
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

Software Implemented Fau l t Insert ion:

A n F T M P E x a m p l e

E d w a r d W . Czeck

Zary Z. Segal l

Danie l P . Siewibrek

Electrical and Computer Engineering

Carnegie Mellon University

Schenley Park

Pit tsburgh, Pennsylvania, 15213

15 January 1987
This paper is submitted for publication, and is presented here for early distribution.

This Research was sponsored by the National Aeronautics and Space Administration,
Langley Research Center under contract NAG-1-190. The views and conclusions contained in
this document are those of the authors and should not be interpreted as representing the official
policies, either expressed or implied, of NASA, the United States Government or Carnegie Mellon
University.

Table of Contents

î

A b s t r a c t 1
1. In troduc t ion 3
2 . F T M P A r c h i t e c t u r e 5

2.1 General Overview 5
2.2 Faul t Detection 5
2.3 Faul t Identification 6
2.4 System Reconfiguration 6

3 . So f tware I m p l e m e n t e d F a u l t Insert ion 9
3.1 Faul t Tolerant System Model 9
3.2 Software Faul t Insertion Task Model 10
3.3 Software Fault Insertion Realization 11

3.3.1 Location and Generation of Faul ts 11
3.3.2 Timing of Faul ts 12
3.3.3 Duration of Faul ts 12
3.3.4 Workload 12
3.3.5 Recovery Mechanism 13

3.4 Experimental Environment 13
3.4.1 Parameters 13
3.4.2 Experimental Execution 14
3.4.3 Da ta Analysis 14

4. E x p e r i m e n t s 15
4.1 Summary of Draper 's Fault Insertion Data 15
4.2 Faul t Detection Time 16
4.3 Faul t Identification Time 18
4.4 Faul t Recovery Time 23

5. Conc lus ions 27
References 0 0

UNIVERSITY LIBRARIES
CA RN CG ! f;- M îî L LO N UNIVERSITY

PiHSSURGH. rl:NNSYLVAN!A 15213

Software Implemented Fault Insertion: An FTMP Example

11

Software Implemented Fault Insertion: An FTMP Example

iii

Software Implemented Fault Insertion: An FTMP Example

List of Figures
F i g u r e 2 -1 : Time Line of Error Detection, Identification and Recovery 6
F i g u r e 3 - 1 : Faul t Tolerant System Model 9
F i g u r e 3-2: Computat ional Task Model 10
F i g u r e 3 -3 : Lower Rate Task Execution Model 10
F i g u r e 4 - 1 : Possible Faul t Mapping Between Hardware and Software Inserted Faul ts 16
F i g u r e 4-2: Error Detection Time as a Function of Insertion Time 18
F i g u r e 4 -3 : Faul t Detection Time for Software Inserted Faul ts 19
F i g u r e 4-4: Draper 's Hardware Inserted Fault Detection Time 20
F i g u r e 4-5: Fault Identification Time for Software Inserted Faul ts 21
F i g u r e 4-6: Draper 's Faul t Identification Time 22
F i g u r e 4-7: Fault Recovery Time for Software Inserted Faul ts 24
F i g u r e 4-8: Draper 's Fault Recovery Time 25

Abstract 1

Abstrac t

This report presents a model for fault insertion through software, describes its

implementation on a fault tolerant computer, F T M P , presents a summary of fault detection,

identifications, and reconfiguration da ta collected with software implemented fault insertion and

compares the results to hardware fault insertion data.

The software fault insertion model assumes faults manifest to da ta errors at the output of a

task. The implementation of the software fault insertion model on F T M P allows inserted faults

to emulate faults in the processor da ta path, processor control path, system memory, and system

transmit bus.

The experimental results showed detection time to be a function of time of insertion and

system workload. For the fault detection time there was no correlation between software inserted

faults, and hardware inserted faults; this is because hardware inserted faults must manifest to

errors before detection, whereas software inserted faults immediately exercise the error detection

mechanisms. Fault identification time for F T M P is a function of the number of modules to

which the errors can be at t r ibuted. From the data, hardware inserted faults manifest to error

pat terns at t r ibuted to unique modules, whereas single software inserted faults were at tr ibuted to

multiple sources, thus exposing the non-unique mapping between hardware and software inserted

faults. Faul t reconfiguration times were comparable for both hardware and software inserted

faults.

