
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

1

Table of Contents
W o r k s h o p o n P e r f o r m a n c e E f f i c i e n t P a r a l l e l P r o g r a m m i n g

Seven Sp r i ngs , Pennsy lvan ia
S e p t e m b e r 8 - 1 0 , 1 9 8 6

Call For Papers

page 3

Workshop Participants

page 5

Position Papers

Fran B e r m a n , Univers i ty of Ca l i fo rn ia at San D iego page 13

Dav id L. B lack , Ca rneg ie -Me l l on Un ivers i ty page 15

J o r d a n B rower , Un ivers i ty of W a s h i n g t o n page 17

J .C. B r o w n e , Univers i ty of Texas at Aus t i n page 19

Ingr id Y. Buche r , Los A l a m o s Nat iona l L a b o r a t o r y page 21

Dav id E. Cul ler , Massachuse t t s Inst i tu te of T e c h n o l o g y page 25

J a n i c e E. Cuny , Un ivers i ty of Massachuse t t s at A m h e r s t p a g e 35

J o h n Feo, L a w r e n c e L i v e r m o r e Nat iona l Labo ra to r i es page 37

J e a n n e Fer ran te , IBM page 39

Raphae l F inke l , Un ivers i ty of W i s c o n s i n page 41

Cha r l es L. Forgy , Ca rneg ie -Me l l on Univers i ty p a g e 45

Leah H. J a m i e s o n , P u r d u e Univers i ty page 47

H.T. K u n g , Ca rneg ie -Me l l on Univers i ty page 49

R o n a l d L. La rsen , Univers i ty of Mary land page 51

E d w a r d D. L a z o w s k a , Univers i ty of W a s h i n g t o n p a g e 105

J e r r o l d Le ich te r , Ya le Univers i ty page 53

2

J o a n n e . L . Mar t i n , IBM T .J . W a t s o n Resea rch Cen te r page 55

He inz M u h l e n b e i n , G M D page 57

Dav id M. N i co l , NASA Lang ley Resea rch Cen te r page 61

Dav id N o t k i n , Un ivers i ty of W a s h i n g t o n page 63

T e r r e n c e W. Prat t , Un ivers i ty of V i rg in ia page 65

T o m Re inha rd t , Massachuse t t s Ins t i tu te of T e c h n o l o g y p a g e 67

Dav id P. R o d g e r s , S e q u e n t C o m p u t e r Sys tems p a g e 71

Lar ry R u d o l p h , H e b r e w Univers i ty page 75

Vi jay Sa raswa t , Ca rneg ie -Me l l on Un ivers i ty p a g e 77

Kars ten S c h w a n , O h i o S ta te Un ivers i ty p a g e 79

Herb S c h w e t m a n , M C C p a g e 81

Za ry Sega l l , C a r n e g i e - M e l l o n Un ivers i t y p a g e 8 3

H.J. S iege l , P u r d u e Un ivers i ty p a g e 8 5

L a w r e n c e Snyde r , Un ivers i ty of W a s h i n g t o n p a g e 8 7

T h o m a s L. S te r l i ng , Har r i s C o r p o r a t i o n p a g e 8 9

Sa lva to re J . S to l fo , C o l u m b i a U n i v e r s i t y . p a g e 9 3

M ichae l S t u m m , S t a n f o r d Un ivers i ty p a g e 97

B o b T h o m a s , B B N A d v a n c e d C o m p u t e r s p a g e 101

Da l ibo r Vrsa lov ic , Ca rneg ie -Me l l on Un ivers i ty p a g e 103

J o h n Z a h o r j a n , Un ivers i ty of W a s h i n g t o n p a g e 105

UNIVERSITY LIBRARIES
CARNEGIE-MELLON UNIVERSITY

PITTSBURGH, PENNSYLVANIA 15213

3

Call for Participation

W o r k s h o p o n P e r f o r m a n c e E f f i c i e n t P a r a l l e l P r o g r a m m i n g
S e v e n S p r i n g s , P e n n s y l v a n i a

S e p t e m b e r 8 - 1 0 , 1 9 8 6

In 1983, a " W o r k s h o p o n Mu l t i p rocesso rs for H igh P e r f o r m a n c e Para l le l C o m p u t a t i o n " w a s he ld at

Seven S p r i n g s , Pennsy lvan ia . Th is w o r k s h o p has been d e v o t e d to a n u m b e r of c o m p u t e r e n g i n e e r i n g

resea rch issues in t h e areas of d e s i g n i n g , i m p l e m e n t i n g , p r o g r a m m i n g a n d p e r f o r m a n c e eva lua t i ng

m u l t i p r o c e s s o r sys tems e m p l o y e d fo r s p e e d i n g up s o m e c lasses of app l i ca t i ons . T h e w o r k s h o p has

b e e n s u c c e s s f u l in dev i s i ng the resea rch d i r e c t i o n s a n d s t ra teg ies , a n d b r i n g i n g t oge the r r esea rche rs

f r o m un ivers i ty and i ndus t r y in te res ted in t h e a b o v e t o p i c s .

At th is t ime , a spec ia l i zed w o r k s h o p d e v o t e d to a s p e c t s of para l le l p r o g r a m m i n g t e c h n o l o g y a n d

c h a l l e n g e s s e e m s app rop r i a t e . Th is w o r k s h o p wi l l i nves t iga te a n d f o r m u l a t e t he ma in r e s e a r c h

d i r e c t i o n s in t h e a reas of c o m p u t e r e n g i n e e r i n g re la ted to the d e s i g n a n d imp lemen ta t i on of c o r r e c t

a n d p e r f o r m a n c e e f f i c ien t para l le l p r o g r a m s , as we l l as t he p r o g r a m m i n g t e c h n o l o g y requ i red t o

s u p p o r t t he task of p r o g r a m m i n g in t h e c o n t e x t of new para l le l c o m p u t e r a r c h i t e c t u r e s .

T h e t e c h n o l o g y l im i ta t ions in p r o d u c i n g faster sequen t i a l m a c h i n e s t o g e t h e r w i th t he ever

i nc reas ing n e e d for c o m p u t e r cyc les in so l v ing n u m e r i c a l , s y m b o l i c a n d rea l - t ime p r o b l e m s p l a c e s t he

b u r d e n fo r subs tan t i a l a d v a n c e in c o m p u t e r p e r f o r m a n c e on new c o m p u t a t i o n a l mode l s . Para l le l

p r o c e s s i n g has b e e n long he ra lded as a m e t h o d to bu i l d c o m p u t e r s e x e c u t i n g an ex t r ao rd i na r y

n u m b e r of i ns t r uc t i ons per uni t of t ime . Today , c o m m e r c i a l para l le l p r o c e s s o r s have b e c o m e a real i ty .

T h e ma in c h a l l e n g e is w h e t h e r t hese m a c h i n e s c a n be p r o g r a m m e d to m a k e e f fec t ive use of t he

i nc reased c o m p u t e r power . H e n c e , the o p p o r t u n i t y fo r para l le l p r o c e s s i n g c a n n o t be success fu l l y

exp lo i t ed w i t h o u t d e v e l o p i n g t he bas ic para l le l p r o g r a m m i n g t e c h n o l o g y . T h e d ivers i ty of

a r c h i t e c t u r e s a n d t he w i d e var ia t ion in the i r unde r l y i ng c o m p u t a t i o n a l m o d e l s makes it pa r t i cu la r l y

ha rd to f i nd gene ra l t e c h n i q u e s for d e v e l o p i n g e f f i c ien t para l le l p r o g r a m s a n d gene ra l gu ide l i nes fo r

c h o o s i n g t he a p p r o p r i a t e m a c h i n e fo r a se t of app l i ca t i ons .

A c c o r d i n g l y , th is w o r k s h o p wi l l e m p h a s i z e t he para l le l p r o g r a m m i n g t e c h n o l o g y requ i red to app l y

para l le l s o l u t i o n s to p r o b l e m s w i th t h e ob jec t i ve of i m p r o v i n g e x e c u t i o n s p e e d . W e are c o n s i d e r i n g

t h e f o l l ow ing resea rch issues as in tegra l pa r t s of th is t h rus t :

• P e r f o r m a n c e e f f i c ien t m a p p i n g of para l le l a l g o r i t h m s in to para l le l a r ch i t ec tu res a n d
para l le l p r o g r a m s

• App l i ca t i on -o r i en ted paral le l p r o g r a m m i n g (for n u m e r i c a l , s ymbo l i c , rea l - t ime a n d
i n teg ra ted app l i ca t i ons)

4

• L a n g u a g e s to e f f i c ien t ly s u p p o r t n e w para l le l a r c h i t e c t u r e s

• Para l le l l anguage -o r i en ted a r c h i t e c t u r e s (h igh ly p r o g r a m m a b l e para l le l p rocesso rs)

• P r o g r a m m i n g e n v i r o n m e n t s for p e r f o r m a n c e e f f i c ien t para l le l p r o g r a m m i n g

• C o m p i l e r t e c h n i q u e s fo r p e r f o r m a n c e e f f i c ien t para l le l p r o g r a m m i n g

• P e r f o r m a n c e d e b u g g i n g

• P e r f o r m a n c e c o n t r a s t i n g of t w o h a r d w a r e / s o f t w a r e para l le l a r c h i t e c t u r e s in an
app l i ca t i on i n d e p e n d e n t w a y

In c o n c l u s i o n , w e f o resee th is w o r k s h o p t o p lay a key ro le in b r i n g i n g t o g e t h e r the c o n c e r n s of

des i gne rs , r esea rche rs and users of para l le l p r o c e s s o r s in t he a rea of para l le l p r o g r a m m i n g . In

a d d i t i o n , w e h o p e to d r a w t h e ma in resea rch d i r e c t i o n s in th is a rea f o c u s s i n g t he s c o p e of r esea rch in

th i s f ie ld of c o m p u t e r e n g i n e e r i n g .

5

Par t i c ipan ts (p. 1 of 8)

L i s t o f P a r t i c i p a n t s

N S F - S p o n s o r e d W o r k s h o p o n P e r f o r m a n c e E f f i c i e n t P a r a l l e l P r o g r a m m i n g
Seven Sp r ings , C h a m p i o n , PA 15622

M a r c o A n n a r a t o n e
Dept . of C o m p u t e r S c i e n c e
Ca rneg ie -Me l l on Univ .
P i t t sbu rgh , PA 15213
(412) 268-3049
m x a @ v l s i . c s . c m u . e d u

Fran B e r m a n
D e p a r t m e n t of EE & C o m p u t e r S c i e n c e , Mai l C o d e C-014
Un ivers i ty of Ca l i f o rn ia at S a n D iego
L a J o l l a , CA 92093
(6 1 9) 4 5 2 - 6 1 9 5
b e r m a n @ u c s d

Dav id B lack
D e p a r t m e n t of C o m p u t e r S c i e n c e
Ca rneg ie -Me l l on Un ivers i ty
P i t t sbu rgh , PA 15213
(412)268-7555
b l a c k @ a . c s . c m u . e d u

Be th Bo t t os
Dept . of C o m p u t e r S c i e n c e
Ca rneg ie -Me l l on Un ivers i ty
P i t t sbu rgh , PA 15213
(412) 268 -7694
b a b @ g . c s . c m u . e d u

J o r d a n B r o w e r
D e p a r t m e n t of C o m p u t e r S c i e n c e , FR-35
Univers i ty of W a s h i n g t o n
Seat t le , W A 98195
Jordan @ u w - b e a v e r . a r p a
j o r d a n @ u w - b l u e c h i p . a r p a

Ingr id Y. B u c h e r
C-3, M S B265
Los A l a m o s Nat iona l L a b o r a t o r y
L o s A lamos , NM 87545
(5 0 5) 6 6 7 - 2 8 3 0 / 7 0 2 8

mailto:mxa@vlsi.cs.cmu.edu
mailto:black@a.cs.cmu.edu
mailto:bab@g.cs.cmu.edu
mailto:jordan@uw-bluechip.arpa

6

Par t i c ipan ts (p. 2 of 8)

Bern ie C h e r n
D M C E Div is ion, R o o m 640
Nat iona l S c i e n c e F o u n d a t i o n
1800 G Street , N.W.
W a s h i n g t o n , D.C. 20550
(202) 357-7373
c h e r n @ a . i s i . e d u

Dav id E. Cu l le r
Labo ra to r y fo r C o m p u t e r S c i e n c e
Massachuse t t s Inst i tu te of T e c h n o l o g y
545 T e c h n o l o g y S q u a r e , R o o m 2 5 4
C a m b r i d g e , MA 02139
(617) 253-8854
c u l l e r ® mi t . xx .a rpa

J a n i c e E. C u n y
C o m p u t e r and In fo rmat ion S c i e n c e [COINS, G R E S]
Lede r le G radua te Research Cen te r
Univers i ty of Massachuse t t s at A m h e r s t
Amhers t , MA 01003
(413)545-4228

J o h n Feo
L a w r e n c e L i ve rmore Nat ' l Labo ra to r i es (L-419)
P.O. B o x 808
L i ve rmore , CA 94550
(415)423-9832
f e o @ L L L - C R G . A R P A

J e a n n e Fer ran te
IBM H a w t h o r n e H2 -B54
P.O. Box 218
Y o r k t o w n He igh ts , NY 10598
(914)789-7529

Larry Car te r
IBM T .J . Wa tson Resea rch Lab
P.O. Box 218
Y o r k t o w n He igh ts , NY 10598

mailto:chern@a.isi.edu
mailto:feo@LLL-CRG.ARPA

7

Par t i c ipan ts -- (p. 3 of 8)

Raphae l F inke l
O n leave f r om U. of W i s c o n s i n at:
C o m p u t e r S c i e n c e Dept .
Pa t te rson Of f i ce T o w e r
Univers i ty of K e n t u c k y
L e x i n g t o n , KY 40506
(606)257-6743
raphae l%f .ms .uky . csne t@csne t - re l ay .a rpa

L a n n y Fo rgy
Dept . of C o m p u t e r S c i e n c e
Ca rneg ie -Me l l on Univers i ty
P i t t sbu rgh , PA 15213
(412)268-3725

Robe r t Gra f ton
DCIE, R o o m 640
Nat iona l S c i e n c e Founda t i on
1800 G St., N.W.
W a s h i n g t o n , D.C. 20550
(202)357-7853.

G e o r g e Het r i ck
(DEC emp loyee at MCC)
c / o M C C
9430 Research B lvd .
Eche lon B ldg # 1 , Su i te 200
Aus t i n , TX 78759
(512)834-3411

Char les Ho l l and
O f f i ce of Naval R e s e a r c h , C o d e 1133
8 0 0 N . Q u i n c y St .
A r l i ng ton , VA 22217-5000

Leah H. J a m i e s o n
S c h o o l of E lec t r i ca l Eng inee r i ng
P u r d u e Univers i ty
Wes t La fayet te , I nd iana 47907
l h j @ e e . e c n . p u r d u e . e d u
(317)494-3653

H.T. K u n g
D e p a r t m e n t of C o m p u t e r S c i e n c e
Ca rneg ie -Me l l on Univers i ty
P i t t sbu rgh , PA 15213
(412)268-2568
k t n @ n . s p . c s . c m u . e d u

mailto:lhj@ee.ecn.purdue.edu
mailto:ktn@n.sp.cs.cmu.edu

8
Par t i c ipan ts (p. 4 of 8)

R o n a l d Larsen
Dept . of C o m p u t e r S c i e n c e
Univers i ty of Mary land
Co l l ege Park, M D 20740
l a r s e n ® u m d c

Ed L a z o w s k a
Dept . of C o m p u t e r S c i e n c e , FR-35
Univers i ty of W a s h i n g t o n
Seat t le , W A 9 8 1 9 5
l a z o w s k a ® u w - k r a k a t o a . a r p a
(206)543-4755

T e d Leh r
D e p a r t m e n t of E lec t r i ca l a n d C o m p u t e r

Eng inee r i ng
Ca rneg ie -Me l l on Un ivers i ty
P i t t sbu rgh , PA 15213
(412)268-6645
l e h r @ f a r a d a y . e c e . c m u . e d u

Je r r y Le i ch te r
D e p a r t m e n t of C o m p u t e r S c i e n c e
Box 2158
Y a l e S ta t ion
Ya le Univers i ty
N e w Haven , CT 06520 -2158
l e i ch te r - j e r r y@ya le .a rpa

J o a n n e L. Mar t in
IBM T .J . W a t s o n R e s e a r c h Cen te r
P.O. Box 218
Y o r k t o w n He igh ts , NY 10598
(9 1 4) 7 8 9 - 7 5 0 8

Dav id Mizel l
I n fo rma t ion S c i e n c e s Ins t i tu te
use
4 6 7 6 Admi ra l t y W a y
M a r i n a de l Rey, CA 90291
(213) 822-1511
m ize l l@is i

mailto:lehr@faraday.ece.cmu.edu
mailto:leichter-jerry@yale.arpa

9

Par t i c ipan ts (p. 5 of 8)

He inz M u h l e n b e i n
G M D
Pos t fach 1240
Scho l ss B i r l i nghoven
D-5205 St. Augus t i n 1
Wes t G e r m a n y
0 2 2 4 1 / 1 4 2 3 6 6

Dav id N ico l
ICASE Mai l S top 132C
NASA Lang ley Resea rch Cen te r
H a m p t o n , VA 23665
d m n @ i c a s e . a r p a

Dav id No tk in
Depa r tmen t of C o m p u t e r S c i e n c e
Univers i ty of W a s h i n g t o n
Seat t le , W A 98195
n o t k i n @ u w - t i m o r . a r p a
n o t k i n @ w a r d . c s . w a s h i n g t o n . e d u
(206)545-3798

T e r r e n c e W . Prat t
D e p a r t m e n t of C o m p u t e r S c i e n c e
T h o r n t o n Hal l
Un ivers i ty of V i rg in ia
Char lo t tesv i l le , VA 22903
(804)924-1043
" T e r r e n c e W. P r a t t " © c s n e t - r e l a y . a r p a

T o m Re inha rd t
Ar t i f i c ia l In te l l i gence L a b s
Massachuse t t s Inst i tu te of T e c h n o l o g y
545 T e c h n o l o g y S q .
C a m b r i d g e , MA 02139
(617)253-5871
r e i n h a r d t @ X X . L C S . M I T . E D U

Dav id P. R o d g e r s
S e q u e n t C o m p u t e r Sys tems, Inc.
I5450 S.W. Kol l Pa rkway
Beave r t on , OR 97006 -6063
(503)626-5700
s e q u e n t l d a v e @ d e c w r l . d e c . c o m

mailto:dmn@icase.arpa
mailto:notkin@uw-timor.arpa
mailto:notkin@ward.cs.washington.edu
mailto:reinhardt@XX.LCS.MIT.EDU
mailto:sequentldave@decwrl.dec.com

10

Par t i c ipan ts -• (p . 6 of 8)

Lar ry R u d o l p h
D e p a r t m e n t of C o m p u t e r S c i e n c e
H e b r e w Univers i ty
J e r u s a l e m , Israel
r u d o l p h % h u j i c s @ w i s c v m
r u d o l p h % h u j i c s . b i t n e t @ c s n e t - r e l a y
2 58-5261

Vi jay Sa raswa t
D e p a r t m e n t of C o m p u t e r S c i e n c e
Ca rneg ie -Me l l on Un ivers i ty
P i t t sbu rgh , PA 15213
(412) 268 -3075

Ka rs ten S c h w a n
D e p a r t m e n t of C o m p u t e r
a n d In fo rma t ion S c i e n c e

2036 Nei l Ave . Mal l
R o o m 228, Civi l & Ae ronau t i ca l E n g i n e e r i n g Bu i l d ing
T h e O h i o S ta te Un ivers i ty
C o l u m b u s , O H 43210
(614)422-8658
s c h w a n . o h i o - s t a t e @ c s n e t - r e l a y . a r p a

H e r b S c h w e t m a n
M C C
9430 Resea rch B l vd .
E c h e l o n Bu i l d ing # 1 , Su i te 200
Aus t i n , TX 78759-6509
(512)834-3428
h d s % p p @ m c c . c o m
h d s @ b a l a n c e . p p . m c c . c o m

Z a r y Sega l l
D e p a r t m e n t of C o m p u t e r S c i e n c e
Ca rneg ie -Me l l on Un ivers i ty
P i t t sbu rgh , PA 15213
(412)268-3736
s e g a l l @ a . c s . c m u . e d u

H.J. S iege l
S c h o o l of E lec t r i ca l Eng inee r i ng
P u r d u e Univers i ty
Wes t La faye t te , IN 47907
(317)494-3444

mailto:ohio-state@csnet-relay.arpa
http://mcc.com
http://balance.pp.mcc.com
mailto:segall@a.cs.cmu.edu

11

Par t i c ipan ts - (p. 7 of 8)

La r ry S n y d e r
D e p a r t m e n t of C o m p u t e r S c i e n c e , FR-35
Univers i ty of W a s h i n g t o n
Seat t le , W A 98195
s n y d e r @ Wash ing ton
(206) 543-9265

T o m Ste r l i ng
A d v a n c e T e c h n o l o g y Dept .
Har r is C o r p o r a t i o n ,
G o v e r n m e n t Sys tems S e c t o r (GSS)
M / S 3A -2105
P.O. Box 37
M e l b o u r n e , FL 3 2 9 0 2
(305)729-7098
t r o n @ m i t - v a x @ m i t - m c
t r o n @ t r a n t o r

M i c h a e l S t u m m
D e p a r t m e n t of C o m p u t e r S c i e n c e
S tan fo rd Un ivers i ty
S t a n f o r d , CA 94305
(415) 723 -4003 .
s tu m m @ su - pescadero .Stanford .arpa

B o b T h o m a s
B B N A d v a n c e d C o m p u t e r s
1 0 F a w c e t t St .
C a m b r i d g e , M A 0 2 2 3 8
(617)497-3483
b t h o m a s @ b b n . a r p a
b t h o m a s @ b f l y - v a x . b b n . c o m

Da l ibo r Vrsa lov ic
Dept . of C o m p u t e r S c i e n c e
Ca rneg ie -Me l l on Un ivers i ty
P i t t sbu rgh , PA 15213
(412)268-3813
v r s a l o v i c @ k . c s . c m u . e d u

Dan ie l S iew io rek
Dept . of C o m p u t e r S c i e n c e
Ca rneg ie -Me l l on Univ .
P i t t sbu rgh , PA 15213
(412)268-2570
s i e w i o r e k @ a . c s . c m u . e d u

mailto:bthomas@bbn.arpa
mailto:bthomas@bfly-vax.bbn.com
mailto:vrsalovic@k.cs.cmu.edu
mailto:siewiorek@a.cs.cmu.edu

12

Par t i c ipan ts (p . 8 of 8)

Ra lph W a c h t e r
O f f i ce of Nava l R e s e a r c h , C o d e 1133
D e p a r t m e n t of t he Navy
800 N. Q u i n c y St.
A r l i n g t o n , VA 22217-5000
(202)696-4304
u m c p - c s ! a p l v a x ! r f w

J o h n Z a h o r j a n
Dept . of C o m p u t e r S c i e n c e , FR-35
Univers i ty of W a s h i n g t o n
Seat t le , W A 98195
(206)543-0101
z a h o r j a n @ u w - k r a k a t o a . a r p a

mailto:zahorjan@uw-krakatoa.arpa

13

Pos i t i on Paper: Mapping in Parallel C o m p u t a t i o n
Fran Berman, UC San Diego

In theory, it is easy to argue that a multiprocessor is faster and more efficient
than a single processor computer. In practice, the process of implementing an
algorithm on a multiprocessor is usually machine-specific and rife with low-level
detail. The algorithm must be expressed in a language and format recognizable
by the multiprocessor which may include explicit references to the organization of
memory, the processor interconnection configuration, synchronization protocols,
etc. In addition, the algorithm must be molded to fit the interconnection archi
tecture of the multiprocessor: if the number of required processes in the algorithm
exceeds the resources of the multiprocessor, or if the communication structure of
the algorithm differs from the processor interconnection configuration, the algo
r i thm must be mapped and multiplexed by the programmer onto the multiproces
sor.

Such difficulties in translating an algorithm onto a multiprocessor render
parallel computing inaccessible to many programmers and limit the multiproces
sor user community to those willing to do systems or low-level programming.
This contrasts strongly to the sequential environment where users can simply
translate their algorithms into one of the many supported high-level languages,
and generally depend upon existing systems software to perform the implementa
tion and execution of their program on the machine. We expect that parallel
computing will be accessible to a wide community when it can offer not only fas
ter and more efficient machines but programming tools with which to use them.

A problem fundamental to the implementation difficulties posed by parallel
computing is the mapping problem. The mapping problem occurs when there is a
mismatch between the required number of communicating processes in the algo
ri thm and number of processors in the multiprocessor, or between the communica
tion requirements of the algorithm and the processor interconnection configuration
of the multiprocessor, or both.

