
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

Workshop on
Performance Efficient Parallel Programming

Sponsored by

Carnegie-Mellon University

and

The National Science Foundation*

Edited by Zary Segall and Larry Snyder

Seven Springs

Champion, Pennsylvania

September 8 -10,1986

Steering Committee:

J. Browne, B. Chern, R. Grafton, Z. Segall, L. Snyder

Local arrangement:

P. Reyner

*This work has been supported by the National Science Foundation under grant #DMC-8603052.

p.i

Table of Contents

1 Scope and Purpose of the Workshop
2 Working Group on Sources of Performance Degradation

2.1 The Taxomony
22 Concrete Examples
23 Insights

3 Working Group on Mapping Algorithms onto a Given Architecture
3.1 Introduction
3.2 Problem Statement
33 Rationale
3.4 Promising Approaches
3.5 Research Directions

4 Working Group on Operating System Characteristics for Performance-efficient Parallel
Programming

4.1 Statement of Problem
42 Rationale
4.3 Approaches
4.4 Research Directions

5 Working Group on Idealized Parallel Machines
5.1 The Problem
5.2 Idealized Parallel Machines
5.3 Topics for Further Research

6 Working Group on Parallel Programming Environments
6.1 Problem Overview
6.2 Promising/Important Areas of Research
6.3 Recommended Approaches

7 Majority Report - Working Group on Language Design Issues in Performance-Efficient Parallel
Processing

7.1 Introduction
12 Research Questions and Directions

7.2.1 Language Constructs
7.2.2 Performance
72.3 High-Level Issues
7.2.4 Miscellaneous

7 J Conclusions
8 Minority Report - Working Group on Language Design Issues in Performance-Efficient Parallel

Processing
8.1 Prologue
8.2 Introduction
83 Why a parallel programming language now?
8.4 Required Characteristics

8.4.1 Provides good abstractions.
8.4.2 Provides a coherent set of abstractions.
8.4.3 Machine independence for a reasonable range of hardware
8.4.4 Miscellaneous qualities

8.5 Conclusions
9 Working Group on Performance

9.1 Problem Statement
92 Rationale
93 Research Directions & Promising Approaches

10 Conclusions
11 List of Participants

p. I

1 Scope and Purpose of the Workshop

On September 8-10, 1986, 44 computer scientists and engineers, mainly active in the area of performance

efficient programming of parallel systems, met at Seven Springs, Pennsylvania. The purpose of this meeting

was to assess the status of research in the area of parallel programming technology and to determine what

future research directions would be most productive. The National Science Foundation and Carnegie-Mellon

University sponsored the meeting. This report summarizes the discussions diat took place and the

conclusions that were reached.

Interest in parallel architecture has grown steadily over the past decade and a half. Parallel processing has

long been heralded as a method to build computers executing an extraordinary number of instructions per

unit of time. Commercial parallel processors have become a reality. The main challenge is whether these

machines can be programmed to make effective use of the increased computer power. Hence, the

opportunity for parallel processing cannot be successfully exploited without developing the basic parallel

programming technology. The diversity of architectures and the wide variation in their underlying

computational models makes it particularly hard to find general techniques for developing efficient parallel

programs and general guidelines for choosing the appropriate machine for a set of applications.

Accordingly, in this workshop we emphasized the parallel programming technology required to apply parallel

solutions to problems with the objective of improving execution speed. In preparation for the meeting, the

following research issues were singled out:

• Performance efficient mapping of parallel algorithms into parallel architectures and parallel
programs.

• Application-oriented parallel programming (for numerical, symbolic, real-time and integrated
applications).

• Languages to efficiently support new parallel architectures.

• Parallel language-oriented architectures (highly programmable parallel processors).

• Programming environments for performance efficient parallel programming.

• Compiler techniques for performance efficient parallel programming.

• Performance debugging.

• Performance contrasting of two hardware/software parallel architectures.

p. 2

The workshop was a forum to address those issues.

Prior to the meeting, attendees submitted position statements; these were distributed at the meeting to act as a

catalyst for discussion and exchange of opinion. A number of informal presentations were made, most based

on position papers. In addition, the researchers separated into seven discussion groups: 1) sources of

performance degradation, 2) mapping algorithms onto a given architecture, 3) operating system characteristics

for performance-efficient parallel programming, 4) idealized parallel machines, 5) parallel programming

environments, 6) language-design issues in performance-efficient parallel processing, and 7) performance.

The mechanism to determine discussion group topics was as follows: a large number of topics were

"nominated" by the participants. A group was formed to discuss that topic if a critical size (> 4) people could

be formed. Individuals were members of only one group. No attempt was made to "balance" the group

topics to cover the wide spectrum of issues that might be discussed. The choice of group topics thus

represents a statement about what this group of researchers felt was most important. Each discussion group

created a summary of its deliberations; the summaries follow in this document These summaries were

written at the workshop while the discussion was fresh. The time was very short, however, and so even

though the editors have reviewed the material, the authors should be excused if these summaries are less

well-polished than their normal technical papers. If a group could not come with one agreed-upon summary,

the group was encouraged to produce a majority report and a minority report

Most groups chose to make recommendations of what research should have the highest priority for that area

in the near future. The recommendations are summarized in the conclusion section of this document

2 Working Group on Sources of Performance Degradation

Ed Lazowska, U. of Wash.
David Nicol, NASA

Dave Rodgers, Sequent
Tom Sterling, Harris

John Zahorjan, U. of Wash.

The subject of this working group is at the center of the workshop. In order to achieve performance-efficient

parallel programming, it is necessary first to identify the sources of performance degradation; then, research

attention can be devoted to those areas that offer solutions: performance analysis, programming

environments, operating systems, etc.