In summary, although software fault insertion does not map directly to hardware fault

insertion, experiments indicate software fault insertion as a means to characterize the fault

handling capabilities of a system in error detection, identification, and error recovery.

Software Implemented Fault Insertion: An FTMP Example

2 Introduction

Software Implemented Fault Insertion: An FTMP Example

Introduction 3

1. Introduct ion

Validation procedures, such as those proposed in [NASA 79a, NASA 79b] include steps to

characterize and evaluate the behavior of a system under faulty conditions. The means for these

evaluations include the following:

1. Computer Simulation: Computer simulation evaluates the manifestation of faults
and the system's response. Thq simulation models range from the Processor-Memory-
Switch level through the Instruction Set Processor level, the Register Transfer level,
the gate level, and to the device level. The drawbacks to simulation are the high cost
of model development, computational needs, and the difficulty in model validation.

2. Physical Fault Insertion: Physical fault insertion places faults in the hardware of a
realized system. The advantages over computer simulation include speed and fidelity
to actual system faults. The drawbacks to this method are two fold. First faults
insertion requires physical manipulation of components, a time consuming effort.
Second the faults are limited to pin level insertion. As realizations moves from
SSI/MSI to VLSI, the fault insertion level moves from gate level to system level.

This paper discusses Software Implemented Fault Insertion, in which hardware or physical

faults are emulated by modifying program da ta or control. The motivations for software fault

insertion include speed and automation advantages. In addition software inserted faults are

repeatable within a system and across architectural and implementation boundaries. Finally, the

gap between pin level fault insertion in VLSI and software fault insertion is narrowing and may

be approaching equivalence.

The literature abounds with prior work demonstrating the benefits of fault insertion and the

feasibility of software fault insertion at the architectural or bus level; a sampling of this prior

work includes:

• The F T M P evaluation used pin level (gate level) stuck-at or inverted permanent
faults. Observations noted in [Draper 83a] include the difficultly caused by incorrect
functioning of the test module with the test equipment connected and damage to
CMOS circuitry caused by incorrect handling. From the fault insertion experiments,
they were able to evaluate the fault detection, isolation, and recovery times. Results
also showed preliminary but inconclusive da ta on the fault coverage of F T M P . This
experiment demonstrates the value of using fault insertion for fault tolerant system
evaluation.

• [Schuette, et al. 86] inserted transient or soft faults in a MC68000 to evaluate
software triple modular redundancy and a signature instruction stream monitor. The
MC68000 realization did not allow gate level fault insertion, hence faults were

Software Implemented Fault Insertion: An FTMP Example

4 Introduction

inserted on the address, data, and control bus lines. This experiment shows fault
insertion at the bus level can be used to evaluate fault tolerant techniques.

• The Sperry UNIVAC 1100/60 [Boone et al. 80] has a built-in fault insertion
capability to verify fault detection, isolation, and recovery mechanisms. This
capability is activated during system idle time and can insert faults in the processor,
memory, and I / O unit. The UNIVAC 1100/60 system shows fault tolerant
mechanisms can be verified using software control at the system level.

• [Yang et al. 85] inserted faults into the iAPX 432 to evaluate software implemented
triple modular redundancy. Faul ts were inserted by altering bits in the program or
da ta areas of memory using the debugger. The experiment shows fault insertion may
be accomplished by altering bits in the memory.

This paper is divided into five sections. The second section gives an overview of the F T M P

architecture with emphasis on the fault-handling mechanisms. Section 3 describes a model for a

fault tolerant system, a model for fault insertion at the architectural level, and the

implementation of this model on F T M P . Section 4 presents da ta from software fault insertion

experiments and provides a comparison, where applicable, to similar hardware fault insertion

experiments. The last section concludes the paper with an evaluation of software fault insertion

techniques.

