probability disfiibutioafor aahgle reading representsa
lack of knowledge about, ihe location of asingle reflecting point
somewhere in tbe range of the di'stribution. Empty regions are
mma probafigiscadditionformula.Hi eoccupied

ser for asinglereading, an ihe other hand, are reduced
In the areas that the other data suggests isemptv, then oonnat-
izect -to mal etfeek sum unity. Only after thi* nanromng process
aretheoccupied probabilities from each reading combined using
die addition formula.

One range measurement contains only a smai amount of
infbrmation, By combining theevidencefrom rinmy readingsas
the robot motesin itscmrelwieiti* dieareaJtnwfitobeempty
> exptrakd* The number of regions somewhere containing an

" ootitpy cci incrctso, while the range of uncertainty in esch

rack ftEion decreases. The overdl effect* as mmt readingsarc
added* aagradually incitasing covtpgc along with an increas-
ing ptccM» in ©lgoct locitians. Typical? after afew hundred
reacting! (and tenthan asecond of computer time), our process
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Figure 6b. A two-dimensiona sonar map

is awc to **owi€knee oiit” a a>mpfehemlvr map cowering a
thousand squarefeet with better than one foot position accuracy
of tlie directs detected. Note that such aresult does not violate
mfbnnaixm theoretic or degree of freedom constraints, since
tlie detected boundaries of objects teed to be fcear; HOC quad-
raticin the dimensions of the map. A thousand square fooc map
typically contains as little as a hundred linear feet of boundary.

Maxp Matching

We haw aso developed a procedure that can match two maps
and report the displacement and mation that best takes one
into tlieother. Webegin with tlie maps described above withte§



values that are negative if the cell is empty, positive if occupied,
and zero if unknown.

A measure of the goodness of the match between two maps at a
trial displacement and rotation is found by computing the sum
of products of corresponding cells in the two maps. An occupied
cell falling on an occupied cell contributes a positive increment
to the sum, as does an empty cell falling on an empty cell (the
product of two negatives). An empty cell falling on an occupied
one reduces the sum, and any comparison involving an unknown
value causes neither an increase nor a decrease. This naive
approach is very slow. Applied to maps_ with a linear dimepsion
of n, each trail position requires O(n®) multiplications. Each
search dimension (two axes of displacement and one of rotation)
requires O(n) trial positions. The total cost of the approach thus
grows as O(n’). With a typical n of 50, this approach can use up a
good fraction of an hour of VAX time.

Considerable savings come from the observation that most of
the information in the maps is in the occupied cells alone.
Typically only O(n) cells in the map, corresponding to wall and
object boundaries, are labelled occupied. A revised matching
procedure compares maps A and B through trial transforma-
tion T (represented by a 2 x 2 rotation matrix and a 2 element
displacement vector) by enumerating the occupied cells of A,
transforming the coordinates of each such cell through T to find
a corresponding cell in B. The [A, B] pairs obtained this way are
multiplied and summed, as in the original procedure. The
occupied cells in B are enumerated and multiplied with
com:spcmdmg cells in A, found by transforming the B coordi-
nates through 7” (the inverse function of 7), and these products
are also added to the sum. The result is normalized by dividing
by the total number of terms. This procedure is implemented
efficiently by preprocessing each sonar map to give both a raster
representation and a linear list of the coordinates of occupied
cells. The cost grows as O(n*), and the typical VAX running
time is down to a few minutes.

A further speedup is achieved by generating a hierarchy of
reduced resolution versions of each map. A coarser map is
produced from a finer one by converting two by two subarrays of
cellsin the original into single cells of the reduction. Our existing
programs assign the maximum value found in the subarray as
the value of the result cell, thus preserving occupied cells. 1f the
original array has dimension n, the first reduction is of size n/2,
the second of n/4, and so on. A list of occupied cell locations is
produced for each reduction level so that the matching method
of the previous paragraph can be applied. The maximum num-
ber of reduction levels is logsn. A match found at one level can
be refined at the next finer level by trying only about three
values of each of the two translational and one rotational
parameters, in the vicinity of the values found at the coarser
level, for a total of 27 trials. With a moderate a priori constraint
on the transformation this amount of search is adequate even at
the first {(coarsest) level. Since the cost of a trial evaluation is
proportional to the dimension of the map, the coarse matches
are mexpensive in any case. Applied to its fullest, this method

ings the matching cost down to slightly larger than O(»n), and
typical VAX times to undcrasccong
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We found one further preprocessing step is required to make
the matching process work i practice. Raw maps at standard
resolutions (6 inch cells) produced from moderate numbers
(about 100) of sonar measurements have narrow bands of cells
labelled occupied. In separately generated maps of the same
area, the relative positions of these narrow bands shift by as
much as several pixels, making good registration of the occu-
pied areas of the two maps impossible. This can be explained by
saying that the high spatial frequency component of the posi-
tion of the bands is noise; only the lower frequencies carry
information. The problem is fixed by filtering (blurring) the
occupied cells to remove the high frequency noise.

Experiments suggest that 2 map from 100 readings should be
blurred with a spread of about two feet, while for maps made
from 200 readings a one foot smear is adequate. Blurring
increases the number of cells labelled occupied. So as not to
increase the computational cost from this effect, only the final
raster version of the map is blurred. The occupied cell list used
in the matching process is still made from the unfiltered raster.
With the process outlined here, maps with about 3000 six inch
cells made from 200 well spaced readings can be matched with
an accuracy of about six inches displacement and three degrees
rotation in one second of VAX time.

Results

We incorporated the sonar map builder into a system that
successfully navigates the Neptune robot through cluttered obsta-
cle courses. The existing program incrementally builds a single
sonar map by combining the readings from successive vehicle
stops made about one meter apart. Navigation is by dead
reckoning—we do not yet use the sonar map matching code.
The next move is planned in the most recent version of the map
by a path planning method based on path relaxation [15]. Since
this method can cope with a probabilistic representation of
occupied and empty areas and does path planning in a grid, it
fits natually into our present framework. The system has success-
fully driven Neptune the length of our dluttered 30 by 15 foot
laboratory using less than one minute of computer time.

Local Path Planning

" Path relaxation is a two-step path planning process for mobile

robots. It finds a safe path for a robot to traverse a field of
obstacles and arrive at its destination. The first step of path
relaxation finds a preliminary path on an 8-connected grid of
points (Figure 7). The second step adjusts, or “relaxes,” the
position of each preliminary path point to improve the path.

One advantage of path relaxation is that it allows many different
factors to be considered in choosing a path. Typical path plan-
ning algorithms evaluate the cost of alternative paths solely on
the basis of path length. The cost function used by Path
Relaxation, in contrast, also includes how close the path comes
to objects (the further away, the lower the cost) and penaltes for
traveling through areas out of the field of view. The effect is to
produce paths that neither dip the corners of obstacles nor
make wide deviations around isolated objects, and that prefer to
stay in mapped terrain unless a path through unmapped regions
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Grid Search

Once the grid size has been fixed, the next step is to assign costs
t.opomftsondmgndandthcnmscarch for the best path along
the grid from the start to the goal. “Best,” in this case, has three
con g requirements: shorter path length, greater margin
away from obstacles, and less distance in uncharted areas. These
three are explicitly balanced by the way path costs are calculated.
A path’s cost is the sum of the costs of the nodes through which
it passes, each multiplied by the distance to the adjacent nodes.
In a 4-connected graph all lengths are the same, but in an
8-connected graph we have to distinguish between orthogonal
anddugonalhnks.Thenodcoo&tsconmtofthrecpamw
explicitly represent the three conflicting criteria.

« Cost for distance. Each node starts out with a cost of one unit, ﬁ‘or
length traveled.

* Cost for near objects. Exhobjcancaranodeaddstothatnodcs
cost. The nearer the obstacle, the more cost it adds. The exact
slope of the cost function will depend on the accuracy of the
vehicle (a more accurate vehicle can afford to come closer to |
obym).mdahcwhxkupeed(afmcrvchmkmaﬁordm
go farther out of its way), among other factors.

-Cmﬁrmﬁtuwwu region. The cost for traveling
in an will d on the vehicle's mission.
If this is an ex trip, for example, the cost

mwgiuberdnwdykw There is also a cost added for

near an unmapped region, using the same sort of function
distance as is used for obstacles. This provides a buffer to keep
paths from coming 100 close to potentially unmapped hazards. |

The first step of Path Relaxation is o set up the grid, construct
ﬂwﬁuwmwdmmmmm&smmm
and field of view.! The system calculates the cost at node
based on the distances to nearby obstacles and whether thar
node is within the field of view or not. The next step is tocreatea
with links from each node to its 8 bors. The start,
goal locations do not necessarily lie on wmmspea:&
nodes need 10 be created for them and linked into the graph.
The system then searches this for the minimum-cost |
from the start to the goal. The search itself is a standard A*[12]
search. The estimated total cost of a path, used by A* to pick
which node 1o e next, is the sum of the cost so far plus the
“‘ﬁmmb regioms of wpantcot, of B h ot ot
cost, ‘
closely approximates the straight-line path 1o the goal.
Relaxation
MMmMWMm mmmwmmm
w precisely define the cost of the path by a set of non-linear
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equations and solve them simultaneously to analytically deter-
mine the optimal position of each node. This approach is not, in
general, computationally feasible. The approach used here is a
relaxation method. Each node’s position is adjusted in turn,
using only local information to minimize the cost of the path
sections on either side of that node. Since moving one node may
affect the cost of its neighbors, the entire procedure is repeated
until no node moves farther than some small amount.

Node motion has to be restricted. If nodes were allowed to move
in any direction, they would all end up at low cost points, with
many nodes bunched together and a few long links between
them. This would not give a very good picture of the actual cost
along the path. So in order to keep the nodes spread out, a
node’s motion is restricted to be perpendicular to a line between
the preceding and following nodes. Furthermore, at any one
step a node is allowed to move no more than one unit.

As a node moves, all three factors of cost are affected: distance
traveled (from the preceding node, via this node, to the next
node), proximity to objects, and relationship to unmapped

ns. The combination of these factors makes it difficult to
directly solve for minimum cost node position. Instead, a binary
search is used to find that position to whatever accuracy is
desired.

The relaxation step has the effect of turning j: lines into
straight ones where possible, of finding the “saddle” in the cost
function between two objects, and of curving around isolated
objects. It also does the “right thing” at region boundaries. The
least cost path crossing a border between different cost regions
will follow the same path as a ray of light refracting at a bound-

ary between media with different transmission velocities. The
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Example Run

In Figure 8 we see a run using Mdm@@emmmpmmd
as [ittle circles, where the size of the circle is the positional
uncertainty of the stereo system. The numbers are not all
consecutive, because some of the points being tracked are on the
floor or are high off the ground, and therefore are not obstacles.
The dotted lin€s surround the area not in the field of view; this
should extend to negative infinity. The start | of the
robot is approximately (0, -.2) and the goal is (0, 14.5). The grid
path is marked with 0’s. After one iteration of relaxation, the
pmhumrkdbylmAﬁcrthemhxmon,theﬁis
marked by 2's. The greatest change from 1 to 2 was less 3

meters, the threshold, so the process stopped. The size of the
“hdk”mwhcmfumulm%mhmm&mmcm
will try to stay 1 meter away from obstacles unless that causes it to
go too far out of its way. '
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Figure 8. An example run

ning and problem
and on various levels of abstraction.

These problems are aggravated b‘y the fact that, to achieve
real-time response, large amounts of processing power are
necessary. One way of achieving this is to apply several proces-
mmtheABthu,howem brings the need to develop
new and adequate distributed control and problem-solving
mechanisms. ,

-solving activities in several different areas

MMM run as i

mapmmmwkmwdmmmunm

%mwwkmgonmexpcmmlmpkmemmmfm
system.
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Figure 9b. A distributed implementation of the sonar-based mobile robot navigation system

ization is inconvenient when the processes involved are logically
distinct or when they operate on different time-scales. For
example, the path planner certainly requires the output of the
mapper, but the planning activity is distinct from mapping and
there is no reason why planning and mapping should follow a
rigid pattern. They can be viewed instead as working on differ-
ent sides of a shared database, with one process adding to and
correcting the database while the other draws inferences from
the information therein. As an example of different time-scales,
both the guardian and the scanner act on sonar readings, but
the guardian runs continuously whereas the scanner waits until
its views come from sufficiently different positions of the robot.

In the distributed version of the system, each of the modules
described above is an expert, with a master process that watches
the blackboard for conditions that warrant a change in status
(run/terminate/suspend/resume) of its slave. Information con-
cerning the availability of data or results, the status of the robot,
the activities of the Expert Modules and other relevant high-
level data and control informatio~ is shared over the blackboard.
The supervisor provides additional scheduling information to
achieve an overall integrated and coherent behaviour. The bulk
of the data is still passed directly between the modules themselves,
since it consists of information relevant only to specific routines.
Figure 9b illustrates the main flow of data control.

In a typical run, sonar ranging is done continuously. All read-
ings are checked by the guardian to see whether any object is
dangerously near. Selected sets of readings, taken from
sufficiently distinct positions, are processed by the scanner and
the mapper to provide an improved sonar map. Path-planning
is done, and the existing path is updated. Locomotion proceeds;
if the guardian issues a warning, the robot stops immediately
and only proceeds after reassessing the situation of its
environment. With this architecture, the system is able to respond
in an asynchronous fashion to the various needs for data
processing and problem-solving as they arise.

New Work

We have begun work in a major new area; road following systems
for the DARPA Autonomous Land Vehicles program. The goals
of the DARPA program begin with following well defined roads
with no intersections or obstacles, then progress to navigation
and obstacle avoidance in road networks and eventually to navi-
gation in open terrain.

We are working on this in cooperation with other Robotics
Institute groups led by William Whittaker and Takeo Kanade.
The vehicle for this project is the Terregator, a large mobile
robot built by Whittaker’s group. Powered by an onboard gaso-
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line fueled generator, it is designed for long outdoor journeys Hans Moravec, Pat Muir, Gregg Podnar, and Chuck Thorpe;

and is equipped with a television camera and microwave TV Larry Matthies served as editor. Kevin Dowling and Mike
link. We have written a program that drives it along benign, Blackwell participated in the work described in the article.
well-defined roads in real tme, visually tracking the left and Major funding for this work has been provided by the Office of
right edges. We are extending this work to more difficult roads,  NZU2[ Research under contract number N00O14-81-K-0503.

longer journeys, and faster speeds, and plan to incorporate
obstacle detection, landmark recognition and long range
navigation. The effort complements our other projects and is a
natural application of a number of the techniques we have been

developing.

Conclusion and Philosophy
The most consistently interesting stories are those about journeys,
and the most fascinating organisms are those that move from
place 1o place. These observations are more than idiosyr
of human psychology, but illustrate a2 fundamental principle.
The world at has great diversity, and a traveller constantly
encounters circumstances and is consequently challenged
to res in new ways. Organisms and mechanisms do not exist
in i ion, but are systems with their environments, and those
eathepmulmmalhmandnrmvmmudmndmc
rooted to one place. Mobility supplies danger along with
mm!mppmpruwmorhckofwgumd
mmmmﬂtmthcdemneofafmmmﬂ,mymibc
edge of a dliff, far more easily than of a stationary entity for
whom particular actions are more likely to have fixed effects.
combines with opportunity in a strong selection pres-
mthadnmmemhmgspcaesdmhxmtofuﬂmdfm
a mobile way of life in certain directions quite different from
those of stationary organisms. The last billion years on the . %
m&admm&hn;mapmdcxpcm(npbmg ~ v 4&’&
these pressures. Besides the fortunate conseguence of our own m#""‘v""‘ Director Robel
existence, some universals are apparent from the results to date Labucatory wnd Rupnuech Sciooticl of Rebetics, with wucarch steff.
and from the record. In parucular, intelligence seems to follow
from mobility.
The same seem to be at work in the :
evolution of robots and it may be that mobile robots are the
route to solutions for some of the most vexing unsolved prob-
lems on the way to true artificial intelligence—problems such as
how 10 program common sense reasoning and learning from

sensory experience. This opportunity carries a programs {1] Elfes, A., and S.N. Talukdar. “A Distributed Control Sys-
to control mobile robots are more difficult fg than tem for the CMU Rover.” In Proceedings of the Ninth Interrea-
most, and the robot is free to search the diverse : looking Mjﬁﬁl&-ﬁmnwﬂlm. 1JCAL Auguast
for just the combination that will foil the plans of its designers.
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High Resolution Maps from Wide Angle Sonar

Hans P. Moravec

Alberto Elfes
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Abstract

We describe the use of multiple wide-angle sonar range measurements
to map the surroundings of an autonomous mobile robot. A sonar range
reading provides information concerning cmpty and occupied volumes in
a cone (subtending 30 degrees in our case) in front of the sensor. The
reading is modelled as probability profiles projected onto a rasterized
map, where somewhere occupied and everywhere empty areas are
represented Range measurements from multiple points of view (taken
from multiple sensors on the robot, and from the same sensors after robot
moves) are systematically integrated in the map. Overlapping empty
volumes re-inforce each other, and serve lo condense the range of
occupied volumes. The map definition improves as more readings are
added. The final map shows regions probably occupied, probably
unoccupied, and unknown areas. The method deals effectively with
clutter, and can be used for motion planning and for extended landmark
recognition. This system has been tested on the Neptune mobile robot at
CMU.

1. Introduction

This paper describes a sonar-based mapping system developed for
mobile robot navigation. It was tested in cluttered cnvironments using
the Neptune mobile robot[8], decveloped at the Mobile Rubot
Laboratory of the Robotics Institute, CMU. The Neptune system has
been used successfully in several arcas of research, including stcreo
vision navigation [5, 10] and path planning [L1]. Other rescarch in the
laboratory includes the investigation of adequatc high-level robot
mcthods to improve the real-time response of the system, navigation in
outdoor cnvironments and the design and construction of more
advanced robots with higher mobility.

Primarily because of computational expense, practical real-world
stereo vision navigation systems [7, 10] build very sparse depth maps of
described in [5], takes 30 - 60 scconds per one meter step on a 1 mips
machine.
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Direct sonar range mcasurements promised to provide basic
navigation and denser maps with considerably less computation. ‘The
readily available Polaroid ultrasonic range transducer [9] was sclected
and aring of 24 of these sensors was mounted on Neptune,

We find sonar scnsors interesting also begause we would like to
investigate how qualitatively different sensors, such as a sonar array and
a pair of cameras, could coopcrate in building up a more compiex and

rich description of the robot's environment.

1.1. Goals

We expected sonar measurcments to provide maps of the robot’s
environment with rcgions classified as cmpty, occupied or unknown,
and matches of new maps with old oncs for landmark classification and
to obtain or correct global position and oricntation information.

1.2. Approach

Our method starts with a number of range measurements obtained
from sonar units whose position with respect to one another is known.
Each measurcment provides information about cmpty and possibly
occupied volumes in the space subtcnded by the beam (a thirty degree
conc for the present sensors). This occupancy information is projected
ontc a rasterized two-dimensional horizontal map. Sets of readings
taken both from different sensors and from differcnt positions of the
robot are progressively incorporated into the sonar map. As more
readings arc added the area deduced to be empty expands, and the
expanding empty area encroaches on and sharpens the possibly
occupicd region. The map becomes gradually more detailed.

For navigation and recognition we developed a way of convolving
two sonar maps, giving the displaccment and rotation that best brings
one map into registration with the other, along with a measure of the
goodness of the match.

The sonar maps happen to be very useful for motion planning. They
are denscer than those made by our sterco vision programs, and
computationally about an order of magnitude faster 1o produce, We
presently usc them with the Path Relaxation method [L1] to plan Jocal
paths for our robot.

1.3. Related Work

Sonar is a developed technology but few applications until recently
involved detailed map building. Traditional marine applications,
[2,6] rely on sparse proximity measurcments to accomplish their
narrow goals.
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The most advanced sonar systems used in marine intclligence
opcrations Jocate sound sourccs passively [1]. Ultrasound systems used
in medicinc are typically active and build maps for human perusal, but
depend on accurate physical modcls of the environments that the sound
traverses [4], and work with very small beam widths, about 1° - 3°
Narrow beam widths, formed by phascd array techniqucs, arc also used
in advanced side looking mapping sonar system for submersibles. An
independent CMU sonar mapping cffort [3] also uscd a narrow beam,
formed by a parabolic reflector, in its attempts to build a line-based
Jescript

In contrast the sonar scnsors that we choose to employ have a wide
beam, with an effective angle of about 30°.

2. The Sonar System .

2.1. The Sensor

transducers [9]. These sonar elements have a uscful measuring range of
09 0 35.0 . The main lobe of the sensitivity function corresponds to a
beam angle of 30° at —38 dB. Expcrimental results showed that the
range accuracy of the sensors is on the order of 1 %. We arc using the
control circuitry provided with the unit, which is optimized for giving
the range of the nearest sound reflector in its ficld of view, and works
well for this purpose.

2.2. The Array
The sonar array, built at Deaning Mobile Robotics, and mounted on
the Neptune mobile robot is composed of:

® A ring of 24 Polaroid sonar elements, spaced 15° apart, and
mounted at an height of 31 inches above the ground (see
Fig. D).

e A Z30 controlling microprocessor which selects and fires
the seasors, times the returns and provides a range value,

® A serial line over which range information is sent to a VAX
mainframe that presently interprets the somar data and

3. Sonar Mapping

3.1. Obtaining Reliable Range Data from the Sonar Sensor
‘We begin our map building by preprocessing the incoming readings
0 remove chronic errors. The following steps are used:

© Thresholding: Range readings above a certain maximum R
nmmmnmmmmh
specular reflections are often near the maximum range of
the device (R__ ). With R_ slightly below R__ . many of
&umnw mmmw
miyopic, but the overall quality of the map improves. Very
large open spaces are detected by anmalyring the set of
distance values obtined from the sonar, and in this case the
filsering is not done. A similar houristic is applicd for small
mmmhﬂmmw! are
wsuadly glitches and are discarded.

e Averaging: Scveral independent readings from the same
scnsor at the same position are averaged. The sonar
readings arc subject to error not only from reflections but
also from other causcs such as fluctuations in the effective
sensitivity of the transduccr. As a result readings show a
certain dispersion. Averaging narrows the spread. .

o Clustering: A sct of rcadings from onc sensor at a given
position sometimes shows a clustering of the data around
two diffcrent mean valucs. This happens when different
readings are being originated by objects at staggered
distances. We apply a simple clustering analysis to the data,
and cxtract a mean value for each cluster for use in
subsequent processing.

3.2. Representing the Sonar Beam

Because of the wide beam angle the filtered data from the above
methods provides only indirect information about the location of the
detected objects. We combine the constraints from individual readings
to reduce the uncertainty. Our inferences are represented as
probabilities in a discrete grid.

A range reading is interpreted as providing information about space
volumes that are probably EMPTY and somewhere OCCUPIED. We
model the sonar beam by probability distribution functions. Informally,
these functions model our confidence that the various points inside the
cone of the bcam arc empty and our uncertainty about the Jocation of
the point, somewhere on the range surface of the cone, that caused the
echo. The functions are based on the range reading and on the spatial
sensitivity pattern of the sonar.

Consider a position P = (x,y,z) belonging to the volume swept by the
sopar beam. Let:

R be the range measurement returned by the sonar sensor,
¢ be the mean sonar deviation error,

@ be the beam aperture,

S = (x,. ¥, 2) be the position of the sonar sensor,
&MMMMPDS.

@ be the angle between the main axis of the beam and SP.

We now identify two regions in the sonar beam:

o Empty Region: Points inside the sonar beam (8 <R—e¢ and
8<w/2 ), that have a probability yzzf‘ﬂ.l) of being
empty.

o Somewhere Occupied Region: Points on the sonar beam
front { 8€[R—eR+e] and @<w/2 ), that have a
probability p ,=/,(8.6) of being occupied.

Fig. 2 shows the probability profilcs for a sonar beam that returned a
range reading R. The horizontal crossection of the beam is associated
with two probability distributions corresponding to the cmpty and the
occupicd probabilitics.

The cmpty probability density function for a point P inside the sonar
beam is given by:

praa)=i position (x3.) & empry |=E@BLEW®) ()




Figure 1. The Neptune mobile robot, with a pair of cameras and the
sonar ring, in our laboratory. Sonar maps of thislab
can beseen in Figures 3 through &

where:
E’(J)=I-€[8-R_.y(k—¢—k_.))'ir&e[l_h.x-t] )
E;a)zo otherwise.

And:
E(0=1-Q#/u} fx §c[~u/20/ @3)
The occupied probability density function for a point P on the beam
front isgiven bye

po(x,y,gsg postion (xya) is occupied ]=0JfiyO,(0) (4)

wtieic:
O’H)nl—ﬁl—nh)’illeﬂ-d-!-c] (5)
O (&)=8 otherwise

And:
0 (0)=1 -8/ ey tor #E-w/2anD] %)

These pntettt% dendty fenctioiisare now projected on ahorizontal
plane to gaaecne map kfbnnatioilL ~We use die proxies that
c«f««id ma taianml scctfat of the sour bean {*»ipt
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3.3. Representing Maps

Sonar Maps are two-dimensional arrays of cells corresponding to a
horizontal grid imposed on the area to be mapped. Thegrid has MxN™
cells, each of size AXA. The final map has cdl values in the range
(—UX where values less than O represent probably empty regions,
exactly zero represents unknown occupancy, and greater than 0 Implies
aprobably occupied space. Thismap iscomputed in afinal step from .
two separate arrays analogous to the empty and occupied probability
digtributionsintroduced above.

A cdl is considered UNKNOWN if no information concerning it is
available, Cellscan beEMPTY with adegreeof certainty or-confidence
£mp(X,\) and OCCUPIED with a degree of certamty Occ(X Y) both...
valuesranging from QtoL

The apriori empty and occupied certainty values for agiven grid-cell. -
(X.Y) and reading arc determined by taking the mirfimum of"“the -
reading's pr and maximum of p* respectiVely, over the ceil through|
horizontal dicethrough thebeam center. i :

3.4. Composmg Information from Several Readlngs

Trie m*p is built by projecting the beam probabilities onto te
discrete ceils of the sonar map and there combining it with Infbrmatkm™
from other beams. The position and the orientation of Ste sonar sensor
areused w register die beam with the snap.

