
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

Optimistic Concurrency Control
for Abstract Data Types

Maurice Herlihy
Computer Science Department

Carnegie Mellon University
Pittsburgh, PA 15213

8 May 1986

Abstract

A concurrency control technique is optimistic if it allows transactions to execute without
synchronization, relying on commit-time validation to ensure serializability. This paper describes
several new optimistic concurrency control techniques for objects in distributed systems, proves their
correctness and optimality properties, and characterizes the circumstances under which each is
likely to be useful. These techniques have the following novel aspects. First, unlike many methods
that classify operations only as reads or writes, these techniques systematically exploit type-specific
properties of objects to validate more interleavings. Necessary and sufficient validation condit ions
are derived directly from an object's data type specification. Second, these techniques are modular:
they can be applied selectively on a per-object (or even per-operation) basis in conjunction with
standard pessimistic techniques such as two-phase locking, permitting optimistic methods to be
introduced exactly where they will be most effective. Third, when integrated with quorum-consensus
replication, these techniques circumvent certain t radeof fs between concurrency and availability
imposed by comparable pessimistic techniques. Finally, the accuracy and efficiency of validation are
further enhanced by some technical improvements: distributed validation is performed as a side-
effect of the commit protocol, and validation takes into account the results of operations, accepting
certain interleavings that would have produced delays in comparable pessimistic schemes.

This research was sponsored by the Defense Advanced Research Projects Agency (DOD), ARPA
Order No. 4976, monitored by the Air Force Avionics Laboratory Under Contract F33615-84-K-1520.

The views and conclusions contained in this document are those of the authors and should not be
interpreted as representing the official policies, either expressed or implied, of the Defense Advanced
Research Projects Agency or the US Government.

This paper appeared in the proceedings of the Fifth ACM SIGACT-SIGOPS Symposium on
Principles of Distributed Computing, August, 1987.

1

1 . Introduction
Informally, optimistic concurrency control is based on the premise that it is more effective to

apologize than to ask permission. Transactions execute without synchronization, but before a

transaction is allowed to commit, it is validated to ensure that it preserves atomicity. If validation

succeeds, the transaction commits; otherwise the transaction is aborted and restarted. This paper

proposes new optimistic concurrency control techniques for objects in distributed systems, proves

their correctness and optimality properties, and characterizes the circumstances under which each is

likely to be useful.

In conventional optimistic techniques, operations are classified simply as reads or writes, and

transactions are validated by analyzing read/wri te conflicts between concurrent transactions. These

techniques are intended only for applications where reads predominate; they are poorly suited for

general-purpose applications such as banking or reservations where write operations occur

frequently at "hot spots" such as counters, account balances, or queues. A novel aspect of the

techniques proposed here is that they validate more interleavings by systematically exploiting type-

specific properties of objects to recognize when concurrent "wr i te" operations need not conflict. An

object's validation conditions are derived directly from its data type specification, and the derivation

technique is applicable to objects of arbitrary type. These techniques are optimal in the sense that no

method using the same information can validate more interleavings.

Any optimistic scheme, however clever, is cost-effective only if validation succeeds sufficiently

often. Numerous studies (cited below) have shown that the success rate of validation depends

critically on the nature and frequency of transaction conflict. In large systems, it is reasonable to

expect that different objects will have different patterns of confl ict, and that individual objects'

patterns may change over time. These observations suggest that optimistic techniques are cost-

effective only under specialized circumstances, while pessimistic techniques are more robust. If

optimistic techniques are to be useful in general-purpose systems, it must be possible to apply them

selectively in conjunction with appropriate pessimistic techniques. (See Lausen[19] for a similar

argument.) Even for pessimistic techniques, however, the compatibility of distinct mechanisms is a

non-trivial question. For example, two-phase locking [8] and multiversion timestamping [24] cannot

be used together in a single system, because they may serialize transactions in incompatible orders.

A novel aspect of the techniques proposed here is that they are compatible with a large class of

standard pessimistic techniques, including two-phase locking, thus they can be applied selectively on

a per-object (or even per-operation) basis exactly where they are most cost-effective.

Optimistic and pessimistic methods behave differently when integrated with quorum-consensus

replication [15]. Pessimistic techniques trade concurrency for availability; weakening the constraints

UNIVERSITY LIBRARIES
C*.RN£G!E-MELLON UNIVERSITY

Pl'ITSKURGH, PENNSYLVANIA 15213

2

on one may tighten the constraints on the other [13,14] . Optimistic techniques are different:

enhancing validation to accept more interleavings has no effect on availability.

The accuracy and efficiency of validation are further enhanced by two technical improvements.

First, distributed validation requires no additional messages, since it is performed as a side-effect of

the commit protocol. Second, because operations are validated after they have occurred, validation

can take into account the results of invocations, permitting certain interleavings to be validated that

would have produced delays in comparable locking schemes.

This paper is organized as follows. Section 2 surveys some related work, and Section 3 describes a

model of computation. Section 4 describes conflict-based validation, a simple validation technique

based on predefined confl icts. Section 5 describes a scheme that permits pessimistic and optimistic

techniques to be combined in a single object. Section 6 describes state-based validation, a more

complex scheme that validates additional interleavings by exploiting knowledge about the object's

state. Section 7 examines how optimism interacts with replication, and Section 8 closes with a

discussion.