We begin this report by presenting a fairly abstract taxonomy of the sources of degradation. We then present

a set of concrete examples to illustrate the effectiveness of the taxonomy. Finally, we present some insights

concerning ways to address these sources of degradation.

2.1 The Taxomony

Our performance objective is to maximize
results

resources x time

In attempting to achieve this, many possible sources of performance degradation must be considered. The

following tree structure is our taxonomy:

Losses

• Losses manifested by processor busy time:

o Redundant computation Example: late termination.

o Overhead Examples: synchronization overhead; context switching overhead;
communication overhead; operating system overhead.

o Algorithm Example: selection of an inappropriate algorithm with long running time.

• Losses manifested by processor idle time

o No existing work to be done Examples: not enough threads to be executed, because of
synchronization in the algorithm or a small problem size; threads with mismatched
computational demands so that "true" concurrency is minimal.

o Existing work is not accessible Examples: latency, contention, unbalanced allocation of work
to processors.

p.4

2.2 Concrete Examples

We posed the following question to the Sequent, Harris, and Warp members of our working group: "When a

user comes to you and says, 4I paid you $300,000 for this machine and my code doesn't run as fast as I

expected,' what are the most common sources of the problem?" Here are the replies, approximately rank-

ordered:

• Sequent

o A problem decomposition that puts most of the work in one thread (e.g., the optimizing
phase of a concurrent compiler), so that no real concurrency can be realized. (This is an
instance of "mismatched threads" listed under "no existing work" in the taxonomy).

o Memory thrashing due to a poor choice of operating system parameters, (illustrating
"latency" under "work not accessible").

o Excessive I/O which is not overlapped with computation ("latency").

o A synchronous software structure, such as might arise from a very large granularity or a
producer-consumer relationship with a tiny number of buffers ("not enough threads" under
"no existing work").

• Harris

o Synchronization overhead ("overhead").

o Contention for shared variables, including counting semaphores, task queues, the "problem
heap" ("contention" under "existing work not accessible").

o Starvation due to a small problem size ("no existing work").

• Warp

o Excessive I/O that is not overlapped. Note that Warp users are relatively sophisticated
compared to Sequent users, so the first two Sequent problems are not encountered by
Warp; this many change when they export the machine.

o Data dependencies in loops ("not enough threads" under "no work").

One could extend this list with examples from vector processors and dataflow machines. The purpose is to

illustrate that "concrete" problems described in "user-oriented" terms do indeed map into the taxonomy in

the previous section.

Several other points are worth noting. Primarily, various "aspects" or "problems" of parallel programming

have manifestations at several leaves of the taxonomy. For example, the act of synchronization can cause

overhead, can result in loss of concurrency ("not enough threads"), and can be a source of contention (on

p5
counting semaphores). As another example, the "mapping problem" manifests itself as excessive overhead, as

mismatched threads ("no existing work"), and as latency and unbalance ("existing work not available").

2.3 Insights

Several conclusions can be drawn from the preceding remarks and from our discussion.

(1) We believe that reducing performance degradation is a process of iteration among three phases:

determining that losses in fact exist, determining the cause of those losses, and making modifications to

reduce the losses.

(2) We believe that there are complementary analytic and empirical approaches to each of these three phases.

Neither analysis nor experimentation should be the only tool that one uses in addressing the problem of

reducing performance degradation.

(3) We believe that models and measurements are fundamental to the process we have alluded to. Models of

various sorts (algebraic, simulation, stochastic) are useful in deciding that things could in fact be better (i.e., in

determining that losses exist), and in cost-effectively assessing the effect of possible modifications.

Measurements are necessary to understand the way parallel programs behave, to parameterize models, and to

empirically assess results. Simplicity should be the goal here: there is an extensive history in the area of

sequential computation of over-estimating the amount of detail necessary to achieve an understanding of

what's going on; it would be nice to avoid repeating that history.

(4) Research in the areas of all the working groups is necessary to address the objective of reducing

performance degradation. In performance analysis, we need to determine what factors are appropriate to

measure, what types of models are appropriate to what tasks, etc. In programming environments, we need to

support the entire cycle described in (1), in addition to other aspects of parallel programming. In the area of

virtual machines, we need to determine a "small covering set" of virtual machine abstractions that can

efficiently map algorithms onto architectures. And so on, down the list

(5) We note that interest will not always be restricted to a uniprogramming environment. Again using

sequential computing as an analogy, it was originally the objective to run a single job as quickly as possible.

Various factors led to multiprogramming, and to a new set of performance problems. These are perhaps not

p. 6

"programming" problems, but in a sense they are, because they are at least "performance" problems. We

should not be short-sighted concerning them.

p. 7

3 Working Group on Mapping Algorithms onto a Given Architecture

Fran Bcrman, U. of Calif., San Diego
John Feo, Lawrence Livennore

Jeanne Fcrrante, IBM
Charles Holland, ONR
Leah Jamieson, Purdue

Dave Mizell, USC
H.J. Siegel, Purdue

3.1 Introduction

The discussion on the mapping problem was lively and fruitful. In the course of our discussions it became

clear that the mapping problem is actually a family of problems which describe different facets of

implementing an algorithm on an architecture. What determines each mapping problem instance is the level

of abstraction of the algorithm and architecture representation, and the specification of cost and performance

measures. The following document attempts to collect our thoughts in this area.

3.2 Problem Sta tement

The mapping problem is the process of implementing a computational task on a given target architecture in

order to maximize some performance metric.