Software Implemented Fault Insertion: An FTMP Example

F T M P Architecture 5

2.2 F a u l t D e t e c t i o n

The fault detection mechanism for F T M P employs hardware voters residing at the receivers

of each bus set. Disagreements at the voters set error latches, associated with each individual

bus line. SCC, running as a Rate-1 task, reads the error latches to check for errors and

Software Implemented Fault Insertion: An FTMP Example

2. F T M P Archi tecture

This section presents an architectural description of F T M P , the target machine for the

software implemented fault insertion. Four subsections include a general overview, followed by a

detailed description of fault detection, fault isolation, and fault recovery mechanisms

2.1 General Overv iew

The Fault-Tolerant Multiprocessor, F T M P , is a hardware redundant multiprocessor

designed for ultrareliable avionics environments [Hopkins et al. 78, Draper 83b, Draper 83c].

The architecture, as seen by the programmer, consists of three virtual processors with local

memory, connected via a common bus to global memory and I /O ports. Reliability is attained

through hardware redundancy. Each virtual processor consists of a processor triad. The

memory and buses are also triplicated. Spare processors, memories and buses shadow (i.e.

execute the same code as) the active units, but do not participate in voting. Each triad executes

synchronously and a hardware vote occurs during da ta transfers. The voting is performed by

each receiving unit from da ta transferred over independent buses.

The bus structure consists of four sets of serial buses each quintuply redundant of which

three are active at any given time. The buses are: the Poll Bus which is the bus arbiter; the

Transmit Bus which carries addresses and da ta information from the processor; the Receive Bus

which carries da ta from global memory or I / O ports to the processors, and the Clock Bus, which

carries clock signals to each processor to maintain system synchronization.

F T M P employs a realtime operating system with a basic dispatch period of 40 milliseconds,

referred to as Rate-4. There are two lower rate groups, Rate-3 with a period of 80 milliseconds,

and Rate-1 with a period of 320 milliseconds. Lower rate tasks include application tasks and

also system tasks such as the system configuration controller (SCC), a memory checker, s tatus

display and self tests.

6 F T M P Architecture

potentially faulty units. If an error is detected, the time of the error is stored and the fault

identification routine is called. A time line of the events occurring in fault detection,

identification, and reconfiguration is shown in Figure 2-1.

Fault
Occurs

Error
Occurs

Error
Detected

Faulty • -
Unit w

 S ^ t e i %
Identified R e c o n f l S u r a t l o n

Fault Detect ion Time

Fault
Latency

Error Detection
Latency

Identification Reconfiguration
Time Tir

F i g u r e 2 -1: Time Line of Error Detection, Identification and Recovery

2.3 F a u l t Identi f icat ion

The goal of fault identification is to determine from the error latch information which unit

caused the error. Since an error on one bus may be at t r ibuted to multiple sources (each unit

enabled on the bus), the general procedure of the fault identification routines is:

1. Determine the possible sources of the faults from the error latch information. If there
is more than one source, the bus assignments are switched and the identification
routine waits a Rate-1 frame for another error to occur.

2. If another error occurs, its possible sources are identified and intersected with the
previous possible sources. If the new set is not unique, this step is repeated after
switching bus assignment again. If an error does not occur, a transient fault analysis
routine assigns demerits to all possible sources.

The fault identification routine runs as part of SCC hence the identification time will be a

function of the number of passes needed to identify the fault.

2.4 S y s t e m Reconf igurat ion

The system reconfiguration procedure entails removal of faulty units either by swapping

with a spare unit or by graceful degradation. These procedures are described as follows:

1. If there is a spare unit (Processor, Memory, or Bus) and it is shadowing the faulty
unit, the bus assignments are changed to bring the spare unit active and the failed
unit inactive.

2. If the spare processor or memory is shadowing a triad other than the one containing
the faulty unit, the spare is first brought to shadow the triad, and then the spare and
failed unit are swapped.

Software Implemented Fault Insertion: An FTMP Example

F T M P Architecture 7

3. Finally if there are no spare processors, the triad is retired with its good processors
assigned as spares. When memories or buses fail without spares, the triad reduces to
a duplex.

The Rate-4 dispatcher executes the reconfiguration commands from the information

supplied by the fault identification routine. The error reconfiguration time is defined as the time

from the fault identification to the execution of the reconfiguration commands.