2. Related Work
Perhaps the earliest concurrency control scheme to use validation is that of Thomas [26]. Kung and

Robinson [17] have proposed a centralized optimistic method based on Read/Write conflicts. Ceri

and Owicki [4] have extended Kung and Robinson's method to permit validation in distributed

systems. Lausen [19] has proposed a centralized optimistic scheme integrating two-phase locking

with Kung and Robinson's scheme, and has also shown that several general formulations of the

validation problem are NP-complete [20]. Harder [12] has distinguished between backward

validation, in which each transaction checks that its own results have not been invalidated by

concurrent transactions, and forward validation, in which each transaction checks that its own effects

will not invalidate any concurrent transaction's results.

IMS/VS [10] uses an optimistic technique to reduce contention for shared counters. Like the more

general techniques proposed in this paper, IMS/VS mixes pessimistic and optimistic techniques, and

exploits type-specific properties of counters to make validation effective.

A system of logical clocks [18] keeps track of orderings and dependencies among events.

Timestamps generated by logical clocks provide a simple and efficient technique for extending the

natural partial order of events in a distributed system to an arbitrary total order. The distributed

validation protocol used in this paper generalizes Kung and Robinson's centralized transaction

numbering scheme, and it is simpler and requires fewer messages than that of Ceri and Owicki [4].

3

Numerous studies have compared the performance of pessimistic and optimistic techniques

[1 , 2 , 3 , 9 , 2 1 , 2 5] . These studies have yielded a variety of conclusions, some in apparent

disagreement. Nevertheless, one particular conclusion seems justified: the effectiveness of

optimistic techniques depends on the distribution of conflicts in subtle and complex ways. In general-

purpose distributed systems, where such predictions may be difficult and miscalculation expensive,

optimistic techniques are most likely to be useful if they can be applied to individual objects rather

than to entire systems.

Weihl [27] has developed analytic techniques for characterizing when atomicity mechanisms are

compatible. The techniques proposed here satisfy hybrid atomicity, and are compatible with a wide

variety of pessimistic techniques, including two-phase locking [8 ,16 ,22] , as well as schemes that

combine locking with timestamps [5, 6 ,14] .

3. Assumptions and Definitions
Distributed systems are subject to two kinds of faults: sites may crash and communication links may

be interrupted. A widely-accepted technique for preserving consistency in the presence of failures

and concurrency is to organize computations as sequential processes called transactions.

Transactions are atomic, that is, serializable and recoverable. Serializability means that transactions

appear to execute in a serial order [23], and recoverability means that a transaction either succeeds

completely, or has no effect. A transaction that completes all its changes successfully commits]

otherwise it aborts, and any changes it has made are undone. A transaction that has neither

committed nor aborted is active. Some form of atomic commitment protocol [7,11] ensures that

commits are atomic, and non-volatile storage ensures that changes are not destroyed by later

failures.

The basic containers for data are called objects. Each object has a type, which defines a set of

possible states and a set of primitive operations that provide the (only) means to create and

manipulate objects of that type. An event is a pair consisting of an operation invocation and a

response. For example, a bank account might be represented by an object of type Account whose

state is given by a non-negative dollar amount, initially zero. The Account data type provides Credit

and Debit operations. Credit increments the account balance:

C r e d i t = O p e r a t i o n (s u m : D o l l a r) .

Debit attempts to decrement the balance:

D e b i t = O p e r a t i o n (s u m : D o l l a r) S i g n a l s (O v e r d r a f t) .

If the amount to be debited exceeds the balance, the invocation signals an exception, leaving the

balance unchanged. For brevity, a debit that returns normally is referred to as a successful debit,

otherwise it is an attempted overdraft.

4

An object's state is modeled by a sequence of events called a history. For example,

Credit($5)/Ok()
Credit($6)/Ok()
Debit($10)/Ok()
Debit($2)/Overdrawn()

is a history for an Account. A specification for an object is the set of permissible histories for that

object. For example, the specification for an Account object consists of histories in which the

balance covers any successful debit, and fails to cover all unsuccessful debits. A legal history is one

that is included in the object's specification. Histories are denoted by lower-case letters.

In the presence of failure and concurrency, an object's state is given by a schedule, which is a

sequence of operation executions, transaction commits, and transaction aborts. To keep track of

interleaving, a transaction identifier is associated with each step in a schedule. For example, the

following is a schedule for an Account:

Credit($5)/Ok() A
Credit($6)/Ok() B
Commit A
Debit($10)/Ok() B
Commit B

Here, A and B are transaction identifiers. The ordering of operations in a schedule reflects the order

in which the object returned responses, not necessarily the order in which it received invocations.

Schedules are denoted by upper-case letters.

(Serial) histories and (concurrent) schedules are related by the notion of atomicity. Let > denote a

total order on committed and active transactions, and let H be a schedule. The serialization of H in

the order > is the history h constructed by reordering the events in H so that if 8 > A then the

subsequence of events associated with A precedes the subsequence of events associated with 8. H

is serializabfe in the order 3> if h is legal. H is serializable if it is serializable in some order. H is atomic

if the subschedule associated with committed transactions is serializable. An object is atomic if all of

its schedules are atomic.

A system encompassing multiple objects is atomic if all component objects are atomic and

serializable in a common order. The optimistic mechanisms introduced in this paper serialize

transactions in the order they commit (as observed by a system of logical clocks [18]), and are thus

compatible with pessimistic methods that induce the same ordering (e.g., [5, 6, 8, 14, 16, 22]).

Following the terminology of Weihl [27], a schedule is hybrid atomic if it is serializable in commit

order.

5

4. Conflict-Based Validation
This section introduces conflict-based validation, an optimistic concurrency control mechanism

which uses predefined confl icts between pairs of events for validation. This approach is the

optimistic analog of locking mechanisms, which use similar predefined conflicts to introduce delays.

