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Abstract 

DCPS is a connectionist production system interpreter that uses distributed representations. As a 
connectionist model it consists of many simple, richly interconnected neuron-like computing units 
that cooperate to solve problems in parallel. One motivation for constructing DCPS was to 
demonstrate that connectionist models are capable of representing and using explicit rules. A 
second motivation was to show how "coarse coding" or "distributed representations" can be used to 
construct a working memory that requires far fewer units than the number of different facts that can 
potentially be stored. The simulation we present is intended as a detailed demonstration of the 
feasibility of certain ideas and should not be viewed as a full implementation of production systems. 
Our current model only has a few of the many interesting emergent properties that we eventually hope 
to demonstrate: it is damage resistant, it performs matching and variable binding by massively parallel 
constraint satisfaction, and the capacity of its working memory is dependent on the similarity of the 
items being stored. 
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1. Introduction 
DCPS is a connectionist production system interpreter that uses distributed representations. As a 

connectionist model (Feldman & Ballard, 1982), it consists of many simple, richly interconnected 

neuron-like computing units that cooperate to solve problems in parallel. One motivation for 

constructing DCPS was to demonstrate that distributed connectionist models are capable of 

representing and using explicit rules. Earlier connectionist models (Rumelhart & McClelland, 1986) 

have shown that many phenomena which appear to require explicit rules can be handled by using 

connection strengths that implicitly capture the regularities of the task domain without ever making 

these regularities explicit. However, we do not believe that this removes the need for a more explicit 

representation of rules in tasks that more closely resemble serial, deliberate reasoning. 

The natural way to implement explicit rules is to apply a parallel best-fit search to the task of finding 

the rule whose left-hand side best matches the current contents of working memory. Connectionist 

networks are good at performing pattern-matching, especially when there is no perfect match and the 

aim is to find the best partial match. One difficulty with this approach is that the kind of matching 

required to implement a production system is more complex than simple template matching. The 

left-hand side of a production may contain several instances of the same variable, and matches are 

only valid if all instances of the variable receive the same binding. Ensuring consistent variable 

bindings in a parallel network is a difficult and important problem (Barnden, 1984) and one of the 

main aims of this paper is to demonstrate a feasible solution. 

Ballard and Hayes have demonstrated that a rather elaborate connectionist network can decide 

whether two expressions can be unified (Ballard & Hayes, 1984; Ballard, 1986). DCPS uses a different 

solution which is based on earlier work (Hinton, 1981a) on viewpoint-invariant shape-recognition. In 

matching an object-model to a retinal image, it is essential to ensure that all the matches of a piece of 

the model to a piece of the image assume the same viewpoint. In matching the LHS of a rule to the 

contents of working memory, it is essential to ensure that all the matches of a clause in the LHS to a 

fact in working memory assume the same variable bindings. 

A second motivation for DCPS is to show how u coarse-coding M or "distributed representations1* 

can be used to construct a working memory that requires far fewer units than the number of different 

facts that can potentially be stored. The price of this economy is that only a small fraction of the 

potential facts can actually be present in working memory at any one time. Earlier analyses of 

coarse-coding have shown that it is efficient (Hinton, 1981b; Hinton et a\.% 1986) but they have failed 

to demonstrate that it can be used effectively when many different groups of units must interact 

correctly. Coarse-coding "smears" the representation of a given item across many units, and when 

coarse-coded representations in several different groups of units interact during an iterative best-fit 
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search, there is a danger that the representation will become progressively more smeared with each 

iteration. 

The simulation we present is intended as a detailed demonstration of the feasibility of certain ideas 

and should not be viewed as a full implementation of production systems. The production rules our 

model interprets are much simpler than those found in OPS5 or EMYCIN. Nevertheless, they do 

contain variables that get bound consistently by the connectionist network, and they are implemented 

using distributed representations throughout. This falsifies any strong claim that connectionist 

systems using distributed representations could not possibly implement symbol processing. 

However, it leaves us open to the alternative criticism that we have merely implemented a very simple 

production system in a peculiarly inefficient way. 

One advantage of the implementation we present is that it is robust against the destruction of any 

small random subset of the units or connections, but the real advantage (which we have not 

demonstrated in this simulation) comes from the ability of a connectionist network to do a rapid 

best-fit match. This is potentially much more powerful than the standard implementations which find 

all exact matches and then do conflict resolution. In situations where no existing rule fits perfectly, it 

may be sensible to apply a plausible rule, particularly in a learning system that needs to explore the 

space of plausible actions in order to find a satisfactory one. The ability of a connectionist 

implementation to settle on plausible but imperfect matches could therefore be very helpful, but only if 

the matching apparatus is able to do more than simple, variable-free "template" matches. Our 

eventual aim is to exploit the best-fit ability of DCPS to allow it to do more of the computation in each 

match so that it can perform complex tasks with fewer rule-firings, and rules in one domain can be 

created by analogy with rules in other domains. But before we can do this we must demonstrate that 

it is possible to build a workable system that uses distributed representations and enforces consistent 

variable bindings during a match. So our current model only has a few of the interesting emergent 

properties that we eventually hope to demonstrate: it is damage resistant, and the capacity of its 

working memory is dependent on the similarity of the items being stored. 

2. The Structure of Working Memory 
The working memory elements of DCPS are triples of symbols, such as (F A B ) . We have chosen 

an alphabet size of 25 symbols, giving 25 3 or 15,625 possible triples. Only a few of these are present 

in working memory at any one time; typically there will be half a dozen. The sparseness of working 

memory is an important consideration in the design of the model. 

The most straightforward representation for a set of triples, in a conventional architecture, would be 

a purely "localist" one, where every triple was represented by a dedicated unit. A unit in the active 
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state would then indicate that the corresponding triple was present. We have rejected this idea in 

favor of a distributed or "coarse-coded" representation (Hinton, 1981b; Hinton et a/., 1986). Localist 

representations require too many units and too many connections; they quickly succumb to 

combinatorial explosion as the alphabet size or the length of a sequence increases. This is because 

localist representations do not make efficient use of the units when the number of items that are 

simultaneously present in working memory is much less than the number of possible items. 

Distributed representations use the information-bearing capacity of the units more efficiently by 

making them active much more often.1 In addition to the inefficiency of localist representations we 

think that a one-to-one mapping between individual neurons and symbolic structures is 

physiologically implausible; it is reminiscent of the grandmother cell idea. Recordings in the temporal 

lobe of the macaque cortex support the idea that neurons are tuned to very complex entities such as 

a face (Rolls, 1984) but they do not support the idea that a particular face is encoded by just one or 

just a few neurons. Each particular face is almost certainly encoded as a pattern of activity 

distributed over quite a large number of units, each of which responds to a subset of the possible 

faces. Using a distributed representation not only makes our model more efficient and neurally 

plausible, it also makes it tolerant of noise and occasional malfunctions. 

2.1. Recept ive Fields 

The working memory space of DCPS, shown in figure 1, consists of 2000 binary state units. Each 

unit has a receptive field table such as the one in figure 2. A unit's receptive field is defined to be the 

crossproduct of the six symbols in each of the three columns, giving 6 3 or 216 triples per field. The 

unit described in figure 2 has the triples (C K R) and ( F A B) in its receptive field, along with 214 

others. Receptive field tables are generated randomly prior to beginning the simulation; they 

determine the connection pattern between units in the various spaces comprising DCPS. Once the 

connections have been built and the working memory units' states have been initialized, the tables 

are no longer needed; they are not consulted when running the model. 