Different readings assertsg due a ceO is BMFTY wiH enhance each
other, aswill readings Implying that she cei may be OCCURED while
evidence that the cell is BMPTY will weaken 9 cenaiasar of k being
OCCUPIED and vke-versa,
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Figure 2: The Probability Profilescorresponding to the probably Empty
and somewhere Occupied regionsin the sonar beam.
The profiles represent a horizontal cross section of
thebeam.

The operations performed on the empty and occupied probabilities
are not symmetrical. The probability digribution for empty areas
represents a solid volume whose totality is probably empty but the
occupied probability digribution for a single reading represents a lack
of knowledge we have about the location of a single reflecting point
somewhere in the range of the distribution. Empty regions arc smply
added using a probabllistic addition formula. The occupiedprobabilities
for asinglereading, on the other hand, are reduced in the areasthat the
other data suggests is empty, then normalized to make their stun unity.
Only after this narrowing process are the occupied probabilities from
each reading combined using the addition formula.

One range measurement contains only a small amount of
information. By combining the evidence from many readings as the
robot moves In its environment, the area known to be empty is
expanded. The number of regions somewhere containing an occupied
cell increases, while the range of uncertainty in each such region
decreases. The overall effect asmore readings arc added isa gradually
increasing coverage along with m increasing precison in the object
locations. Typically after a lew hundred readings (and less than a
second of computer time) our process is able to "condense aut** a
comprehensive map covering a thousand square feet with better than
one foot position accuracy of the objects detected. Note that such a
result does not violate ktmatta theoretic or degree of freedom
congraints, sines ihe detected boundaries of objects ait linear, not
quatoilc” LYC dirlenE;cMofthcinap, A Utonsani square foot map
stay contain only aiwodied loear feet of boundary.

m the evidenge compbiastbom process procccos sfoug me
hollowing sups:

1. REET. The vAofc Map is sot [o UNKNOWN by mating
EmgpOLYE =6 md Ocx{X. Y =@,

1 sUmmMXmmoF awnr AMAS: For any semsr peadisg k
modify the captyme; S\ | aautkmover itspreiecttaafey;

BOIANCE: Eap(LYrm
Emp(X.Y)+ Emp XY}~ EmplX. Y% Emp {X.)

3 SUPERPOSTION OF OOCLI'ED AREAS For each reading g
shift the occupied probabilites around in response to the
combined emptyness map using:

CANCEL: 0cc(XY): =0ccQL.Y) - (1-£mp(X,Y))

NORMALIZE: Occ(X\): =Oa:*(x.Y)/E O«l(xx)

ENHANCE: Oao<X,Y): =
Occ<X.Y)-h Occu(XY)-OedX.Y)x Occ, (X.Y)

4. "THRESHOLDING: The final occupation value attributed to a
cell isgiven by a thresholding method:

THRESHOLD:  AflI<XcY): =
OcdlLY) if  Occ(X.Y)NEm/<XY)
[-£ii0(X.Y) if Occ(XY)<EMNp(XY)

3.5. Maps

A typical map obtained through this method is shown in Fig. 3, and
the corresponding certainty factor distributions are shown in Figs. Fig.
4and 5. Thesearethe maps obtained before the thresholding step.

The final maps obtained after thresholding arc shown in Figs. 6, 7
and 8.

Figure 3: A Two-Dimecnsional Sonar Map. Each symbol represents a
quare area sx inches on-.aside in the room pictured
in Figure L The right edge of this diagram
correponds to ihe far wall in the picture. Empty
areas with afiigh certainty factor are represented by
white space; tower certainty fectors by " +"
symboals of increasing thickness, Occupied areas are
represented by ™ x" symbals, and Unknown ar easby
*eek Therobot positionswhere scansweretaken are
shown by circles and the outline of the room and of
thema)or objectsby solid lines.

4. Matching

thom wolid beoclk ffom a procedure mat can match two
mapsaoi report the displacement *wi rotation that best takes one ten
i oder.

Cte mm ncceMil -gcgrats begin with the thre<ec!deC maps
itecribed £te vt, wiih cti vatosthat are negative if Ac eel | s ey,
posidve §f occupied awl zero if unknown.
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Figure 4: The Occupied Areas in the Sonar Map. This 3-D view shows -
the Certainty Factors Oec(X,Y).
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Figure 5: The Empty Areasin the Sonar Map. This 3-D view shows the
Certainty FactorsEmpQCJO.

Fte«€: TlieTwo-moeasiaial Sonar Map After Theesholdbng.

Figure7: The Occupied Areasin the Sonar Map After Thresholding,
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Figure8: The Empty Areasin the Sonar Map AftoThresholding

A measure of the goodness of the match between two maps at a trial
displacement and rotation is found by computing the sum of products
of corresponding cellsin the two maps. An occupied cell falling on an
occupied cell contributes a positive increment to the sum, as does.an
empty cell Minf on an empty eel (the product of two negatives). Am
empty cell Ming on an occupied one reduces die sum, ami any
comparison involving an unknown value causes neither an increase ms€
a decrease. This naive approach is very slow. Applied to mapswith a
linear dimension of n, each trial position requires O(*) multiplications.
Each search dimension (two axes of displacement and.one of rotation)
requires O{n) trial positions. The total cost of the approach thus grows
as Gf*®). With a typical * of 50 this approach can bum up a food
fracuonofanhour of VaxEime-

Considerable savings come from the observation &at mast of Ihc
information is she mapsis In lhe occupied cellsalone. Typically OESY:
£7n) cellsm the map, corresponding ~ wall and abject boundaries, arc
labelled occupied. A revised maldiing procedure compares maps A and
B through trial tnmsfcnmaticR 7 (represented by a 2x2 rotation matrix
sad a 2 dement displacement vector) by cw»ier atwc ttie occtipfed eels
of A. uafrforwlimg ttic co-oftferies of eacfe sitn eel iiroi™li F» 1 K ! »
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corresponding ccll in B. The [A, B] pairs obtained this way are
multiplicd and summed, as in the original proccdure. The occupied
cells in B arc cnumerated and multiplicd with corresponding cells in A,
found by transforming the B co-ordinates through T~ (the inverse
function of 7), and these products arc also added to the sum. The result
is normalized by dividing by the total number of terms. This procedure
is implemented cfficiently by preprocessing cach sonar map to give
both a raster representation and a linear list of the co-ordinates of
occupied cells. The cost growns as O(n*), and the typical Vax running
time is down to a few minutcs.

A further speedup is achicved by generating a hicrarchy of reduced
resolution versions of cach map. A coarser map is produced from a
finer one by converting two by two subarrays of cells in the original into
single cells of the reduction. Our existing programs assign the
maximum value found in the subarray as the value of the result cell,
thus preserving occupied cells. If the original array has dimension n,
the first reduction is of size a/2, the second of n/4 and so on. A list of
occupicd cell locations is produced for cach reduction level so that the
matching method of the previous paragraph can be applied. The
maximum number of reduction levels is log,n. A match found at one
level can be refined at the next finer level by trying only about three
values of each of the two translational and one rotational parameters, in
the vicinity of the values found at the coarser level, for a total of 27
trials. With a moderate a-priori constraint on the transformation this
amount of search is adequate cven at the first (coarsest) level. Since the
cost of a trial cvaluation is proportional to the dimension of the map,
the coarse matches are inexpensive in any case. Applicd to its fullest,
this method brings the matching cost down to slightly larger than O(n),
and typical Vax times to under a sccond.

We found one further preprocessing step is required to make the
matching process work in practice. Raw maps at standard resolutions (6
inch cells) produccd from moderate numbcers (about 100) of sonar
measurcments have narrow bands of cells labelled occupied. In
separately generated maps of the same area the relative positions of
these narrow bands shifts by as much as several pixels, making good
registration of the occupied areas of the two maps impossible. This can
be explained by saying that the high spatial frequency component of
the position of the bands is noise, only the lower frcquencies carry
cells to remove the high frequency noise. Experiment suggests that 2
map made from 100 rcadings should be blurred with a spread of about
two feet, whilc for map made from 200 readings a one foot smear is
adequate. Blurring increases the number of cclls labelled occupied. So

| asnot to increase the computational cost from this cffiect, only the final

raster version of the map is blurred. The occupicd colt list used in the
matching process is still made from the unfiltcred raster.

of about six inches displacemcent and three degrees rotation in one

5. Results

We incorporated the sonar map builder into a system that
courscs. The existing program incrementally builds a single sunar map
onc meter apart.  Navigation is by dead reckoning - we do not yet use
the sonar map matching code. The next move is planncd in the most
recent version of the map by a path-planning method based on path

represcntation of occupiced and empty arcas and docs path-planning in
a grid, it fits naturally into our present framework. The systcm has
successfully driven Neptune the length of our cluttered 30 by 15 foot
laboratory using less than onc minute of computer time.

6. Conclusions

We have described a program that builds moderatcly high resolution
spatial maps of a mobile robot’s surroundings by combining several
hundred range rcadings from unadorned Polaroid ultrasonic units. The
main innovation is an cfficicnt mathemnatical method that reduces the
position uncertainty of objects detected by wide angle sonar beams by
combining interlocking constraints in a raster occupation probability
map. We have also developed a fast algorithm for rclating two maps of
the same area to derive relative displacement, angle and goodness of
match.

We have used this mapping method in a system that navigates a
mobile robot to a desired destination through obstacles and clutter, and
are preparing a more claborate navigation system that depends on
matching of the sonar maps to recognize key locations and on higher-
level representations to navigate over long distances.
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Abstract

This paper describes a sonar-based mapping and navigation system for
autonomous mobile robols operating in unknown and unstructured
surroundings. The system uses sonar range data to build a multi-leveled
description of the robot’s environment. Sonar maps are represented in the
system along several dimensions: the Abstraction axis, the Geographical
axis, and the Resolution axis. Various kinds of problem-solving activities
can be performed and different levels of performance can be achieved by
operating with these multiple representations of maps. The major modules
of the Dolphin system are described and related to the various mapping
representations used. Results from actual runs are presented, and further
research is mentioned The system is also situated within the wider context
of developing an advanced sofiware architecture for autonomous mobile
robots.

1. Introduction

The Dolphin system is intended to provide sonar-based mapping and
navigation for an autonomous mobile robot operating in unknown and
unstructured environments. The system is completely autonomous in
the sense that it has no a priori model or knowledge of its surroundings
and also carries no user-provided map. It acquires data from the real
world through a set of sonar sensors and uses the interpreted data to
build a muiti-leveled and multi-faceted description of the robot’s
operating environment. This description is uscd to plan safe paths and
navigate the vehicle towards a given goal.

The system is intended for indoor as well as outdoor use; it may be
coupled to other systems, such as vision, to locate landmarks that would
serve as intermediate or final destinations.

In the course of this paper, we will briefly identify some of the
conceptual processing levels needed for mobile robot software, relate the
present system to this framework, discuss the multiple representations
developed for sonar maps as well as their use in different kinds of
problem-solving activities, describe the overall system architecture and
show some results from actual runs. We finish with an outline of further
research.

2. Conceptual Processing Levels for an
Autonomous Mobile Robot

The sonar mapping and navigation system discussed here is part of a
rescarch offort that investigates various issucs involved in the
development of the software structure of an autonomous mobile robot.

To situate the Delphin sysicm within this wider context, we characterize
in this section some of the conceptual proccss{ng levels required for an
autonomous vchicle (see Fig. 2-1). Each is bricfly discussced below:

VIl. Global Control

V. Global Planning

V. Navigation

V. Real-World Modelling

I1l. Sensor Integration

Il. Sensor Interpretation

l. Robot Control

Figure 2-1: Conceptual Activity Levels in a Mobile Robot Software
Architecture.

® Robot Control: This level takes care of the physical control of
the different sensors and actuators available to the robot. It
provides a set of primitives for locomotion, actuator and
sensor control, data acquisition. etc., that serve as the robot
interface, freeing the higher levels of the system from low-
level details. This would include dcad-reckoning motion
estimation and monitoring of internal sensors. /nternal
Sensors provide information on the status of the different
physical subsystems of the robot, while External Sensors are
used to acquire data from the robot’s environment.

o Sensor Interpretation: On this level the acquisition of sensor
data and its interpretation by Sensor Modules is done. Each
Sensor Module is specialized in onc type of sensor or even in
extracting 2 specific kind of information from the sensor
data. They provide information 1o the higher levels using a
common representation and a common frame of reference.

o Sensor Integration: Due to the intrinsic limitations of any
sensory device, it is essential to integrate information coming
from qualitatively differcnt sensors. Specific assertions
provided by the Sensor Modules arc correlated to each other
on this level. For example, geometric boundarics of an
obstacle extracted by sonar can be projected onto an image
provided by the vision subsystem and can help in identifying



a certain object. On this level, information is aggregated and
assertions about specific portions of the environment can be
made.

® Real-World AModelling: To achieve any substantial degree of
autonomy, a robot system must have an understanding of its
surroundings, by acquiring and manipulating a rich model of
its environment of operation. This model is based on
assertions integrated from the various sensors, and reflects
the data acquired and the hypotheses proposed so far. On
this level, local pieces of information are used in the
incremental construction of a coherent global Real-World
Model; this Modcl can then be used for several other
activitics. such as Jandmark recognition, matching of newly
acquired information against alrecady stored maps, and
generation of expectancies and goals. .

o Navigation: For autonomous locomotion, a variety of
problem-solving activities are nccessary, such as short-term
and long-term path-planning, obstacle-avoidance, detection
of emergencies, ctc. These different activities are performed
by modules that provide specific services.

o Global Planning: To achieve a global goal proposed to the
robot, this level provides task-level planning for autonomous
generation of sequences of actuator, sensor and processing
detection, diagnosis and recovery, and replanning in the case
of unexpected situations or failures.

® Global Control: Finally, on this level Supervisory Modules
are responsible for the scheduling of different activities and
for combining Plan-driven with Data-driven activities in an
integrated manner so as to achieve coherent behaviour.

This conceptual structure provides a paradigm within which several of
our research efforts are situated [6,11,12] It has influenced, in
particular, the architecture of the Dolpbm system for sonar-based
mapping and navigation, 2s mentioned in Section 5.

3. Sonar Mappin

3.1. Introduction

The Delphin sonsr system is able 1o build dense maps of the robot’s
environment and use them for autopomous navigation. The central
dewmsmmm
Sensor-Level Local Map, which uses 2 medium-res i
typical accuracy of 0.5 ft). The cells of a two-d! }
MMMMMMWMW nformation
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from its current position. the robot acquires a set of range measurem
Wﬁmw&mmmwmmam:mmmw
a5 assertions coacerning empty and oecupied areas, and serve to update
the sonar map. The map is now wsed 1o plan 2 safe path arcund
wbstacles. and the robot moves a conain distance along the path. it
updaies its position and erientation estimate and repeats the cycle.

3.2. Building Maps

The Laxal Map building process s discussed in detail in [11], and i
mmm only briefly. We proceed 10 describe how other

The sonar scnsor array is composed of 24 Polaroid laboratory grade
ultrasonic transducers. These devices are arranged in a ring and
controlled by a microprocessor that also interfaces to a VAX mainframe.
For experimental runs, the array was mounted on two different robots
(Neptune [13] for indoor runs, and the Terragator [12] for outdoors).

The mapping system processes range measurements obtained from the
sonar transducers, annotated with the positions of the corresponding
sensors, which are derived from the position and orientation of the
robot. Each measurement provides information about probably empty
and possibly occupied volumes in the space subtended by the beam (a
30° cone for the present sensors). This occupancy information is
projected onto a rasterized two-dimensional horizontal map. Scts of
readings taken both from different sensors and from different positions
of the robot are incrementally integrated into the sonar map, using 2
probabilistic approach. In this way, errors and uncertainties are reduced
and the map becomes gradually more detailed.

The sonar beam is modelled by probability distribution functions.
Informally, these functions describe our confidence that the points
inside the cone of the beam arc empty and our uncertainty about the
location of the point that caused the echo. The functions are based on
the range value and on the spatial sensitivity pattern of the sonar device.

These sonar maps are very useful for motion planning. They are much
denser than those made by typical stereo vision programs, and
computationally at least one order of magnitude faster to produce.

3.3. Related Work

In the Robotics area, ultrasonic range transducers have recently
ateracted increasing attention. This is due in part to their simplicity, low
cost and the fact that distance measurements are provided dircctly. Some
research has focused specifically on the development of more elaborate
beam-forming and detection devices (see, for example, [8]). or on the
application of highly sophisticated signal processing techniques[1} to
complex sonar signals.

Specific applications of sonar sensors in robot navigation include
determining the position of 2 robot given 2 known map of the
mﬂlﬁ.ﬂmﬂm adlaocnmganmscﬁmm[n An

nden! mapping and navigation cffort (3,4} uses a
Wbmhm&by parabolic reflector, mbuﬂdahme-based
description of the environment.

4. Muitiple Axis of Representation of Sonar
Mapping Information

several other data structures are derived. We use the following
dimensions of representation (Fig. 4-1):

© THE ABSTRACTION AXIS: Along this axis we move from a
sensor-based. datr-intensive representation to increasingly
‘higher levels of interprotation and abstraction. Three levels

WWWW%MWNM
Symbolic Level,

& THE GEOGRAPHICAL AXIS: Along this axis we define Views,
Local Maps and Global Maps, depending on the extent and
characteristics of the area covered, -

© THE RESOLLTION AXiS: Somar Maps are generated at
mmwwmmmm

computations can be performed satisfactorily at low
mwmmmmmmmw
degrees of resolution.




Symbolic Level
Abstraction
Axis

1 T
2:‘3"”“‘ Geometric Level
Resolution
i

T / Sensor Level
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/

View / Local Map Global Map

Low Resolution

Figure 4-1: Multiple Axis of Representation of Sonar Maps.

4.1. The Abstraction Axis

The first kind of sonar map built from the sonar range data uses the
Probabilistic representation described carlier. A two-dimensional grid
covering a limited arca of interest is used. This map is derived directly
from the interpretation of the sensor readings and is, in a sense, the
description closest to the rcal world. It serves as the basis from which
other kinds of representations are derived. Along the Abstraction Axis,
this data-intensive description is also defined as the Sensor Level Map.

The next level is called the Geometric Level. It is built by scanning the
Sensor Level Map and identifying blobs of cells with high OCCUPIED
confidence factors. These are merged into uniquely labeled objects with
explicitly represented polygonal boundaries, If needed. the same can be
done with EMPTY areas.

The third is the Symbolic Level, where maps of larger arcas (typically
Global Maps) arc described using a graph-like representation.  This
description bears only a topological equivalence to the real world. Nodes
represent “interesting™ areas, where more detailed mapping information
is necessary or available, while edges to simpler or
"uninteresting” arcas (navigationally spcaking), such as corridors.

Different kinds of problem-solving activities are better performed on
different levels of abstraction. For cxample, global path-planning (such
as how to get from one building wing to another) would be done on the
symbolic level, while navigation through a specific office or 1ab uses the
sensor-level map, where all the detailed information about objects and
free space, as well as the associated certainty factors, is stored.

4.2, The Geographical Axis

In order 10 be able 1o focus on specific geographical areas and to
Mepmofmmﬂmmmk&mwdeﬁmammw
maps with increasing degrees of coverage. Progres

Gmgmp&mﬂszs,wemwnthwhmhmmapsmermdﬁum
scans taken from the current position, and that describe the area visible
to the robot from that place. As the vehicle moves, several Views are
acquired and integrated into a Local Map. The latter corresponds to
physically delimited spaces such as labs or offices, which define a
connected region of visibility. Global Maps are sets of several Local
Maps, and cover wider spaces such as a whole wing of a building, with

27

4.3. The Resolution Axis

Finally, along the Resolution Axis, we again start with the Sensor-
Level Local Map and generate a progression of maps with increasingly
less detail. This allows certain kinds of computations to be performed
either at lower levels of resolution with correspondingly less
computational expense, or else enables operations at coarser levels to
guide the problem-solving activities at finer levels of resolution.

The most detailed sonar maps that can be obtained from the method
outlined in Section 3 (considering the intrinsic limitations of the sensors)
have a cell size of 0.1 x 0.1 ft . For navigation purposes, we have
typically been using a 0.5 ft grid for indoors and a 1.0 ft grid for
outdoors. Nevertheless, several operations on the maps are expensive
and are done more quickly at even lower levels of resolution. For these
cases we reduce higher resolution maps by an averaging process that
produces a coarser description. One example of an application of this
technique is the Map Matching procedure described in [11], where wo
Local Maps being compared with cach other are first matched at a low
level of detail. The result then constrains the search for a match at the
next higher level of resolution.

5. Overall System Architecture

To provide a context for these multiple descriptions, we present in this
Scction the overall architecture of the Dolphn Sonar-Based Mapping and
Navigation system (Fig. 5-1). The function of the major modules and
their interaction with the various sonar map representations [7] is

described below:

Supervisor l
Global Position
“onntc

Graph Building

Symbolic
Path-Planner

& "

c
Path-Planner

Sansor Map
Path-Planner

Object Extraction

Navigator ' ‘ Scanner
‘ g Rodot Positien ‘
| Orisntation
Conductor | | Guardion } ‘ Sonar Comtrol
Lecomotion Soner Semsers
Figure 51: Architecture of the Sonar Mapping and Navigation
System.
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Sonar Control: Interfaces to and runs the sonar sensor array, providing
range readings.

Scanner: Preprocesses and filters the sonar data. Annotates it with the
position and orientation of the corresponding sensor, based on the
robot’s motion estimate.

Mapper: Using the information provided by the Scanner, generates a
View obtained from the current position of the robot. This View is then
integrated into a Local Map.

Cartographer: Aggregates sets of local Maps into Global Maps.
Providcs map handling and bookkcceping functions.

Matcher: Matches a newly acquired Local Map against portions of
Global Maps for operations such as landmark identification or update of
the absolute position cstimate. .

Object Extraction: Obtains geometric information about obstacles.
Objects are extracted by merging blobs of OCCUPIED cclls and
determining the corresponding polygonal boundaries. A region-coloring
approach is used for unique labeling.

Graph Building: Searches for larger regions that are either empty or
elsc have complex patierns of obstacles, labeling them as "free” or
"interesting"” spaces.

Path-Planning: Three levels of path-planning are possible: Symbolic
Path-Planning is done over wider arcas (Global Maps) and at a higher
level of abstraction (Syntbolic Maps); Geometric Path-Planning is done
as an intermediary stage, when the uncertainty in Local Maps is low;
and Sensor Map Path-Planning is used to generate deuiled safe paths.
The latter performs an A* search over the map cells, with the cost
function taking into account the obstacle certainty factors and the
distance to the goal. The planned path is provided to the Navigator.

Navigator: Takes care of the overall navigation issues for the vehicle.
This includes examining alrcady planned paths to determine whether
they are still usable, invoking the path-planner to provide new paths,
setting intermediary goals, overseeing the actual locomotion, etc.

Conductor: Controls the physical Jocomotion of the robot along the
planned path. The latter is currently approximated by sequences of line
segments, using a line-fitting approach. Provides an estimate of the new
position and orientation of the robot.

sonar readings and signals a stop if the robot is coming too close to a
(possibly moving) obstacle not detected previously. It serves as a "sonar
bumper”.

Supervisor: Oversees the operation of the various modules and takes
care of the overall control of the system. It also provides a user interface.

Comparing this architecture with the activities outlined in Section 2,
we see that the Sonar Control and Conductor modules belong to the
Robot Control level; the Scanning and Mapping modules operate on the
Sensor Interpretation level; the Object Extraction, Graph Building,
Cartographer and Matcher modules provide functions on the Real-
World Modclling lcvel; Path-Planning, the Guardian and Navigation
are situated on the Navigation level; and the Supervisor belongs to the
Control level.

6. Tests of the System

The Delphin system described here was tested in several indoor runs in
cluttered environments using the Neprune mobile robot [13], developed
at the Mobile Robot Laboratory of the Robotics Institute, CMU. It was

also tested in outdoor environments, operating among trecs, usis:
Terragator robot in the context of the CMU ALV project. These
operated successfully in both kinds of environments, navigatingt
robot towards a given destination.

In Fig. 6-1, an example run is given. The sequence of maps presa
shows how the sonar map becomes gradually more detailed and hos;
path is improved, as more information is gathered. The e
corresponds to an indoor run, donc in our laboratory. A distaw
approximately 25 ft was covered; the grid size is 0.5 ft. Objects et
the lab included chairs, tables, boxes, workstations, filing cabinets
Empty spaces with high certainty factors arc represented by whitea
lower certainty factors by "-" symbols of increasing thickness. O
areas are shown using "X" symbols, and Unknown areas using "*.}
planned path is shown as a dotted line, and the route actually folr
by the robot as solid line segments. The starting point is a solid +2
the goal a solid x.

In Fig. 6-2, an outdoor run is shown, together with an examplel
Object Extraction algorithm. The objects are uniquely identified a:
polygonal boundarics arc shown. ‘Thc map corresponds to a nd
among trees. A distance of approximately 50 ft was traversed. Theg
size was 1.0 ft, which proved adequate for navigation, but did notas
more precise description of the real boundarics of the detected objut

7. Further Research

We conclude our discussion by outlining in this Section some rez
lines to be further pursued. :

7.1. Handling Position Uncertainty

Our current system presupposes that the position and orientai:
the robot (and by that, of the sonar sensors) as it acquires sonar
known with reasonable precision. This is crucial for integrating rea
taken over shorter distances, which are combined as previously outiz
Drifts over longer distances are inevitable, but lead only to a topohg:
distortion of the map.