Here is an example: Suppose we are interested in implementing an FFT
algorithm on a MIMD multiprocessor whose processor interconnection is
configured as a 63 node complete binary tree. The communication pattern of the
FFT requires 128 processes and performs communication between processes using
the connections of a 7-bit shuffle-exchange graph. The mapping problem is then
the problem of allocating the 128 algorithm processes to the 63 processor machine,
designating paths in the tree configuration which represent the shuffle-exchange
communication links in t h r algorithm, and multiplexing the processes in such a
way that the execution of the mapped algorithm will produce the same results as
the execution of the original 128 process FFT when it Completes. Generally, the
process of mapping and multiplexing the algorithm is left to the programmer. As
part of our investigation of the mapping problem, we have been interested in
designing and developing software tools which perform the mapping and multi
plexing automatically, enabling the programmer to interface with the system at a
higher level.

We began by studying the mapping problem at a theoretical level, investigat
ing different strategies for performing mappings ([BS]). One fruitful approach was
to separate the activities of partitioning processes into groups likely to provide
performance-efficient multiplexing (contraction), allocating those groups to pro
cessors (placement), designating the communication paths needed by the algo
ri thm (routing), and simulating the process groups at each processor site (multi
plexing). In separating these activities, we could seek performance-efficient

14

- 2 -

solutions for each of these tasks independent of the constraints of the others.
Preliminary results of a strategy based on efficient contraction, placement, routing
and multiplexing algorithms produced optimal and near-optimal mappings on a
diverse set of benchmark examples. Encouraged by these results, we next decided
to design software tools based on this strategy which could give us more realistic
performance measurements. The system we designed and are continuing to
develope is the Prep-P system.

The Prep-P system ([BGKRS]) is a software tool which automatically maps
and multiplexes a large-sized parallel algorithm into a non-shared memory MIMD
multiprocessor. In the system, the parallel algorithm is represented by an
undirected graph of bounded degree each of whose nodes is associated with a pro
cess, all of which may run in parallel. The target multiprocessor is represented by
a fixed-size CHiP machine ([Si]), or more accurately the Poker system ([S2])
which simulates a fixed-size CHiP machine. Prep-P contracts the input graph to
an intermediate size, places and routes the intermediate-sized graph on an 8x8
CHiP lattice, and multiplexes the process codes assigned to each PE in the lattice.
The resulting code can then be run on the Poker system and will simulate the
execution of the original parallel algorithm.

The design and development of the Prep-P system has given us a chance to
investigate performance-efficient algorithms and protocols for all stages of this
mapping strategy: contraction, placement, routing, and multiplexing. Algorithms
under investigation for these tasks have included simulated annealing and local
neighborhood search for contraction, simulated annealing and Kernighan and Lin
for placement, an optimized breadth-first search for routing, and several different
approaches to multiplexing. Substantive modifications based on the requirements
of external and internal I /O , available PE memory, and the constraints of the
Poker system have made the design and development of these algorithms a com
plex and engaging research activity.

We are currently configuring and testing the different modules for distribu
tion to interested users with the Poker software (available from Larry Snyder at
the University of Washington) sometime next year. We are hopeful that the stra
tegies designed and developed for the Prep-P system will be useful in developing
mapping tools for many multiprocessing environments.

References
[BS] Berman, F. and L. Snydei, "On Mapping Parallel Algorithms into

Parallel Architectures," Proceedings of the 1984 International Confer
ence on Parallel Processing.

[BGKRS] Berman, F. , Goodrich, M., Koelbel, C , Robison, W. and K. Showell,
"Prep-P: A Mapping Preprocessor for CHiP Architectures," Proceed
ings of the 1985 International Conference on Parallel Processing.

[Si] Snyder, L., "Introduction to the Configurable, Highly Parallel Com
puter," Computer, January 1982.

[S2] Snyder, L., "Introduction to the Poker Parallel Programming
Environment," Proceedings of the 1983 International Conference on
Parallel Processing.

15

Position Paper

Dav id L. B lack
C a r n e g i e - M e l l o n Univers i ty

I s u p p o s e th is p o s i t i o n pape r c o u l d be s u b t i t l e d "Pa ra l l e l P r o g r a m m i n g for the M a s s e s . " In the

b e g i n i n g , s e q u e n t i a l p r o g r a m s requ i red e x c l u s i v e use of t he c o m p u t e r for the i r e x e c u t i o n ; th is l im i ted

the use of c o m p u t e r s to t hose w h o c o u l d a f f o rd to d e d i c a t e m a c h i n e u s a g e to thei r p r o g r a m s . T h e

d e v e l o p m e n t of m u l t i p r o g r a m m i n g ope ra t i ng s y s t e m s and the ' v i r tua l m a c h i n e ' concep t , w a s a ma jo r

s tep f o r w a r d in e x p a n d i n g the app l icab i l i t y and ava i lab i l i ty of c o m p u t i n g ; m a n y users c o u l d n o w sha re

a(n expens ive) c o m p u t e r w i thou t f u n d a m e n t a l c h a n g e s in the p r o g r a m m i n g m o d e l , (i .e. The user

p r o g r a m m i n g m o d e l i nvo l ved exc lus ive use of t he v i r tua l m a c h i n e , bu t its i m p l e m e n t a t i o n d id not

requ i re exc l us i ve use of the phys ica l mach ine .) M u c h of the w o r k in para l le l p rocess ing is at a s imi lar

s t age ; mos t para l le l p r o g r a m m i n g m o d e l s e n v i s i o n exc lus ive use of t he m a c h i n e (usua l ly fo r

s c h e d u l i n g reasons) , w h e r e a s very few of us h a v e para l le l m a c h i n e s ava i lab le fo r ou r exc lus i ve use.

Th is s u g g e s t s e f f i c ien t s u p p o r t of para l le l p r o g r a m m i n g o n m u l t i p r o g r a m m i n g m u l t i p r o c e s s o r

o p e r a t i n g s y s t e m s as a p r o m i s i n g resea rch d i r e c t i o n . At p resen t I a m w o r k i n g on i m p l e m e n t i n g an

o p e r a t i n g s y s t e m fo r a s y m m e t r i c sha red m e m o r y mu l t i p rocesso r .

I see th ree a reas of f u n d a m e n t a l in terest in th is r e g a r d :

• S h a r e d m e m o r y .
• I n te r -p rocess c o m m u n i c a t i o n .
• S c h e d u l i n g .

T h e min ima l i s t a p p r o a c h to th is area has t h e o p e r a t i n g sys tem h a n d ove r a b u n c h of m e m o r y w i t h a

g r o u p of p r o c e s s o r s a n d t h e n get out of t he way . Th is seems no bet te r t h a n t he d e d i c a t e d m a c h i n e

a p p r o a c h ; if t h r e e use rs e a c h take a th i rd of t he m a c h i n e , wha t d o y o u d o w i t h the fou r th user?? O n

the o the r h a n d , p o r t i n g ex is t ing m u l t i p r o g r a m m i n g ope ra t i ng sys tems to m u l t i p r o c e s s o r s c a n resu l t in

sys tems tha t i n t r o d u c e p e r f o r m a n c e b o t t l e n e c k s and make bad s c h e d u l i n g d e c i s i o n s . I be l ieve a

m idd le g r o u n d d o e s ex is t a n d c a n be p r o d u c t i v e l y used in many a p p l i c a t i o n s ; at the w o r k s h o p I h o p e

to e x p l o r e i deas of w h a t t he m idd le g r o u n d m igh t be , pa r t i cu la r l y in t he a reas of s c h e d u l i n g and

r e s o u r c e (p r o c e s s o r , m e m o r y) m a n a g e m e n t .

16

17

Programming and E v a l u a t i n g Computer A r c h i t e c t u r e s

Jordan Brower and Jean-Loup Baer

Department o f Computer S c i e n c e
U n i v e r s i t y o f Wash ington

S e a t t l e , Wa 98195

U n t i l v e r y r e c e n t l y , p a r a l l e l c o m p u t a t i o n s w e r e u s e d p r i
m a r i l y t o s o l v e t i m e - c o n s u m i n g n u m e r i c a l a p p l i c a t i o n s o r a
r e s t r i c t e d c l a s s o f p r o b l e m s , s u c h a s t h o s e found i n image
p r o c e s s i n g . With t h e a d v e n t o f f a s t , l e s s e x p e n s i v e commer
c i a l m u l t i p r o c e s s o r s and t h e d e v e l o p m e n t o f e x p e r i m e n t a l
a c a d e m i c a r c h i t e c t u r e s , p a r a l l e l p r o c e s s i n g i s now open t o a
w i d e v a r i e t y o f a p p l i c a t i o n s . G iven t h e d i v e r s i t y o f p a r a l
l e l a r c h i t e c t u r e s , i t i s n e c e s s a r y t o i n v e s t i g a t e t e c h n i q u e s
t h a t d e t e r m i n e which a r c h i t e c t u r a l and programming l a n g u a g e
f e a t u r e s a r e b e s t s u i t e d f o r a g i v e n a p p l i c a t i o n .

P r e d i c t i n g t h e a p p r o p r i a t e t a r g e t a r c h i t e c t u r e and program
ming m e t h o d o l o g y f o r a g i v e n a p p l i c a t i o n r e q u i r e s an u n d e r
s t a n d i n g o f t h e p a r a l l e l c o m p u t a t i o n a t e a c h l e v e l o f i t s
t r a n s l a t i o n from t h e n a t u r e o f t h e a l g o r i t h m t o i t s i n s t a n
t i a t i o n a s a program t o i t s mach ine l e v e l i m p l e m e n t a t i o n .
We p l a n t o d e v e l o p a s e r i e s o f m o d e l s c o r r e s p o n d i n g t o t h e
t h r e e l e v e l s j u s t m e n t i o n e d t h a t w i l l d e f i n e a h i e r a r c h y o f
i m p o r t a n t d e s i g n d i m e n s i o n s f o r a g i v e n a p p l i c a t i o n and a
mapping t h a t i d e n t i f i e s key d e s i g n d e c i s i o n s b e t w e e n each
l e v e l .

T h i s t h r e e - l e v e l h i e r a r c h y i s t h e one we a r e w o r k i n g on now,
b u t i t w i l l n a t u r a l l y e v o l v e when we w i l l have had more
e x p e r i e n c e i n i m p l e m e n t i n g some numer ic and n o n - n u m e r i c
a p p l i c a t i o n s (e . g . , AI p r o d u c t i o n r u l e s and s e r v e r m o d e l s)
on v a r i o u s a r c h i t e c t u r e s (e . g . , s h a r e d - b u s S e q u e n t , s h a r e d -
memory B u t t e r f l y , and p o s s i b l y a CRAY) u s i n g s h a r e d memory
and m e s s a g e p a s s i n g program m e t h o d o l o g i e s . We hope t o c o n
c l u d e which d e s i g n d i m e n s i o n s a r e i m p o r t a n t t o t h e computa
t i o n a t e a c h l e v e l and t o t h o s e mappings t h a t l e a d t o
e f f i c i e n t i m p l e m e n t a t i o n s .

T h i s work was s u p p o r t e d i n p a r t by a g r a n t from t h e
W a s h i n g t o n T e c h n o l o g y C e n t e r and by NSF Grant DCR-8503250.

18

- 2 -

At t h e p r e s e n t t i m e we f o r e s e e :

- A p p l i c a t i o n l e v e l : A graph model o f c o m p u t a t i o n s
c o u l d g i v e a good i d e a o f t h e n a t u r e o f p a r a l l e l i s m
(e . g . , SIMD, v e c t o r i z a b l e , MIMD w i t h s m a l l o r l a r g e
g r a n u l a r i t y) .

- Language l e v e l : An a p p r o p r i a t e l a n g u a g e f o r t h e
a p p l i c a t i o n w i l l r e f l e c t t h e a r c h i t e c t u r e on which i t
i s t o be i m p l e m e n t e d . We c a n f o r e s e e an i n t e r a c t i o n
b e t w e e n t h e f i r s t two l e v e l s i n t h e form o f an i c o n i c
programming l a n g u a g e f o r t h e graph model (e . g . , by
d e f i n i n g a f i r s t o r d e r r e c u r r e n c e) and a s e r i e s o f
t e m p l a t e s f o r v a r i o u s a r c h i t e c t u r e - s p e c i f i c l a n g a u g e s
a t t h e s e c o n d l e v e l . I n any c a s e , t h e u s e r a t t h i s
p o i n t w i l l n e e d t o be c o n c e r n e d w i t h m e t h o d s o f s y n
c h r o n i z a t i o n , p r o c e s s c r e a t i o n , s c h e d u l i n g , and p a r
t i t i o n i n g .

- A r c h i t e c t u r e l e v e l : At t h i s l e v e l , t h e model s p e c i
f i e s t h e i m p l e m e n t a t i o n o f h i g h - l e v e l s y n c h r o n i z a t i o n
p r i m i t i v e s and memory a c c e s s . I t i s i n t h e i n t e r a c
t i o n b e t w e e n t h e s e c o n d and t h i s l e v e l t h a t we hope
t o l e a r n t h e m o s t a b o u t which a r c h i t e c t u r e s a r e b e s t
s u i t e d f o r g i v e n a p p l i c a t i o n s .

P r e s e n t l y , we a r e i n v e s t i g a t i n g t h o s e d e s i g n d i m e n s i o n s t h a t
a d e q u a t e l y e x p r e s s t h e n a t u r e o f memory a c c e s s (s h a r e d
memory v s . m e s s a g e p a s s i n g) and s y n c h r o n i z a t i o n p r i m i t i v e s .
We a r e u s i n g Larry S n y d e r ' s Poker programming e n v i r o n m e n t t o
implement a l g o r i t h m s (e . g . , bounded b u f f e r and s c h e d u l e d
w a i t i n g) t h a t u s e s t a n d a r d programming l a n g u a g e s y n c h r o n i z a
t i o n p r i m i t i v e s (e . g . , m o n i t o r s , r e n d e z v o u s , s e m a p h o r e s) on
a r c h i t e c t u r e s t h a t s u p p o r t a d i f f e r e n t s e t o f p r i m i t i v e s
(e . g . , HEP's f u l l / e m p t y b i t , R P 3 ' s Fetch&Add, and D r a g o n ' s
C o n d i t i o n a l W a i t) . E v e n t u a l l y , we w i l l want t o d e v e l o p
d i m e n s i o n s and mappings t h a t d e s c r i b e s c h e d u l i n g , p r o c e s s
c r e a t i n g , and network t o p o l o g y , t o name a f e w .

19

PORTABILITY VERSUS EFFICIENCY
FOR PARALLEL PROGRAMS

J . C. B r o w n e
D e p a r t m e n t of C o m p u t e r S c i e n c e s
T h e Un ivers i ty of Texas at Aus t in

Aus t i n , Texas 78712

A B S T R A C T

A t t a i nmen t of max ima l e f f i c i ency in e x e c u t i o n has a lways requ i red hand ta i l o r i ng to t h e e x e c u t i o n

e n v i r o n m e n t , even for sequen t i a l a r ch i t ec tu res . Vec to r a r c h i t e c t u r e s r equ i r ed a mass ive inves tment

in r e s t r u c t u r i n g to ob ta in the bene f i t s of t he a r c h i t e c t u r e . Op t im i za t i ons s e l d o m pers is t even a c r o s s

vec to r a r c h i t e c t u r e s .

T h e s i t ua t i on wi l l b e m u c h m o r e c o m p l e x for para l le l s t r u c t u r i n g of c o m p u t a t i o n s s i nce the re is s u c h a

d ivers i t y of a r c h i t e c t u r e s a n d e x e c u t i o n e n v i r o n m e n t s . Fur ther , t he re is no c o m m o n bas is fo r

e x p r e s s i o n of para l le l i sm a c r o s s d i f f e ren t v e n d o r s 1 p r o g r a m m i n g sys tems .

W e p r o p o s e a n d d e s c r i b e a p r o g r a m m i n g e n v i r o n m e n t w h e r e para l le l s t r u c t u r e is spec i f i ed

dec la ra t i ve l y so tha t ready t rans la t i on to a s p e c t r u m of p r o c e d u r a l i m p l e m e n t a t i o n s of d e p e n d e n c y

re la t ions . Th i s a p p r o a c h a l l ows se lec t i on of c o d e w h i c h is k n o w n to be nea r -op t ima l for a g i ven

a r c h i t e c t u r e . T h e d e c l a r a t i o n s a re m a d e t h r o u g h a g r a p h i c a l i n te r face a n d may b e app l ied to

p r o g r a m s in m o s t h i ghe r level l a n g u a g e s .

20

LA-UR
21

L o s A .amos N a t . o n a l L a b o r a t o r y is o p e r a t e d by the Un .vers . ty of C a h f o r n . a for the U n i t e d S t a t e s D e p a r t m e n t of E n e r g y u n d e r c o n t r a c t W - 7 4 Q 5 -ENG-36

TITLE: PARALLEL PROGRAMMING: A USER'S PERSPECTIVE

AUTHOR(S): Ingrid Y. Bucher

SUBMITTED TO:
Workshop on Performance Efficient Parallel Programming
Champion, Pennsylvania, September 8-10, 1986

By a c c e p t a n c e of this a r t ic le , the pub l i sher r e c o g n i z e s that t h e U S G o v e r n m e n t r e t a i n s a n o n e x c l u s i v e , r o y a l t y - f r e e l i cense to p u b l i s h or r e p r o d u c e

the p u b l i s h e d f o r m of this c o n t r i b u t i o n , or to a l low o t h e r s to d o so . for U S G o v e r n m e n t p u r p o s e s

T h e Los M l a m o s N a t . o n a l L a b o r a t o r y r e q u e s t s that the p u b l i s h e r ident i fy this a r t ic le as w o r k p e r f o r m e d u n d e r the a u s p i c e s of t h e U S D e p a r t m e n t of E n e ' S ,

Los Alamos National Laboratory
Los Alamos, New Mexico 87545

FORM NO 836 R4
ST NO 2629 5/81

22

Parallel Programming: A User's Perspective

by

In grid Y. Bucher

Computer Research and Applications Group
Los Alamos National Laboratory

Los Alamos . NM 87545

Los Alamos National Laboratory, wi th a tradition of fast scientific computing of more than three
decades, has as an organization embarked on the unchartered path of parallel computing. Our users
thirst for ever more computing power. W e believe that the speedups needed to satisfy that thirst
(speedups by factors of 100 or more) can be achieved only by parallel machines. Parallel
computing is thus a necessity for us. Members of a small research team have experiences in
programming parallel Crays. the Denelcor HEP. the Intel iPSC hypercube, and several makeshift
parallel computers of the past, all wi th very l itt le or no software to ease the task. The machines
include both common and distributed memory machines. We are only n o w starting to gain
experiences on data flow architectures. Conversions of major codes to multiprocessor CRAY X-MPs
are in progress using Fortran wi th a mult i tasking library.

Although the author wi l l take ful l responsibility for the positions stated in this paper, they should
be v iewed as fair ly characteristic of the people involved wi th parallel computing at Los Alamos.

1* Speedup Limits

There is a max imum speedup and an associated maximum number of processors that can be
useful ly employed to the solution of a given problem on a given architecture. These maxima may
be but are generally not determined by the maximum amount of parallelism in the problem.

In a very s imple model of parallel computations according to Ware [l] , the problem consists of a
fraction / of the work that cannot be performed in parallel, whi le the remaining fraction 1 — /
c$n be executed on any number of processors p in parallel, wi th perfect load balancing. The
speedup S for this model is given by

5 = - /) / / > + /) . (1)

The maximum speedup for this model is reached for an infinite number of processors and is

sm = i / / •

According to this s imple model, increasing the number of processors p wi l l not hurt the execution
speed, but of course the efficiency wi l l deteriorate.

However, it is k n o w n only too wel l that wi th increasing number of processors or processes,
communication and data movement costs become a serious problem on distributed memory
machines and common memory machines may start choking from memory contentions wi th or

23

-2-

without hot spots. It seems reasonable to assume that these costs associated with parallel
computations are a non-decreasing function W(p) of the number of processes p involved in the
solution of the problem. The speedup S resulting from this s l ightly refined model is given by

5 = 1/((1 - /) / / > + / + W(/>)) . (2)

Unless W(p) is a constant, the speedup exhibits a maximum Sm for a number of processors pm.
Increasing the number of processors beyond pm wi l l actual ly decrease the execution speed as wel l
as the efficiency. The maximum speedup Sm and the maximum number for processors pm are
dependent on the characteristics of the problem and the hardware and software architectures, but
most importantly they are also dependent on the mapping of the problem onto the parallel
architecture. To achieve high speedups, minimizing overhead costs is. in our opinion, a more
difficult and important task than finding the maximum amount of parallelism in a problem. This
applies at least to scientific applications that are natural ly highly parallel. This parallelism is
usual ly clearly visible to the designer of a code but much harder to unearth from existing codes.

Because the maximum number of usable processors is problem dependent, it wi l l be essential to run
several jobs concurrently on a large parallel computer. Research of the behavior of parallel
computers in a multiprogramming environment is. therefore, urgently needed.

2. Common Versus Distributed Memory Machines

Common memory machines are much easier to program than distributed memory machines. This is
born out by our experiences for manual program conversion but wi l l apply to automated tools as
wel l , especially if efficiency is important. As an example, data movements associated with
programming in functional languages should be considered. It is our experience that even if data
can be mapped efficiently for a particular computation in a large program, another computation
wil l generally require restructuring of the data. These data movements consume increasing
amounts of time w i t h increasing number of processors and increasing problem size. They
constitute, in our opinion, the main performance l imitation for distributed memory machines.
Programming of a complex problem on a distributed architecture, therefore, often requires a
complete rethinking of the solution process. An extraordinary amount of artificial intelligence wi l l
be required to automate the efficient mapping of such complex problems onto a distributed memory
architecture. The task completely defies the divide-and-conquer strategy essential to most modern
programming techniques and is. therefore, particularly nasty.

We feel that user input for data organization wi l l be needed for efficiency. N e w languages should
provide for this.

3. T o p - D o w n Versus B o t t o m - U p

In parallel processing of scientific applications (and probably others as we l l) , the crucial problem is
not to find enough parallelism but to find a way of subdividing a problem into subtasks that
minimize costs associated wi th communications, synchronization, data movements , memory
contentions, and all other costs that increase with the number of processes.

The bottom-up approach examines innermost loops first. It uncovers parallel subtasks of small
granularity. These small subtasks usual ly involve high communication costs for all parallel

24

-3-

architeciures and frequent and complex data movements in distributed memory machines. The
bottom-up approach has been successfully automated, e.g.. by Kuck and his students [2].

The top-down approach initially examines the outermost loops and. therefore, uncovers the
coarsest parallelism first. It can be pursued until a sufficient number of parallel subtasks are
found. Because of the coarser granularity, overhead costs are usually much smaller than from the
bottom-up approach. However, it is harder to automate. Interactive user input might be helpful.
The basic parallel structure of the problem is usual ly obvious to the code designer. Even static
data dependency analys is tools at this point would be very helpful.

4. Debugging and Tuning

Debugging parallel programs is much more difficult than designing them. We feel that dynamic
debugging tools w i l l be more successful if they trace data rather than control flow.

In addition to debugging tools, dynamic tuning tools are needed. This wi l l require development of
new concepts for the performance assessment of parallel programs, especially in a
multiprogramming environment.

5. Conclusions

Efficient parallel programming is a considerable challenge that wil l require a wealth of new ideas
become reality.

6. References

1. W . Ware. ' T h e Ultimate Computer/ ' IEEE Spectrum, March 1972. pp. 8 4 - 9 1 .

2. D. T. Kuck, R. H. Kuhn. D. A. Padua. B. Leasure. and M. Wolfe . "Dependence Graphs and
Compiler Optimizations." in Proc. 8th ACM Syrnp. Principles Programming Languages, 1981 .

25

<1 <m>

L A B O R A T O R Y FOR m&^P-

C O M P U T E R S C I E N C E

ihum^p MASSACIILJSI: i IS
A ̂ Jl INSITIUI l£()F

TRCl INOLOGY

Amdahl's Law Revisited:
Measurements of Dataflow Programs

August 29, 1986

David E. Culler

Posit ion Paper for die
1986 Workshop on Performance Eff ic ient Parallel Processing

This work was per formed at the M. I .T. Laboratory for Compute r Science under the
Tagged-Token Dataf low project. Fund ing is prov ided in part by the Advanced
Research Projects Agency o f the U.S. Department o f Defense, contract N00014-75-
C-0661, and in part by Internat ional Business Machines Corpora t ion , T . J. Watson
Research Center.

Source F i le = POSIT ION.MSS.33 , Last updated 29 August 1986 at 2 :38pm

545 T E C H N O L O G Y S Q U A R K , C A M B R I D G E , M A S S A C H U S E T T S 02139

26 David E. Culler
Position Paper

Amdahl's Law Revisited:
Measurements of Dataflow Programs

The Computation Structures Group 1 at M I X has constructed fairly powerful tools for

developing, executing and evaluating dataflow programs. The Id dataflow compiler [7, 9] and an

interpreter for the Tagged-Token Dataflow Architecture have been integrated with the

programming environment provided on various Lisp machines [8] to facilitate development of

dataflow applications. The interpreter can model a variety of abstract architectures, and forms die

basis of a 32-processor dataflow emulator. This paper offers some preliminary results derived using

these tools and puts forward certain points that the author feels are critical to assessing the viability

of dataflow processing.