A precise definition of confl ict is given below, but for now it is enough to say that two transactions that

execute no confl icting events can be serialized in either order, thus neither can invalidate the other.

(This notion is weaker than commutativity, which requires that both serializations define equivalent

states.)

Internally, an object is implemented by two components: a permanent state that records the effects

of committed transactions, and a set of intentions lists that record each active transaction's tentative

changes. When a transaction commits, the changes in its intentions list are applied to the permanent

state. For example, a bank account's permanent state is the current balance, and its intentions lists

record each active transaction's net credit or debit.

Each transaction is validated during the first phase of commitment. When an object receives the

prepare message, it validates the transaction locally (using techniques described below) before

recording the transaction's intentions list on non-volatile storage. If all participants validate the

transaction, the co-ordinator issues the timestamped commit messages. An object can validate

transactions concurrently if neither transaction's events confl ict with the other's, but the object must

apply the intentions lists in the order of commit. Validation requires no messages in addition to those

needed for the standard commit protocol.

The following extension to the two-phase commit protocol ensures that intentions lists are applied

in the proper order. When a site receives the prepare message from the coordinator, it generates a

prepared timestamp for that transaction before responding with its acknowledgment. After the

coordinator has received acknowledgments from all participants, it generates a commit timestamp,

which is later than any of its prepared timestamps. The commit timestamp is forced to stable storage

along with the commit record, and is included with each commit message to participants. A site may

apply a transaction's intentions as soon as it has processed commit or abort messages from all

transactions with earlier prepared timestamps. Note that no messages have been added to the

standard commit protocol.

This section considers two distinct validation techniques [12]: backward validation ensures that the

transaction's results have not been invalidated by the effects of a recently committed transaction,

while forward validation ensures that the transaction's effects will not invalidate the results of any

active transaction. Under conflict-based validation, the two approaches have comparable run-time

6

costs.

4 . 1 . Ser ia l Dependency

This section gives a formal characterization of what it means for events to conflict. Let >- be a

relation between pairs of events, and let h be a legal history. A legal subhistory g of h is closed under

>- if whenever it contains an event e it also contains every earlier event e' of h such that e >- e'. A

subhistory g is a view of h for e under >- if g is closed under and if g contains every e' of h such

that e >- e \ Informally, >- is a serial dependency relation if whenever an event is legal for a view, it is

legal for the complete history. More precisely, let denote concatenation:

De f i n i t i on 1 : A relation >^ is a serial dependency relation if g • e is legal implies that
h • e is legal, for all events e and all legal histories /?, such that g is a view of h for e under

The optimistic techniques proposed here are correct if and only if conflict between events is defined

by a serial dependency relation. Of primary interest are minimal relations, having the property that no

smaller relation is also a-serial dependency relation. As discussed below in Section 7, serial

dependency is also important for quorum-consensus replication.

The Account data type has a unique minimal serial dependency relation, shown in Table 4 -1 . Here,

successful debits do not depend on prior credits, because the debit cannot be invalidated by

increasing the balance. Attempted overdrafts do depend on prior credits, however, because the

Overdraft exception can be invalidated by increasing the balance. The FIFO Queue data type has two

distinct minimal serial dependency relations, shown in Tables 4-2 and 4-3. (Here, Deq blocks when

the queue is empty.) In the first relation, Enq events depend on no other events, but Deq events

depend on ail other events. In the second relation, Enq events depend on one another, Deq events

depend on one another, but Enq events do not depend on Deq events, and vice-versa.

The next two sections present formal models for forward and backward validation, together with

proofs of correctness and optimality. Correctness means that an object whose conflict relation is a

serial dependency relation will validate only hybrid atomic schedules, and optimality means that an

object whose conflict relation is not a serial dependency relation will validate some schedule that is

not hybrid atomic.

4 . 2 . F o r w a r d Va l ida t ion

Forward validation ensures that a committing transaction cannot invalidate any active transactions.

When a transaction executes an event at an object, the object grants an optimistic lock for that event.

That object will validate a transaction A If and only if there is no other active transaction that holds an

optimistic lock for an event that conflicts with an event in the intentions list for A. A transaction's

optimistic locks are released when it commits or aborts.

7

Credit /Ok

Debit /Ok

Debit/Over

Credi t /Ok

X

Debit /Ok Debit/Over

Tab le 4 - 1 : Serial Dependency Relation for Account

Enq/Ok Deq/Ok

Enq/Ok

Deq/Ok

Tab le 4 - 2 : First Serial Dependency Relation for Queue

Enq/Ok

Enq/Ok

X

Deq/Ok

Deq/Ok

Tab le 4 - 3 : Second Serial Dependency Relation for Queue

An object is modeled by an automaton that accepts certain schedules. The automaton's state is

defined using the following primitive domains: TRANS is the set of transaction identifiers, EVENT is the

set of events, T IMESTAMP is a totally ordered set of timestamps with minimal element ± . The derived

domain HISTORY is the set of sequences of events, x -+ Y denotes the set of partial maps from x to Y.

A forward validation automaton has the following state components:
Perm: HISTORY

Intentions: TRANS ~+ HISTORY

O- Lock: EVENT - + 2 T R A N S

Clock: T IMESTAMP

Committed: 2 T R A N S

Aborted: 2 T R A N S

The Perm component represents the object's permanent state, initially empty. Intentions(A) is the

8

sequence of events executed by transaction A, initially none. O-Lock(e) is the set of active

transactions that hold an optimistic lock for e, initially none. The Clock component models a system

of logical clocks. Committed and Aborted keep track of the transactions that have committed and

aborted; each is initially empty.