A triple may be stored in working memory by turning on all its receptors. With 2000 working memory 

units, triples will average 6 3/25 3x2000 or roughly 28 receptors. The number varies slightly from one 

triple to the next due to the random distribution of receptive fields. An external observer can test 

whether a particular triple is present in working memory by checking the percentage of active 

receptors for it. If this is close to 100%, the triple may be assumed to be present. For example, if the 

If there are 15,625 possible items, but only 6 of these are present at any one time, the probability that a working memory unit 
is active in a localist scheme is only about 0.0004. The average information conveyed by the unit is therefore the entropy of the 
distribution {0.0004, 0.9996} which is about 0.005 bits. In DCPS, fewer units are used to encode the same information, and 
each unit is active much more often so it conveys much more information. The probability of an individual unit being active is 
about 0.08 and so the average information it conveys is about 0.4 bits. However, in DCPS the correlation between units cannot 
be ignored (as it can in the previous case) and so the average information conveyed per unit is actually only about 0.04 bits. 
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Figu re 1: Block diagram of DCPS, a Distributed Connectionist Production System, 

triple ( F A A) were stored in working memory, the unit described in figure 2 would be active, along 

with about 27 other units. Although (C K R) also falls within the receptive field of this unit, the 

number of receptors two unrelated triples have in common is small; on average, it is less than one. 

Thus, while 100% of the (F A B) units become active when ( F A B) is stored, only 1 out of roughly 

28 (C K R) units would become active. To the external observer, ( F A B ) clearly is present in 

working memory and (C K R) clearly is not. But the network itself doesn't need to compute these 

percentages. It relies on the fact that triples that are present have strong effects and triples that are 

absent do not. 

c A B 

F E D 

M H J 

Q K M 

S T P 

W Y R 

Figu re 2: An example of a randomly generated receptive field table for a working memory 
unit. The receptive field of the unit is defined as the crossproduct of the symbols 
in the three columns. 
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Figure 3 shows the state of working memory when the two triples ( F A B ) and ( F C D) have been 

stored. The 2000 working memory units are arranged in a 40x50 array, with the 55 that are active 

indicated by black squares. The positions of these 55 units in the array are not significant, since 

units' receptive fields are generated randomly. However, if we were to examine the receptive fields of 

each of the active units we would see that every one contains either (F A B) or (F C D), or both. 

[ U o r M n ^ ^ l e n o r y S t a t e 

Figure 3: The state of working memory after the triples ( F A B ) and ( F C D) have been 
stored. Active working memory units are indicated by black squares. 55 of the 
2000 units are active. 

Table 1 shows the first dozen triples with the strongest representations when working memory is in 

the state shown in figure 3. ( F A B) and ( F C D) each have 100% of their receptors active, while 

the next best represented triple, (F N B ) , has only 42% active. The average activity level over all 

15,625 triples is much lower: only 2.7%. If we adopt the criterion that 75% of a triple's receptors must 

be active for it to be deemed present in memory, the division between present and absent triples in 

Table 1 is quite clear. 

Figure 4 shows the levels of support for all 15,625 possible triples when working memory contains 

(F A B ) a n d ( F C D ) . In the figure, (A A A) is located in the upper left corner and (Y Y Y) in the 

lower right. The blobs in this figure are associated with triples, not units; the size of each blob 

indicates how many receptors are active for that triple. A simple thresholding operation yields figure 

5, in which the ( F A B ) and (F C D) blobs stand out clearly and there is only a small amount of 

noise remaining. 
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Percent Active Total 
Triple Active Receptors Recepto 

(F A B) 100% 28 /28 
(F C D) 100% 28 /28 

(F A 0) 40% 11 /27 
(F B D) 38% 10 /26 
(F A X) 37% 11 /29 
(S A B) 37% 10 /27 
(F Q 0) 37% 10 /27 
(F C N) 37% 10 /27 
(F C B) 37% 10 /27 
(F C M) 35% 10 /28 
(F T D) 35% 10 /28 
(N C D) 34% 10 /29 

Tab le 1: The first dozen triples with the strongest representations when working memory 
is in the state shown in figure 3. 

F igure 4: The levels of support for all 15,625 possible triples when working memory 
contains ( F A B ) and ( F C D) , represented by the 55 active receptors in 
figure 3. The size of each blob indicates the number of active receptors for that 
triple. 
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I S t r e n j t h ^ o M H p ^ 

Figure 5: A moderately thresholded version of figure 4. The ( F A B ) a n d ( F C 0) blobs 
stand out clearly here. 

2.2. Propert ies of Coarse Coding 

Coarse coded representations have a number of interesting and useful properties. One of these is 

tolerance of noise. If after storing some triples in working memory a few units are flipped on or off at 

random, the perceived contents of working memory will not be affected at all . 2 Tolerance of noise is 

especially important when items will be deleted from the memory as well as added to it. A slight 

overlap in the receptor set of related triples causes deletion of a triple to affect any related ones 

previously stored. That is, if (F A B) and (F C D) were stored in memory and (F C D) were then 

deleted by turning off all its receptors, it is likely that only 27 of the 28 (F A B) receptors would 

remain active, the 28th having been shared between the two. 

The contents of working memory remain reasonably persistent because the overlap between any 

two triples is small. A visual effect resulting from this overlap can be seen in figure 4. The dot pattern 

may appear completely random at first, but closer examination will reveal a regular series of thin 

1 Assuming, of course, that we do not require strictly 100% of a triple's receptors to be active for it to be considered present. 



8 

horizontal and vertical bands. These bands are formed by triples that have 2 out of 3 components in 

common with the stored triples ( F A B ) and (F C D) ; on average such triples have 7 of their 

receptors active, while triples with no components in common, such as (G K Q) , average about 0.4 

receptors active. Another effect that can be seen in the figure is the horizontal F t&nd that is thicker 

and also somewhat darker than the other bands. Since both of the stored triples begin with F, all 

other triples beginning with F have a slightly higher number of active receptors. 

Another interesting property of the coarse coded representation is that the memory has no fixed 

capacity; instead its ability to distinguish stored items from other items decreases gradually as the 

number of stored items increases. Each triple added to working memory raises the number of active 

units, thereby increasing the support for other triples that have not been stored. As working memory 

fills up, the fraction of active receptors for certain triples that are "close" to those that have been 

stored approaches 100%, and the dividing line between present and absent triples blurs. If many 

closely related triples are stored, such a s ( F A A ) , ( F A B ) , ( F A C ) , ( F A D) , e re , then the 

system may exhibit local blurring, where it can't tell whether ( F A P) is present or not but it is 

certain that (G S Q) is absent. Figure 6 illustrates the local blurring that occurs when four closely 

related triples are stored. 

Finally, triples stored early on in a coarse coded memory eventually fade away if production rules 

delete a large number of other triples. This gradual decay phenomenon is again an effect of the 

overlap of receptive fields. One way to counteract the decay effect is to recall a triple before it has 

completely faded away, and then store it again. Whenever a triple is stored all its receptors become 

active, so its representation in working memory is refreshed. 

3. Selective Attention: Clause Spaces 
Clause spaces, labeled C1 and C2 in figure 1, are a device for focusing the network's attention on 

particular triples from the set stored in working memory. Michael Mozer of UCSD independently 

invented a device similar to clause spaces, which he calls "pullout networks," that allow a perceptual 

system to attend to specific objects in a scene (Mozer, 1984). The matching problem in DCPS 

consists of selecting two triples in working memory (which may contain half a dozen or more) that 

together satisfy the left hand side of some production rule. Each clause space is responsible for 

pulling out one of these triples. 