1. Parallelism in Programs

Parallel processing with all its glamour should be approached with a healthy respect for Amdahl's

law. That is to say we should attempt to quantify the amount of parallelism present in real

applications, as this ultimately determines the scale of machines to consider. We know that many

algorithms offer tremendous parallelism, but in large applications it is possible that the "glue"

between such well-behaved sections may undermine the potential parallelism as a whole. Also, the

language in which an algorithm is coded may prohibit or obscure certain kinds of parallelism.

Lastly, the machine on which the program is executed may be unable to exploit certain kinds of

parallelism.

Our approach is to determine the potential parallelism in programs by considering only the

essential data dependencies involved in computing the result and then try to understand how this

potential parallelism is attenuated in coding and execution. The formal model of computation

embodied in the U-interpreter [3] embellished with I-structures is important in this regard, as it

places minimal constraints on execution order beyond the data dependencies, and yet allows

applications to be evaluated in full detail. It is assumed that instructions execute in unit time and

results are transmitted to wherever they are required with zero latency. An instruction executes as

soon as its operands are available; and an arbitrary number of instructions may execute in a single

timestep. Under this model we can compute the parallelism profile (Le., number of concurrent

This group, lead by Professor Arvind, was formerly called the Functional Languages and Architectures Group.

27

operations over time) of a program, limine 1 shows the parallelism profile for a version of

SIMIM.L, a sizable hydrodynamics and heat conduction code, on a 32x32 mesh.

ALU Operations

5000

4000 J

3000

2000

1000 J

1000 2000 Time

Figure I: Parallelism Profile for a Sizable Application

The fluctuations in this profile over time are notable. In the first phase of the application, the

force is computed at each point based on neighboring points, giving 0(n 2) parallelism for an n by n

mesh. (Note, this checks against the large spike in the profile.) Results of force calculation are

reduced to a single value, as suggested by the constriction point in the profile, that is used in the

latter heat conduction phase, which involves a recurrence over the rows and then over the columns.

A "real" problem would involve 100,000 iterations of a 100x100 mesh. Fluctuations in potential

parallelism such as appear here are quite typical, although in many cases can be reduced with

careful application design. It should be clear that even though the application has thousand-fold

maximum parallelism, the utilization on a thousand processors would be rather poor.

Given such a parallelism profile we can employ the sort of analysis embodied in Amdahl's law

28

with unusual precision to identify the point of diminishing returns for the program. I el Y'(p) he the

number of limesleps required to execute the program, where at most p operations are performed

per timestep. By definition. 7'(°o) is the length of the profile and 7(1) the area. For intermediate

values of p we can derive a conservative, yet reasonably accurate, approximationof T(p) by

assuming it takes rPP(t)/p"l limesleps to do the work involved in step t of the parallelism profile,

PP(t). This correctly accounts for undcr-utilization when there is less than p-fold parallelism, and is

somewhat conservative when more parallelism is available. The curve labeled L=0 in Figure 2

shows the potential speedup using this formula for the profile in Figure 1.

Calculating potential parallelism in this manner is a step toward separating two concepts which

are often confused: the parallelism present in a program and the parallelism exploited in running a

program on a particular machine. The former determines the best that can be achieved in the latter.

If we fail to achieve substantial speedup on a problem, the parallelism profile provides a basis for

determining whether the application is intrinsically sequential or the implementation has

compromised the potential parallelism. In particular, it should be possible to make substantive

statements about the amount of parallelism present in conventional applications.

To better predict the potential speedup on a real machine we must either embellish die

interpreter to more closely reflect the machine, or refine the analysis. For example, it is argued that

a dataflow machine can tolerate communication latency if sufficient parallelism is present, because

enabled activities are processed while recently generated results are enroute to their destinations [4],

This can be incorporated in the analysis by assuming that the computation involved in PP(t+l) can

not start until at least 1 + L time units after that in PP(t) has started. Figure 1 shows the result of

this analysis for four different values of L. To substantiate this analysis,' the interpreter was

embellished to model an ideal dataflow machine characterized by two parameters P, the maximum

number of operations per timestep, and L, the communication latency involved in each token

transfer. Other aspects of the model are completely idealized, ££., unbounded resources and

distribution of work by oracle. The dots of various shapes in Figure 2 show results obtained for this

idealized machine for values of L corresponding to the four curves. Note that as the latency term

becomes dominant the approximation becomes quite accurate.

This kind of analysis can be extended to incorporate the effects of granularity of distribution of

work, load non-uniformity, and locality, for example. However, as the analysis becomes more

detailed the interactions between various aspects become more complex.

29

Speed-up

Idealized Speedup for SI \ H'LK
I ikralion, M\M inesli L = 0

D L = 10

Curves are based on the Parallelism Profile using

PP(tJl
T(P,L) = MAX (1 + L,

t = 0

Speed-Up(P,L) = f(PL)

Dots represent speed-up measured on an indealized machine:

* L = 0 B L = 1 L = 5 L = 10

Figure 2: Potential Speedup Based on a Parallelism Profile

An equally interesting and probably more subtle question is how to account for the loss of

potential parallelism due to the mechanisms employed for synchronization and limitations of the

programming language. For dataflow processing, the graph schemas used in compiling code, the

mechanism for detecting enabled activities, and the model of arrays all effect the amount of

parallelism that can be exploited. For conventional multiprocessors the question becomes very

complex since many different synchronization mechanisms are employed.

30

2. Overhead

A second crucial issue in assessing the viability of an approach to parallel processing is the total

work required to execute a program. There Is undeniably a cost in logically partitioning a program

so that it may run in parallel, and we should try to quantify this cost. Speedup curves often

obscure this issue by presenting performance relative to single processor executing code with all the

auxiliary operations required for parallel execution. Although it would be reasonable to consider

hardware complexity and other factors in a cost metric, we will focus on the number of instructions

executed.

Critics have postulated that dataflow programs will require many more instructions dian

corresponding programs on a conventional machine [6]. Our experiments support this concern, but

also suggest that the difference is not as large as has been assumed. Table 1, generated as part of a

study in conjunction with Dr. K. Kkanadham of IBM Research, shows dynamic instruction mixes

for variations of a Guassian relaxation code compiled from the dataflow language Id and from

FORTRAN. The precise numbers are less important than the general trend, but a few remarks are

in order. The FORTRAN versions are highly optimized for the 370, so some instructions include

memory references and arithmetic operations. Separating these operations as would be required for

a load/store architecture narrows the gap slightly. The Id versions can be improved substantially

with even trivial peep-hole optimizations. Thus, with comparable compiler sophistication the ratio

of total instructions executed may be closer to 2:1. On the other hand, without relatively

sophisticated graph schemata, e.g., support for loop constants, the ratio would be much worse.

The missing piece of this comparison is how dataflow instruction counts compare against that for

programs running on conventional parallel machines, where synchronization, etc. plays a major

role. Our belief is that there is a certain cost in simply generating code that can run in parallel, and

there may be additional costs, eg., more busy-waiting or more context swaps, as more parallelism is

exploited. The various transformations to expose parallelism in FORTRAN programs should be

examined in this light With dataflow, the full cost is borne up front

3. Resource Requirements

Another crucial issue which has been largely overlooked in the literature is how the resource

requirements increase as parallelism is exploited [5]. This may be the most severe obstacle for

approaches based on implicit expression of parallelism. A case in point is the token storage

31

Initio I: Instruction Mix comparison between II) and I O R I R A N

Inner loop - roughly 10.000 iterations: Laeh iteration has:
5 I l-ops 5 I l-ops 6 FI-ops 7 FI-ops

opt std G sum G2 t-cond
Op category CJO Gl G2 G3

II) version
Float (+ -*/ compare) 48.050 48,050 57,660 67,270
Fixed (+ -*/ compare) 44.409 63.515 63,515 63.515
Loads 55.387 113,650 113,982 133,522
Stores 16,828 15.352 15,684 16,004
Switches 24,057 24,253 34,504 83,174
D 23,306 23.496 33,426 52,646
Allother 100.996 135,612 146,869 139,469

Total 313,033 423,928 465,640 555,600

FORTRAN version:

Float (+ -*/compare) 48,186 48,186 57,796 67.406
Fixcompare) 496 20,336 20,336 20,336
Loads 20,836 20,846 30,817 30,817
Stores 12,104- 12,104 . 21,735 21,735
Switches 11,708 11,708 11,708 21,318
Logic\comparc) 892 20.102 20,102 29,712
Allother 30 30 30 30

Total 94,252 133,312 162,524 191,354

requirement of programs running on a dataflow machine. The upper left portion of Figure 3 show

the parallelism profile and token storage requirement of a 16 by 16 matrix multiple on an

unbounded processor machine. With 500 to 1,000 fold parallelism, a storage requirement of 3,000

tokens does not seem unreasonable. However, if this program is run on relatively small machine, cf.

the lower left portion of Figure 3 where the machine can exploit only 20 fold parallelism, the

resource requirements remain large. The upper right portion of Figure 3 shows how the resource

requirements can be reduced by a simple graph transformation that limits the potential parallelism

by constraining loop unfolding. This constrained program is well matched to our 20 processor

machine, as can be seen in the lower right portion of Figure 3.

This resource problem will appear in any system that supports a general facility for dynamic

generation of parallel activity [1]. It arises with almost all resources related to program execution,

32

100 200 3 0 0

U n b o u n d e d P r o c e s s o r s
U n b o u n d e d L o o p s (k = 32)

1000 2000 3 0 0 0 4000 5 0 0 0
Ops

10

1000 2000 3 0 0 0 4 0 0 0 5 0 0 0
B o u n d e d P r o c e s s o r s
U n b o u n d e d L o o p s (k = 32)

Tokens

1000 2 0 0 0 3 0 0 0

U n b o u n d e d P r o c e s s o r s
B o u n d e d L o o p s (k = 2)

° - 1000 2000 3 0 0 0 4000 5000

1000 2 0 0 0 3 0 0 0 4000 5000
B o u n d e d P r o c e s s o r s (20)
B o u n d e d L o o p s (k = 2)

Figure 3: Effects of Constraining Parallelism to Reduce Resource Requirements

not just scalar storage. Techniques such as constraining loop unfolding are extremely important,

but it remains an open question how to best apply such controls.

This problem arises in a slightly different form in many of the transformations used to expose

parallelism in sequential programs, eg., scalar expansion, even though the form of parallelism is

relatively limited.

33

4 . D i s t r i b u t i o n o f W o r k

I he c o n c e r n w h i c h has rece ived mos t press in the pa ra l l e l p rocess ing l i t e ra tu re is h o w to

d i s t r i b u t e w o r k a n d data o v e r a c o l l e c t i o n o f processors. M u c h o f th is research a l l udes to t rade -o f f s

be tween t echn iques fo r a c h i e v i n g u n i f o r m load a n d those fo r a c h i e v i n g loca l i t y . O u r s tud ies have

raised a n u m b e r o f conce rns w h i c h bear o n th is deba te .

W e have c o n d u c t e d a var ie ty o f e x p e r i m e n t s in w h i c h each o f the 32 T I E x p l o r e r s tha t c o m p r i s e

the M I T M u l t i p r o c e s s o r E m u l a t i o n F a c i l i t y [2] e m u l a t e a (r a t h e r s l o w) d a t a f l o w m a c h i n e . W e took

an e x p e d i e n t a p p r o a c h , d i s t r i b u t i n g w o r k o n a c o d e - b l o c k basis, Le., re la t i ve ly course g r a n u l a r i t y ,

us i ng a va r ie ty o f s i m p l e d i s t r i b u t i o n po l i c ies . W i t h th is a p p r o a c h subs tan t ia l l oad imba lances are

n o t u n c o m m o n , even w h e n the n u m b e r o f processors is q u i t e s m a l l .

T h e a r g u m e n t fo r course g r a n u l a r i t y is gene ra l l y based o n the loca l i t y issue. I f la rger c h u n k s o f

c o m p u t a t i o n are ass igned to each processor , less c o m m u n i c a t i o n is r e q u i r e d . H o w e v e r , the

i n s t r u c t i o n m i x e s above appea r to reduce the force o f th is a r g u m e n t ; o n e q u a r t e r o f the i n s t r u c t i o n s

i n v o l v e access t o an ar rays a n d o p t i m i z i n g da ta p l a c e m e n t to m a x i m i z e loca l i t y o f a r ray re ferences is

e x t r e m e l y d i f f i c u l t , even p o t e n t i a l l y d e t r i m e n t a l . T h u s i f a r ray re fe rences are re la t i ve ly u n i f o r m ,

o n e q u a r t e r o f the da ta va lues p r o d u c e d i n e x e c u t i n g a p r o g r a m w i l l genera te n e t w o r k t ra f f i c ,

regardless o f g r a n u l a r i t y . None the less , the re is a s t r o n g a r g u m e n t f o r course g r a n u l a r i t y : i n

d e s i g n i n g a c o d e - b l o c k e n g i n e , ra the r t han an ac t i v i t y e n g i n e , m a n y o p t i m i z a t i o n s are poss ib le .

T h e r e are aspects o f o u r c u r r e n t g r a p h schemata tha t are c ruc i a l t o k e e p i n g d ie n u m b e r o f

i n s t r u c t i o n s reasonab le a n d are m o r e d i f f i c u l t to i m p l e m e n t i f w o r k is d i s t r i b u t e d w i l l y n i l l y across

the m a c h i n e .

5. Conclusion

D a t a f l o w has l o n g o f f e r e d the p o t e n t i a l f o r h i g h p e r f o r m a n c e pa ra l l e l c o m p u t a t i o n , b u t o n l y

recen t l y have too l s b e c o m e ava i l ab le w h i c h w i l l a l l o w us t o m o v e f r o m vague s ta tements o f

" p o t e n t i a l " to firm s ta tements o f v i a b i l i t y . I t is e x t r e m e l y i m p o r t a n t t o assess the l i m i t s o f t he

a p p r o a c h a n d to i d e n t i f y t he m o s t p r o m i s i n g r e g i m e , i n t e r m o f n u m b e r o f processors , a p p l i c a t i o n

d o m a i n , etc. , t o f ocus f u r t h e r a r c h i t e c t u r a l d e v e l o p m e n t . Par t o f t ha t assessment h inges o n an

u n d e r s t a n d i n g o f t he p o t e n t i a l pa ra l l e l i sm i n p r o g r a m s , t he o v e r h e a d i m p l i e d by the a p p r o a c h , t h e

resource r e q u i r e m e n t s o f p r o g r a m s , a n d o u r a b i l i t y t o e f f ec t i ve l y d i s t r i b u t e w o r k . A n o t h e r

i m p o r t a n t p a r t o f t he assessment is a c lear c o m p a r i s o n w i t h c o m p e t i n g approaches .

34

References

1. Aiviiui. and I). F. Culler. Managing Resources in a Parallel Machine. Proceedings of t he NIP
TC-10 Conference on Fifth-Generation Computer Architecture, Manchester, U . K . , July, 1985.-

2. Arvind, M. L. Dertou/osand R. A. lannucci. A Multiprocessor Emulation Facility. TR-302,
Laboratory for Computer Science, Mi l , Cambridge, Mass., October, 1983.

3. Arvind, and K. P. Gostelovv. "The U-interpreter". Computer /5, 2 (February 1982), 42-49.

4. Arvind, and R. A. lannucci. A Critique of Multiprocessing von Neumann Style. Proceedings of
the 10 l h International Symposium on Computer Architecture, Stockholm, Sweden, June, 1983, pp.
426-436.

5. Culler, D. E. Resource Management for the Tagged-Token Dataflow Architecture. TR-332,
Laboratory for Computer Science, MIT, Cambridge, Mass., January, 1985.

6. Gajski, D. D., Padua, D. A., Kuck, D. J., and Kuhn, R. H. "A Second Opinion on Dataflow
Machines and Languages". COMPUTER /5, 2 (Feburary 1982), 58-69.

7. Heller, S. K., and Trail b, K. R. The Id Compiler User's Manual. CSG Memo 248, Laboratory
for Computer Science, MIT, Cambridge, Mass., May, 1985.

8. Morais, D. Id World: User's Manual". CSG Memo 266, Laboratory for Computer Science,
MIT, Cambridge, Mass., June, 1986.

9. K. R. Traub. A Compiler for the MIT Tagged-Token Dataflow Architecture. Master Th., Dept
of Electrical Engineering and Computer Science, MIT, Cambridge, Mass.,August 1986.

35

DEBUGGING HIGHLY PARALLEL COMPUTATION*

Janice E. Cuny

Department of Computer and Information Science

University of Massachusetts, Amherst

Highly parallel computation - in which large numbers of closely coupled processes co

operate on a single task - is not amenable to existing sequential debugging techniques.

Parallel programs do not have the consistent global states, manageable quantities of po

tentially relevant information or reproducibility of results that have formed the basis for

sequential debugging paradigms. Instead, their behavior is best understood in terms of

the flow of data and control resulting from interprocess communication. These behav

iors are often structured: low grain, closely coupled processes communicate across regular

interconnection networks resulting, at least logically, in very patterned data and control

flows. We believe that these patterns of data and control flow will form the basis for highly

parallel debugging paradigms.

Parallel debuggers must provide the programmer with facilities for monitoring and

manipulating the patterns of activity within his system. Before this can happen, however,

there are at least three areas that need development:

T h e presentat ion of information. Because patterns are best understood visu

ally, it will be necessary to design graphic displays and animations of communication

structures.

T h e select ion of relevant information. Because enormous amounts of information

are available in an executing parallel system, it will be necessary to provide the user

with facilities for restricting the presented information according to a variety of criteria.

T h e interpretat ion of s y s t e m behavior. Because programmers understand their

code in terms of intended, logical patterns of activity that are often obscured in asyn

chronous execution, it will be necessary to be able to create mechanism for detecting

The Parallel Programming Environments Project at the University of Massachusetts is supported by
the Office of Naval Research under contract N000014-84-K-0647.

1

36

logical patterns within execution traces.

We are investigating these issues with the development of an extensible debugger, called

Belvedere, that will allow programmers to easily construct a variety of post-execution

animations of process interactions within highly parallel systems. It will feature both a

view generator and an animator. The view generator will filter data for relevance based on

fish-eye views [1] in which "neighborhoods" are shown in great detail while more distant

areas are shown in successively less detail. We are developing further generalizations to the

fish-eye model that include multiple distance criteria and foci of attention. The animator

will interpret the execution trace of the system according to user supplied descriptions of

intended behavior. We expect to describe behavioral patterns with an extension of the

Event Definition Language [2]. Belvedere runs as part of the Simple Simon Programming

Environment [3] which, in turn, runs as a front end for the Simon Multiprocess Simulator

[4] [5] allowing us to consider the suitability of our debugging techniques for a variety of

architectures.

REFERENCES

[1] George W. Furnas, "Generalized Fisheye Views," Proceedings of the Conference on

Human Factors in Computing Systemsf pp. 16-23 (April 1986).

[2] Peter C. Bates and Jack C. Wileden, "High-level debugging of distributed systems:

the behavioral approach,* Journal of Systems and Software 3 , pp. 255-264 (1983)..

[3] Janice E. Cuny, Duane A. Bailey, Alfred A. Hough, Mary E. Larson, and Neville D.

Newman. The Simple SIMON Facility for Research in Programming Environments for

Highly Parallel Computation. In preparation.

[4] D. E. Heller, "Multiprocessor Simulation Program SIMON,* Shell Development Cor

poration (1985).

[5] R. Fujimoto, "SIMON's user's manual," Univ. of Cal. at Berkeley (1984).

2

37

S i n g l e - A s s i g n m e n t L a n g u a g e s in t h e Flavor of S ISAL
J o h n Feo

S ing le -ass ignmen t l anguages , by requ i r i ng tha t e a c h va r iab le or ins tan t ia t ion be un ique and de f i ned

(i.e., ass igned a value) on ly o n c e , avo id many of the p r o b l e m s i nhe ren t in us ing conven t i ona l

l a n g u a g e s for para l le l p r o g r a m m i n g . W e be l ieve tha t s u c h l anguages , as exemp l i f i ed by S ISAL , c a n

p rov ide an express ive a n d e f f ic ient e f f i c ien t m e d i u m in w h i c h to w r i t e la rge-sca le sc ien t i f i c para l le l

p r o g r a m s .

By ins is t ing on s ing le -ass ignmen t , o n e removes s ide -e f fec ts and a l iases f r om the l anguage .

Obv ious ly , if a va r iab le c a n b e d e f i n e d on ly o n c e , its va lue can no t b e c h a n g e d o n c e ass igned e i ther

in or ou t of a s u b r o u t i n e . S imi lar ly , al l pa rame te rs mus t be passed to s u b r o u t i n e s by va lue , s i nce each

ins tan t ia t ion of a va r iab le is u n i q u e ; t he re fo re , t he re a re no a l iases. These fea tu res r e d u c e t he

c o m p l e x i t y of a p rocess ' d a t a d e p e n d e n c i e s , t h e r e b y s imp l i f y ing the ana lys is requ i red to ex t rac t t he

inhe ren t para l le l i sm. Th is in t u rn leads to s imp le r (even naive) comp i l e r s , a n d makes the par t i - t i on ing

a n d s c h e d u l i n g of s u b t a s k s eas ier and m o r e s t r a i g h t f o r w a r d . A g o o d so lu t i on to t he lat ter is

pa r t i cu la r l y impo r tan t if p rocesses a re to e x e c u t e e f f ic ien t ly on ac tua l m a c h i n e s .

T h e a d v a n t a g e s of s i ng le -ass ignmen t l a n g u a g e s c a n b e e n h a n c e d by i nc l ud ing va r i ous spec i f i c

fea tu res in t h e l anguage . T w o s u c h fea tu res p r o v i d e d by S ISAL are: ' no use -be fo re -de f i n i t i on ' and

exp l i c i t para l le l c o n s t r u c t s (ForAII and Mu l t i - exp ress ions) . T h e f o r m e r removes al l d a t a cyc les ,

r e d u c i n g a p r o c e s s t o an acyc l i c g r a p h . Th is is a su f f i c ien t c o n d i t i o n t o g u a r a n t e e tha t no set of

c o n c u r r e n t l y e x e c u t i n g tasks c a n d e a d l o c k . By p rov id i ng exp l i c i t para l le l c o n s t r u c t s in t he l anguage ,

t he user c a n c lear ly exp ress t h e coa rse -g ra i n para l le l i sm of h is a l g o r i t h m ; s u c h may not b e t he case

w i t h o u t t h e c o n s t r u c t s . At t he very least it re l ieves t he c o m p i l e r of the task of f i nd ing s u c h para l le l i sm.

Un fo r tuna te l y , s i ng le -ass ignmen t l a n g u a g e s have a n u m b e r of d raw- b a c k s i n c l u d i n g : m e m o r y

m a n a g e m e n t p rob lems , i n te r f ac ing w i t h o the r l a n g u a g e s a n d a res t r i c ted p r o b l e m d o m a i n . S i n c e a

n a m e c a n be ass igned a va lue on ly o n c e , every u p d a t e requ i res a new c o p y . In t h e case of la rge d a t a

s t r uc tu res , as a re typ ica l l y f o u n d in s c i e n - t i f ic c o d e s , it c a n be very expens i ve . Fu r t he rmore , s i nce all

para- amete r pass ing is by va lue , e a c h i nvoca t i on of a f unc t i on re- qu i res its o w n c o p y of t he

a r g u m e n t s . T h e lack of s ide -e f fec ts a n d pers is ten t s ta te (i .e., c o m m o n b locks) makes it d i f f i cu l t t o

inter- f ace p rocesses wr i t t en in a s i ng le -ass ignmen t l a n g u a g e s w i t h l ib rar ies wr i t ten in c o n v e n t i o n a l

l a n g u a g e s (espec ia l ly , F O R T R A N) . F inal ly , i m p l e m e n t i n g an a l g o r i t h m requ i r i ng s ta te is ex t reme ly

ine f f i c ien t in s u c h l a n g u a g e s s i nce t h e s ta te mus t b e sca t te red and g a t h e r e d at every s tep ; fu r ther ,

imp lemen t i ng a non -de te rm in i s - t ic c o m p u t a t i o n may be imposs ib le .

O u r c u r r e n t w o r k f o c u s e s on many of t hese p r o b l e m s . O n e p ro jec t is inves t iga t ing t he advan tages of

p rea l l oca t i ng m e m o r y a n d pe r f o rm- ing upda tes - i n -p l ace t o so lve the m e m o r y m a n a g e m e n t p r o b l e m .

