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Abstract 

A concurrency control technique is optimistic if it allows transactions to execute without 
synchronization, relying on commit-time validation to ensure serializability. This paper describes 
several new optimistic concurrency control techniques for objects in distributed systems, proves their 
correctness and optimality properties, and characterizes the circumstances under which each is 
likely to be useful. These techniques have the following novel aspects. First, unlike many methods 
that classify operations only as reads or writes, these techniques systematically exploit type-specific 
properties of objects to validate more interleavings. Necessary and sufficient validation condit ions 
are derived directly from an object's data type specification. Second, these techniques are modular: 
they can be applied selectively on a per-object (or even per-operation) basis in conjunction with 
standard pessimistic techniques such as two-phase locking, permitting optimistic methods to be 
introduced exactly where they will be most effective. Third, when integrated with quorum-consensus 
replication, these techniques circumvent certain t radeof fs between concurrency and availability 
imposed by comparable pessimistic techniques. Finally, the accuracy and efficiency of validation are 
further enhanced by some technical improvements: distributed validation is performed as a side-
effect of the commit protocol, and validation takes into account the results of operations, accepting 
certain interleavings that would have produced delays in comparable pessimistic schemes. 
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1 . Introduction 
Informally, optimistic concurrency control is based on the premise that it is more effective to 

apologize than to ask permission. Transactions execute without synchronization, but before a 

transaction is allowed to commit, it is validated to ensure that it preserves atomicity. If validation 

succeeds, the transaction commits; otherwise the transaction is aborted and restarted. This paper 

proposes new optimistic concurrency control techniques for objects in distributed systems, proves 

their correctness and optimality properties, and characterizes the circumstances under which each is 

likely to be useful. 

In conventional optimistic techniques, operations are classified simply as reads or writes, and 

transactions are validated by analyzing read/wri te conflicts between concurrent transactions. These 

techniques are intended only for applications where reads predominate; they are poorly suited for 

general-purpose applications such as banking or reservations where write operations occur 

frequently at "hot spots" such as counters, account balances, or queues. A novel aspect of the 

techniques proposed here is that they validate more interleavings by systematically exploiting type-

specific properties of objects to recognize when concurrent "wr i te" operations need not conflict. An 

object's validation conditions are derived directly from its data type specification, and the derivation 

technique is applicable to objects of arbitrary type. These techniques are optimal in the sense that no 

method using the same information can validate more interleavings. 

Any optimistic scheme, however clever, is cost-effective only if validation succeeds sufficiently 

often. Numerous studies (cited below) have shown that the success rate of validation depends 

critically on the nature and frequency of transaction conflict. In large systems, it is reasonable to 

expect that different objects will have different patterns of confl ict, and that individual objects' 

patterns may change over time. These observations suggest that optimistic techniques are cost-

effective only under specialized circumstances, while pessimistic techniques are more robust. If 

optimistic techniques are to be useful in general-purpose systems, it must be possible to apply them 

selectively in conjunction with appropriate pessimistic techniques. (See Lausen[19] for a similar 

argument.) Even for pessimistic techniques, however, the compatibility of distinct mechanisms is a 

non-trivial question. For example, two-phase locking [8] and multiversion timestamping [24] cannot 

be used together in a single system, because they may serialize transactions in incompatible orders. 

A novel aspect of the techniques proposed here is that they are compatible with a large class of 

standard pessimistic techniques, including two-phase locking, thus they can be applied selectively on 

a per-object (or even per-operation) basis exactly where they are most cost-effective. 

Optimistic and pessimistic methods behave differently when integrated with quorum-consensus 

replication [15]. Pessimistic techniques trade concurrency for availability; weakening the constraints 
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on one may tighten the constraints on the other [13,14] . Optimistic techniques are different: 

enhancing validation to accept more interleavings has no effect on availability. 

The accuracy and efficiency of validation are further enhanced by two technical improvements. 

First, distributed validation requires no additional messages, since it is performed as a side-effect of 

the commit protocol. Second, because operations are validated after they have occurred, validation 

can take into account the results of invocations, permitting certain interleavings to be validated that 

would have produced delays in comparable locking schemes. 

This paper is organized as follows. Section 2 surveys some related work, and Section 3 describes a 

model of computation. Section 4 describes conflict-based validation, a simple validation technique 

based on predefined confl icts. Section 5 describes a scheme that permits pessimistic and optimistic 

techniques to be combined in a single object. Section 6 describes state-based validation, a more 

complex scheme that validates additional interleavings by exploiting knowledge about the object's 

state. Section 7 examines how optimism interacts with replication, and Section 8 closes with a 

discussion. 

2. Related Work 
Perhaps the earliest concurrency control scheme to use validation is that of Thomas [26]. Kung and 

Robinson [17] have proposed a centralized optimistic method based on Read/Write conflicts. Ceri 

and Owicki [4] have extended Kung and Robinson's method to permit validation in distributed 

systems. Lausen [19] has proposed a centralized optimistic scheme integrating two-phase locking 

with Kung and Robinson's scheme, and has also shown that several general formulations of the 

validation problem are NP-complete [20]. Harder [12] has distinguished between backward 

validation, in which each transaction checks that its own results have not been invalidated by 

concurrent transactions, and forward validation, in which each transaction checks that its own effects 

will not invalidate any concurrent transaction's results. 