To update the current position of the robot, we presently rlj:
dead-reckoning estimates based on wheel encoders and an obe
inertial navigation system. These drift with travelling time and disr
As a result, ground truth (the real-world environment) and thesz
map drift apart  This problem is characteristic of pavigation vils
access to absolute position information. In stereo vision navigation, i
traditionally been addressed by cstimating motion bascd on i
matching.

‘We arc currently investigating two complementary approaches o
problem: incorporating the uncertainty in the position of the robz
the map-making process and do motion solving by matching nev s
readings against the map being incrementally built.

7.2. Extending the Architecture

The architecture described above embodies a scquential controhy
organization. This, however, does not reflect the problomsin
characteristics inhcrent 1o mobile robot software. The various mé.
involved in the problem-solving effort arc frequently quasi-indepent
and have 2 low degrec of coupling: thercfore, they should concep
proceed in parallel, interacting with each other as meeded. Wenr
recently started the implementation of a distributed version of Iw
[12] along the lines discussed in [6], where muitple agents wai:
concurrent activities.
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(b) ©
». " Figure 6-1: An Example Run. This run was performed indoors, in the

Mobile Rebot Lab. Distances are in ft. Grid size is 0.5 ft.

T T T T T T
-1 @ » o 3 @ 50 0

Figure 6-2: Objects Extracted from a Sonar Map. The objects are
numbered and their polygonal boundaries are shown. This
map describes an outdoor run, and the objects are trees.
Distances are in ft. Grid sizeis 1.0 ft.
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Another issue we are currently investigating is the development of a
task-level Global Planner that would automatically generate a Control
Plan, cstablishing sequences of parallel and sequential actions. We are
considering a hicrarchical approach similar to NOAH [14], using a graph
1o represent the plan and explicitly storing alternatives and sensor-
dependent conditions as part of it. The elementary operations of sensor
information gathering, interpretation, actuator control and specific
problem-solving activities are the primitives used by the planner.

8. Conclusions

We have described a system that uses a Sensor Level, probability-
based sonar map representation of medium resolution to build several
kinds of maps. Three different dimensions of representation are
defined: the Abstraction Axis, the Geographical Axis and the Re§olution
Axis. These maps are uscd by a sonar mapping and navigation system
that performed successfully in indoor and outdoor environments. We
are now investigating motion recovery technigues and expanding the
system (o test distributed control and global planning mechanisms.
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Three Dimensional Images from Cheap Sonar

Hans P. Moravec
The Robotics Institute
Carnegie-Mellon University
Pittsburgh, PA 15213

December 21, 1985

1 Introduction

We propose to build and use moderate resolution three dimensional space occupancy maps built from
multiple measurements from cheap sonar sensors. By cheap sonar | mean range readings obtained from
unmodified Polaroid sonar transducers driven by the original Polaroid circuit board, or by an improved
board (allowing closer minimun ranges) from Texas Instruments. This is a simple, but highly developed
and reliable, not to mention inexpensive, system that returns the distance to the nearest reflector in a
certain wide cone of sensitivity. Though much more information can be obtained, in principle, from single
sound bursts by modifying the aperture, phase relationships, frequencies and processing, such an
approach ignores the present very good solution.

2 Past Work

In earlier work [Moravec&Elfes 1985] we described the use of multiple wide-angle sonar range
measurements to map the surroundings of an autonomous mobile robot. A sonar range reading provides
information concerning empty and occupied volumes in a cone (subtending 30 degrees in our case) in
front of the sensor. The reading is modelled as probability profiles projected onto a rasterized map, where
somewhere occupied and everywhere empty areas are represented. Range measurements from multiple
points of view (taken from multiple sensors on the robot, and from the same sensors after robot moves)
are systematically integrated in the map. Overlapping empty volumes re-inforce each other, and serve to
condense the range of occupied volumes. The map definition improves as more readings are added. The
final map shows regions probably occupied, probably unoccupied, and unknown areas. The method deals
effectively with clutter, and can be used for motion planning and for extended landmark recognition. This
system was tested on our Neptune mobile robot, and recently outdoors on the Terregator robot.

3 Experimental Approach

Processing a single reading from a standard unit is computationally cheap; only one number is
generated, limiting the computations necessary or possible. The range accuracy of a typical reading is
better than a centimeter, but because of the wide angle of the pulse, the lateral position of the reflection is
uncertain to on the order of a meter. By exercising multiple units repeatedly, readings from multiple
viewpoints may be combined to deduce the location of the reflecting surfaces more precisely. The
combining process is a kind of deconvolution - each point in the final high resolution map is a
consequence of many of the individual readings combined in a particular, unique way and each reading
participates in many map points.
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Our existing approach uses the idea that the interior of each sonar reading cone (bounded by the
sensitivity profile laterally, and by the range surface lengthwise) is known to be empty, and that the
reflecting point is somewhere on the range surface in this cone. The empty interiors of other readings
overlapping this range surface reduce the region of uncertainty of the location of the echoing point in a
probabilistic way, while intersecting range surfaces reinforce each other at the intersections. The
deconvolution is essentially non-linear.

The old programs work in two dimensions, collapsing the measurement cones vertically into flat pie
wedges that are combined in a two dimensional map array that ultimately holds numbers giving the
confidence that a given cell is empty or occupied. We have experimentally noted that maps with a range
of 10 meters and a resolution of 15 to 30 cm can be reliably constructed with data from a ring of 24
robot-mounted transducers looking out horizontally at 15 degree intervals and pulsed at six locations a
few meters apart in the robot’s travels (144 independent measurements). The sharpness of the map can
be seen to improve as more readings are added. Many readings are combined to form one map
probability point, and this process makes our method quite tolerant to the occasional range errors
encountered in the sonar data.

A highly optimized version of the program, using fixed point arithmetic, can process 144 points in
roughly 1 second on a big Vax, 2 seconds on a Sun2 and 4 seconds on a Macintosh, building a 32x32
map of eight bit probabilities. A companion program correlates two such maps, using a coarse to fine
hierarchy of reductions and a dual representation (raster and list of occupied cells) to search over X, Y
shift and angle, in similar times. Another program devises good robot paths through the probability maps.

3.1 3D mapping
Our approach generalizes very naturally to three dimensions - mtacxmwﬁ@seoﬁmmwwedges
in the 2D program is its greatest single approximation, and information waster. '

The sensors must be configured differently, however. The only height information in the present planar
plane. Even without this ambiguity, the present arrangement could provide very little vertical

An arrangement of sensors on the surface of a partial sphere would be much better. The 15 degree
spackna#mmsemmmwmmgwasmnwmmmwaﬁapofﬂ%ﬁm !m
discovered that this spacing allowed multiple sensors to be fired simultaneoust
interference, in three, or even two, interleaved banks, greatly speeding
idea and spacing to fill a sphere instead of a circle leads to the following

A sphere represents 4z of solid angle. Spacing the sensors 15 degrees from each other assigns a
cone with 15 degree apex to each sensor. A cone with apex angle T subtends 2x(1-cos(T/2)) solid angie,
and we can (glossing over packing problems) arrange about 4n/(2r(1-cos(T/2)) = 2/(1-cos(T/2)) of them




into a sphere. With T=15 degrees 233 transducers fill a sphere. If we content ourselves with a 90 degree
wedge (almost a fisheye if you note that the beams fan out an additional 15 degrees on all edges, for a
net coverage of 120 degrees) then this gets reduced to a more manageable 34 transducers.

If actually packed onto a spherical cap, the sensor group would greatly resemble a compound insect
eye, each facet being a Polaroid transducer. The insect would be a monster. The transducers are
somewhat less than 5cm in diameter, which would demand a sphere radius of about 40cm. A 90 degree
cap from this sphere would be a shallow bowl 56cm in diameter and 12cm deep.

One such sensor array on the nose of a vehicle, tilted down somewhat, should be adequate for many
tasks, but imagine getting better side coverage, say for obstacle avoidance, by placing two, one on each
side of the head, enhancing the giant insect effect. ’

3.2 How Many Readings, How much Computation?
The 3D map we hope to derive from this array has more cells than the 2D maps we have worked with,
and will require more data. How much?

Suppose we build our maps to a range of about 10 meters in the vehicle forward direction, 5 meters
laterally and 3 meters in the vertical direction, and to a resolution of 30cm in each direction. There will be
33x17x10 cells, each holding a number, in the final map. This is 5,610 numbers. A naive degrees of
freedom analysis suggests that a similar number of readings each returning one number are necessary to
determine this many variables. Fortunately our 2D experience suggests that far fewer will suffice.

We have noted experimentally that 144 readings nicely spaced around our cluttered laboratory is just
enough to give us good 32 cell by 32 cell maps covering a square area 10 meters on a side. There are
1024 points in such maps, so we seem to be accomplishing the impossible, extracting 1024 unknowns
from 144 equations. Actually, the 1024 numbers are not very informative as their magnitude represents
our certainty {(or uncertainty) about particular cells being occupied, not something intrinsic about the
scenery. Most of the cells in the final mape are labelled an unsurprising “unknown” (represented by 0) or
"probably empty” (represented by a negative number). The real information is concentrated in the
locations of the reflecting boundary seen by the robot, i.e. the minority of cells labelled "probably
occupied”. To first approximation this boundary is a one dimensional contour embedded in the 2D map.
Its length in cells is on the order of the boundary length of the map, 4x32. The information is not in the
contents of these cells (positive probability numbers), but in their location. Each cell represents about one
number - think of the boundary expressed in polar co-ordinates - the information is in the radius at each
angle, the angle itself is just the independent variable. SO - we have 144 equations to determine about
4x32 = 128 variables - just about right! Mathematics is great.

In 3D the contour becomes a surface. In our example of -two paragraphs ago the map size was
33x17x10 cells. The surface of this volume has about 2,100 cells, and thus requires about 2,100
readings by the above analysis, or 62 full scans of the 34 transducers in the 30 degree eye. The sensors
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can be pulsed about twice per second. With two way interleaving, a full eye poll takes a second. The 62
readings would thus take about a minute. Computation times on a big Vax, extrapolating from the fast 2D
program, would also be at about 30 seconds to a minute. It is assumed that the robot travels about ten
meters during this minute (a speed of 0.6 kmv/hr) to give each reading set a fresh vantage point, and that
adequate dead reckoning is provided to correctly relate the 60 sets geometrically. Of course, lower
resolution maps, or simple obstacle detection, can be accomplished faster, in as little as one (half second)
pulse gathering period.

These numbers suggest that high speed travel is best left to longer range sensors, and perhaps
simpler techniques. The sonar mapping could be very useful for slow, close in, tight maneuvering in
complicated environments and on very rough ground. The very general path passability grid route
planners demonstrated by the group extend in a natural way to the dense 3D data this approach will
provide.

4 Research Plan Yot

All our sonar experiments so far have been conducted with early prototype sonar rings provided by our
sometime collaborator, Denning Mobile Robotics, Inc. of Woburn, Massachusetts. Because of a rather old
fashioned (small buffer) serial interface on our Vax computers, the processors on these rings can't reliably
communicate with the Vaxes in the present configuration, and this has been a serious hinderance to
sonar experimentation. We will begin the work by building new interfaces for the transducers using Texas
Instrument driver boards funneling into an MC68000 microprocessor. Denning has agreed to help in this
effort - they have been using a Tl board based design successfully for six months.

A second stage is design and construction of the physical array. This will require a mathematical
optimization and an evaluation by simulations of the individual sensor placements.

The bulk, and point, of the work will be an extended series of experiments with 3D map building and
navigation programs. One small but interesting subproblem in the early stages is 3D raster fill of conically
bounded sphere surfaces and volumes. A more significant problem is the handling of position uncertainty
in the measurements made during an extended run. Our probability raster permits a very direct
representation for uncertainty - it can simply be added to the probability distribution, increasing the spread
of each reading in the appropriate directions.

We'd like to try an approach that projects the incremental uncertainty of each move onto oid
measurements rather than new ones. The result would be a map that is always detailed for the local area
around the vehicle, and fades to fuzziness under the cumulative effect of errors in the distance. Very oid
readings that provide almost no information because of uncertainty in their location could eventually be

eliminated from the mapmaking.

The three dimensional nature of the images will permit some work in identification of large objects.
Recognition of small objects is ruled out by the coarseness (about 10cm) of the anticipated maps.
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Experiments and Thoughts on Visual Navigation

C. Thorpe, L. Matthies, and H. Moravec

Carnegie-Mellon University

Abstract ‘

We describe a second generation system that drives a camera-
equipped mobile robot through obstacle courses. The system,
which evolved from earlier work by Moravec [6], incorporates a new
path planner and has supported experiments with interest
Operators, motion estimation algorithms, search constraints, and
speed-up methods. In this paper we concentrate on the effects of
constraint and on speed improvement. We also indicate some of
our plans for a follow-on system.

1. Introduction

FIDO is a navigation and vision system for a robot rover. Using
only stereo vision, Mocamob&ades.pimapatharomdthem.
and tracks the motion of the robot as it moves. FIDO’s main loop
repeatedly:

© picks about 40 points from one member of a stereo
image pair

» stereo-ranges those points by a hierarchical correlation
technique

« plans a path that avoids those points

o moves forward

& takes two new stereo pictures

This paper describes our experimental investigations and
improvements in FIDO's performance. Early versions of FIDO and its
predecessor, the Stanford Cart programs, used 9-eyed stereo, took
15 minutes or more per step, and were not always reliable, By using
additional geometric constraints, we have been able to increase the
refiability while using only 2 stereo images instead of 9. With fewer
mmmmmmwewmmmmmmw
minutes to less than a minute per step. anisoexpiofedwug
paraliel hardware for further speedups.

mzwmmmmmwmm

The FIDO system has supported experiments in other aspects of
visual navigation, notably interest operators, used to pick points to
be tracked from image to image, and path planning. The results
have been presented eisewhere [8, 8]. We found that the simpig
interest operator used in the original Cart program worked as well
as mmmmmmd it was retained with only m
changes. Fibo does \

1.1 Constraints

FIDO uses a variety of constraints to improve the accuracy of its
stereo vision and motion solutions. Most reduce the area of the
image to be searched by the correlator. A smaller search window
reduces the chance of finding a false maich and improves system
performance in several ways. First, as more points are tracked
correctly it becomes easier to identify those incorrectly tracked and
delete them. Secondly, more points (and higher precision) improve
the accuracy of the motion calculations [10]. Finally, points can be
successfully tracked through more images, and over longer
distances, for more accurate long term navigation.

Some of the constraints arise from the known relationship
between the cameras and the vehicle. Other constraints come from
vehicle inotion estimates: the image location of an object that has
been stereoc ranged on a previous step is constrained by
approximate knowtedge of the vehicle’s new position.

We tested FiDO using various combinations of constraints in order
to judge their effect. We usually made a live vehicle run with the
predictions in a file. Subsequent runs were done off-line using this
compared for accuracy of the final calculated position, number of
memammpmdmdm

1.2 Imaging Geometry Constraints

They depend only on camera and robot geometry, and ‘they are

applicable to sterec point matches of both new and previously
Near and Far Limits. Point distances are not permitted to be
greater than infinity (by the real world) or less than a certain
distance (by the nose of the robot). This determines a maximum
and minimum stereo disparity of the feature match.

cm:m.mhmmmmm

wnr mmmmwmmmm

vidicons, the image might appear to move a little verticaily, so we

 allow some siop (10% of the image height typical).

1.3 Motion Geometry

The estimated motion of the vehicle from step to step places a
strong constraint on point maiches. It can be used either a priori to
MMMWWﬁwmmmthﬂWm
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Two 0 Motion. We usually run our robot on locally flat ground. In
which case we know it will not pitch, roll, or move vertically. This
reduces the problem of determining vehicle motion from 6 degrees
of freedom to 3, simplifying the computation and tightening the
constraints.

Reacquire Constraint. Given the 3D location of a point relative
to a previous vehicle position, and a dead reckoned new position
and heading for the vehicle, it is possible to predict where that point
should appear in the new stereo pair of images. If this constraint is
active RDO will use the prediction to limit the stereo matcher's

search. Three user-settable variables control the error estimates in

robot position and orientation, and consequently the size of the
search box around the predicted image position.

Prune. When ail points from a previous position have been
reacquired at a new vehicle location and stereo-ranged, there is a
pruning step that looks for points that do not move rigidly with the
rest of the points. The points that do not appear to move rigkfry
have probably been tracked incorrectly, and can be deleted before
the teast-squares process that solves for vehicle motion. Activating
the Prune constraint causes the predicted vehicle position to be
included as one of the points in the rigidity test, perhaps weighting
the selection to the correctly matched points rather than a
coinctdentally consistent incorrect set

Motion Solution. The motion solver determines the motion that
minimizes the error between where points have been seen and
where they should have been seen given that motion. The
predicted vehicle position can be included as one of the points in
this least-squares process, weighted more or less depending on the
assumed precision of the prediction.

1.4 Results

We made several runs of the FIDO system on Neptune, with fairly
consistent results. Data from- June 24,1984 was most extensively
analyzed. On that run asingle targe obstacle was placed a dose 2
meters ahead of Neptune's cameras, with the destination set to the
far side. Stwas atough test for noo, since it required the maximum
allowed turn limited by the need to have sfgn£fk»it overlap in the
views from successive positions) on each step to get around the
obstacle and back on course. We ran RDO with each constraint im
what we thought to be its best state, and saved images and dead
reckoning mformation, Then we made a series of offline runs on
the stored datarvar;ms settings and watching the results, Several
rum differed in only one parameter from the original, a few others
changed two or three The last grqup of runs began with one using
none of the eonsMnfe, followed by a series each with only one
constraint on.

Figure O somesasnes tic results. Theinost important meesir e of
anjn’s success.is the (program's):calculated position at ttieeml of
me ftMK tne nearer m me aduat fpwniwjfj measureo pos&ioe, pi

buller.

Sone cayiionajy notes are in order. The relafive success of tie
run with 'Oi% the far distance constraitt ia accidental During "El
mm» there wptine two steps nfhwettte ffiotiorisotytichi w2® comphalely
wrong bul tort *y «*«icie*we nearly offset eacft ofben Many of
the ether si:!*leccf5Strtimmns mat appear worse actiia% had only

ong wild miscaicutelion.

Some of ihe rttoutant cowsfraSit nm also appearto©good
many of #hess casm LW OWCHWCNO*NMng indonnation waa
sowmptives batiar b e vieusl raciing. The ris with no epipoiar
conatraint han & Dalter finai posliion tham e run with no macouine
Conpirpint, becames, by [ack* i tracts Mwer potmatm® sight

times and relied on dead reckoning while the latter placed too much
reliance on small numbers of tracked points.

Based on our experiences, we make the following observations:

* The epipolar constraint is the single most powerful
constraint  Turning it off, and all the others on,
significantly decreases the minimum and average
number of features tracked and the accuracy of the
motion solution. Turning it on, with all others off,
significantly increased the number of points tracked. In
a sense, this is not surprising, since the epipolar
constraint rules out 90% of the image, more than any
other constraint

* No single constraint makes the difference between a
successful and a catastrophic outcome.

*In none of the runs was vision as accurate at
calculating translation as straight dead reckoning
based on motor commands, though in the best runs
vision determined the rotation more correctly. It would
have been better to use the dead reckoned motion
rather than the visually determined one if the number of
features tracked dropped below 6 or 7, rather than 4
which was the threshold, at least for the level of ground
roughness and mechanical accuracy in the
experiments.

*We noticed that even the best runs have about a 20%
error in caicuiated translation, always on the short side.
We suspect a small camera calibration error, and
possibly systematic errors in representing uncertainty.
FIDO calculated a pdint's 30 location by projecting rays
through tie centers of the pixels in the stereo images,
which gives alocation on the near side of the range of
uncertainty of distance.

«There is a problem in using all the geometric
constraints to cut down tie search areasince it leaves
none for verification' and- pruning. If we had very
accurate fnotion prediction, we would have to resort to
photometry instead: of geometry to identify points that
'had been occluded® or otherwiselost.

2. Speed-up Methods

noo-now takes.30 to 40 seconds per step on a Vax 11/780 under
Unix, To run ts reaUE”e, we weykj have tc reduce that to about 1
second:per step. We have looked a! several speedup techniques;
ificluding fester processons; dedicated hardware, coding hacks,
and pa”iei processi05.

Faster General Purpose Computers

Our VAX i® tot a one”P (neMon instructions Per second)
machine* It is tedwilcaiy potaWt to gH the respired speedup-by
sbmply afctalcri”ga30-w:1orfaster coir.pi.ner.Budgetandlogistics

lomve this a8 a ntalizing kaurs possibility.

Commercial Array Processors

Buymg a mmmmsM ansy processor to more faasftte to* us than
buying a faster csmp”ie?, Ataut 90 petteft of tie runtime in RDO
occurs hi krone vfay »Gpsrions and geometric calCylaticns,

patiicuiasly the conveletions is polmt malchiti f, These are done by’

swll p5scss of code #i«f work on large amounts of -data, and are
well salbed to Wm fHpulfwi itvcfar «#u” fc “of aralabi® array



processors. We estimate, for instance, that a 100 MIP array
processor could give us the desired factor of 30 speedup. We've
made several serious attempts to acquire one; so far, this remains
another tantalizing possibility.

Coding optimizatfons ) .

Much effort has been* expended on speeding up the Vax
implementation. We feel. there is -little room for left for significant
improvements in a time-shared, paged-memory environment The
basic routines, such as the correlator and the interest operator, fit
all the criteria for good candidates for optimization [2]: the code is
fairly well understood, stable, small, and accounts for a large
amount of run time. For instance, the implementation of the
correlator uses the following coding techniques:

* The calculations of parameters of the correlating
window are done once, outside the main loop.

*«Sums and sums of squares for consecutive columns
and rows are calculated by Price's technique [7]. The
next window total is calculated by adding in the total for
the column that just entered the window and
subtracting off the total for the column that just left the
window.

« Squares are calculated by table lookup. Since the
squares are of sums of two pixel values, the table
needs only 511 entries.

« Image windows are moved by pointer swapping, rattier
than by datatransfers.

« Loop indices count down to 0O; since the VAX hardware
has an efficient test-for-not-O-and -branch instruction.

» Formulas are rewritten to eliminate extra calculations.
For example,
2* 2(imgl * img2) *

Z((imgl +img2)t2) - 2(img1t2) - 2(img2t2)

gives a way of calculating the sum of the products of
the pixel values by additions (which are cheap) and
squares (which can be done by table lookup) rather
than multiplications. The individual sums are also used
in other parts of the calculation, so in this case the sum
of products comes for free.

* Loop unrolling. The code in the innermost loop is
written n times in line, rather than written once inside a
loop that counts to n. This saves n increments of the
counter and n tests for the end of the loop.

* Register use. The most frequently used variab'es are
located in hardware registers.

These programming techniques reduce the ram time of ttie
correlator from 140 ms per call for a straightforward implementation
to 4to 5ins per call Similar optimizations have 'been performed on
tie other tight (cops, such as’in tie Interest operator and fie image
fee to coarse reduction routine. The userlevel routines have been
eptimfefid to the point that the single routine that uses the most
CPUtimeis mm an image yn:packer.

Dedicated hardware
A dedicated microcomputer running rioo with enough mermxy to
store a8 tie relevant images offered seme hope. We tried ant
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implementation of the correlator on a 10-MHz MC68000 system,
with all the images held in integer arrays. After eliminating ail
floating . point operations the resulting code still took 29
microseconds per call to the correlator, compared with 4to 5 on the
VAX.

2.1 Parallelism

There are several ways to break FIDO into separate processes that
can run in parallel on different machines, including pipelining on
macro or micro scales or the use of a master/slave system.

Macro Pipelining .

One process might do the reductions, the next could do
reacquires, the next the match, another motion-solving, and the last
path planning. This organization improves throughput but not the
latency. The problem with this method is the sequential nature of
FIDO. Since all the image reductions have to be finished before the
reacquires can start, all the matches done before the path planning,
and so forth, each pipeline stage has to wait for the previous stage.
Since each step takes as long as on a serial machine, and since the
steps are done sequentially, the time to process any one set of
images is the same as on asingle processor system.

Micro Pipelining

The processes could be subdivided more finely. For instance,
one processor might do the first level of match-for one point after
another, handing its results to the process that does the next level
of match. When matches are finished, the pipeline could be
reconfigured for path planning, and so on. This approach requires
huge communication bandwidth between processes.

Master/slave

This method has one master process and several identical slave
processes. Each slave handles every image processing task:
reduction, matching, and interest operator. At any time all the
slaves work on the same task with different data. For example,
during image reduction, each slave reduces part of the image, and
during matching each slave processes its own queue of points.
The master process does tasks that require global knowledge such
as path-planning or motion-solving, and coordinates the slaves.
This more flexible organization avoids several delays inherent in
pipelines.

We implemented variants of this idea in our Ethernet-connected
multi-Vax environment Given the existing uniprocessor code, the
task was not difficult. The slaves required new code for
communication with the master, but the actual work is done by calls
to the old image processing routines. The master contains the old
path planning and display code, and new communication code and
dispatch tables to keep track of each slave's activities. When a
slave completes atask the master updates its dispatch table, finds a
new task and puts the slave to work agafn. For instance during
point matching each slave is initially given one point to correlate.
When a slave finishes its correlation, the master hands .it a new
point to find. When ail the points are handed out the master
redundantly hands out points that are still in. process on other
slaves, and accepts the first answer to be returned, giving 'some
* protection against overloaded or crashed processors.

A version of the system that used several VAXes In parallel was
swamped, as expected, by the overhead of squeezing images
between machines through the Ethernet, Another version that used
multiple processes on a single Vax gave us some Idea of the
performance that might be possible if faster communicator*,
perhaps through shared memory, were available.
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The single machine version uses the same decomposition as the
multiple machine version, and the same genera}*purpose
interprocess communication package. Because of limitations in the
communications package, each stave calculated its own image
pyramid.

2.2 Timings for a 28-Step Run

Single Processor 978

One Stave

Master 216

Siavel 626
Five Slaves

Master 234

Slave 1 403
Slave 2 402
Slave 3 403
Slave 4 402
Slaves 400

Notes:

* The time for the Master varies ittte with the number of
slaves*

» Without image acquisition or communication package
overhead the time for a single slave would be about 325
seconds or 12 seconds per step.

