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Cali for Participation

Workshop on Performance Efficient Parallel Programming
Seven Springs, Pennsylvania
September 8-10, 1986

In 1983, a "Workshop on Multiprocessors for High Performance Parallel Computation” was held at
Seven Springs, Pennsylvania. This workshop has been devoted to a number of computer engineering
research issues in the areas of designing, implementing, programming and performance evaluating
multiprocessor systems employed for speeding up some classes of applications. The workshop has
been successful in devising the research directions and strategies, and bringing together researchers
from university and industry interested in the above topics.

At this time, a specialized workshop devoted to aspects of parallel programming technology and
challenges seems appropriate. This workshop will investigate and formulate the main research
directions in the areas of computer engineering related to the design and implementation of correct
and performance efficient parallel programs, as well as the programming technglogy required to
support the task of programming in the context of new parallel computer architectures.

The technology limitations in producing faster sequential machines together with the ever
increasing need for computer cycles in sclving numerical, symbolic and real-time problems places the
burden for substantial advance in computer performance on new computational models. Parallel
processing has been long heralded as a method to build computefs executing an extraordinary
number of instructions per unit of time. Today, commercial parallel processors have become a reality.
The main chalienge is whether these machines can be programmed to make effective use of the
increased computer power. Hence, the opportunity for parallel processing cannot be successfully
exploited without developing the basic parallel programming technology. The diversity of
architectures and the wide variation in their underlying computational models makes it particularly
hard to find general techniques for developing efficient parallel programs and general guidelines for
choosing the appropriate machine for a set of applications.

Accordingly, this workshop will emphasize the parallel programming technology required to apply
parallel solutions to problems with the objective of improving execution speed. We are considering
the following research issues as integral parts of this thrust:

» Performance efficient mapping of parallel algorithms into parallel architectures and
~ parallel programs ‘

» Application-oriented parallel programming (for numerical, symbolic, real-time and
integrated applications)



e Languages to efficiently support new parallel architectures

e Parallel language-oriented architectures (highly programmable parallel processors)
¢ Programming environments for performance efficient parallel programming

o Compiler techniques for performance efficient parallel programming

» Performance debugging

s Performance contrasting of two hardware/software parallel architectures in an
application independent way

In conclusion, we foresee this workshop to play a key role in bringing together the concerns of
designers, researchers and users of parallel processors in the area of parallel programming. In
addition, we hope to draw the main research directions in this area focussing the scope of research in
this field of computer engineering,
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Position Paper: Mapping in Parallel Computation
Fran Berman, UC San Diego

In theory, it is easy to argue that a multiprocessor is faster and more efficient
than a single processor computer. In practice, the process of implementing an
algorithm on a multiprocessor is usually machine-specific and rife with low-level
detail. The algorithm must be expressed in a language and format recognizable
by the multiprocessor which may include explicit references to the organization of
memory, the processor interconnection configuration, synchrenization protocols,
etc. In addition, the algorithm must be molded to fit the interconnection archi-
tecture of the multiprocessor: if the number of required processes in the algorithm
exceeds the resources of the multiprocessor, or if the communication structure of
the algorithm differs from the processor interconnection configuration, the algo-
rithm must be mapped and multiplexed by the programmer onto the multiproces-
SOT.

Such &ifficulties in translating an algorithm onto a multiprocessor render
parallel computing inaccessible to many programmers and limit the multiproces-
sof user community to those willing to do systems or low-level programming.
This contrasts strongly to the sequential environment where users can simply
translate their algorithms into one of the many supported high-level languages,
and generally depend upon existing systems software to perform the implementa-
tion and execution of their program on the machine. We expect that parallel
computing will be accessible to a wide community when it can offer not only fas-
ter and more efficient machines but programming tools with which to use them.

A problem fundamental to the implementation difficulties posed by parallel
computing is the mapping problem. The mapping problem occurs when there is a
mismatch between the required number of communicating processes in the algo-
rithm and number of processors in the multiprocessor, or between the communica-
tion requirements of the algorithm and the processor interconnection configuration
of the multiprocessor, or both.

Here is an example: Suppose we are interested in implementing an FFT
algorithm on a MIMD multiprocessor whose processor interconnection is
configured as a 63 node complete binary tree. The communication pattern of the
FFT requires 128 processes and performs communication between processes using
the connections of a 7-bit shuffle-exchange graph. The mapping problem is then
the problem of allocating the 128 algorithm processes to the 63 processor machine,
designating paths in the tree configuration which represent the shuffle-exchange
communication links in ths+ algorithm, and multiplexing the processes in such a
way that the execution of the mapped algorithm will produce the same results as
the execution of the original 128 process FFT when it ¢ompletes. Generally, the
process of mapping and multiplexing the algorithm is left to the programmer. As
part of our investigation of the mapping problem, we have been interested in
designing and developing software tools which perform the mapping and multi-
plexing automatically, enabling the programmer to interface with the system at a
higher level.

We began by studying the mapping problem at a theoretical level, investigat-
ing different strategies for performing mappings ([BS|). One fruitful approach was
to separate the activities of partitioning processes into groups likely to provide
performance-efficient multiplexing (contraction), allocating those groups to pro-
cessors (placement), designating the communication paths needed by the algo-
rithm (routing), and simulating the process groups at each processor site (multi-
plering). In separating these activities, we could seek performance-efficient
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solutions for each of these tasks independent of the constraints of the others.
Preliminary results of a strategy based on efficient contraction, placement, routing
and multiplexing algorithms produced optimal and near-optimal mappings on a
diverse set of benchmark examples. Encouraged by these results, we next decided
to design software tools based on this strategy which could give us more realistic
performance measurements. The system we designed and are continuing to
develope is the Prep-P system.

The Prep-P system ([BGKRSP is a software tool which automatically maps
and multiplexes a large-sized parallel algorithm into a non-shared memory MIMD
multiprocessor. In the system, the parallel algorithm is represented by an
undirected graph of bounded degree each of whose nodes is associated with a pro-
cess, all of which may run in parallel. The target multiprocessor is represented by
a fixed-size CHiP machine ([S1]), or more accurately the Poker system ({S2])
which simulates a fixed-size CHiP machine. Prep-P contracts the input graph to
an intermediate size, places and routes the intermediate-sized graph on an 8x8
CHIP lattice, and multiplexes the process codes assigned to each PE in the lattice.
The resulting code can then be run on the Poker system and will simulate the
execution of the original parallel algorithm.

The design and development of the Prep-P system has given us a chance to
investigate performance-efficient algorithms and protocols for all stages of this
mapping strategy: contraction, placement, routing, and multiplexing. Algorithms
under investigation for these tasks have included simulated annealing and local
neighborhood search for contraction, simulated annealing and Kernighan and Lin
for placement, an optimized breadth-first search for routing, and several different
approaches to multiplexing. Substantive modifications based on the requirements
of external and internal I/O, available PE memory, and the constraints of the
Poker system have made the design and development of these algorithms a com-
plex and engaging research activity.

We are currently configuring and testing the different modules for distribu-
tion to interested users with the Poker software (available from Larry Snyder at
the University of Washington) sometime next year. We are hopeful that the stra-
tegies designed and developed for the Prep-P system will be useful in developing
mapping tools for many multiprocessing environments.

References

(BS] Berman, F. and L. Snyde.. "On Mapping Parallel Algorithms into
Parallel Architectures,”" Proceedings of the 1984 International Confer-
ence on Paralle] Processing.

[BGKRS] Berman, F., Goodrich, M., Koelbel, C., Robison, W. and K. Showell,
"Prep-P: A Mapping Preprocessor for CHIiP Architectures," Proceed-
ings of the 1985 International Conference on Parallel Processing.

[S1] Snyder, L., "Introduction to the Configurable, Highly Parallel Com-
puter,” Computer, January 1982.
[S2] Snyder, L., "Introduction to the Poker Parallel Programming

Environment," Proceedings of the 1983 International Conference on
Parallel Processing.
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Position Paper

David L. Black
Carnegie-Mellon University

| suppose this position paper could be subtitled "Paraliel Programming for the Masses.” In the
begining, sequential programs required exclusive use of the computer for their execution; this limited
the use of computers to those who could aftord to dedicale machine usage 1o their programs. The
development of multiprogramming operating systems and the virtual machine’ concept was a major
step forward in expanding the applicability and availability of computing; many users could now share
a(n expensive) computer without fundamental changes in the programming model. (i.e. The user
programming mode! involved exclusive use of the virtual machine, but its implementation did not
require exclusive use of the physical machine.) Much of the work in parailel processing is at a similar
stage; most parallel programming models envision exclusive use of the machine (usually for
scheduling reasons), whareas very few of us have parallel machines available for our exclusive use.
This suggests efficient support of parallel programming on multiprogramming multiprocessor
operating systems as a promising research direction. At present | am working on implementing an
operating system for a symmetric shared memory multiprocessor.

| see three areas of iundamental interest in this regard:

e Shared memory.

s Inter-process communication.

¢ Scheduling.
The minimalist approach to this area has the operating system hand over a bunch of memory with a
aroup of procassors and then get out of the way. This seems no better than the dedicated machine
approach; if three users each take a third of the machine, what do you do with the fourth user?? On
the other hand, porting exisling multiprogramming operating systems to multiprocessors can result in
systems that introduce periormance bottlenecks and make bad scheduling decisions. | believe a
middle ground does exist and can be productively used in many applications; at the workshop | hope
1o expiore ideas of what the middle ground might be, particutarly in the areas of scheduling and
resource (processor, memory) management.
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Programming and Evaluating Computer Architectures

Jordan Brower and Jean-Loup Baer

Department of Computer Science
University of Washington
Seavtle, Wa 98195

Until very recently, parallel computations were used pri-
marily to solve time-consuming numerical applications or a
restricted class of problems, such as those found in image
processing. With the advent of fast, less expensive commer-
cial multiprocessors and the development of experimental
academic architectures, parallel processing is now open to a
wide variety of applications. Given the diversity of paral-
l1el architectures, it iz necessary to investigate techniques
that determine which architectural and programming language
features are best suited for a given application.

Predicting the appropriate target architecture and program-
ming methodology for a given application requires an under-
standing of the parallel computation at each level of its
translation from the nature of the algorithm to its ianstan-
tiation as a program to its machine level implementation.
We plan +to develop a series of models corresponding to the
three levels just mentioned that will defipe a hierarchy of
important design dimensions for a given application and a
mapping that identifies key design decisions between each
level.

This three-level hierarchy is the one we are working on now,
but it will naturally evolve when we will have had more
experience in implementing some numeric and non-numeric
applications (e.g., Al production rules and server models)
on various architectures (e.g., shared-bus Seguent, shared-
memory Butterfly, and possibly a CRAY) using shared memory
and message passing program methodologies. We hope to con-
clude which design dimensions are important to the computa-
tion at each level and +to +those mappings that lead to
efficient implementations.

This work was supported in part by a grant from the
Washington Technology Center and by NSF Grant DCR-83503Z350.
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At the present time we foresee:

- Application level: A graph model of computations
could give a good idea of the nature of parallelism
(e.g., SIMD, vectorizable, MIMD with small orx large
granularity).

- Language level: An appropriate language for +the
application will reflect the arxchitecture on which it
is to be implemented. We can foresee an interaction
betwaen the first two levels in the form of an iconic
programming language for the graph model (e.g., by
defining a first order recurrence) and a series of
templates for various architecture-specific langauges
at the second level. In any case, the user at this
point will need to be concerned with methods of syn-
chronization, process creation, scheduling, and par-
titicning.

- Architecture level: At this level, the model speci-
fies the implementation of high-level synchrenization
primitives and memory access. It is in the interac-
tion between +the second and +this level that we hope
to learn the most about which architectures are best
" suited for given applications.

Presently, we are investigating those design dimensions that
adequately express +the nature of memory access (shared
memory vs. message passing) and synchronization primitives.
We are using Larry Snyder’s Poker programming environment to
implement algorithms (e.g., bounded buffer and scheduled
waiting) that use standard programming language synchroniza-
vion primitives (e.g., momitors, rendezvous, semaphores) on
architectures that suppert a different set of primitives
{(e.g., HEP's full/empty bit, RF3’‘s Fetch&Add, and Dragon’s
Conditiocnal Wait). Eventually, we will want to develop
dimensions and mappings that describe scheduling, process
creating, and network topology, te name a faw.



i9

PORTABILITY VERSUS EFFICIENCY
FOR PARALLEL PROGRAMS

J. C. Browne
Department of Computer Sciences
The University of Texas at Austin
Austin, Texas 78712

ABSTRACT
Attainment of maximal efficiency in execution has always required handtailoring to the execution
environment, even for sequential architectures. Vector architectures required a massive investment
in restructuring to obtain the benefits of the architecture. Optimizations seldom persist even across
vector architectures.

The situation will be much more complex for parallel structuring of computations since there is such a
diversity of architectures and execution environments. Further, there is no common basis for
expression of parallelism across different vendors’ programming systems.

We propose and describe a programming environment where parallel structure is specified
declaratively so that ready translation to a spectrum of procedural implementations of dependency
relations. This approach allows selection of code which is known to be near-optimal for a given
architecture. The declarations are made through a graphical interface and may be applied to
programs in most higher level languages. '
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Paralicl Programming: A User’s Perspective
by
Ingrid Y. Bucher

Computer Research and Applications Group
Los Alamos National Laboratory
Los Alamos, NM 875435 .

Los Alamos National Laboratory. with a tradition of fast scientific computing of more than three
decades. has as an organization embarked on the unchartered path of parallel computing. Our users
thirst for ever more computing power. We believe that the speedups needed to-satisfy that thirst
(speedups by factors of 100 or more) can be achieved only by parallel machines. Parallel
computing is thus a necessity for us. Members of a small research team have experiences in
programming parallel Crays. the Denelcor HEP. the Intel iPSC hypercube. and several makeshift
parallel computers of the past. all with very little or no software to ease the task. The machines
include both common and distributed memory machines. We are only now starting to gain
experiences on data flow architectures. Conversions of major codes 10 multiprocessor CRAY X-MPs
are in progress using Fortran with a multitasking library.

Althoughb ibe author will take full responsibility for the positions stated in this paper, they should
be viewed as fairly characteristic of the people involved with parallel computing at Los Alamos.

1. Speedup Limits

There is a maximum speedup and an associated maximum number of processors that can be
usefully employed 10 the solution of a given problem on a given architecture. These maxima may
be but are generally not determined by the maximum amount of parallelism in the problem.

In a very simple model of parallel computations according to Ware [1], the problem consists of a
fraction f of the work thal cannot be performed in parallel, while the remaining fraction 1 — f
can be executed on any number of processors p in parallel. with perfect load balancing. The
speedup S for this model is given by

S=1/{(1=f)Xp+71). (1)

The maximum speedup for this model is reached for an infinite number of processors and is
S, =1/f

According to this simple model. increasing the number of processors p will not hurt the execution
speed. but of course the efficiency will deteriorate.