IMS/VS [10] uses an optimistic technique to reduce contention for shared counters. Like the more 

general techniques proposed in this paper, IMS/VS mixes pessimistic and optimistic techniques, and 

exploits type-specific properties of counters to make validation effective. 

A system of logical clocks [18] keeps track of orderings and dependencies among events. 

Timestamps generated by logical clocks provide a simple and efficient technique for extending the 

natural partial order of events in a distributed system to an arbitrary total order. The distributed 

validation protocol used in this paper generalizes Kung and Robinson's centralized transaction 

numbering scheme, and it is simpler and requires fewer messages than that of Ceri and Owicki [4]. 
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Numerous studies have compared the performance of pessimistic and optimistic techniques 

[ 1 , 2 , 3 , 9 , 2 1 , 2 5 ] . These studies have yielded a variety of conclusions, some in apparent 

disagreement. Nevertheless, one particular conclusion seems justified: the effectiveness of 

optimistic techniques depends on the distribution of conflicts in subtle and complex ways. In general-

purpose distributed systems, where such predictions may be difficult and miscalculation expensive, 

optimistic techniques are most likely to be useful if they can be applied to individual objects rather 

than to entire systems. 

Weihl [27] has developed analytic techniques for characterizing when atomicity mechanisms are 

compatible. The techniques proposed here satisfy hybrid atomicity, and are compatible with a wide 

variety of pessimistic techniques, including two-phase locking [8 ,16 ,22 ] , as well as schemes that 

combine locking with timestamps [5, 6 ,14] . 

3. Assumptions and Definitions 
Distributed systems are subject to two kinds of faults: sites may crash and communication links may 

be interrupted. A widely-accepted technique for preserving consistency in the presence of failures 

and concurrency is to organize computations as sequential processes called transactions. 

Transactions are atomic, that is, serializable and recoverable. Serializability means that transactions 

appear to execute in a serial order [23], and recoverability means that a transaction either succeeds 

completely, or has no effect. A transaction that completes all its changes successfully commits] 

otherwise it aborts, and any changes it has made are undone. A transaction that has neither 

committed nor aborted is active. Some form of atomic commitment protocol [7,11] ensures that 

commits are atomic, and non-volatile storage ensures that changes are not destroyed by later 

failures. 

The basic containers for data are called objects. Each object has a type, which defines a set of 

possible states and a set of primitive operations that provide the (only) means to create and 

manipulate objects of that type. An event is a pair consisting of an operation invocation and a 

response. For example, a bank account might be represented by an object of type Account whose 

state is given by a non-negative dollar amount, initially zero. The Account data type provides Credit 

and Debit operations. Credit increments the account balance: 

C r e d i t = O p e r a t i o n ( s u m : D o l l a r ) . 

Debit attempts to decrement the balance: 

D e b i t = O p e r a t i o n ( s u m : D o l l a r ) S i g n a l s ( O v e r d r a f t ) . 

If the amount to be debited exceeds the balance, the invocation signals an exception, leaving the 

balance unchanged. For brevity, a debit that returns normally is referred to as a successful debit, 

otherwise it is an attempted overdraft. 
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An object's state is modeled by a sequence of events called a history. For example, 

Credit($5)/Ok() 
Credit($6)/Ok() 
Debit($10)/Ok() 
Debit($2)/Overdrawn() 

is a history for an Account. A specification for an object is the set of permissible histories for that 

object. For example, the specification for an Account object consists of histories in which the 

balance covers any successful debit, and fails to cover all unsuccessful debits. A legal history is one 

that is included in the object's specification. Histories are denoted by lower-case letters. 

In the presence of failure and concurrency, an object's state is given by a schedule, which is a 

sequence of operation executions, transaction commits, and transaction aborts. To keep track of 

interleaving, a transaction identifier is associated with each step in a schedule. For example, the 

following is a schedule for an Account: 

Credit($5)/Ok() A 
Credit($6)/Ok() B 
Commit A 
Debit($10)/Ok() B 
Commit B 

Here, A and B are transaction identifiers. The ordering of operations in a schedule reflects the order 

in which the object returned responses, not necessarily the order in which it received invocations. 

Schedules are denoted by upper-case letters. 

(Serial) histories and (concurrent) schedules are related by the notion of atomicity. Let > denote a 

total order on committed and active transactions, and let H be a schedule. The serialization of H in 

the order > is the history h constructed by reordering the events in H so that if 8 > A then the 

subsequence of events associated with A precedes the subsequence of events associated with 8. H 

is serializabfe in the order 3> if h is legal. H is serializable if it is serializable in some order. H is atomic 

if the subschedule associated with committed transactions is serializable. An object is atomic if all of 

its schedules are atomic. 

A system encompassing multiple objects is atomic if all component objects are atomic and 

serializable in a common order. The optimistic mechanisms introduced in this paper serialize 

transactions in the order they commit (as observed by a system of logical clocks [18]), and are thus 

compatible with pessimistic methods that induce the same ordering (e.g., [5, 6, 8, 14, 16, 22]). 