Each transition has a precondition and a postcondition. In postconditions, primed component

names denote new values, and unprimed names denote old values. For transaction A to execute

event e,

Pre: A £ Committed.

PernrHntentions(A)«e is legal.

Post: Clock' > Clock

Intentions'(A) = lntentions(A)«e

O-Lock'(e) = O-Lock(e) U {A} .

The transition can occur only if the transaction has not already committed, and if the operation

appears to be legal. The transition causes the clock to be advanced, the event to be appended to the

transaction's intentions list, and the transaction to be given an optimistic lock for the event.

Validation is governed by aconflict relation C EVENTXEVENT . For A to commit,

Pre: A $ Committed U Aborted.

If e is in Intentions(A) and e > - 0 e' then O-Lock(e')—{A} = 0 .

Post: Clock' > Clock

Perm' = PernrHntentions(A)

O-Lock'(e) = O-Lock(e)—{A}

A transaction may commit only if it has not already committed or aborted, and only if no other

transaction holds an optimistic lock for a conflicting event. Afterwards, the clock is advanced, the

transaction's intentions list is appended to the permanent state, and the optimistic locks are released.

Finally, a transaction may abort only if it has not already committed. When a transaction aborts, it is

added to the set of aborted transactions and its optimistic locks are released.

The first step toward proving correctness is the following lemma, which states that any sequence of

events can be inserted into the middle of a history provided no later event serially depends on an

inserted event.
Lemma 2: If >- is a serial dependency relation, /, g, and h histories such that f*g and f9h

9

are legal, and there is no e in h and e' in g such that e >- e \ then f*yh is legal.

Proof : The proof is by induction on the length of h. If h is empty, the result is immediate.
Otherwise, let h = / ; ' *e . f*h' is a view of fmgmh' for e, because f*gmhl is legal by the
induction hypothesis and /•/?' is legal by assumption. Because f*h'*e is legal and >~ is a
serial dependency relation, /•g # /?'*e = f9g*h is legal.

The following lemma states that forward validation ensures that no active transaction can be

invalidated by the commit of another transaction. Moreover, no active transaction ever sees an

inconsistent state:

Lemma 3: For any forward validation automaton whose conflict relation is a serial
dependency relation, Pernrlntentions(A) is legal for all active A.

Proof : The argument proceeds by induction on the number of transactions that have
committed, showing that Perm*lntentions(A) remains legal when another transaction A1

commits. By the induction hypothesis, Perm' = Perm'lntentions(A') is legal. The
precondition for the commit of A' implies that there is no e in Intentions(A) and e' in
Intentions(A') such that e > - 0 e \ Because > - 0 is a serial dependency relation,
Perm'*lntentions(A) is legal by Lemma 2.

The correctness theorem for forward validation is a direct consequence of Lemma 3:

T h e o r e m 4 : A forward validation automaton whose confl ict relation is a serial
dependency relation will accept only hybrid atomic schedules.

Proof : Perm is the serialization in commit order of the schedule accepted by the
automaton, and Lemma 3 implies that each commit carries Perm from one legal state to
another.

Serial dependency is optimal in the following sense: if a forward validation automaton's confl ict

relation is not a serial dependency relation, then it will accept some schedule that is not hybrid

atomic. The proof is based on the following lemma, which states that if >- is not a serial dependency

relation, then there exists a counterexample in which the view is missing exactly one event.

Lemma 5: If >~ is not a serial dependency relation, then there exist a history h and an
event e such that h has a v iewg of e missing exactly one event, g*e is legal, but fre is not.

Proof : If >- is not a serial dependency relation, then there exist a history h and an event
e such that h has a view g of e where g # e is legal, but h*e is not. Suppose g is missing k
events of h. Consider the sequence of histories / = 0,...,/<}, where hQ = g, /?k = /?, and
h. 1 is derived from h.^ by restoring its earliest missing event.

If there exists an / such that h. is legal but /?. is not, then there exist histories a, b, and
c, and events e 1 and e 2 such that h.^ can be written as a * b ' e 2 * c , and h. ^ t as a # e 1

, b , e 2

c ,
where a*e^b is legal, and ame^b9e2 is not. But a*b is a view of ^ e ^ b for e 2 , proving the
lemma.

Otherwise, suppose h. is legal for all / between 0 and k. Because hQ*e is legal and hk*e is
not, there must exist an / such that h.me is legal but h. , *e is not. This h. is a view of h. .
for e, proving the lemma.

Lemma 5 provides a simple proof of optimality.

10

T h e o r e m 6 : Any forward validation automaton whose confl ict relation is not a serial
dependency relation will accept a schedule that is not hybrid atomic.

Proof : Since > - Q is not a serial dependency relation, there exist by Lemma 5 an event e
and a legal history h such that g is a view of h for e missing exactly one event e \ g9e is
legal, but h*e is not. Let g = amb and h = ame'*b. Transaction A executes a and commits,
leaving Perm = a. B executes b followed by e, and C executes e\ C commits, followed by
8. Both B and C are validated, but the final value of Perm is the illegal history a # e ' # b * e =
hme.

4 . 3 . B a c k w a r d Va l i da t i on

Backward validation ensures that the committ ing transaction has not been invalidated by the recent

commit of another transaction. Each object keeps track of Last(e), the most recent commit timestamp

for a transaction that executed the event e. For each active transaction A, each object also keeps

track of First(A,e), the logical time when A first executed e. An object will validate A if and only if

Last(e') < Fir$t(A,e) for each event e' that conflicts with each event e executed by7\. This condit ion

ensures that A has not been invalidated by a transaction that committed since A executed e.