However, it is known only too well that with increasing number of processors or processes,
communication and dala movement cosls become a serious problem on distributed memory
machines and common memory machines may start choking from memory contentions with or
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without hot spots. It seems reasonable to assume that these costs associated with parallel
compulalions are a non-decreasing function W{(p ) of the number of processes p involved in the
solution of the problem. The speedup S resulting from this slightly refined model is given by

S=1/((1—-f)p+f +W(p)). {2)

Unless W(p) is a constant, the speedup exhibits a maximum 5, for a number of processors p,, .
Increasing the number of processors beyond p, will actually decrease the execution speed as well
as the efficiency. The maximum speedup S, and the maximum number for processors p, are
dependent on the characteristics of the problem and the hardware and software architectures, but
most importantly they are also dependent on the mapping of the problem onto the parallel
architecture. To achieve high speedups, minimizing overhead costs is, in our opinion. a more
difficult and important task than finding the maximum amount of parallelism in a problem. This
applies at least 10 scientific applications that are naturally highly parallel. This parallelism is
usually clearly visible to the designer of a code but much harder to unearth from existing codes.

Because the mazimum number of usable processors is problem dependent, it will be essential 1o run
several jobs concurrently on a large parallel computer. Research of the behavior of parallel
computers in a multiprogramming environment is, therefore, urgently needed.

2. Common Versus Distributed Memory Machines

Common memory machines are much easier 1o program than distributed memory machines. This is
born out by our experiences for manual program conversion but will apply to automated tools as
well, especially if efficiency is important. As an example, data movements associated with
programming in functional languages should be considered. It is our experience that even if dala
can be mapped efficiently for a particular computation in a large program, another computation
will generally require restructuring of the data. These data movements consume increasing
amounts of time with increasing number of processors and incressing problem size. They
constitute, in our opinion. the main performance limitation for distributed memory machines.
Programming of a complex problem on a distributed architecture, therefore, often requires a
complete rethinking of the solution process. An extraordinary amount of artificial intelligence will
be required to automate the efficient mapping of such complex problems onto a distributed memeory
architecture. The lask completely defies the divide-and-conquer strategy essential to most modern
programming techniques and is. therefore, particularly nasty.

We feel that user input for data organization will be needed for efficiency. New languages should
provide for this.

3. Top-Down Versus Bottom-Up

In parallel processing of scientific applications (and probably others as well), the crucial problem is
nol to find enough parallelism but to find a way of subdividing a problem into subtasks that
minimize costs associated wilth communications. synchronization. data movements, memory
contentions, and all other costs that increase with the number of processes.

The bottom-up approach examines innermost loops first. It uncovers paralle! subtasks of small
granularity. These small sublasks usually involve high communication costs for all parallel
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archilectures and frequent and complex data movements in distribuled memory machines. The
botlom-up approach has been successfully automated. e.g.. by Kuck and his students [2}.

The top-down approach initially examines the outermost ‘oops and. therefore. uncovers the
coarsest parallelism first. It can be pursued until a sufficient number of parallel subtasks are
found. Because of the coarser granularity, overhead costs are usually much smalier than from the
bottom-up approach. However, it is harder to automate. Interactive user input might be helpful.
The basic parallel structure of the problem is usually obvious to the code designer. Even static
data dépendency analysis 1o0ls at this point would be very helpful.

4. Debugging and Tuning

Debugging paraliel programs is much more difficult than designing them. We feel that dynamic
debugging 1ools will be more successful if they irace data rather than control flow.

In addition to debugging tools, dynamic luning 100ls are needed. This will require development of
new concepts for the performance assessment of parallel programs, especially in a
multiprogramming environment.

5. Conclusions

Efficient parallel programming is a considerable challenge that will require a wealth of new ideas to
become reality.

6. References
1.  W. Ware, "The Ultimate Computer.” JEEE Spectrum, March 1972, pp. 84-91.

2. D.T. Kuck, R. H. Kubn, D. A. Padua, B. Leasure. and M. Wolfe. "Dependence Graphs and
Compiler Optimizations.” in Proc. 8th ACM Symp. Principles Programming Languages, 1981.
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Position Paper

Anmdahl’s Law Revisited:
Measureinents of Dataflow Programs

The Computation  Stractures (}mup1 at ML, has constracted  fairly  powerful wols for
developing. executing and evatuating dataflow programs. The 1d dataffow compiler |7, 9] and an
interpreter for the Tagged-Token Datallow  Architeccture have been  integrated  with  the
programming environment provided on various Lisp machines [8] (o fucilitate development of
dataflow applications. The interpreter can model a variety of abstract architectures, and forms the
basis of a 32-processor datallow emulator, This papcr offers some preliminary results derived using
these tools and puts forward certain points that the author feels are critical to assessing the viability

of dataflow processing.

1. Parallelism in Programs

Parallel processing with all its glamour should be approached with a healthy respect for Amdahl's
law. That is to say we should attempt to quantify the amount of parallclism present in real
applications, as this ultimately determines the scale of machines to consider. We know that many
algorithms ofTer tremendous paraticlism, but in large applications it is possible that the "glue”
between such well-behaved sections may undermine the potential parallelism as a whole. Also, the
language in which an algorithm is coded may prohibit or obscure certain kinds of parallelism.
Lastly, the machine on which the program is executed may be unable to exploit certain kinds of

parallelism.

"Our approach is to determine the potential parallelism in programs by considering only the
essential data dependcncies involved in computing the result and then try to understand how this
potential paralielism is attenuated in coding and execution. The formal model of computation
embodied in the U-interpreter {3] embellished with I-structures is important in this regard, as it
places minimal constraints on exccution order beyond the data dependencies, and yet allows
applications to be evaluated in full detail. 1t is assumed that instructions exccute in unit time and
results are transmitted to wherever they are required with zero latency. An instruction exccutes as
soon as its operands are available. and an arbitrary number of instructions may exccute in a single

timestep. Under this model we can compute the parallelism profile (ie., number of concurrent

1This group. lead by Professor Arvind. was formerly called the Functional Languages and Architectures Group.
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Figure I: Parallelism Profile for a Sizable Application

The Muctuations in this profile over time are notable. In the first phase of the application, the
force is computed at each point based on neighboring points, giving (‘J(nz) parallelism for an n by n
mesh. (Note, this checks against the large spike in the profile.) Results of force calculation are
reduced to a single value, as suggested by the constriction point in the profile, that is used in the
latter heat conduction phase, which involves a recurrence over the rows and then over the columns.
A "real” problem would involve 100,000 iterations of a 100x100 mesh. Fluctuations in potential
parallelism such as appear here are quite typical, although in many cases can be reduced with
careful application design. It should be clear that even though the application has thousand-fold

maximum parallelism, the utilization on a thousand processors would be rather poor.

Given such a parallelism profile we can cmploy the sort of analysis embodied in Amdahl's law
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with wsual precision o identifly the point ol diminishing retarns for the program. Let 7{p) be the
number of tmesteps required o exceute the program, wlhere at imost p operations are performed
per timestep. By definition, {00} is the length of the profile annd f{1) the arca, For intermediate
values of p owe can derive a conservative. yet reasonably  accurate. approximationol "F(p) by
assiming it takes FPP()/p timesteps 1o do the work involved in step (ol the paraliclism profile,
PP(1). 'This correctly accounts tor undcr-utilization when there is less than p-fold parallelism, and is
somewhat conservative when more parallelism is available. The curve labeled L=0 in Figure 2

shows the potential speedup using this formula for the profile in Figure 1.

| Calculating potential parallclism in this manner is a step toward separating two concepts which
arc often confused: the parallelism present in a program and the parallelism exploited in running a
program on a particular machine. The former determines the best that can be achieved in the latter.
If we fail to achicve substantial speedup on a problem, the paraltelism profile provides a basis for
determining whether the application is intrinsically scquential or the implementation has
compromised the potential parallclism. In particular. it should be possible to make substantive

statements about the amount of parallelism present in conventional applications.

To better predict the potential speedup on a real muachine we must cither embellish the
interpreter to more closely reflect the machine, or refine the analysis. For example, it is argued that
a dataflow machine can toleralc communication latency if sullicient parallclism is present, because
enabled activities are processed while recently generated results are cnroute to their destinations [4].
This can be incorporated in the analysis by assuming that the computation involved in PP(t+1) can
not start until at least 1+ L time units after that in PP(t) has started. Figure 1 shows the result of
this analysis for four different values of L. To substantiate this analysis,” the interpreter was
embellished to model an idecal datallow machine characterized by two parameters P, the maximum
number of operations per timestep, and L, the communication latency involved in each token
transfer. Other aspects of the model ‘are completely idealized, eg. unbounded resources and
distribution of work by oracle. The dots of various shapes in Figure 2 show results obtained for this
idealized machine for values of L corresponding to the four curves. Note that as the latency term

becomes dominant the approximation becomes quite accurate.

This kind of analysis can be extended to incorporate the effects of granularity of distribution of
work, load non-uniformity, and locality, for cxample. However, as the analysis becomes more

detailed the interactions between various aspects become more complex.
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Figure 2: Potential Speedup Based on a Parallelism Profile

An equally interesting and probably more subtle question is how to account for the loss of
potential parallelism due to the mechanisms employed for synchronization and limitations of the
programming language. For dataflow proceséing, the graph schemas used in compiling code, the
mechanism for detecting cnabled activities, and the model of arrays all c¢ffect the amount of
parallelism that can be exploited. For conventional multiprocessors the question becomes very

complex since many different synchronization mechanisms are employed.
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2. Overhead

A sceond crucial issue i assessing the viability of an approach ko pacailel processing is the total
work required to exceute a program, ‘There is undeniably a cost in logically partitioning @ program
so that it may run in parallel, and we should ry o quantily this cost,  Speed-up curves olten
obscure this issue by presenting performance relative to single processor eaccuting code with all the
auxiliary operations required for parallel exccution,  Although it would be reasonable to consider
hardware complexity and other factors in a cost metric, we will focus on the number of instructions

executed.

Critics have postulalcd that dataflow programs will require many more instructions than
corresponding programs on a conventional machine [6]. Our experiments support this concern, but
also suggest that the difTercnce is not as large as has been assu med. Table 1, generated as part of a
study in conjunction with Dr. K. Ekanadham of 1BM Research, shows dynamic instruction mixes
for variations of a Guassian relaxation code compiled from the dataflow language Id and from
FORTRAN. The precise numbers are less important than the general trend, but a few remarks are
in order. The FORTRAN versions are highly optimized for the 370, so some instructions include
memory references and arithmetic operations. Separating these operations as would be required for
a load/store architecture narrows the gap slightly. The Id versions can be improved substantially
with even trivial pcep-hole optimizations. Thus, with comparable compiler sophistication the ratio
of total instructions executed may be closer to 2:1. On the other hand, without relatively

sophisticated graph schemata, e.g., support for loop constanis, the ratio would be much worse.

The missing piece of this comparison is how dataflow instruction counts compare against that for
progirams running on conventional parallel machines, where synchronization, etc. plays a major
role. Qur belief is that there is a certain cost in simply generating code that can run in parallel, and
there may be additional costs, e g., more busy-wailing or more context swaps, as more parallelism is
exploited. The various transformations to expose parallelism it FORTRAN programs should be

examined in this light. With dataflow, the full cost is borne up front.

3. Resource Requirements

Another crucial issue which has been largely overlooked in the literature is how the resource
requircments increase as parallelism is exploited [S]. This may be the most severe obstacle for

approaches based on implicit expression of parallelism. A case in point is the token storage
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Table 1 Instruction Mix comparison between [ and FORTRAN

Tnner loop - roughly TO.000 iterations: Fach ileration has:

51-ops 5 Fl-ops 6 Fl-ops 7 Fl-ops
opl sldd Gl +sum G2 -cond

Op catepory (8]4] Gl G2 (R
11> version
Float (-+-*/ compare) 48.050 48,050 57,660 67,270
Fixed (+-*/ compare) 44,409 63.515 63,515 63.515
Loads 55.387 7 113,650 113,982 133,522
Stores 16,828 15.352 15,684 16,004
Switches 24,057 24,253 34,504 83.174
D 23,306 23.496 33,426 52.646
All other 100.996 135,612 146,869 139.469
Total 313,033 423928 465.640 555,600
FORTRAN version:
Float (+-*/ comparc) 48,186 48,186 57,796 67.406
Fixcompare) 496 20,336 20,336 20,336
l_oads 20.836 20,846 30,817 30,817
Stores 12,104 - 12,104 ) 21,735 21,735
Switches 11,708 11,708 11,708 21,318
Logic\comparc) 892 20,102 20,102 29,712
All other 30 30 30 30
Total 94,252 133,312 162,524 191,354

requirement of programs running on a dataflow machine. The upper left portion of Figure 3 show
the parallelism profile and token storage requirement of a 16 by 16 matrix multiple on an
unbounded processor machine. With 500 to 1,000 fold parallelism, a storage requirement of 3,000
tokens does not seem unreasonable. However, if this program is run on relatively small machine, ¢f.
the lower left portion of Figure 3 where the machine can exploit only 20 fold parallelism, the
resource requircments remain large. The upper right portion of Figure 3 shows how the resource
requirements can be reduced by a simple graph transformation that limits the potential parallelism
by constraining loop unfolding. This constrained program is well matched to our 20 processor

machine, as can be seen in the lower right portion of Figure 3.

This resource problem will appear in any system that supports a general facility for dynamic

generation of parallel activity [1]. It arises with almost all resources related to program execution,
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Figure 3: Effects of Constraining Parallelism to Reduce Resource Requirements

not just scalar storage. Techniques such as constraining loop unfolding are extremely important,

but it remains an open question how to best apply such controls.

This problem arises in a slightly different form in many of the transformations used to expose
parallelism in sequential programs, e.g., scalar expansion, even though the form of parallelism is

relatively limited.
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4. Distribution of Work

The concern which has reccived most press in the parallel processing literature 15 how o
distribute work and data over a collection ol processors. Much of this research alludes (o trade-olTs
between technigues Tor achieving untlorm oad and those for achicving Jocality. Our studics Trave

raised a number of concerns which bear on this debate.

We have conducted a varicly of experiments in which cach of the 32 T Explorers that comprise
the MIT Multiprocessor Emulation Facility [2] emulate a (rather slow) dataflow machine, We took
an expcdient approach, distributing work on a code-block basis, ie. relatively course granularity,
using a varicty of simplc distribution policics. With this approach substantial load imbalances are

not uncommon, even when the number of processors is quite small.

The argument for course granularity is generally based on the locality issuc. 1f larger chunks of
computation are assigned 1o cach processor, less communication is required.  However, the
instruction mixes above appear to reduce the force ol this argument; one quarter of the instructions
involve access to an arrays and optimizing data placement to maximize locality of array references is
extremcly difficult, cven potentially detrimental. Thus if array references are relatively uniform,
one quartier of the data values produced in executing a program will gencrate network traffic,
regardless of granularity, Nonethcless, there is a strong argument for course granularity: in
designing a code-block engine, rather than an activity engine, many optimizations are possible.
There are aspects of our current graph schemata that are crucial to keeping the number of
instructions reasonable and are more dilficult to implement if work is distributed willy nilly across

the machine,

5. Conclusion

Dataflow has long offered the potential for high performance parallel computation, but only
recently have tools become available which will allow us to move from vague statements of
"potential” to firm statements of viability. It is extremely important to assess the limits of the
approach and to identify the most promising regime, in term of number of processors, application
domuain, etc.. to focus further architectural development. Part of that assessment hinges on an
~understanding of the potential parallelism in programs, the overhead implied by the approach, the
resource requircments of programs, and our ability to effectively distribute work. Another

important part of the assessment is a clear comparison with competing approaches.
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DEBUGGING HIGHLY PARALLEL COMPUTATION*
Janice E. Cuny
Department of Computer and Information Science

University of Massachusetts, Amherst

Highly parallel computation — in which large numbers of closely coupled processes co-
operate on a single task — is not amenable to existing sequential debugging techniques.
Parallel programs do not have the consistent global states, manageable quantities of po-
tentially relevant information or reproducibility of results that have formed the basis for
sequential debugging paradigms. Instead, their behavior is best understood in terms of
the flow of data and control resulting from interprocess communication. These behav-
iors are often structured: low grain, closely coupled processes communicate across regular
interconnection networks resulting, at least logically, in very pa.tteﬁié'd. data and control
flows. We believe that these patterns of data and control flow will form the basis for highly
parallel debugging paradigms.