Following the terminology of Weihl [27], a schedule is hybrid atomic if it is serializable in commit 

order. 



5 

4. Conflict-Based Validation 
This section introduces conflict-based validation, an optimistic concurrency control mechanism 

which uses predefined confl icts between pairs of events for validation. This approach is the 

optimistic analog of locking mechanisms, which use similar predefined conflicts to introduce delays. 

A precise definition of confl ict is given below, but for now it is enough to say that two transactions that 

execute no confl icting events can be serialized in either order, thus neither can invalidate the other. 

(This notion is weaker than commutativity, which requires that both serializations define equivalent 

states.) 

Internally, an object is implemented by two components: a permanent state that records the effects 

of committed transactions, and a set of intentions lists that record each active transaction's tentative 

changes. When a transaction commits, the changes in its intentions list are applied to the permanent 

state. For example, a bank account's permanent state is the current balance, and its intentions lists 

record each active transaction's net credit or debit. 

Each transaction is validated during the first phase of commitment. When an object receives the 

prepare message, it validates the transaction locally (using techniques described below) before 

recording the transaction's intentions list on non-volatile storage. If all participants validate the 

transaction, the co-ordinator issues the timestamped commit messages. An object can validate 

transactions concurrently if neither transaction's events confl ict with the other's, but the object must 

apply the intentions lists in the order of commit. Validation requires no messages in addition to those 

needed for the standard commit protocol. 

The following extension to the two-phase commit protocol ensures that intentions lists are applied 

in the proper order. When a site receives the prepare message from the coordinator, it generates a 

prepared timestamp for that transaction before responding with its acknowledgment. After the 

coordinator has received acknowledgments from all participants, it generates a commit timestamp, 

which is later than any of its prepared timestamps. The commit timestamp is forced to stable storage 

along with the commit record, and is included with each commit message to participants. A site may 

apply a transaction's intentions as soon as it has processed commit or abort messages from all 

transactions with earlier prepared timestamps. Note that no messages have been added to the 

standard commit protocol. 

This section considers two distinct validation techniques [12]: backward validation ensures that the 

transaction's results have not been invalidated by the effects of a recently committed transaction, 

while forward validation ensures that the transaction's effects will not invalidate the results of any 

active transaction. Under conflict-based validation, the two approaches have comparable run-time 
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costs. 

4 . 1 . Ser ia l Dependency 

This section gives a formal characterization of what it means for events to conflict. Let >- be a 

relation between pairs of events, and let h be a legal history. A legal subhistory g of h is closed under 

>- if whenever it contains an event e it also contains every earlier event e' of h such that e >- e'. A 

subhistory g is a view of h for e under >- if g is closed under and if g contains every e' of h such 

that e >- e \ Informally, >- is a serial dependency relation if whenever an event is legal for a view, it is 

legal for the complete history. More precisely, let denote concatenation: 

De f i n i t i on 1 : A relation >^ is a serial dependency relation if g • e is legal implies that 
h • e is legal, for all events e and all legal histories /?, such that g is a view of h for e under 

The optimistic techniques proposed here are correct if and only if conflict between events is defined 

by a serial dependency relation. Of primary interest are minimal relations, having the property that no 

smaller relation is also a-serial dependency relation. As discussed below in Section 7, serial 

dependency is also important for quorum-consensus replication. 

The Account data type has a unique minimal serial dependency relation, shown in Table 4 -1 . Here, 

successful debits do not depend on prior credits, because the debit cannot be invalidated by 

increasing the balance. Attempted overdrafts do depend on prior credits, however, because the 

Overdraft exception can be invalidated by increasing the balance. The FIFO Queue data type has two 

distinct minimal serial dependency relations, shown in Tables 4-2 and 4-3. (Here, Deq blocks when 

the queue is empty.) In the first relation, Enq events depend on no other events, but Deq events 

depend on ail other events. In the second relation, Enq events depend on one another, Deq events 

depend on one another, but Enq events do not depend on Deq events, and vice-versa. 

The next two sections present formal models for forward and backward validation, together with 

proofs of correctness and optimality. Correctness means that an object whose conflict relation is a 

serial dependency relation will validate only hybrid atomic schedules, and optimality means that an 

object whose conflict relation is not a serial dependency relation will validate some schedule that is 

not hybrid atomic. 

4 . 2 . F o r w a r d Va l ida t ion 

Forward validation ensures that a committing transaction cannot invalidate any active transactions. 

When a transaction executes an event at an object, the object grants an optimistic lock for that event. 