There is a one-one excitatory mapping between working memory units and units in C1 and C2 

spaces, so that each working memory unit that is active tries to turn on its corresponding C1 and C2 

units. What prevents the C1 and C2 spaces from exactly copying the activity pattern in working 

memory is the fact that clause units are mutually inhibitory within their space, i.e., each of the 2000 C1 



Figure 6: An illustration of the local blurring that occurs when several related triples are 
stored. Here, (F A A ) , ( F A B) , (F A C ) , and ( F A D) have been stored. 
As a result, similar triples receive a high degree of support, as shown by the 
dark (F A x) line at the beginning of the F band and the weaker (x A y) lines in 
other bands. Moderate thresholding was applied. 

units inhibits the other 1999 units, and similarly for C2; working memory units do not inhibit each 

other. See figure 7. The inhibition level in clause space is carefully adjusted so that only about 28 

units per space can remain active simultaneously, i.e., just enough to represent a single coarse coded 

triple. Exactly which triple is selected depends on various outside influences imposed on the clause 

space by units in the Rule and Bind spaces. Briefly, a clause unit will be able to remain active despite 

inhibition from its siblings only if it receives support from rule and bind units that are also active. 

The apparent requirement that a clause space have (N 2 -N)/2 bidirectional inhibitory connections 

might seem a flaw in the design, since as the number of units grows the number of connections 

quickly becomes unreasonable. With 2000 clause units there would have to be 1,999,000 

connections. But these connections need not actually be built. The inhibition function can be 

accomplished more economically by 2N unidirectional connections: N excitatory connections from 

clause units to a special regulatory unit with a graded or integer-valued rather than binary response, 3 

^These regulatory units resemble inhibitory inter-neurons which probably play a similar role in cortex. 



10 

Rule Space 

Bind Space 

Figure 7: Connection pattern between clause units and working memory, rule, and bind 
units. 
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plus N inhibitory connections in the opposite direction. To exactly mimic the effect of N(N -1) pairwise 

connections we would also need oneexcitatory connection from each unit to itself to cancel out the 

inhibitory effect it has on itself via the regulatory unit, giving 3N total connections. However, in 

practice these recurrent connections may be omitted with negligible effect. 

For analysis purposes we will treat DCPS as an instance of a Hopfield network, and later, a 

Boltzmann machine. In order to to meet those definitions we will ignore the regulatory unit solution 

and adopt the pretense, for the remainder of this article, that (N 2 -N )/2 bidirectional inhibitory 

connections are actually built where required. 

Note that although clause spaces are constrained to have roughly 28 units active at a time, not all 

patterns of 28 active units correspond to a valid triple. Clause spaces can sometimes be in an 

intermediate state where there are, say, 15 receptors for ( F A B) active, 10 for (G K Q) , and 5 for 

something else. In other words, the clause-space units can divide their attention among several 

partially represented triples simultaneously. At higher temperatures (more relaxed constraints), more 

than 28 units can be active, which increases the chance that multiple triples will be partially 

represented. There is nothing analogous to this in conventional computers, where symbol structures 

remain discrete and must be considered one at a time (Derthick & Plaut, 1986). 

4. The Rules 

4.1. Rule Format 

Production rules in DCPS consist of two left hand side clauses that specify triples and any number 

of right hand side actions that modify working memory by adding or deleting triples. We first consider 

rules without variables. A typical rule would be: 

R u l e - 1 : (F A B) (F C D) - - > +(G A B) +(P D Q) - ( F C D) 

This rule can fire if ( F A B) and ( F C D) are both present in working memory. If it does fire, the 

triples (G A B ) a n d ( P D Q) will be added to memory and ( F C D) will be deleted. 

4.2. Representat ion of Rules 

Each rule is represented by a population of 40 Rule units; the pattern of connections between these 

units and the clause units is determined by the left hand side of the rule. For example, Rule units that 

represent Rule-1 above will have bidirectional excitatory connections to C1 units whose receptive 

field includes ( F A B ) and C2 units whose receptive field includes (F C D) , as shown in figure 7. If 

a sufficiently large number of these C1 and C2 units become active, indicating that the triples 

(F A B) and (F C D) are present in working memory, the rule unit will also become active. 
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F igure 8: (a) Space of binary state units whose activity is limited by mutual inhibition 
using (N 2 -N )/2 bidirectional connections, (b) Introduction of a regulatory unit 
with graded response accomplishes the same effect with only 2N one-way 
connections. 
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Conversely, since the connections are bidirectional, when a Rule-1 unit becomes active it provides 

support for units in C1 and C2 space that support that rule. 

The 40 units representing one production rule are connected so as to form a clique. Each active 

unit provides a slight excitatory stimulus to the other units in its clique and a slight inhibitory stimulus 

to units in all the other cliques. Thus, Rule space is organized as a "winner take all" network 

(Feldman and Ballard, 1982); when the network settles, all the units in one clique will be active and all 

the remaining units will be inactive. This is how the system decides which rule to fire. 

There are several reasons for implementing rules as collections of units rather than as individual 

units. First, it is damage resistant. Second, it allows binary units to give a graded response. 4 If, 

during the settling phase, there is a weak match between one rule and working memory, this will be 

indicated by only some of the corresponding rule units being active. If another rule matches more 

strongly, more of the units in its clique will be active, and they will eventually overpower the units in 

the other cliques. The implementation of rules in DCPS is "semi-distributed:" rules are represented 

by the collective activity of a set of units, but each unit codes for only one rule. 

A further reason for implementing rules with multiple units is that it frees any one unit from having to 

represent the entire pattern associated with a rule's left hand side. Each rule unit is connected to a 

random subset of all the clause units associated with the rule's left hand side; only the clique as a 

whole has a complete representation for the rule. This is a more plausible organization than one in 

which rules are represented by single units, since it allows us to limit the connectivity of rule units 

without limiting the complexity of rules. 

As in the case of clause spaces, the problem of building 0 (N 2 ) connections among rule units can be 

solved by the use of regulatory cells with graded outputs and a combination of one-way and 

bidirectional connections, as shown in figure 9. Each rule unit excites its clique's "pro" regulatory 

unit which in turn excites all its siblings in the clique; the unit also receives inhibition from its clique's 

" c o n " regulatory unit. The regulatory units of the various cliques are in turn connected to a master 

regulatory unit that controls the entire rule space. Each clique's pro unit also has an inhibitory 

connection to the corresponding con unit, to counterbalance the tendency for a clique to inhibit itself 

via the master regulatory unit. As in figure 8, the recurrent connections from rule units to themselves, 

which are needed for absolute equivalence to the original network, have been omitted. 

One could implement rules as individual units with continuous rather than binary outputs, but the resulting network would 
not be a Hopfield net or Boltzmann machine. The fact that our hypothesized regulatory units have graded (either continuous or 
integer-valued) activation levels can be ignored because those units are merely used to simulate an equivalent Hopfield net 
composed solely of binary state units, with 0(N ) rather than O(N) connections. 
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Figure 9: (a) A winner take all network composed of two cliques with three units each 
requires (N 2 -N )/2 connections, (b) Use of regulatory units with graded response 
produces the same effect with only 2N + 3C connections, where C is the number 
of cliques. 
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5. Variable Binding 

5.1. Const ra in ts on Rules 

The first version of DCPS, called DCPS1, did not allow rules to contain variables. In developing 

DCPS2, which allows a limited form of variable binding, there were three distinct binding problems to 

consider: 

1. Left hand sides in which variables impose intra-clause constraints, e.g., the clause 
(=x R =x) can only match triples such as ( F R F ) o r ( G R G) . 

2. Left hand sides in which variables impose inter-clause constraints. The pair of clauses 
(=x A B ) a n d ( = x C D) can match pairs of triples such as (F A B ) a n d ( F C D) or 
(G A B ) a n d ( G C D ) , b u t n o t ( F A B ) a n d ( G C D) . 

3. Right hand side actions in which variables appear. Variable binding requires a memory 
so that the variable's value can be instantiated into right hand side actions when the rule 
fires. 

Each of these problems requires a different type of wiring pattern. Intra-clause constraints are the 

least interesting, and so they were not included. DCPS2 does allow a limited form of inter-clause 

constraint: each rule must have a variable in the first position of both left hand side clauses. 5 DCPS2 

also permits unrestricted use of variables on the right hand side. A typical DCPS2 rule is: 

R u l e - 2 : (=x A B) (=x C D) - - > + (G =x P) - ( = x R =x) 

If this rule fires by matching ( F A B ) and (F C D) , so that =x is bound to F, its right hand side will 

add (G F P) to working memory and delete ( F R F ) . 