Software Implemented Fault Insertion: An FTMP Example

Implementation

Software Implemented Fault Insertion: An FTMP Example

Implementation 9

3. Software Implemented Faul t Insertion

This section describes a model for a fault tolerant system, and a model for software

implemented fault insertion for a realtime operating system. The realization of the software

fault insertion is presented on the example system, F T M P .

3.1 F a u l t To lerant S y s t e m Mode l

Faul t tolerant systems generally use either hardware or time redundancy to achieve

reliability. Under each of these schemes, there are confinement regions (hardware or time) which

localize the corruption caused by a fault. Associated with the region, usually at the boundary, is

an error detection and isolation mechanism (EDI) which limits fault propagation. The EDI also

generates a s ta tus showing the condition of the region or system. Figure 3-1 presents a system

model, based on fault confinement regions, where the regions are processors, P , memories, M,

and I / O units, interconnected via buses through the EDI interface.

PI Pn M l Mn I / O I /O

EDI EDI EDI EDI EDI EDI
1 1 1 1 1 1

F i g u r e 3 -1 : Fault Tolerant System Model

The goal of software implemented fault insertion is to force the system to appear faulty by

exercising one or more of the EDI interfaces by one of the following means:

1. Immediate activation where the EDI is exercised by an error at the boundary of a
confinement region, or

2. Latent activation where faults are seeded within the confinement regions.

A comparison between software fault insertion and hardware fault insertion includes:

• The goal of both fault insertion schemes is to exercise and evaluate the fault-handling
mechanisms of the system.

• Software faults may be better in triggering a specific error, which is difficult to
generate or reproduce with physical fault insertion.

Software Implemented Fault Insertion: An FTMP Example

10 Implementation

• Physical fault insertion may be more analogous to actual faults generated in the
system.

3.2 Software F a u l t Insert ion Task Mode l

A model for a computational task is shown in Figure 3-2a. Da ta (sensors) are read at the

s tar t of the task, operations are performed on the data, and the results are written (to

actuators). A fault occurring in the task would manifest to an error in the output of the results.

These errors include incorrect data, no data, or late data . Hence faults in the task could be

modeled as an error in the output part of the task, Figure 3-2b. Realtime execution could be

modeled as a series of computational tasks with the dispatcher executing between the tasks as

shown in Figure 3-2c. Adjusting the task model to fit the multiple execution rates of F T M P , let

L be a lower rate task, where L is all the non Rate-4 t a sks 1 concatenated together to form a

single task. The L task executes at the end of the Rate-4 tasks and is interrupted by the s tar t of

the next Rate-4 frame, Figure 3-3; thus, the amount of execution time per Rate-4 frame for the

L task depends on the Rate-4 frame size and the execution times of the task and dispatcher.

Input Computations Output

(a)

Input Computations Faulty
Output

(b)

Dis
patcher

In Comp Out
Dis

patcher
In Comp Out

Dis
patcher

(c)

F i g u r e 3-2: Computat ional Task Model

Rate-4 Frame -<

D Task R41 D Task LO D Task R42 D Task LI D

F i g u r e 3-3: Lower Rate Task Execution Model

*The lower rate tasks include a clock update, System Configuration Controller (SCC), memory checker,
and status display which execute at 3.125 Hz, one-eighth of the Rate-4 tasks.

Software Implemented Fault Insertion: An FTMP Example

Implementation 11

3.3 Software F a u l t Insert ion Real izat ion

The abilities of software implemented fault insertion or of any fault insertion in general are

the following:

• Location of Fault : Insertion of faults should be able to model true faults which can
occur throughout the system hardware.

• Timing of Faults : A fault may occur throughout any execution task of the system; a
fault insertion environment should allow similar conditions.

• Duration of Faults: Real faults are classified as either transient, intermittent , or
permanent [Siewiorek and Swarz 82]; the fault insertion should allow the duration of
inserted faults to vary accordingly.

The realization of the software fault insertion is unfortunately limited by the controllability of

hardware in F T M P .