3.3 Rationale

The mapping problem is fundamental to parallel computing. Solving it is essential to making parallel

machines cost-effective and achieving their performance potential. It makes programming for a high-level

virtual machine possible, and thus makes parallel processing accessible to a wider user community. It makes

possible the development of software tools that automatically determine the mapping, as well as techniques to

help programmers specify the mapping. A mapping methodology applicable to different architectures would

increase the portability of different algorithms.

3.4 Promising Approaches

Current work on the mapping problem can be classified according to the representations which form the

bases for the mapping transformations. Graph based approaches perform transformations on some aspects of

the algorithm and architecture represented as graphs. Examples include the work of Hennessey and Sarkar,

Fishburn and Finkel, and Berman et al. Linear algebra based approaches represent the graph and/or its data

p. 8

dependencies by a matrix, then transform the graph by performing matrix operations. Included in this

category is the work of Moldovan et al. and Ramakrishnan et al. Language based approaches transform one

form of program text into another form, where the target form tcxtually incorporates information about the

architecture. This is exemplified by the work of Kuck et al. Characteristic based approaches represent the

algorithm in terms of a set of characteristics which determines the transformations. An example of this

approach is the work of Jamieson and Siegel.

3.5 Research Direct ions

The list of research directions can begin with the four representation-based approaches identified in the

previous section:

• graph based approaches

• linear algebra based approaches

• language based approaches

• characteristic based approaches.

Additional research directions include:

• Experimentation: We need empirical data to support/refute conjectures, and to provide
experience and knowledge.

• Evaluation of mappings: What is an optimal mapping? What are appropriate performance/cost
measures?

• Automating mappings: What parts of a mapping can be done efficiently automatically (e.g., task
decomposition, resource assignment, data allocation)?

• Automatic translations: Can automatic translations make good use of the underlying parallel
architecture?

• Retargeting mappings: How do we retarget the implementation generated by a mapping for one
machine into an implementation on another machine?

• Meta mappings: Is it feasible to transform a mapping for one machine into a mapping for another
machine?

• Models: What are the appropriate models of algorithms and architectures? Are they hierarchical?
We speculate that the mapping process occurs at several levels of program abstraction. At each
step, mapping decisions are made based on cost constraints defined by a corresponding succession
of increasingly detailed models of the given architecture.

4 Working Group on Operating System Characteristics for

Performance-efficient Parallel Programming

David Black, CMU
Jordan Brower, U. of Wash.
Raphael Finkel, U. of Wise.

Herb Schwetman, MCC
Michael Stumm, Stanford

4 .1 Sta tement of Problem

Our task is to suggest ways in which the operating system level of the software can assist in promoting

efficient execution of parallel programs. In particular, we will suggest features that the operating system

should and should not provide to its clients.

4 . 2 Rationale

We believe that every parallel programming system will have an operating system. The efficiency of the

parallel program is directly affected by this operating system. Furthermore, the facilities provided by the

operating system can form a common base of efficiently implemented functions that make it easier to produce

correct and fast programs.

An operating system has two major components: the kernel and the utility routines. The kernel is that part

which is resident on, or at least executed by, every processor. It contains critical routines to manage resources,

particularly the implementation code that carries out policies that may be specified outside the kernel. The

kernel should probably be protected (at least from overwriting). Reasons to include a function in the kernel

included (1) security or integrity, (2) efficiency, (3) convenience, (4) consistency, and (5) reliability and error

recovery. Utility routines can be subprograms linked with ordinary tasks or special-purpose tasks built by

systems programmers. We will not discuss these routines here.

Our discussion concerns "general purpose" parallel architectures, not special-purpose, restricted ones. Such a

machine is self-contained (not requiring an external host, except perhaps for initial loading), is not dedicated

to a single application or language, and has general computational abilities. We do not address such

architectures as the Connection Machine, Warp, or FPS array processors. We are also not attempting to

propose operating system functions for SIMD machines.

p. 10

4 .3 Approaches

Wc strongly advocate that the operating system be built as a multiple-user facility. Even if it is used in

simple-user mode for production, it will be used in multi-user mode for program development Furthermore,

issues of security apply even in single-user systems. Although the interface between application and kernel

should be as fast as possible, security must be maintained.

There are fundamental differences between shared and distributed memory architectures. Nonetheless, the

kernel utilities should provide both for message-passing and for shared-memory semantics.

The kernel should support two different computational abstractions: tasks and processes. A task is an

address space along with a certain amount of context, such as capabilities (open files, Inter-process

Communication (IPC) privileges). It is a basic unit of allocation. Tasks can overlap their address spaces with

each other. A process (also called a light-weight process) is a thread of execution, that is, a program counter, a

run-time stack pointer, and a set of private registers. Each process belongs to exactly one task. When a task is

created, it typically is formed with one process. The task can continue to exist even after all its processes have

terminated. Processes within a task potentially share all the address space of the task (limited by

programming language rule, if desired) and may executed simultaneously.

Representative operations on tasks include creation, termination, swapping in and out, modification of the

address space size, migration from one region of physical store to another (or possibly onto a different

machine in a distributed-memory environment), state queries, and protection changes. Representative

operations on processes include create, suspend, continue, terminate, and schedule. Group operations that

affect all the processes in a task should be available.

Scheduling is performed on a per-process basis. Real-time schedules may be outside the scope of the

general-purpose facilities we are concentrating on. Information about scheduling needs to be available to

help guide programs. In particular, hints about the amount of available parallelism can be helpful.