To model backward validation, the O-Lock component is replaced by:

First: TRANS X EVENT TIMESTAMP

Last: EVENT - * T IMESTAMP

The precondition for A to execute e is unchanged. The postcondition is slightly different: instead of

granting an optimistic lock to A, First (A, e) is updated if necessary.

First'(A,e) = if (First(A,e) = ±)
then Clock
else First(A,e)

For A to commit,

Pre: A £ Committed U Aborted.

If e is in Intentions(A) and e > - Q e' then First(A,e) > Last(e').

Post: Clock' > Clock

Perm' = PernrHntentions(A)

If e is in in Intentions(A) then Last'(e) = Clock.

A transaction may commit only if no recently committed transaction has executed a confl icting event.

Afterwards, the Last timestamp is updated for each event executed by the transaction.

An active transaction is defined to be valid if the precondition for its commit is satisfied. Backward

validation ensures that all valid transactions view consistent states:
Lemma 7: For any backward validation automaton whose confl ict relation is a serial

11

dependency relation, Permmlntentions(A) is legal for any valid A.

Proof: It is enough to show that if the commit of A1 does not invalidate A, then
Permmlntentions(A) remains legal. If A remains valid, there is no e in Intentions(A) and e' in
Intentions(A') such that e >-Q e \ therefore Perm'*lntentions(A) is legal by Lemma 2.

The basic correctness theorem for backward validation is a direct consequence of Lemma 7:

Theorem 8 : Any backward validation automaton whose conflict relation is a serial
dependency relation will accept only hybrid atomic schedules.

Proof: Perm is the serialization in commit order of the schedule accepted by the
automaton, and Lemma 7 implies that each commit carries Perm from one legal state to
another.

Serial dependency is also optimal for backward validation:

Theorem 9 : Any backward validation automaton whose conflict relation is not a serial
dependency relation will accept a schedule that is not hybrid atomic.

Proof: By the same scenario constructed for Theorem 6.

4 . 4 . Discussion

The Account data type illustrates how a type-specific definition of conflict allows more transactions

to commit. Under conventional schemes employing Read/Write conflicts, both Credit and Debit

would be classified as a combination of Read and Write operations, hence any transaction to access

the account would either invalidate or be invalidated by any concurrent transaction. Here, there are

fewer conflicts to invalidate transactions: a credit can invalidate an overdraft, and a successful debit

can invalidate another successful debit.

It is difficult to judge whether forward or backward validation is preferable for conflict-based

validation. The run-time costs of both techniques are comparable. An advantage of forward

validation is that all transactions observe serializable states, even those for which validation fails.

Also, asymmetric conflicts can sometimes be resolved by postponing rather than by denying

validation. For example, if a transaction that credited an Account discovers that an active transaction

has attempted an overdraft, the crediting transaction might choose to postpone validation until the

other has had a chance to commit. The principal drawback of forward validation is its extreme

optimism: while backward validation restarts active transactions in favor of committed transactions,

forward validation restarts active transactions in favor of other active transactions, which themselves

may never commit.

How do these optimistic techniques compare to pessimistic locking schemes? In most pessimistic

schemes, a lock is acquired before invoking an operation, thus conflicts are typically defined between

invocations, not between complete events. In optimistic schemes, by contrast, validation occurs after

the invocations 5 results are known, thus conflicts can be defined between complete events. This

additional information can be used to validate interleavings that would be prohibited by invocation

12

locking. For example, compare the event/event conflict relation for Account in Table 4-1 and the

invocation/invocation conflict relation in Table 4-4. Invocation locks for credit and debit must

conflict, but conflict-based validation will permit a credit to occur concurrently with a successful debit

(but not an attempted overdraft), a useful distinction if most debits are expected to be successful.

Optimistic schemes can also exploit knowledge about the order in which transactions commit. For

example, under backward validation, a transaction that executed an unsuccessful debit will be

allowed to commit before (but not after) a concurrent transaction that executed a conflicting credit,

while pessimistic locking would have introduced a delay.

Credit /Ok Debit /Ok Debit/Over

Credit /Ok X X

Debit /Ok X X X

Debit/Over X X X

Table 4 -4 : Invocation/Invocation Conflict for Account

5. Mixing Pessimistic and Optimistic Methods
The previous section showed that objects employing optimistic and pessimistic techniques can be

used together in a single system. This section shows that optimistic and pessimistic techniques can

also be combined within a single object. For example, consider an Account whose balance is

expected to cover all debits, but for which concurrent debits are frequent. Optimistic techniques are

well suited for resolving the infrequent conflicts between credits and debits, but poorly suited for the

more frequent conflicts between debits. A mixed scheme could exploit the strengths of each method

by using pessimistic techniques to prevent "high-r isk" confl icts, reserving optimistic methods to

detect " low-risk" conflicts.

Mixed conflict-based validation is implemented as follows. After a transaction executes an

operation, but before it updates its intentions list, it requests a pessimistic lock for that event.

Pessimistic locks are related by a pessimistic conflict relation. If any other transaction holds a

conflicting lock, the lock is refused, the event is discarded, and the operation is later retried. (The

invocation may return a different result when it is retried.) If the lock is granted, the intentions list is

updated, and the response is returned to the client. A transaction's pessimistic locks are released

when it commits or aborts. When the transaction commits, validation proceeds as before.

Unlike optimistic conflict relations, pessimistic relations must be symmetric, since the order in which

transactions eventually commit is unknown when pessimistic conflicts are detected. The fundamental

constraint governing an object's optimistic and pessimistic confl ict relations is the following: their

13

union must be a serial dependency relation. An empty pessimistic relation yields the conflict-based

validation scheme of Section 4, and an empty optimistic relation yields a type-specific two-phase

locking scheme. Numerous possibilities lie between these two extremes; the appropriate balance

between pessimism and optimism depends on the expected frequency of each conflict.