That object will validate a transaction A If and only if there is no other active transaction that holds an 

optimistic lock for an event that conflicts with an event in the intentions list for A. A transaction's 

optimistic locks are released when it commits or aborts. 
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Credit /Ok 

Debit /Ok 

Debit/Over 

Credi t /Ok 

X 

Debit /Ok Debit/Over 

Tab le 4 - 1 : Serial Dependency Relation for Account 

Enq/Ok Deq/Ok 

Enq/Ok 

Deq/Ok 

Tab le 4 - 2 : First Serial Dependency Relation for Queue 

Enq/Ok 

Enq/Ok 

X 

Deq/Ok 

Deq/Ok 

Tab le 4 - 3 : Second Serial Dependency Relation for Queue 

An object is modeled by an automaton that accepts certain schedules. The automaton's state is 

defined using the following primitive domains: TRANS is the set of transaction identifiers, EVENT is the 

set of events, T IMESTAMP is a totally ordered set of timestamps with minimal element ± . The derived 

domain HISTORY is the set of sequences of events, x -+ Y denotes the set of partial maps from x to Y. 

A forward validation automaton has the following state components: 
Perm: HISTORY 

Intentions: TRANS ~+ HISTORY 

O- Lock: EVENT - + 2 T R A N S 

Clock: T IMESTAMP 

Committed: 2 T R A N S 

Aborted: 2 T R A N S 

The Perm component represents the object's permanent state, initially empty. Intentions(A) is the 
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sequence of events executed by transaction A, initially none. O-Lock(e) is the set of active 

transactions that hold an optimistic lock for e, initially none. The Clock component models a system 

of logical clocks. Committed and Aborted keep track of the transactions that have committed and 

aborted; each is initially empty. 

Each transition has a precondition and a postcondition. In postconditions, primed component 

names denote new values, and unprimed names denote old values. For transaction A to execute 

event e, 

Pre: A £ Committed. 

PernrHntentions(A)«e is legal. 

Post: Clock' > Clock 

Intentions'(A) = lntentions(A)«e 

O-Lock'(e) = O-Lock(e) U {A} . 

The transition can occur only if the transaction has not already committed, and if the operation 

appears to be legal. The transition causes the clock to be advanced, the event to be appended to the 

transaction's intentions list, and the transaction to be given an optimistic lock for the event. 

Validation is governed by aconflict relation C EVENTXEVENT . For A to commit, 

Pre: A $ Committed U Aborted. 

If e is in Intentions(A) and e > - 0 e' then O-Lock(e')—{A} = 0 . 

Post: Clock' > Clock 

Perm' = PernrHntentions(A) 

O-Lock'(e) = O-Lock(e)—{A} 

A transaction may commit only if it has not already committed or aborted, and only if no other 

transaction holds an optimistic lock for a conflicting event. Afterwards, the clock is advanced, the 

transaction's intentions list is appended to the permanent state, and the optimistic locks are released. 

Finally, a transaction may abort only if it has not already committed. When a transaction aborts, it is 

added to the set of aborted transactions and its optimistic locks are released. 

The first step toward proving correctness is the following lemma, which states that any sequence of 

events can be inserted into the middle of a history provided no later event serially depends on an 

inserted event. 
Lemma 2: If >- is a serial dependency relation, /, g, and h histories such that f*g and f9h 
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are legal, and there is no e in h and e' in g such that e >- e \ then f*yh is legal. 

Proof : The proof is by induction on the length of h. If h is empty, the result is immediate. 
Otherwise, let h = / ; ' *e . f*h' is a view of fmgmh' for e, because f*gmhl is legal by the 
induction hypothesis and /•/?' is legal by assumption. Because f*h'*e is legal and >~ is a 
serial dependency relation, /•g # /?'*e = f9g*h is legal. 

The following lemma states that forward validation ensures that no active transaction can be 

invalidated by the commit of another transaction. Moreover, no active transaction ever sees an 

inconsistent state: 

Lemma 3: For any forward validation automaton whose conflict relation is a serial 
dependency relation, Pernrlntentions(A) is legal for all active A. 

Proof : The argument proceeds by induction on the number of transactions that have 
committed, showing that Perm*lntentions(A) remains legal when another transaction A1 

commits. By the induction hypothesis, Perm' = Perm'lntentions(A') is legal. The 
precondition for the commit of A' implies that there is no e in Intentions(A) and e' in 
Intentions(A') such that e > - 0 e \ Because > - 0 is a serial dependency relation, 
Perm'*lntentions(A) is legal by Lemma 2. 

The correctness theorem for forward validation is a direct consequence of Lemma 3: 

T h e o r e m 4 : A forward validation automaton whose confl ict relation is a serial 
dependency relation will accept only hybrid atomic schedules. 

Proof : Perm is the serialization in commit order of the schedule accepted by the 
automaton, and Lemma 3 implies that each commit carries Perm from one legal state to 
another. 

Serial dependency is optimal in the following sense: if a forward validation automaton's confl ict 

relation is not a serial dependency relation, then it will accept some schedule that is not hybrid 

atomic. The proof is based on the following lemma, which states that if >- is not a serial dependency 

relation, then there exists a counterexample in which the view is missing exactly one event. 

Lemma 5: If >~ is not a serial dependency relation, then there exist a history h and an 
event e such that h has a v iewg of e missing exactly one event, g*e is legal, but fre is not. 

Proof : If >- is not a serial dependency relation, then there exist a history h and an event 
e such that h has a view g of e where g # e is legal, but h*e is not. Suppose g is missing k 
events of h. Consider the sequence of histories / = 0,...,/<}, where hQ = g, /?k = /?, and 
h. 1 is derived from h.^ by restoring its earliest missing event. 