A s e c o n d is d e v e l o p i n g c o m p i l e r s a n d sys tems fo r e f f i c ien t c o d e g e n e r a t i o n . T h e a p p r o a c h is to

r e d u c e a s o u r c e to g r a p h f o r m , t h e n to an i n te rmed ia te c o d e a n d f inal ly , to m a c h i n e c o d e . A n u m b e r

of t a rge t m a c h i n e s have b e e n s e l e c t e d , i n c l u d i n g : a V A X 780 , a Cray- X / M P , a Cray-2 , a Lo ra l

Da ta -F low a n d a S e q u e n t 21000 . A th i rd p ro jec t is c o n c e r n e d w i t h f i nd ing op t ima l heur i s t i cs to

par t i t ion p r o c e s s g r a p h s to m in im ize c o m m u n i c a t i o n s a n d max im ize para l le l ism and m a c h i n e

38

2

ut i l i za t ion . T w o p ro j ec t s st i l l in e m b r y o n i c f o r m are : an inves t iga t ion in to h o w S ISAL a n d F O R T R A N

rou t i nes c a n be inter- f aced a n d h o w a ta rge t m a c h i n e ' s a r c h i t e c t u r e a f fec ts pa r t i t i on ing a n d

g ranu la r i t y d e c i s i o n s .

39

Position Paper

Jeanne Ferrante v
IBM T. J. Watson Research Center

P.O. Box 218
Yorktown Heights, NY 10598

As noted in the announcement of the workshop, as yet there is no one

model of parallel computation underlying the diverse architectures now

being proposed and built. Such computational models are the basis not

only of our machines but also of our high level languages. Hence any high

level parallel programming language can be compiled easily and

efficiently only when it matches the underlying computational model of

the machine we are compiling for. Given a high level parallel programming

language which does not fit a particular architecture well, in order to

produce a translation which can run efficiently on the machine, it is

necessary to map the language's computational model to that of the

machine. This is essentially the same problem as automatically detecting

the parallelism in a sequential language in order to map to a parallel

machine. The same techniques useful for automatic parallelization of

sequential languages are useful for compiling parallel high level languages

to dif ferent parallel architectures.

Many of our high level languages embody various aspects of the Von

Neumann machine in their underlying computational model; one such aspect

is reference to storage. Languages like Fortran and Pascal allow storage

to be directly referenced and manipulated. In a parallel machine context,

this reference to storage forces a sequencing of these references, and

thus less parallelism. In translating such languages to run efficiently

40

on a parallel machine, the storage model embodied in the user program must

be drastically altered. Because of the diversity of parallel

architectures, this alteration itself can take vastly different forms.

I therefore propose the following general technique. In compiling high

level languages which allow references to storage for a parallel machine,

the references to storage should be removed and a totally

VALUE-ORIENTED representation should replace it . This will increase

the potential parallelism and thus be a better basis for further

transformations to increase parallelism.

41

Raphael Finkel 1 Language tools

Language tools for large-grain parallelism

Raphael Finkel
University of Wisconsin — Madison

Position paper
Workshop on performance-efficient parallel programming

1. Algori thms for large-grain parallelism
The range of parallel architectures is quite wide. In this paper, we focus

on multicomputers, which consist of many computers, each with its own
memory, cooperating by sending messages. Such machines lend themselves to
large-grain parallelism, where cooperation events occur at a maximum rate of
hundreds per second, not thousands (as in medium-grain parallelism) or millions
(fine-grain). In practice, algorithms in this class strive to keep the amount of
communication as low as possible to avoid message-passing costs.

Many algorithms fit into the following classes.
• Generate and solve . A problem can be subdivided into subordinate

problems, each of which can be solved independently of the others. A pool
of s lave processes stands ready to solve these problems as they are gen
erated and distributed by a mas ter process. This category includes tree-
search algorithms such as alpha-beta search.

• I terat ive re laxat ion. The da ta space can be divided into adjacent
regions, which are then parcelled out to different processes. Each process
carries out activities local to its region, communicating with neighbors
when necessary. This category includes solution of numerical problems like
PDEs and graph problems like finding a minimal spanning tree. Termina
tion is often difficult to determine in such algorithms.

• Pass ive d a t a pool* A large data space is managed by many processes,
which support queries and updates on tha t space. Queries from cl ient
processes are directed to the appropriate da ta server processes. This
category includes distributed file systems and other data structures such as
hash tables. These algorithms try to allow a high throughput of queries by
letting non-interfering queries proceed simultaneously.

• Systol ic . Data values flow through a set of processes, undergoing
modification along the way. The processes are often arranged in a regular
structure, such as a linear array or a square mesh. This category includes
many numerical algorithms, pipeline algorithms, and multi-pass transform
ers such as compilers and scene analyzers.
Algorithms may engage in res tructur ing during the course of a computa

tion. First, the allocation of data to processes may change. Data motion can
be a result of a t tempts to balance load among processes or to bring values to

42

Raphael Finkel 2 Language tools

where they are needed. Second, the process structure may change. New
processes may be created as the size of the problem warrants , and new inter
process communication paths may be opened to fulfill new requirements.

A less dynamic form of restructuring comes from quot ient schemes, in
which a single physical process simulates the activities of several v irtual
processes. Quotient schemes are particularly useful in pipeline and iterative-
relaxation algorithms when the grain of parallelism is too fine and communica
tion is needed too often. All communication between virtual processes within
the same physical process can be done cheaply, and communication tha t crosses
the physical-process boundary can often be batched, so tha t one physical mes
sage represents many virtual messages. The boundary between physical
machines is often a boundary between two representations of da ta as well.
Within a physical machine, the fact tha t work is distributed often remains
implicit in loops across arrays or traversals of graphs. Between physical
machines, the fact tha t the da ta structures are distributed is explicit. Data
often have two representations, therefore, depending on their proximity to this
boundary.

Algorithms based on iteration often can be described either as synchronized
or chaotic. Synchronized algorithms go through well-defined rounds, between
which information is passed among the processes. The exchange of information
becomes a bottleneck. One way to reduce tha t bottleneck is to use a chaotic
algorithm, in which one process may s tar t the next round before others have
finished. The cost of such a scheme is often an increased number of rounds.

To reach agreement on shared data , an algorithm can either broadcast the
da ta , which incurs communication costs, or it can compute the da ta indepen
dently on several processes. Under this latter strategy, identical work is con
ducted by several processes, reducing communication cost at the price of
reduced parallelism.

There may be many ways to advance to a goal. A serial algorithm may
sort them and try the best ones first. A distributed algorithm may speculate
and try several at once. Although this strategy may occasionally be very lucky,
leading to a speedup anomaly, it will often waste the efforts of those processes
searching less useful paths when another process is pursuing the best path .

2. Programming languages
Some important trends in programming language design must be

encouraged for parallel p r O g r a m m i n g C a s h i n 8 0 ' A n d r e w s 8 3 a » S c o t t 8 4 a . At the least, a
reasonable language provides ordinary sequential operations and a way to send
messages between processes. Inter-process communication should be abstracted
as a form of remote procedure call, although there are rare situations in which
this paradigm is not quite right (for example, requests t ha t have both an
immediate answer and a delayed answer). Typically, the programmer must
specify how work is divided among processes; the compiler does not a t tempt this

43

Raphael Finkel 3 Language tools

division.
Several features seem essential.

• Light-weight ta sks . Such tasks are relatively inexpensive to create and
share memory with each other, although they may be subject to scoping
restrictions for da ta access. Light-weight tasks are especially useful for
maintaining the s tate of a server-client conversation while other conversa
tions are taking place. Synchronization mechanisms are needed to prevent
unwanted interference between tasks; these mechanisms include priority
schemes, explicit conditional waiting, semaphores, and monitors. Of these,
explicit conditional waiting is the most expressive from the programmer's
point of view, but is not always inexpensive to implement.

• Implicit and explicit message receipt . Explicit receipt makes sense
when the algorithm has reached a point where it knows tha t it cannot
proceed unless a particular message arrives. However, messages tha t arrive
during the course of other computation must also be dealt with. Implicit
receipt s tar ts a new light-weight task for each such message; the task
begins its execution in whatever procedure the message is trying to call.

• C o n t e x t . When an implicitly received message s tar ts a new light-weight
task, tha t task should have a context appropriate to the particular process
tha t sent the message. This context can be provided by scope rules tha t
provide global variables tha t are not necessarily shared by other tasks.

• Message-based t y p e checking. Wherever possible, the compiler should
ensure tha t messages are properly formed. For complex algorithms built
out of several compilation units tha t are compiled at different times,
declaration libraries can be used. Inexpensive run-time checks are also pos
sible and should always be u s e d S c o t t 8 4 b .

• Se lect iv i ty . A process may want to provide only a subset of its exported
entry points at a given stage of an algorithm. It is necessary to provide a
way to dynamically change the interface, tha t is, the set of legal entries for
implicit receipt. In addition, it must be possible to present different inter
faces to different peers of the process.

• Except ions . When a process sends a request tha t is misformed or illegal
in some sense, it is possible to respond with an error indication. However,
inspecting all responses for the presense of this indication is a heavy bur
den, and most programmers are not particularly careful about it. Instead,
an exception mechanism such as is found in
A d a U n i t e d S t a t e s Department of Defense83 should be used to propagate errors.
This mechanism can also be used to send signals between light-weight
tasks within the same process. It is also essential for terminating specula
tive work.

The Lynx l a n g u a g e S c o t t 8 4 c , which has been implemented both on the Crystal
m u l t i c o m p u t e r ^ ^ 1 1 8 4 and the BBN B u t t e r f l y S c o t t 8 6 , has all of these features.

44

Raphael Finkel 4 Language tools

A r g u s L i s k o v 8 3 includes the ideas of type checking and light-weight processes, and
also has a well-developed notion of t ransact ion , which is important in recover
ing from failures.

References
Andre ws83.

Andrews, G. R. and F . B. Schneider, "Concepts and Notations for Con
current Programming," ACM Computing Surveys 15(1) pp. 3-44 (March
1983).

Cashin80.
Cashin, P . M., "Inter-process communication," Technical Report 8005014,
Bell-Northern Research (June 1980).

DeWitt84.
DeWitt , D., R. Finkel, and M. Solomon, "The Crystal multicomputer:
Design and implementation experience," Technical Report 553, University
of Wisconsin—Madison Computer Sciences (September 1984). To appear,
IEEE Transactions on Software Engineering

Liskov83.
Liskov, B. and R. Scheifler, "Guardians and actions: Linguistic support for
robust, distributed programs," ACM TOPLAS 5(3) pp. 381-404 (July 1983).

Scott84.
Scott, M. L., U A framework for the evaluation of high-level languages for
distributed computing," Computer Sciences Technical Report #563 ,
University of Wisconsin—Madison (October 1984).

Scott84b.
Scott, M. L. and R. A. Finkel, U A simple mechanism for type security
across compilation units ," Computer Sciences Technical Report # 5 4 1 ,
University of Wisconsin—Madison (May 1984).

Scott84c.
Scott, M. L. and R. A. Finkel, "LYNX: A dynamic distributed program
ming language," 1984 International Conference on Parallel Processing,
(August, 1984).

Scott86.
Scott, M. L., "Lynx reference manual ," BPR 7, Computer Science Depart
ment, University of Rochester (March 1986).

United States Department of Defense83.
United States Department of Defense,, "Reference Manual for the Ada
Programming Language," ANSI/MIL-STD-1815A-1983 (February 1983).

45

Parallelism in Production Systems

Char les L. Fo rgy
Ca rneg ie -Me l l on Un ivers i ty

T h e PSM (P r o d u c t i o n Sys tem Mach ine) g r o u p at C M U is exp lo r i ng ways to use para l le l i sm to ach ieve

cos t -e f fec t i ve inc reases in t he speed of p r o d u c t i o n sys tem in te rpre te rs . For t h e past few years t h e

emphas i s has been on s p e e d i n g up c o n v e n t i o n a l p r o d u c t i o n sys tems l ike O P S 5 or S O A R . T h e

e m p h a s i s is n o w sh i f t ing t o t h e tasks be ing p e r f o r m e d by t h e p r o d u c t i o n sys tems ; the P S M g r o u p is

exp lo r i ng t h e exp l ic i t use of para l le l i sm by t h e app l i ca t i on p r o g r a m s . Th is c o u l d subs tan t ia l l y

i nc rease t h e to ta l a m o u n t of para l le l ism tha t t h e p r o g r a m s c a n use. For e x a m p l e , if t h e in te rp re te r

ach ieves an ave rage speed up of 10 t h r o u g h para l le l i sm and t h e app l i ca t i on p r o g r a m ach ieves a

s p e e d up of 5 t h r o u g h app l i ca t i on para l le l i sm, t h e c o m b i n e d s p e e d up fac to r w o u l d be 10 * 5 = 50 .

T h e w o r k on para l le l i sm w i th in t he in te rp re te r has s h o w n tha t m o d e s t s p e e d u p s p e r h a p s o n e

d e c i m a l o r d e r of m a g n i t u d e can b e ach ieved on the r igh t m a c h i n e . T h e r e a re a n u m b e r of f ac to rs

tha t p reven t t h e speed up f r om be ing grea ter . T h e m o s t t i m e - c o n s u m i n g ope ra t i on in a p r o d u c t i o n

sys tem in te rp re te r is p e r f o r m i n g t h e m a t c h , a n d c o n s e q u e n t l y it is t he par t tha t o n e mus t c o n c e n t r a t e

o n . (The m a t c h is respons ib le fo r eva lua t ing t h e c o n d i t i o n par ts of t he p r o d u c t i o n ru les t o d e t e r m i n e

w h i c h a re sat is f ied on e a c h cyc l e of t he system.) Af ter l ook ing at a n u m b e r of a l te rna t i ves , t he P S M

g r o u p c o n c l u d e d tha t s ta te-sav ing a l go r i t hms had to be used in t h e m a t c h . A s ta te -sav ing a l go r i t hm

k e e p s t r ack of t he c o n t e n t s of w o r k i n g m e m o r y and t h e d e g r e e of sa t i s fac t ion of all t h e c o n d i t i o n

pa r ts of t h e ru les as t h e sys tem runs . As e a c h c h a n g e is m a d e t o t h e sys tem 's d a t a , t he s t o red s ta te is

u p d a t e d ra the r t han be ing r e c o m p u t e d f r o m s c r a t c h . W i t h a s ta te -sav ing a l g o r i t h m , t h e a m o u n t of

para l le l i sm tha t c a n b e exp lo i t ed is l im i ted . S imu la t i on s tud ies of ex is t ing p r o d u c t i o n sys tems ind i ca te

t ha t fo r mos t app l i ca t i ons , t he re is no a d v a n t a g e to hav ing m o r e t han 3 2 to 64 p r o c e s s o r s ava i lab le .

For t hese sys tems, s p e e d - u p s of a r o u n d a f ac to r of 10 a r e e x p e c t e d .

T h e obv i ous w a y to i nc rease t h e a m o u n t of exp lo i t ab le para l le l i sm w h e n a s ta te -sav ing a l go r i t hm is

used is to i nc rease t h e ra te w i t h w h i c h t h e sys tem makes c h a n g e s to its da ta . T h i s c o u l d b e a c h i e v e d

e i ther by i nc reas ing t h e seman t i c c o n t e n t of t h e p r o d u c t i o n s (so tha t e a c h p r o d u c t i o n d o e s more) o r

by pe rm i t t i ng t h e sys tem to e x e c u t e m o r e t h a n one ru l e on e a c h cyc l e . T h e latteF s e e m s m o r e

app rop r i a te fo r know ledge - i n tens i ve app l i ca t i ons , and it is the c o u r s e tha t t h e P S M p ro jec t is n o w

fo l l ow ing . Present ly s o m e la rge app l i ca t i ons a re b e i n g ana lyzed to d e t e r m i n e h o w t h e y c a n b e

d e c o m p o s e d to m a k e use of exp l i c i t pa ra l le l i sm. T h e p r o d u c t i o n sys tems l a n g u a g e s a re b e i n g

e x a m i n e d to d e t e r m i n e h o w they mus t be c h a n g e d to s u p p o r t app l i ca t i on para l le l i sm. L a n g u a g e s

s u c h as O P S 5 wi l l r equ i re s o m e re lat ive ly m i n o r ex tens ions ; S O A R a l ready c o n t a i n s m e c h a n i s m s t o

s u p p o r t para l le l f i r ing of ru les .

46

47

D I M E N S I O N S F O R D E S C R I B I N G PARALLEL A L G O R I T H M S

Leah H. Jamieson

School of Electrical Engineering
Purdue University

West Lafayette, Indiana 47907

Posi t ion Paper
For effective use of parallel systems, it is essential to obtain a good match between algo

rithm requirements and architecture capabilities. What information can facilitate the mapping
of a parallel algorithm to a parallel architecture? Such information can be of use in a number
of different ways. First, it bears directly on the algorithm design process. General knowledge
about what constitutes an effective match between a parallel algorithm and a parallel architec
ture can accelerate the process of developing new parallel algorithms for a given machine.
Second, an understanding of the relation between algorithms and architectures is a prerequisite
for the fast, efficient design of algorithmically-specialized systems. Given a fixed set of algo
rithms, architectures tailored for the execution of those algorithms can be developed if the
architectural requirements of the algorithms are understood. Third, a general method of relat
ing algorithms and architectures will allow efficient use of reconfigurable parallel systems.
Integral to the effective use of these flexible parallel systems will be the ability to select
machine configurations based on knowledge about the algorithms to be executed. In order to
accomplish this automatically, the operating system will need to use information about the
characteristics of the algorithms to select successive configurations of the parallel architecture.

Using the application areas of image, speech, and signal processing as our frame of refer
ence, we have identified a preliminary set of characteristics that relate to the mapping of paral
lel algorithms to parallel architectures:

Type of parallelism: data parallelism versus function parallelism
Degree of parallelism
Data granularity
Module granularity
Uniformity of the operations
Synchronization requirements
Data dependencies
Static/dynamic character of the algorithm
Fundamental operations
Data types and precision
Data structures
I /O characteristics

There are a number of issues associated with the problem of mapping algorithms to archi
tectures: How robust are the algorithm characteristics across problem domains and architecture
models? What algorithm representations will facilitate the automatic extraction of the algo
rithm characteristics? To what extent can the process of relating the algorithm characteristics
to architecture characteristics be formalized? The problem of gaining an understanding of the
relationships between algorithms and architectures is a critical one. The development of an
effective means of describing the salient attributes of a parallel algorithm is one step in this
process.

48

49

Highly Parallel Processor Arrays Can Be Inexpensive.
Programmable and High-performance

H.T. K u n g
D e p a r t m e n t of C o m p u t e r S c i e n c e

C a r n e g i e Me l lon Univers i ty
Sep tember , 1986

W a r p is a p r o g r a m m a b l e sys to l ic a r ray m a c h i n e d e s i g n e d by C a r n e g i e Me l l on . T h e m a c h i n e has a

l inear ar ray of 10 or m o r e ce l ls , e a c h c a p a b l e of p e r f o r m i n g 10 mi l l ion 32-b i t f l oa t ing -po in t ope ra t i ons

per s e c o n d . T w o w i re -w rap p ro to t ypes , bu i l t by C a r n e g i e Me l lon and its indus t r ia l pa r tne rs - -GE a n d

Honeywe l l , have b e e n ope ra t i ona l s i nce sp r i ng 1986. These m a c h i n e s a re be ing used for s igna l a n d

v is ion p rocess i ng and for sc ien t i f i c c o m p u t i n g . For t hese c o m p u t a t i o n s , the new m a c h i n e s a re

typ ica l l y severa l h u n d r e d t imes faster t h a n t he VAX 1 1 / 7 8 0 . GE is u n d e r c o n t r a c t to bu i l d e igh t

p r in ted c i r cu i t b o a r d ve rs ions of t he m a c h i n e . C a r n e g i e Me l l on is a lso w o r k i n g w i t h Intel in

d e v e l o p i n g a VLSI ve rs ion of t he m a c h i n e .

T h e W a r p p ro jec t has s h o w n the v iabi l i ty of " p r o g r a m m a b l e " systo l ic m a c h i n e s . Mo re prec ise ly , t h e

p ro jec t has d e m o n s t r a t e d (1) a c o m p i l e r c a p a b l e of g e n e r a t i n g e f f i c ien t c o d e for sys to l ic a r rays ; (2)

a l go r i t hms a n d app l i ca t i on so f twa re c a p a b l e of m a k i n g e f f i c ien t use of la rge p r o c e s s o r a r rays ; a n d (3)

p r o t o t y p e h a r d w a r e sys tems tha t c a n b e r e p r o d u c e d e c o n o m i c a l l y .

50

51

Performance Evaluation Models for Parallel Programming

Ronald L. Larsen
University of Maryland

9 - 5 - 8 6

Recent progress in the development of highly parallel computing
systems draws attention to the importance of effective
programming techniques which combine the ability to
advantageously use hardware parallelism while presenting a
sufficiently natural and expressive power to the programmer.
Research in this area has largely focussed on the language
constructs required to virtualize the machine parallelism,
delaying the binding of machine operations to processors until
run time. Performance analysis of parallel programming
techniques and language constructs at the macroscopic level has
attracted rather little attention, with the result that few
theoretical results or validated performance models exist for
asynchronous concurrent programs.

Research at the University of Maryland is concentrating on
techniques for better understanding the parametric behavior of
asynchronous distributed programs. Most recently, attention has
been focussed on predicting process synchronization overhead
using source code analysis techniques. Parameters of interest
include the process execution time, communication delay, process
initiation sequence, and the synchronization architecture.

Recent results include the analysis of dual process,
unconditionally synchronizing programs. This class of programs
is shown to rapidly enter a small number of cyclic steady state
modes. Parametric analysis indicates that these programs will
stay in a single mode over extended ranges of parameters, but
that critical values exist at which a mode change occurs,
resulting in sudden changes in observed performance. The effects
of observed mode changes are often counter-intuitive, requiring
formal analysis to understand. As an example, we have found
instances in which making the code for one process run faster
causes the aggregate waiting time of all processes to increase.

Tuning parallel software for maximum performance appears to be a
very complex, non-intuitive problem about which little is
understood. Parallel programming language constructs supporting
performance instrumentation and evaluation are needed.
Performance modeling techniques for highly parallel machines are
required to support language development and to develop
programming styles targetted at fully realizing the potential of
novel parallel architectures.

52

\

53

Paper : J e r r o l d Le ich te r
Ya le Un ivers i ty

P o s i t i o n P a p e r f o r t h e Y a l e L i n d a G r o u p

Rober t B j o r n s o n
N i cho las Car r i e ro
Dav id Ge le rn te r

Je r ro ld Le i ch te r (w o r k s h o p par t i c ipan t)

W h a t k i nd of p r o g r a m m i n g l a n g u a g e s a n d e n v i r o n m e n t s s h o u l d w e be d e v e l o p i n g for para l le l

p r o g r a m m i n g ? His tor ica l ly , w e c a n d i s c e r n severa l a p p r o a c h e s :

1 . T a k e a c o n v e n t i o n a l l a n g u a g e a n d a d d s y n c h r o n i z a t i o n c o n s t r u c t s , t yp ica l l y mon i t o r s .

2. T a k e a c o n v e n t i o n a l l a n g u a g e a n d a d d m e s s a g e pass ing . O f t en , it is t he ope ra t i ng
sys tem tha t p rov ides m e s s a g e pass ing as a set of sys tem ca l ls .

3. D e v e l o p a n e w p r o g r a m m i n g s ty le , a n d re -cas t eve ry th ing in its t e rms . Da ta - f low a n d
f u n c t i o n a l l a n g u a g e s a re t yp ica l e x a m p l e s .

T h e L i n d a g r o u p ' s a p p r o a c h , wh i l e super f i c ia l l y s imi lar to a p p r o a c h 2, in de ta i l is qu i te d i s t i nc t :

T a k e a c o n v e n t i o n a l l a n g u a g e a n d M E R G E IN t h e L i n d a s h a r e d t up le s p a c e ope ra to rs .

W h i l e the L i n d a ope ra to r s c a n be a d d e d on t o p of an ex is t ing l anguage , t hey imp ly a s e m a n t i c s tha t is

c lose l y c o u p l e d to the hos t l a n g u a g e . For e x a m p l e , t h e L i n d a ope ra to r s a s s u m e a t ype sys tem that

s h o u l d be i n teg ra ted w i t h t h e hos t l a n g u a g e ' s t ype sys tem.

T h e a d v a n t a g e s w e see in th is a p p r o a c h i n c l u d e :

• W r i t i n g para l le l L i n d a p r o g r a m s is no t subs tan t ia l l y d i f fe ren t f r o m wr i t i ng non-para l le l
p r o g r a m s in t h e hos t l a n g u a g e . T h e p r o g r a m m e r d o e s no t have to d i s c a r d 25 years of
s o f t w a r e e n g i n e e r i n g e x p e r i e n c e .