Parallel debuggers must provide the programmer with facilities for monitoring and
manipulating the patterns of activity within his system. Before this can-happen, however,

there are at least three areas that need development:

The presentation of information. Because patterns are best understood visu-
ally, it will be necessary to design graphic displays and animations of communication

structures.

The selection of relevant information. Because enormous amounts of information
are available in an executing parallel system, it will be necessary to provide the user

with facilities for restricting the presented information according to a variety of criteria.

The interpretation of system behavior. Because programmers understand their
code in terms of intended, logical patterns of activity that are often obscured in asyn-

chronous execution, it will be necessary to be able to create mechanism for detecting

* The Parallel Programming Environments Project at the University of Massachusetts is supported by
the Office of Naval Research under contract NO00014-84-K-0647.

1



logical patterns within execution traces.

We are investigating these issues with the development of an extensible debugger, called
Belvedere, that will allow programmers to easily construct a variety of post-execution
animations of process interactions within highly parallel systems. It will feature both a
view generator and an animator. The view generator will filter data for relevance based on
fish-eye views {1] in which “neighborhoods” are shown in great detail while more distant
areas are shown in successively less detail. We are developing further generalizations to the
fish-eye model that include multiple distance criteria and foci of attention. The animator
will interpret the execution trace of the system according to user supplied descriptions of
intended behavior. We expect to describe behavioral patterns with an extension of the |
Event Definition' Language [2]. Belvedere runs as part of the Simple Simon Programming
Environment [3] which, in turn, runs as a front end for the Simon Multiprocess Simulator
[4][5] allowing us to consider the suitability of our debugging techniques for a variety of

architectures.
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Single-Assignment Languages in the Flavor of SISAL
John Feo

Single-assignment languages, by requiring that each variable or instantiation be unique and defined
(i.e., assigned a value) only once, avoid many of the problems inherent in using conventional
tanguages for parallel programming. We believe that such languages, as exemplified by SISAL, can
provide an expressive and efficient efficient medium in which to write large-scale scientific paraltel
programs,

By insisting on single-assignment, one removes side-effects and aliases from the language.
Obviously, if a variable can be defined only once, its value can not be changed once assigned either
in or out of a subroutine. Similarly, all parameters must be passed to subroutines by value, since each
instantiation of a variable is unique; therefore, there are no aliases. These features reduce the
complexity of a process’ data dependencies, thereby simplifying the analysis required to extract thé
inherent parallelism, This in turn leads to simpler (even naive} compilers, and makes the parti- tioning
and scheduling of subtasks easier and more straightforward. A good solution to the latter is
particularly important if processes are to execute efficiently on actual machines.

The advantages of single-assignment languages can be enhanced by including various specific
features in the language. Two such features provided by SISAL are: ‘no use-before-definition’ and
explicit parallel constructs (ForAill and Multi-expressions). The former removes all data cycles,
reducing a process to an acyclic graph. This is a sufficient condition to guarantee that no set of
concurrently exacuting tasks can deadlock. By providing explicit parallel constructs in the language,
the user can clearly express the coarse-grain parallelism of his algorithm; such may not be the case
without the constructs. At the very least it relieves the compiler of the task of finding such parallelism.

Unfortunately, single-assignment languages have a number of draw- backs including: memory
management problems,interfacing with other languages and a restricted probiem domain. Since a
name can be assigned a value only once, every update requires a new copy. In the case of large data
structures, as are typically found in scien- tific codes, it can be very expensive. Furthermore, since all
para- ameter passing is by value, each invocation of a function re- quires its own copy of the
arguments. The lack of side-effects and persistent state (i.e., common blocks) makes it difficult to
intar- face processes written in a single-assignment languages with libraries written in conventional
languages (especially, FORTRAN). Finally, implementing an algorithm requiring state is extremely
inefficient in such languages since the state must be scattered and gathered at every step; further,
implementing a non-determinis- tic computation may be impossible.

Our current work focuses on many of these problems. One project is investigating the advantages of
preallocating memory and perform- ing updates-in-place to solve the memary management problem.
A second is developing compilers and systems for efficient code generation. The approach is to
reduce a source to graph form, then to an intermediate code and finally, to machine code. A number
of target machines have been selected, including: a VAX 780, a Cray- x)’MP, a Cray-2, a Loral
Data-Flow and a Sequent 21000. A third project is concerned with finding optimal heuristics to
partition process graphs to minimize communications and maximize parallelism and machine
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utilization. Two projects still in embryonic form are: an investigation into how SISAL and FORTRAN
routines can be inter- faced and how a target machine's architecture affects partitioning and
granularity decisions.
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Position Paper
Jeanne Ferrante .
IBM T. J. Watson Research Center

P.0. Box 218
Yorktown Heights, NY 10598

As noted in the announcement of the workshop, as yet there is no one
model of parallel computation underlying the diverse architectures now
being proposed and built. Such computational models are the basis not
only of our machines but also of our high level languages. Hence any high
level parallel programming language can be compiled easily and
efficiently only when it matches the underlying computational model of
the machine we are compiling fér. Given a high level parallel programming
language which does not fit a particular architecture well, in order to
proeduce a translation which can run efficiently on the machine, it is
necessary to map the language's computational model to that of the
machine. This is essentially the same problem as automatically detecting
the parallelism in a sequential language in order to map to a parallel
machine. The same techniques useful for automatic parailelization of
sequential languages are useful for compiling parallel high level languages

to different parallel architectures.

Many of our high level languages embody various aspects of the Von
Neumann machine in their underlying computational model; one such aspect
is reference to storage. Languages like Fortran and Pascal allow storage
to be directly referenced and manipulated. In a parallel machine context,
this reference to storage forces a sequencing of these references, and

thus less parallelism. In translating such languages to run efficiently
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on a parallel machine, the storage model embodied in the user program must
be drastically altered. Because of the diversitv of parallel
architectures, this alteration itself can take vastly different forms.
I therefore propose the following general technique. In compiling high
level languages which allow references to storage for a parallel machine,
the references to storage should be removed and a totally
VALUE-ORIENTED representation should replace it. This will increase
the potential parallelism and thus be a better basis for further

transformations to increase parallelism.
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Language tools for large-grain parallelism

Raphael Finkel
University of Wisconsin — Madison

Position paper
Workshop on performance-efficient parallel programming

1. Algorithms for large-grain parallelism

The range of parallel architectures is quite wide. In this paper, we focus
on multicomputers, which consist of many computers, each with its own
memory, cooperating by sending messages. Such machines lend themselves to
large-grain parallelism, where cooperation events occur at a maximum rate of
hundreds per second, not thousands (as in medium-grain parallelism) or millions
(fine-grain). In practice, algorithms in this class strive to keep the amount of
communication as low as possible to avoid message-passing costs.

Many algorithms fit into the following classes.

o Generate and solve. A problem can be subdivided into subordinate
problems, each of which can be solved independently of the others. A pool
of slave processes stands ready to solve these problems as they are gen-
erated and distributed by a master process. This category includes tree-
search algorithms such as alpha-beta search.

e Iterative relaxation. The data space can be divided into adjacent
regions, which are then parcelled out to different processes. Each process
carries out activities local to its region, communicating with neighbors
when necessary. This category includes solution of numerical problems like
PDEs and graph problems like finding a minimal spanning tree. Termina-
tion is often difficult to determine in such algorithms.

e Passive data pool. A large data space is managed by many processes,
which support queries and updates on that space. Queries from client
processes are directed to the appropriate data server processes. This
category includes distributed file systems and other data structures such as
hash tables. These algorithms try to allow a high throughput of queries by
letting non-interfering queries proceed simultaneously.

o Systolic. Data values flow through a set of processes, undergoing
modification along the way. The processes are often arranged in a regular
structure, such as a linear array or a square mesh. This category includes
many numerical algorithms, pipeline algorithms, and multi-pass transform-
ers such as compilers and scene analyzers.

Algorithms may engage in restructuring during the course of a computa-
tion. First, the allocation of data to processes may change. Data motion can
be a result of attempts to balance load among processes or to bring values to
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where they are needed. Second, the process structure may change. New
processes may be created as the size of the problem warrants, and new inter-
process communication paths may be opened to fulfill new requirements.

A less dynamic form of restructuring comes from quotient schemes, in
which a single physical process simulates the activities of several virtual
processes. Quotient schemes are particularly useful in pipeline and iterative-
relaxation algorithms when the grain of parallelism is too fine and communica-
tion is needed too often. All communication between virtual processes within
the same physical process can be done cheaply, and communication that crosses
the physical-process boundary can often be batched, so that one physical mes-
sage represents many virtual messages. The boundary between physical
machines is often a boundary between two representations of data as well.
Within a physical machine, the fact that work is distributed often remains
implicit in loops across arrays or traversals of graphs. Between physical
machines, the fact that the data structures are distributed is explicit. Data
often have two representations, therefore, depending on their proximity to this
boundary.

Algorithms based on iteration often can be described either as synchronized
or chaotic. Synchronized algorithms go through well-defined rounds, between
which information is passed among the processes. The exchange of information
becomes a bottleneck. One way to reduce that bottleneck is to use a chaotic
algorithm, in which one process may start the next round before others have
finished. The cost of such a scheme is often an increased number of rounds.

To reach agreement on shared data, an algorithm can either broadcast the
data, which incurs communication costs, or it can compute the data indepen-
dently on several processes. "Under this latter strategy, identical work is con-
ducted by several processes, reducing communication cost at the price of
reduced parallelism.

There may be many ways to advance to a goal. A serial algorithm may
sort them and try the best ones first. A distributed algorithm may speculate
and try several at once. Although this strategy may occasionally be very lucky,
leading to a speedup anomaly, it will often waste the efforts of those processes
searching less useful paths when another process is pursuing the best path.

2. Programming languages

Some important trends in programming language design must be
encouraged for parallel programmingCashin80, Andrews33a,Scott8da At the least, a
reasonable language provides ordinary sequential operations and a way to send
messages between processes. Inter-process communication should be abstracted
as a form of remote procedure call, although there are rare situations in which
this paradigm is not quite right (for example, requests that have both an
immediate answer and a delayed answer). Typically, the programmer must
specify how work is divided among processes; the compiler does not attempt this
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division.
Several features seem essential.

e Light-weight tasks. Such tasks are relatively inexpensive to create and
share memory with each other, although they may be subject to scoping
restrictions for data access. Light-weight tasks are especially useful for
maintaining the state of a server-client conversation while other conversa-
tions are taking place. Synchronization mechanisms are needed to prevent
unwanted interference between tasks; these mechanisms include priority
schemes, explicit conditional waiting, semaphores, and monitors. Of these,
explicit conditional waiting is the most expressive from the programmer’s
point of view, but is not always inexpensive to implement.

e Implicit and explicit message receipt. Explicit receipt makes sense
when the algorithm has reached a point where it knows that it cannot
proceed unless a particular message arrives. However, messages that arrive
during the course of other computation must also be dealt with. Implicit
receipt starts a new light-weight task for each such message; the task
begins its execution in whatever procedure the message is trying to call.

e Context. When an implicitly received message starts a new light-weight
task, that task should have a context appropriate to the particular process
that sent the message. This context can be provided by scope rules that
provide global variables that are not necessarily shared by other tasks.

e Maessage-based type checking. Wherever possible, the compiler should
ensure that messages are properly formed. For complex algorithms built
out of several compilation units that are compiled at different times,

declaration libraries can be used. Inexpensive run-time checks are also pos-
sible and should always be usedScott84b,

e Selectivity. A process may want to provide only a subset of its exported
entry points at a given stage of an algorithm. It is necessary to provide a
way to dynamically change the interface, that is, the set of legal entries for
implicit receipt. In addition, it must be possible to present different inter-
faces to different peers of the process.

e Exceptions. When a process sends a request that is misformed or illegal
in some sense, it is possible to respond with an error indication. However,
inspecting all responses for the presense of this indication is a heavy bur-
den, and most programmers are not particularly careful about it. Instead,
an exception mechanism such as is found in
AdzaUnited States Department of Defense83 ghould be used to propagate errors.
This mechanism can also be used to send signals between light-weight
tasks within the same process. It is also essential for terminating specula-
tive work.

The Lynx languageSot84¢, which has been implemented both on the Crystal
multicomputerPeWitt84 and the BBN ButterflyScott88 has all of these features.
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ArgusLiSkm’S?' includes the ideas of type checking and light-weight processes, and
also has a well-developed notion of transaction, which is important in recover-
ing from failures.
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Parallelism in Production Systems

Charles L. Forgy
Carnegie-Mellon University

The PSM (Production System Machine) group at CMU is exploring ways to use parallelism to achieve
cost-effective increases in the speed of production system interpreters. For the past few years the
emphasis has been on speeding up conventional production systems like OPS5 or SOAR. The
emphasis is now shifting to the tasks being performed by the production systems; the PSM group is
exploring the explicit use of parallelism by the application programs. This could substantially
increase the total amount of parallelism that the programs can use. For example, if the interpreter
achieves an average speed up of 10 through parallelism and the application program achieves a
speed up of 5 through application parallelism, the combined speed up factor would be 10 * 5 = 50.

The work on parallelism within the interpreter has shown that modest speed ups -- perhaps one
decimal order of magnitude -- can be achieved on the right machine, There are a number of factors
that prevent the speed up from being greater. The most time-consuming operation in a production
system interpreter is performing the match, and consequently it is the part that one must concentrate
on. (The match is responsible for evaluating the condition parts of the production rules to determine
which are satisfied on each cycle of the system.) After looking at a number of alternatives, the PSM
group concluded that state-saving algorithms had to be used in the match. A state-saving algorithm
keeps track of the contents of working memory and the degree of satisfaction of all the condition
parts of the rules as the system runs. As each change is made to the system’s data, the stored state is
updated rather than being recomputed from scratch.  With a state-saving algorithm, the amount of
parallelism that can be exploited is limited. Simulation studies of existing production systems indicate
that for most applications, there is no advantage to having more than 32 to 64 processors available.
For these systems, speed-ups of around a factor of 10 are expected.