We believe that virtual memory is necessary and can be used to assist IPC. The kernel should support

memory hierarchies directly (backing store, main store, cache) and provide facilities to allow programs to deal

with nonhomogeneous memory (local/global) to gain efficiency.

p. 11

Inter-process communication is needed. Its semantics could take a wide variety of forms; there is little

consensus on this issue. However, it .seems diat broadcast (group communication) is important, that

unreliable media must be supported, and that the typical case should be extremely fast. A remote-procedure

call semantics can be both efficient and usable.

4.4 Research Direct ions

The overall approach to all of these areas must eventually be a system-building approach; operating system

behavior and interaction with user programs is difficult to move, and almost always requires a working

implementation to validate any modeling work.

We feel that the following areas deserve research attention.

(1) Scheduling. Parallel programs present fundamentally different scheduling requirements for efficient

execution than do sequential programs. Locking and synchronization behavior is a major contributing factor,

but there are certainly others. Research is need to determine the appropriate scheduling policies for efficient

execution of parallel programs. Promising research directions include

• Processor affinity for lightweight processes

• Simultaneous (or gang) scheduling of the cooperating components of a parallel application.

• Policy-mechanism separation to allow greater user input into scheduling policy.

(2) Exception Handling. Virtually all work on exception handling assumes and is fundamentally dependent

upon a sequential execution model. Parallel programs present new problems due to the presence of threads

of execution other than the thread that causes the exception. Basic groundwork is needed to come up with a

reasonable exception handling model for parallel applications.

(3) Increased Information Bandwidth between user and operating system. Parallel programs need more input

on kernel policy decisions (scheduling in particular) and correspondingly impose greater demands on keraei

services. Also needed are new developments to increase the inner-kernel communication bandwidth, such as

a shared page or pages, to reduce the cost of the required cooperation between parallel programs and the

operating system, thus contributing to program efficiency. Such mechanisms deserve investigation.

(4) Hardware support The efficiency of some operating system facilities could be improved by hardware

p. 12

support. Examples include: user accessible, high resolution clocks, both real-time and cpu-timc; support for

tracing at higher levels than instructions (e.g., IPC events); ttanslation lookaside buffer connecting to parallel

cpu's; assist process management, e.g. more register sets. These topics should be investigated on an overall

cost-benefit basis, i.e. what is the cost to the system for the increased efficiency.

(5) Monitoring and Debugging. The fundamental nature of these activities will require support from the

operating system kernel (hooks if you like). As research into parallel monitoring and debugging proceeds, the

requirements for these kernel hooks will become clear.

(6) Synchronization primitives. Due to the interaction of synchronization with scheduling (a kernel function)

an operating system kernel for parallel processing must support synchronization primitives. Both a simple

quick lock (such as test and set) and a more complicated lock (such as a kernel semaphore with an associated

process queue) are needed for efficient operations, including the avoidance of excess busy-waiting.

Implementation and further investigation of alternatives in this area are needed.

(7) Group Operations. Parallel programs arc of necessity larger than the process or task that the kernel

recognizes as the fundamental units of computation. As a result, operations must be efficiently supported on

groups of tasks and processes. Further work is needed to delineate requirements for such operations and

define appropriate semantics.

(8) Memory Structures. Recent hardware developments in the parallel processing arena have exposed

memory hierarchies to software management and returned to shared memory structures with

nonhomogeneous access times (e.g., RP3, Butterfly). This clearly impacts scheduling and memory

management; more research is needed to adapt and develop operating systems to efficiently support parallel

programs on these new architectures and machines.

p. 13

5 Working Group on Idealized Parallel Machines

Larry Snyder, U. of Wash.
Larry Rudolph, Hebrew U.

Terrence Pratt, U. of Virginia
Heinz Muhlenbein, GMD

David Culler, MIT
Larry Carter, IBM

A large number of parallel algorithms, parallel machines and parallel languages have been created in recent

years, and perhaps the most noticeable feature of this work is its diversity: algorithms are based on very

different assumptions making them hard to compare; machines exhibit radically different architectures with

few reliable figures of merit to compare them by; and it is often problematical now to generate performant

object code for a given language-machine pair even though programs must be portable. This diversity has

complicated our use of parallelism.

A similar diversity would also complicate the sequential domain were it not that the von Neumann machine

serves as a standard by which to reduce complexity. Here is how: the von Neumann machine, not the literal

device he defined, but rather an idealization of it distilled through the years to a few salient features including

a program counter, a random access memory, etc., defines for the architects the facilities that a physical

machine should have, and it defines the facilities language designers can expect in their target machines; it

also implies performance characteristics by which one can determine to a first approximation the performance

of an algorithm. The idealization saves the architect from considering the specifics of the languages running

on the machine, though he may. The idealization saves the language designer from knowing all the details of

the architecture and enables him to have portability by limiting himself to these features. It is thus a

consensus describing what architects will build and what language designers will build upon.

5.1 The Problem

To a large extent the problems of diversity in parallel computation could be reduced if there were one or

more idealized parallel machines.

Problem. Identify one or more idealized machines to serve as a basis of communication
between language designers and architects and to serve as a basis for evaluating the practical
performance of parallel algorithms.

p. 14

We use the term idealized machine to mean a (small) set of salient features that are significant in determining

die performance of a class of algorithms, These are the features architects must implement well and the

features language designers can depend upon. Similar concepts have been identified by a number of

researchers (Pratt, Rudolph, Segall, Snyder, and Browne): a virtual machine, an implementation machine, a

type architecture, and a computational model.