If there exists an / such that h. is legal but /?. is not, then there exist histories a, b, and 
c, and events e 1 and e 2 such that h.^ can be written as a * b ' e 2 * c , and h. ^ t as a # e 1

, b , e 2

# c , 
where a*e^b is legal, and ame^b9e2 is not. But a*b is a view of ^ e ^ b for e 2 , proving the 
lemma. 

Otherwise, suppose h. is legal for all / between 0 and k. Because hQ*e is legal and hk*e is 
not, there must exist an / such that h.me is legal but h. , *e is not. This h. is a view of h. . 
for e, proving the lemma. 

Lemma 5 provides a simple proof of optimality. 
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T h e o r e m 6 : Any forward validation automaton whose confl ict relation is not a serial 
dependency relation will accept a schedule that is not hybrid atomic. 

Proof : Since > - Q is not a serial dependency relation, there exist by Lemma 5 an event e 
and a legal history h such that g is a view of h for e missing exactly one event e \ g9e is 
legal, but h*e is not. Let g = amb and h = ame'*b. Transaction A executes a and commits, 
leaving Perm = a. B executes b followed by e, and C executes e\ C commits, followed by 
8. Both B and C are validated, but the final value of Perm is the illegal history a # e ' # b * e = 
hme. 

4 . 3 . B a c k w a r d Va l i da t i on 

Backward validation ensures that the committ ing transaction has not been invalidated by the recent 

commit of another transaction. Each object keeps track of Last(e), the most recent commit timestamp 

for a transaction that executed the event e. For each active transaction A, each object also keeps 

track of First(A,e), the logical time when A first executed e. An object will validate A if and only if 

Last(e') < Fir$t(A,e) for each event e' that conflicts with each event e executed by7\. This condit ion 

ensures that A has not been invalidated by a transaction that committed since A executed e. 

To model backward validation, the O-Lock component is replaced by: 

First: TRANS X EVENT TIMESTAMP 

Last: EVENT - * T IMESTAMP 

The precondition for A to execute e is unchanged. The postcondition is slightly different: instead of 

granting an optimistic lock to A, First (A, e) is updated if necessary. 

First'(A,e) = if (First(A,e) = ± ) 
then Clock 
else First(A,e) 

For A to commit, 

Pre: A £ Committed U Aborted. 

If e is in Intentions(A) and e > - Q e' then First(A,e) > Last(e'). 

Post: Clock' > Clock 

Perm' = PernrHntentions(A) 

If e is in in Intentions(A) then Last'(e) = Clock. 

A transaction may commit only if no recently committed transaction has executed a confl icting event. 

Afterwards, the Last timestamp is updated for each event executed by the transaction. 

An active transaction is defined to be valid if the precondition for its commit is satisfied. Backward 

validation ensures that all valid transactions view consistent states: 
Lemma 7: For any backward validation automaton whose confl ict relation is a serial 
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dependency relation, Permmlntentions(A) is legal for any valid A. 

Proof: It is enough to show that if the commit of A1 does not invalidate A, then 
Permmlntentions(A) remains legal. If A remains valid, there is no e in Intentions(A) and e' in 
Intentions(A') such that e >-Q e \ therefore Perm'*lntentions(A) is legal by Lemma 2. 

The basic correctness theorem for backward validation is a direct consequence of Lemma 7: 

Theorem 8 : Any backward validation automaton whose conflict relation is a serial 
dependency relation will accept only hybrid atomic schedules. 

Proof: Perm is the serialization in commit order of the schedule accepted by the 
automaton, and Lemma 7 implies that each commit carries Perm from one legal state to 
another. 

Serial dependency is also optimal for backward validation: 

Theorem 9 : Any backward validation automaton whose conflict relation is not a serial 
dependency relation will accept a schedule that is not hybrid atomic. 

Proof: By the same scenario constructed for Theorem 6. 

4 . 4 . Discussion 

The Account data type illustrates how a type-specific definition of conflict allows more transactions 

to commit. Under conventional schemes employing Read/Write conflicts, both Credit and Debit 

would be classified as a combination of Read and Write operations, hence any transaction to access 

the account would either invalidate or be invalidated by any concurrent transaction. Here, there are 

fewer conflicts to invalidate transactions: a credit can invalidate an overdraft, and a successful debit 

can invalidate another successful debit. 

It is difficult to judge whether forward or backward validation is preferable for conflict-based 

validation. The run-time costs of both techniques are comparable. An advantage of forward 

validation is that all transactions observe serializable states, even those for which validation fails. 

Also, asymmetric conflicts can sometimes be resolved by postponing rather than by denying 

validation. For example, if a transaction that credited an Account discovers that an active transaction 

has attempted an overdraft, the crediting transaction might choose to postpone validation until the 

other has had a chance to commit. The principal drawback of forward validation is its extreme 

optimism: while backward validation restarts active transactions in favor of committed transactions, 

forward validation restarts active transactions in favor of other active transactions, which themselves 

may never commit. 