The obvious way to increase the amount of exploitable parallelism when a state-saving algorithm is
used is to increase the rate with which the system makes changes to its data. This could be achieved
either by increasing the semantic content of the productions (so that each production does more) or
by permitting the system to execute more than one rule on each cycle. The latter seems more
appropriate for knowledge-intensive applications, and it is the course that the PSM project is now
following. Presently some large applications are being analyzed to determine how they can be
decomposed to make use of explicit parallelism. The production systems languages are being
examined to determine how they must be changed to support application parallelism. Languages
such as OPSS will require some relatively minor extensions; SOAR already contains mechanisms to
support parallel firing of rules.



46



47

DIMENSIONS FOR DESCRIBING PARALLEL ALGORITHMS

Leah H. Jamieson

School of Electrical Engineering
Purdue University
West Lafayette, Indiana 47907

Position Paper

For effective use of parallel systems, it is essential to obtain a good match between algo-
rithm requirements and architecture capabilities. What information can facilitate the mapping
of a parallel algorithm to a parallel architecture? Such information can be of use in a number
of different ways. First, it bears directly on the algorithm design process. General knowledge
about what constitutes an effective match between a parallel algorithm and a parallel architec-
ture can accelerate the process of developing new parallel algorithms for a given machine.
Second, an understanding of the relation between algorithms and architectures is a prerequisite
for the fast, efficient design of algorithmically-specialized systems. Given a fixed set of algo-
rithms, architectures tailored for the execution of those algorithms can be developed if the
architectural requirements of the algorithms are understood. Third, a general method of relat-
ing algorithms and architectures will allow efficient use of reconfigurable parallel systems.
Integral to the effective use of these flexible parallel systems will be the ability to select
machine configurations based on knowledge about the algorithms to be executed. In order to
accomplish this automatically, the operating system will need to use information about the
characteristics of the algorithms to select successive configurations of the parallel architecture.

Using the application areas of image, speech, and signal processing as our frame of refer-
ence, we have identified a preliminary set of characteristics that relate to the mapping of paral-
lel algorithms to parallel architectures:

Type of parallelism: data parallelism versus function paralielism
Degree of parallelism

Data granularity

Module granularity

Uniformity of the operations
Synchronization requirements

Data dependencies

Static/dynamic character of the algorithm
Fundamental operations

Data types and precision

Data structures

1/O characteristics

There are a number of issues associated with the problem of mapping algorithms to archi-
tectures: How robust are the algorithm characteristics across problem domains and architecture
models? What algorithm representations will facilitate the automatic extraction of the algo-
rithm characteristics? To what extent can the process of relating the algorithm characteristics
to architecture characteristics be formalized? The problem of gaining an understanding of the
relationships between algorithms and architectures is a critical one. The development of an
effective means of describing the salient attributes of a parallel algorithm is one step in this
process.
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Highly Parallel Processor Arrays Can Be Inexpensive,
Programmable and High-performance

H.T. Kung
Department of Computer Science
Carnegie Mellon University
September, 1986

Warp is a programmable systolic array machine designed by Carnegie Mellon. The machine has a
linear array of 10 or more celis, each capable of performing 10 million 32-bit floating-point operations
per second. Two wire-wrap prolotypes, built by Carnegie Mellon and its industrial partners--GE and
Honeywell, have been operational since spring 1986. These machines are being used for signal and
vision processing and for scientific computing. For these coraputations, the new machines are
typically several hundred times faster than the VAX 11/780. GE is under contract to build eight
printed circuit board versions of the machine. Carnegie Mellon is also working with Intel in
developing a VLSI version of the machine.

The Warp project has shown the viability of "programmable” systolic machines. More precisely, the
project has demonstrated (1) a compiler capable of generating efficient code for systolic arrays; (2)
algorithms and application software capable of making efficient use of large processar arrays; and (3)
prototype hardware systems that can be reproduced economically.
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Performance Evaluation Models for Parallel Programming

Ronald L. Larsen
University of Maryland

9-5-86

Recent progress in the development of highly parallel computing
systems draws attention to the importance of effective
programming techniques which combine the ability to
advantageously use hardware parallelism while presenting a
sufficiently natural and expressive power to the programmer.
Research in this area has largely focussed on the language

constructs required to virtualize the machine parallelism,
delaying the binding of machine operations to processors until
run time. Performance analysis of parallel programming

techniques and language constructs at the macroscopic level has
attracted rather little attention, with the result that few
theoretical results or validated performance models exist for
asynchronous concurrent programs.

Research at the University of Maryland is concentrating on
techniques for better understanding the parametric behavior of

asynchronous distributed programs. Most recently, attention has
been focussed on predicting process synchronization overhead
using source code analysis techniques. Parameters of interest

include the process execution time, communication delay, process
initiation sequence, and the synchronization architecture.

Recent results include the analysis of dual process,
unconditionally synchronizing programs. This class of programs
is shown to rapidly enter a small number of cyclic steady state
modes. Parametric analysis indicates that these programs will
stay in =a single mode over extended ranges of parameters, but
that critical values exist at which &a mode change occurs,

resulting in sudden changes in observed performance. The effects
of observed mode changes are often counter-intuitive, requiring
formal analysis to understand. As an example, we have found

instances in which making the code for one process run faster
causes the aggregate waiting time of all processes to increase.

Tuning parallel software for maximum performance appears to be a
very complex, non-~intuitive problem about which little is
understood. Parallel programming language constructs supporting
performance instrumentation and evaluation are needed.
Performance modeling techniques for highly parallel machines are
required to support language development and to develop
programming styles targetted at fully realizing the potential of
novel parallel architectures.
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Paper: Jerrold Leichter
Yale University

Position Paper for the Yale Linda Group

Robert Bjornson
Nicholas Carriero
David Gelernter
Jerrold Leichier (workshop participant)

What kind of programming languages and environments should we be developing for parallel
programming? Histarically, we can discern several approaches:

1. Take a conventional language and add synchronization constructs, typically monitors.

2. Take a conventional language and add meésage passing. Often, it is the operating
system that provides message passing as a set of system calls.

3. Develop a new proegramming style, and re-cast everything in its terms. Data-fiow and
functional languages are typical examples.

The Linda group’s approach, while superficially similar to approach 2, in detail is quite distinct:
Take a conventicnal language and MERGE IN the Linda shared tuple space operators.

While the Linda operators can be added on top of an existing language, they impiy a semantics that is
closely coupled to the host language. For example, the Linda operators assume a type system that
shouid be integrated with the host [anguage's type system.

The advantages we see in this approach include:

e Writing parallel Linda programs is not substantially different from writing non-parallel
programs in the host language. The programmer does not have to discard 25 years of
scftware engineering experience,

e The Linda operators are very flexible, but a sufficiently clever compiler can make use of
the lack of variety that appears in any given Linda program to produce good code.
Further, our early experience indicates that the techniques required are very similar to
those used in traditional optimizing compilers; that is, they are well understood.

e Where the compiler cannot discover good approaches on its own, it is often possible for
fairly simple run-time algorithms to do so and make approgpriate adjustments.

More generally, we have found the following:

e While the Linda operations are "higher level"” than typical message-passing primitives --
thus raising the question of their appropriateness when combined with low-level
languages such as C - it's been our observation that they are efficiently implementable,
and that ultimately what matters for efficiency is careful tuning of the support system at a
low level, not the high-level interface the programmer sees.

o Shared-memory systems are idea! for implementing Linda, and Linda seems to provide a
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good way of programming them effectively. Further, shared-memory hardware seems to
be very practical for an interesting range of machines -- up to perhaps a hundred CPU’s.

» All sorts of interconnects, from buses to hypercubes, seem to be practical for hardware
configurations of up to several hundred nodes. Linda is implementable on such systems
as well, but hardware assistance for communications seems to be important. We've
further noted that:

o Existing hardware support is heavily biased toward message-passing.

o Reliable broadcast mechanisms are often easy to build into hardware, but difficult
to build in software on top of unreliable hardware mechanisms. There has been
relatively little interest in this since few parallel programming enviranments provide
broadcast services. Linda's tuple space operations are naturally viewed as
broadcasts, and the existence of a good broadcast mechanism makes
implementation much easier. This is true even if the system's effective broadcast
bandwidth is smaller than its point-to-point bandwidth.

The preliminary results of a project to implement a Linda support chip to be used with a
bus-based, non-shared-memory system indicate that effective hardware assistance is
practical and should produce very competitive performance.

The most important element we've missed so far is a database of measurements characterizing
real-life parallel programs. lt's impossible to design an optimizing compiler without some idea of what
"cliches" are cominon in typical programs. We know what these are for s2quential programs. The
number of real parallel programs not closely wedded to specialized hardware is rather small, and the
amount of data published on them is minuscule. We are just beginning to gather such data for Linda
programs, and we would encourage the research community to do the same with whatever systems
they are developing.
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Position Paper
Workshop on Performance Efficient Parallel Programming

Joanne L. Martin
IBM T.J.Watson Research Center
Yorktown Heights, New York

One of the research issues that has been recommended for discussion concerns the contrasting ¢or
comparing) of two parallel architectures in an application independent way. Although this sounds
good on paper, I believe that this is an unrealistic goal. The performance of vector and parallel
computers is dependent on the applications being executed and, to divorce architectures from ap-
plications would be to develop performance information too general to be useful.

A more realistic goal is to identify specific, measurable hardware parameters that affect per-
formance and to relate these to established application characteristics. For example, Hockney has
described the parameters n,, fj,3, and s,,; to indicate the overheads associated with using vectors,
accessing memory, and exploiting parallel architecture. In combination, these architecture-
dependent parameters begin to classify a system as to the type of application for which it is suit-
able. They do not, in themselves, provide a performance statement about the system. An n, /2 that
is very large may imply that an architecture will have difficulty on applications with small vectors,
but it says nothing about its performance on scalar code. The performance of the system will de-
pend on the characteristics of the workload being executed. Research on classifying applications
and their various implementations can be pursued, and would be beneficial to system architects,
performance analysts, and applications programmers. In this approach, classes of architectures
and classes of applications would be identified and comparisons or contrasts of architectures
would take place within the classes of architecture for specific classes of applications.

For example, computational fluid dynamics in its traditional implementations and magneto
hydrodynamics are generally highly vectorizable applications (90 - 95%) that also exhibit a sig-
nificant amount of large-grain parallelism (85 - 95%). In contrast, many Monte Carlo, circuit
analysis, and quantum chromodynamics codes exhibit negligible amounts of vectorization but
have extremely high (95 - 99%) parallelization. Different systems could be beneficially analyzed
by restricting to one or the other of these classes ol application,

Furthermore, a single system’s performance will vary widely depending on the choice of imple-
mentation of an application. Consider the following two examples:

1. A production code at the Los Alamos National Laboratory

Executed on a Cray-1, the net performance of one particular production code can be either
approximately 20 MFLOPS or approximately 2 MFLOPS. The difference is the result of the
choice of the path taken through the code at execution time. If the solution is accomplished
via the hydrodynamics path, the higher performance is obtained. The lower performance
follows from the Monte Carlo path execution.

2. A Navier-Stokes CFD problem.

The standard solution is numerical and generally requires accessing data in successive passes
through orthogonal directions, making parallelization speedup difficult on a non-shared
memory system and vectorization difficult on a system that is sensitive to the presence of
large strides. A new solution technique is being considered that involves cellular automata.
This implementation is extremely parallelizable and has been shown to produce high per-
formance on the Connection machine, an architecture on which the more traditional solution
would be expected to perform poorly.

In summary, the proliferation of computer architectural models has magnified the range of per-
formance possibilities considerably relative to the range possible on single processor serial ma-
chines. Because some classes of computational models exploit hardware characteristics that are

Position Paper 1
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left untouched by others, careful selection of both models must be involved in the evaluation of
these systems. Rather than application independent performance techniques, we need to develop
the correct dependence of applications and architectures in order to best understand the overall
performance of complicated systems,

Position Paper . 2



57

PARALLEL PROGRAMMING

Position Paper for the Workshop
Performance Efficient Parallel Programming

H. Muehlenbein GMD
P.0 1240 D-5205 Sankt Augustin 1

INTRODUCTION:

Parallel programming cannot be discussed in isolation but has to be considered in the
framework of parallel processing. In the past paraliel processing was restricted to array or vector
processing. Today parallel processing itself needs an interdisciplinary approach. Multiprocessors
operating asynchronously and routing messages within a network have problems common to
computér networks and distributed systems. This we can call the horizontal connection. Parallel
processing also needs a vertical connection. Within parallel processing we have a multidimensional
design sbace. We need experiments to investigate the relationship between programming languages
_and operating systems, between applications and suitable network topologies. In order to obtain a
breakthrough in parallel processin'g an interdisciplinary approach is needed. There are at least three
reasons to jump to parallel processing

performance
fault tolerance
simplicity

The last issue may be surprising because parallel programming is considered to be
complicated. But as C. Mead asks: "How much of the praoblem is due to anachronism in languages
and how much isdue to the way in which the parallel semantics has been applied?” Parallel
programming needs a fresh start. "A fresh start often gives us insights into the structure of a problem
which reveals an underlying unity and simplicity.”

We claim that for certain applications the fresh start could be a uniform computational model
based cn communicating processes. To support this model sophisticated graph models have to be
deveioped and appilied. We will discuss this topic in more detail in the tollowing chapters.

SIMPLICITY

There is a widespread believe that parallel programming is a difficult task. We believe that there
can be a paratiel programming style which can lead (for certain applications) to simpler programs
than sequential ones. The basic observation is as follows: Many systems in nature work in paraliel.
With the right programming paradigmn it should be easy to obtain a one-to-one mapping of the
problem structure to the implementation structure. This paradigm can be phrased "macro data flow
oriented and object oriented”. It is interesting to observe that this style has been advocated in
different disciplines. The following table gives some exambles.
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Discipline Example

science cellular automaton
software engineering SA, dataflow graphs
languages communicating processes
operating systems message passing

VLSl VHDL behavior desription

In all these examples we describe how the input and cutput of an entity relate, by expressing
the associated input/output transformations and by connecting the input/output parts. Thus the
system is described or constructed from a local point of view. Using on every level a similar model
should make the programming task easier. In structured analysis for instance the system is described
using a hierarchy of data flow diagrams so that non-specialists can understand what is happening.
why not viewing it as a maximally parallel set of processes communicating via well defined data flows
? This means that a language based on this pronciple can directly implement the specification ans is
a great improvement over sequential language, where the first step is to turn data flow diagramms into
a sequential module calling hierarchy. There are also strong arguments to use just the opposite
programming paradigmn - we will phrase it "functional” or "structure oriented”. Both styles are
integrated in the VLSI design language VHDL whereas in parallel processing they are considered to
be totally different computational models and should not be combined. It looks as if there are almost
wars between these two schools...... We believe that both styles are necessary and have advantages
in different application areas. Within the area of scientific computation we advocate the use of the
data flow approach, which can be shown to lead to simple programs and massive parallelism. The
drawback of the dataflow approach is that the global behavior of the system cannot easily be
observed or predicted. All activities which require a total system state like debugging, dead lock
handling, checkpointing etc . are complicated to implement.

Fault Toleran

Multiprocessor systems allow fault-tolerant execution of programs. A variety of graph maodels
has been developed for diagnosis and reconfiguration of multiprocessors in the case of hardware
failures. Test results obtained locally can be routed through the system to allow the remaining intact
processors to compute a system-wide self-diagnosis. System-wide self-diagnosis enables the system
to reconfigure and to run the application programs on the remaining intact components. This
problem can be solved by isomorphic embedding of graphs or by special scheduling. This
demonstrates that model; incorporating fault tolerance are a natural extension of the macro data flow
model.