It is assumed that there will be a small number of idealized machines corresponding to a presumed small set

of parallel computation approaches; if the number of idealized machines is not small, it probably means that

we have not identified the right salient features. Notice that any physical machine will implement the

features of each idealized machine with a different degree of efficiency. The "implementation" includes

hardware, firmware, operating system and perhaps compiler optimizations. Generally, the idealized machine

that a physical machine most efficiently realizes can be thought to be the family to which that physical

machine belongs. Likewise, different idealized machines will serve as a platform for each parallel language

with differing efficiency. Algorithmic paradigms will generally exhibit different performance on different

idealized machines. It is intended that these differences be good predictors of practical efficiency.

The idealized machine is selectively incomplete in order to focus on critical features of the parallel

processesing phenomenon which it is describing. The features not mentioned are those whose characteristics

are either implied by the critical ones or only influence performance modesdy. Notice that this fact that the

idealization is not a full specification means that it is not a "layer of abstraction." Nor is it a "model of

computation," which has a formal definition.

In order to illustrate the concept, the working group developed a list of idealized parallel machines. Although

this list was compiled from more than two dozen candidates, we emphasize that it is only an initial estimate.

We have not tried to be complete, so there may be other parallel processing phenomena not included. We

have found it most difficult to unify concepts, so there may be redundancy in the list We have found it

difficult to separate salient from irrelevant features, so the idealized machines may be best described by a

different set of features. Nevertheless, we present our candidate list

p. 15

5.2 Ideal ized Parallel Machines

• Local Memory Machine. Multiphase, topologically-orientcd local memory multiprocessors;
programs exhibit a scries of phases, each with a specific topological structure that persists for the
duration of a phase; the number of processes can change with each phase.

• Shared Memory, Asynchronous. Global memory multiprocessors with J(p) > log(p) memory
reference delays; pipelined memory reference is possible.

• Shared Memory, Synchronous. Global memory multiprocessor, with j(p) > log(p) reference
delays; programs execute in lock step.

• Data Flow. Dynamic instruction scheduling based on the availability of operands.

• Computational Memory. Small computational elements in a massive array of memory structured
in some nonlinear way; the machine is capable of associative search.

• VLSI Machine. A grid containing a layout of small processing elements and communication
paths each having comparable significance.

Notice that idealized machines are not each described by the same set of characteristics. This is because they

encapsulate different types of parallel processing, which cause different resources or organizations to be

significant. It would not be appropriate to list the properties found in the above list and then to expect each

entry in the product space to describe an interesting, or useful, or even sensible idealized machine.

Additionally, note that one does not program in an idealized machine; rather one programs in an abstract

language model defined in terms of an idealized machine. The programmer keeps the idealized machine in

mind as he programs in order to assess the potential efficiency of his program. Moreover, one does not try to

exacdy implement an idealized machine with a physical machine and operating system; the idealized machine

is a medium of communication and need not literally exist

5.3 Topics for Further Research

The challenge is to refine the above list so that it may serve as a basis of algorithm development language

development and machine construction. As specific suggestions, the committee recognizes the following:

(1) Verify that the idealized machines listed are independent and different with respect to performance

efficiency. It should be possible to find properties that distinguish each pair of entries.

(2) Establish the completeness of the list or at least support its completeness by identifying parallel

computation phenomena and determining whether they are represented by one or more entries on the list

p. 16

(3) Assess languages in terms of how well they can be hosted by each idealized machine.

(4) Assess physical architectures (and their operating systems) in terms of how well they host algorithms

defined in terms of the facilities of each idealized machine.

(5) Discover general intertranslatability between the idealized machines.

p. 17

6 Working Group on Parallel Programming Environments

Jan Cuny, U. of Mass., Amherst
Bob Grafton, NSF

George Hetrick, DEC
David Notkin, U. of Wash.

Tom Reinhardt, MIT
Karsten Schwan, Ohio State

Zary Segall, CMU
Bob Thomas, BBN

6.1 Problem Overview

Parallel programming environments, needed to facilitate even routine programming, will be of particular

importance in the interactive development of performance efficient parallel programs. In some cases, it will

be possible to incorporate aspects of existing sequential environments; in others, new tools and paradigms will

have to be developed. The need for these new techniques arises from four factors:

(1) Temporal Complexity - parallel computations appear to be more complex than sequential
computations because of the potentially large amount of simultaneous activity.

(2) Plurality of Models - there are many models of parallel computation both at the language and the
architectural levels.

(3) Lack of Common Knowledge and Experience - we do not have the backlog of experience with
parallel systems that has enabled us to develop appropriate environments for sequential programs.

(4) Irreproducibilitv - due to asynchroneity, it is often impossible to replicate specific executions of a
parallel system.

Whether these factors represent fundamental or merely qualitative differences between sequential and

concurrent domains, they significantly affect the viability of our current parallel programming environments

and the foreseeable directions of our research.

6.2 Promis ing / Impor tan t Areas of Research

We have enumerated an (undoubtably incomplete) list of areas in which parallel programming environments

require technology other than that currently available in sequential environments. Most of these areas have

analogies in the sequential domain; however, our current understanding of parallel programming does not yet

allow us to solve the parallel version of these problems. Table 1 relates each of these areas to the four factors

listed in the introduction; checks represent factors that currently affect the area quantitatively, if not

qualitatively.

p. 18

(1) Mapping/restructuring. Itie transformation of high-level parallel programs to their eventual

implementations is not yet as straightforward as for sequential systems. Similarly, restructuring

programs to increase parallelism is still an art Getting the various mappings involved in these

transformations "right" is not yet the responsibility of the environment

(2) Performance Prediction. Performance efficient parallel programs are the goal of most parallel

programming efforts. The many language and architectural models, combined with our relative

inexperience in constructing parallel programs makes it essential for us to focus on predicting the

performance of a program from its initial conception.