How do these optimistic techniques compare to pessimistic locking schemes? In most pessimistic 

schemes, a lock is acquired before invoking an operation, thus conflicts are typically defined between 

invocations, not between complete events. In optimistic schemes, by contrast, validation occurs after 

the invocations 5 results are known, thus conflicts can be defined between complete events. This 

additional information can be used to validate interleavings that would be prohibited by invocation 
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locking. For example, compare the event/event conflict relation for Account in Table 4-1 and the 

invocation/invocation conflict relation in Table 4-4. Invocation locks for credit and debit must 

conflict, but conflict-based validation will permit a credit to occur concurrently with a successful debit 

(but not an attempted overdraft), a useful distinction if most debits are expected to be successful. 

Optimistic schemes can also exploit knowledge about the order in which transactions commit. For 

example, under backward validation, a transaction that executed an unsuccessful debit will be 

allowed to commit before (but not after) a concurrent transaction that executed a conflicting credit, 

while pessimistic locking would have introduced a delay. 

Credit /Ok Debit /Ok Debit/Over 

Credit /Ok X X 

Debit /Ok X X X 

Debit/Over X X X 

Table 4 -4 : Invocation/Invocation Conflict for Account 

5. Mixing Pessimistic and Optimistic Methods 
The previous section showed that objects employing optimistic and pessimistic techniques can be 

used together in a single system. This section shows that optimistic and pessimistic techniques can 

also be combined within a single object. For example, consider an Account whose balance is 

expected to cover all debits, but for which concurrent debits are frequent. Optimistic techniques are 

well suited for resolving the infrequent conflicts between credits and debits, but poorly suited for the 

more frequent conflicts between debits. A mixed scheme could exploit the strengths of each method 

by using pessimistic techniques to prevent "high-r isk" confl icts, reserving optimistic methods to 

detect " low-risk" conflicts. 

Mixed conflict-based validation is implemented as follows. After a transaction executes an 

operation, but before it updates its intentions list, it requests a pessimistic lock for that event. 

Pessimistic locks are related by a pessimistic conflict relation. If any other transaction holds a 

conflicting lock, the lock is refused, the event is discarded, and the operation is later retried. (The 

invocation may return a different result when it is retried.) If the lock is granted, the intentions list is 

updated, and the response is returned to the client. A transaction's pessimistic locks are released 

when it commits or aborts. When the transaction commits, validation proceeds as before. 

Unlike optimistic conflict relations, pessimistic relations must be symmetric, since the order in which 

transactions eventually commit is unknown when pessimistic conflicts are detected. The fundamental 

constraint governing an object's optimistic and pessimistic confl ict relations is the following: their 
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union must be a serial dependency relation. An empty pessimistic relation yields the conflict-based 

validation scheme of Section 4, and an empty optimistic relation yields a type-specific two-phase 

locking scheme. Numerous possibilities lie between these two extremes; the appropriate balance 

between pessimism and optimism depends on the expected frequency of each conflict. 

The mixed protocol is modeled by adding the following state component to both the forward and 

backward validation automata: 

P-Lock: EVENT 2 T R A N S 

P-Lock(e) is the set of transactions that hold pessimistic locks for e. Initially, all such sets are empty. 

Pessimistic lock conflicts are governed by a pessimistic confl ict relation >~ P C EVENTXEVENT . The 

precondition for A to execute e has an additional clause: 

If e > - p e' or e' > - p e then P-Lock(e')—{A} = 0 . 

Note that lock conflicts are determined by the symmetric closure of >^ p . Afterwards, the transaction 

is granted a pessimistic lock for the event. 

P-Lock'(e) = P-Lock(e) U { A } 

Finally, a transaction's pessimistic locks are released when it commits or aborts. 

Pessimistic conflicts prevent concurrent transactions from executing confl ict ing events: 

Lemma 10: For a mixed (forward or backward) validation automaton, if A and A' are 
concurrent active transactions, and e is an event in Intentions(A), then there is no e' in 
Intentions(A') such tha te > - p e \ 

Proof : The precondition for A to execute e ensures that the property holds initially, and it 
prevents any other transaction from violating the property while A is active. 

Define a mixed automaton's confl ict relation to be > - p U > - Q . 

Lemma 1 1 : For any mixed forward validation automaton whose confl ict relation is a 
serial dependency relation, Pernrlntentions(A) is legal for all active A. 

Proof : As before, it is enough to show that Pernrlntentions(A) remains legal after the 
commit of a distinct transaction A1. By the induction hypothesis, Perm' = 
Perm*lntentions(A') is legal. There is no e in Intentions(A) and e' in Intentions(A') such 
that e > - Q e' (Lemma 3) or e > - p e' (Lemma 10). Because > - p U >^- 0 is a serial 
dependency relation, Perm'*lntentions(A) is legal by Lemma 2. 

Lemma 12: For any mixed backward validation automaton whose confl ict relation is a 
serial dependency relation, Perm'lntentions(A) is legal for all valid A. 

Proof : If A1 commits without invalidating /\, there is no e in Intentions(A) and e' in 
Intentions(A') such that e > - Q e' (Lemma 7) or e > - p e' (Lemma 10), therefore 
Perm'mlntentions(A) is legal by Lemma 2. 