Performance

The performance gain of parallelism is constrained by how much parallelism is in the problem.
Basically, we see at least two kinds of parallelism:

algorithmic parallelism
spatial parallelism
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The first group contains applications where the parallelism has been obtained by decompaosing
the algorithm into a number of simpler components which can be executed in parallel. The second
group contains applications where the parallelism has been obtained by distributing the data to be
processed between a number of processes in such a way that the geometrical structure of the data is
preserved. Algorithmic parallelism is not easy to explore and seems to be highly irregular whereas
geometric parallelism is proportional to the problem size. The performance problem of spatial
parallelism is well understood.The performance is more or less influenced by the ratio of
communication time and compute time. Kruskai stated the following conjecture: With rare exceptions,
any real life problem can execute efficiently on any reasonable parallel computer - as long as the
problem is large enough.

This conjecture can be proven informally by the following observation. With M objects stored
locally we often have O(M**i) compute time and O(M**j) communication time. When Ki we can adjust
the quotient of compute and communication time. The important question therefore is: How large
does a given problem have to be to run efficient {50%) on a parallel architecture. With P equal to the
number of processors and N eq'ual to the problem size, we can classify the problems into three
classes at least for the ring machine.

N = O(P)
N = O(P**k)
N = Olexp(P))

nclusion:

For spatial parallelism there seems to be a uniform computational model to obtain efficient, fault
tolerant and simple programs. To support this model new tools have to be developed or integrated
into a coherent framework. These tools have to be based on formalized graph models. Hopefully we
end up with a set of similar graphic oriented tools supporting program specification, program
implementation and program visualization at runtime. This programming model is neither
revolutionary like functional models nor evolutionary like parallel languages with paraliel loops. It
needs reprogramming in a ciean and safe style. In our opinion supercomputers with more than 100
gflop should not be driven by the old dusty FORTRAN deck.
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Performance Critical Decision Problems in Parallel Scientific Coinputations
David M. Nicol

Institute for Computer Applications in Science and Engineering
NASA Langley Research Center, Mail Stop 132C
Hampton, Virgina 23665

Scientific computations are often composed of numerical calculations at each point in a discre-
tized spatial (or transformed) domain. Workload assignment for parallel processing on message passing
architectures involves partitioning the discretized domain points into regions which are then mapped to
processors; usually the number of regions equals the number of processors. A processor’s workload is
then a function of the domain points in the region it receives. Our work has focused on two problems
arising from this type of computation. One problem recognizes that a computation’s workload distribu-
tion may change in time (or iterations). This is especially true for adaptive methods, which dynamically
create and destroy domain points. The second problem recognizes that performing a convergence
check after every iteration is unnecessary, and degrades performance.

Our initial efforts in treating the dynamic workload imbalance problem involved development and
study of analytic models which exhibit tme variant behavior. These models fall into two classes; one
class models situations where run-time performance changes abruptly; the other class models sitations
where performance declines gradually, and continuously. The key issue for all of these models is to
decide when and if a new partition of the domain should be calculated and implemented. Intuitively,
this decision should depend on the cost of remapping, the performance gain achieved by remapping,
and the performance decline suffered by not remapping. In [1] we examine a abrupt change model,
develop an optimal decision policy for the model, and then show that a simple decision heuristic which
requires no estimation of seemingly critical model parameters achieves nearly optimal performance. In
[2] we examine two gradual change models, develop a decision heuristic which attempts to minimize
the overall cost per unit time, and show that this heuristic is effective for both models. Currently we
are beginning to implement these policies for specific numerical problems on hyper-cube type architec-
tures. Our overall goal is to develop remapping decision mechanisms which are transparent to the pro-
grammer.

Naive convergence checking of an iterative numerical method requires that every processor report
at every iteration whether its subdomain has converged. The computation stops only when the solution
has converged globally, at every subdomain on the same iteration. The overhead cost of convergence
checking can be quite high: we have measured it (on an SOR solution of the heat equation) running on
the Intel iPSC to be as high as 50% of the running time [3]. In [3} we discuss two means of reducing
this overhead. One method dynamically schedules the next convergence check, allowing for the possi-
bility of not testing convergence at all during intervening iterations. This method is akin to our remap-
ping heuristics in its effort to balance the cost of checking convergence against the "overshoot” cost of
continuing to calcuate iterations after global convergence occurs. The second method does not expli-
citly balance these costs; rather, it requests convergence information only when certain necessary con-
ditions for global convergence are satisfied. For the problems we studied, these methods performed
equally well.

The research reported here recognizes that the dynamic behavior of parallel computations gives
rise to decision problems which must be dealt with if the computation is to run efficiently. Ideally, our
treatments of these problems must become invisible to the application programmer; the decision
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mechanisms we develop should be implemented at a system level, rather than an application level. We
are continuing our efforts to achieve this goal.

[1] D. Nicol, P. Reynolds Jr., Dynamic Remapping Decisions in Multi-Phase Parallel Computa-
tions, ICASE Report No. 86-58, September 1986.

[2] D. Nicol, J. Saltz, Dynamic Remapping of Parallel Computatlons with Varying Resource
Demand, ICASE Report No. 86-45, July 1986.

[3] ]. Saltz, V. Naik, D. Nicol, Reduction of the Effects of Communication Delays in Scientific
Algorithms on Message Passing MIMD Architectures, to appear in SIAM Journal of Scientific
and Statistical Computing, January 1987,
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September 1986

Programming environments improve the productivity of programmers in two
ways. First, environments relieve programmers from concern with details not
strictly related to programming. For example, structure-editing environments en-
sure that programmers need not be concerned with whether a semicolon is a state-
ment separator or terminator. Second, environments can enforce or encourage the
use of a specific methodology.

Most of the research and development of programming environments has pri-
marily focused on sequential systems and languages such as C and Pascal. The
motivation for environments, however, carries over even more strongly in the do-
main of parallel computation. The details required for parallel programming are
immense: without environmental support, it seems nearly impossible to produce
high-quality parallel programs. Also, since the search space for parallel programs
that solve a problem seems to be greater than that for sequential programs, suitable
methodological guidance will be needed.

(As an aside, I predict that most of the software engineering problems of docu-
mentation, maintenance, parallel programming-in-the-large, and such, will come to
the forefront of parallel programming not too far in the future. As soon as there
are many problems that require multiple programmers and long periods of time to
solve, we can expect our focus to shift from environments for constructing parallel
programs to environments for engineering parallel programs.)

It is difficult to perform research in programming environments (either sequen-
tial or parallel). The key reason for this is that modifying the environments to
meet changing needs and requirements is costly. To test a new idea often takes
significant resources and time. One approach to reducing this inflexibility is to
construct environments with their modification and enhancement in mind. Several
sequential environments have taken this approach in varying degrees. Consider the
single language programming environments such as Interlisp and Smalitalk. The
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uniformity and open nature of these environments encourage experimentation. Also
consider the generation of environments based on structure-editors, such as Gan-
dalf and the Cornell Program Synthesizer. These generators permit us to construct
environments for various languages with relative ease.

Given the relative immaturity of parallel programming (with respect to sequen-
tial programming), it is no surprise that the first efforts in supporting parallel
programming were quite inflexible. Adding new interconnection schemes is an ex-
ample of the kinds of change that environments have difficulty accommodating.
Now that the “first-generation” support systems are maturing, we have an oppor-
tunity to focus on the dimensions along which we believe that environments must
have flexibility (so that we can experiment even further).

In what areas do we need to support such flexibility? Here are two examples:

Object Definition and Manipulation Parallel programming environments do
and will rely heavily on non-textual objects, such as graphic versions of com-
munication graphs. If one is constructing an environment on top of a systems
such as UNIX, the underlying file system does not facilitate the storage and
manipulation of objects that are defined non-textually, since the file systems
are oriented towards streams of bytes. It is not likely, though, that replac-
ing the byte-stream support with a single other abstraction will work, since
non-textual objects other than graphs — for instance, abstract syntax trees
for representing programs — may be needed as well. We are searching for a
unified way in which to define, manipulate, and coordinate various classes of
objects.

Tool Definition Parallel programming environments play many roles: commu-
nication graph editor, serial program editor, compiler, debugger, simulator,
among others. The parts of the program that implement these varied roles
are usually closely integrated so as to support the programmer as fully as
possible. Despite this benefit to the user, the tight integration often makes it
difficult to introduce new tools. We are searching for ways in which we can
define and integrate new tools into an environment at reduced cost. This will
necessarily increase our flexibility in experimenting with the environment.

As part of my research with Larry Snyder, I am interested in solving these prob-
lems along with others that currently inhibit the flexibility of parallel programming
environments.
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FINDING THE RIGHT VIRTUAL MACHINE FOR
PARALLEL APPLICATIONS PROGRAMMING
T.W. Pratt
University of Virginia

September 1986

Two questions of importance to performance efficient paratlel programming:

1. What 'virtual machine’ should be provided to the applications programmer?

2. How independent of the underlying hardware architecture can this virtual machine be if
you still want good performance?

The 'virtual machine’ that the applications programmer uses is formed out of the varicus layers of
software on the system: programming language, run-time library, operating system, plus the
hardware itself. In designing this software, the designer considers what aspects of the machine and
lower layers of software to hide, and what to augment. The applications programmer uges this virtual
machine,

The virtual machine may match the architecture closely (and applications programs will then be
difficuit to port to other architectures), or it may hide the architecture completely. Jones and Schwarz
1] note that if the virtual machine hides aspects of the underlying architecture that have important
performance implications, then cbtaining good performance may be ditficult for an applications
programmer. '

Typical design questions:

1. Should the VM provide message passing if the HW provides shared memory?

2. Should the VM provide shared/global data objects if the HW has only distributed
memory?

3. Should the VM provide several granularities of parallel actions if the HW provides only
one grain size?

4. Should the VM be a clustered machine if the HW is not clustered?

THE PISCES PROJECT
1. Carefully defined virtual machine

2. Architecture independent applications programming (scientific/engr)
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3. Programmer control of virtual machine = => hardware mapping
4, Virtual machine model:

clusters of tasks
dynamic task creation/termination
massage passing among tasks
forces {ala Harry Jordan/U.Co.)

-- shared variables/parallel loops
multiple granularities of parallelism

Implemeniation: FLEX/32, workstation network, hypercube (planned)

REFERENCE

[11] A.K.Jones and P. Schwarz, "Experience Using Multiprocessor
Architectures - A Status Report," ACM Computing
Surveys, Vol. 12, No. 3, June 1980, pp. 121-166.
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Background

Presently, the Message Passing Semantics Group at the M.L.T. Artificial In-
telligence Laboratory is pursuing the design and implementation of Actor
languages and architectures for open-ended, continuously evolving systems.
1.e., Open Systems.

Actors are opaque, autonomous computational agents that communicate
via message passing. In response to a communication. an actor may perform
several actions:

It may send more communications to its acquaintences:
It may create more actors: or.
It may designate a new behavior with which to process the next message.

»
L ]
]
Note that any of these actions may be performed jointly or severally.

Actor communications systems ressemble mail systems, 1.e., communica-
tion proceeds asynchronously, and actors queue incoming messages if they are
delivered while processing. Computation therefore occurs between communi-
cations. Moreover, parallelism is engendered by creating more actors or by
creating more communications.

Current Experimentation

Current research proceeds along the following routes: Architecture, Program-
ming Languages and Semantics, Theory and Applications for Open Systems.

Theory

Actor theory rests on a firm mathematical foundation developed and eluci-
dated in Gul Agha’s dissertation and forthcoming book, Actors: A Model
of Concurrent Computation in Distributed Systems.t Continuing theoretical
work concerns the nature of high level actar systems, such as inheritance and
description systems, as well as the impact of the actor formalism on algorithm
design.

Architecture

A potential architecture for actor machines has been simulated on the group’s
Symbolics 3600 Lisp Machines. Basically, each Lisp machine is configured
with a number of Workers which are actors that enqueue tasks as they arrive
and then execute them upon the receipt of a simulated cycle or tick message.

“*Published by M.1.T. Press, this fall.
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A collection of these workers distributed over one or more Lisp Machines is
called an Apiary.

More recently, work has begun on the design of a processing chip that
incorporates message passing at a fine-grained level. We are currently me-
tering sample applications on the Apiary and are utilizing these statistics in
designing and developing chips for actor machines.

Languages

Actor languages attempt to unify the inherent parallelism of pure lambda
calculus with the ability to perform localized state change operations. This
unification of functional and imperative programming styles results in a sys-
temn that couples maximum concurrency with the ability to perform history
sensitive computations.

To date, the following languages and systems have been implemented and
are being utilized in our research effort:

e A Primitive Actor Language, Pract, based upon the notions of Actor
automata developed in Agha’s dissertation. Pract represents the Apiary
kernal language;

e A Core Actor Language, Acore, which serves as the applications language;

o A debugging facility, Time Traveler that permits users to step through
computations by single events or by entire transactions. In addition,
Traveler provides Biographies which essentially represent the history of
activity for a particular actor.

Future developments in this area include the design and implementation of
inheritance mechanisms within Acore and A.l. applications.

Algorithms

The design and evaluation of algorithms has heretofore concerned itself with
the number of steps an algorithm requires to compute a result given some data.
In our experimentation with Actor systems, severa] questions have emerged.

The most general of these stems from the observation that maximizing
parallelism doesn’t insure optimal algorithm design.

At a pragmatic level, actors can be distinguished as those that change
their behaviors as result of a communication, serialized, and those whose be-
haviors never change, unserialized. In a collection of unserialized actors, the
speed at which an algorithm computes is a function of the number of steps
required and the communication latency between actors. Because serialized
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actors change state, however, they must remain locked until they’ve processed
the incoming communication, in order to maintain consistency. These serial-
1zation points can become bottlenecks.

Hence, a fundamental question arises: ls there an optimal tradeoff be-
tween unrestrained parallel activity and administrative overhead, i.e.. serial-
ization? And, assuming there is. is it determined ad hoc. or are there guide-
lines that might be followed by designers?

In grappling with this question, theories from sociology and organiza-
tional management theory might provide fruitful discussian.
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IN PARALLEL PROCESSING, THE TRIVIAL BECOMES CONSEQUENTIAL
AND THE NEGLIGIBLE BECOMES DOMINANT

bavid P. Redgers
SEQUENT COMPUTER SYSTEMS, INC.
Beaverton, Oregon

PARALLEL PROCESSORS WILL BECOME COMMONPLACE AND ESSENTIAL

Mirrcring the commercial proliferation and wuser acceptance of
virtual memory systems which began in the early 1960's, parallel
processor systems are becoming available as standard commercial
products and applications are being developed which depend on
their parallel nature. The demand for parallel processor systems
is driven by needs for absolute performance in excess of that at-
tainable through circuit improvements, cost/performance £o
economically justify new applications, scaleable growth of execu-
tion vehicles to match growth in application size, fault toler-
ance through redundancy to protect application productivity and
reduced support costs through commonality of spares and training
across application engines.[l] As commercial machines proli-
ferate, a body of applications and application approacnes will
develop which are feasible only in a parallel processor environ-
ment, Similarly, languages which express parallel computational
ideas with facility, eg. Prolog, ADA, will supercede present ap-
Plication languages.