(3) Representation. Different program models and their constituents are best described by different

representations. For instance, target I/O parts may be tabularly associated with host I/O streams,

while processor connections may be best defined by relations. Because of the plurality and

complexity of models, the need for appropriate representations is exacerbated in the parallel

domain.

(4) Debugging for Correctness. In the face of massive parallelism and asynchrony, it is often difficult

to create parallel programs that solve intended tasks. Bugs can occur in any of the levels of

mappings, as well as in the complexities of interprocess interactions.

(5) Debugging for Performance. Again, our goal is to construct efficient parallel programs. Until we

can predict (and avoid) "hotspots" and bottlenecks more competently, we must rely on tools to

help us improve performance.

(6) Managing information/views. The many data and threads of control lead to a large

environmental repository. Condensed and restricted views of this repository are needed to help

users benefit from the information and to ease the development of tools that manage only parts of

the repository. Views of both static and dynamic information are required.

(7) Semantic Support. Many steps in constructing parallel programs can be done (semi-)

automatically. For instance, many classes of interconnection structures can be constructed with

only a little guidance by the user. Semantic support helps relieve the user of details not

conceptually part of parallel programming.

p. 19

(8) Specialization. General-purpose parallel programming environments arc beyond our current

abilities. Instead, environments specialized, for instance, for a particular class of algorithms or

program model demand our attention. Software structures that allow a range of specialized

environments to be constructed at reduced cost are required and feasible.

(9) Intervention. The ability to intervene in program execution is common in sequential

environments (e.g., breakpoints and the setting of values within a debugger). The extent to which

intervention is feasible or even desirable is open to much debate (and, in fact, generated more

dissension than any other in our meetings).

(10) Expertise. As we become more expert in solving problems related to parallel processing, many

(now difficult) tasks can be left to the environment. Today's expertise may be tomorrow's

semantic or syntactic support

(11) Operating Svstem/runtime support Many environmental tools, for instance program observation

tools, require specific support from the parallel architecture. The exact nature of the support is

still to be determined.

6.3 Recommended Approaches

The obvious direction for research is to pursue answers to the above questions. In many cases, however, the

complete answers will have to wait for progress in related areas. Tools to support mapping and

methodologies, for example, will have to await a better understanding of those processes. It is premature to

expect complete solutions to the problems of any of the above areas and it is even more premature to expect

to produce sophisticated, general purpose, integrated parallel programming environments. Instead, we

believe that current research should focus on specific issues and we suggest the following four approaches.

(1) Construction of complete but narrow, parallel programming environments. This is needed (i) as

a way to facilitate the use of parallel computers by current users, and (ii) as a way to develop

suitable methods, techniques and paradigms for building more general parallel programming

environments. Obvious dimensions for narrowing include the class of problems to be solved and

the architecture to which the environment is targeted.

p. 20

(3) Creation of appropriate infrastructure for the construction of parallel programming environments.

Constructing a parallel programming environment directly on top of a conventional operating

system is difficult because the abstractions and tools provided by operating systems do not map

easily to the abstractions and tools required by parallel environments. For example,

interconnection structures are represented more appropriately as relations than as files and the

mapping between these representations is complex. A level of infrastructure, represented by

suitable abstractions, tools, and integration methods eases the construction of programming

environments. The construction of such an "environmental architecture" would be particularly

useful in the parallel domain as we experiment with environments for a variety of application

classes and architectural models.

(4) Development of methods for comparison and evaluation of tools and environments. The three

previous research approaches must be accompanied by the development of methods that support

the comparison and evaluation of tools, mechanisms and complete parallel programming

environments. Additionally, evaluation of sequential environments and tools must proceed with

the goal of transferring as much technology between the two classes of environments as possible.

(2) Development of flexible test-beds. This would allow for low cost experimentation with proposed

techniques and fast prototyping of specific tools.

p. 21

Mapping/Restructuring

Performance Prediction

Representation

Debugging for Correctness

Debugging for Performance

Managing Information/Views

Semantic support

Specialization

Intervention*

Expertise

Operating System/
Runtime Support*

Temporal
Complexity

v

V

V

Plurality

v
V

V

V

V

4- cost

Lack of
Experience

v

lrreprodu-
cibility

v

* These areas are also influenced by the feasibility of implementing existing sequential
techniques in the parallel domain.

Table 1: The impact of parallel/sequential
distinctions on programming environments

p. 22

p. 23

7 Majority Report Working Group on Language Design Issues in

Performance-Efficient Parallel Processing

Beth A. Bottos, CMU
Lanny Forgy, CMU

Ted Lchr, CMU
Jerry Leichter, Yale

Vijay Saraswat CMU

7.1 Introduct ion

Our working group, unfortunately, could not even agree to disagree. With backgrounds and experiences

covering production systems, logic programming, imperative languages, "alternative memory models"

(Linda), and low-level machine languages, our range of experience left us with divergent views of not only the

current state of the art in parallel programming languages, but also of the future of parallel programming. As

a result, our group split into two segments, each with different views of what is important for the immediate

future of parallel programming languages. This report represents the majority view, and includes the views of

Beth Bottos, Lanny Forgy, Ted Lehr, and Vijay Saraswat While Jerry Leichter expressed agreement with the

views put forward here (with the exception noted in the text), he felt that recommendations as to the specific

form of a general parallel processing language were possible and necessary, and, as a result produced his own

minority view report

7.2 Research Questions a n d Direct ions

In our discussions of language constructs for performance-efficient parallel programming, we found that we

had many more questions than we had answers. Many of our questions required answers from areas other

than programming languages. For example, we did not feel that the parallel virtual machine models with

which we were familiar presented the type of virtual machine interface we would like to provide to a parallel

language programmer. We also found instances in which our research questions seemed to bring up

questions in the domain of parallel operating systems.