* Without image or communication overhead, and with
tie time for picture reduction shared evenly, the toe
for each of the five slaves would be 65 seconds, or
about 2.5 seconds per step.

* The work spreads very evenly among the slaves. With
5 stev” the workload is balanced to within mm
accuracy of ©or measurements.

#i ttte master process die" not handle images, had zero-
cost communfcatfon, and* dowt have to do image
distortion correcfor,, if conk* nm In 75 to 80 seconds,
or about 3 seconds per step,

« By comparison* tit original uniprocessor system runs
in 373 seconds, or 35 seconds ‘per step. With tm
advaries we asamsed above {no image handing

overhead} |t WmM St haw mm 503 seconds, m 18
BUOORARE PU 2h0p.

2.3 Remarks

Our wpirimnlt suggest tin t Is pcssbie to<deoomposs MOO
irtte a S to 10 fold: poraitf set of ~ffciefiify co”pCcati"9 parts
mAnig »i csnvt*onal processors. To rediae t» n'n Taes

nouks nend e lollowing:

« Shared mais: meme- /'t ege enartigti to ho | d * toot two
image pyrasnids without swapping or dale paciking. (2 *
= 700 KicByes).

i Fast™ e~ rDce” Jommmicalion lor small weesages.

» /Al fount 5 precessory. & Wwkes 5 slave processors 10
Sring e mage procsssing o i e same ogs a8
e masier proosss’ e,

* A device able to digitize images directly into the shared
memory*

« Cameras with less image distortion than our current
vidicons, so image warping would not be needed.

3. The Next System

Some simple hardware enhancements could improve FIDO's
performance. A pan mechanism for the stereo cameras would
permit larger turns while still maintaining continuity of field of view.
Motion and heading sensors would improve navigational accuracy
and eliminate some catastrophic misperceptions.

Navigational accuracy could also by improved by modifying the
motion estimation algorithm. The current algorithm reacquires
features in new a image by searching for the features within
windows predicted by an a priori motion estimate. This makes poor
use of the assumption that objects do not move; that is, that they
appear to move rigidly from frame to frame. Since all search
windows are defined before any search begins, constraint is not
propagated from one match to another. A seemly better approach
is the iterative registration method [1], [3], [4]. In this method, 3-D
feature positions are projected onto a new image using an initial
motion estimate, then the motion estimate is refined to optimize
some measure of match in the Image. We are currently
experimenting with the variation proposed by Lucas [4] and plan to
report empineal results in the near future.

Two bugbears in our systems to date have been the calibration of
camera and motor parameters and the representfon of uncertainty
in the 3-D locations of perceived objects. We are considering an
adaptive approach that calibrates the cameras (semi-)continuously
on the fly and adjusts the motor control parameters from
observations of past vehicle motions. A simple technique like this
was used successfully in an early program that drove the Stanford

Cart in straight lines [5]. We are also looking at carrying along.

uncertainties in feature locations and updating the uncertainty as
new measurements aretaken. Eventually, we hope to automate the
process to the point where calibration simply requires turning on
the vehicleand ietttng It run by itself for awhile.
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Path Relaxation: Path Planning for a Mobile Robot

Charles E. Thorpe

Computer Science Department, Carnegie-Mellon University

Abstract.  Path Relaxation is a method of planning safe paths around
obstacles for mobile robots. It works in two steps: a global grid scarch
that finds a rough path, followcd by a local relaxation step that adjusts
each node on the path to lower the overall path cost. The representation
used by Path Relaxation allows an cxplicit tradeoff among length of
path, clearance away from obstacles, and distance traveled through
unmapped arcas.

1. Introduction

Path Relaxation is a two-stcp path-plarning process for mobile robots.
It finds a safe path for a robot to traverse a field of obstacles and arrive at
its destination. The first step of path relaxation finds a preliminary path
on an eight-connected grid of points. The second step adjusts, or
“relaxes”, the position of each prcliminary path point to improve the
path.

Onc advantage of path relaxation is that it allows many different
factors to be considered in choosing a path. Typical path planning
algorithms evaluate the cost of alternative paths solely on the basis of
path length. The cost function used by Pith Relaxation, in contrast, also
includes how close the path comes 10 objects (the further away, the lower
the cost) and penaltics for traveling through areas out of the field of view.
The cffect is to produce paths that ncither clip the corners of obstacles
nor make wide deviations around isolated objects, and that prefer to stay
in mapped terrain unless a path through unmapped regions is
substantially shorter. Other factors, such as sharpness of corners or
vnibmwaflandnmks.ooumasobcaddedﬁorapm“robotor
mission.

Path Relaxation is part of Fido. the vision and navigation system of the
CMU Rover mobile robot. [7] The Rover, under Fido's control, navigates
solely by stereo vision. It picks about 40 points to track, finds them in a
pair of stcreo images, and calculates their 3D positions relative to the
Rover. The Rover then moves about half a meter, takes a new pair of
picturcs, finds the 40 tracked points in cach of the new pictures and
recaiculates their positions. The apparent change in position of those
points gives the actual change in the robot’s position.

Fido's world model is not suitable for most existing path-planning
planar-faced objects. Fido's world model, on the other hand, contains
only the 40 points it is tracking. For each point, the model records its
position, the uncertainty in that position, and the appearance of a small
patch of the image around that point. Furthermore, Fido only knows
about what it has seen; points that have never been within its ficld of
view are not listed in the world model. Also, the vision system may fail
1o track points correctly, so there may be phantom objects in the world
mode] that bave been seen once but arc ro longer being tracked. All this
indicates the need for a data structurc that can represent uncertainty and

Section 2 of this paper outlines the constraints available to Fido's path

planner. Scction 3 discusscs some common types of path planners, and
shows how they are inadequate for our application. The Path Relaxation
algorithm is explained in detail in Section 4, and some additions to the
basic scheme are presenied in Scction 5. Finally, Scction 6 discusses
shortcomings of Path Relaxation and some possible extensions.

2. Constraints

An intelligent path planner necds to bring lots of information to bear
on the problem. This scction discusses some of the information useful
for mobile robot path planning, and shows how the constraints for
mobile robot paths differ from those for manipulator trajectories.

Low dimcnsionality. A ground-based robot vehicle is constrained to
three degrees of freedom: x and y position and orientation. In particular,
the CMU Rover has a circular cross-section, so for path planning the
orientation does not matter. This makes path planning only a 2D
problem, as compared to a 6 dimensional problem for a typical
manipulator.

Imprecise control. Even under the best of circumstances, a mobile
robot is not likely to be very accurate: perhaps a few inches, compared to
a few thousandths of an inch for manipulators. The implication for path
planning is that it is much less imponamtoworryaboutexactﬁtsfor
mobile robot paths. If the robot could, theoretically, just barely fit
through a certain opening, then in practice that’s probably not a good
way to zo. Computational resources are better spent cxploring alternate
paths rather than worrying about highly accurate motion calculations.

Cumulative error. Errors in a dead-reckoning system tend to
accumulate: a small error in heading, for instance, can give rise to a large
error in position as the vehicle moves. The only way to reduce error is to
periodically measure position against some global standard, which can be
time-consuming. The Rover, for example, does its measurement by
sterco vision, taking a few minutes 0 compute its exact position. So a
slightly longer path that stays farther away from obstacles, and allows
longer motion betwcen stops for measurement, may take less time to
travel than a shorter path that requires more frequent stops. In contrast,
a manipulator can reach a location with approximately thc same error
regardicss of what path is taken to arrive there. There is no cumulative
mandmﬁmespminmienm&on.

about all the obstacles. Thckmkmwsm@yabmmmmmkhm
scen. This leaves unknown arcas outside its field of view and behind

obscacks. ltmmnﬂvm&mbkmpiwapmmatmuﬁy
known cmpty regions. but if that path is mech Jonger than the shortest

pahumybemthhotmgxﬂaemkmnm

Fuzzy objects. Not only du typicul manipulator path-planncrs know
about ail the objects, they know preciscly where cach object is. This
information might come, for instance. from the CAD system that
usually sease the world as they go. Fido, instcad of having precise
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bounds for objects, knows only about fuzzy points. The location of a
point is only known to the precision of the stereo vision system, and the
extent of an object beyond the poinc is entirely unknown.

in summary, a good system for mobile robot path planning will be
quite different ffom a manipulator path planner. Mobile robot path
planners need to handle uncertainty in the sensed world model and
errors in path execution. They do not have to worry about high
dtaeasioiialty or extremely high accuracy. Section 3 of this paper
discusses some existing path planning algorithms and their shortcomings.
Sectton 4 ten presents the algorithms used by Path, Relaxation, and
shews how they addressihese problems.

3. Approaches to Path Planning

This seawa outlines severd apfwiadies lo path i*anni” and sorne of
the drawbacks of each approach. All of these methods except the
pocenial fields abroach abstract Ac search space to agraph of possible
paths. This graph Is then searched by some standard search technique,
ucfe as bfcadtb-firs or A* fSJ tod the shortest path isreturned. The
Snpoftaot thing to note in ttie following is the information made explicit
bf eadi mpmtMMMM aid ihe information thrown away.

Free Sgace Mrfbnfc. p, X 9J di e type of path planner explicitly deals
with die spice between obstacles. Paths are forced GO mi down the
middle of die corrtdess between obstacles, far instance m (he Voiwioi
dlagram of the free space. F* e Space atgorimmi suffer frommo related
problem* both joguféeg from a data atewactioii that tows aney loo
nodi &mMudOQL 'Tht 8mproWd is tint paths dways inn down the
mickdie of ariders. in amnoir “MCC, thisk desirable, sncek dlows
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short paths and obstacle avoidance is the Regular Grid method. This
covers the world with a regular grid of points, each connected with its 4
or 8 neighbors to form agraph. In existing regular grid implementations,
the only information stored at a node is whether it is inside an object or
not. llien the graph is searched, and the shortest grid path returned.
This straightforward grid search has many of the same Mtoo dose"
problemsas the vertex graph approaches.

4. Path Relaxation

Path Relaxation combines the best features of grid search and potential
fidds. Using the rolling marble analogy, the first step is a global grid
search that finds a good valey for the path to follow. The second step is
alocal relaxation step, similar to the potentia field approach, that moves
the nodes in the path to the bottom of the valley in which they lie. The
terrain (cost function) consists of a gradua slope towards the goal, hills
with dloping sides for obstacles, and plateaus for unexplored regions.
The height of the hills has to do with the confidence that there realy is
an object there. Hill diameter depends on robot precision: a more
precise robot can drive closer to an object, so the hills will be tall and
narrow, while a less accurate vehicle will need more clearance, requiring
wide, gradually tapering hillsides.

This section firgt presents results on how large the grid size can be
without missing paths. 1t next discusses the mechanism for assigning cost
10 ihe nodes and searching to grid. Finally, it presents the relaxation
step HIM adjusts the positions of path nodes.

Grid Sze. How large cm a grid be and still not miss any possible
paths? That depends on the number of dimensions of the problem, on
the connectivity of the grid, and on the size of the vehicle. It also
depends on tte vehicle's shape: in this section, we discuss the simplest
e, which isavehicle with acircular cross-section.
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Grid Search. Once the grid size has been fixed, the next step is to
assign costs to paths on the grid and then to search for the best path
along the grid from the start to the goal. "Best", in this case, has three
conflicting requirements: shorter path length, greater margin away from
obstacles, and less distance in uncharted arcas. These three are explicitly
balanced by the way path costs are calculated. A path’s cost is the sum of
the costs of the nodes through which it passes, each multiplied by the
distance to the adjacent nodes. (In a 4-connected graph all lengths are
the same, but in an 8-connected graph we have to distinguish between
orthogonal and diagonal links.) The node costs consist of three parts to
explicitly represent the three conflicting criteria.

1. Cost for distance. Each node starts out with a cost of one
unit, for length traveled.

2. Cost for near objects. Each object near a node adds to that
node’s cost. The ncarer the obstacle, the more cost it adds.
The exact slope of the cost function will depend on the
accuracy of the vehicle (a more accurate vehicle can afford to
come closer to objects), and the vehicle’s speed (a faster
vehicle can afford to go farther out of its way), among other
factors.

3. Cost for within or near an unmapped rcgion. The cost for
traveling in an unmapped region will depend on the vehicle's
mission. If this is primarily an exploration trip, for example,
the cost might be relatively low. There is also a cost added
for being near an unmapped region, using the same sort of
function of distance as is used for obstacles. This provides a
buffer to keep paths from coming too closc to potentially
unmapped hazards.

The first step of Path Rclaxation is to set up the grid and read in the list
of obstacles and the vehicle’s current position and ficld of view. The
system can then calculate the cost at each node, based on the distances to
nearby obstacles and whether that node is within the ficld of view. The
next step is to create links from each node to its 8 neighbors. The start
and goal locations do not necessarily lie on grid points, so special nodes
need to be created for them and linked into the graph. Links that pass
through an obstacle, or between two obstacles with too little clearance for
the vehicle, can be detected and deleted at this stage.

The system then searches this graph for the minimum-cost path from,
the start to the goal. The search itself is a standard A* [8] search. The
cstimated total cost of a path, used by A* to pick which nodc to expand
next, is the sum of the cost so far plus the straight-line distance from the
current location to the goal. This has the effect, in regions of equal cost,
of finding the path that most closely approximates the straight-line path
to the goal.

The path found is guaranteed to be the lowest-cost path on the grid,
but this is not necessarily the overall optimal path. First of all, even in
areas with no obstacles the grid path may be longer than a straight-line
path simply because it has to follow grid lines. For a 4-connected grid,
the worst case is diagonal lines, where the grid path is sqri(2) times as
long as the straight-linc path. For an 8-connected grid, the cquivalent
waorst case is a path that goes equal distances forward and diagonally.
This gives a path about 1.08 times as long as the straight-line path. In
cases where the path curves around several obstacles, the extra path
length can be even more significant. Secondly, if the grid path goes
between two obstacles, it may be non-optimal because a nodc is placed
closer to one obstacic than to the other. A node placed exactly half way
between the two obstacles would, for most types of cost functions, have a
lower cost. The placcment of the node that minimizes the overall path
cost will depend both on node cost and on path length, but in any case is

41

unlikely to be exactly on a grid point. If the grid path is topologically
cquivalent to the optimal path (i.c. goes on the same side of each object),
the grid path can be iteratively improved to approximate the optimal
path (sce Section 5). But if the grid path at any point goes on the
"wrong" side of an obstacle, then no amount of local adjustment will
yicld the optimal path. The chance of going on the wrong side of an
obstacle is related to the size of the grid and the shape of the cost vs.
distance function. For a given grid size and cost function, it is possible to
put a limit on how much worse the path found could possibly be than the
optimal path. If the result is too imprecise, the grid sizc can be decreased
until the additional computation time is no longer worth the improved

path.

A few details on the shapc of the cost function deserve mention. Many
different cost functions will work, but some shapes are harder to handle
properly. The first shape we tried was lincar. This had the advantage of
being easy to calculate quickly, but gave problems when two objects were
close together. The sum of the costs from two nearby objccts was equal
to a linear function of the sum of the distances to the objects. This
creates ellipses of equal cost, including the degenerate ellipse on the line
between the two objects. In that case, there was no reason for the path ta
pick a spot midway between the objects, as we had (incorrectly)
expected. Instead, the only change in cost came from changing distance,
so the path went wherever it had to to minimize path length. In our first
attempt to remedy the situation we replaced the lincar slope with an
exponentially decaying value. This had the desired effect of creating a
saddle betwcen the two peaks. and forcing the path towards the midpoint
between the objects. The problem with exponentials is that they never
reach zero. For a linear function, there was a quick test to sce if a given
object was close enough to a given point to have any influence. Ifit was
too far away, the function did not have to be evaluated. For the
exponential cost function, on the other hand, the cost function had to be
calculated for every obstacle for cach point. We tried cutting off the size
of the exponential, but this left a small ridge at the extremum of the
function, and paths tended to run in nice circular arcs along those ridges.
A good compromise, and the function we finally scttled on, is a cubic
function that ranges from 0 at some maximum distance, set by the user,
to the obstacle’s maximum cost at 0 distance. This has both the
advantages of having a good saddle between neighboring obstacles and
of being casy to compute and bounded in a local area.

Relaxation. Grid search finds an approximate path; the next step is
an optimization step that fine-tunes the location of each node on the path
to minimize the total cost. One way to do this would be to precisely
define the cost of the path by a set of non-lincar equations and solve
them simultaneously to analytically determine the optimal position of
each node. This approach is not, in gencral. computationally feasible.
The approach used here is a relaxation method. Each node’s position is
adjusted in turn, using only local information to minimize the cost of the
path sections on either side of that node. Since moving one node may
affect the cost of its neighbors, the entire procedure is repeated untl no
node moves farther than some small amount.

Nodc motion has to be restricted. If nodes were allowed to move in
any dircction. they would all end up at low cost points, with many nodes
bunched together and a few long links between them. This would not
give a very good picturc of the actual cost along the path. So in order to
kecp the nodes sprcad out, a nodc’s motion is restricted to be
perpendicular to a line between the preceding and following nodes.
Furthermore, at any onc step a node is allowed to move no morc than
onc unit.

As a node moves, all three factors of cost arc affected: distance traveled
(from the preceding node, via this node, to the next node), proximity to
objects. and relationship to unmapped regions. The combination of
these factors makes it difficult to directly solve for minimum cost node
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postion. Instead a binary search is used to find that podtion to
whatever accuracy isdesired.

The rdlaxation step hes the effect of turning jagged lines into sraight
oneswhere possble, of finding the "'saddle" in the cost function between
two objects, and of curving around isolated objects. It dso does the
"right thing" at region boundaries. The least cogt peth crossing a border
between different cost regions will fdlow the same path asaray of light
refecting & a boundary between media with different transmisson
velodities The rlaxed path will gopfoach that path.

5. Additionstothe Basic Scheme

Oneextenson wehavetried isto vary the cods of individud obstadles
The current vison sysem somelimes reports phantom objects, and
ometimes loses red objects that it had been tracking correctly. The
solution lo thisisto "fade" objects by decreasing their cost ech step that
dicy arewkhin thefidd of view bet not tracked by the vison module. *

Another extenson implemented is to re-use exiging paths whenever
possble. Atany onestep, thevehidewill usudly move only afration of
the length of die planned patht  If no new objects are sen during thet
sep, tnd if the venide is not too far off its planned course; k ispossble
to use the «M of the p®* asplanned Only if new objects have been
e that block die planned peth isit necessary to replan from scratch.

Hie rdaxation step can be greatly speaded up if it ram in pardld on
sverd computers. Although m actud pardld iopteiciitation has not
yetbeen tee, asgmulaion hasbeen writesa&d tested.

6. Remaining Work
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Modelling Uncertainty
in 3D Stereo Navigation

Larry Matthies
Computer Science Department
Carnegie-Mellon University

Abstract

We are studying the accuracy with which stereo vision can guide a mobile robot. In stereo
-navigation, a robot uses a sequence of stereo images to estimate its own motion as it travels through
a world of stationary objects. A set of landmarks is established by finding corresponding features in
one stereo pair. This yields an initial 3-D model of the local environment of the robot, defined in
robot-centered coordinates. As the robot moves, it periodically digitizes another stereo pair, finds the
landmarks in the new images, and computes their coordinates relative to its new location. The motion
of the robot since the last stereo pair is determined by fitting a transformation mapping between the
new and the old coordinate values.

Previous algorithms for stereo navigation have suffered from poor accuracy and low tolerance to
correspondence errors. This is partly due to inadequate models of stereo triangulation error.
Typically, scalar reliability factors are associated with landmarks to indicate the uncertainty in their
3-D coordinates. These scalars are used to weight the contribution of each landmark in the motion
solving algorithm. This paper argues that stereo triangulation error is better modelled by treating
algorithms for motion solving in which the covariance matrices weight the contribution of each
accurate motion estimates than scalar weights. These resuits should carry over into applications of
3-D vision outside of navigation.

1. Introduction

Mobile robot navigation is a problem of growing interest and practical importance. A travelling
robot must be able to detect the shapes and positions of nearby objects and to monitor its own
position in a global reference frame. This requires range sensors and motion sensors; we are
currently exploring stereo vision for use as both.

Our paradigm for stereo navigation operates as follows [13]. For simplicity, assume that nothing in
the environment moves except for the robot. A set of landmarks is defined in a robot-centered
coordinate system by matching features in a pair of stereo images. The robot then takes a step, finds
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the landmarks in a new pair of images, and calculates their coordinates relative to its new location.
The motion between stereo pairs is reflected in the difference between the new and the old landmark
coordinates; an estimate of this transformation is found with least squares. The whole process is
repeated periodically to monitor robot motion over long distances.

We have previously used this paradigm in systems that were able to guide a robot through short
obstacle courses [13], [17]. In one set of experiments, the robot accumulated approximately half a
meter of error in its global position estimate over a course six meters long [11]. However, the motion
estimates were rather unstable. This instability is reflected throughout the computer vision literature:
algorithms for visual motion estimation are generally very sensitive to noisy data [2].

Part of this sensitivity is due to inadequate modelling of stereo triangulation error. Triangulation
induces an uncertainty on 3-D coordinates that is greater for distant points than for near points and
greater in the direction of the line of sight than perpendicular to it (see figure 2). This phenomenon
has been recognized and modelled for a long time in photogrammetry [15], but has been
comparatively ignored in computer vision. In photogrammetry it is common to model all
measurements as corrupted by normally distributed noise. 3-D positions inferred by triangulation
have an uncertainty modelled by 3-D normal distributions. In computer vision, Blostein and Huang
[2] have recently derived other probabilistic models of triangulation error, but they appear not to use
them in their algorithm for motion solving. Moravec’s system [13] approximated triangulation error
with scalar coefficients used to weight the contribution of each landmark to the motion solution.
However, this does not capture the elongated and oriented nature of the uncertainty.

The purpose of this paper is to demonstrate the importance of modelling triangulation error. The
be inferred from stereo data. This model is used in section three to derive new equations for
estimating motion. In these equations the covariance matrices of the normal distributions replace the
scalar weights of previous methods. Sechmhurahmhwwupdaﬁemeiocaisomodelmth
measurements from successive stereo pairs. It proposes to keep the represe:
mwmmmmMmmmwmwmmmof
point locations. Only translational motion is treated. In section five we discuss the cascading of
uncertainty. The results of simulations on synthetic data are presented in section six. These compare
the new error model with a scalar weighting scheme and show substantiaily better performance with

2. Modelling Stereo Triangulation Error

The geometry of stereo triangulation is shown in figure 1. For the moment we consider just the 2-D
case in which two dimensional points project onto one dimensional images. Two cameras are placed
at offsets of £5 from a coordinate system centered between the cameras. Give«nmeomdmamsx
and x dmmwmmdmwfmp the coordinates of P are given by




b(x,+x)
P xI - xr
(1)

YP= 2b
X=X,
This estimate can be in error for several reasons. The finite resolution of the images contributes a
quantization uncertainty shown in figure 2a. A point projecting to pixels X, and X, can lie anywhere in
the shaded region. As shown in figure 2b, this region grows with the distance to the point, becomes
more skewed with increasing distance, and is always directed along the line of sight to the point.
Besides this quantization effect, the stereo matcher can return slightly incorrect values of x;and x,
due to perspective and photometric distortions of the image. On top of this their may be geometric
distortions in the image or calibration errors between the two cameras. These errors are of a more

random nature, but they all contribute uncertainty similar to that shown in figure 2.

Our goal is to find a model that accurately reflects the nature of this uncertainty and that can be
used conveniently to constrain algorithms for motion solving. Scalar weights can capture the "size"
of the uncertainty, but nothing of its shape. In a slightly different context, Baird [1] used polygons to
outline the border of the uncertainty region. These became constraints in a motion solving algorithm
based on linear programming. In our situation the random nature of the errors makes a statistical
approach more appropriate. Motivated largely by the example of photogrammetry and the stereo
calibration work of Gennery [7], we model the image coordinates as random variables with known
distributions and derive distributions on the point coordinates. For simplicity, we use linear models
and normal utions throughout, rather than try to determine exact distributions from nonlinear

We begin by treating x, and x_in equation (1) as corrupted by zero-mean, gaussian (normally
x=x,+e
x=x +e
where ¢,~ M0,0)), ¢, ~ M0.0 ), and x,and x _are the true values of x,and x . Since (1) is nonlinear, X,
and Y, wmnotbemmaﬂydﬁsmbuﬁsd However, wewﬂ!appmmn&ememasbtmrmai wuhmems
g&mbyn)mdcowmnoesobtamedby

(1.5)

mmemamxo{ﬂvemmgewordmam Mﬂwmodelwebavedescrmed Vwﬂtmwec]mda on

§‘m;~,guwa§» Faian,

45

[ B




46

XRr

Xy

Figure 1




47

Note that constant probability contours of the error distributions describe ellipses that approximate
the shape of both the non-random (figure 2) and the random contributions to landmark uncertdinty.
The principal shortcoming of the model we have proposed is that it is not long-tailed as the true
distribution would be. Figure 2 hints at this; the uncertainty regions have a skew that isn't modelled
by a symmetric distribution. The skew is not significant for nearby points, but grows with distance.
We have not analyzed the effect of this other than by way of the simulations presented later. The
extension of this error model to 3-D points projecting onto 2-D images is straightforward.

3. Solving for Robot Motion

With the procedure above, 3-D coordinates and covariance matrices are estimated for a number of
points matched in the first stereo pair. After the robot moves and digitizes another stereo pair, we find
the same features in the new images, triangulate, and compute new covariance matrices. This leads
to two models of the same points, with coordinates differing by the motion of the robot If the robot
approached a landmark there will be less measurement error in the landmark coordinates, so the
terms of its covariance matrix will be smaller. The opposite will be true if the robot receded from the
landmark. See figure 3.