The mixed protocol is modeled by adding the following state component to both the forward and

backward validation automata:

P-Lock: EVENT 2 T R A N S

P-Lock(e) is the set of transactions that hold pessimistic locks for e. Initially, all such sets are empty.

Pessimistic lock conflicts are governed by a pessimistic confl ict relation >~ P C EVENTXEVENT . The

precondition for A to execute e has an additional clause:

If e > - p e' or e' > - p e then P-Lock(e')—{A} = 0 .

Note that lock conflicts are determined by the symmetric closure of >^ p . Afterwards, the transaction

is granted a pessimistic lock for the event.

P-Lock'(e) = P-Lock(e) U { A }

Finally, a transaction's pessimistic locks are released when it commits or aborts.

Pessimistic conflicts prevent concurrent transactions from executing confl ict ing events:

Lemma 10: For a mixed (forward or backward) validation automaton, if A and A' are
concurrent active transactions, and e is an event in Intentions(A), then there is no e' in
Intentions(A') such tha te > - p e \

Proof : The precondition for A to execute e ensures that the property holds initially, and it
prevents any other transaction from violating the property while A is active.

Define a mixed automaton's confl ict relation to be > - p U > - Q .

Lemma 1 1 : For any mixed forward validation automaton whose confl ict relation is a
serial dependency relation, Pernrlntentions(A) is legal for all active A.

Proof : As before, it is enough to show that Pernrlntentions(A) remains legal after the
commit of a distinct transaction A1. By the induction hypothesis, Perm' =
Perm*lntentions(A') is legal. There is no e in Intentions(A) and e' in Intentions(A') such
that e > - Q e' (Lemma 3) or e > - p e' (Lemma 10). Because > - p U >^- 0 is a serial
dependency relation, Perm'*lntentions(A) is legal by Lemma 2.

Lemma 12: For any mixed backward validation automaton whose confl ict relation is a
serial dependency relation, Perm'lntentions(A) is legal for all valid A.

Proof : If A1 commits without invalidating /\, there is no e in Intentions(A) and e' in
Intentions(A') such that e > - Q e' (Lemma 7) or e > - p e' (Lemma 10), therefore
Perm'mlntentions(A) is legal by Lemma 2.

The proofs of the remaining correctness and optimality theorems are omitted for brevity, since they

are almost identical to their analogs in the previous section.

Theo rem 13: A mixed forward validation automaton whose conflict relation is a serial
dependency relation will accept only hybrid atomic schedules.

14

Theorem 14 : A mixed forward validation automaton whose conflict relation is a not
serial dependency relation will accept a schedule that is not hybrid atomic.

Theorem 15 : A mixed backward validation automaton whose conflict relation is a serial
dependency relation will accept only hybrid atomic schedules.

Theorem 16 : A mixed backward validation automaton whose conflict relation is a not
serial dependency relation will accept a schedule that is not hybrid atomic.

6. State-Based Validation
Although conflict-based validation accepts more interleavings than other optimistic schemes, it will

nevertheless restart certain transactions unnecessarily. For example, one debiting transaction need

not be invalidated by another if the balance covers both debits. The optimality proofs given above

imply that no scheme, optimistic or pessimistic, can permit concurrent debits simply on the basis of

conflicts between pairs of events. Instead, the accuracy of validation can be enhanced only by taking

objects' states into account, as in the optimistic counter management scheme of IMS/VS [10]. Such

state-based validation may be more expensive than confl ict-based validation, since it may (at worst)

amount to re-executing part of the transaction. Nevertheless, state-based validation may be cost-

effective in special cases where predefined conflicts are too restrictive, and where validation

conditions can be evaluated efficiently.

Both forward and backward validation can exploit state information. For forward validation, A may

commit only if:

For all A' active and distinct from A, Perm # lntentions(A)«lntentions(A') is legal.

For backward validation, A may commit only if:

Pernrrlntentions(A) is legal.

These formulations reveal an important practical asymmetry between forward and backward state-

based validation: forward validation is strictly more expensive. This observation is in contrast to

conflict-based validation, where forward and backward validation are roughly equivalent in run-time

cost. Consequently, only backward validation is considered in this section.

A predicate P[e] on histories is a validating predicate for e if:

P[e](h) => I r e is legal.

A validating predicate is optimal if the implication is mutual. Validating predicates can be extended to

histories in the obvious way:

P[g-e](h) = P[g](h) A P[e](h-g)

As it executes, each transaction builds up a validating predicate for its intentions list. The transaction

is validated by applying this predicate to the object's permanent state.

The cost of conflict-based validation is largely type-independent, but the cost of state-based

15

validation depends on type-specific properties: how compactly validating predicates can be

represented, how efficiently they can be evaluated, and how many additional interleavings they

validate. The following idealized implementation of an Account provides an "existence proof" that

state-based validation can be effective for certain data types. An Account is modeled as an

automaton with the following components:

Bal: INT Clock: T IMESTAMP

Low: TRANS - > INT Committed: 2 T R A N S

High: TRANS - > INT Aborted: 2 T R A N S

Change: TRANS —> INT

Bal is the object's permanent state, represented here as a balance. Each transaction's validating

predicate is encoded by two quantities: Low(A) is the transaction's lower bound on the current

balance (initially zero), and High(A) is the transaction's current upper bound (initially unbounded).

Change(A) is the transaction's intentions list, represented here simply as a net change to the balance.