7.2 .1 Language Constructs

Though we felt that we were not able to present an outline for a parallel language at this time, we were able to

identify certain types of constructs that seem to be necessary in the next generation of performance-efficient

parallel languages.

p. 24

We felt that language constructs that are sufficiently low-level so as not to mask unnecessarily the machine

architecture are required. (Jerry Leichtcr dissents here; "because of the form the statement finally took").

For example, synchronization is a common activity in parallel programs. On shared memory machines, a

language primitive such as "fetch-and-add" abstracts away from the read-modify-write cycle of the memory,

but still allows the user a low enough level of control for efficient manipulation of shared data. While such

low-level constructs may not be the way to go in the distant future, since research in parallel virtual machine

models may point to more useful higher-level abstractions, in the near future, this low level is needed to give

us the performance efficiency we desire.

Overlapping with the desire for low-level constructs is the desire for explicit control of certain types of

resources of the parallel machine. For example, in large search problems, we may want to spawn a large

number of "tasks" that each search a section of the search space. Only one of these tasks will find the goal,

and at that point we want to be able to call off all the other searches. This leads to the problem of resource

recall. We also may want the user to be able to control the mappings of virtual resources to physical

resources. Since the user-level parallel program will be controlling resources traditionally controlled by

operating systems, such as virtual process allocation and termination, the management of resource sharing

among multiple users on a parallel machine will be much more difficult than it is on a sequential one.

Questions relating to the management of resources shared among several applications need to be addressed in

parallel operating systems research.

The subject of light-weight "threads of computation" has come up several times in the course of the workshop

presentations. We feel that the existence of truly light-weight "threads" can have a profound impact on the

granularity of exploitable parallelism in future parallel programs. This is a current area of work in parallel

operating systems. Research should be done in the language area to determine how best to use these

"threads".

Given that we can add all these constructs to a language, we will still need to develop compiler techniques to

optimize the explicit parallel constructs such as "par-do".

p. 25

7 .2 .2 Per formance

In order to understand why our parallel programs behave in the ways they do, we must develop a better

understanding of connections between algorithm, program and explicit implementation. This is an area not

completely understood in the sequential domain: a sequential program implementing a particular sequential

algorithm may behave in a manner that analysis of the algorithm did not indicate. Such problems will

probably be compounded in the parallel domain.

A related issue to the one of connections between algorithms and programs is the question: "what are

appropriate static 'goodness metrics' for these parallel programs?". Concepts such as depth of loop nesting

give us handles on the complexity of sequential programs, but, given that we are not sure what types of data

and control abstractions a parallel language should be providing, it is less clear how to interpret the

frequencies of use of the abstractions that are there.

Relating to the areas of program instrumentation and parallel programming environments, we feel that

research is required in the area of measurement tools for dynamic behavior of parallel programs. Many

questions remain about instrumentation of programs and presentation of data obtained from such

instrumentation.

7 .2 .3 High-Level Issues

We feel that more work on models of parallel computation is needed. Current work, such as the Linda work,

shows us that novel ways of-viewing memory may aid in the construction of parallel programs. Are there any

other interesting ways of looking at memory? Are there interesting ways of viewing parallel control, other

than "par-dos" and "forks"?

The issue of determinism in parallel languages needs to be explored. With a parallel program, unlike a

sequential one, issues of inter-task timing become important, and it may be difficult to force a parallel

program to exhibit repeatable behavior. What language constructs are needed to ensure such repeatability?

Research is required to determine what role, if any, probabilistic programming might play in real-world

programming. Might it help us in thinking about parallel algorithms and programs? Perhaps a "coin-flip"

primitive might be useful in future languages, both sequential and parallel.

p. 26

7 .2 .4 Miscel laneous

Wc feel that the development of a body of example parallel programs will help in many of the above listed

endeavors. If we had a large body of non-trivial parallel programs, we could (hopefully) identify commonly-

used idioms in parallel programming: an example is the parallel prefix idiom of which Larry Rudolph spoke

at the workshop. Once such idioms are identified, it should be possible to figure out which ones might

appropriately be built into a parallel language. Those that are not primitive to a language might require some

sort of linguistic support for the user in maintaining his own library of abstractions.

7.3 Conclusions

We found that we had more questions than we had answers. In the space of the short time we had, we were

able to enumerate some of the questions we felt should be answered before a useful language for

performance-efficient parallel programming could be designed. Since many of the questions are in areas

other than language design, we eagerly look forward to results from some of the current research in parallel

machine modeling and parallel operating systems. In the meantime, we find that parallel language

implementation consists mainly of adding parallel patches to sequential languages and forcing ourselves to

think of parallel programming as piecing-together sequential programs. Work with languages such as

PROLOG indicates that there are systems in which parallelism might be implicit, and it might be possible to

build performance-efficient parallel systems without a user requiring a language that is a parallel language,

per-se. We hope investigations into the above questions will provide some guidance as to which ways of

thinking about and exploiting parallelism will prove useful.

A 27

8 Minority Report Working Group on Language Design Issues in

Performance-Efficient Parallel Processing 1

Jerrold Leichter, Yale

8.1 Prologue

Working Group 5 was chartered with examining parallel programming languages. It is the contention of this

Minority Report that there is a sufficient consensus, and a sufficient need, to make designing a parallel

programming language with some degree of universality a task whose time has arrived.