We now wish to determine the motion of the robot between stereo pairs. Suppose for the moment
that the motion is purely translational. Let P, represent landmark coordinates with respect to the first
robot position, Q, represent the coordinates with respect to the second position, and r=[Ty 'I; T,
be the unknown translation vector. The motion is described amply by

- Q=F+T
@
In (2) we have observations of Psand Q;and wish to find T. The standard method is to apply least
squares to minimize

2 ©Q-P~DT(@Q~P~T)
©)

Differentiating, setting the result to zero, and solving for T we obtain

1 =
T==) (Q~P)
,2/:! Fa’

When one has information on the reliability of each point,. as we do here, the terms in the sum are
typically weighted according to their reliability. For scalar weights the modifies expression (3) to be

|
; w(Q-P~DT(Q~P~T)

(4)

with the resulting motion solution given by
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T= 7112 Q—-P)

i=1

With the new error model we proceed differently. Since P'. and Qi are treated as normally distributed
vectors, the motion equation (1.5) can be rewritten as

T= Qi - Pi= Di
®)
where Di will be a normal vector with distribution N(0, VPi+ VQi) = N(O,Vi). Equation (5) is a linear
statistical model whose optimal solution can be reached several different ways [5]. One of these is to
minimize the following least squares expression: :

> (©~P~-TV'V}(Q~P~T)
i=1

(€)

n
= Z (e T)TWi Q~-P~T7)
i=1
This is equation (4) with the scalar weights w, replaced by the matrix weights Wi (the inverses of the
covariance matrices Vi). The solution for T is

T=CL W)™ 3 [W,Q~P)
i=1 i=1
™

The inverse covariance matrices in (6) have the effect of replacing the usual Euclidean distance
norm, represented by the vector dot product in (4), with new norms for each point that stretch the
space as appropriate for the error in that point. This is shown in figure 4. Without the matrix weights,
msidualvectorslyingondrcuiarooMWrshaveequalconmbuﬁonstoﬂ\emtal error of fit; with the
matrices, these contours become elliptical. This effectively gives more weight to errors perpendicular
to the line of sight than parallel to it, which intuitively is what we want. In fact, scalar weights are just
the special case of matrices in which the matrix is diagonal with all diagbnal elements equal, ie.
W, = wiI.

Since the translation T is given as a linear combination of normal random vectors, it will itseif be a
normal random vector. The mean of its distribution is simply the value computed by equation (7). The
covariance matrix is given by

n
V= QW)™
=1
This matrix can be analyzed to determine the quality of the motion estimate.

All of the foregoing was derived assuming that the robot motion was purely translational. This is
convenient because the equations remain linear, allowing solutions to be obtained simply and
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preserving the normal error model. In the case of general motion, the presence of rotation introduces

nwnhwﬁymmomnp&mesmm The motion is now expressed by
Q1=RPI+T
®)
where R is a 3x3 rotation matrix. The standard least squares approach would find R and T by
minimizing

n

Y w(Q,-RP,=D7(Q,~RP,=T)
j=1 ‘ ©)
Since the matrix R is a complicated function of the rotation angles, the equations obtained by
differentiating are nonlinear. The original approach to solving them was to linearize and iterate;
however, mmymmmbeenfoummobmnasoluﬁon directly. In first, Hebert
[10] expressed the rotation as a quaternion and found a direct solution by applying certain identities
in quaternion algebra. The other is a technique from statistics called Procrustes analysis that solves
the matrix formulation directly [14]. Both of these methods apply to equations such as (9) that involve
only scalar weights, but fail when matrix weights are used. Applying our error model to general
motion leads to minimizing '

n
Z‘(Q:"“'FDT W(Q,-RP-T)
=1
(10)
with W,= RV, R + Vo)™
where Py~ NO.V ;) and Q,~ NO.V )
The only method we have found for solving this equation is iterative. An initial approximation is
obtained using the Procrustes method with scalar weights, then several iterations are performed on a
linearized version of (10). mmmmhmmmm weight matrices W,

As in the purely transiational case, the computec ;
mwmmﬁmmmmmwmm A normal
approximation 1o the true distribution can be obtained from the converged solution to (10).

mmmwmmmmamdwmm

relative 10 successive robot locations. Combining these models can serve two purposes. First,
landmark positions, which should in turn lead to more accurate estimates of robot motion. Second,
all of the models can be incorporated into a single map of the entire area traversed. Previous
approaches 1o these tasks differ according to whether they have an incremental or a batch nature.
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[15]). The problem here is to find the 3-D coordinates of ground points from their correspondences in
a block of overlapping aerial photographs. The solution involves writing a set of simultaneous
equations relating all of the image coordinates to the unknown ground points and camera positions,
then solving for the unknowns via least squares. Typically, all of the measurements and all of the
unknowns are treated as normally distributed random variables, much as we have just done. A large
aerial survey may invoive several hundred unknowns.

The drawbacks of this approach are that it is expensive in time and space, it is difficult to find errors
in the mass of data, and its off-line nature makes it inappropriate for continuous, real-time navigation.
Photogrammetrists have responded to these problems with an incremental technique called on-line
photogrammetry [8]. This method processes new measurements sequentially to update previous
estimates of camera and ground point positions, rather than first accumulating all measurements and
then estimating the unknowns. Kalman filters are used for the update process. On-line
photogrammetry is used as an automation aid when processing aerial images and as an initial screen
for erroneous measurements, but it appears that the batch solution is still used to deliver the final
values fc‘)iﬂcoordinates.

In computer vision, the best example of an incremental technique is the system developed by
Hallam [9]. This involved a 2-D world in which a moving submersible used sonar to track moving and
stationary targets. The positions and velocities of the robot and the targets were modelled as state
vectors defined in a fixed, global coordinate system. Incoming sonar readings created a local model
of the targets in robot-centered coordinates. The current robot parameters were estimated from the
difference between the local and global target models, then added to the local target models to
update the global target positions and velocities. Kalman filters were the basis for the state updates.
Errors in the sonar data were modelled by 2-D normal distributions. This system was found to work
quite well on simulated data, but has not yet been applied to real data.

Broida and Chellappa [3] have taken a similar approach to motion estimation from a monocular
image sequence. They estimate the position and velocity of a single moving object seen by a
stationary camera. Feature correspondences are used as input to a Kalman filter-based state update.

Chatila and Laumond have developed an incremental navigation system for a robot equipped with a
laser range finder and an odometer [4]. The robot is modelled as travelling through 2-D world of
stationary, polygonal obstacles. The key features of their system are that it uses a scalar model of
uncertainty similar to Moravec [13] and that object models are rooted in a common global coordinate
frame. Their approach to world model update is intermediate between classical photogrammetry and
recursive filtering; when new information on robot position arrives, they percolate this backward to
update positions of previously seen objects. This effect "fades”, so that the percolation stops after a
short time.

In our problem we are concerned with stationary points {landmarks) seen from a moving vehicle.
We adopt an update method similar to Hallam, but keep the landmark coordinates in robot-centered
rather than global coordinates. For example, consider the situation after solving for the first step of




52

robot motion (figure 5). We have landmark sightings obtained from the previous robot location,
sightings from the current robot location, and an estimate of the intervening motion. Covariance
matrices are associated with all landmark positions and the robot motion. We propose to transform
the previous sightings into the current coordinate frame, average the two sets of coordinates, and use
the result as a new, robot-centered estimate of the landmark locations. The transformation and
averaging will result in new covariance matrices for the landmarks that should represent diminished
uncertainty in theirrobot-centered coordinates.

The rationale for this approach lies in the uncertainty of the motion esfimate. For a robot travelling
in an unknown environment, its position relative to any fixed reference frame must become more and
more uncertain. If new landmark sightings are related back to this fixed frame, then their positions in
the fixed frame also become more and more uncertain. Thus, if we transform new measurements
bade to an old frame for ttie sake of averaging, we inflate the uncertainty of the new measurements
and degrade their contribution to the average. Unfortunately, for a robot travelling forward the most
recent stereo measurements will be the most accurate and should be weighted the most heavily;
transforming backward will weight it the least heaviy. Therefore, in what follows we transform
information forward to maintain the landmark coordinates in robot-centered coordinate frame. We
expect that this will tead to better estimates of step-by-step robot motion, although other procedures
may be preferred for mapping the area covered in several robot steps.

We wi treat only translation™-motion. Let P be the robot-centered coordinates of a landmark at
time/and ?;.1 be its updated, robot-centered coordinates attime /+ 7. I? is transformed to the’i + [
coordinate frame by

P.I:t=P.+T

(11)
whart T istie Intervening robot motion. Since we are modelling both Py and T as corrupted with
zero-meen, gaussian noise with kriown covariance, Pf will also have a zero-mean, gaussian noise

I ®m£isein Ps ist"NQXV) and in Tis «,~N~V~ | then the uncertainty tf in Pf is

¥ 'y LV

12
the point to the current coordinate frame inflates its covariance by the amount of
woartainty in the transformation itself, in this we have overlooked some correlatlon induced by (11}.
Our WtSt assumption is that the errors in any landmark location are independent from all other
Imcifiifica Equation (11), by applying the mme uncertain transformation to all landmark locations,
it* cauaa fit new axmttmtes Pfto be correlated between landmarks [12]. Taking such correlations
Into acomifit would increase the cost of the update ipadmticsiy for a small performance

li"»<~wwt» eo we choose to ignore It

Utfte mtttwement of the iamdmmk taken from the mm robot location 'be QwMt covariance Vg,
W$ «mh obtain en updated estimate of the landmark'® coordinates by containing Pfand Q; Treating
W) two tsifwiis ef (he mmn and awarfanc© ef an unknown 3-D 'normal distribution ami
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applying standard linear statistical theory leads to the following updated estimates of the point
location and its uncertainty:

V=V 47
(13)

P, (V7P V, T Q)

i+1
Recall that the V's are 3x3 covariance matrices. The intuition behind (13) is as follows. The elements
of the covariance matrices V’ and VQ will be large if the uncertainty of the corresponding estimates
P' and Q is large. The larger the elements of a covariance matrix, the smaller (loosely speaking) will
be the elements of its inverse. Hence, the more uncertain a measurement, the less weight it receives
in estimating P, _,. Laumond and Chatila [4] have described the analogous averaging scheme for

scalar quantities.

Another way to formulate the point location update is to use Kalman filters. Taking Qi as the new
measurement and P, as the state to be updated, we obtain [6]

}’ﬂ:(l’i"l-{-VQ;‘)'1

(14a)
P, .1"+V1+1VQ;l Q,~P) .
(14b)
Vm here is the same as in equation (6); furthermore, it can be shown that the estimates of P1+1
arrived at by (13) and (14) are identical. There is, however, a difference in the cost of the two
formulations; using (13) requires three matrix-vector products and one vector-vector add, whereas
(14) requires two matrix-vector products and two vector-vector adds. The latter is cheaper overall.
The intuition behind (14b) is fairly simple. The second term takes the difference of the new
measurement from the old state estimate (Q, - P’),weightsmedifferenoeby(l'}ﬂVQI‘) and applies
it as an update to the oid state estimate P/. Matrix VQi"mllbe "larger" for more accurate new
measurements, giving them more weight, and “smaller” for less accurate measurements, giving them
less weight. Conversely, leﬂlbe"smaﬂ“ﬁotmaccumﬁeoldaﬁmate,somaxﬂwenewupdateis
weighted less, and vice versa for an inaccurate old estimate. We have used the filter formulation of

{14) in our implementation.

S. Updating the Global Robot Position

Previous sections have dealt with estimating each step of the robot's motion and updating the local
world model. In this section we are concemned with estimating the robot's global position and
positional uncertainty. This involves summing or integrating the step-wise motion estimates. Smith
and Cheeseman [16] have recently shown how to do this for motion in the plane, involving two
degrees of translation and one degree of rotation. They give the details of a Kalman filter formulation
of the problem. Hallam [9] appears to have used a similar approach, although detailed equations are
not shown. An extension to unconstrained, six degree-of-freedom motion has not yet appeared in the
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computer vision and robotics literature. We will illustrate the approach for translational motion,
summarize the Smith and Cheeseman treatment of planar motion, and discuss the difficulties with
extending this to unconstrained motion.

Suppose that after / steps the robot's position is T.lwith covariance V.l and that the next step is
estimated to be 7” with covariance Vy. The new global position is

T =T +T,
(15)
Since (15) is linear and involves gaussian variables, the error in T.., will be gaussian with covariance
Vin=V1V,

The difficulty in extending this to motions involving rotation is that the update equation (15) is no
longer linear, so the error propagation is no longer strictly gaussian. Smith and Cheeseman solve this

for planar motion by linearizing. Each step-wise motion is represented by an uncertain translation

(X¢Y) in the floor plane and an uncertain rotation 8 about the vertical axis. Given two such motions
(X~"YMJ and (X,T,,#,), they obtain closed form expressions for the variables X* Y,<mdB, of the
combined motion in terms of the variables Ii ... ,#2. The equations are nonlinear and result in a
non-gaussian distribution for the combined motion. They approximate this with a gaussian
distribution obtained by linearizing. They also show how to use Kalman filter methods to incorporate
motion estimates from several sensors into one overall position estimate.

When the motion involves all six degrees of freedom, the linearization approach is harder to apply
because it is difficult to obtain closed form expressions for the combined motion in terms of the
component motions. We speculate that expressing the rotation as a quaternion may lead to a
manageable formulation. It seems likely that this problem has been addressed before in aerospace
applications.

6. Simulation Results

A number of simulations were run to compare the performance of the 3-D normal error model to the
performance of scalar weights. These experiments first examined the performance on asingle step of
robot motion, then the performance over several steps. The methodology attempted to mimick the
configuration of cameras, objects, and motions used in our previous experiments with a real vehicle
and real images [17]. The simulated cameras had a resolution of 512x512 pixels, a focal length of
12mm, and afield of view of 53 degrees. The baseline between cameras was 0.5 meters. The zscene
consisted of random points uniformly distributed in a 3-D volume in front of the cameras. Typically
this volume extended 5 meters to either side of the cameras, 5 meters above and below the cameras,
and from 2 to 10 meters in front of the cameras. Image coordinates were obtained by projecting the
points onto the images, adding gaussian noise to the floating point image coordinates, and rounding
to the nearest pixel. These coordinates would be the input to the algorithms described above for
triangufation, motion solving, and model update.
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To obtain covariance matrices for point locations, image coordinates were assigned a distribution
with standard deviations of one pixel for each of x,, YpX.J, and no correlation between any two
coordinates. These were propagated through the triangulation as described in section 2. Scalar
weights were derived by taking the Z variance from the covariance matrix. Scalars obtained by
several other methods were tried and found to give very similar results. These include the volume and
length of the major axis of the standard error ellipsoid and Moravec’s half-pixel shift rule [13].

6.1. Single step motion

Planar motion estimation was tested first. After a step of one meter directly forward, the robot
estimated its lateral translation (X axis), forward translation (Z axis), and rotation about the vertical (Y
axis). Experiments were done varying the number of points tracked and the distribution of the points
in space. For any one experiment, averages and standard deviations were calculated for the results
of 5000 trials. In this set of simulations no noise was added to the image coordinates, so that
quantization of the image was the only source of error.

When all points were 2 to 10 meters away, which corresponds to disparities of 13 to 64 pixels
(roughly 3% to 11% of the image width), the mean estimate of the forward motion was within 0.1% of
correct for both scalar and matrix weights and for anywhere from 6 to 50 points tracked. Since the
true motion was 1 meter, this implies average estimates of about 0.9995 meters. The error that did
occur showed a slight bias to underestimate the true motion.

Standard deviations of the motion estimates as a function of the number of points tracked are
plotted in figures 6 and 7. Figure 6 shows the results for rotation. Estimates based on scalar weights
have about 10 times the spread of estimates based on matrix weights. With 20 points tracked, the
standard deviation with matrix weights is about 0.03 degrees. Figure 7 shows the results for X and Z
translations. There is a factor of 10 difference in spread between the scalar and matrix cases for X,
but only a factor of 5 for Z. This is explained by the fact that lateral translations and vertical rotations
have a coupled effect on errors of fit, so that small lateral transiations strongly resemble small
rotations about the vertical axis. It is significant that the coupling is reduced by using matrix weights.
With matrix weights, tracking 20 points yields standard deviations in X and Z of approximately 0.004
meters over a 1 meter motion, or 0.4% of the distance travelled. This compares to 3.5% and 1.9% for
X and Z, respectively, with the scalar algorithm.

The results for motion solving in space are comparable to the resuits for motion in the plane. The
previous experiment was re-run with the motion solver estimating all six parameters of motion. The
average solution for Z translation still underestimated the true motion by about 0.1%. Figures 8and 9
show the standard deviations of the rotations and the transiations, respectively. The pattern is very
similar to the three degree of freedom case. The deviations are roughly the same size and the ratios
between scalar-based and matrix-based motion solving are the same. The scalar-based algorithm
shows a coupling between lateral translation and panning rotation, vertical translation and tilting
moderated this effect.
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estimates. After 10 meters of simulated motion, the standard deviation of the matrix-based estimates
of total distance travelled was 1.6 cm, versus 4.4 for the scalar method.

7. Discussion

The goal of this paper was to show that using a model of stereo triangulation error based on 3-D
normal distributions would lead to more accurate motion estimation than scalar error models. The
simulations have verified this claim. Step-wise motion estimates, global position estimates, and
landmark location estimates are better with the new method than the scalar method. Other motion
solving algorithms from the literature [2], not based on probabilistic error models, had performance to
our scalar-weighted algorithm and poorerthén the matrix-weighted version.

Three dimensional normal distributions model triangulation error better than do scalars, but they are
not entirely faithful to reality either. This shows up in the biased estimates obtained in the simulations.
.However, these biases are small enough that it may be acceptableto ignore them.

One of the most striking aspects of the new model is the improved performance is gives with distant
points. This implies that the new method permits shorter stereo baselines to be used without
sacrificing accuracy of the motion estimate. Since the length of the baseline directly affects the
difficulty of stereo matching, this may offer a way to alleviate the correspondence problem.

Our first priority for future work is to verify the simulation results with tests on real images. Should
the results hold up on data free of correspondence errors, the next step will be to pursue the idea of
shortening the baseline to reduce the likelihood of mismatches. This will be éu-gmented with
statistical tests to filter any remaining mismatches. Further extensions include coping with general
rotation in the global position update, tracking 'lines as well as points, and estimating velocity as well
as position. '
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Abstract

The new Carnegie-Mellon Autonomous Land Vehicle group has
produced the first demonstrations of road-following robots. In this
paper we first describe the robots that are part of the CMU
Autonomous Land Vehicle project. We next describe the vision
system of the CMU ALV. We then present the control algorithms,
including a simple and stable control scheme for visual servoing.
Finally. we discuss our plans for the future.

Introduction

CMU has formed the Autonomous Land Vehicle (ALV) group to
develop a perceptive outdoor robot. We have produced the first
demonstrations of an autonomous vehicle able to follow a road
using a single on board black and white television camera as its
only serisor. Qur robot has made several successful runs over a
curving 20 meter path, and 10 meter segments of staright
sidewalk, moving continuously at slow speeds, by tracking the
edges of the road.

The research described in this paper is a first complete system,
covering everything from low-level motor drivers to the top-ievel
control loop and user interface. We took a "depth-first” approach
to building our testbed: we picked one rough design and built all
the pieces of a functioning system, rather than spending a lot of
time at the beginning exploring design alternatives.

Related research at the Unversity of Maryland [6] has focused on
the problem of visually finding and tracking roadways. The
“bootstrapping™ phase of the Maryland road finding program, in
which the robot detects a road on start-up with no a priori position
information, currently has no counterpart in our system. Our
vehicle is always started with an orientation more or less aligned
with the direction of the road and with knowiledge of an initial road
model. The Maryland road finding module is expected to be
tested soon on an ALV built at Martin Marietta Denver Aerospace.

in this paper we first describe the robots that are part of the CMU
Autonomous Land Vehicle project. We next describe the vision

Currently, this project is funded in part by Carmegie-Meilon University, by the
Office of Naval Resesrch under contract number NOO014-81-K-0503, by the
Wesiern Pennsylvama Ad d Technology Center, by Defense Advanced
mmmeAmmmmwhﬂr
Force Avionics Laborstory under contract F33815-81-K-1538, and by Denning
Mobile Robotics, Inc. Ruchard Watiace thanks NASA for supporting him with &
NASA Geaduate Student Researchers Program Fellowship Grant.

system of the CMU ALV. We then present the control algorithms,
including a simple and stable control scheme for visual servoing.
Finally, we discuss our plans for the future.

Terregator and Neptune

No mobile robot system is complete without a mobile robot. The
primary vehicle of the CMU ALV project is the Terregator, built in
the Terregator (for terrestrial navigator} is documented in [7}. itis
a 6-wheeled vehicle, 64 inches long by 38" wide by 37" tall. All
wheels are driven, with one motor for the 3 left wheels and one for

The Terregator is untethered. Power is provided by an on-board
generator. Communications with a host computer are via a bi-
directional 1200 baud radio link for vehicle status and commands,
and a 10 megahertz microwave link for television signal from the
vehicle to a digitizer. A remote VAX 11/780 runs programs for
symbolic processing of visual data and navigation. A Grinnell
GMR 270 attached to the Vax computes low- level visual
Wmmamm Auwmhmﬂ

Mobile Robot Lab. Neptune is a simple tricycle, with a powered
and steered from wheel and two passive wheels in the rear. its
sensors consist of two cameras (for stereo vision work), plus a
ring of 24 sonars. While it was intended primarily for indoor work,
it has large enough wheeils to run cutside on gentie terrain. With
suitable modifications (an umbrelia taped to the camera mast), it
even has limited all-weather capability.

achieved with Neptune running in our lab on a road marked with
black electrical tape on the floor. This 5 meter road had one left
turn and one right turn, which Neptune navigated successfully. At
the end of the road, Neptune made a sharp right turmn and drove
around in circles.

1JC AI-85
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The Vision and Navigation Program

‘Fig. 2. Terregator




Since images are digitized frequently, the appearance of the road
edges does not change appreciably across successive images;
consequently, searching the entire image is unnecessary. In order
to constrain the search, the program maintains a model of the
road The model contains the position and orientation of the left
and right road edges seen in a recent image. The program uses
these model edges to generate two small subimage rectangles in
which to search for the left and right road edges. Since the
approximate direction of each road edge is known a priori, the
program uses directed curve tracing to reduce processing time
and to preclude spurious edges. Generally the program finds
more than one edge in each subimage rectangle. The model is
used to select the pair of extracted edges most likely to be road
edges. This new pair replaces the old pair in the model. From the
model pair, the program computes a center line, the vehicle's drift
from the center line, and a steering command to bring the vehicle
closer to the center line. As the vehicle executes a steering
command another image is digitized and the cycle repeats. Figure
3 depicts the program control flow. In the remainder of the paper
we explain each component of the program in greater detail.

Constraining the Search

Each time the program digitizes an image it chooses two
subimage rectangles to constrain the search for left and right
edges. The representation of the rectangle is two horizontal and.
two vertical bounding line segments. The vehicle always "looks"”
a fixed distance ahead; therefore, the placement in the image of
the horizontal bounding segments is predetermined and remains
fixed across successive images. The placement of the segments
is partly determined by two parameters selected manually: the
height of the rectangle (typically SO to 100 pixels) and rectangie
overlap, that is, the percentage of the road in a rectangle seen in
the preceding image (typically 50%). These two parameters
present important trade offs: If a large height is chosen, the
extracted road edges will be longer, thus providing more accurate
information about the road; however, the processing time will be
increased, and the road will be scrutinized less often. If a large
overlap is chosen, more information is available from the previous
image and spurious edges are less likely to deceive the algorithm;
however, the vehicle's speed must be siowed to enable such
overtap. The two parameters, coupled with the vehicle’'s speed,
the image processing time, and the camera’s tilt determine the
placement of the horizontal bounding segments in the image.

The vertical bounding segments change from image to image.
The program sefects bounding segments so that the road edges,
basadmpcedicﬁonsfromth«emodedandapreseterrorm,
will appear within the rectangle. This error tolerance arises from
two sources: First, the program obtains its estimates of the
vehicle's motion by dead reckoning, which is somewhat
inaccurate. Second, the program assumes the road is straight,
that is, predictions are made by linearly extending the road edges.
Road curvature introduces a discrepancy between these
predictions and the actial road; consequently, the rectangle must
be wide enough to see the road edge within a preset tolerance.

Selecting the BEest Edges

The line finding routine generally returns more than one line
from each rectangle. The program passes these lines through a
number of filters to determine which, if any, are road edges. The
new road edges are used to pian a path for the vehicle and to
update the model. The 16 best left and right edge candidates
{based on weights supplied by the line finding routine) are
retained, and the rest are discarded. The program assumes that
the camera’s calibration, position, and orientation with respect to
the road are known, that the ground is locally level and that all
candidate edges arise from ground features. These assumptions
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allow the program to project each candidate edge into a unique
line in the ground plane. We establish a righthanded coordinate
system with the vehicle at the origin and the xy-plane on the
ground, with the positive x-axis directed to the right of the vehicle
and the positive y-axis directed forward. For each transformed
edge, the program calculates the following parameters: the
perpendicular distance r measured from the origin to the edge and
the angle § measured from the positive x-axis. The differencesinr
and 6 between each transformed candidate edge and the
corresponding mode! edge are calculated (call these values dr
and dé@ respectively). The quantity dr is the difference in
displacements of the vehicle from the mode! edge and from the
candigate edge. The quantity d@ is the angle between the model
edge and the candidate edge. Test runs have shown that the
vehicie tends to remain aligned with the center line; most of the
error is in the form of lateral drift from this line. Hence, dr provides
the most information for evaluating candidate edges. The quantity
dé tends to be small (less than 10 degrees); consequently, an
early filter uses it to eliminate spurious edges. After this round of
edge elimination, one of three cases remains:

1. All edge candidates have been eliminated

2. All edge candidates have been eliminated for a
particular road edge (either left or right)

3. At least one edge candidate remains for both the left
and right road edge

in the first case, the program obtains no new information and the
vehicle continues to execute the path planned from the previous
image. In the second case, only one road edge is visible. The
other road edge is occluded, shadowed, or poorly defined.
Suppose for example the program found a set of candidate road
edges on the right side but none on the left. From the candidate
edges on the right side the program selects the one with the
minimum dr value. It inserts this new edge into the model, retains
the old model edge for the left side, and generates a new steering
command. In the third case, both road edges are visible. The
program selects one edge from each list of road edges (left and
right) by comparing each left edge to each right edge candidate
and choosing the pair that minimizes the difference in their dr
values, that is, it selects the two edge candidates that differ from
their corresponding model edge in the same way. Figure 3
illustrates road edge selection in this case. This decision is based
on the observation that vehicle motion error and road curvature
shift the location of each edge in the image in the same way. The
program inserts the two new road edges into the model and plans
a new path.