5.2. T h e S t ruc tu re of Bind Space 

Variable binding, which refers both to the imposition of constraints on rule matching and the 

instantiation of bound variables, is handled by the fifth space of units in figure 1, the Bind space. 6 The 

units in this space form a winner take all network with 25 cliques, one for each of the 25 symbols of 

the alphabet. The space is coarse coded, so that each unit belongs to three cliques (votes for three 

distinct symbols) rather than one. Since Bind space contains a total of 333 units, each symbol falls in 

the receptive field of (3/25)x333 or 40 bind units, except for Y which has only 39. 

Each bind unit has a set of bidirectional excitatory connections to units in C1 and C2 space whose 

receptive field table contains one or more of the letters the bind unit votes for. An F/J/W bind unit, 

S i i s choice was arbitrary; we could have chosen to require that the variable appear, say, in the first position of clause 1 and 
the third position of clause 2. The important constraint is that the variable be in the same position in ail rules. 

Q 
These bind units are similar to the mapping units used for object recognition by Hinton (1981a). 
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for example, connects to a randomly chosen set of 240 C1 units: 80 that are receptors for triples 

beginning with F, 80 for J , and 80 for W. The same bind unit would also connect to a similar but 

independently chosen set of 240 C2 units. If a C1 unit that is a receptor for (F A B) and is 

connected to this bind unit becomes active, it will excite the bind unit, which in turn will excite other 

C1 and C2 units that code for triples beginning with F, J , or W. With many units in the F bind clique 

active, C2 space is more likely to adopt an activity pattern representing a triple beginning with F. The 

global effect of bind space is that it forces the C1 and C2 spaces to select triples beginning with the 

same symbol; that is how the "variable binding constraint" is imposed. 

The inhibitory connections between cliques in bind space prevent the number of active bind units 

from growing much above 40, which is just enough to activate all the units that vote for a particular 

symbol as the value of the bound variable. The stable states of this network (considered in isolation) 

each consist of one active clique of 40 units, with the remaining units inactive. But because each unit 

is a member of three cliques, in a stable state the winning symbol receives 40 votes whereas the 24 

remaining symbols receive 3 to 4 votes each. 7 Even when Bind space has settled on a value for the 

variable, it is still giving some slight consideration to other values. This consequence of the coarse 

coded representation may help the network avoid getting trapped in local minima when searching for 

a globally optimal rule match, though this issue needs further research. 

6. The Match Process 
So far we have described a network consisting of five spaces of units: working memory, C1, C2, 

rule, and bind. Working memory units are essentially latches; they do not perform computation, but 

their activity pattern drives the rule match process. C1, C2, rule, and bind units are wired up in 

complex but principled ways. Ignoring the possible use of regulatory units, all units have binary 

states, and all connections between units are bidirectionally symmetric. The important questions to 

ask at this point are: 

1. What are the stable states of such networks? 

2. Under what conditions will a network eventually settle into one of its stable states? 

3. Do stable states bear any relation to valid rule matches? 

The first two questions have already been answered by Hopfield (1982); we will try to present a 

convincing argument for the third. 

7 E a c h symbol is voted for by 40 units, and each unit votes for 3 symbols, so in a stable state there are 120 
Since 40 go to the winner, the losers average (l20-40)/(25-1) = 3.333 votes apiece. 
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6.1. Hopf ie ld Networks 

A Hopfield network is a neural network composed of binary threshold units, all of whose 

connections are symmetric. Hopfield proved that if units change state asynchronously and there are 

no transmission delays across connections, the network's stable states are those states a that 

minimize a certain energy measure E(a). Let w.. denote the weight of the connection between the /th 

and /th units; let d. denote the threshold of the /th unit; and let s^ denote the state (0 or 1) of the /'th 

unit when the network as a whole is in state a. Then the energy of a state is the sum of the active 

units' thresholds minus the sum of the weights of connections between pairs of active units: 

i i < j 

This energy measure derives from an analogy Hopfield draws with spin glasses in physics, which 

operate under the same sorts of constraints as the neural networks he was studying. The stable 

states of these networks are called local energy minima because energy cannot be lowered any 

further by an individual unit's flipping state. Hopfield showed that networks that meet his constraints 

will settle into an energy minimum from any starting state because each state change either leaves 

the energy unchanged or reduces it; thus the energy decreases monotonically as the network moves 

from its initial state to a stable state. In general, however, the particular minimum energy state the 

network will end up in cannot be predicted from the starting state, and there is no guarantee that it will 

be a global minimum8 rather than a local one. 

6.2. Matching as Paral lel Const ra in t Sat is fact ion 

The argument that a valid rule match corresponds to a minimum energy state, in fact, to a global 

energy minimum, is based on reformulating the match as a constraint satisfaction problem. Weighted 

connections between units cause them to impose constraints on each other and the energy of a state 

is a measure of how much it violates the constraints. So a minimum energy state is one in which as 

many constraints are satisfied as possible. The following sorts of constraints are present: 

• Due to their high thresholds, clause units cannot become active unless their 
corresponding working memory units are active. 

• Due to mutual inhibition, only about 28 clause units can be active simultaneously in each 
space, which is just enough to represent one triple. 

• Rule and bind units influence the clause units. A triple can remain active in C1 or C2 
space only if it is supported by a population of rule and bind units, i.e., it must match 
some rule's left hand side and contain the symbol voted for by the active bind clique in its 
first position. 

8 
A global minimum is a state whose energy is less than or equal to the energy of all other states the network could be in. 
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• Active clause units excite the rule and the bind units with which they are compatible. For 
example, C1 units whose receptive field includes (F A B) will try to turn on any rule 
units whose first clause is ( = x A B) , and any bind units that support the variable value 
F. 

• Rule space is organized as a winner take all network. Rule units excite others that vote 
for the same rule and inhibit those that vote for different rules. 

• Bind units form a coarse coded winner take all network. They excite other units that vote 
for the same symbol (or symbols, if they have more than one in common), and inhibit units 
that vote for different symbols. 

Considered individually, the C1, C2, rule, and bind spaces have many equivalent stable states. For 

instance, if bind space wasn't connected to clause spaces that are influenced by working memory, its 

25 stable states would be completely equivalent. Rule space has as many stable states as there are 

rules; if rule space wasn't connected to the clause spaces then its stable states would also be 

equivalent. But considered together, the various spaces interact with each other so that the only way 

all their constraints can be satisfied — thus putting the network into a global energy minimum — is for 

the C1 and C2 spaces to settle into representations of triples that are in fact present in working 

memory and match one of the rules, while rule space settles into a state where that particular rule is 

the winner, and bind space settles intd a state where the active symbol is the one that appears in the 

first position of both the triples in C1 and C2 spaces. 

Constraint satisfaction in a Hopfield net is not a foolproof match technique because it is possible for 

the network to get stuck in a local energy minimum that does not represent a valid match. This 

occurs when a winner-take-all space, either rule or bind, settles so deeply into an undesirable stable 

state (all the units of one incorrect clique on, the remaining units off) that the other spaces cannot 

dislodge it. 

In practice, the Hopfield net version of DCPS had no trouble finding the global energy minimum 

when the answer to the match problem was clear. However, in more difficult cases where there were 

many elements in working memory, many similar rules, or many partial matches possible but only one 

correct one, the network would often get stuck in a local minimum. In order to improve the chances 

of settling into the global minimum, DCPS was converted to a Boltzmann machine. 