SHARED AEMORY PARALLEL PROCESSORS WILL BE PRODUCTIVE IMMEDIATELY

The dominating issues which must be resolved by designers of
parallel processors are scaleability, processor-to-processor
bandwidth for data sharing and inter-process (task, thread, com-
putation) synchronization time. While there are a range of pos-
sibilities for tightness of coupling and degree of connectedness
among processing elements, research work and commercial develop-
ment seem to be focussing on three architectural styles: multi-
computer clusters (networks), connection machines (including hy-
percubes) and shared memory multiprocessors. (2] Clusters gen-
erally are most scaleable but suffer from low performance in
sharing data and synchronizing computation. Connection machines
have a wide range of scalability and have better communication
and synchronization facilities than clusters but these are use-
able in only in very specialized applications. Shared memory
multiprocessors provide the maximum performance processor-to-
processor communication and synchronization but are limited in
scaleability (at present) to a few tens of processors. What are
the factors which will make shared-memory multiprocessors most
successful immediately? 1In a word: tools. To make effective use
of parallel processors, program development environments which
make use of expert knowledge of both the problem structure and
the machine structure will be required. Compilers which restruc-
ture user applications within the scope of one or a few modules
are presently available. Compilers which can expand the scope of
restructuring to whole programs will emerge within the next year.
Programming environments which interact with the application
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developer to extract the structural knowledge lost in translation
to programming language are being designed. All of these sophis-
ticated tools depend on low cost data sharing and rapid inter-
computation synchronization. [3]

The shared memory multiprocessor also provides a complete
development environment. The complete set of conventional pro-
gramming tools which exist for uniprocessor environments can be
hosted and used to bootstrap the more sophisticated parallel pro-
gramming environment. Architectural exploration can be done with
simulation, often with better performance because of the superior
communication and synchronization facilities.([4] If economics
dictate, multiple workers can share use of a single parallel pro-
cessor without resorting to time reservation. Performance moni-
toring and measurement can be done with sampling techniques at a
very fine level of detail without greatly disrupting the flow of
the application.

OLD RULES OF THUJB M4UST BE REVISED

In parallel processing, the trivial becomes consequential and the
negligible becomes dominant. Since the advent of virtual memory
and caches as elements of the storagye hierarchy, memory reference
patterns have been important determinants of performance.. In a
parallel processor, references to shared data becomes a critical
performance factor. Locality is not determined solely by the ex-
ecution of a single process but by all the cooperating processes.
The consequences of an inappropriate migration of an object from
primary to secondary storage may be that all the processors in an
ensemble wait. Note that this isn't a new problem, it exists for
operating systems managing channel processors, just new to appli-
cation programmers and compiler writers. Similarly, treatment of
abnormal or rare conditions in the parallel programming environ-
ment requires revised treatment. As the execution rate of the
application increases so does the rate of exceptional oc-
currences. If the processing of an exception blocks the execu-
tion of the application, the cost is multiplied by the parallel-
ism factor. Rules of thumb about where a program will spend most
of its time will be upset by parallel processors necessitating
new analytical tools.

PERFORMANCE TOOLS SHOULD PROVIDE AN ABSTRACTION

Restructuring compilers will dramatically alter the static ex-
pression of an application. Parallel processors will dramatical-
ly alter the dynamic behavior of an application. Both of these
factors will break the tenuous connection between the programmers
understanding of the flow of his program and the actual execu-
tion. “he stages of program development will remain the same:
design, implementation, testing (debugging) and performance tun-
ing. What must change is the level of abstraction used to under-
stand whether the intent is correctly expressed and the execution
is robust and effective. Guages have been suggested as a vehicle
for shifting the emphasis from evaluation of the flow of control
40 the flow of data.[5] For problems expressed in object oriented
programming languages, these may prove effective, For applica-
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tions carried forward from earlier computer generations, some way
of mapping the actuality onto the original expression may be
necessary. In either case, domain specific expertise about the
application and programming environment must be built into the
development tools.

REFERENCES
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Larry Rudolph (Hebrew University)

» The main goal of paraltel processing is fast execution (i.e. linear speedups).

¢ Large problems, those requiring lots of computer power, are the main application domain
of paralle! processing.

» A linear speedup can almost always be achieved given a large enough problem.

e Performance degredations are coften due to contention for shared resources (e.g. shared
memory modules) and synchronization overheads.

I would like to suggest examining the generalized parallel prefix construct as a way of partially
achieving the above goals. It has applicability to programming at a high level, as a target for
transforming specifications intocode for a parallel machine, and as a basic operation that shouid be

supported by any parallel architecture.

The operation is as follows: Given a binary operation, ¢, and a set of items, Ay By e By, the i-th
prefixis definedtobe a, p a, p ... p a. The items can either be

1. stored statically in an array so that the i-th item is in cell i
2. stored as a linked list -- the i-th item is found by following the link from the i-1 item.

3. defined asynchronously so that the i-th item is the one that is ready to be processed after
i-1 other items are processed.

» The parallel prefix construct has efficeint implementations on (i) high bandwidth shared
memory machines with multiple memory modules and on (i) fixed connection machines
such as the hypercube.

* The mapping from shared memory to fixed connection can be done automatically.

e Parallel prefix allows an’ operationto be applied to a whole set of items at the same time.
The intermediate results are often useful in subsequent steps of the computation. For
example, it has been found applicable for solutions to:

© sparse matrix multiplication
o graph algorithms

o unification

For such applications, the binary operation is not as simple as addition; in fact, it can
often be quite compiex and still have an efficient implementation.



76



77
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Vijay Saraswat
Department of Computer Science
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| am working in the area of design, semantics, implementation and use of concurrent logic
programming (CLP) languages. As far as the topics of concern to this workshop, | am interested in
paraliel (especially 'Al') languages and in perfarmance efficient mappings of parallel algorithms into
paratlel architectures, via a compiler for such a language for the given architecture.

CLP languages (e.g. Concurrent Prolog, Parlog, GHC and CP, the language | work with) are
rooted in a desire to make some of the parallelism inherent in the Horn clause logic programming
approach availabie and manipulable by the user. These languages offer a notion of recursive, non-
deterministic networks of light-weight processes where parameter-passing happens via unification
(which depending on the level, can be thought of as just pattern-matching or a special kind of pointer
manipulation in a once-only-assignable framework). '

From a programming language viewpoint, the new programming paradigm that CP offers is that
of concurrent, controllable constraint systems. The user can set up his problem declaratively as a
network of objects with some constraint relationships and specify the kinds of assumptions that can
be made when constrant-propogation stalls. Moreover, in this framework, he can specify some
control information which can guide the underlying search in a crucial way. This approach vields
some novel algorithms for solving such classic combinatorial problems as the N-queens and the
map-coioring problems.

While such languages have proved to be excellent tools for expressing, in software, complex
systems of communicating processes, there is vet no clear understanding of how multi-processor
implementations should look like. The problem is that each 'cycle' of a CP machine involves an
atomic distributed commit operation, that can be rather costly to implement. Moreover 'channels’ of
communications (logical variables) are, in the language, very easily created and 'unified’ (made the
same) so that it would seem impossible, in general, to guarantee the locality of communication of a
piece of program, without doing extensive daia-flow analysis. Such schemes have yet to be
developed.

I would be very interested in hearing a discussion, from those who have thought of it, of these
and similar issues involved in efficient multi-processor implementations of general-purpose CLP
languages. )

My own current thinking is that a general implementation, even of a language like Flat CP is
going to impose too much extra overhead. For instance, unless a compiler does very sophisticated
analysis of the user program, it may not even be possible for it to detect that some program structure
essentially represents a software pipeline and couid hence be mapped onto a linear sequence of
phase-shifted synchronous processors. There is a need for identifying some restrictions on the basic
mode! which would allow programs satisfying those restrictions to be efficiently implemented on
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canventional shared-memory architectures. As a trivial example, all Flat CP programs satisfying the
syntactic property that for any goal of interest there is at most one committing clause can be
efficiently implemented, by assigning one virtual processor to each goal in the current resoivent. One
can think of specifying with a program, some of the properties of the communication structures
inherent in the program in such a way that an implementation can make use of this knowledge directly
to select an appropriate process/processor mapping.

] would be glad to discuss this and related issues in more detail at the Workshop.
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Developing High-Performance Parallel Software
for Real-Time Applications

Karsten Schwan

Computer and Information Science
The Ohio State University
2036 Neil Avenue
Columbus, OH 43210

schwan@ohio-state.arpa

Abstract

Complex electro-mechanical systems require computational speeds and reliabilities
far beyond the capabilities of current, embedded computers. Therefore, the uses of
computers and software offering substantial parallelism are becoming essential. High-
performance, parallel software for such real-time systems must be flexible in
functionality and adaptable in performance and reliability. and thereby be able to
accommodate changes in technology and in application requirements. Flexible and
adaptable real-time software requires substantial programming and operating system

support.

The structure and content of this support are being investigated. in the PArallel,
Real-Time Systems (PARTS) Laboratory at The Qhio State University. The
laboratory is undertaking the deve_lopment of a real-time systems testbed, of sample,
real-time applications in cooperation with the ASV DARPA robotics project, and of
novel, integrated programming/operating system technology. The purpose of these
developments are to create software technology that assists programmers in con-
structing parallel, real-time software, in adapting such software to realize perfor-
mance goals, and in making adaptation decisions. This paper describes the
prototype integrated programming operating system constructed within the
laboratory. Two sample adaptations of real-time software illuminate the

functionalities of the different components of the system.
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On Efficient Large-Grain Parallel Processing
Herb, Schwetman

Microetectronics and Computer Technology Corporation
P.C. Box 200195
Austin, TX 78720

(512) 339-3428
Introduction

Large-grain parailel processing is based on the parallel execution of groups or blocks of instruction
on multiple processors. In many cases, these executing blocks of instructions are called processes.
Thus, large-grain paralle! processing can be cast in terms of the parallel execution of pracesses, with
the understanding that the user (programmer) has control of the creation and synchronization of
these processes.

The efficiency of process level parallel processing depends on several factors, including memary
contention, synchronization delays, and process management overhead. This latter factor can exert
a significant influence on efficiency. In fact, this factor is what determines the smallest "grain size"
which can be efficiently executed by a parallel system. In other words, because of the impact of the
averhead associated with creating and managing parallel processes, there is some minimum size (as
measured in length of execution interval) process such that if a pracess is "smaller" than this
minimum, it is better, from a performance viewpoint, to execute the process serially, than it is to start
up a parallel process,

This note offers the following points for consideration:

1. it is desirable to build systems which can efficiently execute smaller sized grains of
computation (so as to enlarge the class of computations which are suitable for paraltel
execution),

2. understanding both the factors contributing to process management overhead and the
resulting effects on program performance is important to the design and implementation
of cost-eifective parallel systems.

3. we desperately need better tools for examining process management overhead in current
systems and current parallel programs, and

4. we will eventuaily need better hardware to support efficient execution of process-ievel
parallel computations.
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Zary Segall
Carnegie-Mellon University
We will generically cail the manifestation of parallel programs inefficieﬁcies . the parallel program
performance degradation or shortly the performance bottieneck. Such parallel performance
bottlenecks may be rooled on any or all levels of paraltel program development and execution. The
main goal of performance-efficient parallel programming is to minimize or even exclude all together

the effects of the performance bottlenecks.

One could group the approaches used to generate performance-efficient paraflel programs into the
following three categories:

¢ Perlormance Bottieneck Prevention: This catlegory includes techniques such as:
o Algorithm performance prediction.
o Parallel implementation performance prediction.
" o Language constructs for prevention. -
o Programming environment tools support for preventioh.
e Performance Bottleneck Detection: This may include proéramming environment
performance debugging tools such as performance monitors, graphic user interfaces,

etc., as well as, compiler-based performance bottleneck detection.

¢ Performance Botlleneck Avoidance: This category deals with dynamic (run-time)
compensation for detected or trend-predicied bottlenecks. Examples of such tools and
techniques are:

o Language run-time support for performance bottleneck avoidance.

o Operating system based performance bottleneck avoidance (i.e., load balancing,
dynamic resource allocation, elc.)

" At this workshop | would like 1o discuss some of the following issues:

» Nature of performance bottlenecks in parallel programming.
¢ Techniques for performance botlleneck prediction, detection, and avoidance,

oPEogramming environment tools combining performance bottieneck prediction,
detection, and avoidance.



84



85

Workshop on Performance Efficient Parallel Programming

H. J. Siegel
PASM Parallel Processing Laboratory
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Purdue University
West Lafayette, IN 47907
September 1986

List of Topics I feel are important to pursue INCLUDES (in random order):

mapping algorithms and architectures - models of algorithms and architectures
and how they interact -- what are the salient aspects of architectures
and algorithms for the mapping problem; given parallel architecture -
which algorithm approach best; given algorithm - which architecture
best; given a reconfigurable system - which configuration/algorithm pair
pvest.

parallel programming - what language features needed for efficient "explicit"
specification of parallelism -- including processor transfers, processor
enabling (SIMD mode), switching between SIMD and MIMD modes in
reconfigurable systems, specifying subtask parallelism; what features
needed for effectively compilable "implicit" specification of
parallelism; portable parallel languages for sharing work; common
methods for expressing parallel algorithms so that researchers can share
and communicate results among themselves more easily; tradeoffs between
the efficiency of writing machine dependent "explicit" specification of
parallelism programs vs machine independent "implicit" specification of
parallelism; developing and documenting a set of parallel programming
techniques; using built-in operating systems functions to go from
machine independent to machine dependent code; tradeoffs between
extending existing languages (e.g., parallel C) and developing
completely new languages (e.g., Tranquil}.

impact of architecture on language - shared memory vs local memory; type and
speed of interprocessor communication mechanism available; bit serial
processorsvs bit parallel processors (SIMD}; number of processors;
hardware support for operating system functions called by language; size
of memory; type of architecture -- SIMD, MIMD, reconfigurable SIMD/MIMD,
pyramid, dataflow. )
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Lessons From Poker
Lawrence Snyder

University of Washington

The Poker Parallel Programming Environment was begun in January of 1982 and has been distributed
since October 1885, With feedback from a growing user community and some time for reflection, it is
possible to identify certain features of Poker that have contributed to its demonstrated efficiency and
poitability. '

The chief contributors to its efficiency and portability are (1} the fact that the model of computation
used is a nonshared memory model of parallel computation, (2) the fact that the parallelism is
specified explicitly, and (3) the fact that the communication structure is given explicitly. Because
these features constitute a greater burden to the programmer, the environment must provide greater
support.

In addition, Poker exhibits several other features worthy of inclusion in other systems. Poker makes
extensive use of synthetic graphical pictures to simplify program specification, Poker demonstrates
that it is possible to have language constructs with no syntactic form. Finally, Poker demonstrates the
value of including a simulator of a parallel machine as an integral part of the environment.
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Paralle! Processing Research at Harris Corporation .