• T h e L i n d a ope ra to r s a re very f lex ib le , bu t a su f f i c ien t l y c lever c o m p i l e r c a n m a k e use of
t he l ack of var ie ty tha t a p p e a r s in any g iven L i n d a p r o g r a m to p r o d u c e g o o d c o d e .
Fur ther , ou r ear ly e x p e r i e n c e i nd i ca tes tha t the t e c h n i q u e s requ i red are very s imi la r to
t h o s e used in t rad i t i ona l op t im iz i ng c o m p i l e r s ; t ha t is, they are we l l u n d e r s t o o d .

• W h e r e t h e c o m p i l e r c a n n o t d i s c o v e r g o o d a p p r o a c h e s on its o w n , it is o f ten poss ib le for
fa i r ly s i m p l e run - t ime a l go r i t hms to d o so a n d m a k e app rop r i a te ad jus tmen ts .

M o r e genera l l y , w e have f o u n d the f o l l o w i n g :

• Wh i l e t h e L i nda o p e r a t i o n s are " h i g h e r l e v e l " t h a n typ ica l message -pass ing p r im i t i ves
t h u s ra is ing the q u e s t i o n of the i r a p p r o p r i a t e n e s s w h e n c o m b i n e d w i th low- leve l
l a n g u a g e s s u c h as C - i t 's been ou r obse rva t i on tha t they a re e f f ic ien t ly imp lemen tab le ,
and tha t u l t imate ly w h a t mat te rs fo r e f f i c iency is ca re fu l t un i ng of the s u p p o r t sys tem at a
low leve l , not t he h igh- leve l i n te r face the p r o g r a m m e r sees .

• S h a r e d - m e m o r y sys tems a re ideal for imp lemen t i ng L inda , a n d L i n d a s e e m s to p rov ide a

54
2

g o o d way of p r o g r a m m i n g t hem ef fect ive ly . Fur ther , s h a r e d - m e m o r y h a r d w a r e s e e m s to
b e very p rac t i ca l fo r an in te res t ing r a n g e of m a c h i n e s up to p e r h a p s a h u n d r e d C P U ' s .

• Al l so r t s of i n t e r c o n n e c t s , f r o m b u s e s to h y p e r c u b e s , s e e m to be p rac t i ca l fo r h a r d w a r e
c o n f i g u r a t i o n s of up t o severa l h u n d r e d nodes . L i n d a is i m p l e m e n t a b l e on s u c h sys tems
as we l l , bu t h a r d w a r e ass i s tance for c o m m u n i c a t i o n s seems to be impor tan t . W e ' v e
fu r the r n o t e d tha t :

o Ex is t ing h a r d w a r e s u p p o r t is heav i ly b iased t o w a r d m e s s a g e - p a s s i n g .

o Re l iab le b r o a d c a s t m e c h a n i s m s are o f ten easy to bu i l d in to h a r d w a r e , bu t d i f f i cu l t
t o bu i l d in so f twa re o n t o p of un re l i ab le h a r d w a r e m e c h a n i s m s . T h e r e has b e e n
re lat ively l i t t le in terest in th is s i nce few para l le l p r o g r a m m i n g e n v i r o n m e n t s p r o v i d e
b r o a d c a s t se rv ices . L i nda ' s t up le s p a c e ope ra t i ons a re na tu ra l l y v i ewed as
b r o a d c a s t s , a n d t h e e x i s t e n c e of a g o o d b r o a d c a s t m e c h a n i s m m a k e s
imp lemen ta t i on m u c h easier . Th i s is t rue even if the sys tem 's e f fec t i ve b r o a d c a s t
b a n d w i d t h is sma l le r t h a n i ts po in t - t o -po in t b a n d w i d t h .

T h e p re l im ina ry resu l ts of a p ro jec t to i m p l e m e n t a L i n d a s u p p o r t c h i p to b e used w i t h a
b u s - b a s e d , n o n - s h a r e d - m e m o r y sys tem ind i ca te tha t e f fec t ive h a r d w a r e ass i s tance is
p rac t i ca l a n d s h o u l d p r o d u c e very c o m p e t i t i v e p e r f o r m a n c e .

T h e mos t impo r tan t e l e m e n t w e ' v e m issed so far is a d a t a b a s e of m e a s u r e m e n t s c h a r a c t e r i z i n g

rea l - l i fe para l le l p r o g r a m s . I t 's imposs ib le to d e s i g n an op t im i z i ng c o m p i l e r w i t h o u t s o m e idea of w h a t

" c l i c h e s " a re c o m m o n in typ ica l p r o g r a m s . W e k n o w w h a t t hese a re fo r sequen t i a l p r o g r a m s . T h e

n u m b e r of real para l le l p r o g r a m s no t c lose l y w e d d e d to spec ia l i zed h a r d w a r e is ra ther sma l l , and t he

a m o u n t of d a t a p u b l i s h e d on t h e m is m i n u s c u l e . W e a re jus t b e g i n n i n g t o g a t h e r s u c h d a t a fo r L i n d a

p r o g r a m s , a n d w e w o u l d e n c o u r a g e t h e resea rch c o m m u n i t y to d o t h e s a m e w i t h w h a t e v e r sys tems

they a re d e v e l o p i n g .

55

Posi t ion Paper

Workshop on Performance Efficient Parallel Programming

Joanne L. Martin
IBM TJ.Watson Research Center

Yorktown Heights, New York

One of the research issues that has been recommended for discussion concerns the contrasting (or
comparing) of two parallel architectures in an application independent way. Although this sounds
good on paper, I believe that this is an unrealistic goal. The performance of vector and parallel
computers is dependent on the applications being executed and, to divorce architectures from ap
plications would be to develop performance information too general to be useful.

A more realistic goal is to identify specific, measurable hardware parameters that affect per
formance and to relate these to established application characteristics. For example, Hockney has
described the parameters n 1 / 2 , / i / 2 . and s1/2 to indicate the overheads associated with using vectors,
accessing memory, and exploiting parallel architecture. In combination, these architecture-
dependent parameters begin to classify a system as to the type of application for which it is suit
able. They do not, in themselves, provide a performance statement about the system. An nl/2 that
is very large may imply that an architecture will have difficulty on applications with small vectors,
but it says nothing about its performance on scalar code. The performance of the system will de
pend on the characteristics of the workload being executed. Research on classifying applications
and their various implementations can be pursued, and would be beneficial to system architects,
performance analysts, and applications programmers. In this approach, classes of architectures
and classes of applications would be identified and comparisons or contrasts of architectures
would take place within the classes of architecture for specific classes of applications.

For example, computational fluid dynamics in its traditional implementations and magneto
hydrodynamics are generally highly vectorizable applications (90 - 95%) that also exhibit a sig
nificant amount of large-grain parallelism (85 - 95%) . In contrast, many Monte Carlo, circuit
analysis, and quantum chromodynamics codes exhibit negligible amounts of vectorization but
have extremely high (95 - 99%) parallelization. Different systems could be beneficially analyzed
by restricting to one or the other of these classes of application.

Furthermore, a single system's performance will vary widely depending on the choice of imple
mentation of an application. Consider the following two examples:

1. A production code at the Los Alamos National Laboratory

Executed on a Cray-1, the net performance of one particular production code can be either
approximately 20 MFLOPS or approximately 2 MFLOPS. The difference is the result of the
choice of the path taken through the code at execution time. If the solution is accomplished
via the hydrodynamics path, the higher performance is obtained. The lower performance
follows from the Monte Carlo path execution.

2 . A Navier-Stokes CFD problem.

The standard solution is numerical and generally requires accessing data in successive passes
through orthogonal directions, making parallelization speedup difficult on a non-shared
memory system and vectorization difficult on a system that is sensitive to the presence of
large strides. A new solution technique is being considered that involves cellular automata.
This implementation is extremely parallelizable and has been shown to produce high per
formance on the Connection machine, an architecture on which the more traditional solution
would be expected to perform poorly.

In summary, the proliferation of computer architectural models has magnified the range of per
formance possibilities considerably relative to the range possible on single processor serial ma
chines. Because some classes of computational models exploit hardware characteristics that are

Position Paper 1

56

left untouched by others, careful selection of both models must be involved in the evaluation of
these systems. Rather than application independent performance techniques, we need to develop
the correct dependence of applications and architectures in order to best understand the overall
performance of complicated systems.

Position Paper 2

57

PARALLEL PROGRAMMING

P o s i t i o n P a p e r f o r t h e W o r k s h o p
P e r f o r m a n c e E f f i c i e n t P a r a l l e l P r o g r a m m i n g

H . M u e h l e n b e i n G M D
P.O 1 2 4 0 D - 5 2 0 5 S a n k t A u g u s t l n 1

I N T R O D U C T I O N :

Paral le l p r o g r a m m i n g c a n n o t be d i scussed in iso la t ion bu t has to be c o n s i d e r e d in t he

f r a m e w o r k of para l le l p r o c e s s i n g . In t h e past para l le l p rocess ing w a s res t r i c ted to a r ray or vec to r

p r o c e s s i n g . T o d a y para l le l p rocess ing itself needs an in te rd isc ip l inary a p p r o a c h . Mu l t i p rocesso rs

o p e r a t i n g a s y n c h r o n o u s l y a n d rou t i ng messages w i th in a ne two rk have p rob lems c o m m o n t o

c o m p u t e r n e t w o r k s and d i s t r i bu ted sys tems. Th is w e c a n ca l l t he hor i zon ta l c o n n e c t i o n . Paral le l

p r o c e s s i n g a lso needs a ver t ica l c o n n e c t i o n . W i th in para l le l p rocess ing w e have a mu l t i d imens iona l

d e s i g n s p a c e . W e need e x p e r i m e n t s to inves t iga te the re la t ionsh ip b e t w e e n p r o g r a m m i n g l anguages

a n d o p e r a t i n g sys tems, b e t w e e n app l i ca t i ons and su i tab le ne two rk t opo log ies . In o rde r to ob ta in a

b r e a k t h r o u g h in para l le l p rocess ing an in te rd isc ip l inary a p p r o a c h is n e e d e d . The re are at least t h ree

reasons to j u m p to para l le l p rocess ing

p e r f o r m a n c e
fau l t t o l e r a n c e
s imp l i c i t y

T h e last issue may be su rp r i s i ng b e c a u s e para l le l p r o g r a m m i n g is c o n s i d e r e d to b e

c o m p l i c a t e d . Bu t as C. M e a d asks : " H o w m u c h of t h e p r o b l e m is d u e to a n a c h r o n i s m in l anguages

a n d h o w m u c h i sdue to t h e w a y in w h i c h the para l le l s e m a n t i c s has been app l i ed? " Paral le l

p r o g r a m m i n g needs a f resh star t . " A f resh s tar t o f ten g ives us ins igh ts in to t he s t ruc tu re of a p rob lem

w h i c h revea ls an unde r l y i ng un i ty a n d s imp l i c i t y . "

W e c la im tha t for ce r ta in app l i ca t i ons t he f resh s tar t c o u l d be a un i f o rm c o m p u t a t i o n a l mode l

b a s e d o n c o m m u n i c a t i n g p rocesses . T o s u p p o r t th is m o d e l soph i s t i ca ted g r a p h m o d e l s have to b e

d e v e l o p e d a n d app l i ed . W e wi l l d i s c u s s th is t op i c in m o r e deta i l in t he fo l l ow ing chap te rs .

S IMPL IC ITY

T h e r e is a w i d e s p r e a d be l ieve tha t para l le l p r o g r a m m i n g is a d i f f i cu l t task. W e be l ieve tha t t he re

c a n b e a para l le l p r o g r a m m i n g s ty le w h i c h c a n lead (for ce r ta in app l i ca t ions) to s imp le r p r o g r a m s

t h a n sequen t i a l ones . T h e bas ic obse rva t i on is as fo l l ows : Many sys tems in na tu re w o r k in para l le l .

W i t h t h e r igh t p r o g r a m m i n g p a r a d i g m n it s h o u l d be easy to ob ta in a one - to -one m a p p i n g of t h e

p r o b l e m s t r u c t u r e to t he imp lemen ta t i on s t ruc tu re . Th is p a r a d i g m c a n b e ph rased " m a c r o d a t a f l ow

o r i en ted a n d ob jec t o r i e n t e d " . It is in te res t ing to obse rve tha t th is s ty le has been advoca ted in

d i f fe ren t d i sc ip l i nes . T h e fo l l ow ing tab le g ives s o m e examp les .

58

2

Disc ip l i ne E x a m p l e

s c i e n c e
so f twa re e n g i n e e r i n g
l a n g u a g e s
ope ra t i ng sys tems
VLSI

ce l lu la r a u t o m a t o n
SA, d a t a f l o w g r a p h s
c o m m u n i c a t i n g p rocesses
m e s s a g e pass ing
V H D L behav io r des r i p t i on

In al l t hese e x a m p l e s w e d e s c r i b e h o w t h e inpu t a n d ou tpu t of an ent i ty re la te , by exp ress ing

t h e assoc ia ted i n p u t / o u t p u t t r a n s f o r m a t i o n s a n d by c o n n e c t i n g t h e i n p u t / o u t p u t par ts . T h u s t h e

sys tem is d e s c r i b e d or c o n s t r u c t e d f r o m a loca l po in t of v iew. Us ing on every level a s imi lar m o d e l

s h o u l d m a k e t h e p r o g r a m m i n g task eas ier . In s t r u c t u r e d ana lys is for i n s tance t he sys tem is d e s c r i b e d

us ing a h i e ra r chy of d a t a f low d i a g r a m s so tha t non-spec ia l i s t s can u n d e r s t a n d w h a t is h a p p e n i n g ,

w h y no t v i ew ing it as a max ima l l y para l le l set of p rocesses c o m m u n i c a t i n g v ia we l l de f i ned d a t a f l ows

? Th i s m e a n s tha t a l a n g u a g e b a s e d o n th i s p r o n c i p l e c a n d i rec t l y i m p l e m e n t t h e spec i f i ca t i on a n s is

a g rea t i m p r o v e m e n t over sequen t i a l l a n g u a g e , w h e r e t he f i rs t s tep is to t u r n d a t a f l ow d i a g r a m m s in to

a sequen t i a l m o d u l e ca l l i ng h ie ra rchy . T h e r e a re a lso s t r o n g a r g u m e n t s t o use jus t t h e oppos i t e

p r o g r a m m i n g p a r a d i g m n • w e wi l l p h r a s e it " f u n c t i o n a l " or " s t r u c t u r e o r i e n t e d " . Bo th s ty les a re

i n teg ra ted in t he VLSI d e s i g n l a n g u a g e V H D L w h e r e a s in para l le l p r o c e s s i n g they a re c o n s i d e r e d to

be to ta l ly d i f fe ren t c o m p u t a t i o n a l m o d e l s a n d s h o u l d no t b e c o m b i n e d . It l ooks as if t he re a re a lmos t

w a r s b e t w e e n these t w o s c h o o l s W e be l ieve tha t b o t h s ty les are necessa ry a n d have a d v a n t a g e s

in d i f fe ren t app l i ca t i on a reas . W i t h i n t h e a rea of sc ien t i f i c c o m p u t a t i o n w e a d v o c a t e t h e use of t h e

d a t a f l ow a p p r o a c h , w h i c h c a n be s h o w n to lead to s imp le p r o g r a m s a n d mass ive para l le l i sm. T h e

d r a w b a c k of t h e d a t a f l o w a p p r o a c h is t ha t t h e g l o b a l behav io r of t h e sys tem c a n n o t eas i ly b e

obse rved or p r e d i c t e d . Al l ac t iv i t ies w h i c h requ i re a to ta l sys tem s ta te l ike d e b u g g i n g , d e a d l ock

h a n d l i n g , c h e c k p o i n t i n g e tc . a re c o m p l i c a t e d t o imp lemen t .

Fagl t T o l e r a n c e

M u l t i p r o c e s s o r sys tems a l l ow fau l t - to le ran t e x e c u t i o n of p r o g r a m s . A var ie ty of g r a p h m o d e l s

has b e e n d e v e l o p e d for d i agnos i s a n d r e c o n f i g u r a t i o n of mu l t i p rocesso rs in t h e case of h a r d w a r e

fa i lu res . Tes t resu l ts o b t a i n e d loca l ly c a n b e rou ted t h r o u g h t h e sys tem to a l l ow the rema in i ng in tac t

p r o c e s s o r s to c o m p u t e a sys tem-w ide se l f -d iagnos is . S y s t e m - w i d e se l f -d iagnos i s enab les t h e sys tem

to r e c o n f i g u r e a n d to r un t h e app l i ca t i on p r o g r a m s o n t h e r ema in i ng in tac t c o m p o n e n t s . Th i s

p r o b l e m c a n b e so l ved by i s o m o r p h i c e m b e d d i n g of g r a p h s or by spec ia l s c h e d u l i n g . Th i s

d e m o n s t r a t e s tha t m o d e l s i n c o r p o r a t i n g fau l t t o l e r a n c e a re a na tu ra l e x t e n s i o n of t h e m a c r o d a t a f l ow

m o d e l .

P e r f o r m a n c e

T h e p e r f o r m a n c e ga in of para l le l i sm is c o n s t r a i n e d by h o w m u c h para l le l i sm is in t h e p r o b l e m .

Bas ica l ly , w e see at least t w o k i n d s of para l le l i sm:

a lgo r i t hm ic para l le l i sm
spat ia l para l le l i sm

59

3

T h e f i rs t g r o u p c o n t a i n s app l i ca t i ons w h e r e t h e para l le l i sm has b e e n o b t a i n e d by d e c o m p o s i n g

t h e a l go r i t hm in to a n u m b e r of s imp le r c o m p o n e n t s w h i c h c a n be e x e c u t e d in para l le l . T h e s e c o n d

g r o u p c o n t a i n s app l i ca t i ons w h e r e the para l le l i sm has b e e n ob ta ined by d is t r i bu t ing the da ta to b e

p r o c e s s e d b e t w e e n a n u m b e r of p r o c e s s e s in s u c h a w a y tha t t he g e o m e t r i c a l s t r uc tu re of t he da ta is

p rese rved . A lgo r i t hm ic para l le l i sm is no t easy to exp lo re a n d seems to be h igh ly i r regu lar w h e r e a s

g e o m e t r i c para l le l i sm is p ropo r t i ona l to t he p r o b l e m s ize. T h e p e r f o r m a n c e p r o b l e m of spat ia l

para l le l i sm is we l l u n d e r s t o o d . T h e p e r f o r m a n c e is m o r e or less i n f l uenced by t he rat io of

c o m m u n i c a t i o n t ime a n d c o m p u t e t ime . K ruska l s ta ted t h e fo l l ow ing c o n j e c t u r e : W i th ra re e x c e p t i o n s ,

a n y real l i fe p r o b l e m c a n e x e c u t e e f f i c ien t ly o n any r e a s o n a b l e para l le l c o m p u t e r - as l ong as t h e

p r o b l e m is la rge e n o u g h .

Th i s c o n j e c t u r e c a n b e p roven in fo rma l l y by the f o l l ow ing obse rva t i on . W i th M ob jec t s s to red

loca l ly w e o f ten h a v e 0 (M * * i) c o m p u t e t i m e a n d 0 (M * * j) c o m m u n i c a t i o n t ime . W h e n j<i w e c a n ad jus t

t h e q u o t i e n t of c o m p u t e a n d c o m m u n i c a t i o n t ime . T h e impo r t an t ques t i on t he re fo re is: H o w la rge

d o e s a g i ven p r o b l e m have to be t o run e f f i c ien t (50%) o n a para l le l a r c h i t e c t u r e . W i th P equa l to t h e

n u m b e r of p r o c e s s o r s a n d N e q u a l t o t h e p r o b l e m s ize , w e c a n c lass i fy t h e p r o b l e m s in to t h r e e

c lasses at least fo r t h e r i ng m a c h i n e .

N = O(P)
N = < D (P " k)
N = 0 (e x p (P))

C Q n d u s i Q n :

Fo r spat ia l para l le l i sm t h e r e s e e m s to b e a u n i f o r m c o m p u t a t i o n a l m o d e l t o ob ta in e f f ic ient , fau l t

t o l e ran t a n d s imp le p r o g r a m s . T o s u p p o r t th i s m o d e l n e w too l s have to be deve loped or i n teg ra ted

in to a c o h e r e n t f r a m e w o r k . T h e s e t oo l s have to b e based on fo rma l i zed g r a p h mode ls . Hopefu l l y w e

e n d u p w i t h a se t of s imi lar g r a p h i c o r i en ted t oo l s s u p p o r t i n g p r o g r a m spec i f i ca t i on , p r o g r a m

i m p l e m e n t a t i o n a n d p r o g r a m v isua l i za t ion at r un t ime . Th is p r o g r a m m i n g mode l is ne i ther

revo lu t i ona ry l ike f u n c t i o n a l m o d e l s n o r evo lu t i ona ry l ike para l le l l a n g u a g e s w i t h para l le l l oops . It

n e e d s r e p r o g r a m m i n g in a c l ean a n d sa fe s ty le . In ou r o p i n i o n s u p e r c o m p u t e r s w i t h m o r e t han 100

g f l op s h o u l d no t b e d r i ven by t he o ld dus t y F O R T R A N d e c k .

60

61

Performance Critical Decision Problems in Parallel Scientific Computations

David M. Nicol

Institute for Computer Applications in Science and Engineering
NASA Langley Research Center, Mail Stop 132C

Hampton, Virgina 23665

Scientific computations are often composed of numerical calculations at each point in a discre-
tized spatial (or transformed) domain. Workload assignment for parallel processing on message passing
architectures involves partitioning the discretized domain points into regions which are then mapped to
processors; usually the number of regions equals the number of processors. A processor's workload is
then a function of the domain points in the region it receives. Our work has focused on two problems
arising from this type of computation. One problem recognizes that a computation's workload distribu
tion may change in time (or iterations). This is especially true for adaptive methods, which dynamically
create and destroy domain points. The second problem recognizes that performing a convergence
check after every iteration is unnecessary, and degrades performance.

Our initial efforts in treating the dynamic workload imbalance problem involved development and
study of analytic models which exhibit time variant behavior. These models fall into two classes; one
class models situations where run-time performance changes abruptly; the other class models situations
where performance declines gradually, and continuously. The key issue for all of these models is to
decide when and if a new partition of the domain should be calculated and implemented. Intuitively,
this decision should depend on the cost of remapping, the performance gain achieved by remapping,
and the performance decline suffered by not remapping. In [I] we examine a abrupt change model,
develop an optimal decision policy for the model, and then show that a simple decision heuristic which
requires no estimation of seemingly critical model parameters achieves nearly optimal performance. In
[2] we examine two gradual change models, develop a decision heuristic which attempts to minimize
the overall cost per unit time, and show that this heuristic is effective for both models. Currently we
are beginning to implement these policies for specific numerical problems on hyper-cube type architec
tures. Our overall goal is to develop remapping decision mechanisms which are transparent to the pro
grammer.

Naive convergence checking of an iterative numerical method requires that every processor report
at every iteration whether its subdomain has converged. The computation stops only when the solution
has converged globally, at every subdomain on the same iteration. The overhead cost of convergence
checking can be quite high: we have measured it (on an SOR solution of the heat equation) running on
the Intel iPSC to be as high as 50% of the running time [3]. In [3] we discuss two means of reducing
this overhead. One method dynamically schedules the next convergence check, allowing for the possi
bility of not testing convergence at all during intervening iterations. This method is akin to our remap
ping heuristics in its effort to balance the cost of checking convergence against the "overshoot" cost of
continuing to calcuate iterations after global convergence occurs. The second method does not expli
citly balance these costs; rather, it requests convergence information only when certain necessary con
ditions for global convergence are satisfied. For the problems we studied, these methods performed
equally well.

The research reported here recognizes that the dynamic behavior of parallel computations gives
rise to decision problems which must be dealt with if the computation is to run efficiently. Ideally, our
treatments of these problems must become invisible to the application programmer; the decision

-2-

[1] D. Nicol, P. Reynolds Jr., Dynamic Remapping Decisions in Multi-Phase Parallel Computa
tions, ICASE Report No. 86-58, September 1986.

[2] D. Nicol, J. Saltz, Dynamic Remapping of Parallel Computations with Varying Resource
Demand, ICASE Report No. 86-45, July 1986.

[3] J. Saltz, V. Naik, D. Nicol, Reduction of the Effects of Communication Delays in Scientific
Algorithms on Message Passing MIMD Architectures, to appear in SIAM Journal of Scientific
and Statistical Computing, January 1987.

mechanisms we develop should be implemented at a system level, rather than an application level. We
are continuing our efforts to achieve this goal.

63

Pos i t ion Paper for the
Workshop on Performance Efficient

Parallel Programming

David Notkin
Department of Computer Science, FR-35

University of Washington
Seattle, WA 98195

(206) 545-3798
notkin@washington (arpanet or csnet)

September 1986

Programming environments improve the productivity of programmers in two
ways. First, environments relieve programmers from concern with details not
strictly related to programming. For example, structure-editing environments en
sure that programmers need not be concerned with whether a semicolon is a state
ment separator or terminator. Second, environments can enforce, or encourage the
use of a specific methodology.