The proofs of the remaining correctness and optimality theorems are omitted for brevity, since they 

are almost identical to their analogs in the previous section. 

Theo rem 13: A mixed forward validation automaton whose conflict relation is a serial 
dependency relation will accept only hybrid atomic schedules. 
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Theorem 14 : A mixed forward validation automaton whose conflict relation is a not 
serial dependency relation will accept a schedule that is not hybrid atomic. 

Theorem 15 : A mixed backward validation automaton whose conflict relation is a serial 
dependency relation will accept only hybrid atomic schedules. 

Theorem 16 : A mixed backward validation automaton whose conflict relation is a not 
serial dependency relation will accept a schedule that is not hybrid atomic. 

6. State-Based Validation 
Although conflict-based validation accepts more interleavings than other optimistic schemes, it will 

nevertheless restart certain transactions unnecessarily. For example, one debiting transaction need 

not be invalidated by another if the balance covers both debits. The optimality proofs given above 

imply that no scheme, optimistic or pessimistic, can permit concurrent debits simply on the basis of 

conflicts between pairs of events. Instead, the accuracy of validation can be enhanced only by taking 

objects' states into account, as in the optimistic counter management scheme of IMS/VS [10]. Such 

state-based validation may be more expensive than confl ict-based validation, since it may (at worst) 

amount to re-executing part of the transaction. Nevertheless, state-based validation may be cost-

effective in special cases where predefined conflicts are too restrictive, and where validation 

conditions can be evaluated efficiently. 

Both forward and backward validation can exploit state information. For forward validation, A may 

commit only if: 

For all A' active and distinct from A, Perm # lntentions(A)«lntentions(A') is legal. 

For backward validation, A may commit only if: 

Pernrrlntentions(A) is legal. 

These formulations reveal an important practical asymmetry between forward and backward state-

based validation: forward validation is strictly more expensive. This observation is in contrast to 

conflict-based validation, where forward and backward validation are roughly equivalent in run-time 

cost. Consequently, only backward validation is considered in this section. 

A predicate P[e] on histories is a validating predicate for e if: 

P[e](h) => I r e is legal. 

A validating predicate is optimal if the implication is mutual. Validating predicates can be extended to 

histories in the obvious way: 

P[g-e](h) = P[g](h) A P[e](h-g) 

As it executes, each transaction builds up a validating predicate for its intentions list. The transaction 

is validated by applying this predicate to the object's permanent state. 

The cost of conflict-based validation is largely type-independent, but the cost of state-based 
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validation depends on type-specific properties: how compactly validating predicates can be 

represented, how efficiently they can be evaluated, and how many additional interleavings they 

validate. The following idealized implementation of an Account provides an "existence proof" that 

state-based validation can be effective for certain data types. An Account is modeled as an 

automaton with the following components: 

Bal: INT Clock: T IMESTAMP 

Low: TRANS - > INT Committed: 2 T R A N S 

High: TRANS - > INT Aborted: 2 T R A N S 

Change: TRANS —> INT 

Bal is the object's permanent state, represented here as a balance. Each transaction's validating 

predicate is encoded by two quantities: Low(A) is the transaction's lower bound on the current 

balance (initially zero), and High(A) is the transaction's current upper bound (initially unbounded). 

Change(A) is the transaction's intentions list, represented here simply as a net change to the balance. 

Account events have the following pre- and postconditions. For A to execute Debit(k)/Ok(), 

Pre: Bal + Change(A) > k 

Post: Change'(A) = Change(A)—k 

Low'(A) =s max(Low(A),k—Change(A)), 

for Debit(k)/Overdraft(), 

Pre: Bal + Change(A) < k 

Post: High'(A) = min(High(A),k—Change(A)) 

and for Credit(k)/Ok(), 

Pre: true 

Post: Change'(A) = Change(A) + k. 

A will be validated if and only if the committed balance lies between the observed upper and lower 

bounds: 

Low(A) < Bal < High(A) 

After A commits, its changes are applied to the balance. 
Bal' = Bal + Change(A) 

An inductive argument (not given) shows that the validating predicates employed by this automaton 

are correct and optimal. Moreover, the run-time cost of validation is comparable to the cost of 

conflict-based validation for this particular data type. 
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7. Interaction With Replication 
This section gives a brief informal summary of how optimistic techniques interact with quorum-

consensus replication [15,14] . Conflict-based validation extends readily to replication, support ing 

availability properties identical to those supported by pessimistic conflict-based techniques. State-

based validation, however, has an interesting property: it places fewer constraints on availability than 

pessimistic state-based techniques. 

A replicated object is an object whose state is stored redundantly at multiple sites. Replicated 

objects are implemented by two kinds of modules: repositories and front-ends. Repositories provide 

long-term storage for the object's state, while front-ends carry out operations for clients. A client 

executes an operation by sending the invocation to a front-end. The front-end merges the data from 

an initial quorum of repositories, performs a local computation, and records the response at a final 

quorum of repositories. A quorum for an operation is any set of sites that includes both an initial and 

a final quorum for that operation. Each operation's availability is determined by its set of quorums, 

thus constraints on quorum assignment determine the range of availability properties realizable by 

replication. 