Thomas L. Sterling
Advanced Technology Department
Harris Government Systems Sector

Melbourne, Florida 32902

Who We Are

Harris is engaged in a modest multi-year research program to investigate the potential and
methods of parallel processing for general computing. We have a cooperating relationship
with the Concert research project under the direction of Prof. Robert H. Halstead at the
MIT Laboratory of Computer Science. Also, we are a participating company in the
Microelectronics and Computer Corporation’s Advanced Computer Architecture research
program. Research activities of our group include

) the Concert Multiprocessor Testbud,

2) the Multilisp programming language for symbolic computing,

8) the Simultaneous Pascal pre zrumming language {or conventional applications,

4) the Yarc scalar static datafl. w computer for signal processing, image
processing, and simulation,

5) the Propel parallel production system for expert systems, and

6) the SPoC n ultiprocessor execution enviroument for effective general purpose
paralle! pro =ssing. '

The following brief discussion of some of our near term goals, approaches, and views
reflect the perspective derived from the SPoC project. Although we, like many, are
engaged in muitiprocessor research, our lc ng term policy is to diverge from this path due
to limitations of the multiprecessor as is also discussed,

Near Term - ef ective application of multiprocessors
Objective:

Tightly coupled, medium scale mult: srocessor tor reneral purpose applications employing a
shared reference space and dynar ic cheduling.

Issues:

Our research is currently focusing on a fully integrated implementation of the SPoC paral-
lel execution environment from the application domain down to the realm of hardware.
The puipose of this is to study each aspect of parallel computing in the context of the
other supporting parts. In particular, we fecl 2 necd to get away from studics based on toy
programs, -implified analysis, and incomplete simulations. We want to investigate parallel
system behavior under the {orcing function of real world computing protiles to observe the
intri acies of interaction between system levels in terms of seunsitivity of one level to
changes in anothes.
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The primary issues of concentration are

1) semantics of parallel programming,

2} low level synchronization mechanisms,

3) sources of performance loss including overhead, contention, starvation, and
fatency,

4) dynamic distribution of activities and objects, and

5} the quantity and quality of parallelism in applications.

Policies: the SPoC approach

programming- We believe that the programmer has to be aware of parallelism in his appli-
cation to select algorithms well suited to paraliel execution, t-ur should not have to deal with
machine implementation dependent aspects of program processing. SPoC supports explicit
paralle! programming using a concurrent thread computing model. Threads are segments
of sequentiat code. Active threads do not interact and a processor assigned to a scheduled
thread relinquishes the thread only upon its completion. This eliminates the overhead for
suspending tasks but restricts the style of programming. Simultaneous Pascal is a superset
of Pascal that reflects this model. It includes simple extensions such as fork-join and
forall statements, as well as, a-locking discipline for compound atomic operations and fine
tuning of variable scoping. Simultaneous Pascal is overly constrained in the way it
represents parallelism, resulting in hour-glass like parallel computing profiles but is well
suited for medium granularity execution. All scheduling is done dynamically by the under-
lying run time multiprocessor system in a first come first served bases as processors become
availability. Ordering is not guaranteed and scheduling is unfair.

synchronization- An effective parallel execution environment must meld the semantics of
parailelism delineation with efficient mechanisms for parallel flow control. SPoC synchron-
izes the termination of concurrent threads in Simultaneous Pascal with the rendezvous con-
trol mechanism that allocates counters at run time for each join to be performed. Since
parallel statements can be nested, all of the counters are linked in a tree structure that
reflects the dynamic state of statement nesting during execution.

Incality- We are experimenting with ways to use the hierarchical organization of the Con-
cert Multiprocessor and the natural locality of runtime program execution to minimize con-
tention for shared physical and logical resources. While small multiprocessors may use
cache techniques with shared busses, very large systems will have to resort to distributed
methods that exploit more knowledge of program behavior. SPoC provides the empirical
context with which to investigate such methods.

granularity- The overhead for scheduling and context switching of a thread is to a signifi-
cant degree insensitive to the size of the thread. For moderate size multiprocessors, too lit-
tle parallelism will result in performance degradation due to starvation. However, too
much parallelism can undermine performance when the thread size is equal to or less than
the work required to manage it. Aggregation is a technique being studied with SPoC for
reconstituting fine grained concurrent threads into fewer coarse grained threads to reduce
the total overhead incurred. Both compile time and runtime methods are being considered
with the latter complicated by the fact that it is itself a form of overhead.
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instrumentation- In an experimental environment such as ours, being able to "see” what is

" going in is critical to testing of hypothesis and analyzing behavior. For parallel processing
in general, the complexities of action and consequence may demand that instrumentation
become a standard tool of program development. SPoC embodies hardware support for
instrumenting both hardware and software behavior during parallel execution.

Long Term Palicies- fundamental flaws of the Multiprocessor

The multiprocessor is a paralle]l computer of some convenience because of the relative avai-
lability of its primary constituent element, the VLSI microprocessor. To some, it is the
intuitively obvious parallel architecture based firmly on extensive experience with von Neu-
mann uniprocessors and multiprogramming operating systems. Therefore, it is at some risk
that 1 suggest that the multiprocessor as a parallel computer architecture is fundamentally
flawed and that a new (or at less jeast conspicuous) architectural model be pursued. 1 muke
this assertion based on the observation that implicit in the concept of the multiprocessor
are three underlying assumptions which, I submit, are false.

A computer, sequential or parallel, is a physical embodiment of a set of mechanisms that
together support the execution requirements of the instruction set architecture and, in
turn, programs written in or compiled down to the ISA. The amount of each mechanism
{measured in time or real estate or power, units your choice) required to fulfill the needs of
the abstract program is a strong function of the computational model that bpth the pro-
grams and the computer reflect. When the mode! between the program and the computer
differs dramatically, software patches are used to emulate the program model with that of
the computer, making imperfect use of resources due to the mismatch. 1 believe such a
mismautch is inherent in multiprocessing.

The three assumptions of multiprocessing with which 1 take exception are:

I) The mechanisms embodied in the microprocessor are the same as those
required by a parallel processor.

2) The amount of each mechanism required by a multiprocessor is
proportional to the number of processors.

3) The inter-mechanism coupling is of a higher bandwidth than the
intra-mechanism coupling.

Parallel processing requires additional mechanisms tha: those found in uniprocessors.
Examples include task synchronization, inter-task communication, and atomic compound
data manipulation. Different mechanisms have different scaling properties instead of the
linear one forced by multiprocessors. Communication requirements may grow as badly as
quadratically and synchronization may grow more than lin-arly as well due to the use of
finer granufarity. 1 believe that for a distributed ‘aechai isin to be ef ‘ective, its pieces
should be tighitly coupled. In a multiprocessor, the [ieces ¢. different mechanisms exist in
each processor and are in tighter communication than are the di{fferent pieces of the same
mechanism that are in separate processors.

What results from these observations is an approach to parallel computer design that
departs from that of multiprocessors. The functionality of each mechanism is defined
from the parallel computing model devised for the system. Each mechanism is designed to
be distributed in space, looking something like a layer in a cake. Then the distributed
mechanisms are assembled into a single computing ensemble, by piling the layers one on
top of another in n-dimensional space. For lack of 2 more imaginative name, I call this the
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LDM architecture for Layered, Distributed Mechanism. The final ensemble is, in a way, a
uniprocessor presenting a single interface to the assembler level programmer. However, it
interprets parallel programs with each mechanism working on many parts of it at the same
time. I see some hints of such an architecture in the Connection Machine, early ideas for
data flow, and maybe the MPP.
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Let’s Stop the Dust from
Collecting on OPS5

Salvatore J. Stolfo
Columbia University
New York, N.Y. 10027

18 June 1986
One of the noted impediments to achieving high performance parallel programs is the dusty deck

problem. Important numeric-based code in use in major computational centers today have achieved ages
well beyond the average computer scientist! These dusty decks of source code are not expected to go the
way of the dinosaur in favor of the evolutionary offspring utilizing parallel constructs and parallel
hardware for their execution. Furthermore, the parallelization of these old sequential codes are not
expected to provide orders of magnitude improvements in cost effectiveness that may be possible with

reimplementations of parallel software solutions,

Of great concern to me is the issue that the relatively young area of symbolic programming may be
forming its own dusty deck problem. Specifically, the OPSS language, the Al counterpart of FORTRAN
in my opinion, may not provide the proper vehicle for high performance symbolic parallel computing.
Unfortunately, OPSS is becoming somewhat of an industry standard in the implementation of Al software
which may potentially ferment the noted dusty deck problem.

We have reported a number of parallel algorithms to speed up OPS5 type Production Systems, as well
as a number of parallel optimization schemes, (Our present work is aimed towards detailed performance
measurements via experimental implementation of our ideas on the operational 1023 processor DADO?2
prototype. )

The question to ask at this point is precisely what speed up can be achieved for OPS5 PS programs.
Much has been written and debated about this very point. The issue centers upon two key observations.

First, it appears on first glance that the match operation of OPS5 PS’s may be executed in parallel by a
large number of concurrent PEs. In certain measured OPS5 PS programs, however, it has been reported
that on each cycle of execution a relatively smail and stable number of rules must be matched. against
newly asserted data. That is, on average each rule firing in OPS5 produces new data elements which
affect (or are relevant to) the LHS of a small number of rules. (Statistics for R1, for example, show about
30 rules out of a set of ~2000 are affected on each cycle of execution.) This small "affect set", as it has
been called, thus indicates that the "number” of individual match operations executing in parallel which

"compute "useful" new matching rule instances is smail. Hence, a large number of invoked parallel
procedures compute nothing at all and the utilization of the parallel resources is thus poor.

The second observation to note is that the variance in processing times for the concurrent match
Operations can be quite large. That is, the total running time is proportional to the "slowest" matching
rule, indicating that utilization of the parallel resources decreases even further while possibly many PEs
wait for the slower PEs to catch up and synchronize for the select phase.
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These two observations may lead one to the depressing view that PS programs, in particular OPSS, can
best be accelerated by a small number of parallel processors rather than the large-scale approach taken in
the DADO machine. We firmly believe this not to be the case at all. The DADO project at Columbia is
investigating and has discovered two clever “source to source” transformational techniques as well as a
"multitasking” approach that provide the means to reduce the rule matching variance time as well as
increase the average affect set size. The essence is to "rewrite” the rule system in such a way that
individual rules which require more processing than the "average” rule are replicated a number of times
with additional distinct constraints appearing in each copy. The effect of this transformation is to
preserve the same computation as the original rule, but to provide the opportunity to match the copied
rules in parallel. The total effect is that a number of rules representing the single "hot spot" rule can more
quickly calculate the same result in parailel! In our experimentation, we found, for example, that a single
hot spot rule copied and constrained to 4 rules produces an overall speed up of the orginial rule’s match
time by a factor of 5!

The second technique to increase the average affect set size depends upon "concurrent rule firings”
where the select phase chooses for parallel execution as large a number of rule instances as possible,
rather than a single rule instance. A multitasking approach to this parallel activity on DADO?2 has been
reported with encouraging simulation results noted — on the order of a factor of 7.5 times faster .
execution.

Another technique is quite similar to the notion of "chunking”. Whereas chunking has been proposed
as an Al learning method, the same technique may be used to coalesce a number of rules into larger rules
with larger right hand sides. The net effect is to rewrite a set of individual rules that are often executed
serially to a new ldrger rule (encompassing all the others) whose actions compute the same WM changes
and hence create larger affect sets in one cycle of execution. Consequently, the execution of a single
“chunked” rule, in place of its forebears, may lead to a larger number of useful match operations
calculated in parallel. Unfortunately at the time of this writing, insufficient evidence is available to report
the utility of the third approach. It is our opinion, however, from studying a number of small OPSS
programs, that these techniques provide evidence that utilization of large numbers of PEs can be increased
and hence performance can be improved overall. Work is presently under way to apply these techniques
to a large OPSS5 program to be run on DADO2.

Why do we puruse all this work for OPS5? Our strong impression is that OPSS5 provides inherently
sequential programming constructs which necessitates the extraction of implicit parallelism. This clearly
points out the need for inkerently parallel constructs in rule based programming providing explicit
parallelism for high performance.

Much of the debate that has arisen around OPSS is based upon pessimistic statistics derived from
performance of existing "sequential” OPS5 programs. Many parallel processing researchers concur that
many opportunities for exploiting parallel processing cannot be derived from study of only sequential
programs. After all, sequential programs were written for sequential processors, not parallel processors.
This may lead researchers towards techniques of "conventional program optimization” to improve code
efficiency on a single PE, the primary approach taken in the implementation of OPS83. We prefer to
optimize for increased parallel performance avoiding the potential dead end of dusty decks. Hence, a
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more useful approach would be to consider rewriting existing sequential code entirely with the minds eye
set on parallel processing. (Fortunately, not many lines of OPSS5 code exist in comparison to FORTRAN,
for example.) To that end, expression of parallelism is necessary and hence parallet languages are vitally
important. Much of the current activity of the DADO Project at Columbia is focused on the specification
and implementation of an Al PS language, called HerbAl, designed to be downward compatible with
OPSS. The essence of the initial HerbAl definition is to provide a few additional parallel constructs to
permit the expression of inherently parallel activities that can be expressed only sequentially in OPSS5.
The expected net result is to provide improved expression as well as improved performance of Al
programs. It is our expectation that the initial HerbAl effort will provide a brighter future for large scale
parallel processors achieving high performance execution.
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Workshop on Performance Efficient Parallel Programming

The Multi-Satellite Star

Michael Stumm

Distributed Systems Group
Department of Computer Science
Stanford University
Stanford, CA 94305

Introduction

We present a programming paradigm for structuring parallel computations for execution
on MIMD parallel systems. We call the structure we use the multi-satellite star and
believe that it will become the predominant way of structuring parallel computations on
a wide range of MIMD parallel architectures, since it is performance efficient, yet simple
to implement and easy to use.

The multi-satellite star maps easily onto most MIMD parallel architectures, from shared
memory multi-processors to network-interconnected workstation clusters. It is performance
efficient because it minimizes communication overhead and distributes the load evenly
among the available processors. Moreover, it provides a simple basis for writing fault
tolerant parallel programs. From a programmer’s point of view, only a few modules must
be written in order to generate a parallel program. Most of the implementation details
can be hidden in generic run-time libraries.

The Multi-Satellite Star Model and its Implementations

A parallel program written in the pure multi-satellite star model consists of a set of func-
tional application-level instruction sequences we call subtasks, alogical processor for these
instructions, called satellite module, and a master module we call star central that acts
as a communication, scheduling, and control mechanism for the computation. Star cen-
tral maintains a priority queue of ready-to-run subtasks which are passed to satellites at
their request. Several instances of the satellite module execute concurrently on multiple
PTOCEessOrs.

Satellites, in an endless loop, request from star central a subtask together with its
parameters, execute the subtask without side effects and then return the result values to
star central while asking for the next subtask. A satellite executes at most one subtask at a
time and it does not maintain state between subtask execution (except possibly by caching
portions of the state maintained by star central). Subtask cxccution is not preempted.
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Our experience lies mainly in implementing multi-satellite star programs on work-
station clusters. With efficient communication and correct operating system support, a
cluster of workstations can be viewed as, and effectively used as, a parallel machine. Using
the multi-satellite star model, we have structured algorithms to execute in parallel on a
workstation cluster and have been able to achieve speedups comparable to those attained
on currently-available multiprocessors. Algorithms we have parallelized include branch-
and-bound searching, alpha-beta searching, matrix multiplication, Gaussian elimination,
zero-finding, all-pair shortest path problem, dynamic programming, FFT, etc.