Most of the research and development of programming environments has pri
marily focused on sequential systems and languages such as C and Pascal. The
motivation for environments, however, carries over even more strongly in the do
main of parallel computation. The details required for parallel programming are
immense: without environmental support, it seems nearly impossible to produce
high-quality parallel programs. Also, since the search space for parallel programs
that solve a problem seems to be greater than that for sequential programs, suitable
methodological guidance will be needed.

(As an aside, I predict that most of the software engineering problems of docu
mentation, maintenance, parallel programming-in-the-large, and such, will come to
the forefront of parallel programming not too far in the future. As soon as there
are many problems that require multiple programmers and long periods of time to
solve, we can expect our focus to shift from environments for constructing parallel
programs to environments for engineering parallel programs.)

It is difficult to perform research in programming environments (either sequen
tial or parallel). The key reason for this is that modifying the environments to
meet changing needs and requirements is costly. To test a new idea often takes
significant resources and time. One approach to reducing this inflexibility is to
construct environments with their modification and enhancement in mind. Several
sequential environments have taken this approach in varying degrees. Consider the
single language programming environments such as Interlisp and Smalltalk. The

1

64

uniformity and open nature of these environments encourage experimentation. Also
consider the generation of environments based on structure-editors, such as Gan-
dalf and the Cornell Program Synthesizer. These generators permit us to construct
environments for various languages with relative ease.

Given the relative immaturity of parallel programming (with respect to sequen
tial programming), it is no surprise that the first efforts in supporting parallel
programming were quite inflexible. Adding new interconnection schemes is an ex
ample of the kinds of change that environments have difficulty accommodating.
Now that the "first-generation" support systems are maturing, we have an oppor
tunity to focus on the dimensions along which we believe that environments must
have flexibility (so that we can experiment even further).

In what areas do we need to support such flexibility? Here are two examples:

Object Definit ion and Manipulat ion Parallel programming environments do
and will rely heavily on non-textual objects, such as graphic versions of com
munication graphs. If one is constructing an environment on top of a systems
such as UNIX, the underlying file system does not facilitate the storage and
manipulation of objects that axe defined non-textually, since the file systems
axe oriented towards streams of bytes. It is not likely, though, that replac
ing the byte-stream support with a single other abstraction will work, since
non-textual objects other than graphs - for instance, abstract syntax trees
for representing programs - may be needed as well. We are searching for a
unified way in which to define, manipulate, and coordinate various classes of
objects.

Tool Def init ion Parallel programming environments play many roles: commu
nication graph editor, serial program editor, compiler, debugger, simulator,
among others. The parts of the program that implement these varied roles
axe usually closely integrated so as to support the programmer as fully as
possible. Despite this benefit to the user, the tight integration often makes it
difficult to introduce new tools. We axe searching for ways in which we can
define and integrate new tools into an environment at reduced cost. This will
necessarily increase our flexibility in experimenting with the environment.

As part of my research with Larry Snyder, I am interested in solving these prob
lems along with others that currently inhibit the flexibility of parallel programming
environments.

2

65

P o s i t i o n P a p e r

F I N D I N G T H E R I G H T V I R T U A L M A C H I N E F O R
P A R A L L E L A P P L I C A T I O N S P R O G R A M M I N G

T.W. Prat t
Un ivers i ty of V i rg in ia

S e p t e m b e r 1986

T w o q u e s t i o n s of i m p o r t a n c e to p e r f o r m a n c e e f f i c ien t para l le l p r o g r a m m i n g :

1 . W h a t 'v i r tua l m a c h i n e ' s h o u l d b e p r o v i d e d to t h e app l i ca t i ons p r o g r a m m e r ?

2. H o w i n d e p e n d e n t of t he unde r l y i ng h a r d w a r e a r c h i t e c t u r e c a n th is v i r tua l m a c h i n e b e if
you st i l l w a n t g o o d p e r f o r m a n c e ?

T h e 'v i r tua l m a c h i n e ' tha t t he app l i ca t i ons p r o g r a m m e r uses is f o r m e d ou t of the va r i ous layers of

so f tv /are on t h e sys tem: p r o g r a m m i n g l a n g u a g e , run - t ime l ibrary , ope ra t i ng sys tem, p lus the

h a r d w a r e itself. In d e s i g n i n g th is so f twa re , the d e s i g n e r c o n s i d e r s w h a t aspec t s of t he m a c h i n e and

l ower layers of so f twa re to h ide , and w h a t to a u g m e n t . T h e app l i ca t i ons p r o g r a m m e r uses th is v i r tua l

m a c h i n e .

T h e v i r tua l m a c h i n e may m a t c h t he a r c h i t e c t u r e c lose l y (and app l i ca t i ons p r o g r a m s wi l l t hen be

d i f f i cu l t t o por t to o the r a r ch i t ec tu res) , or it may h ide t he a r c h i t e c t u r e comp le te l y . J o n e s a n d S c h w a r z

[1] n o te tha t if t he v i r tua l m a c h i n e h ides aspec t s of t he unde r l y i ng a r c h i t e c t u r e tha t have impo r t an t

p e r f o r m a n c e imp l i ca t i ons , t h e n o b t a i n i n g g o o d p e r f o r m a n c e may be d i f f i cu l t for an app l i ca t i ons

p r o g r a m m e r .

Typ i ca l d e s i g n ques t i ons :

1 . S h o u l d t h e V M p rov ide m e s s a g e pass ing if t he H W p r o v i d e s s h a r e d memory?

2. S h o u l d t he V M p rov i de s h a r e d / g l o b a l d a t a o b j e c t s if t he H W has on ly d i s t r i bu ted
m e m o r y ?

3. S h o u l d t he V M p rov ide severa l g ranu la r i t i es of para l le l a c t i o n s if t h e H W p rov ides on ly
o n e g ra i n s ize?

4 . S h o u l d t he V M be a c lus te red m a c h i n e if t h e H W is n o t c l us te red?

THE P ISCES P R O J E C T

1. Care fu l l y d e f i n e d v i r tua l m a c h i n e

2. A r c h i t e c t u r e i n d e p e n d e n t app l i ca t i ons p r o g r a m m i n g (s c i e n t i f i c / e n g r)

66

2

3. P r o g r a m m e r con t ro l of v i r tua l m a c h i n e = = > h a r d w a r e m a p p i n g

4 . V i r tua l m a c h i n e m o d e l :

c lus te rs of tasks
d y n a m i c task c r e a t i o n / t e r m i n a t i o n
message pass ing a m o n g tasks
f o r ces (a la Har ry J o r d a n / U . C o .)

s h a r e d v a r i a b l e s / p a r a l l e l l oops
mu l t i p le g ranu la r i t i es of para l le l i sm

Imp lemen ta t i on : F L E X / 3 2 , w o r k s t a t i o n ne two rk , h y p e r c u b e (p lanned)

R E F E R E N C E

[1] A .K . J o n e s a n d P. S c h w a r z , " E x p e r i e n c e Us ing M u l t i p r o c e s s o r
A r c h i t e c t u r e s • A S ta tus R e p o r t , " A C M C o m p u t i n g
Su rveys , Vo l . 12, No . 3, J u n e 1980, pp . 121-166.

67

Tom R e i n h a r d t

Posit ion Paper: M P S G at M.I.T.A.I. 1

Background

Presently, the Message Passing Semantics Group at the M.I.T. Artificial In
telligence Laboratory is pursuing the design and implementation of Actor
languages and architectures for open-ended, continuously evolving systems,
i.e., Open Systems.

Actors are opaque, autonomous computational agents that communicate
via message passing. In response to a communication, an actor may perform
several actions:

• It may send more communications to its acquaintances]
• It may create more actors; or,

• It may designate a new behavior with which to process the next message.

Note that any of these actions may be performed jointly or severally.
Actor communications systems ressemble mail systems, i.e., communica

tion proceeds asynchronously, and actors queue incoming messages if they are
delivered while processing. Computat ion therefore occurs between communi
cations. Moreover, parallelism is engendered by creating more actors or by
creating more communications.

Current Experimentat ion

Current research proceeds along the following routes: Architecture, Program
ming Languages and Semantics, Theory and Applications for Open Systems.

Theory

Actor theory rests on a firm mathematical foundation developed and eluci
dated in Gul Agha's dissertation and forthcoming book, Actors: A Model
of Concurrent Computation in Distributed Systems.'f Continuing theoretical
work concerns the nature of high level actor systems, such as inheritance and
description systems, as well as the impact of the actor formalism on algorithm
design.

Architecture

A potential architecture for actor machines has been simulated on the group's
Symbolics 3600 Lisp Machines. Basically, each Lisp machine is configured
with a number of Workers which are actors that enqueue tasks as they arrive
and then execute them upon the receipt of a simulated cycle or tick message.

P u b l i s h e d by M.I.T. Press , this fall.

68

Position Paper: MPSG at M.I.T.A.I. 2

A collection of these workers distributed over one or more Lisp Machines is
called an Apiary.

More recently, work has begun on the design of a processing chip that
incorporates message passing at a fine-grained level. We are currently me
tering sample applications on the Apiary and are utilizing these statistics in
designing and developing chips for actor machines.

Languages

Actor languages attempt to unify the inherent parallelism of pure lambda
calculus with the ability to perform localized state change operations. This
unification of functional and imperative programming styles results in a sys
tem that couples maximum concurrency with the ability to perform history
sensitive computations.

To date, the following languages and systems have been implemented and
are being utilized in our research effort:

• A Primitive Actor Language, Pract, based upon the notions of Actor
automata developed in Agha's dissertation. Pract represents the Apiary
kernal language;

• A Core Actor Language, A core, which serves as the applications language;

• A debugging facility, Time Traveler that permits users to step through
computat ions by single events or by entire transactions. In addition,
Traveler provides Biographies which essentially represent the history of
activity for a particular actor.

Future developments in this area include the design and implementation of
inheritance mechanisms within Acore and A.I. applications.

Algorithms

The design and evaluation of algorithms has heretofore concerned itself with
the number of steps an algorithm requires to compute a result given some data.
In our experimentation with Actor systems, several questions have emerged.

The most general of these stems from the observation that maximizing
parallelism doesn't insure optimal algorithm design.

At a pragmatic level, actors can be distinguished as those that change
their behaviors as result of a communication, serialized, and those whose be
haviors never change, unserialized. In a collection of unserialized actors, the
speed at which an algorithm computes is a function of the number of steps
required and the communication latency between actors. Because serialized

69

Posit ion Paper: M P S G at M.I .T.A.I . 3

actors change state , however, they must remain locked until they've processed
the incoming communication, in order to maintain consistency. These serial
ization points can become bottlenecks.

Hence, a fundamental question arises: Is there an optimal tradeoff be
tween unrestrained parallel activity and administrative overhead, i.e., serial
ization? And, assuming there is, is it determined ad hoc, or are there guide
lines that might be followed by designers?

In grappling with this question, theories from sociology and organiza
tional management theory might provide fruitful discussion.

70

Page 1
71

IN PARALLEL PROCESSING, THE TRIVIAL BECOMES CONSEQUENTIAL
AND THE NEGLIGIBLE BECOMES DOMINANT

David P. Rodgers
SEQUENT COMPUTER SYSTEMS, INC•

Beaverton, Oregon

PARALLEL PROCESSORS WILL BECOME COMMONPLACE AND ESSENTIAL

Mirroring the commercial proliferation and user acceptance of
virtual memory systems which began in the early 1960's, parallel
processor systems are becoming available as standard commercial
products and applications are being developed which depend on
their parallel nature. The demand for parallel processor systems
is driven by needs for absolute performance in excess of that at
tainable through circuit improvements, cost/performance to
economically justify new applications, scaleable growth of execu
tion vehicles to match growth in application size, fault toler
ance through redundancy to protect application productivity and
reduced support costs through commonality of spares and training
across application engines.[1] As commercial machines proli
ferate, a body of applications and application approaches will
develop which are feasible only in a parallel processor environ
ment. Similarly, languages which express parallel computational
ideas with facility, eg. Prolog, ADA, will supercede present ap
plication languages.

SHARED MEMORY PARALLEL PROCESSORS WILL BE PRODUCTIVE IMMEDIATELY

The dominating issues which must be resolved by designers of
parallel processors are scaleability, processor-to-processor
bandwidth for data sharing and inter-process (task, thread, com
putation) synchronization time. While there are a range of pos
sibilities for tightness of coupling and degree of connectedness
among processing elements, research work and commercial develop
ment seem to be focussing on three architectural styles: multi
computer clusters (networks), connection machines (including hy-
percubes) and shared memory multiprocessors. [2] Clusters gen
erally are most scaleable but suffer from low performance in
sharing data and synchronizing computation. Connection machines
have a wide range of scalability and have better communication
and synchronization facilities than clusters but these are use
able in only in very specialized applications. Shared memory
multiprocessors provide the maximum performance processor-to-
processor communication and synchronization but are limited in
scaleability (at present) to a few tens of processors. What are
the factors which will make shared-memory multiprocessors most
successful immediately? In a word: tools. To make effective use
of parallel processors, program development environments which
make use of expert knowledge of both the problem structure and
the machine structure will be required. Compilers which restruc
ture user applications within the scope of one or a few modules
are presently available. Compilers which can expand the scope of
restructuring to whole programs will emerge within the next year.
Programming environments which interact with the application

Page 2
72

developer to extract the structural knowledge lost in translation
to programming language are being designed. All of these sophis
ticated tools depend on low cost data sharing and rapid inter-
computation synchronization. [3]

The shared memory multiprocessor also provides a complete
development environment. The complete set of conventional pro
gramming tools which exist for uniprocessor environments can be
hosted and used to bootstrap the more sophisticated parallel pro
gramming environment. Architectural exploration can be done with
simulation, often with better performance because of the superior
communication and synchronization facilities. [4] If economics
dictate, multiple workers can share use of a single parallel pro
cessor without resorting to time reservation. Performance moni
toring and measurement can be done with sampling techniques at a
very fine level of detail without greatly disrupting the flow of
the application.

OLD RULES OF THUMB MUST BE REVISED

In parallel processing, the trivial becomes consequential and the
negligible becomes dominant. Since the advent of virtual memory
and caches as elements of the storage hierarchy, memory reference
patterns have been important determinants of performance.. In a
parallel processor, references to shared data becomes a critical
performance factor. Locality is not determined solely by the ex
ecution of a single process but by all the cooperating processes.
The consequences of an inappropriate migration of an object from
primary to secondary storage may be that all the processors in an
ensemble wait. Note that this isn't a new problem, it exists for
operating systems managing channel processors, just new to appli
cation programmers and compiler writers. Similarly, treatment of
abnormal or rare conditions in the parallel programming environ
ment requires revised treatment. As the execution rate of the
application increases so does the rate of exceptional oc
currences. If the processing of an exception blocks the execu
tion of the application, the cost is multiplied by the parallel
ism factor. Rules of thumb about where a program will spend most
of its time will be upset by parallel processors necessitating
new analytical tools.

PERFORMANCE TOOLS SHOULD PROVIDE AN ABSTRACTION

Restructuring compilers will dramatically alter the static ex
pression of an application. Parallel processors will dramatical
ly alter the dynamic behavior of an application. Both of these
factors will break the tenuous connection between the programmers
understanding of the flow of his program and the actual execu
tion. The stages of program development will remain the same:
design, implementation, testing (debugging) and performance tun
ing. What must change is the level of abstraction used to under
stand whether the intent is correctly expressed and the execution
is robust and effective. Guages have been suggested as a vehicle
for shifting the emphasis from evaluation of the flow of control
-to the flow of d a t a . [5] For problems expressed in object oriented
programming languages, these may prove effective. For applica-

Page 3
73

tions carried forward from earlier computer generations, some way
of mapping the actuality onto the original expression may be
necessary. In either case, domain specific expertise about the
application and programming environment must be built into the
development tools.

REFERENCES

1. Forest Baskett and John L. Hennessey, Science 231, 963 (1986) .

2. Omri Serlin, Supermicro newsletter, April 1986.

3. David J. Kuck, Edward S. Davidson, Duncan H. Lawrie, Ahmed H.
Sameh, Science 231, 967 (1986) .

4. Robert L Brown and Peter J. Denning, "A Comparison of Multi
processors: Sequent Balance 8000 and Intel iPSC Hypercube",
RIACS Technical Report 86.5 (1986).

5. Daniel G. Bobrow and Mark J. Stefik, Science 231, 951 (1986) .

74

75

W o r k s h o p on P e r f o r m a n c e Ef f ic ient Paral le l P r o g r a m m i n g
Pos i t ion Paper (A u g . 1986)

Lar ry R u d o l p h (Hebrew Univers i ty)

• T h e ma in goa l of para l le l p rocess ing is fast e x e c u t i o n (i.e. l inear speedups) .

• La rge p r o b l e m s , t hose requ i r i ng lots of c o m p u t e r power , a re t he ma in app l i ca t ion d o m a i n
of para l le l p r o c e s s i n g .

• A l inear s p e e d u p c a n a lmos t a lways be ach ieved g i ven a la rge e n o u g h p r o b l e m .

• P e r f o r m a n c e d e g r e d a t i o n s a re o f ten d u e to c o n t e n t i o n fo r s h a r e d r e s o u r c e s (e .g . s h a r e d
m e m o r y modu les) and s y n c h r o n i z a t i o n ove rheads .

I w o u l d l ike to sugges t e x a m i n i n g t he gene ra l i zed para l le l pre f ix c o n s t r u c t as a w a y of par t ia l ly

ach iev ing t h e a b o v e goa ls . It has app l i cab i l i t y to p r o g r a m m i n g at a h i gh leve l , as a ta rge t fo r

t r ans fo rm ing spec i f i ca t i ons i n t o c o d e for a para l le l m a c h i n e , a n d as a bas ic ope ra t i on tha t s h o u l d b e

s u p p o r t e d by a n y para l le l a r c h i t e c t u r e .

T h e o p e r a t i o n is as f o l l ows : G iven a b ina ry o p e r a t i o n , 9 , a n d a set of i tems, a Q , a v a n v t h e i-th

pref ix is d e f i n e d to b e aQ 9 a 1 9 ... 9 a.. T h e i t ems c a n e i ther b e

1 . s t o r e d s ta t ica l ly in an a r ray so tha t t h e i-th i tem is in ce l l i

2. s t o r e d as a l i nked l ist - t h e i-th i tem is f o u n d by fo l l ow ing t h e l ink f r o m the i-1 i t em.

3. d e f i n e d a s y n c h r o n o u s l y so tha t t h e i-th i tem is t h e o n e tha t is ready t o b e p r o c e s s e d a f ter
i-1 o the r i tems a re p r o c e s s e d .

• T h e para l le l pref ix c o n s t r u c t has e f f i ce in t imp lemen ta t i ons on (i) h i g h b a n d w i d t h s h a r e d
m e m o r y m a c h i n e s w i t h mu l t i p le m e m o r y m o d u l e s a n d o n (ii) f i xed c o n n e c t i o n m a c h i n e s
s u c h as t h e h y p e r c u b e .

• T h e m a p p i n g f r o m s h a r e d m e m o r y t o f i xed c o n n e c t i o n c a n b e d o n e au tomat i ca l l y .

• Para l le l pref ix a l l ows a n ' o p e r a t i o n t o be app l i ed to a w h o l e set of i tems at t h e s a m e t ime .
T h e i n te rmed ia te resu l ts a re o f ten use fu l in s u b s e q u e n t s teps of t h e c o m p u t a t i o n . For
e x a m p l e , it has b e e n f o u n d app l i cab le fo r so lu t i ons t o :

o s p a r s e mat r i x mu l t i p l i ca t ion

o g r a p h a lgo r i t hms

o un i f i ca t i on

For s u c h app l i ca t i ons , t h e b inary o p e r a t i o n is no t as s imp le as add i t i on ; in fac t , it c a n
o f ten b e qu i te c o m p l e x a n d st i l l have an e f f i c ien t i m p l e m e n t a t i o n .

76

77

Position paper for Workshop on
Performance Efficient Parallel Programming.

V i j a y S a r a s w a t
D e p a r t m e n t of C o m p u t e r S c i e n c e

C a r n e g i e - M e l l o n U n i v e r s i t y

I a m w o r k i n g in t h e a rea of d e s i g n , seman t i c s , imp lemen ta t i on a n d use of c o n c u r r e n t log ic

p r o g r a m m i n g (CLP) l anguages . As far as the t o p i c s of c o n c e r n to th is w o r k s h o p , I a m in te res ted in

para l le l (espec ia l ly 'A l ') l a n g u a g e s a n d in p e r f o r m a n c e e f f i c ien t m a p p i n g s of para l le l a l go r i t hms in to

para l le l a r ch i t ec tu res , v ia a c o m p i l e r fo r s u c h a l a n g u a g e fo r t he g iven a r ch i t ec tu re .

C L P l a n g u a g e s (e .g . C o n c u r r e n t P r o l o g , Pa r log , G H C a n d C P , t h e l a n g u a g e I w o r k w i th) are

r o o t e d in a des i re t o m a k e s o m e of t he para l le l i sm inhe ren t in t he H o r n c l ause log ic p r o g r a m m i n g

a p p r o a c h ava i lab le a n d m a n i p u l a b l e by t h e user . T h e s e l a n g u a g e s of fer a no t i on of recu rs i ve , non-

de te rm in i s t i c n e t w o r k s of l i gh t -we igh t p r o c e s s e s w h e r e pa rame te r -pass ing h a p p e n s v ia un i f i ca t i on

(wh i ch d e p e n d i n g o n t h e level , c a n b e t h o u g h t of as jus t p a t t e r n - m a t c h i n g or a spec ia l k i nd of po in te r

man ipu la t i on in a once -on l y -ass i gnab le f r a m e w o r k) .

F rom a p r o g r a m m i n g l a n g u a g e v iewpo in t , t he n e w p r o g r a m m i n g p a r a d i g m tha t CP o f fe rs is tha t

of c o n c u r r e n t , con t r o l l ab l e cons t ra i n t sys tems. T h e user c a n set up h is p r o b l e m dec la ra t i ve l y as a

n e t w o r k of ob jec t s w i t h s o m e cons t ra in t re la t i onsh ips a n d spec i f y t h e k i nds of a s s u m p t i o n s tha t can

be m a d e w h e n c o n s t r a n t - p r o p o g a t i o n sta l ls . Moreove r , in th is f r a m e w o r k , he c a n spec i f y s o m e

c o n t r o l i n f o rma t i on w h i c h c a n g u i d e t he unde r l y i ng s e a r c h in a c ruc i a l way . Th is a p p r o a c h y ie lds

s o m e nove l a l g o r i t h m s fo r so lv ing s u c h c lass ic c o m b i n a t o r i a l p r o b l e m s as t h e N-queens and t h e

m a p - c o l o r i n g p r o b l e m s .

Wh i l e s u c h l a n g u a g e s have p r o v e d to b e exce l l en t t oo l s fo r e x p r e s s i n g , in so f twa re , c o m p l e x

sys tems of c o m m u n i c a t i n g p rocesses , t h e r e is yet no c l ea r u n d e r s t a n d i n g of h o w mu l t i - p rocesso r

i m p l e m e n t a t i o n s s h o u l d look l ike. T h e p r o b l e m is tha t e a c h ' c yc le ' of a CP m a c h i n e invo lves an

a tom ic d i s t r i bu ted c o m m i t o p e r a t i o n , tha t c a n b e ra ther cos t l y to imp lemen t . M o r e o v e r ' c h a n n e l s ' of

c o m m u n i c a t i o n s (log ica l var iab les) a re , in t he l a n g u a g e , very easi ly c r e a t e d a n d ' un i f i ed ' (made t h e

same) so tha t it w o u l d s e e m imposs ib le , in gene ra l , t o g u a r a n t e e t he loca l i ty of c o m m u n i c a t i o n of a

p i e c e of p r o g r a m , w i t h o u t d o i n g ex tens ive da ta - f l ow ana lys is . S u c h s c h e m e s have yet to be

d e v e l o p e d .

I w o u l d b e very in te res ted in hea r i ng a d i s c u s s i o n , f r o m t h o s e w h o have t h o u g h t of it, of t hese

a n d s imi la r i ssues invo lved in e f f i c ien t mu l t i - p rocesso r i m p l e m e n t a t i o n s of g e n e r a l - p u r p o s e CLP

l a n g u a g e s .