Line and edge extraction

At the lowest levels of the vision system for our vehicle, the edge
and line extraction modules. we found that for detecting road
wgeswecouldrelyontheprinciple"almanythmgworksmme
simple cases.” That is, any of a number of simple edge and line
finding techniques could be used to extract road edges in various
situations. Our approach then was to try everything. We tested
various edge and line finding programs on static road images and
on images acquired by the vehicle in actual runs. Simple
techniques proved adequate in many situations we encountered.

The basic approach of all the vision moduies we tried was to find
the left and right boundaries of the road and represent them as
lines. Thereiore, the task of the low level vision modules is to find
line segments which are plausibie candidate road edges. We
sought to make only the most general assumptions about what
might constitute a road in an image. The technique used to
extract road edges and represent them as lines depends on
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whether we think of a road as an intensity change from
background, a texture change, a color change or a combination.
We experimented with 7 methods for extracting road edges from
images and three methods for fitting lines to the edges. The seven
techniques we used to find edges in road images were:

1. Correlation, Assuming that a road edge is a more or
less vertical feature in a subimage it can be followed
by selecting a small sample patch of the edge and
correlating this on a row-by-row basis with the
subimage. Where the correlation is strongest in each
row a road edge element is assumed. The result is a
list of points where the road edge appears' in each
row. A line can be fit to these directly. The
correlation approach worked very well when the
sample road edge patch was hand selected.

2.DOG operator. A Difference of Gaussian edge
operator was tried at a wide range of spatial
resolutions on road images. Road edges tend to be
low spatial frequency signals so large DOGs were
required to find them directly. Two-dimensional DOG
filters tended to break up the road edges even at low
frequencies. One dimensional DOG operators applied
horizontally in the image produced more connected
road edge pieces, since the road boundaries were
almost vertical features in the image. High spatial
frequency DOG operators can be used as the basis of
a texture-based segmentation of road images,

however.
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3. Temporal Edge Detector. Subtracting two

successive image frames is an inexpensive method for
detecting image features that change from one
moment to the next. If a vehicle is traveling down an
ideal road (where the intensity of the road is uniform,
the intensity of the surrounding region is uniform and
the road edges are straight and parallel) then the
difference of two successive road images is zero.
When the vehicle begins to turn left or right off the
road, however, simple image differencing finds the
road edges. This strategy was used in one
experiment to servo Neptune visually down a hallway*
Here the road edges were particularly distinct so the
ideainess assumption was more or less satisfied.

. Roberts Operator. A 2x2 Roberts edge operator

was sufficient to find road edges where they were
relatively welt-defined intensity step functions, such as
when the vehicle traveled down a hallway or when we
artificially marked the road edges with tape.

. Intensity Segmentation. A simple binary intensity

segmentation of the road image works in many cases
where the road is a set of pixels most of whose
intensities are grouped together in the image
histogram. We used a simple segmentation technique
based on classifying ail the pixels in the bottom 50%
of the histogram as one region and those in the upper
50% as another. Standard procedures for expanding
and shrinking the resulting segments to join closely
spaced segments and eliminate small ones are
applied. Road edges are assumed to lie along the
boundaries of the resulting regions.
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Figure 4: System Block Diagram



6. Texture Segmentation. Texture  based

segmentation often proves better than intensity based
segmentation for road edges where the road is
relatively smooth and the surrounding region is not,
such as when the road is asphalt against a grass
background. A simple texture operator which we
have found useful in detecting road edges is one
which counts the number of edges per unit area and
classifies all those areas where the edge count is high
as a single region.

. Row Integration. Summing the intensities column-
by-column in a set of scanlines in the image results in
a single-scanline intensity image where the road’is
roughly a one dimensional box function. given that the
road is a more or less vertical feature and the road
and surrounding area each have fairly uniform but
different intensities. Finding the boundaries of the
box amounts to finding the average position of the left
and right road edges over the scanlines summed.
Repeating the procedure for another set of rows in the
image locates another pair of road edge points which
can be joined with the first to approximate the road
boundaries as line segments.

The three line-extraction techniques we used were:
1. Least Sqaures Line Fitting. When we had only one

possible line in an edge image, such as the result of
running a correlation operator over the rows or
collecting a number of road edge points by row
integration, a line could be fit to the points by least
squares.

2. Muff Transform. A modified Hough (Muff) transform

was used to fit lines to edge data where the edge
extractor returned points that couid plausibly be parts
of several lines. The Hough transform has been used
to detect road edges in other road finding programs
{6111} The Muff transform uses a new

prasentedd#ewfwre[ﬂ

3.Line Tracing. Most of the subimages we processed

to find lines were bands about 50 pixels tail and 250
pixeis wide. A simple raster tracking algorithm found
in [3] proved sufficient 1o trace the road edges.
Basically, if an edge point P above some high
threshhold d is found while scanning the subimage,
then we search on scan lines below for connected
edge points above some lower threshhold t. The last
such point found in the subimage is called Q and we
assume PQ is a line segment. The line tracing
procedure is much like the inverse of a Bresenham
that we can find lines that are only with 45 degrees of
vertical. We find lines more than 45 degrees from
perpendicular and lines with gaps by searching in a
neighborhood below an edge point for the next
adjacent edge point. Strictly speaking. our tracing
program returns the endpoints of a curve which may
not necessarily be a line, but over the 'small distances
in the subimages we search for lines we have found
this fast tracing procedure yiekis an adequate
approximation. The line tracing procedure was used
in all of the real time continuous motion runs of our
vehicle under vision control.
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A combination of three factors enabled us to reduce the image
processing time for each image sample to about 2 seconds. First,
special image processing hardware in our Grinnell GMR 270
display processor was used for the low-level correlation and
convolution. Second. only small subimages (50 by 250 pixels)
were searched for road edges by the line finding routines. Third,
selection from among the possible set of candidate road edges of
the actual road edges was accomplished by simple means (q.v.).

The next step in our plans for development of low-level road-
finding vision is to integrate several types of feature detectors in a
blackboard data structure. We want to evaluate the success of
combining intensity, texture and color edge and region features to
find road edges. Earlier we said that we relied on the principle
“almost anything works in simple cases". For complicated cases,
such as we have encountered in actual outdoor road scenes, we
have found that none of the techniques we have tried always
works. We believe that a combination of techniques will enable us
to find road edges reliably in a wide range of situations.

Control

The control procedure translates the visual measurements into
vehicle motor commands that, it successiul, keep the vehicle
moving along the road. We evaluated a half-dozen approaches
experimentally with our vehicles and analytically. One approach,
servoing to keep the road image centered in the forward field of
view, excelled in all the measures, by such a margin that we feel it
deserves to be considered a fundamental navigational principle
for mobile robots.

Figure 5: Processing Graphics. Here a road image is
shown after processing to enhance intensity changes.
The vision program selects a window in which to
search for road edges. Candiate left and right road
edges are lines fit to the raw edge data, shown here as
biack lines. Heavy black lines indicate the left and
right road edges selected by the program. The
computed road center line is shown as a doubie line.
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Let x represent the shortest distance between the center of our
vehicle and the centerline of a straight road. @ is the angle
between the heading of the robot and the road direction, i.e. when
8 = 0 the robot is driving parallel to the road. Suppose the vehicle
travels at a constant scalar velocity v, and that control is achieved
by superimposing a steering rate, d8 / dt (where t is time) on top
of the forward motion. If there is no slippage, the following

8}
dx/dt = -vsind

The general problem for continuous road following is to find a
steering function F such that by setting df /dt = F(x,§) the
vehicle approaches the road center. We tried several functions

and the high noise level in these quantities made most of our
functions unstable. A second problem led directly to our solution.
The road image sometimes drifted out of the camera’s 40 degree
field of view, and in the next sampling period the program would
fail to find a road, or (worse) identified some other feature, like a
door edge, as road. The obvious solution was to servo to keep the
road image centered. Experimentally this approach was a
stunning success. Besides helping the vision, it seemed to be
insensitive to even large calibration errors and misestimates of the
road parameters.

The theoretical analysis was remarkably sweet also, and bore
out the empirical observations. A first order analysis, where we
assume the road image is kept perfectly centered, gives the
relation

2
x/r = gin@

where r is the distance in front of the robot where a ray through
the camera image center intersects the ground {i.e. the range at
which we do our road finding). The parameter r can be changed
by raising or lowering the camera, changing its tiit, or by using a
different scaniine as the center of the region in which road edges
are sought.

Equation {2) can be substituted into (1) to give

dx/dt = -yx/r

which can be soived directly, giving
1]
X = x ™

& the initial value of x when t = 0. 30 to first order the

where
vehicie the centeriine of the road exponentially with

A more detailed analysis comsiders the actusl servo loop
behawior. The displacement of the read centeriing image from the
canter of the forward fisid of wew s proportional to

{5)
(8nd - x/r)/cond

Servoing i sloering rate on (%) sets

GF/g » -gimngd - x/r)/cosd

where g is the servo loop gain. The full behavior of the robot.can
be found by solving (1) with (6) simultaneously. These equatfom
are made linear and easily solvable by the substitution Q = siné,
giving

m
dx/dt = -vQ *
dQ/dt = -g(Q-x/r)

By co-incidence or cosmic significance of all the servo functior!s
we considered, only this one yielded a fully general analytic |
solution.

The solution has three cases distinguished by the sign of the
expression
®
gr-4v ‘

In all cases the solution converges to x = 0, Q (and 0).-0
exponentially with time. When g<4v/r the convergence is a
decaying oscillation - the sluggish steering causes repeated
overshoots of the road center. When g>4v/r the solution
contains a second exponential, and the robot approaches the
road center more slowly. When g = 4v/r, the critically damped
case, we have the fastest convergence and no overshoot, and the
behavior is given by the equations

(9

x = eV (vt(2x,/r-Qp) + %)
Q = &2V (2w/r(2xy/r-Qy) + Q)

The gain sets the turn rate required of the robot. Note that to
changing g, it is necessary only to increase r, i.e. arrange to have
the vision look further ahead.

(10

mdmmwmmsmmmm
particular, # (or Q) and x though they occupy a central position in |
NWWMW&W&:MW %
servo

Conclusions

We have developed a vision and control system for a mobile fjg
robot capable of driving the vehicle down a road in continuous
motion. The system has been tested on two mobile robots,
Neptune and the Terregator, in both indoor (haliway and artificial
road) and outdoor {asphalt paths in a park and cement sidewalk)
envirgnments. In our best run to date the Terregator traversed a
20 meter outdoor path at 2 cm/sec. Image processing time has
been reduced to 2 sec/image.

Failure modes of our vehicle have included driving off the road,
driving inty trees and walls, and driving around in circles. Swuch
'adures were mostly due to bugs in our programs, imprecise
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Future Work

There are several areas that we plan to address. First is the
construction of a true testbed. This involves mostly software
engineering, such as cleaning up and documenting the interfaces
between vision and control. This will enable us to try other vision
methods, such as texture and color operators.

Further work will require the use of a map, along with program
access to a magnetic compass and a gyro. The map will list
road direction, width, appearance, and intersections, which will
provide strong cues to both the image processing and the
navigation system. The compass, along with the map information,
will help predict road location in the image. This will become
increasingly important as we venture onto curved and hilly roads,
and as we encounter intersections and changes in the" road
surface.

The next step is obstacle avoidance, which will require limited
3D- processing. Projects in the CMU Mobile Robot Laboratory
have already demonstrated obstacle avoidance with sonar [2] and
stereo cameras [4]; we intend to integrate these into the testbed.
Later work may add a laser rangefinder and programs to handle
that data.

Finally, as the testbed becomes more complicated, system
control will become a major issue. We plan to work on a
blackboard system with cooperating and competing knowledge
sources. All the data, from the lowest level signals to the highest
level models and maps, will be on the blackboard and available to
all processes.
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Figure 6: Blackboard System. We have begun the
design of a blackboard system to integrate the
multiple sensors, knowledge sources and vehicle
actuators planned for the CMU ALV system. Our
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In the blackboard syStem, with multiple parallel
knowledge sources accessing a global database, and
also to add other modules.
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Abstract

A mnew parameterization for lines in images is presented
with application to the Hough transform. The modified
Hough (Mufl) transform has several implementational ad-
van atages over the conventional p—8 parameterization. The
MufT transform parameter space is better suited to com-
puter graphics line drawing routines. The Muff transform
requires no transcendental function calls or table lookup.
The relation between the tesselation of the parameter space
an<l the resolution of the lines represented is discussed. The
shape of the Muff space is amenable to compaction into a
rectangular array. The implementation of the Muff trans-
form is prescnted.

The Hough transform can be uscd to find lines in ima.gesl’z.
Each edge element in the picture votes for all of the lines
that could possibly pass through it. The voting takes place
in a two-dimensional parameter space, where each line is
represented as a point. This space is tesselated into a
gridd of rectangular cells, and each cell accumulates votes
for Iimes represented by values in that cell. In implemen-
tatioms of the Hough transform the tesselated parameter
space is an accumulator array. To extract the hines in an
image, the Hough parameter space is searched for peaks
which He above some thresshhold: these are assumed to
correspond with lines in the image. Two problems which
arise in the implementation of the digital Hough trans-
formaz are the selection of the Hough parameters and the
thoice of ularity of tesselation for the parameter space.
The mafrpz:rmetm selected to represent lines in Hough
space are p and #, where lines are given by the expression
p = =xcosf + ysinf. These parameters have the advantage
over m and b in the y = mz +b form that they are bounded.
It is easy to see that for an rectangular image extending
romm (zmus ynu'n) to (zﬂl‘I‘l ymz) the values of p and 8 are
boumnded by —\/?m-i»rm! < P< NI _+y2__ and
0 < & < x, whereas m and b are unbounded. This paper
presents a different bounded parameterization of lines in
an iszsage and several advantages of this new representation
over the p — § parameters.

CHLI2 145-1/85/0000/0665801 .00© 1985 IEEE

The new Hough line parameterization is illustrated in fig-
ure 1. We assume for simplicity that the image is bounded
by a rectangle parallel to the z- and y-axes and extend-
ing from the origin to some (Zmaz;Ymaz)- A bounding box
extending around the image provides the basis for the pa-
rameterization. A line passing through the image is pa-
rameterized by the two points where the line intersects the
perimeter of the bounding box. These points are givén by
their distance along the perimeter of the bounding box,
where distance is measured counterclockwise along the box
starting at the origin. Thus a line has two parameters, s,
and s;, representing the two points where the line inter-
sects the box. To preserve uniqueness of the representa-
tion, we assume s; < s;. The range of possible value are
0 < 5; < 82 < 2(Zmaz + Ymaz)- This new parameterization
is called the Muff transform.

An immediate advantage of the Muff transform is purely
graphical. The transform parameters easily map back into
points on the image’s bounding rectangle. The line repre-
sented by (sy, s2) in figure 1, for example, passes through
the image at (8;,0) and (2Zmaz + Yrmazr — 52, Ymaz)- These
points can be passed directly to a computer graphics rou-
tine to draw the line. No clipping is needed. The cal-
culation of the endpoints for a line p — 8 requires more
work. First, the peak value indecies in the accumulator ar-
ray must be mapped back into their corresponding p — 8
values. These are then used to write a line equation of the
form Az + By + C = 0, which then must be solved for z
and y at each side of the rectangle. The Muff representa-
tion requires at most two subtractions to determine both
endpoints.

—] xmax+ymax

xmax +
2ymax T— —_—
2 xmax + l
2 ymax l
0 xmax
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Implementations of the Hough transform for lines can sulfer
from two problems related to the use global edge informa-
tion in the image to find local lines. First, edge elements on
colinear but not connected line segments vote for the same
line. Second, the transform h:fbx;: b;mage with many noisy

e points or many irregu may contain spurious
g‘u mng distant edge elements because the thresshhold
on peak detection in the Hough space must be set low in
order to obtain any lines. The pure Hough transform does
not preserve information about which edge points voted for
a particular line and hence the transform cannot find di-
rectly the endpoints of line segments. One obvious solution
is to store in each bin of the Hough space not only the count
of edge elements voting for a particular line, but also 2 list
of the pixel coordinates of the edge elements themselves.
Later ing can then fit line segments to connected
sets of pixels in peak Hough bins. Another approach is
10 divide the image into a number of smaller rectangular
regions, and compute the transform for each. The Muff
transform is best suited to the latter.

The transform is implemented by the following procedure.
Given an edge element (a,3) find the point (c,d) on the
bounding bex so that (0,0), (a,b) and (c,d) are colinear.
(e,d) is parameterized by a value Smqr. Then for each s,
ﬁ<3;<¢m.udti\c?dntxhw¢thebommodltedwith
83, there is another powt given by s so that s’s point,
{s,8) and 23's point are colinear. The calculation of s; is
straightforward and depends on which side of the rectangle
a lime intersects. In any case the computation of s; from s;
and (a,b) reduces to the problem of intersecting a line in
Mpﬁtbrnwkk‘m«vmkdﬁms.ﬁmm
advantage of the Muff transform over the p ~ transform is
that no trasscendental function calls are needed. The need
pm«mmmwmhdbma

m—w#,-lmm&mmm
MuM;c&ﬁlu&«ubkmlp.

Az Figure 2 shows that for the p - ¢ tation the
resslution Az is a function of p further the line from
the srypm, the coarser the In the Maff rep-

that can be drawn by graphics from one point
the nm.wh&-mdﬂﬂd’::&:
elation absolute spper bound on the useful size of

the Mull parameter space i (Zuas + Juaaa)?, Where
“wmwﬁvymm«h ¢ the
mmmrmﬂn &-hng,m”m

mrm%unyﬁﬁum
# - # regrementation will aot this entire
resent somhe d%mmly.dmﬂ:::
fraeningsy of the parsmeter space tesselation.

A peculiarity of the p — 6 form for the Hough space is
that, although it is bounded, it has an irregular shape (see
fig. 3). Not all pairs of (p,d) in the rectangle given by
~VZmin +ym.‘ﬂ <p< Vz?na: +y12'na:z and —”/2 <bé<rm
represent possible lines in the image. If minimizing stor-
age were an issue in a Hough transform implementation,
the compaction of the p — 8 space would prove difficult.
Figure 3 shows the set of possible values in the Muff rep-
resentation. It is clear how these could be compacted into
a rectangular array if necessary. Also, it is simple to write
an algorithm which efficiently scans only the Muff array’s
possible cells for peaks or local maxima. For each row in
the accumulator array, the cells can be scanned from left
to right starting at the first possible value in that row.

e

A®

A\ \Ax\
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Figure 2. In the p-© representation the resolution

of lines that can be represented is a function of

p and 6. This diagram illustrates two lines that
appear adjacent in the tesselated transform space.
The distance between these lines where they intersect
the x-axis grows as p increases.

AX

In the Muff representation the resolution of lines
represented is constant throughout the space.

The muff representation captures exaclty the set
of lings that can be drawn across the rectangle
by computer graphics.




The Muff transform has been implemented and tested on
images of roads. In the road following application, it is not
usually necessary to find the endpoints of line segments in
the image. It is the road edges which are important, and
these can be assumed to extend from one side of the image
to another. Thus neither the technique of storing pixel
locations in the Hough accumulator array nor the method
of dividing the image up into smaller rectangles is used.
Road edges tend to be strong and extend over the whole
image, so tJie Muff transform picks them out easily. The

design of special purpose voting hardware® has made the
use of the Muff transform more practicable for real-time
vision tasks. '
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p

Figure 3« The set of possible values of p and 9
for lines passing through a rectangular image
defines an irregular shape in the p-0 plane.
The irregularity makes it difficult to compact
the useful values into a rectangular array.

sl 52 s3 54
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The set of plausible pairs of parameters in the

Muff space can be easily compacted into a

rectangular array. In this diagram, s 1 = xrnax

S2 = xmax+ymax, s3 = 2xmax+ymax, sA = s(xmax*ymax).
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Progress in Robot Road-Fallowing

R. Wallace, K. Matsuzaki, Y. Goto,
J. Crisman, J. Webb, T. Kanade

Robotics Institute, Carnegle-Mellon University

Abstract

We report progress in visual road following by autonomous robat
vehicles. We present results and work in progress in the areas of
system architecture, image rectification and camera calibration,
oriented edge tracking, color classification and road-region
segmentation, extracting geometric struclure. and the use of a
map. In test runs ot an outdoor robot vehicle, the Terregator, under
control of the Warp computer, we have demonstrated continuous
motion vision.guided road-lollowing at speeds up to 1.08 km/hour
with image processing and steering servo loop times of 3sec.

1. Introduction

Research in robot navigation on roads is part of the Autonomous
Land Vehicle Project (ALV) at Carnegie-Mellon University. Broadly,
our work is aimed at creating autonomous mobile robots capable of
operating in unstructured environments. To this end, our research
program invoives a variety of sensors, programs and experimental
robot vehicles. This paper is focused on recent progress in
detection of and navigation on roads, using a TV camera as our
sensor and a six-wheeled outdoor autonomous robot, the
Terregator [7], as our test vehicle. We present results and work in
progress in the areas of system architecture, image rectification
and road-region segmentation, geometric structure. and
the use ol a map.

For robot navigation of roads, we use a single television camera
as our primary sensor. In_this application, the monocular TV
camera is considered superior to ranging sensors such as laser
scanners or sonar for three reasons. First, roads we are interested
in lollowing do not necessarily have prominent 3-dimensional
features at their shoulders; most often there is no depth
discontinuity between the road surface and the surrounding
roadside. Second, we have developed one steering strategy that
servos the vehicie based on measurements in the image plane
itself, rather than on measurements in 2 world coordinate frame.
Third, we have so far relied on a Jocal ground plane assumption,
that the ground around the vehicle is locally planar, so that any time
we do need to transform lmage points to world coordinates, the
trans{ormation is trivial. .

Yo attain the broad goals of our project, we have split the
research into two efforis. The goal of the first effort is to develop a

Mmmnwamnmmmu
m«mmmmummmmmum
¢ Tochnology Centor, by Delense Advanced Rosearch
mwmmwmm monilored by the Alr Force Aviopics
MWWM&G‘K-MMWW%W&
Righ.ard Vizhoce tharks NASA for supporting him wilh & NASA Graduate Student
Pasearchors Program Felliowship Grant.

decamia  Acks

road-following system which uses a map to navigate around a
highly structured and visually simple network of sidewalks on the
CMU campus. The goal of the second effort is to devslop vision
routines for road-following in a less structured and vispally more
complex environment in a nearby park.

2. Sidewalk Navigation

The sidewatk environment at CMU is a network of mostly straight
concrete pathways joined at intersections of various shape. The
sidewalks have fairly uniform color and texture and are always
surrounded by well-groomed grass, giving them consistent high-
contrast edges. The goal of our research in this environment is to
develop algorithms for geometric reasoning, shape-matching and
navigation with a map.

2.1 Map and Blackboard

The overall system architecture to which a vision-based road-
following subsystem interfaces is a blackboard [5], a shared
memory structure containing a local map of the robot's
environment. Other sensing processes, such as those interpreting
range data, and other knowledge-based processes, such as those
updating the local map, are alao tied to the blackboard.

2.1.1 Dialogue Model

The road-lollowing subsystem consists of four modules; Vision,
Map, Navigator, and Motion Control. These modules communicate
with each other by sending and receiving tokens through the
Blackboard. In selecting this decomposition ol our system inta
modules, we followed the principle of information hiding. The
Vision module contains expertise needed for extracting features
from images. The Map module knows the structure of the robot's
environment and jts position. The Navigalor is responsible for
planning paths. The Motion Control module insures that the vehicle
executes navigation commands. Thus each module has a different
domain of expertise. For example the Vision module does not know
the robot's map or route. That information is kept hidden and Is
used only by the Map module to make predictions to the Vision
module.

Communication between the various modules looks like a
dialogue. Figure 1 shows the dialogue model! of the road-following
subsystem. This model refiects the information hiding principle of
the design. In the example, the Map hides Information from the
vision module, except for the facts which arc relevant for the
predictions it makes for the current scene.

Object, whicn shows what the Vision system shall see. For
example, a Predicted Object can be a road or an Inlersection.
Using Predicted Object, Vision sees and makes the token, Detected
Object, which shows the shapes ol objects in front of the vehicle.
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Position, Using Current Position and the map data, the Na_\figator
ipohos he token. Motion Command, which tells how to qnvc the
wehicle, Using Motion Conwanrf. tho Mation Conlrof drives the
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using knowledge from map, interest segments, which are key to
decide an position of an intersection, are found.

2.2.1 Reproducing the Rood Region

To diminate the disturbing factors, two phase image processing
is done; extracting high-confidence road regions and then
connecting them.

The result of region segmentation includes four types of
segments: LJactudlly road and classfied ns read, factually not
road and classified as not road, 3)actualy road but classified as not
road, factually not road but dlassfied as road. At the firg image
processing phase, the program selects a conservative classification
threshold so that only idedl road surface is classified asroad. This
result includes much type 3 region but tittle type 4 region, and
region classified as road is confidently road. Then, to cover type 3
region, we did a combination of reducing resolution and
expansion/contraction of image.