Multi-satellite star programs can naturally be realized in such a distributed environ-
ment if remote procedure calls and monitors, Ada-style rendezvous, or message passing
is supported. Our implementations are all based on the V distributed operating system,
where message passing is used and where star central is a server process that services
requests from satellite processes.

Qur position is that the multi-satellite star structure is suited for shared memory mul-
tiprocessors as well, since it also minimizes communication overhead and distributes the
load among participating processors well for these systems. On a shared memory multi-
processor star central is implemented as a monitor and procedure calls are used to access
its state. We also expect each satellite to have exclusive access to a (local) portion of
the memory space so that access to it is contention free and so that it can modify state
in its partition without causing overhead for maintaining consistency. In many cases it
will be beneficial to replicate common read-only data structures in order to further reduce
contention if this is not automatically provided for by large caches.

Even our distributed implementations contain facilities for sharing state in the form of
(simulated) shared memory. Shared memory is a convenient abstraction on which to build
parallel programs, since processes that wish to communicate need not directly address each
other nor need they exist at the same time and because many communication details can
be hidden from the programmer. Distributed shared memory is implemented using the
broadcast and multicast capabilities of local area networks, and thus allows an efficient
sharing of state.

Efficiency

The efficiency of parallel program execution can be significantly degraded by communica-
tion overhead, uneven load distribution, synchronization overhead, and superfluous work.
The multi-satellite star structure tries to alleviate these problems.

Communication overhead can be minimized by structuring the computation appro-
priately, by using subtasks with grain sizes adapted to the overhead, and by exploiting
broadcast capabilities where applicable. The satellite star structure reduces communica-
tion costs in several ways. Satellites are loaded initially with common code and initialized
data, which are then re-used by each subtask. Subtask switching therefore reduces to
transfer of subtask specification and parameters only. Communication of control is min-
imal, since all global state is maintained at star central. Synchronization, termination

2
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detection and deadlock detection therefore do not require inter-machine communication.
The scheduling mechanism uses only one communication per subtask and ensures that the
highest priority subtask will always be executed next. The (possibly simulated) shared
mernory minimizes the communication necessary for sharing state. Finally, the fault tol-
erance mechanisms used (described below) do not require extra communication to detect
satellite or star central failures during failure-free operation.

We encountered several difficulties in maximizing speedup. Interestingly, the problems
occur in shared memory multiprocessor implementations as well, but are exacerbated by
higher communication costs in distributed systems.

When parallelizing for-loops that contain data dependencies between iterations, satel-
lites typically execute synchronously, i.e. in lockstep. In this case, variance in granularity
can significantly degrade performance, since all satellites must wait for the slowest one
to complete. Furthermore, for each interval, star central suffers from front- and back-end
communication load when satellites execute synchronously.

Some of the tree searching algorithms, most notably alpha-beta searching, suffer from
superfluous computations. That is, satellites can easily be kept busy computing, but
they compute more than is necessary, since they cannot benefit from the results of the
concurrently executing subtasks.

Fault Tolerance

The multi-satellite star model is fault tolerant in several ways. First whenever a subtask
is passed to a satellite, star central retains a copy. This copy is discarded after the subtask
has completed. Since subtasks are functional in nature and therefore execute without side
effects, a subtask can easily be restarted whenever a satellite fails. It simply needs to be
reentered into the queue of ready-to-run subtasks.

Star central must be able to detect satellite failures. It does so by periodically polling a
satellite after a timeout period in which it has received no message from that satellite. This
timeout period should be a function of the subtask granularity. Note that star central need
not recreate a new satellite process after a failure; it can operate with a variable number
of satellites. A satellite will always be able to detect a star central failure whenever it tries
to communicate with it. In this case it commits suicide to avert any orphanage problems.
Star central is responsible for its own recovery. [t generally does this by periodically
checkpointing- its state and by using a backup process that is capable of detecting its
failure. Should this occur, a new star central is created that creates its own new satellites
and continues operation from the last checkpoint. Hence, satellites need not checkpoint
their state. :

Programability

The multi-satellite star model is simple as far as programming is concerned. The imple-
mentation details of the model can mostly be hidden in run-time libraries. A programmer
effectively only needs to write the following mandatory and optional functions.

3
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e mandatory:

— An initialization function that creates the initial subtask(s) and initializes global
data structures given input to the computation.

— A definition of all subtasks:
subtask.i( in-parameters, out-parameters )

- For each subtask, an epilogue function that is executed at star central when a
subtask has completed. For instance, the epilogue function accepts the subtask’s
return values and modifies global state accordingly. It also may create new
subtasks and enter them into the priority queue.

— A termination function that outputs the result of the computation, after the
termination has been detected. )

¢ optional:

— For each subtask, a prologue function that is executed at star central before the
subtask is passed to a satellite.

— A scheduling function that choses a subtask from the priority queue for execu-
tion on a satellite. .

— A function that checks for a termination condition. (In the default case the
computation will terminate when all subtasks have completed executing.)

These functions will mostly be independent of the target architecture. Instances of a
multi-satellite star program will differ mainly in the granularity of the subtasks, depending
on the target architecture. The optimal grain size will mainly depend on the overhead as-
sociated with execution of a subtask. The partitioning and the subtask epilogue functions
must therefore be able to generate subtasks of different sizes as a function of the target
architecture. Luckily, our experiences indicate that most subtasks operate on regular data
structures, such as subtrees or submatrices, whose sizes define the granularity. Being able
to generate subtasks with different grain sizes therefore does not, in general, pose prob-
lems. Moreover, very rarely will subtask modules depend on the granularity. We therefore
conclude that multi-satellite star programs instantiated for different target architectures
will differ mainly in the run-time libraries that are used.



101

Performance Efficient Programming for
Share Memory Parallel Processors

Bob Thomas
BBN Advanced Computers Inc.

Position Paper Prepared for
CMU Workshop on Performance Efficient Parallel Programming
September 8-10, 1986

My interest is large scale shared memory parallel processors. In particular, machines which use
multistage switching networks to implement the path from processors to memory. The BBN Butterfly
Parallel Processor and the IBM RP3 are examples of machines in this class. Because these machines
have many processors and many memories, they provide with substantial processor and memory
bandwidth to the programmer.

Apart from the normal concerns of writing performance efficient programs for uniprocessors, there
are two issues that must be addressed when programming shared memory machines in this class:
memory management and processor management.

The goal for performance efficient memory management is to make full or nearly full use of the
memory bandwidih provided by the hardware. This means avoiding situations where many
processors reference a particular memory at the same time. When this happens program execution is
slowed since processors must proceed serially as they access the "hot" memory. Hardware can
assist some here: for example, combining memory references within the switch and interleaving
memories such that consecutive memory addresses are in different memories can heip. While
interleaving memories at the hardware level may help, it is interesting to note that it may also prevent
programmers who, understanding the dynamics of the reference patterns to their application data,
want to atlocate the data to memories in a way that ensures processors referencing the data usually
access different memories. | believe systems should support both interteaved and non-interleaved
memory, and allow the programmer (compiler?) to use the type of memory appropriate for various
situations.

The goal of performance efficient processor management is to fully utilize the prccessor bandwidth,
Approaches which are dynamic, or at least semi-static, in the way they assign computational tasks to
processors are attractive. They have a natural load leveling effect; as processors become free, they -
simply take the "next” task. Furthermore, such dynamic and semi-static approaches facilitate the
development of programs that are independent of the number of processors. Such programs have
performance and reliability advantages; if the current hardware configuration is not powcrful enaugh
for a program, the program can be run, unmodified, on a larger more powerful configuation; if a
processor or memory is broken, the program can be run on a reduced canfiguration. Dynamic and
semi-static approaches work best in a shared memory environment, where each processor has
efficient access to all application data.
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To woark well, these approaches require a low cost means of allocating computational tasks
processors. A fully dynamic scheme would perform task ailocation each time a processor becomes
free. A semi-static scheme would perform task allocation less frequently for each processar, but
often enough to ensure that processors seldom sit idle while other processors have many tasks. If
one thinks in terms of task allocation bandwidth (BWa), which is the number of tasks a system can
allocate per unit time, and task execution bandwidth (BWe), which is the number of tasks a system
can process per unit time, dynamic allocation is appropriate where BWa << BWe, and semi-static
allocation is appropriate where BWa and BWe are comparable.

We have developed a dynamic processor allocation mechanism for the Butterfly Paruilel Processor
which has been used to support performance efficient programs for a wide range of application
domains.
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5 September 1986

The Importance of the Accurate Performance Modeling
of Parallel Systems

Position paper by D.Vrsalovic
Computer Science Department CARNEGIE-MELLON UNIVERSITY

1. General

Now when parallel systems are reality we have to do the same procedure we did for all the previous
generations of computer systems. We have to learn how to program them after the fact that hardware
is already built, and all the efforts to be put in parallel programming, are once more underestimated.

Most of the researchers see the parallef systems as a vehicle to achieve three main goals:
» Building the computer systems with much higher performance than those we have today;
¢ Achieving the inherent fault tolerance via the use of multiplied resources:;
¢ Having the perspective of the lower production costs due to the effects of learning
process on higher volumes of identical system components.
While widely accepted as the viable implementation for the last two goals mentioned above, parallel
systems are often challenged as the solution for the high performance systems. This comes from the

fact that present efforis in parallel programming are performance-wise often ending with catastrophic

results (ie. real/potential performance ratio is still very low in most of the cases).

in order to overcbme this situation much bettef performance maodels of the parallel systems should
be built. Having such models we will be able to advance our knowledge, and to build the computer

aided tools for parallel programming.

2. Performance Models of the Parallel Systems

Models available today could be classified into two major groups:

¢ Stochastic models;

¢ Deterministic models.

While having strong fundamentals in the stochastic mathematic, former models are giving the
statistical average behavior of the system. They are usually very robust(ie. insensitive) for the fine
grain parallelism. Due to the fact that most of the analytical results are obtained by the use of the

Markovian chains, stochastic models are also insensitive to the effects of synchronization.
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Mathematical foundation for deterministic modeling is yet to be developed. This is the reason why
deterministic models are today only able to cover fine grain effects, while being to complicated for
complex system design. It is also cbvious that there will be always the data dependent effects in a

parallel system, which are inherently stochastic.

It seems that future research should lead towards closing the gap between high level, and low level
system modeling. One of the promising approaches lays in combining both kinds of models to cover

all the aspects of parallel systems design.

3. Conclusions
Intensive parallel programming can give us the experience necessary to develop better models of
parallel systems behavior. Only then when we will have such models, parallel systems design will stop

to be the "Art of the few"”, and become "The Science of us ail".



105

Speedup Versus Lfficiency in Paraliel Systems

John Zahorjan and Edward D. Lazowska!

Department of Computer Science
University of Washington

Exploiting parallelism is an increasingly common approach to improving the performance of
compuier systems. In terms of hardware, this typically means providing multiple, simultanecusly
active processors. In terms of software, this typically means structuring a program as a set of
largely independent subtasks.

In the sequential world the performance of a system usually can be adequately characterized in
terms of the instruction rate of the single processor and the execution time requirement of the
software on a processor of unit rate (which we refer to as its service demand). In the parallel
world things are considerably more complex. In the hardware domain we must be concerned not
only with the instruction rate of a processor, but also with factors such as the number of
processors. In the software domain we must be concerned not only with service demands, but
also with factors such as the structure of the software.

In evaluating a parallel system two performance measures of particular interest are speedup and
efficiency. Speedup is defined for each number of processors » as the ratio of the elapsed time
when executing a program on a single processor (the single processor execution time) to the
execution time when » processors are available. Efficiency is defined as the average utilization of
the n allocated processors.

Ignoring 1/0 processing time, the efficiency of a single processor system is 100%. If efficiency
remains at this level as more processors are added we have linear speedup. This is the ideal case,
as improvements in speedup can be obtained at no cost in efficiency. Linear speedup is not
achievable in general, because of contention for shared resources, the time required to
communicate between processors and between processes, and the inability to structure the
software so that an arbitrary number of processors can be kept usefully busy.

Although the idea of speeding up computations through parallelism has existed for more than
a century. general purpose systems based on multiple (five or more) processors have only recently
become common (e.g.. commercial machines by Sequent, Encore, Alliant, and BBN, and limited-
edition machines such as IBM's RP3 and DEC’s Firefly). The existence of such systems has
stimulated widespread research activity: algorithms work concerned with parallel solutions in
many problem domains, compiler work concerned with parallelizing code, architecture work
concerned with how best to interconnect processors, etc. Obviously, results in these areas play a
critical role in improving the speedup and efficiency properties of parallel systems,

In this work we take a more abstract view. Rather than studying specific implementations and
implementation problems, we study the tradeoff between speedup and efficiency that is inherent to
a software system. Further, we do not do this in the context of a specific software structure;
instead, we derive relationships that can be very broadly applied. We are interested both in
fundamental issues concerning the properties of this tradeoff. and in practical issues that might
arise in considering specific software systems. Among the fundamental issues that we address are:

This work performed jointly with Derek L. Eager, Department of Computational Science, Universi-
ty of Saskatchewan.
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— To what extent is the speedup-efficiency tradcoff determined by the average parallelism of a
software system, as contrasted 1o other, more detailed characterizations?

— How “bad™ can speedup and elliciency simultaneously become?

— What is the nature of the “knee™ of the execution time — efficiency profile, where the benefit
(increase in spcedup) per unit cost (decrease in efficiency) is maximized? For example, what
guarantees can be made regarding speedup and efficiency values at the knee?

Among the practical issues related to specific software systems that we consider are:
— To achieve a given speedup, what efficiency penaity must be paid?

— What is the speedup advantage that will result when increasing the number of processors by
some factor?

— What is the efficiency penalty that will result from this change?
— What number of processors yields the knee of the execution time — efficiency profile?

Our objective is to address these questions by obtaining bounds on performance — bounds
expressed in terms of the average parallelism measure of software structure. [t should be clear
that, given complete information regarding a specific software structure, precise answers (rather
than bounds) could be obtained for many of these questions. There are two reasons, though, why
bounds expressed in terms of one or a small number of parameters may be more desirable than
precise solutions that require complete information:

— It is unlikely in practice that complete information will be available. For most software
systems, paratlelism will depend to some extent on the (unknown or varying) data that would
be supplied as inputs. The volume of information required will in many cases be prohibitive.

— It often is the case that bounds yield more insight than exact answers utilizing complete
information, :

Our pursuit of this approach is in the spirit of Amdahl’s law, which stateé that if a fraction f of a
computation is inherently sequential, then the speedup S(n) is bounded above by -——11—
f + _:.ﬁ

n

(Precisely, f is defined to be the ratio of the service demand of sequential parts of the
computation to the service demand of the entire computation,) This is a simple upper bound on
speedup that is expressed in terms of a single-parameter characterization of the software (f) and a
single-parameter characterization of the hardware (x). It provides considerably more insight than
more detailed alternatives, such as a table displaying exact speedup values computed for a
number of specific software structures running on a number of specific hardware structures.
Amdahl's law illustrates the flavor of the results that we seek.