Account events have the following pre- and postconditions. For A to execute Debit(k)/Ok(),

Pre: Bal + Change(A) > k

Post: Change'(A) = Change(A)—k

Low'(A) =s max(Low(A),k—Change(A)),

for Debit(k)/Overdraft(),

Pre: Bal + Change(A) < k

Post: High'(A) = min(High(A),k—Change(A))

and for Credit(k)/Ok(),

Pre: true

Post: Change'(A) = Change(A) + k.

A will be validated if and only if the committed balance lies between the observed upper and lower

bounds:

Low(A) < Bal < High(A)

After A commits, its changes are applied to the balance.
Bal' = Bal + Change(A)

An inductive argument (not given) shows that the validating predicates employed by this automaton

are correct and optimal. Moreover, the run-time cost of validation is comparable to the cost of

conflict-based validation for this particular data type.

16

7. Interaction With Replication
This section gives a brief informal summary of how optimistic techniques interact with quorum-

consensus replication [15,14] . Conflict-based validation extends readily to replication, support ing

availability properties identical to those supported by pessimistic conflict-based techniques. State-

based validation, however, has an interesting property: it places fewer constraints on availability than

pessimistic state-based techniques.

A replicated object is an object whose state is stored redundantly at multiple sites. Replicated

objects are implemented by two kinds of modules: repositories and front-ends. Repositories provide

long-term storage for the object's state, while front-ends carry out operations for clients. A client

executes an operation by sending the invocation to a front-end. The front-end merges the data from

an initial quorum of repositories, performs a local computation, and records the response at a final

quorum of repositories. A quorum for an operation is any set of sites that includes both an initial and

a final quorum for that operation. Each operation's availability is determined by its set of quorums,

thus constraints on quorum assignment determine the range of availability properties realizable by

replication.

Because state information for replicated objects is distributed, it is convenient for validation to use

conflicts between invocations and events rather than between pairs of events. Validation based on

invocation/event conflict is less effective, since it uses less information, but it requires less message

traffic. The notion of serial dependency is extended to relations between invocations and events as

follows. A relation >- between invocations and events induces a relation >- ' between pairs of events:

e e' if e.inv >- e', where e.inv denotes the invocation part of the event e. >- C INVOCATION X

EVENT is an (invocation/event) serial dependency relation if the induced relation between events is an

(event/event) serial dependency relation.

For forward validation, each repository maintains an optimistic lock for each invocation. A

transaction acquires an optimistic lock at each repository in the invocation's initial quorum. A

transaction is validated if and only if no other transaction holds a confl icting optimistic lock at any

repository in the transaction's final quorums. For backward validation, each repository keeps track of

First(AJ), the logical time when A first executed the invocation / at that repository, and Last(e), the

commit timestamp of the most recent transaction to execute e at that repository. A transaction is

validated if and only if for each invocation / of A and each conflicting event e: Last(e) < First(Aj') at

each repository in the transaction's initial quorums.

The following is a necessary and sufficient correctness condit ion for both schemes: the

intersection of the confl ict relation with the quorum intersection relation must be an

17

(invocation/event) serial dependency relation. (In practice, they would be identical.) This

requirement ensures that any conflict will be detected at the non-empty intersection of two quorums,

causing validation to fail. This condition is identical to that imposed by consensus locking [14], a

confl ict-based pessimistic scheme.

While conflict-based validation can be done at repositories, state-based validation must done at

front-ends, because the state information at any individual repository may be incomplete. For

simplicity, assume that each transaction uses a single front-end for each object. A transaction is

validated by reconstructing the permanent state from the transaction's initial quorums and applying

the validation predicate for its intentions list. Here, a necessary and sufficient correctness condit ion

is that the quorum intersection relation be a serial dependency relation.

State-based validation provides a way to circumvent certain trade-offs between concurrency and

availability imposed by pessimistic state-based methods. Using pessimistic techniques, concurrency

is enhanced at the cost of tightening constraints on quorum assignment. This trade-off is best

illustrated by an example; a systematic treatment appears elsewhere [13,14] . Consider an Account

replicated among n identical sites. Consensus locking permits T n / 2 1 distinct quorum assignments:

Debit requires any m sites, where m > n /2 , and Credit requires any n-m+ 1 sites. A more complex

pessimistic scheme that takes full advantage of state information permits exactly one quorum

assignment: both Credit and Debit require a majority of sites. The interesting observation here is that

state-based validation permits all fn/21 quorum assignments, yet it validates every interleaving

permitted by the more restrictive pessimistic scheme. The disadvantage of pessimistic schemes is

that they must perform the equivalent of both forward and backward validation: each event must be

legal when appended to its transaction's view, and the event must not invalidate any concurrent

transaction's view. In short, after-the-fact conflict detection places fewer constraints on quorum

assignment than dynamic confl ict avoidance.

8. Conclusions
I have proposed two reasons why conventional optimistic techniques are inappropriate for general-

purpose distributed systems. First, such techniques are typically designed for database applications

in which read operations predominate, an implausible assumption for many non-database

applications. Second, such techniques are typically monolithic, applying to all the data encompassed

within a system, an undesirable property in an open-ended, decentralized distributed system. This

paper has proposed new techniques to address these limitations:

• Conflict-based validation systematically exploits type-specific properties to provide more
effective validation than conventional techniques employing a simple model of read/wri te
conflicts. The problem of identifying a correct and minimal set of confl icts for an object is
shewn to be equivalent to the algebraic problem of identifying a minimal serial dependency

18

relation for the data type.

• The optimistic techniques proposed here are modular, permitting individual objects to choose
independently from optimistic, pessimistic, or mixed techniques. Optimistic techniques can be
used to resolve " low-r isk" confl icts, while standard pessimistic techniques such as two-phase
locking can be used to resolve "high-r isk" confl icts.