.The expansion/contraction method is known as a good method
to diminate gaps or smal holes, but calculation time is long when
the size of defects are large and large number of
expansion/contraction is needed. We have to use this method In
real time during vehicle running. So, we reduced resolution before
expansion/contraction. This method absorbs several pixels into
one pXxd, and decides the the new pixd value by athreshold on the
proportion of origind pixels classfied as road to nonroad. We use
areduction ratio of 88 to 1 pixd followed by 1 or 2 iterations of
expansfon/contraction.  Tills obtained both sufficient shape
estimates and qufck calculation.

2.2-2 Polygon Fitting

To recognfee m tntefsectfomn from the reproduced shape, wefit a
polygon to the Intersection contour. Shape analysis based on
polygon h much quicker than one based on whole pixels or run-
teoflfh data The processing includes following steps.

t. Extracting Straight Line. Mog of roads imaged are
straigtt! ten if they include curves, these can be
represented asasetof segmented straight lines. So,
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straight portion of the road is in the view frame, the measurement
from lhe Vision module* can constrain the vehicle- position and
orientation only perpendicular to the road. In such case, the

location along the road is calculated using the vehicle motion. The.

positional error which might accumulate along the path will be
corrected ‘as the vehicle approaches to the intersection and can
see tho road edges in multiple.orientations.

Figure 2 shows a result of CMU campus sidewalk run. Along the
vehicle approaches an intersection, the vision module detects
different parts of road contour which are predicted as major tine
segments by the map module.
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\

Navigation en the campus sidewa& using a map: (b) the smages taken wtten
approaching ntersection i-5. The trapezoidal te&on in (a) represents me predicted
view of the ViSAcn. (c) the results of road region extraction-cf the mages in (b). The
swages are Tecisfed mi© tine map coord“+ifes from lhe Imsge coordinates. The
edgesmstctiedm®% precisionmmindicatedbyboldlines.

Figure 2: Navigation cm Campus Sidewalk using Map

3* Park Road Followirig
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smooth and featureless to cracked and pot-holed, and in color from
blue-gray to black. The shoulder around the path consists mostly
of grass, but there are also some sections of dirt and rock
Seasonally, both road and shoulder are obscured by leaves, snow
or Ice. Trees and their shadows are also present Tho main goal of
ourresearch in the park environment is to develop vision algorithms
capable of steering the vehicle reliably in this unstructured
environment *e

3.1 Road-Edge Following

We have developed a technique for tracing the edges of a road
using an oriented edge detector. Like the tracker discussed in [9]
our algorithm begins with an estimate of the start position froni
which is the edge is to be traced. Unlike that tracker, ours
integrates or smooths the edge along the edge direction
integrating the signal along the direction of the edge has the effeci
of smoothing and reducing noise content. Then, the position of the
edge is localized by matching an ideal step edge model with the
one-dimensional cross-section.

Oriented edge detection operators have been explored in
computer vision, with perhaps the best results found in [2]. We
chose an oriented operator since it is more reliable than an
unoriented one. For example, if the road in the image is oriented at
15 degrees, then a conventional edge detector will find gradually
sloping intensity values, see figurea However, if the same detector
Is oriented at AS degrees, then the oriented detector would see a
sharp change In intensities, and therefore, the edge location is
detectable. We have implemented edge operators at a number of
different orientations so that we can obtain a reliable response
regardless of the orientation of the road in the Image.

Road Image and
Edge Operator

F

Nondirectional Operator

a

Oriented Operator
Figure 3: An Oriented Edge Operator

3.2 Implementation

_The edge tracer constructs a list of road edge points In an image
given a position (rq. coJ and orientation, Oq of a road edge. Th®
orot"ed edge operator Integrates the signal along its columns. If
the operator docs not align with the Image columns, then it selects
pixel values nearest to tha position of its columns for tfis
summation. This one dimensional result of the edge operator Is
called the mige signature or edge profile.

Thm a mw road edge potats (r bcp), is predicted to lie adlslanca
from (r~ c*} at ait angle of 0. A search window Is created centered
M oxy ylortemed «x A@ x%5e0 9. Th« edge operator creates an
&dge profile In ®m search window. The road edge, (r. cJ« to

to be where the an Weal step edge and the M o w
pmm the best oxretpWKkoc®”" The ori#ntat8Qfi oT.fNi road
Is watoiteled by § - wtctimZic® « c”, r.. X TWs algortttw to
Iterative If (r, ¢ -> (rm, ¢*). This process is repeated imtil tfts
sssrchwindow fate outside of the Image bounds,

Edge Profile
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. '@ Figure 4: Road Edge Tracking with an Oriented Operator i
3.2.1 Resuits

The edge tracer has been tested on 480 X 512 grey level images.
The dimensions used for the search window were 64 rows by 128
columns. Figure 4 shows a typical result of the edge tracer. The
initia! position is given near the bottom of the image and the
oriented edge detector proceeds upward in the image. The larger
boxes outiing the search windows, and the smaller, inner boxes
show the positions of best correlation. The edge profiles are shown
We have developed a wehicle driver system based on orlented
edge tracing. The inilial position and orientation of the left and
right road edges are input to the system and used for the first
iteration of the oriented edge tracer. Alter finding the road edges in
the image, they sre back-projecied to the ground plane. The
vehicie motion between images is used lo locate the previously
found road edpes relative 1o the vehicle. Then the previous edges

are projecied in the new image. These edge locations are used for ™

the position and orientation estimations required for the edge
trecar. The JD projection of the road edges also aflow the right and
left road edges to be tested for parnlielism and proper separation.

This system works wall on images where there Is a falr amount of
contrast betwoen the road edge and the road shoulder, We have
been sbile to drive our vehicle quite reliably on gently curving roads,
However, we have had ditficulty when the edge of the road lies
cioge 10 cbstacies or when shadows lie on the road. The edge
trocer can locale a road edge point in under one second. The
sysiem can drive the vehicle al speeds up 1o 0.3 meters/sec.

We are cuerently working on testing the road edges found by the
ecige racer for peometricsl consistency. ¥ the right and left edges
of the road wre not paraliel and the proper width apan, then the
sysiem mug! decide which edge should be used 1o drive the vehicle.,
hdeasures of eveluation bosad on the heghl, width, smoothness,
and conssioncy ore currently beng tested. if these measures are
refalsie, T wystem should be able 1o evaluaia s performance .

3.3 Road-Region Segmentation

The second major spproach 1o road ieature detect'nn is rogion
sopmentaign. This Giters from the edge based procedure in that
the rond deell @ extracied, miber than B3 condours.  As we
mardioned enrler, the adps information can be used o verily and
lncsiize the rogon hypothesis. Repon dlassliceiion is bused on
aomgrment of region inbels 10 &Y pheis I B image, where the
asmigrrmerd Sepdnds on propesties of Bhat pivel such as brighiness,
: @ guier around that peel. Owr work i focused on color

3.4 Color

Early in our work on visual detection of roads we recognized the
importance of utilizing color vision sensors. We found in black-
and-white images of our test site that the perceived intensity of the
asphalt road differed very little from the intensity of the surrounding
grass, although the color was very different. Gray-level histograms
of the images wera either very flat, or they had peaks caused by
shadows and highlights, rather than road or nonroad features.
Histogram-based segmentation techniques and edge operators
failed for the same reason. We considered texture energy
measures to segment road and grass, since the grass has more
edges per unit area, but the noise introduced into the images by an
inferior TV transmission system confounded attempls to measure
high-frequency texture information. Even in the presence of high
spatial frequency image naise color information Is retained.

3.4.1 Pixel Classification )

In color images each pixel (x, y) has an associated color vector
(R(x, y), Glx, y), Bfx, y}). The set of all possible (R.G,8) values forms
a color cube RGB. The RGB cube can be divided in various ways
sq that pixels having certain color vector values can be classified as
road or nonroad. A simple region classification involves selecting a
sample road region and grass region from a training image, and
using the average valves (A, .uG . .n8,,./) and
{“er“‘ecrmr"emaiz) as ideal feature points in RGB space. If

i matrices £ ___ and are also measured then
meeo!orscanbemoderﬁastrmm normal distributions
(TVNDs). The result of 2 TVND model is to divide color space into
reglons separated by quadratic surfaces. Figure 5 shows a result of
classifying a sequence of rectified road images from the park site.

3.4.2 Color variation

Unfortunately the color of road and shoulder do not remain
constant from one image to the next. Variation in color arises for a
variety of reasons, such as iumination changes (e.g, shadow
versus direct illumination} and material changes (e.g. dry asphalt
vehicle is equipped with a TV broadcast station, through which
images are transmitted to a fixed-based computer. The chromatic
component of the TV signal varies dépending on such factors as
the position of the robot vehicte with respect to the TV receiver.

We have begun to explore the use of adaptive color modeis to
reduce the problems arising from color variation.

3.4.3 Shadows and normalized color

Shadows cause many of the failures of our vision system. Edge-
based schemes for detecting road edges are fooled by high-
conirast shadow edges, as shadow edges often have a greater
brightness-to-darkness ratio than material edges. Even region
classificalion schemes based on color are confoundad by shadows




because images of objects in shadow contain color values
clustered around different points in RGB space.

Consider an object imaged with color C. in a sunlit part of the
scene and color C; in a shadowed region. To afirstapproximation,
Cj a kC, for some constant k. This, is because the object reflects
the same color in shadow, it is just imaged at a different intensity.
Thus a preprocessing step is to normalize all the color vectors of an
image, by transforming each point (R(x. yl G(x. y), B(X, y)) Into (r(x.
y). g(x. yl bix. y)) such that

im RIR+G+Bl g * GIR+G+8l ' B/(R+G+8).
Then all the color points lie on the plane R+G+B* U

Although the transformation from RGB to rgb Is sufficient for
erasing shadows in many cases, it is not always successful. There
are two factors limiting its usefulness. First, the dynamic-raﬁge of a
TV camera Is not very large (a maximum brightness:darkness ratio
of 7:1) compared with film (a maximum brightness:darknesa ratio of
20:1) or the human eye (a maximum brightness:darkness ratfo of at
least 1000:1). Thus TV images containing of shadowed regions
may have splotches of maximum bright or dark, in which all spatial
detail and color information is lost. Color normalization will not
work in these areas. The second factor is less important, but easier
to work around. Nonshadow areas in our outdoor road scenes are
illuminated by direct sunlight, which has a more-or-less constant
spectral distribution. Shadowed regions are illuminated by skylight

and by sunlight reflected off surrounding objects (such as tree .

leaves and tree trunks in our case). Thus the reflected color of a
shadowed part of a region Is ngt quite the same as the color
reflected from that part of the region in direct sunlight In practice
the difference is small enough not to matter for our classification
techniques.

Color normalization reduces the dimensionality of color
classification to two, in which case abivariate normal distribution is
used as acolor feature model.

3.5 Image Rectification

We have implemented programs for nonlinear warping of an
perspective of a road to tgansform it into a view (See what we would
see if we were flying over the road and looking down on it This
transformation, called imago rectification, produces a map-like
image In which the structure of the road is made explicit The result
Is an imago which is in vehicle coordinates and can bo used for
camera calibration, debugging of ground-plane operations,
detection of ground-plane features, and display of planned robot
paths.
3,5.1 Definition

Figure 6 shows the process of image rectification, ft is most easily
described by considering a rectangular grid projected onto the
gmund - plane. Grid points can be considered as pixels of the
rectified: image. Rectification consists of back-projecting the grid-
points in the ground plane to the original image, in order to see
vtftat intensity value should be placed at that point Once the back-
prelection is computed, it is stored as a lookup table so that
autotquetitimages can be rectified quickly.

Figure 7 shows ftm process of image rectification for a wide-angle
fiah-€y» tens. This tens is superior to a standard reflex lens (which
w® mum? model as a pin-hole) for imaging the road”because the
road always remains Ii “ew even when the vehicle makes sharp
Sums off the centerfine. The point(-1./,/,)on the ground plane
Is first projected onto me unit sphere centered at tho origin, then
psjpeiidetjfaHy to mm fmaoe pfime which is tangent to We sphere at
CEL& 11 The overall tran’\ormaflorl is

{1 12~ R Y

wtars A i the rectified image and C is the original image.

81

This transformation is more useful if it can be done quickly: we
anticipate carrying out this transformation on the CMU Warp

Figure 6: Image Rectification for PSn-Hole Lens and
: Determination of Camera Tilt
LENS THAGE
SPHERE PLANI
L
B 3 GIOtTWD PLAKI
A
Figure 7: Image Rectification for Rsh-Eye Lens

3.5.2 Camera calibration

The Image rectification process (for the pin-hole lens model) can
be used for camera calibration. By "camera calibration- we mean
deriving-the necessary parameters for transforming image points to
the local ground plane around the vehicle.- By Intersecting a pair of
tines In the ground plane around the vehicle a point on the horizon
(vanishing line) can be detected. Note that the actuhi horizon need
not be In view, only a pair of lines in the local ground plane. In fact,
the lines need only lie In any plane parallel to the ground plane,
except the planes containing the camera axis. In practice we use a
pair of forward-pointing straight metal poles bolted to the side of
the Terregator as a calibration "hood ornament**. We hand-select
these points from a calibration image.

Once the horiron fine Is known, the tilt of the camera is easily
derived as in figure 6 Given the tilt £ of the camera and an estimate
of the camera focal length |, the transformation from ground plane
points to image points is obtained directly as in figure 6.

A second aspect of camera calibration is determining.the x and y
scale factors for the image, where x indicates distance along an
axis parallel to the vehicle forward direction and y is distance along
an axis parallel to the wheel rotation axes. To measure these
parameters, we place meter sticks on the ground plane in camera
view, digitize and rectify atest Image, and then measure the lengths
of the meter sticks along tho x and y dimensions.

3,6 Warp Runs :

In test runs of an outdoor robot vehicle, the Terregaton under
control of the Warp computer, we Stave demonstrated continuous
motion vision-guided road-foiowing at speeds up to 1.08 Rm/hoor
with irpnase processing and steering servo loop times of 3sec.
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3.&.1 Warp Hardware Description

The Warp machine has three components. the Warp processor
array, or rimply Warp, the (rtterfice will, and the host, as depicted
In Figurea W® detcribethismchme only Wefiy here; more detail
istw««Wtt separately fij. Hit Warp processor array performs the
bufc of the compttfatioffiin this case, tow-few! vfetoo routinesf2).
The interface unit handles (he input/output between the array and
ihe host The hoet tm two functions. carryfrtQ out high-level
apploitJew rwitfexs and supplying data to tie Warp processor
aray,

The Warp prommof array & * prografpriwbfe or»4imensional
eysioic «rr«y; In which afl cetit arertpicw of each other. Data
Hew through (he my on tm dtta paths (X and Y), «Mt» addr esses
end ayetoOc control sffimistravel on Che Adr path (as shown in the
F8gw« a). "Hit Warp edit ere sptcfafced for floating-point
openxuoaa. Thedata path ef i Warp cefl is depicted in Figure 9,
Eich c«ft containe two Aoeting*point processors: or » muitipder and
one ALU (8J, These are MgNy pipdined; they mch can deliver up
to 5 MfIOPS each, This pexiommice trandates to a pesk
pmtcsafeg mm of 10 MFLOP8 per erf or 100 MFLOPSlor a 10-cef
Nz zfwmmy. To wummmiiirt ctela am be mippiM at the rate
tfwy mm cmmMmd4s m epmmd teffor is dedicated to ecch d the
atitftmettc wite, w* a om"m h w®4 to support Wgh kitra-ceR
AKtiwA A Ha liipji '[Kti ~ss acpmw to buffer input data A
4K*word memory m ~ov~d lor resident end temporary data
.

Ae «ddf«w i*awi$ ere typicay dsti'indspendont and common
to m mm ecu* ftil *twt pwatecsi®'ly htetored out
frv» 0)9 Oft arctoteeiure **$ p$mld9d h Qm kilmtam unit
Addr c” » am germsimi by tw intsifaee w* and propagated tow
erf' te otM (eOMIhe n*i* tfie cwird egrwls). 'in addMlion to
ounpratinng aMrm*'m, tie M M te« wit pasts 4it* «KJ reaills
bebwesn the h and tie Whp array, f»«Wt performing some
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averaged together individually to find the estimated
road edges. An earlier approach was to find the left
edge by finding the first long sequence of ones moving
to the right from the left side of the image and the right
edge similarly. This did not work as well as the second
approach, since the vehicle tended to steer into the
center of forks in the road.

8. Stearing. Our servoing strategy is to steer the vehicle
to keep the center of the road centered in the image.
Basically we start with a large (512 x 5§12) image array
and reduce it as quickly as possible to a point (x, y).
This is the point considered ta be the center of the road
some fixed distance in front of the vehicle. It is also the*
point to which the vehicle steers. Assuming that the
center of the image is the point (0, 0), the stecering
command is to turn left or right at some dr/dt = <+x
where vy is a gain constant related to the distance
ahead imaged and to vehicle speed. dr/dt Is rate of
turn of the vehicle (giving path curvature) in degrees
per second. See [6]for detalls.

3.6.3 Hardware Configuration

In addition to programming an efficient road following aigorithm
on Warp, we have made improvements in our video transmission
system and vehicle interface that have increased the reliability of
our system and further reducted time between image digitizations.
Time reductlons between in the image processing cycle increase
the servo rate of the vehicle steering control loop, and enable the
vehicle to drive at higher speed.

We chose to digitize the image of the bliue band only, in-order to
obtain the highest possible contrast between the test road and the
surrounding grass in the image. Since grass absorbs almost all
bilue light and the asphalt road reflects a lot of blue fight, the TV
image in the blue band shows a very bright road surrounded by very
dark grass. The blue filtering of the signal is tied 1o the particular
road on which we are testing the vehicle. The next step In
hardware configuration improvement is to selectively digitize the
red. green and blue bands and to combine them using our Matrox
{rame bulfers and the Warp.

4. Conclusion

We have presented a comprehensive view of a vision-based road-
foliowing system for an autonomous vehicle. Various parts of this
system exist and have been tested both off-line on "canned”
images and during real-time tests using the Terregator.

An overall picture of our system can be seen by considering the
path of a single image through the entire processing loop. First, the
Map module announces a sst of predictions for the current scene,
knowing the vehicle’s position. The Vision module then
dynamicafly applies color and texture segmentation techniques to
extract the predicted road region. An oriented edge tracker uses
the geqmetry of the extracted road region and the predicted
Mwmdmmmeposiﬂondmemadorm
the region and report fallure. If road or intersection region

detection is successiul, jhe Navigator is alerted and genecates a

steering plan from the rgad region. If not successful, the Vision
systedh haits and signals the blackboard so that another moduie {or
person) to take control. mswadngplanhrece!vedbythelow-
wmmmmmmwmmwsm
and shaft encoders and executes the steering strategy.
Timestamps on data carried through the entire system enable the
wehicle to be controlied in real time, with old steering plans aborted
as the Navigator creates new ones. To work for continuous motion
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road-following even at the slowest speed the Terregator has run in
any road-following experiment {10 cm/sec) the entire processing
loop must complete every 10 seconds.

Warp has proved to be a useful high-speed processor for vision
tasks. An important advantage of Warp over other image
processing computers is its floating-point capability. Many of the
processes we have discussed, such as image rectification, color
segmentation, and oriented edge tracking, are Implemented as
floating-point algorithms and can run efficiently on Warp. Using the
Warp, we have already demonstrated one etlicient and robust road-
following algorithm.
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Pulsewidth Modulation Control of Brushless DC Motors
for Robotic Applications

PATRICK F. MUIR, STUDENT MEMBER, IEEE, AND CHARLES P. NEUMAN, SNIOR MEMBER, |EEE

Abstract—Pulsewidth modulation (PWM) control of brushless dc
motors is implemented with digital servo mechanisms for robotic
tppiications. Under the assumption that the poise period is much smaller
than the motor time-constants, the motor is modeled by a discrete-time
transfer function with the pulsewidth playing the role of the control
signal. This model enables the application of classical linear control
engineering to die design of a digital position servo for the brushless dc
steering motorson the CM U Rover. The controller isimplemented with a
microprocessor and programmable timer to calculate concurrently the
actuating signals, time sampling periods, and pulsewidths, as well as to
provide commutation. Computer simulation and real-time hardware
implementation of the servo demonstrate the efficacy of the approach.

i. INTRODUCTION

T HE DESIGN and implementation of digital servo control-
"*e tes for brushless dc motors, utilizing pulsewidth modula-
tion (PWM), has become a sgnificant control engi-
neering task bécause of the desirable characterigics of these
motors for robotic applications. Brushless dc motors (using
samarium-cobalt permanent magnets) are appropriate for
robotic applications because of their high torque-to-weight

Maracrif* received April 25, 1984. Thispaper was supported by an R. K.
MsHkm FeEowship granted to P. R Muir by Carnegie-Mdlon University, the
Office of Nsval Research under Contract NO0O14-81-0503, and the Depart-
meat sf Electrical and Computer- Engineering, Cansegie-Médlon University.

fliemshors SSG with the Department of Electrical and Computer Eagiiieer -
§g, CarnegieMeHon University, Pittsburgh, PA 15213.

ratio [1], ease of computer control, efficiency, and smple
drivecircuitry. Semiconductor power transstors can drivethe
motor directly from a microprocessor. Power transistors
operate mogt efficiently in a switching mode. Ve ocity control
of a brushless dc motor is accomplished (in the switching
mode of operation) by the PWM of the gator coil voltages.

If the motor position ismeasured by a digital shaft encoder,
the feedback control system, with the exception of the motor,
isdigital. The brushless dc steering motors on the CMU Rover
[2] (described in Section HI) exemplify such a system. The
Rover is a mobile robot which rolls on three wheels that are
actuated by brushless dc motors. In this paper, digital servo
controllers are designed using PWM to provide mobility. The
steering motors are modeled, position controllers are de-
signed, and die control system is smulated and implemented
in hardware. Smulation and experimental results demonstrate
that the design goals of zero overshoot and a 100-ms settling
time are achieved.

The PWM control of a linear analog system is assessed.
Under the assumption that the pulse period is much smaller
than die time-constants of the system, the system can be
modeled by a linear discrete-time transfer function, with the
pulsewidth playing the role of the control signal. This model
enables the application of classical control engineering [3]-[6]
to the design of pulsewidth-modulated systems for the control

0278-0046/83/Q8G0-G222$01.00 © 1985 |EEE
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of brushless and conventional brushed dc motors, and electro-
Mpnpﬁisorpnimdufolhws.mopermonc_’f
brushless dc motors is reviewed in Section II, and their
q:p&xioncndxmumisdesaibedinmn.l.
PWM control of lincar analog systems is highlighted (in
Section IV) and applied to model the steering motor on the
mmwmrmmw.mmg
eﬁinéy'mthem-ﬁnedom.udgmiﬂmxsm
Mﬂfauwfanﬁng&edimﬂcmmddhﬁom
equivalent model at a sampling period which is different than
the sampling period of the experimental data, since the
mqath;puiodohhecomdkerisnaspeciﬁedaﬁm
identification stage. Consequently, when a low-order transfer
function is identified from the original data, the modeling
experiments need not be repeated at the controller sampling
period to reidentify the model.

Controller design (including the choice of sampling period)
is outlined in Section VI. The controller sampling period is
the servo execution time exceeds one-half of the sampling
period, the processing time is incorporated (as a computational
delay) in the closed-loop system model, thercby increasing the
order of the system. Nonlinearities in the control system
(caused by friction, motor saturation, and position quantiza-
tion) are neglected in the controller design. Controller gains
are calculated to satisfy the design goals of zero overshoot and
a 100-ms sertling time. The step-response of the closed-loop
control system, using these gains, is simulated in the presence
of the aforementioned nonlinearities. The controller gains
which megt the performance specifications (in the presence of
the nonlinearities) are selected for the hardware evaluation.
The bardware impiementation of the controller is evaluated
in Section VII. Motorola 6805 microprocessors execute the
control algorithms, which are stored in nonvolatile read-only-
memory. An interrupt driven routine and a programmable
timer enable the processor 1o calculate concurrenty the
acuating signal and time sampling periods, and to provide

pulsewidth modulation. The performance of the position servo
is evaluated from experimental step-response data. The results
are summarized and concluding remarks are advanced in

T ICH

Lot FER mm

A brashioss & motor has the same torque-speed characters-
tic 25 a conventional d motor even though the principle of
operation is more compiex [7]. There is no electrical connec-
tios 10 the rotor of 8 brushiess dc motor because the rotor

almco magnets, wre commonly used in brushless dc motors.
Comemuanon of 3 brushiess dc motor is accomplished by
sisctronucally ywitching the current in the stator windings. The
Pproper sator winding polarities (at each instant) are derived
from the sha®t position, a3 read from a sha®t encoder, and the
mmwmvmmkw
esther by adpusting the stator currents (using D/A converers

and current amplifiers), or, more simply, by adjusting the
current duty cycle (using power transistors and PWM). To
reverse the direction of rotation, the stator windings are
sequenced in reverse order, rather than reversing the current

Even though the operation of a brushless dc motor is more
complex than that of a conventional brushed dc motor,
practical advantages accrue. The removal of heat produced in
the windings of brushless dc motors is more easily accom-
plished because the path to the environment is shorter.
Problems with brushes, such as wear and brush noise, are
eliminated. Brushless dc motors require minimal interface
circuitry for microprocessor control. Power transistors are
operated in a switching mode, as coil drivers are more
efficient than the analog power amplifiers used with conven-
tional motors. Minimizing weight and power consumption is
essential for mobile robots because the capacity of self-
contained power sources is limited. Disadvantages of brush-
less dc motors are the need for electronic commutation, its
high cost, and low availability. As the demand for brushless dc
motors grow, these motors will become more available and

less expensive.

m. THE CMU ROVER

The CMU Rover [2] is a mobile robot currently being
designed and constructed in the Robotics Institute of Camegie-
Mellon University, Pittsburgh, PA. The CMU Rover is
cylindrical in shape, 1-m tall, and 55 cm in diameter. Mobility
is provided by three wheels upon which the robot is supported.
Three brushless dc steering motors [8] control the orientation
of the wheels and three additional brushless dc drive motors
coupled to the wheels. A Motorola 6805 microprocessor [9] is
dedicated to the control of each motor. Servo reference
via a common serial line from high-level processes [2]
executing on independent onboard processors. Power MOS-
position is fed back to the processor via a digital shaft encoder
[10].