6.3. Bol tzmann Machines 

A Boltzmann machine (Fahlman, Hinton & Sejnowski, 1983; Ackley, Hinton & Sejnowski, 1985) is a 

Hopfield network whose units behave stochastically as a function of their energy gap. A unit's energy 

gap is the amount by which its activation exceeds its threshold. The energy gap of the /th unit when 

the network as a whole is in state a, written AZr.(a), is defined as: 
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Azr j ( « ) = (XVw.)-*. 

While the deterministic units of a Hopfield network turn on whenever their energy gap is positive, 

i.e., whenever their input exceeds their threshold, in a Boltzmann machine a unit's energy gap 

determines only the probability that it will turn on, in accordance with the Boltzmann distribution. Let 

p^a) denote the probability that the /'th unit is on when the network as a whole is in state a. This 

probability is given by the formula 

p. ( a ) = 1 

The parameter T in the above equation is called the temperature. At very high temperatures units 

behave almost randomly, i.e., the probability that a unit will turn on is approximately 0.5. (It is slightly 

above 0.5 for units with large positive energy gaps, slightly below 0.5 for units with large negative 

energy gaps.) On the other hand, when the temperature is close to zero the behavior of the units is 

almost deterministic, i.e., the Boltzmann machine acts like a Hopfield net (see figure 10). At moderate 

temperatures units tend to turn on when their energy gaps are positive, but they have a small 

probability of turning on even if their energy gap is negative, and a small probability of turning off 

even if their energy gap is positive. So at moderate temperatures a Boltzmann machine will 

occasionally move uphill in energy space, although the trend is still to move downhill. The higher the 

temperature the more likely an uphill move will be made. 

-100 

T = 1 
T = 10 
T = 32 

100 

Figure 10: Graph of the Boltzmann equation for three different temperature values. This 
sigmoid curve shows the probability p. that unit i will be active as a function of 
its energy gap A E r 

If a Boltzmann machine starts out at high temperature and is very gradually cooled to a temperature 
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close to zero, it is likely to end up in a state that is a global energy minimum. The probability that this 

will happen can be brought arbitrarily close to 1.0 by lowering the temperature sufficiently slowly 

(Geman & Geman, 1984). This stochastic search technique, which is known as simulated annealing 

(Kirkpatrick et a/., 1983), has been applied with good results to optimization problems unconnected 

with neural networks, and has also been applied to a variety of problems in low level vision 

(Marroquin, 1985). 

6.4. Matching by Simulated Anneal ing 

The ability to move uphill in energy space allows the Boltzmann version of DCPS to escape local 

energy minima as it searches for the global minimum. In practice, we have not had to use a genuine 

annealing search in order to get acceptable performance from the network. When we ran the network 

at zero temperature, it got trapped in poor local minima, but we discovered that this could be avoided 

by running at three distinct temperatures. Figure 11 shows the temperature schedule used in the 

current version of the model. 

1. Init ial ize: turn off all rule, bind, and clause units. 

2. Randomize: run for 2 cycles at temperature 300. This temperature is high enough to 
ensure that all units which have any chance of being part of the solution have a 
reasonable chance of turning on, but it is low enough that completely irrelevant units are 
unlikely to be on. 

3. M a t c h : run for up to 10 cycles at temperature 32; stop if the energy is negative after any 
cycle. 

4. C leanup : run for 4 cycles at a temperature which is effectively zero. (We actually used 
0.1 to avoid dividing by zero.) 

5. Rebias : raise the threshold of all clause, rule, and bind units by 50. 

6. V e r i f y : run for 5 cycles at temperature of effectively zero. 

F igure 11: The temperature schedule used in the Boltzmann machine version of DCPS. 

The network is initialized for matching by turning off all rule, bind, and clause units, leaving it in a 

zero energy state. Next its state is "randomized" by running it at a relatively high temperature of 300 

for two cycles. 9 As figure 10 shows, units behave fairly randomly at this temperature, but they are still 

more likely to be active if their energy gap is positive than negative. At this temperature we have 

A cycle is N random updates, where N is the number of units in the network. Although the updating of units is done 
randomly, on average each unit will get one chance to update its state during each cycle. 
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observed that the units that support the correct match and units that support partial matches are the 

ones that are on most often; units unrelated to a legal match become active less frequently. With so 

many units on, the energy of the network becomes quite high; with six rules (240 rule units) it varies 

between 8,000 and 12,000. See figure 12. 

300 
E n e r g y 

32 
T r a c e U l n d o u 

0.1 0.1 

Figure 12: A graph of the energy level as the network follows the temperature schedule of 
figure 11. Thin vertical divisions mark temperature changes, with the new 
temperature shown at the bottom of the graph. A thick division marks the point 
where thresholds are raised in the rebiasing step. 

The real matching work is performed in the next step of the schedule, at a temperature of 32. The 

precipitous drop in temperature from 300 to 32 is more suggestive of quenching than annealing but 

has no adverse effect on the match. The continued activity of rule, bind, and clause units now 

depends more strongly on support received from other units, but the network retains enough 

flexibility at this moderate temperature to explore various match possibilities rather than sink into the 

nearest local minimum. Cliques for a particular rule in rule space or symbol in bind space may 

become very active, fade away, and become active again. Triples may materialize in the clause 

spaces, be partially replaced by other triples, and then perhaps return. The energy of the network 

rises and falls, but the general trend is decreasing. Once the energy falls below z e r o 1 0 the system is 

deep enough into a local minimum that it is unlikely to get out, so we move on to the cleanup step of 

the temperature schedule. In this step the network is run at a very low temperature, 0.1. Only units 

with positive energy gaps will remain active at this temperature. The result is that the clause spaces 

are left with roughly 28 units on, rule and bind spaces each have one clique active (40 units on), and 

the network is indicating as clearly as possible what it thinks the correct match should be. 

This value is approximate and was determined empirically. 
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6.5. Detect ing Failed Matches 

There are two ways in which the match can fail. The simplest is when the network fails to settle into 

any energy minimum at all. In this case very few of the units will have positive energy gaps, so when 

the temperature drops to 0.1 they will eventually all turn off. The more difficult case to detect is when 

the network has settled into a local energy minimum representing a partial match. The energy of a 

partial match is moderately negative, typically around -2500. When the temperature drops to zero the 

network settles to the very bottom of the energy minimum and stays there. 

All correct matches have energies below a certain value, which distinguishes them from partial 

matches. However, in connectionist models it is better if the behavior of individual units does not 

depend on measuring global properties of the network such as energy. To detect failed matches 

without measuring energy directly we use a technique called rebiasing. After the network has run for 

four cycles at a temperature of 0.1, in the cleanup phase the thresholds of all rule, bind, and clause 

units are raised by a value of 50, or equivalents, an inhibitory bias of -50 is applied to each unit. This 

has the effect of reshaping the energy landscape as shown schematically 1 1 in figure 13. The correct 

match is still a deep energy minimum, but it is much narrower and its absolute energy is now 

considerably higher than zero. More importantly, a partial match that was a local minimum before is 

now located on a slope that leads down to the zero energy state with all units turned off. After 

rebiasing, the network is run for five more cycles at a temperature of 0.1. If units remain active at the 

end of this step, the network is indicating a correct match. If a partial match was found, units will 

gradually turn off as a result of rebiasing, causing the energy to drop to zero as shown in figure 14. 

One might wonder why the thresholds of the rule, bind, and clause units were not originally set at 

the higher level, eliminating the need for rebiasing. This would make the energy minima too narrow, 

making them more difficult for the search to find. Also, after rebiasing the energy of the correct match 

state becomes moderately positive. At high temperatures the network could find a better state simply 

by turning all its units off. When rebiasing is delayed until a low temperature has been reached, the 

network remains trapped in the state (now with positive energy, but still a local minimum) it was in if it 

managed to find the correct match. 