My o w n c u r r e n t t h i nk i ng is t ha t a g e n e r a l i m p l e m e n t a t i o n , even of a l a n g u a g e l ike Flat CP is

g o i n g to i m p o s e t o o m u c h ex t ra o v e r h e a d . For i ns tance , un less a c o m p i l e r d o e s very soph i s t i ca ted

ana lys is of t he user p r o g r a m , it may no t even b e poss ib le fo r it t o d e t e c t t ha t s o m e p r o g r a m s t ruc tu re

essent ia l l y rep resen ts a so f twa re p ipe l i ne a n d c o u l d h e n c e be m a p p e d o n t o a l inear s e q u e n c e of

phase-sh i f ted s y n c h r o n o u s p rocesso rs . T h e r e is a need fo r iden t i f y ing s o m e res t r i c t ions on t he bas ic

m o d e l w h i c h w o u l d a l low p r o g r a m s sat is fy ing t h o s e res t r i c t i ons to be e f f ic ient ly imp lemen ted on

78

2

c o n v e n t i o n a l s h a r e d - m e m o r y a r ch i t ec tu res . As a t r iv ia l e x a m p l e , al l Flat CP p r o g r a m s sat is fy ing t h e

syn tac t i c p rope r t y tha t fo r any goa l of in teres t t h e r e is a t mos t o n e c o m m i t t i n g c l a u s e c a n b e

ef f ic ient ly i m p l e m e n t e d , by ass ign ing o n e v i r tua l p r o c e s s o r t o e a c h goa l in t h e c u r r e n t reso lvent . O n e

c a n th ink of spec i f y i ng w i th a p r o g r a m , s o m e of t he p rope r t i es of t h e c o m m u n i c a t i o n s t r u c t u r e s

i nhe ren t in t h e p r o g r a m in s u c h a w a y tha t an imp lemen ta t i on c a n make use of th is k n o w l e d g e d i rec t l y

to se lec t an a p p r o p r i a t e p r o c e s s / p r o c e s s o r m a p p i n g .

I w o u l d be g l ad t o d i s c u s s th is a n d re la ted issues in m o r e deta i l at t h e W o r k s h o p .

79

Karsten Schwan

Computer and Information Science
The Ohio State University

2036 Neil Avenue
Columbus, OH 43210

schwan@ohio-state.arpa

Abstract

Complex electro-mechanical systems require computational speeds and reliabilities

far beyond the capabilities of current, embedded computers. Therefore, the uses of

computers and software offering substantial parallelism are becoming essential. High-

performance, parallel software for such real-time systems must be flexible in

functionality and adaptable in performance and reliability, and thereby be able to

accommodate changes in technology and in application requirements. Flexible and

adaptable real-time software requires substantial programming and operating system

support.

The structure and content of this support are being investigated in the PArallel,

Real-Time Systems (PARTS) Laboratory at The Ohio State University. The

laboratory is undertaking the development of a real-time systems testbed, of sample,

real-time applications in cooperation with the ASV DARPA robotics project, and of

novel, integrated programming/operating system technology. The purpose of these

developments are to create software technology that assists programmers in con

structing parallel, real-time software, in adapting such software to realize perfor

mance goals, and in making adaptation decisions. This paper describes the

prototype integrated programming/operating system constructed within the

laboratory. Two sample adaptations of real-time software illuminate the

functionalities of the different components of the system.

Developing High-Performance Parallel Software
for Real-Time Applications

mailto:schwan@ohio-state.arpa

80

81

On Efficient Large-Grain Parallel Processing

H e r b . S c h w e t m a n

M i c r o e l e c t r o n i c s a n d C o m p u t e r T e c h n o l o g y C o r p o r a t i o n
P.O. Box 200195
Aus t i n , TX 78720

(512) 339 -3428

I n t r o d u c t i o n

La rge -g ra in para l le l p r o c e s s i n g is based on t he para l le l e x e c u t i o n of g r o u p s or b l o c k s of i ns t ruc t i on

on mu l t i p le p rocesso rs . In many cases , t hese e x e c u t i n g b l o c k s of i ns t ruc t i ons are ca l led p rocesses .

T h u s , l a rgo -g ra in para l le l p r o c e s s i n g c a n b e cas t in t e rms of t he para l le l e x e c u t i o n of p rocesses , w i th

t h e u n d e r s t a n d i n g tha t t h e user (p r o g r a m m e r) has c o n t r o l of t h e c rea t i on and s y n c h r o n i z a t i o n of

t h e s e p rocesses .

T h e e f f i c i ency of p r o c e s s level para l le l p r o c e s s i n g d e p e n d s on severa l f ac to rs , i nc l ud ing m e m o r y

c o n t e n t i o n , s y n c h r o n i z a t i o n de lays , a n d p r o c e s s m a n a g e m e n t o v e r h e a d . Th is lat ter fac to r c a n exer t

a s i gn i f i can t i n f l uence o n e f f i c iency . In fac t , th is f ac to r is w h a t d e t e r m i n e s the smal les t " g r a i n s i z e "

w h i c h c a n be e f f i c ien t ly e x e c u t e d by a para l le l sys tem. In o the r w o r d s , b e c a u s e of t he impac t of t he

o v e r h e a d assoc ia ted w i t h c rea t i ng a n d m a n a g i n g para l le l p rocesses , t he re is s o m e m i n i m u m size (as

m e a s u r e d in l eng th of e x e c u t i o n in terva l) p r o c e s s s u c h tha t if a p r o c e s s is " s m a l l e r " t h a n th is

m i n i m u m , it is bet ter , f r om a p e r f o r m a n c e v i ewpo in t , to e x e c u t e the p r o c e s s ser ia l ly , t han it is to s tar t

up a para l le l p rocess .

Th i s n o te o f fe rs t he f o l l ow ing po in ts fo r c o n s i d e r a t i o n :

1. it is des i rab le t o bu i l d sys tems w h i c h c a n e f f i c ien t ly e x e c u t e sma l le r s ized g ra ins of
c o m p u t a t i o n (so as to en la rge t h e c lass of c o m p u t a t i o n s w h i c h a re su i tab le fo r para l le l
e x e c u t i o n) ,

2. u n d e r s t a n d i n g b o t h the f ac to rs c o n t r i b u t i n g to p r o c e s s m a n a g e m e n t ove rhead and the
resu l t ing e f fec ts on p r o g r a m p e r f o r m a n c e is impo r t an t to t he des ign and imp lemen ta t i on
of cos t -e f fec t i ve para l le l sys tems .

3. w e despe ra te l y n e e d bet te r t oo l s for e x a m i n i n g p r o c e s s m a n a g e m e n t o v e r h e a d in c u r r e n t
sys tems a n d c u r r e n t para l le l p r o g r a m s , a n d

4. w e wi l l even tua l l y n e e d bet te r h a r d w a r e to s u p p o r t e f f i c ien t e x e c u t i o n of p rocess- leve l
para l le l c o m p u t a t i o n s .

82

83

Position Paper

Z a r y S e g a l l
C a r n e g i e - M e l l o n U n i v e r s i t y

W e wi l l gene r i ca l l y ca l l t h e man i f es ta t i on of para l le l p r o g r a m s ine f f i c ienc ies • the para l le l p r o g r a m

p e r f o r m a n c e d e g r a d a t i o n o r s h o r t l y the p e r f o r m a n c e b o t t l e n e c k . S u c h para l le l p e r f o r m a n c e

b o t t l e n e c k s may be r o o t e d o n a n y or al l levels of para l le l p r o g r a m d e v e l o p m e n t a n d e x e c u t i o n . The

ma in g o a l of p e r f o r m a n c e - e f f i c i e n t para l le l p r o g r a m m i n g is to m in im i ze or even e x c l u d e all t oge ther

the e f fec ts of the p e r f o r m a n c e b o t t l e n e c k s .

O n e c o u l d g r o u p the a p p r o a c h e s u s e d to gene ra te p e r f o r m a n c e - e f f i c i e n t para l le l p r o g r a m s into the

f o l l ow ing th ree c a t e g o r i e s :

• P e r f o r m a n c e B o t t l e n e c k P r e v e n t i o n : Th is c a t e g o r y i n c l u d e s t e c h n i q u e s s u c h as:

o A l g o r i t h m p e r f o r m a n c e p r e d i c t i o n .

o Para l le l i m p l e m e n t a t i o n p e r f o r m a n c e p r e d i c t i o n .

o L a n g u a g e c o n s t r u c t s fo r p reven t i on .

o P r o g r a m m i n g e n v i r o n m e n t too ls suppo r t for p r e v e n t i o n .

• P e r f o r m a n c e B o t t l e n e c k D e t e c t i o n : Th is m a y i n c l u d e p r o g r a m m i n g e n v i r o n m e n t
p e r f o r m a n c e d e b u g g i n g t oo l s s u c h as p e r f o r m a n c e m o n i t o r s , g r a p h i c user i n te r faces ,
e tc . , as we l l as, c o m p i l e r - b a s e d p e r f o r m a n c e b o t t l e n e c k d e t e c t i o n .

• P e r f o r m a n c e B o t t l e n e c k A v o i d a n c e : Th is c a t e g o r y dea l s w i t h d y n a m i c (run- t ime)
c o m p e n s a t i o n for d e t e c t e d or t r e n d - p r e d i c t e d b o t t l e n e c k s . E x a m p l e s of s u c h too l s a n d
t e c h n i q u e s are :

o L a n g u a g e r u n - t i m e s u p p o r t for p e r f o r m a n c e b o t t l e n e c k a v o i d a n c e .

o O p e r a t i n g s y s t e m b a s e d p e r f o r m a n c e b o t t l e n e c k a v o i d a n c e (i .e. , l o a d b a l a n c i n g ,
d y n a m i c r e s o u r c e a l l o c a t i o n , etc.)

At th i s w o r k s h o p I w o u l d l i ke to d i s c u s s some of the f o l l o w i n g i ssues :

• N a t u r e of p e r f o r m a n c e b o t t l e n e c k s in para l le l p r o g r a m m i n g .

• T e c h n i q u e s for p e r f o r m a n c e bo t t l eneck p r e d i c t i o n , d e t e c t i o n , and a v o i d a n c e .

• P r o g r a m m i n g e n v i r o n m e n t t oo l s c o m b i n i n g p e r f o r m a n c e b o t t l e n e c k p r e d i c t i o n ,

d e t e c t i o n , a n d a v o i d a n c e .

84

85

Workshop on Performance Efficient Parallel Programming

H. J. Siegel
PASM Parallel Processing Laboratory

Electrical Engineering School
Purdue University

West Lafayette, IN 47907
September 1986

List of Topics I feel are important to pursue INCLUDES (in random order):

mapping algorithms and architectures - models of algorithms and architectures
and how they interact — what are the salient aspects of architectures
and algorithms for the mapping problem; given parallel architecture -
which algorithm approach best; given algorithm - which architecture
best; given a reconfigurable system - which configuration/algorithm pair
best.

parallel programming - what language features needed for efficient "explicit"
specification of parallelism — including processor transfers, processor
enabling (SIMD mode), switching between SIMD and MIMD modes in
reconfigurable systems, specifying subtask parallelism; what features
needed for effectively compilable "implicit" specification of
parallelism; portable parallel languages for sharing work; common
methods for expressing parallel algorithms so that researchers can share
and communicate results among themselves more easily; tradeoffs between
the efficiency of writing machine dependent "explicit" specification of
parallelism programs vs machine independent "implicit" specification of
parallelism; developing and documenting a set of parallel programming
techniques; using built-in operating systems functions to go from
machine independent to machine dependent code; tradeoffs between
extending existing languages (e.g., parallel C) and developing
completely new languages (e.g., Tranquil).

impact of architecture on language - shared memory vs local memory; type and
speed of interprocessor communication mechanism available; bit serial
processorsvs bit parallel processors (SIMD); number of processors;
hardware support for operating system functions called by language; size
of memory; type of architecture — SIMD, MIMD, reconfigurable SIMD/MIMD,
pyramid, dataflow.

86

87

Lessons From Poker

L a w r e n c e S n y d e r

Univers i ty of W a s h i n g t o n

T h e Poke r Para l le l P r o g r a m m i n g E n v i r o n m e n t w a s b e g u n in Janua ry of 1982 and has been d i s t r i bu ted

s i nce O c t o b e r 1985. W i th f e e d b a c k f r o m a g r o w i n g user c o m m u n i t y and s o m e t ime for re f l ec t i on , it is

poss ib le to ident i fy ce r ta in fea tu res of Poker tha t have c o n t r i b u t e d to its d e m o n s t r a t e d e f f i c iency and

por tab i l i t y .

T h e ch ie f c o n t r i b u t o r s to its e f f i c i ency a n d por tab i l i t y a re (1) t he fac t tha t the m o d e l of c o m p u t a t i o n

used is a n o n s h a r e d m e m o r y m o d e l of para l le l c o m p u t a t i o n , (2) t h e fac t tha t t h e para l le l i sm is

spec i f i ed exp l ic i t l y , a n d (3) t he fac t tha t t he c o m m u n i c a t i o n s t r u c t u r e is g i ven exp l ic i t ly . B e c a u s e

t hese fea tu res c o n s t i t u t e a g rea te r b u r d e n to t h e p r o g r a m m e r , t he e n v i r o n m e n t mus t p rov ide g rea te r

s u p p o r t .

In a d d i t i o n , Poke r exh ib i t s severa l o the r fea tu res w o r t h y of i nc lus ion in o the r sys tems. Poke r makes

ex tens ive use of syn the t i c g raph i ca l p i c tu res to s impl i fy p r o g r a m s p e c i f i c a t i o n . Poker d e m o n s t r a t e s

tha t it is poss ib le to have l a n g u a g e c o n s t r u c t s w i t h no syn tac t i c f o r m . Final ly , Poke r d e m o n s t r a t e s t he

va lue of i n c l u d i n g a s imu la to r of a para l le l m a c h i n e as an in tegra l par t of t he e n v i r o n m e n t .

88

89

Parallel Processing Research at Harris Corporation *

Thomas L. Sterling
Advanced Technology Department
Harris Government Systems Sector

Melbourne, Florida 32902

Who We A re

Harris is engaged in a modest multi-year research program to investigate the potential and
methods of parallel processing for general computing. We have a cooperating relationship
with the Concert research project under the direction of Prof. Robert H. Halstead at the
MIT Laboratory of Computer Science. Also, we are a participating company in the
Microelectronics and Computer Corporation's Advanced Computer Architecture research
program. Research activities of our group include

1) the Concert Multiprocessor Testbed,
2) the Multilisp programming language for symbolic computing,
3) the Simultaneous Pascal p n jn .mming language for conventional applications,
4) the Yarc scalar static datafl w computer for signal processing, image

processing, and simulation,
5) the Propel parallel production system for expert systems, and
6) the SPoC n uniprocessor execution environment for effective general purpose

parallel pro essing. '

T h e following brief discussion of some of our near term goals, approaches, and views
reflect the perspective derived f tom the SPoC project. Although we, like many, are
engaged in multiprocessor research, our Ic ng term policy is to diverge from this path due
to limitations of the multiprr cesy')r as is also discussed.

Near Term ef ective application of multiprocessors

Objective:

Tightly coupled, medium scale multiprocessor [ur general purpose applications employing a
shared reference space and dynan ic scheduling.

Issues:

Our reseaich is currently focusing on a fully integrated implementation of the SPoC paral
lel execution environment from the application domain down to the realm of hardware.
The purpose of this is to study each aspect of parallel computing in the context of the
other supporting parts. In particular, we feel a need to get away from studies based on toy
programs, Amplified analysis, and incomplete simulations. We want to investigate parallel
system behavior under the forcing function of real world computing profiles to observe the
intri aeics of interaction between system levels in terms of sensitivity of one level to
changes in anothe?.

90

T h e primary issues of concentration are
1) semantics of parallel programming,
2) low level synchronization mechanisms,
3) sources of performance loss including overhead, contention, starvation, and

latency,
4) dynamic distribution of activities and objects, and
5) the quantity and quality of parallelism in applications.

Policies: the SPoC approach

programming' We believe that the programmer has to be aware of parallelism in his appli
cation to select algorithms well suited to parallel execution, bw should not have to deal with
machine implementation dependent aspects of program processing. SPoC supports explicit
parallel programming using a concurrent thread computing model. Threads are segments
of sequential code. Active threads do not interact and a processor assigned to a scheduled
thread relinquishes the thread only upon its completion. This eliminates the overhead for
suspending tasks but restricts the style of programming. Simultaneous Pascal is a superset
of Pascal that reflects this model. It includes simple extensions such as fork-join and
forall statements, as well as, a locking discipline for compound atomic operations and fine
tuning of variable scoping. Simultaneous Pascal is overly constrained in the way it
represents parallelism, resulting in hour-glass like parallel computing profiles but is well
suited for medium granularity execution. All scheduling is done dynamically by the under
lying run time multiprocessor system in a first come first served bases as processors become
availability. Ordering is not guaranteed and scheduling is unfair.

synchronization- An effective parallel execution environment must meld the semantics of
parallelism delineation with efficient mechanisms for parallel flow control. SPoC synchron
izes the termination of concurrent threads in Simultaneous Pascal with the rendezvous con
trol mechanism that allocates counters at run time for each join to be performed. Since
parallel statements can be nested, all of the counters are linked in a tree structure that
reflects the dynamic state of statement nesting during execution.

locality- We are experimenting with ways to use the hierarchical organization of the Con
cert Multiprocessor and the natural locality of runtime program execution to minimize con
tention for shared physical and logical resources. While small multiprocessors may use
cache techniques with shared busses, very large systems will have to resort to distributed
methods that exploit more knowledge of program behavior. SPoC provides the empirical
context with which to investigate such methods.

granularity- The overhead for scheduling and context switching of a thread is to a signifi
cant degree insensitive to the size of the thread. For moderate size multiprocessors, too lit
tle parallelism will result in performance degradation due to starvation. However, too
much parallelism can undermine performance when the thread size is equal to or less than
the work required to manage it. Aggregation is a technique being studied with SPoC for
reconstituting fine grained concurrent threads into fewer coarse grained threads to reduce
the total overhead incurred. Both compile time and runtime methods are being considered
with the latter complicated by the fact that it is itself a form of overhead.

91

instrumentation- In an experimental environment such as ours, being able to "see" what is
going in is critical to testing of hypothesis and analyzing behavior. For parallel processing
in general, the complexities of action and consequence may demand that instrumentation
become a standard tool of program development. SPoC embodies hardware support for
instrumenting both hardware and software behavior during parallel execution.

Long Term Policies- fundamental flaws of the Multiprocessor

The multiprocessor is a parallel computer of some convenience because of the relative avai
lability of its primary constituent element, the VLSI microprocessor. To some, it is the
intuitively obvious parallel architecture based firmly on extensive experience with von Neu
mann uniprocessors and multiprogramming operating systems. Therefore , it is at some risk
that I suggest that the multiprocessor as a parallel computer architecture is fundamentally
flawed and that a new (or at less least conspicuous) architectural model be pursued. I make
this assertion based on the observation that implicit in the concept of the multiprocessor
are three underlying assumptions which, I submit, are false.

A computer, sequential or parallel, is a physical embodiment of a set of mechanisms that
together support the execution requirements of the instruction set architecture and, in
turn, programs written in or compiled down to the ISA. T h e amount of each mechanism
(measured in time or real estate or power, units your choice) required to fulfill the needs of
the abstract program is a strong function of the computational mode! that bpth the pro
grams and the computer reflect. When the model between the program and the computer
differs dramatically, software patches are used to emulate the program model with that of
the computer, making imperfect use of resources due to the mismatch. I believe such a
mismatch is inherent in multiprocessing.

The three assumptions of multiprocessing with which I take exception are:

1) T h e mechanisms embodied in the microprocessor are the same as those
required by a parallel processor.

2) T h e amount of each mechanism required by a multiprocessor is
proportional to the number of processors.

3) T h e inter-mechanism coupling is of a higher bandwidth than the
intra-mechanism coupling.

Parallel processing requires additional mechanisms than those found in uniprocessors.
Examples include task synchronization, inter-task communication, and atomic compound
data manipulation. Different mechanisms have different scaling properties instead of the
linear one forced by multiprocessors. Communication requirements may grow as badly as
quadratically and synchronization may grow more th in linearly as well due to the use of
finer granularity. I believe that for a distributed lecha; ism to be ef ective, its pieces
should be tightly coupled. In a multiprocessor, the {ieces r different mechanisms exist in
each processor and are in tighter communication than are the different pieces of the same
mechanism that are in separate processors.

What results from these observations is an approach to parallel computer design that
departs from that of multiprocessors. The functionality of each mechanism is defined
from the parallel computing model devised for the system. Each mechanism is designed to
be distributed in space, looking something like a layer in a cake. Then the distributed
mechanisms are assembled into a single computing ensemble, by piling the layers one on
top of another in n-dimcnsional space. For lack of a more imaginative name, 1 call this the

92

LDM architecture for Layered, Distributed Mechanism. T h e final ensemble is, in a way, a
uniprocessor presenting a single interface to the assembler level programmer. However, it
interprets parallel programs with each mechanism working on many parts of it at the same
time. I see some hints of such an architecture in the Connection Machine, early ideas for
data flow, and maybe the MPP.

93

Let's Stop the Dust from
Collecting on OPS5

Salvatore J. Stolfo
Columbia University

New York, N.Y. 10027

18 June 1986
One of the noted impediments to achieving high performance parallel programs is the dusty deck

problem. Important numeric-based code in use in major computational centers today have achieved ages
well beyond the average computer scientist! These dusty decks of source code are not expected to go the
way of the dinosaur in favor of the evolutionary offspring utilizing parallel constructs and parallel
hardware for their execution. Furthermore, the parallelization of these old sequential codes are not
expected to provide orders of magnitude improvements in cost effectiveness that may be possible with
^implementations of parallel software solutions.

Of great concern to me is the issue that the relatively young area of symbolic programming may be
forming its own dusty deck problem. Specifically, the OPS5 language, the AI counterpart of FORTRAN
in my opinion, may not provide the proper vehicle for high performance symbolic parallel computing.
Unfortunately, OPS5 is becoming somewhat of an industry standard in the implementation of AI software
which may potentially ferment the noted dusty deck problem.

We have reported a number of parallel algorithms to speed up OPS5 type Production Systems, as well
as a number of parallel optimization schemes. (Our present work is aimed towards detailed performance
measurements via experimental implementation of our ideas on the operational 1023 processor DAD02
prototype.)

The question to ask at this point is precisely what speed up can be achieved for OPS5 PS programs.
Much has been written and debated about this very point. The issue centers upon two key observations.

First, it appears on first glance that the match operation of OPS5 PS's may be executed in parallel by a
large number of concurrent PEs. In certain measured OPS5 PS programs, however, it has been reported
that on each cycle of execution a relatively small and stable number of rules must be matched, against
newly asserted data. That is, on average each rule firing in OPS5 produces new data elements which
affect (or are relevant to) the LHS of a small number of rules. (Statistics for Rl, for example, show about
30 rules out of a set of -2000 are affected on each cycle of execution.) This small "affect set", as it has
been called, thus indicates that the "number" of individual match operations executing in parallel which
compute "useful" new matching rule instances is small. Hence, a large number of invoked parallel
procedures compute nothing at all and the utilization of the parallel resources is thus poor.

The second observation to note is that the variance in processing times for the concurrent match
operations can be quite large. That is, the total running time is proportional to the "slowest" matching
rule, indicating that utilization of the parallel resources decreases even further while possibly many PEs
wait for the slower PEs to catch up and synchronize for the select phase.

9 4

These two observations may lead one to the depressing view that PS programs, in particular OPS5, can
best be accelerated by a small number of parallel processors rather than the large-scale approach taken in
the DADO machine. We firmly believe this not to be the case at all. The DADO project at Columbia is
investigating and has discovered two clever "source to source" transformational techniques as well as a
"multitasking" approach that provide the means to reduce the rule matching variance time as well as
increase the average affect set size. The essence is to "rewrite" the rule system in such a way that
individual rules which require more processing than the "average" rule are replicated a number of times
with additional distinct constraints appearing in each copy. The effect of this transformation is to
preserve the same computation as the original rule, but to provide the opportunity to match the copied
rules in parallel. The total effect is that a number of rules representing the single "hot spot" rule can more
quickly calculate the same result in parallel! In our experimentation, we found, for example, that a single
hot spot rule copied and constrained to 4 rules produces an overall speed up of the orginial rule's match
time by a factor of 5!

The second technique to increase the average affect set size depends upon "concurrent rule firings"
where the select phase chooses for parallel execution as large a number of rule instances as possible,
rather than a single rule instance. A multitasking approach to this parallel activity on DAD02 has been
reported with encouraging simulation results noted - on the order of a factor of 7.5 times faster
execution.

Another technique is quite similar to the notion of "chunking". Whereas chunking has been proposed
as an AI learning method, the same technique may be used to coalesce a number of rules into larger rules
with larger right hand sides. The net effect is to rewrite a set of individual rules that are often executed
serially to a new larger rule (encompassing all the others) whose actions compute the same WM changes
and hence create larger affect sets in one cycle of execution. Consequently, the execution of a single
"chunked" rule, in place of its forebears, may lead to a larger number of useful match operations
calculated in parallel. Unfortunately at the time of this writing, insufficient evidence is available to report
the utility of the third approach. It is our opinion, however, from studying a number of small OPSS
programs, that these techniques provide evidence that utilization of large numbers of PEs can be increased
and hence performance can be improved overall. Work is presently under way to apply these techniques
to a large OPSS program to be run on DAD02.