IV. PWM OF A LINEAR SYSTEM

There are practical reasons why the dynamic models of dc
motors cannot be applied directly to model the motors on the
CMU Rover. Although many of the characteristic parameters
are provided by the motor manufacturer, there are parameters
(.., the moment of inertia of the load, frictional torque, and
damping constant) that must be obtained experimentally after
the motor is built into the robot. Furthermore, the input to a
conventional dc motor is the voitage applied to the motor
windings; whereas, the voltage pulsewidth plays the role of the
input for a2 motor controlled using PWM.

The PWM control of motors is analyzed for the state-space
model of the Nth-order linear time-invariant system

dx
=~ A0+ du(f) )
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Fig. 1. Pulsewidth modulation.

where the (N X 1) state vector is x and the scalar input is u.
The (N X N) motor matrix is A and the (V X 1) input vector
is b. The solution of (1) is [5] .

*)=explA(t—}x()+ | exp{AG-N}bu) dn

@

where exp {At} is the matrix exponential [3, 5].

The scalar pulsewidth modulated signal u(f) is shown in
Fig. 1. The input w(7) is the constant K (volts) for the fraction
s/T of each period, and zero for the remainder of each
period. The pulsewidth is the magnitude of the control signal
and is, therefore, positive. Negative control signals reverse the
commutation sequence of the motor (as discussed in Section
VI). The goal is to find conditions under which (2) is linear in
mepulsemdths Thedtgxmloomoﬂetsmnplwmemat
x(t),mmanﬁoomsonthemw.x(nﬂathe
sampling instant nT, where T is the constant sampling period
Mam&emw@.h@),&owhuwod.ﬁwt
= nTtot = (n + 1)T, is divided into two subperiods. The
first runs from fp = nT to t = nT + s(nT),whctethe

. ™ ¢ van Sa] ,;,‘ﬁ?: ‘..,. .}‘,‘
mmmmwmm Entheswomd,fromte
= nT + s(nT)to t = (n + 1)T, the input u(?) is zero. Thus

X{nT+s(nT)]=exp{As(nT)}x(nT)
| +x§:'“ exp{AN} d\ b

1€))

and
xf(n+ DT]=exp{A[T-s(rT)}x[nT+s(nT)]. @

Upon substituting (3) into (4), the state-vector x{(n + 1)7], at

the (n + I)th sampling instant, is related to the state-vector
x{nT) according to

i+ DT1=exp{AT}x(nT)
+K exp{AT} exp{—As(nT)}
-r“w{,m d\ b.

development, the matrix exponentisls in (5)
NWWMMWe@mm[ﬂ.
ie., exp {41} = I + At, under the assump
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sampling period T and consequently the pulsewidth s(nT) <
T are much smaller than the system time-constants. In first-
order systems, this assumption ensures that the scalar expo-
nential exp{7/7} can be adequately approximated by 1 + 7/
7, where 7 is the system time-constant. By applying a
similarity transformation [3] to diagonalize the system matrix
A, the first-order condition generalizes for approximating the
matrix exponentials in (5). Upon substituting the first-order
matrix approximation and retaining the linear terms in s(nT),
(5) leads to

x{(n+ DT]={I+AT}x(nT)+ Kbs(nT) ()
where I is the (N X N) identity matrix. The discrete state-
space PWM model in (6) is linear in the pulsewidth s(nT)
which plays the role of the control signal. The state, and hence
the outputs (which are linear combinations of the states),
depend linearly on the pulsewidth s(nT"). The only assumption
made in leading to (6) is that the sampling period is much
smaller than the time-constants of the system. This assumption
is practical because conventional digital control systems
operate on a sampling period which is much smaller than the
response time of the system under control. This engineering
assumption and interpretation of the linear model in (6) lay the
foundanonforthedwlgn(mSecuonVI)ofoontmlsystemsfor
the motors on the CMU Rover.

V. MODELING THE STEERING MOTOR
A. Introduction
The framework of Section IV is applied to the practical
problem of modeling the brushless dc steering motors on the
to output velocity of a dc motor is linear [7]. Consequently, the
mmdaFWMmdmbemnedbymm

samphngpemdrssmalloompmedwmc-comtamofthc
motor. Since the motor parameters are unknown, experimental
data are acquired (in this section) to identify the discrete-time
model. The order of the model is chosen to ensure acceptable
accuracy, without increasing the complexity of the servo
controller.

B. Experimental Data
The velocity step-response of a steering motor is easily
measured and sufficient to identify the transfer function (from
pﬂsewidﬂl MMMY} VM measurements are W
emyZm,meﬁmmamm sampling period to
plement mmmmmwm(m
umecommdmemisﬁomdﬁobessm The
‘ vdocny(ﬁzs

mvohmompusecond)mdaﬁmtmnﬁdmdmeammﬂ
comunand inputs. The data used to identify the model are taken
atnvaincﬂmisw%ﬁmﬂwacﬁvcrmmmgzuf
mmoperm Thetrmmrfmenmwimdmmoddﬂm
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Fig. 2. Steering motor model.

C. Model Order

The input-output transfer function of a conventional or
brushless dc motor, from voltage input to velocity output is
second-order [7]. The discrete model (6) of the motor under
PWM control is also second-order. One mode of the motor
dynamic response is characterized by its mechanical time-
constant and the second mode by its electrical time-constant.

Since the electrical time-constant of the motor is much smaller,

than the mechanical time-constant, a first-order model should
be sufficiently accurate for controller design.

First- and second-order discrete-time transfer functions are
.introduced to model the steering motor (from pulsewidth input
to velocity output). The first-order transfer function is

K;z"
1-pz~! i

Gl(z"')—

and the second-order model is

Kz~ +227)
_plz—l pzz -2

A computer program was written to simulate the step-response
of these models using user-specified model parameters (i.e.,
K;, and p; and K3, 2, p; and p,). The program calculates the
accumulated squared-error between the simulated output of
each model and the experimentally obtained step-response.
reduce the accumulated squared-error for both the first- and
second-order models. Finally, the minimum squared-error of
the first-order model is compared with the minimum squared-
error of the second-order model to decide whether the second-
onder model is smgmﬁcamiy more accurate to warrant the

Giz™ )= ®

'Iheaecoad—oxdermodeloflhemmngmomrpmdma
squared-error which is only 4.7 percent less than that of the
first-order model. This small improvement, in our opinion,
D. Identified Steering Motor Model

The transfer function model G,(z™?) of the steering motor,
which is used in the controller design (in Section VI), is
depicted in Fig. 2. The motor velocity is measured in units of
shaft encoder counts (there are 212 = 4096 counts/revolution)
per sampling period (2 ms). The model has a dc gain of 0.187
and a pole at 7 = 0.966 corresponding to a time-constant of 58
m‘!‘hemmd-o:ﬂermoddhsmenmcdcmn,pohsuz
= 0.965 and z = 0.436 (corres; ;
ﬁmdlmmvdy).mdamtz-om Since
the pole at z = 0.436 responds much faster than the dominant
pole at z = 0.965, which matches the pole of the first-order
model, the response of the first-order model closely resembles
that of the second-order model.

E. Sampling Period of the Model

The sampling period of the motor controllers is not
specified when experimental data are collected to model the
motors. The controller sampling period may differ from the
sampling period of the experiments. Since a discrete transfer
function model of an analog system is an explicit function of
the sampling period [11], the discrete motor model used in the
controller design must correspond to the controller samplmg
period.

To change the sampling period of the motor model, the
discrete transfer function G,(z~?) in (7) is assumed to be the
step-invariant transformation [11] of the first-order analog
transfer function

K
G(s)=-rs+l :

&)

Thus
p=p(T)=cxp{—T/7}

and
K,=K(T)=K[1-p(T)]. an

When the sampling period is changed from T to T, the
digital transfer function in (9) becomes
K(T)z™!
1-p(T)z!

(10)

Gz )= (12)

where

pT)=exp{Ty/T In p(T)}
and

(13)

1-p(T,
K(T)=Ki(T) > 2((72

VI. CONTROL SYSTEM DESIGN
A. Introduction
The objective of this section is to design a position servo for
model identified in Section V enables the application of
classical linear control engineering to PWM controller design.
The design goals are zero overshoot and a 100-ms settling
time.

B. Sampling Period

Motor characteristics and processor capabilities lead to the
selection of the controller sampling period. The controller
must operate with a sampling period that is much smaller
(e.g-, 10 times smaller) than the motor time-constants, so that
the pulsewidth-modulated motor can be modeled by the
discrete transfer function in Fig. 2. Since the time-constant of
the steering motor is 58 ms, the controller sampling period
should not exceed 5.8 ms. Execution of a prototype servo
program is timed and found to set a lower limit on the
sampling period at 1.27 ms, because the program must be able
to execute within each sampling period. The

(14)
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Fig. 3. Steering motor

sampling period is also limited by the precision of velocity
calculations. Velocity measurement precision is low"if the
sampling period is small, because velocities are calculated as
the difference between position readings at successive sam-
pling periods. By experimentation with the prototype servo
program, the lower limit (1.85 ms) on the sampling period is
found to provide sufficient velocity precision and thereby
avoid undesirable nonlinear quantization effects which result
in jerky motor operation. The controller sampling period of 2
ms is chosen because it satisfies the aforementioned con-
straints and because it is convenient to implement sampling
periods that are multiples of 0.25 ms with the programmable
timer. Since the pulse period of the PWM is one sampling
pericd, the choice of 2 ms as the sampling period guarantees
that the linear modeling assumption of Section IV (i.e., the
pulsewidth is much smaller than the time constant 58 ms of the
motor) is satisfied.
C. Control System Structure

The position servo (in Fig. 3) is implemented by incorporat-
ing position and velocity feedback. The control signal is the
pulsewidth modulated voltage applied to the motor coils. The
pulsewidth in the nth sampling period is the magnitude of s(n),
where

s(n)=K,{R,(n—-1)-P(n—1)} —K,V*(n—-1) @as)

Ry(n — 1) current reference motor position,

P(n — 1)  current shaft position as read from the shaft
encoder,

Eyn — 1) current position error,

V*(n — 1) current velocity calculated as [P(n — 1) —
Hﬂ - 2)],

K, position gain (in Section VI-D),

K, velocity gain (in Section VI-D).

The position and velocity gains X, and K, control the
transient response of the servo. The height of each pulse is
constant (24 V) and the pulsewidth is calculated as the
magnitude of (15). The sign of (15) specifies (in Section VII)
the motor coil commutation sequence. This is analogous to
reversing the polarity of the voltage applied to a brushed dc
motor. The delay z~! is introduced in the forward path to
model the execution time of the controller program. The
calculation of the control signal is not completed until 1.27 ms
giter the inputs are received, due to the program execution

position servo controller.

time (as explained in Section VI-B). To ensure that the
actuating signal is synchronized with the sampling period, the
calculated control signal is stored until the beginning of the
next sampling period, when the magnitude of the control
signal is used as the pulsewidth and the sign specifies the
commutation sequence. The motor parameters K; and p are
calculated at the controller sampling period of 2 ms using the
formulae in Section V-E. In this design, the controller
sampling period and sampling period of the modeling experi-
ments coincide and the transfer function in Fig. 2 is applied for
the controller design.

D. Gain Calculation

The closed-loop transfer function of the position servo (in
Fig. 3) is third-order

Piz7Y) K Kz™?

Rz 1-(p+Dz '+ [p+K(K,+K)z 2~ KKz ™3’

(16)

The controller gains K, and K, are calculated to meet the
design specifications of zero overshoot and a 100-ms settling
time. The transfer function in (16) is factored into the cascade
of a second-order component and a first-order component

Pz™)  Kz! z”!

Rz (1-az")?(1-pz™)’

where 0<py<a<l.

an

The objective is to force the critically damped second-order
component (with two equal real poles at 7 = «) to dominate
the closed-loop response. The closed-loop system is thus
designed to respond as fast as possible without overshoot. By
equating (16) and (17), the third system pole p;, feedback
gains K, and K, and gain K; are computed in terms of  and
the motor constants K; and p according to

Pi=(p+1)-2 (18
K'-T: (19
Kp=a2+2aps-p-K:K. 20)
K,
and
Ky=K.K,. @
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Fig. 4. Simulated step-response of steering motor position servo.

The settling time of the closed-loop system is then calculated
from (17) for different values of a. The servo gains K, and X,
are calculated from (19) and (20) for values of a which
produce settling times less than 100 ms. The choice of gains is
finalized by simulating the control system, with the calculated
gain combinations, on a computer in the presence of nonlinear
feedback gain values

K,=32and K,=3 22

provide acceptable simulated response characteristics and
satisfy the design constraints in computer simulation. The
value of a = 0.838 (corresponding to a time-constant of 11.3
ms) is substituted into (18) to calculate the location of the third
pole p; = 0.290 (corresponding to a time-constant of 1.6 ms).
The third pole thus responds much faster than the two equal
dominant poles, as desired.
E. Control System Simulation Results

The simulation program implements the block diagram of
Fig. 3 to calculate (at discrete time instants) the step-response
of the steering motor servo. The simulated step-response of
the steering motor position servo controller, using the gains in
(22), is shown in Fig. 4. The step-response does not overshoot
mddmphysal%—mmhgm,mdmmﬁume

ications (with zero steady-state error).

WWWMmMma«aW%

mﬁmdumwﬁemmampmnm
motor coil drivers. The motor shaft position is fed back to the
mmafﬁemﬁwnwmm h

mmmﬁmmmmam

- ent programs are shown in the flowchart of
&mmhms The main routine implements the
mﬂmmm&ewmﬂm

pattern (i.c., commutation) and actuating signal (i.c., pulse-

width), and requires approximately 1.27 ms of each 2-ms
sampling period to execute. The interrupt routine handles only
those functions that require accurate timing, such as reading
the shaft encoder, sending signals to the motors, and control-
ling the timer. The software is structured so that the most
urgent tasks (those serviced in the interrupt routine) are
processed when necessary, and the tasks for which timing is
not critical (those serviced in the main routine) use the
remaining processing time.

The programmable timer is used to time the pulsewidth and
sampling period, and synchronize the control signals in the
following manner. The timer is loaded with the pulsewidth
(which was calculated by the main routine in the previous
sampling period); and the proper motor coils are energized by
loading the microprocessor output port with the excitation
pattern (the excitation pattern was also determined by the main
routine in the previous sampling period); and the position of
the motor shaft is stored. The timer counts down the
and coil excitation pattern for the next sampling period. When
the pulsewidth has elapsed, the timer generates a hardware
interrupt to the processor. The processor immediately stores
the present state of execution of the main routine and begins
value in the timer, and turns off all of the motor coils by
storing a 0 in the output port. Control is then returned to the
main routine, which resumes execution at the point at which it
down the remaining time in the sampling period, a second
interrapt is generated. By this time, the main routine has
completed its calculations, and the cycle repeats each succeed-
msmmlmclmml

mmmm«mmqummmm
Mom involving cyclical M pom\m wudiugs must be
checked and corrected for wraparound errors. Position read-
ings must lie within the range 0-4095. If the calculated
position error is outside this range, a multiple of 4096 must be
added to or subtracted from the value (as appropriate), to bring
procedure must be executed if the calculated velocity value is
mdeofﬂwrmge-MbM

list of ranges of shaft positions; each with two associated
motor-coil excitation patterns. The first excitation patters
produces maximum motor torque in the clockwise direction if
&ammhw%ﬁeWMMW

range in wm a M position occurs is W by
tions. If the shaft position is greater than or equal to the lower
boundary of a range and less than the upper boundary, then
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Fig. 5. Flowchart of assembly language servo program.

7

Position (counts)

o 20 40 60 80
Sampling Periods (T = mw

Fig. 6. Hardware step-response of steering motor servo controller.

the shaft position is in that range. The excitation value for the
desired direction of rotation is read from the table under the
entry for that range.

mmmm(mmmsmwmrymd
only one motor operating) is plotted in Fig. 6. The plot shows
that the servo response satisfies the design specifications of
zero overshoot and a 100-ms settling time. The shape of the

response is similar to the simulated step-response plot in Fig.
4. Neither plot exhibits third-order characteristics, which

verifies that, by design, dacﬂmdsystcmpolcp;m(lﬂ
mspondssxgmﬂcanﬂyfaswrﬂmnﬂmtwodommaniequalpom

VIII. CONCLUSION

The modeling, design, and implementation of a controller
utilizing a pulsewidth-modulated actuating signal is high-
lighted in this paper. A brushless dc motor (actuated by a
pulsewidth-modulated signal) is modeled (using experimental
data) as a discrete linear system whose control signal is the
pulsewidth, under the assumption that the pulse period is much
smaller than the time-constants of the motor. The controller
mw&mgpcnodandPWMpulsepenodmeqmlmtms

lementation. This model enables the application of classi-
cal hnear control engineering to the design of a digital
controller for the motor.

A position servo controller designed for the steering motors
on the CMU Rover meets the specified performance objec-
tives. The controller is implemented on a microprocessor
which uses a programmable timer and an interrupt driven
routine, and calculates the pulsewidth, provides commutation,
and times concurrently the sampling period and pulsewidth.
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that the desired servo operation is realized.

The servo can be enhanced by measuring the shaft encoder
pulse period to provide a more precise velocity measurement
[12]. The position servo on the CMU Rover steering motors
has recently been modified to servo simultaneously to a
desired position and velocity [13]. The framework of this
paper can be applied to the PWM control of brushless dc
motors, and electromagnetic solenoids.
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Kinematic Modeling
Of Wheeled Mobile Robots
(A Summary)

Patrick F. Muir | and Charles P. Neuman }
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Abstract

We summarize our methodology for formulating the kinematic equations-of-motion of a wheeled
mobile robot. The complete paper[1], which is currently being prepared for publication, is over
one-hundred pages in length. Wheeled mobile robots having conventional, omnidirectional, and
ball wheels are modeled. While our approach parallels the kinematic modeling of stationary ma-
nipulators, we extend the methodology to accommodate such special characteristics of wheeled
mobile robots as multiple closed-link chains, higher-pair contact posnts between a wheel and a
surface, and unactuated and unsensed degrees-of-freedom. We apply the Sheth-Uicker convention
to assign coordinate axes and develop a matriz coordinate transformation algebra to derive the
equations-of-motion. We calculate the forward and snverse solutions and interpret the conditions
which guarantec their existence. Applications of the kinematic model are also described.

t Graduate student, Department of Electrical and Computer Engineering; and Member, Autonomous Mobile
Robots Laboratory, The Robotics Institute.

t Professor of Electrical and Computer Engineering.
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1. Introduction

The wheeled mobile robot literature shows that the documented investigations have concen-
trated on the application of mobile platforms to perform intelligent tasks rather than on the develop-
ment of methodologies for analyzing, designing, and controlling the mobility subsystem. Improved
mechanical designs and mobility control systems will enable the application of WMRs to tasks were
there are no marked paths and for autonomous mobile robot operation. A kinematic methodology
is the first step towards achieving these goals.

Even though the methodologies for modeling and controlling stationary manipulators are appli-
cable to WMRs, there are inherent differences which cannot be addressed with these methodologies,
such as: .

1.) WMRs contain multiple closed-link chasins; whereés, manipulators form closed-link chains
only when in contact with stationary objects.

2.) The contact between a wheel and a planar surface is a higher-pair; whereas, manipulators
contain only lower-pair joints.

3.) Some degrees-of-freedom of a wheel on a WMR. are not actuated or sensed; whereas, all
degrees-of-freedom of joint of a manipulator are actuated and sensed.

Wheeled mobile robot control requires a methodology for modeling, analysis and design which
extends the principles applied to stationary manipulators. In this paper, we advance the kinematic
modeling of WMRs, from the motivation of the kinematic methodology, to its development and
applications. In Section 2, we present the three wheels (conventional, omnidirectional and ball
wheels) utilized in all existing and foreseeable WMRs. We present a definition of a wheel mobile
robot and enumerate our assumptions in Section 3. Coordinate systems are assigned to prescribed
positions on the the robot (Section 4). We develop transformation matrices to characterize the
translations and rotations between coordinate systems (Section 5). Matrix coordinate transforma-
tion algebra is developed as a means of calculating position, velocity, and acceleration relationships
between coordinate systems in Section 8. We apply the axioms and corollaries of this algebra to
model the kinematics of WMRs.

The equations-of-motion relating robot positions are developed in Section 7, and we develop
the velocity and acceleration relationships in Section 8. We relate the motion of a wheel to the
motion of the robot body by calculating a wheel Jacobian matrix. From the simultaneous motions
of the wheels, we obtain the motion of the robot in Section 9. Specifically, we obtain the inverse
solution, and the forward solution. We discuss the application of the kinematic methodology in
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Section 10 and summarise tbe kinematic modeling procedure in Section 11. We outline our plans
for continued research in Section 12

Many sections and details of the origind paper had to be omitted from this summary for
brevity. The full paper contains. a survey of documented WMRs, detailed derivations of the
inverse and forward solutions, detailed applications, the development of the kinematic modd of
severd example WMRs, and a nomenclature and symbolic representation for WMRs.  Further
details on the topics presented in this summary are aso included.

2. Wrfaed Types

Three bade types of whedsareused in WMRs: conventional, omnidirectional, and ball wheds.
In addition, conventional wheds often are mounted on a steering link to provide an additiona
degree-of-freedom. The degress-of-fresdom of each whed are indicated by the arrows in Figure 1.
The kinematic equations relating the angular velocity of the whed to its linear velocity aong the
surface of travel are also compiled in the figure.

Hie soristeered conventional whed isthe smplest to construct having two degrees-of-freedom.
It 8Uows travel dong a surface in the direction of the whed orientation, and rotation about the
point-of-contact between the whed and the floor. We note that the rotational degree-of-freedom is
ilippage, since the potato-contact isnot stationary with respect to thefloor surface. Even though
we dehine tbe refational dip as a degree-of-fresdom, we do not consider dip transverse to the whed
orientation a degree-of-freedom. because the magnitude of force required for the transverse motion
is much larger than that for rotationa dip. ' '

The >mnmMmctim&t whmi has three degresfKrf-ftwdkxn. One dgpeeHof“fretdom isin the di-
rection ®£ the whed orientation. The esoond degreed-freedoiii“u proidded by motion of rollers
inoiHtted anm&d tbe im*phery of tibeman wheel In principle, Om roller axles can be mounted
at any mwivo angle f with roptct to tie whed orientation. The tMrd degreeHa-froedoin fa rota-
tkmal dip about the pctetHotcimtact It is pogtlfde, but act comnxm, to' actuate Ike rollers of an
sidirectional wheel, with a complex driving arrangement. ‘

The most maneinrarafde r\bee! is a left which is actuated to poem three degrees-of-freedom
withoat dip. &h”™»«' Jmm been devisad for actuating mud wuing of 1ml wheeb, but we are
waaw «w”«ay eoditittf inpleBieiitetioM An omnidirtiricMid wlwd w  hfaiteered about its point-
of-coatact it M»'f»*licaif equivdent to a boll whed, and may be m practical ctenigi! alternative.
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= radii of a8 wheel and a roller

Figure 1

Wheel Equations of Motion
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3. Definitions And Assumptions

We introduce an operational definition of a WMR to specify the range of robots to which the
kinematic methodology presented in this paper applies.

Wheeled Mobile Robot - A robot capable of locomotion on a surface solely through the
actuation of wheel assemblies mounted on'the robot and in rolling contact with the surface. A wheel
assembly is a device which provides or allows relative motion between its mount and a surface on
which it is intended to have a single point of rolling contact.

Each wheel (conventional, omnidirectional or ball wheel) and all links between the robot body
and the wheel constitute a wheel assembly. We introduce the following practical assumptions to
make the modeling problem tractable.

Assumptions

1.) The WMR does not contain flexible parts.

2.) The WMR moves on a planar surface.

3.) There is zero or one steering link per wheel.

4.) All steering axes are perpendicular to the surface.

5.) The translational friction at the point of contact between a wheel and the surface is large
enough so that no translational slip may occur.

6.) The rotational friction at the point of contact between a wheel and the surface is small
enough so that rotational slip may occur.

4. Coordinate System Assignments

Coordinate system assignment is the first step in the kinematic modeling of a mechanism.
Lower-pair mechanisms® (such as revolute and prismatic joints) function with two surfaces in
relative motion. In contrast, the wheels of 2 WMR are higher-pairs; they function ideally by point
contact. Because the A-Matrices which model manipulators depend upon the relative position
and orientation of two successive joints, the Denavit-Hartenberg convention leads to ambiguous
assignments of coordinate transformation matrices in multiple closed-link chains which are present

i ; : .
Lower-pair mechanisms are pairs of components whose relative motions are constrained by a
common surface contact; whereas, higher-pairs are constrained by point or line contact.



in WMRs. We apply the Sheth-Uicker convention to assign coordinate systems and model each
wheel as a planar pair at the point of rolling contact. This convention allows the modeling of the
higher-pair wheel motion and eliminates ambiguities in coordinate transformation matrices. The
planar pair allows three degrees of relative motion: x and y translation, and rotation about the
point-of-contact as shown in Figure 2.

-

L Floor : / l Floor /

Planar Pair Conventional Wheel

Figure 2
Planar Pair Model of a Wheel

This modeling of a WMR leads to the coordinate system assignments defined in Table 1. The
floor coordinate system is a reference frame for robot motions. The robot coordinate system is
assigned to the robot body so that the position of the WMR is the relative translation from the
floor coordinate system to the robot coordinate system. The hip coordinate system is assigned at
a point on the robot body which intersects the steering axis. The steering coordinate system is
assigned at the same point along the steering axis, but is fixed relative to the steering link. We
assign a contact point coordinate system at the point-of-contact between each wheel and the floor.

We define an ¢nstanta