Because state information for replicated objects is distributed, it is convenient for validation to use 

conflicts between invocations and events rather than between pairs of events. Validation based on 

invocation/event conflict is less effective, since it uses less information, but it requires less message 

traffic. The notion of serial dependency is extended to relations between invocations and events as 

follows. A relation >- between invocations and events induces a relation >- ' between pairs of events: 

e e' if e.inv >- e', where e.inv denotes the invocation part of the event e. >- C INVOCATION X 

EVENT is an (invocation/event) serial dependency relation if the induced relation between events is an 

(event/event) serial dependency relation. 

For forward validation, each repository maintains an optimistic lock for each invocation. A 

transaction acquires an optimistic lock at each repository in the invocation's initial quorum. A 

transaction is validated if and only if no other transaction holds a confl icting optimistic lock at any 

repository in the transaction's final quorums. For backward validation, each repository keeps track of 

First(AJ), the logical time when A first executed the invocation / at that repository, and Last(e), the 

commit timestamp of the most recent transaction to execute e at that repository. A transaction is 

validated if and only if for each invocation / of A and each conflicting event e: Last(e) < First(Aj') at 

each repository in the transaction's initial quorums. 

The following is a necessary and sufficient correctness condit ion for both schemes: the 

intersection of the confl ict relation with the quorum intersection relation must be an 



17 

(invocation/event) serial dependency relation. (In practice, they would be identical.) This 

requirement ensures that any conflict will be detected at the non-empty intersection of two quorums, 

causing validation to fail. This condition is identical to that imposed by consensus locking [14], a 

confl ict-based pessimistic scheme. 

While conflict-based validation can be done at repositories, state-based validation must done at 

front-ends, because the state information at any individual repository may be incomplete. For 

simplicity, assume that each transaction uses a single front-end for each object. A transaction is 

validated by reconstructing the permanent state from the transaction's initial quorums and applying 

the validation predicate for its intentions list. Here, a necessary and sufficient correctness condit ion 

is that the quorum intersection relation be a serial dependency relation. 

State-based validation provides a way to circumvent certain trade-offs between concurrency and 

availability imposed by pessimistic state-based methods. Using pessimistic techniques, concurrency 

is enhanced at the cost of tightening constraints on quorum assignment. This trade-off is best 

illustrated by an example; a systematic treatment appears elsewhere [13,14] . Consider an Account 

replicated among n identical sites. Consensus locking permits T n / 2 1 distinct quorum assignments: 

Debit requires any m sites, where m > n /2 , and Credit requires any n-m+ 1 sites. A more complex 

pessimistic scheme that takes full advantage of state information permits exactly one quorum 

assignment: both Credit and Debit require a majority of sites. The interesting observation here is that 

state-based validation permits all fn/21 quorum assignments, yet it validates every interleaving 

permitted by the more restrictive pessimistic scheme. The disadvantage of pessimistic schemes is 

that they must perform the equivalent of both forward and backward validation: each event must be 

legal when appended to its transaction's view, and the event must not invalidate any concurrent 

transaction's view. In short, after-the-fact conflict detection places fewer constraints on quorum 

assignment than dynamic confl ict avoidance. 

8. Conclusions 
I have proposed two reasons why conventional optimistic techniques are inappropriate for general-

purpose distributed systems. First, such techniques are typically designed for database applications 

in which read operations predominate, an implausible assumption for many non-database 

applications. Second, such techniques are typically monolithic, applying to all the data encompassed 

within a system, an undesirable property in an open-ended, decentralized distributed system. This 

paper has proposed new techniques to address these limitations: 

• Conflict-based validation systematically exploits type-specific properties to provide more 
effective validation than conventional techniques employing a simple model of read/wri te 
conflicts. The problem of identifying a correct and minimal set of confl icts for an object is 
shewn to be equivalent to the algebraic problem of identifying a minimal serial dependency 
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relation for the data type. 

• The optimistic techniques proposed here are modular, permitting individual objects to choose 
independently from optimistic, pessimistic, or mixed techniques. Optimistic techniques can be 
used to resolve " low-r isk" confl icts, while standard pessimistic techniques such as two-phase 
locking can be used to resolve "high-r isk" confl icts. 

• Besides permitting more accurate validation, the notion of serial dependency also provides an 
"upper bound" on the concurrency realizable by confl ict-based validation. An application that 
needs additional concurrency must use a validation technique that takes the object's state into 
account. State-based validation is a general technique that can validate any interleaving 
permitted by a pessimistic method, although its run-time cost is type-dependent. 

• Forward and backward confl ict-based validation have comparable run-time costs, but 
backward state-based validation is easier thaa forward state-based validation. 

• Conflict-based validation is readily integrated with quorum-consensus replication, at a slight 
loss in concurrency. State-based validation, however, places fewer constraints on availability 
than pessimistic methods that support a comparable level of concurrency. 

These results suggest that optimistic concurrency control may yet have a place in general-purpose 

distributed systems. 
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