We have also considered the possibility of more flexible temperature schedules for coping with 

failed matches. After running for 10 cycles in the match phase at a temperature of 32, if the energy is 

not low enough for the network to have settled into the global minimum, it is probably in a state 

indicating a partially valid match. Either rule space has settled onto the right rule but bind space 

The true energy landscape is not continuous, and nor can it be represented by a two-dimensional graph. It is an 
assignment of real values to the corners of an N-dimensional boolean hypercube representing the states of the network, where 
N is the number of units. 



23 

F igure 13: Effect of rebiasing on the energy landscape. The global energy minimum 
becomes a deep but narrower energy minimum. States representing local 
energy minima end up on a slope leading down to a zero energy state. 
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399 
E n e r g y 

32 
T r a c e U lndow 

9.1 0.1 

Figu re 14: Detection of a partial match by rebiasing. Energy drops to zero as units turn 
off after their thresholds are raised. 

picked the wrong symbol, or else the reverse has occurred. To recover, we could run for a few cycles 

at a slightly higher temperature, around 40, to kick the network out of its local minimum, and then 

enter the match phase again. 

7. Rule Firing 
After a rule has matched successfully it must be fired, which means performing its right hand side 

actions that update working memory.- The ability of rules to update a persistent symbol structure 

whose contents determines the next rule that will match is what enables DCPS to exhibit interesting 

sequential behavior. We first consider the problem of right hand side update actions that are variable-

free, and then move on to the general case where variables may appear in any position of a triple. 

7.1. V a r i a b l e - F r e e Ac t ions 

The right hand sides of rules are implemented in DCPS as globally gated connections from rule 

units back to working memory units. The gate is closed during the match process so that rule units 

cannot affect working memory at all. During the rule firing portion of the production system's 

recognize-act cycle the gate is opened briefly; at this time, rule units that excite or inhibit working 

memory units can cause them to change their state. In the absence of outside stimuli, working 

memory units have a built in hysteresis property that causes them to retain their current state. When 

the gate is closed prior to the next match cycle, working memory will be frozen in its updated state. 

Consider the rule units that implement Rule-1 on page 11. This rule adds the triples ( G A B ) and 

(P D Q) to working memory and deletes ( F C D). The units that implement Rule-1 will have gated 

excitatory connections to (G A B) and (P D Q) receptors, and gated inhibitory connections to 

(F C D) receptors. The hysteresis levels of working memory units are set so that no one rule unit 

can force them to change state; instead, the concerted action of several units is required. This is 

another feature of the model that contributes to its tolerance for unreliability in individual 
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components: if a few random rule units fire spontaneously, they will have no effect on working 
memory. 

Architectures with one-way and/or gated connections admittedly violate the definitions of a 

Hopfield network or a Boltzmann machine. DCPS requires these types of connections in order to 

produce sequential behavior; without them it would simply settle into an energy minimum and stay 

there. Fortunately these special connections only come into play during the rule firing phase of the 

recognize-act cycle. In the rule matching phase the network is equivalent to one that is a pure 

Hopfield net/Boltzmann machine, because all the functioning connections are bidirectional and there 

are no gates opening or closing. The theoretical results of Hopfield and of Hinton and Sejnowski are 

therefore applicable to D C P S . 1 2 

7.2. Act ions Requir ing Instant iated Var iab le Values 

To instantiate variable values into right hand side actions requires a cooperative effort between rule 

and bind spaces. Consider the +(G =x P) action in Rule-2 on page 15. The Rule-2 units would 

collectively make excitatory connections to all working memory units that are receptors of (G =x P) 

for any value of =x. On average there will be 6 2/25 2x2000 or roughly 115 such working memory 

units. However, these connections are individually gated by bind unit cliques: Connections 

(synapses) from rule units to working memory units are only effective if the connection itself receives 

some excitatory stimulation from bind units (see figure 15). This is equivalent to saying that the input 

to working memory units is the conjunction of the activity coming from a rule unit and a clique of bind 

units. 1 3 Thus, if the network has settled into a state where the F clique is the winner in bind space, 

only connections from rule units to units that are receptors for (G F P) will be enabled. Each such 

connection from Rule space back to working memory must be stimulated by several bind units in 

order to be effective; this is necessary because individual bind units vote for three different symbols; 

only the collection as a whole votes for a unique symbol. The requirement for support from multiple 

bind units also makes the network resistant to noise that could occur during rule firing due to 

randomly malfunctioning bind units. 

Gated connections are also needed to allow actions to delete items from memory, because bind 

units by themselves have no way to tell whether the value they represent is needed for an add action 

12 
A similar "equivalent network" argument can be made for the use of regulatory units, even though those cells exert their 

influence during the match phase. 

13 
The use of gated (or conjunctive) connections may appear to violate the normal ground rules of connectionist modeling. It 

is not difficult, however, to find biological structures that exhibit the crucial property of gated connections: A local non-linear 
interaction between two synapses. Poggio and Torre (1978) have shown that such interactions can be expected to occur in the 
dendrites of cortical neurons, and Kandel and Schwartz (1982) have demonstrated the importance, in the sea slug Aplysia, of 
presynaptic facilitation, which is a different way of achieving local, non-linear synaptic interactions. 
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Rule Units 

Bind 
Vn\ts 

Figure 15: Right hand side actions involving variables are gated by excitatory 
connections from bind units onto the synapses that rule units make with 
working memory units. 

or a delete action. In the case of delete actions such as - ( =x R = x ) , the connections from rule units 

to working memory are inhibitory, but the bind units' effects are always excitatory. By using gated 

connections, we allow the bind units to select the inhibitory connections that will be allowed to 

influence working memory. 

7.3. Funct ions on Var iab le Va lues 

Instead of instantiating the exact value of a variable into right hand side actions, we can instantiate 

some function of that value. The function will be "computed" by the gating pattern that bind units 

apply to the rule units' connections to working memory. For example, consider the increment and 

decrement functions. We will use >x and <x in right hand side actions to denote values one greater 

and one less than the value to which the variable is bound, e.g., if the variable is bound to F, then <x 

appearing in a right hand side action would be instantiated as E and >x as G. Modular arithmetic 

should be used so that every symbol has a successor and predecessor: the successor of Y is A, and 

the predecessor if A is Y. 
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Figure 16 shows how the increment function could be used to sequentially step through a series of 

working memory elements by bumping a counter. The left hand side pattern ( = x R R ) refers to the 

counter value, which is maintained as a triple in working memory and incremented by a right hand 

side action. On successive firings, rule Seq-1 will step through the triples (A R R ) , ( B R R), 

(C R R), etc., and leave behind another trail of triples (A B A) , (B C B) , and so on. 

Rule: 

Seq-1: (=x R R) (=x R R) - > - ( = x R R) +(>x R R) + (=x >x =x) 

Initial contents of work ing memory : 

(A R R) 

F igure 16: Use of the right hand side increment function to step a counter. 

The implementation of the increment and decrement functions is straightforward. In actions that 

don't compute functions of the bound variable, such as - ( = x R R) , the rule units make 

connections to all working memory units that could match the action, and each connection is gated 

by bind units of the appropriate type. For example, a connection from a rule unit to an (A R R) unit 

would be gated by a set of bind units that vote for A, while a connection to a (B R R) unit would be 

gated by bind units that vote for B. To compute a function on the right hand side, the connections that 

implement the right hand side action are simply gated by bind units specified by the function. Thus, in 

rule Seq-1, the increment function that appears in +(>x R R) can be implemented by using bind 

units that vote for A to gate (B R R) connections, bind units that vote for B to gate (C R R) 

connections, and so on. Any mapping from symbols to symbols can be computed in this way. 

8. Experimental Results 

8.1. Measured Per formance 

DCPS has run a six-rule loop overnight through more than one thousand rule firings without error. 