Why do we puruse all this work for OPS5? Our strong impression is that OPS5 provides inherently
sequential programming constructs which necessitates the extraction of implicit parallelism. This clearly
points out the need for inherently parallel constructs in rule based programming providing explicit
parallelism for high performance.

Much of the debate that has arisen around OPS5 is based upon pessimistic statistics derived from
performance of existing "sequential" OPS5 programs. Many parallel processing researchers concur that
many opportunities for exploiting parallel processing cannot be derived from study of only sequential
programs. After all, sequential programs were written for sequential processors, not parallel processors.
This may lead researchers towards techniques of "conventional program optimization" to improve code
efficiency on a single PE, the primary approach taken in the implementation of OPS83. We prefer to
optimize for increased parallel performance avoiding the potential dead end of dusty decks. Hence, a

9\

more useful approach would be to consider rewriting existing sequential code entirely with the minds eye
set on parallel processing. (Fortunately, not many lines of OP§5 code exist in comparison to FORTRAN,
for example.) To that end, expression of parallelism is necessary and hence parallel languages are vitally
important Much of the current activity of the DADO Project at Columbia is focused on the specification
and implementation of an AI PS language, called HerbAl, designed to be downward compatible with
OPS5. The essence of the initial HerbAl definition is to provide a few additional parallel constructs to
permit the expression of inherently parallel activities that can be expressed only sequentially in OPS5.
The expected net result is to provide improved expression as well as improved performance of AI
programs. It is our expectation that the initial HerbAl effort will provide a brighter future for large scale
parallel processors achieving high performance execution.

96

97

Workshop on Performance Efficient Parallel Programming

The Multi-Satellite Star

Michael Stumm

Distributed Systems Group
Department of Computer Science

Stanford University
Stanford, CA 94305

I n t r o d u c t i o n

We present a programming paradigm for structuring parallel computations for execution
on MIMD parallel systems. We call the structure we use the multi-satellite star and
believe that it will become the predominant way of structuring parallel computations on
a wide range of MIMD parallel architectures, since it is performance efficient, yet simple
to implement and easy to use.

The multi-satellite star maps easily onto most MIMD parallel architectures, from shared
memory multi-processors to network-interconnected workstation clusters. It is performance
efficient because it minimizes communication overhead and distributes the load evenly
among the available processors. Moreover, it provides a simple basis for writing fault
tolerant parallel programs. From a programmer's point of view, only a few modules must
be written in order to generate a parallel program. Most of the implementation details
can be hidden in generic run-time libraries.

T h e M u l t i - S a t e l l i t e S t a r M o d e l a n d i t s I m p l e m e n t a t i o n s

A parallel program written in the pure multi-satellite star model consists of a set of func
tional application-level instruction sequences we call subtasks, alogical processor for these
instructions, called satellite module, and a master module we call star central that acts
as a communication, scheduling, and control mechanism for the computation. Star cen
tral maintains a priority queue of ready-to-run subtasks which are passed to satellites at
their request. Several instances of the satellite module execute concurrently on multiple
processors.

Satellites, in an endless loop, request from star central a subtask together with its
parameters, execute the subtask without side effects and then return the result values to
star central while asking for the next subtask. A satellite executes at most one subtask at a
time and it does not maintain state between subtask execution (except possibly by caching
portions of the state maintained by star central). Subtask execution is not preempted.

1

98

Our experience lies mainly in implementing multi-satellite star programs on work
station clusters. With efficient communication and correct operating system support, a
cluster of workstations can be viewed as, and effectively used as, a parallel machine. Using
the multi-satellite star model, we have structured algorithms to execute in parallel on a
workstation cluster and have been able to achieve speedups comparable to those attained
on currently-available multiprocessors. Algorithms we have parallelized include branch-
and-bound searching, alpha-beta searching, matrix multiplication, Gaussian elimination,
zero-finding, all-pair shortest path problem, dynamic programming, F F T , etc.

Multi-satellite star programs can naturally be realized in such a distributed environ
ment if remote procedure calls and monitors, Ada-style rendezvous, or message passing
is supported. Our implementations are all based on the V distributed operating system,
where message passing is used and where star central is a server process that services
requests from satellite processes.

Our position is that the multi-satellite star structure is suited for shared memory mul
tiprocessors as well, since it also minimizes communication overhead and distributes the
load among participating processors well for these systems. On a shared memory multi
processor star central, is implemented as a monitor and procedure calls are used to access
its state. We also expect each satellite to have exclusive access to a (local) portion of
the memory space so that access to it is contention free and so that it can modify state
in its partition without causing overhead for maintaining consistency. In many cases it
will be beneficial to replicate common read-only data structures in order to further reduce
contention if this is not automatically provided for by large caches.

Even our distributed implementations contain facilities for sharing state in the form of
(simulated) shared memory. Shared memory is a convenient abstraction on which to build
parallel programs, since processes that wish to communicate need not directly address each
other nor need they exist at the same time and because many communication details can
be hidden from the programmer. Distributed shared memory is implemented using the
broadcast and multicast capabilities of local area networks, and thus allows an efficient
sharing of state.

Efficiency
The efficiency of parallel program execution can be significantly degraded by communica
tion overhead, uneven load distribution, synchronization overhead, and superfluous work.
The multi-satellite star structure tries to alleviate these problems.

Communication overhead can be minimized by structuring the computation appro
priately, by using subtasks with grain sizes adapted to the overhead, and by exploiting
broadcast capabilities where applicable. The satellite star structure reduces communica
tion costs in several ways. Satellites are loaded initially with common code and initialized
data, which are then re-used by each subtask. Subtask switching therefore reduces to
transfer of subtask specification and parameters only. Communication of control is min
imal, since all global state is maintained at star central. Synchronization, termination

2

99

detection and deadlock detection therefore do not require inter-machine communication.
The scheduling mechanism uses only one communication per subtask and ensures that the
highest priority subtask will always be executed next. The (possibly simulated) shared
memory minimizes the communication necessary for sharing state. Finally, the fault tol
erance mechanisms used (described below) do not require extra communication to detect
satellite or star central failures during failure-free operation.

We encountered several difficulties in maximizing speedup. Interestingly, the problems
occur in shared memory multiprocessor implementations as well, but are exacerbated by
higher communication costs in distributed systems.

When parallelizing for-loops that contain data dependencies between iterations, satel
lites typically execute synchronously, i.e. in lockstep. In this case, variance in granularity
can significantly degrade performance, since all satellites must wait for the slowest one
to complete. Furthermore, for each interval, star central suffers from front- and back-end
communication load when satellites execute synchronously.

Some of the tree searching algorithms, most notably alpha-beta searching, suffer from
superfluous computations. That is, satellites can easily be kept busy computing, but
they compute more than is necessary, since they cannot benefit from the results of the
concurrently executing subtasks.

Fault Tolerance
The multi-satellite star model is fault tolerant in several ways. First whenever a subtask

is passed to a satellite, star central retains a copy. This copy is discarded after the subtask
has completed. Since subtasks are functional in nature and therefore execute without side
effects, a subtask can easily be restarted whenever a satellite fails. It simply needs to be
reentered into the queue of ready-to-run subtasks.

Star central must be able to detect satellite failures. It does so by periodically polling a
satellite after a timeout period in which it has received no message from that satellite. This
timeout period should be a function of the subtask granularity. Note that star central need
not recreate a new satellite process after a failure; it can operate with a variable number
of satellites. A satellite will always be able to detect a star central failure whenever it tries
to communicate with it. In this case it commits suicide to avert any orphanage problems.
Star central is responsible for its own recovery. It generally does this by periodically
checkpointing its state and by using a backup process that is capable of detecting its
failure. Should this occur, a new star central is created that creates its own new satellites
and continues operation from the last checkpoint. Hence, satellites need not checkpoint
their state.

P r o g r a m a b i l i t y
The multi-satellite star model is simple as far as programming is concerned. The imple
mentation details of the model can mostly be hidden in run-time libraries. A programmer
effectively only needs to write the following mandatory and optional functions.

3

100

• mandatory:

— An initialization function that creates the initial subtask(s) and initializes global
data structures given input to the computation.

— A definition of all subtasks:

sub ta sk J . (i n - p a r a m e t e r s , o u t - p a r a m e t e r s)

— For each subtask, an epilogue function that is executed at star central when a
subtask has completed. For instance, the epilogue function accepts the subtask's
return values and modifies global state accordingly. It also may create new
subtasks and enter them into the priority queue.

— A termination function that outputs the result of the computation, after the
termination has been detected.

• optional:

— For each subtask, a prologue function that is executed at star central before the
subtask is passed to a satellite.

— A scheduling function that choses a subtask from the priority queue for execu
tion on a satellite.

— A function that checks for a termination condition. (In the default case the
computation will terminate when all subtasks have completed executing.)

These functions will mostly be independent of the target architecture. Instances of a
multi-satellite star program will differ mainly in the granularity of the subtasks, depending
on the target architecture. The optimal grain size will mainly depend on the overhead as
sociated with execution of a subtask. The partitioning and the subtask epilogue functions
must therefore be able to generate subtasks of different sizes as a function of the target
architecture. Luckily, our experiences indicate that most subtasks operate on regular data
structures, such as subtrees or submatrices, whose sizes define the granularity. Being able
to generate subtasks with different grain sizes therefore does not, in general, pose prob
lems. Moreover, very rarely will subtask modules depend on the granularity. We therefore
conclude that multi-satellite star programs instantiated for different target architectures
will differ mainly in the run-time libraries that are used.

4

101

Performance Efficient Programming for
Share Memory Parallel Processors

B o b T h o m a s
B B N A d v a n c e d C o m p u t e r s Inc.

Pos i t i on Paper P r e p a r e d for
C M U W o r k s h o p on P e r f o r m a n c e Ef f ic ient Para l le l P r o g r a m m i n g

S e p t e m b e r 8 - 1 0 , 1 9 8 6

My in teres t is la rge sca le s h a r e d m e m o r y para l le l p rocesso rs . In par t i cu la r , m a c h i n e s w h i c h use

mu l t i s tage s w i t c h i n g n e t w o r k s to imp lemen t the pa th f r o m p r o c e s s o r s t o memory . T h e B B N But ter f ly

Para l le l P r o c e s s o r a n d t h e IBM R P 3 a re e x a m p l e s of m a c h i n e s in th is c lass . B e c a u s e these m a c h i n e s

have many p rocesso rs and many memor i es , t hey p rov i de w i th subs tan t ia l p rocesso r and m e m o r y

b a n d w i d t h t o the p r o g r a m m e r .

Apa r t f r om the n o r m a l c o n c e r n s of w r i t i ng p e r f o r m a n c e e f f i c ien t p r o g r a m s for un i p rocesso rs , t he re

a re t w o issues tha t mus t be add ressed w h e n p r o g r a m m i n g sha red m e m o r y m a c h i n e s in th is c lass :

m e m o r y m a n a g e m e n t a n d p rocesso r m a n a g e m e n t .

T h e goa l fo r p e r f o r m a n c e e f f i c ien t m e m o r y m a n a g e m e n t is to m a k e ful l or near ly fu l l use of t he

m e m o r y b a n d w i d t h p rov i ded by the h a r d w a r e . Th i s m e a n s avo id ing s i tua t ions w h e r e many

p r o c e s s o r s re fe rence a par t i cu la r m e m o r y at t he same t ime . W h e n th is h a p p e n s p r o g r a m execu t i on is

s l o w e d s i nce p r o c e s s o r s mus t p r o c e e d ser ia l ly as t hey a c c e s s the " h o t " memory . H a r d w a r e c a n

assist s o m e here : fo r examp le , c o m b i n i n g m e m o r y r e fe rences w i th in t he sw i t ch and in ter leav ing

m e m o r i e s s u c h tha t c o n s e c u t i v e m e m o r y add resses are in d i f fe ren t m e m o r i e s can he lp . Wh i l e

in te r leav ing m e m o r i e s at t h e h a r d w a r e level may he lp , it is in te res t ing t o no te that it may a lso p reven t

p r o g r a m m e r s w h o , u n d e r s t a n d i n g the d y n a m i c s of t h e re fe rence pa t te rns to the i r app l i ca t i on da ta ,

w a n t t o a l l oca te t he d a t a to m e m o r i e s in a w a y tha t e n s u r e s p r o c e s s o r s re fe renc ing t h e delta usua l ly

a c c e s s d i f fe ren t memor ies . I be l ieve sys tems s h o u l d s u p p o r t b o t h in te r leaved a n d non- in te r leaved

m e m o r y , a n d a l l ow t h e p r o g r a m m e r (compi le r?) to use t he t ype of m e m o r y app rop r i a t e fo r va r ious

s i tua t ions .

T h e goa l of p e r f o r m a n c e e f f i c ien t p r o c e s s o r m a n a g e m e n t is to fu l ly ut i l ize t he p rocesso r b a n d w i d t h .

A p p r o a c h e s w h i c h a re dynam ic , or at least semi -s ta t i c , in t h e w a y they ass ign c o m p u t a t i o n a l tasks to

p r o c e s s o r s a re a t t rac t ive . They have a na tu ra l l oad leve l ing ef fect ; as p rocesso rs b e c o m e f ree, t hey

s imp ly take the " n e x t " task. Fu r t he rmore , s u c h d y n a m i c a n d semi -s ta t ic a p p r o a c h e s fac i l i ta te the

d e v e l o p m e n t of p r o g r a m s tha t a re i n d e p e n d e n t of t h e n u m b e r of p rocesso rs . S u c h p r o g r a m s have

p e r f o r m a n c e and rel iabi l i ty advan tages ; if t h e c u r r e n t h a r d w a r e c o n f i g u r a t i o n is no t power fu l e n o u g h

for a p r o g r a m , t h e p r o g r a m c a n b e r u n , u n m o d i f i e d , on a la rger m o r e power fu l c o n f i g u a t i o n ; if a

p r o c e s s o r or m e m o r y is b r o k e n , t he p r o g r a m c a n be run on a r e d u c e d c o n f i g u r a t i o n . Dynamic and

semi -s ta t i c a p p r o a c h e s w o r k bes t in a s h a r e d m e m o r y e n v i r o n m e n t , w h e r e e a c h p rocesso r has

e f f i c ien t access to all app l i ca t i on da ta .

102

2

To w o r k we l l , t hese a p p r o a c h e s requ i re a low cos t m e a n s of a l l oca t i ng c o m p u t a t i o n a l tasks

p rocesso rs . A fu l ly d y n a m i c s c h e m e w o u l d pe r f o rm task a l l oca t ion e a c h t ime a p rocesso r b e c o m e s

f ree. A semi -s ta t ic s c h e m e w o u l d p e r f o r m task a l l oca t i on less f requen t l y for e a c h p rocesso r , bu t

o f ten e n o u g h to e n s u r e tha t p r o c e s s o r s s e l d o m sit id le wh i l e o the r p r o c e s s o r s have many tasks . If

one t h i nks in t e rms of task a l l oca t i on b a n d w i d t h (BWa) , w h i c h is t he n u m b e r of tasks a sys tem c a n

a l l oca te per un i t t ime , a n d task e x e c u t i o n b a n d w i d t h (BWe) , w h i c h is t h e n u m b e r of tasks a sys tem

can p r o c e s s per un i t t ime , d y n a m i c a l l oca t i on is a p p r o p r i a t e w h e r e B W a « B W e , and semi -s ta t ic

a l l oca t i on is a p p r o p r i a t e w h e r e B W a a n d B W e a re c o m p a r a b l e .

W e have d e v e l o p e d a d y n a m i c p r o c e s s o r a l l oca t ion m e c h a n i s m for t he But te r f l y Paral le l P rocesso r

w h i c h has b e e n u s e d to s u p p o r t p e r f o r m a n c e e f f ic ient p r o g r a m s fo r a w i d e r a n g e of app l i ca t i on

d o m a i n s .

103

5 S e p t e m b e r 1986

The Importance of the Accurate Performance Modeling
of Parallel Systems

Pos i t ion pape r by D.Vrsalov ic

C o m p u t e r S c i e n c e D e p a r t m e n t C A R N E G I E - M E L L O N U N I V E R S I T Y

1 . General
N o w w h e n para l le l sys tems are real i ty w e have t o d o t h e s a m e p r o c e d u r e w e d id fo r all t he p rev ious

g e n e r a t i o n s of c o m p u t e r sys tems. W e have t o learn h o w to p r o g r a m t h e m af ter t he fac t tha t h a r d w a r e

is a l ready bu i l t , a n d al l t he e f for ts to b e put in para l le l p r o g r a m m i n g , a re o n c e m o r e unde res t ima ted .

Mos t of t he resea rche rs see the para l le l sys tems as a veh ic le to ach ieve th ree main goa ls :

• Bu i l d i ng t he c o m p u t e r sys tems w i t h m u c h h igher p e r f o r m a n c e t h a n those w e have today ;

• A c h i e v i n g t h e i nhe ren t faul t t o l e rance v ia t he use of mu l t ip l ied resou rces ;

• Hav ing the pe rspec t i ve of t he lower p r o d u c t i o n cos t s d u e to the e f fec ts of l ea rn ing
p r o c e s s on h ighe r vo lumes of iden t i ca l sys tem c o m p o n e n t s .

Wh i l e w ide l y a c c e p t e d as t h e v iab le imp lemen ta t i on for t he last t w o goa l s m e n t i o n e d above , para l le l

sys tems a re o f ten c h a l l e n g e d as the so lu t i on for t h e h igh p e r f o r m a n c e sys tems. Th i s c o m e s f r om t h e

fac t tha t p resen t e f fo r ts in para l le l p r o g r a m m i n g a re pe r f o rmance -w i se o f ten e n d i n g wi th ca tas t roph i c

resu l ts (ie. r e a l / p o t e n t i a l p e r f o r m a n c e rat io is st i l l very low in mos t of t h e cases) .

In o rde r t o o v e r c o m e th is s i tua t ion m u c h bet te r p e r f o r m a n c e mode l s of the para l le l sys tems s h o u l d

b e bui l t . Hav ing s u c h mode l s w e wi l l b e ab le to a d v a n c e ou r k n o w l e d g e , and to bu i ld t he c o m p u t e r

a i ded too l s fo r para l le l p r o g r a m m i n g .

2. Performance Models of the Parallel Systems
Mode l s ava i lab le t o d a y c o u l d be c lass i f ied in to t w o ma jo r g r o u p s :

• S tochas t i c m o d e l s ;

• De te rmin is t i c mode l s .

Wh i l e hav ing s t rong f undamen ta l s in t he s tochas t i c ma thema t i c , f o rme r m o d e l s a re g i v ing t h e

s ta t is t ica l a v e r a g e behav io r of t h e sys tem. T h e y a r e usual ly very robus t (ie . insensi t ive) fo r t h e f i ne

g r a i n para l le l i sm. D u e to t h e fac t t ha t mos t of t h e ana ly t ica l resu l ts a r e ob ta ined by t h e use of t h e

Ma rkov i an c h a i n s , s tochas t i c mode l s a r e a lso insens i t i ve t o t h e e f fec ts of s ynch ron i za t i on .

! 104

Mathema t i ca l f o u n d a t i o n for de te rm in i s t i c m o d e l i n g is ye t to be d e v e l o p e d . Th i s is t h e reason w h y

de te rm in i s t i c mode l s are t oday only ab le to c o v e r f ine g r a i n e f fec ts , w h i l e be ing to c o m p l i c a t e d fo r

c o m p l e x sys tem d e s i g n . It is a lso o b v i o u s tha t t he re w i l l b e a lways t h e da ta d e p e n d e n t e f fec ts in a

para l le l sys tem, w h i c h a re inherent ly s t ochas t i c .

It seems tha t f u tu re resea rch s h o u l d lead t o w a r d s c l o s i n g t h e gap b e t w e e n h igh level , a n d low level

sys tem m o d e l i n g . O n e of t he p rom is ing a p p r o a c h e s lays in c o m b i n i n g b o t h k inds of m o d e l s to c o v e r

al l t h e aspec ts of para l le l sys tems d e s i g n .

3. Conclusions
In tens ive para l le l p r o g r a m m i n g c a n g ive us t h e e x p e r i e n c e necessa ry to d e v e l o p bet te r mode l s of

para l le l sys tems behav io r . On ly then w h e n w e w i l l have s u c h mode ls , para l le l sys tems d e s i g n wi l l s t o p

to b e t he " A r t of t h e f e w " , a n d b e c o m e " T h e S c i e n c e of u s a l l " .

105

Speedup Versus Efficiency in Parallel Systems

John Zahorjan and Edward D. Lazowska1

Department of Computer Science
University of Washington

Exploiting parallelism is an increasingly common approach to improving the performance of
computer systems. In terms of hardware, this typically means providing multiple, simultaneously
active processors. In terms of software, this typically means structuring a program as a set of
largely independent subtasks.

In the sequential world the performance of a system usually can be adequately characterized in
terms of the instmction rate of the single processor and the execution time requirement of the
software on a processor of unit rate (which we refer to as its service demand). In the parallel
world things are considerably more complex. In the hardware domain we must be concerned not
only with the instruction rate of a processor, but also with factors such as the number of
processors. In the software domain we must be concerned not only with service demands, but
also with factors such as the structure of the software.

In evaluating a parallel system two performance measures of particular interest are speedup and
efficiency. Speedup is defined for each number of processors n as the ratio of the elapsed time
when executing a program on a single processor (the single processor execution time) to the
execution time when n processors are available. Efficiency is defined as the average utilization of
the n allocated processors.

Ignoring I/O processing time, the efficiency of a single processor system is 100%. If efficiency
remains at this level as more processors are added we have linear speedup. This is the ideal case,
as improvements in speedup can be obtained at no cost in efficiency. Linear speedup is not
achievable in general, because of contention for shared resources, the time required to
communicate between processors and between processes, and the inability to structure the
software so that an arbitrary number of processors can be kept usefully busy.

Although the idea of speeding up computations through parallelism has existed for more than
a century, general purpose systems based on multiple (five or more) processors have only recently
become common (e.g., commercial machines by Sequent. Encore, Alliant, and BBN, and limited-
edition machines such as IBM's RP3 and DEC's Firefly). The existence of such systems has
stimulated widespread research activity: algorithms work concerned with parallel solutions in
many problem domains, compiler work concerned with parallelizing code, architecture work
concerned with how best to interconnect processors, etc. Obviously, results in these areas play a
critical role in improving the speedup and efficiency properties of parallel systems.

In this work we take a more abstract view. Rather than studying specific implementations and
implementation problems, we study the tradeoff'between speedup and efficiency that is inherent to
a software system. Further, we do not do this in the context of a specific software structure;
instead, we derive relationships that can be very broadly applied. We are interested both in
fundamental issues concerning the properties of this tradeoff, and in practical issues that might
arise in considering specific software systems. Among the fundamental issues that we address are:
lTh\s work performed jointly with Derek L. Eager, Department of Computational Science, Universi
ty of Saskatchewan.

106

- 2 -

— To what extent is the speedup-efficiency tradeoff determined by the average parallelism of a
software system, as contrasted to other, more detailed characterizations?

— How "bad" can speedup and efficiency simultaneously become?
— What is the nature of the "knee" of the execution time - efficiency profile, where the benefit

(increase in speedup) per unit cost (decrease in efficiency) is maximized? For example, what
guarantees can be made regarding speedup and efficiency values at the knee?

Among the practical issues related to specific software systems that we consider are:
— To achieve a given speedup, what efficiency penalty must be paid?
— What is the speedup advantage that will result when increasing the number of processors by

some factor?
— What is the efficiency penalty that will result from this change?
— What number of processors yields the knee of the execution time - efficiency profile?

Our objective is to address these questions by obtaining bounds on performance — bounds
expressed in terms of the average parallelism measure of software structure. It should be clear
that, given complete information regarding a specific software structure, precise answers (rather
than bounds) could be obtained for many of these questions. There are two reasons, though, why
bounds expressed in terms of one or a small number of parameters may be more desirable than
precise solutions that require complete information:
— It is unlikely in practice that complete information will be available. For most software

systems, parallelism will depend to some extent on the (unknown or varying) data that would
be supplied as inputs. The volume of information required will in many cases be prohibitive.

— It often is the case that bounds yield more insight than exact answers utilizing complete
information.

Our pursuit of this approach is in the spirit of Amdahl's law, which states that if a fraction / of a
computation is inherently sequential, then the speedup S(n) is bounded above by TZT'

(Precisely, / is defined to be the ratio of the service demand of sequential parts of the
computation to the service demand of the entire computation.) This is a simple upper bound on
speedup that is expressed in terms of a single-parameter characterization of the software (f) and a
single-parameter characterization of the hardware (/?). It provides considerably more insight than
more detailed alternatives, such as a table displaying exact speedup values computed for a
number of specific software structures running on a number of specific hardware structures.
Amdahl's law illustrates the flavor of the results that we seek.