• Besides permitting more accurate validation, the notion of serial dependency also provides an
"upper bound" on the concurrency realizable by confl ict-based validation. An application that
needs additional concurrency must use a validation technique that takes the object's state into
account. State-based validation is a general technique that can validate any interleaving
permitted by a pessimistic method, although its run-time cost is type-dependent.

• Forward and backward confl ict-based validation have comparable run-time costs, but
backward state-based validation is easier thaa forward state-based validation.

• Conflict-based validation is readily integrated with quorum-consensus replication, at a slight
loss in concurrency. State-based validation, however, places fewer constraints on availability
than pessimistic methods that support a comparable level of concurrency.

These results suggest that optimistic concurrency control may yet have a place in general-purpose

distributed systems.

Acknowledgments
I would like to thank Beth Bottos, Dean Daniels, Dan DuChamp, Ellen Siegel, and Bill Weihl for

comments and for help in tracking down citations.

References
[1] R. Agrawal.

Concurrency control and recovery in multiprocessor database machines: design and
performance evaluation.

PhD thesis, University of Wisconsin, 1983.

[2] D. Z. Badal.
Concurrency Control overhead or closer look at blocking vs. non-blocking concurrency

control mechanisms.
In Proceedings of the 5th Berkeley Workshop, pages 55-103. 1981.

[3] M. Carey.
Modeling and Evaluation of Database Concurrency Control Algorithms.
PhD thesis, University of California, Berkeley, September, 1983.

[4] S. Ceri and S. Owicki.
On the use of optimistic methods for concurrency control in distributed databases.
In Proceedings of the 6th Berkeley Workshop, pages 117-130. 1982.

[5] A. Chan, S. Fox, W. T. Lin, A. Nori, and D. Ries.
The implementation of an integrated concurrency control and recovery scheme.
In Proceedings of the 1932 SIGMOD Conference. ACM SIGMOD, 1982.

19

D. J. Dubourdieu.
Implementation of distributed transactions.
In Proceedings 1982 Berkeley Workshop on Distributed Data Management and Computer

Networks, pages 81 -94. 1982.

C. Dwork and D. Skeen.
The Inherent Cost of N o n l o c k i n g Commitment.
In Proceedings of the Second Annual Symposium on Principles of Distributed Computing,

pages 1-11. ACM, August, 1983.

K. P. Eswaran, J. N. Gray, R. A. Lorie, and I. L. Traiger.
The notion of consistency and predicate locks in a database system.
Communications ACM 19(11):624-633, November, 1976.

P. Franaszek, and J. T. Robinson.
Limitations of concurrency in transaction processing.
ACM Transactions on Database Systems 10(1):1-28, March, 1985.

D. Gawlick.
Processing 'hot spots' in high performance systems.
In Proceedings COMPCON'85. 1985.

J. Gray.
Notes on Database Operating Systems.
Lecture Notes in Computer Science 60.
Springer-Verlag, Berlin, 1978, pages 393-481.

T. Harder.
Observations on optimistic concurrency control schemes.
Information Systems 9:111-120, June, 1984.

M.P. Herlihy.
Comparing how atomicity mechanisms support replication.
In Proceedings of the 4th annual ACM SIGACT-SIGOPS Symposium on Principles of

Distributed Computing. August, 1985.

M.P. Herlihy.
Availability vs. atomicity: concurrency control for replicated data.
Technical Report CMU-CS-85-108, Carnegie-Mellon University, February, 1985.

M.P. Herlihy.
A quorum-consensus replication method for abstract data types.
ACM Transactions on Computer Systems 4(1), February, 1986.

H. F. Korth.
Locking primitives in a database system.
Journal of the ACM 30(1), January, 1983.

H.T. Kung and J.T. Robinson.
On optimistic methods for concurrency control.
ACM Transactions on Database Systems 6:213-226, June, 1981.

L. Lamport.
Time, clocks, and the ordering of events in a distributed system.
Communications of the ACM 21 (7):558-565, July, 1978.

20

G.Lausen.
Concurrency control in data base systems: a step towards ihe integration of optimistic

methods and locking.
In Proceedings of ACM '82. 1982.

G. Lausen.
Formal Aspects of optimistic concurrency control in a mulliversion data base system.
Information Systems 8(4):291-301,1C83.

D. A. Menasce, and N. Nakanishi.
Optimistic versus pessimistic concurrency control mechanisms in daia base management

systems.

Information Systems 7(1):13-27,1982.

J. E. B. Moss.
Nested Transactions: An Approach to Reliable Distributed Computing.
Technical Report MIT/LCS/TR-260, Massachusetts Institute of Technology Laboratory for

Computer Science, April, 1981.
C.H. Papadimitriou.
The serializability of concurrent database updates.
Journal of the ACM 26(4):631 -653, October, 1979.

D. Reed.
Implementing atomic actions on decentralized data.
ACM Transactions on Computer Systems 1(1):3-23, February, 1983.

Y. C. Tay, N. Goodman, and R. Suri.
Performance evaluation of locking in databases: a survey.
Technical Report TR-17-84, Harvard Aiken Laboratory, 1984.

R.H. Thomas.
A solution to the concurrency control problem for multiple copy databases.
In Proc. 16th IEEE Comput. Soc. Int. Conf. (COMPCON). Spring, 1978.

W. Weihl.
Data-Dependent concurrency control and recovery.
In Proceedings of the 2nd annual ACM SIGACT-SIGOPS Symposium on Principles of

Distributed Computing. August, 1983.