8 .2 Introduct ion

In "The American Side of the Development of Algol", Alan Perlis discusses the state of computing in the late

1950's. There is scarcely a word that could not be applied to the state of parallel computing today. The

"expos[ure of] opportunities that most of the computing world ha[s] not anticipated and [is] not prepared to

exploit", the widespread belief "that only machine assembly language could serve as a useful algorithmic base

language" - modified by acceptance of high-level languages for the sequential program portions, coupled with

very low-level, completely explicit control over the parallel portions; and, particularly, the profusion of.

machines and languages "more like each other than anything else": Phrases that could have been taken from

a talk on the current state of parallel programming.

Certainly, ALGOL did not achieve the goal of becoming the single, universal programming language. But in

the process of producing that "failure", the committee of 13 visionaries created the foundation upon which

virtually all programming languages have since been built

8 .3 W h y a paral lel programming language now?

There are at least five answers to this question: We need a medium for EXPRESSING parallel algorithms;

we need a medium for THINKING ABOUT parallel algorithms; we need a medium for PUBLISHING

parallel algorithms; we need medium to deal with parallelism in a MACHINE-INDEPENDENT way; and

we need a mechanism to produce practical, TRANSPORTABLE parallel programs.

lis is an abbreviated report A copy of the Mill Minority Report is available from the author.

p. 28

8.4 Required Character is t ics

While it is clear what a sequential machine is, a parallel machine is defined by negation: Any computer NOT

based on a single instruction stream operating on a single set of data is per force parallel. The class of possible

"parallel machines" is thus so large that it is unlikely that a single language, or even a single KIND of

language, will be suitable for all of them.

Nevertheless, the required characteristics can be thought of as goals for the designers of a "parallel ALGOL".

8 .4 .1 Provides good abstract ions.

In particular, the abstractions of the language must match what the user wants to think about, they must be

mappable to the machine, and they must allow the user to provide low-level information in a natural way.

The third item should be read to say that the previous two cannot be considered separately - it makes no sense

to provide one set of abstractions that the user finds natural, and another that maps well to the machine. A

simple example: In many numerical algorithms, the user wants to think about vectors anyway - for a vector

machine, let him express himself in vector, not loops. The result is better for both user and compiler.

8 . 4 . 2 Provides a coherent set of abst rac t ions .

The language must be amenable to efficient optimized compilation; it must allow the user explicit control of

the parallelism; and it must allow the user to develop intuition about the costs of his choices.

The last two items follow from the need for efficient compilation. Even in the sequential case, present

compiler technology is limited in its ability to produce efficient code from high-level language programs. In

the parallel case, the situation is clearly much worse - the sequential portion of the program must be

optimized as before, but now there are a whole new range of variables to consider.

8 . 4 . 3 Machine independence for a reasonable range of h a r d w a r e

It is important to understand what we mean by machine independence. It is NOT our claim that it is practical

to produce a language such that a single, unmodified program, written with no concern for or knowledge of

the target architecture, can be compiled into efficient code on, say, both an Intel Hypercube and a four-

processor Cray. We believe producing such a language and compiler is well beyond the state of the ar t

Rather, all we require is that it be possible to write, in the same language, a program that will run efficiently

on the Hypercube, and also one that will run efficiently on the Cray.

p. 29

8 . 4 . 4 Miscel laneous qual i t ies

The language should avoid a complete break with past experience; it should provide for incremental change

where possible; and finally, it should be able to run in a multi-user environment.

8 .5 Conclusions

We have made much of the similarities between the current status of parallel programming languages, and

the status of sequential languages in the late 1950*s. History has shown it was not possible even in 1958 to

produce a language that would become accepted as "the" standard programming language. Certainly, no one

could hope to produce such a thing for parallel programming today. Nevertheless, there is much to be said

for making an effort in exactly this direction, even knowing that it will fall short - both in acceptance and in

the basic qualities of the language itself.

We will not go so far as to suggest that the ACM repeat its actions of 1957 and call for the formation of a

committee to design a new language. We are interested rather in encouraging the development, within the

parallel programming community, of a movement toward agreement on a common parallel programming

language.

p. 30

p. 31

9 Working Group on Performance

lngrid Buchcr, Los Alamos
Ronald Larsen, U. of Maryland

Joanne Martin, IBM
Dalibor Vrsalovic, CMU

9.1 Problem S ta tement

There is a large body of literature focusing on performance evaluation of sequential processors. Analytic

models and simulation techniques have been developed for those systems, concentrating primarily on issues

such as capacity planning, system utilization, and throughput analysis. Unfortunately, the methods developed

for sequential machines do not transfer naturally to the analysis of performance on today's complex vector

and parallel systems. The performance issues are, in many cases, more concentrated on speed and turnaround

time for individual applications than on the system issues that can be handled by the known (usually

statistical) methods.

Measures that provide well-bounded estimates of sequential machine performance have proved inadequate to

characterize the performance of multiple processor systems. Using these measures, a given architecture can

have a performance range of two orders of magnitude depending on the application that is being executed.

Moreover, the top of this range is an upper bound to the attainable execution speed of the system, but

typically it will be significantly less than its advertised peak execution rate. Such unattainable peak rates lead

to unrealistic expectations and should be avoided in any serious discussions of system performance.

Simplistic measures such as MIPS and MFLOPS are not only inaccurate but also misleading when used in the

wrong context MIPS on a vector processor will often decrease as the rate of computation increases.

Furthermore, a good metric for the rate of computation is not clearly defined. MFLOPS is commonly used,

but is inappropriate for applications that contain relatively few floating point operations and in any case

cannot we generalized beyond a specific application's performance.

What is needed is a basis on which to build emerging performance evaluation methods for the plethora of

complex architectural systems that is currently available. Basic measurable parameters need to be defined