Working memory contained two triples at a time, and each rule firing involved one addition and one 

deletion. In the current version of the model, a rule match takes about ninety seconds on a Symbolics 

3600 running Common Lisp. Part of this time is spent updating a graphic display as each unit 

changes state, so that the network's progress can be monitored during the match. 

The capacity of the coarse coded working memory of DCPS depends in part on the number of units 
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used (2000 in our experiments), and also on the similarity of the items that are stored. With a 25 

symbol alphabet there are 25 maximally dissimilar triples; an example is the set (A A A ) , (B B B) , 

through (Y Y Y ) . This entire set can be stored in DCPS' working memory without losing the ability 

to distinguish between present and absent triples. (As external observers measuring the memory's 

capacity, we used 75% activation as the dividing line.) On the other hand, only 5 to 6 elements from a 

maximally similar set, such as {(A A A) (A A B) ... (A A Y ) } can be stored before local blurring begins 

to interfere with the accuracy of recall. When randomly-generated triples were stored, the measured 

capacity of the memory was 20 triples on average, varying from a low of 12 to a high of 29. 

The number of rules the system can represent appears to be limited only by synergistic effects and 

by the number of possible partial matches during each search. The largest production system we 

have run to date, which used a slightly modified version of DCPS as part of a parse tree manipulation 

task, had 17 rules (Touretzky, 1986b). 

The matching portion of an annealing typically involves 6 probes of each unit, where a probe 

consists of computing the unit's energy gap, deciding whether or not it will change state, and 

notifying its neighbors if its state does change. Failed matches are detected after 10 probes, when 

the cleanup portion of the temperature schedule is begun. 

8.2. Diff icult Match C a s e s 

Early in the development of DCPS we adopted the simplifying assumption that match problems 

would always have unique answers, so that only one rule and one variable binding could constitute a 

valid match. This allowed us to avoid the issue of conflict resolution (Brownston et a/., 1985), which, 

although interesting, is not central to our enterprise. But even with this simplifying assumption some 

match problems are more demanding than others, and situations can be contrived in which DCPS has 

difficulty finding the correct solution. Two such situations are discussed below. 

In the simplest match cases there are no partial matches to worry about; the triples in working 

memory that do not match the winning rule do not match any of the other rules either. In more 

complex cases several feasible-looking matches exist with relatively low energy states; the system is 

forced to search among them to find the lowest one. This involves calling up different triples in the 

clause spaces for each possibility. As the number of partial matches increases DCPS becomes more 

likely to settle into a local minimum representing a partially successful match rather than finding the 

lowest energy state associated with the one correct match. Figure 17 shows a set of rules and 

working memory elements that produce this behavior. In theory, annealing long enough and slowly 

enough would solve the problem, since the correct match is always a deeper energy minimum than 

any partial match. 



29 

Rules : 

Comb-1: (=x A A) (=x B B) — > 

Comb-2: (=x C C) (=x D D) — > 

Comb-3: (=x E E) (=x F F) - - > 

Contents of work ing memory : 

( J A A) ( K B B) 
(K C C) ( J D D) 
(M E E ) (M F F) 

igure 17: A match situation in which combinatorial complexity hinders the search for a 
valid match. 

In this match scenario there are six triples in working memory; the clause spaces must select from 

among the 36 possible ways to form a pair of triples the one combination the produces a correct 

match. What makes this problem difficult is the fact that four pairs of triples have fairly deep energy 

minima representing almost-successful partial matches. See table 2. In these partial matches, either 

both clauses on the left hand side of rule Comb-1 or Comb-2 are satisfied but the variable binding 

constraint is not, or else onfy one of the left hand side clauses is satisfied but the variable binding 

constraint is met because both clause spaces support the same bind clique (J or K.) The source of the 

combinatorial confusion is the fact that all three rules and all three bind cliques are capable of getting 

full support from the clause spaces, so it's difficult to choose among them; what differentiates partial 

from complete matches is the fact that rule and bind space can't both get full support except when 

the rule is Comb-3 and the variable =x is bound to M. 

DCPS does not search a combinatorial space by sequentially enumerating the possibilities. The 

partial representations of competing triples coexist simultaneously in the clause spaces, while rule 

and bind winner-take-all spaces host similar competitions. The stochastic nature of the Boltzmann 

machine causes some competitors in a space to fade out, and possibly fade back in again, until the 

network as a whole settles deeply enough into an energy minimum that a clear winner emerges in 

each space. 

Figure 18 illustrates another contrived case where it is difficult for DCPS to conclude the match 

correctly. (M J J ) is present in working memory but none of the rules Syn-1 through Syn-4 can 

match, due to their second clause. While all rules compete with each other as a result of being in a 
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Degree 
of Match 

Triple in 
Clause 1 

Triple in 
Clause 2 Rule SuDDorted Bindinq SuDDorted 

Partial (J A A) ( K B B ) Comb-1 half J , half K 

Partial (J A A) ( J D D ) half Comb-1, half Comb-2 J 

Partial ( K C C ) ( J D D ) Comb-2 half J , half K 

Partial (K C C) ( K B B ) half Comb-1, half Comb-2 K 

Complete ( M E E ) ( M F F ) Comb-3 M 

T a b l e 2: The four partial matches generated by the rules in figure 17 have fairly deep 
energy minima, but there is a global minimum, representing the one complete 
match, in which all constraints are satisfied. 

winner-take-all network, the Syn rules also help each other by supporting (M J J ) as the first clause. 

This unwanted synergy, which occurs whenever failing rules have related left hand sides, interferes 

with the search for the correct match. In order to find this match, the lone Anti rule must override the 

four Syn rules and get the pattern for (M R R) into C1 space. The more Syn rules there are to 

support (M J J ) , the harder this will be. 

Rules: 

Syn-1: (=x J J ) ( = x A A) 

Syn-2: (=x J J ) (=x B B) 

Syn-3: (=x J J ) (=x C C) " > 

Syn-4: (=x J J ) (=x D D) ~ ~> 

Anti: (=x R R) (=x S S) - " > 

Contents of work ing m e m o r y : 

(M J J ) 
(M R R) 
(M S S) 

Figu re 18: A match situation in which synergistic action between four rules that generate 
partial matches can prevent the system from finding the correct match. 
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9. Discussion 

9.1. A l ternat ive implementations of working memory 

There are two broad approaches to implementing a working memory in a connectionist network. 

The obvious method, which we use here, is to set aside a separate group of units whose activity 

encodes the current contents of working memory. A less obvious alternative is to use temporary 

modifications of connection strengths to make it easier to recreate patterns of activity that have 

recently occurred. The advantage of this second method is that it does not require any extra units to 

act as a memory, and the memory is automatically content-addressable — recent patterns can be 

reconstructed from any sufficiently large subpattern. A particularly simple version of the second 

method is to implement working memory by temporarily lowering thresholds. In DCPS1, for example, 

the only effect of the units in the working memory space is to provide additional input to units in the 

clausel and clause2 spaces, so we could remove the working memory units and exactly mimic their 

effects by temporary reductions of the thresholds of units in the clause spaces. This would also get 

rid of all the one-to-one connections between the working memory and clause spaces. 

One disadvantage of using thresholds instead of units is that each time a new item is inserted (or 

deleted) it is necessary to lower (or raise) thresholds in both clause spaces, because there is no way 

of knowing in advance whether the item will subsequently match the first or the second clause of a 

rule. 

Some important properties of the working memory are broadly independent of whether it is 

implemented as activity levels, temporary threshold changes, or temporary weight changes. Because 

the working memory for each item is distributed over many units, thresholds, or weights, there will be 

interference if more than a few items are stored at once, and the interference will be greater as the 

items become more similar. This is a necessary consequence of using distributed.representations to 

allow many more possible items than there are storage sites. We interpret the well-known limitations 

of human short-term memory as an indication that it too may involve the use of distributed 

representations. 

9.2. Mult ip le interact ing d is t r ibuted representat ions 

In the introduction we alluded to a problem that arises when there are interactions between several 

groups of units that each use distributed representations. Each unit takes part in the representation 

of many different items and its causal effects on units in other spaces must reflect this fact. This 

means that a unit in one space will generally provide excitatory input to a great many units in another 

space, and so there is a danger that the activation within each space will become more and more 

diffuse as time progresses. In DCPS, the tendency for activation to become more diffuse is 
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counteracted by using lateral inhibition within the spaces. This suppresses units that are only 

supported by a small fraction of the units in other spaces and concentrates the activation on units 

which receive multiple excitatory input. 

Winner take all networks, bind spaces, clause spaces (or pullout networks), and coarse coded 

symbol representations are generally useful bits of machinery that have been profitably incorporated 

into other connectionist models. Touretzky (1986a) describes a system for manipulating recursive 

data structures, called BoltzCONS, that was assembled by rearranging the components of DCPS. 

BoltzCONS has only one pullout network instead of two, but it has three independent bind spaces. 

The representation of rules in DCPS is only "semi-distributed." Although rules are represented by 

collections of units, each unit is associated with a single rule, rather than being coarse coded. 

Sharing units between similar rules is counterproductive in this architecture, because rules with 

similar left hand sides may have totally dissimilar or even directly opposed right hand sides. Consider 

the two rules Sim-1 and Sim-2 below: one tries to add the triple (H H H) and ones tries to delete it. 

The rule units common to Sim-1 and Sim-2, which should be in the majority because the rules are so 

similar, would have both excitatory and inhibitory connections to (H H H) working memory units. 

Thus, the majority of the rute units would have no action at all. More sophisticated versions of DCPS, 

which we are presently considering, may be able to exploit similarity among rules by segregating left 

hand side and right hand side operations into different collections of units. 

Sim-1: (=x A B) (=x C D) - - > +(H H H) 

Sim-2 (=x B B) (=c C D) - - > - ( H H H) 

9.3. Similarity and general izat ion 

One automatic consequence of using distributed representations is that similar items tend to have 

similar effects. This is a helpful effect if the particular distributed patterns that are used impose a 

similarity metric that reflects the important distinctions in the domain. If, for example, "cheese" and 

"chalk" have rather different representations but "cheese" and "cheddar" have rather similar 

representations, a connectionist network will tend to make sensible generalizations (Hinton et a/., 

1986). There have been many demonstrations of this effect when the experimenter chooses the 

distributed representations (Hinton, 1981c; Rumelhart & McClelland, 1986). More recently, Hinton 

(1986) has described a network that can construct the appropriate distributed representations for 

itself, so the generalizations cannot be said to have been determined by the experimenter. 

DCPS does not currently make any use of similarity between triples or between rules, and it 

therefore fails to make good use of the properties that a connectionist implementation could provide. 

We view DCPS as only the first step in the development of connectionist symbol manipulation 
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architectures. Future advances should lead to models which make better use of the powerful 

constraint satisfaction and generalization abilities of connectionist networks. Such models would be 

more than mere implementations of conventional symbol processing ideas because the connectionist 

substrate would provide important computational properties that are not available in standard 

implementations. 

9.4. Ser ia l i ty and var iab le binding 

DCPS is implemented in a massively parallel network and yet it is unable to bind the variables in 

more than one rule at a time. It can perform a parallel search over rules that contain variables to 

discover which rule fits the contents of working memory best and during this search it considers many 

different rules and many different variable bindings in parallel, but it is unable to represent particular 

conjunctions of rules and variable bindings. Its only method of representing such a conjunction is by 

settling on a single rule and a single binding of each variable. This means that it is using simultaneity 

to represent the binding, and simultaneity cannot be used for representing several different bindings 
at once. 

Many different variable bindings could be explicitly represented at the same time if we dedicated a 

separate unit to each possible conjunction of a rule and a variable binding, but this is equivalent to 

eliminating variables altogether by having many different, variable-free versions of each rule. Newell 

(1980) has advanced the idea that variable binding may be one of the things that forces people to be 

sequential processors, and DCPS corroborates this view. By separating the rule space from the bind 

space we achieve great economies in the the number of units required, but the cost is that the only 

way to explicitly represent which binding goes with which rule is to settle on one bound rule at a time. 
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Appendix A, Model Parameters 
DCPS is one of the largest connectionist models built to date. Tables A-1 through A-3 give the 

number of units in each space and the types, numbers, and weights of their connections. In these 

tables, thresholds are expressed as connections with weight -0 to a "true unit" whose state is always 

1. 

C lause S p a c e s : 2000 units each 

Source of 
Connections 

Number of 
Connections 

Weight per 
Connection 

Working memory unit 
Other clause units 
Rule units 
Bind units 
True unit 

1 
1999 
avg. 7 per rule 
avg. 40 
1 

+ 900 
- 2 (mutual inhibition) 

+ 5 
+ 10 

-939 (threshold) 

T a b l e A -1 : Parameters of clause units. 

Rule S p a c e : 40 units per rule 

Source of 
Connections 

Number of 
Connections 

Weight per 
Connection 

C1 clause units 
C2 clause units 
Sibling rule units 
Rival rule units 
WM units (gated) 
True unit 

40 
40 
39 
40 per rival rule 
40 per RHS action 
1 

+ 5 
+ 5 
+ 2 
- 2 

n/a 
-69 (threshold) 

T a b l e A - 2 : Parameters of rule units. 
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Bind S p a c e : 333 coarse coded units. 3 symbols per unit; 40 units per symbol. 

Source of Number of Weight per 
Connections Connections Connection 

C1 clause units 240 +10 
C2 clause units 240 +10 
Sibling bind units avg. 107 +2 
Rival bind units avg. 225 - 2 
True unit 1 -119 (threshold) 

T a b l e A - 3 : Parameters of bind units. 
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Appendix B. Generating Receptive Fields for Working Memory 
Units. 

In our simulation, each triple in working memory is represented by activity in about 28 units. We 

initially chose the receptive fields of working memory units at random jn the obvious way: Six different 

random letters are chosen for the first position, six for the second, and six for the third. Unfortunately 

this introduces large sampling errors. Triples represented by as few as 20 or as many as 36 active 

units are quite common. This can make it hard to distinguish between triples that are present but 

have few units to represent them and triples that are absent but have accidental activation in some of 

their many units. If the expected number of active units per triple was much larger than 28, the law of 

large numbers would eliminate this problem, but in our simulation we used a heuristic method for 

making the number of units per triple be more uniform. 

We started with a set of receptive fields that were chosen so that every letter occurred equally often 

in each of the three positions. We then considered all possible triples, and recorded how many units 

encoded each triple. We defined a cost function which was the sum (over all possible triples) of the 

square of the difference between 6 3/25 3x2000 = 27.65 and the number of units encoding the triple. 

This measure is minimized when the number of units per triple is as uniform as possible. We 

performed gradient descent in this cost function by selecting moves which reduced the cost function 

but preserved the number of times a letter occurred in each position. A candidate move consisted of 

taking the receptive fields of two units and swapping two letters in corresponding positions. If for 

example, two letters from the second position are swapped, the two receptive fields 

( ( A B C D E F) (G H I J K L) (M N 0 P Q R ) ) 
( ( T U V W X Y) (P Q R S T U) (A C E G I K ) ) 

might become 

( ( A B C D E F ) ( G H R J K L ) ( M N O P Q R ) ) 
( ( T U V W X Y) (P Q I S T U) (A C E 6 I K ) ) 

Candidate moves were selected at random, and were accepted whenever they reduced the cost 

function or left it unaltered. This was continued until no more improvements were encountered. We 

considered using simulated annealing to improve the solution, but simple gradient descent was 

already rather slow and it gave an adequate solution. The standard deviation was reduced from 4.9 to 

1.5. 
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