3.3 .1 L o c a t i o n and G e n e r a t i o n of F a u l t s

The fault insertion environment must be able to insert or emulate faults in different

locations. The software fault insertion environment allows faults in four regions; these regions

and the means which the faults are inserted are described as follows:

• Processor Data Path Faults: Faul ts occurring in the da ta path may manifest to a
number of different error types. These include transmission of incorrect data, no da ta
or late data . The software fault insertion environment assumes processor da ta path
faults manifest to incorrect da ta being transmitted by the processor, causing an error
on the transmit bus' assigned to the processor. The incorrect da ta is a single word,
and the processor s ta te remains good after the transmission of the bad data.

• Processor Control Path Faults: Faul ts within the control path may manifest to
many different error types. These include no da ta transmitted, early or late da ta
transmitted, or incorrect da ta transmitted. The software fault insertion environment
emulates faults within this region by having the processor execute an infinite loop,
resulting in no transmission of data . This causes errors on two of the buses to which
the processor is assigned: the poll bus because the processor never requests the bus,
and the transmit bus because no data is t ransmitted.

• System Bus Faults: Faul ts on a bus may be at t r ibuted to many sources, such as
noise or a unit t ransmit t ing out of protocol. Software fault insertion emulates bus
faults by having a processor transmit bad da ta on a specific bus, although the
processors are generating the errors, the errors map to a particular bus.

• Global Memory Faults: Memory faults may be at t r ibuted to decaying bits, stuck-at
bits, or incorrect address decoding. Memory faults are emulated by writing bad da ta
into one memory module of a triad, and then performing a read of the location.

Software Implemented Fault Insertion: An FTMP Example

12 Implementation

A few comments on the fault insertion are in order. First all inserted faults cause an

immediate error; there is no latency between insertion and error generation. Second, the faults

are transient and cause no change in processor s tate or corruption of data , except for the control

path fault. Third, the present software implemented fault insertion environment does not

exclude the later addition of latent faults. For example, local or global memory can be corrupted

without an immediate read, then the detection time, the time from the change in da ta (fault) to

the error can be measured.

3.3 .2 T i m i n g of F a u l t s

Faults may occur at any time within the execution of a program. The model assumes faults

manifest into errors in the output portion of the task. The implementation of software fault

insertion allows faults to be generated in the output of Rate-4 application tasks. The occurrence

of a fault is specified to a particular Rate-4 frame, but not to the time within the frame.

Furthermore, faults may only occur in Rate-4 application tasks and not within the dispatcher or

lower rate tasks. This limits the insertion time of the faults to specific tasks. However, the

error detection mechanism for F T M P cannot distinguish the insertion time to specific tasks.

3.3 .3 D u r a t i o n of F a u l t s

Faul ts can be transient soft, due to a temporary random environmental condition or

permanent hard, due to a physical change in the hardware. The software fault insertion

environment generates transient faults, and to emulate permanent faults, a transient fault is

repeatedly inserted in consecutive Rate-4 frames. This gives the appearance of a permanent

faults when view from the error detection and identification mechanisms.

3.3 .4 W o r k l o a d

A system's workload is its set of inputs received from its environment; a desirable feature

within any computer evaluation environment is a controllable workload. [Feather et al.

85] developed a synthetic workload 2 generator for F T M P which was modified to include software

fault insertion. The synthetic workload provides a means of specificing the following factors:

• System Configuration which defines the number of processor triads and spares.
• Number of Tasks for each rate group, and the inclusion of the system tasks, such as

SCC and Status Display.

2
A synthetic workload exercises a computer system by modeling its natural workload with generic

inputs and tasks.

Software Implemented Fault Insertion: An FTMP Example

Implementation 13

• Workload for each task, which includes the amount of I / O and computat ions per
task.

3,3 .5 R e c o v e r y M e c h a n i s m

In order to repeat the fault insertion experiment in gathering a large da ta base, a recovery

mechanism must augment the software fault insertion environment. Draper Labs modified the

system configuration controller to repair and activate processor 3 before fault insertion. This

repair code was modified allowing for the repair and activation of the last unit failed (processor,

memory, or bus), before each fault insertion.

3.4 E x p e r i m e n t a l E n v i r o n m e n t

The experimental environment for software fault insertion can be divided into three

sections: the experimental set-up, the collection of data, and the analysis of data . This section

describes these areas on the F T M P implementation.

3.4 .1 P a r a m e t e r s

The first phase of the experimental procedure is experimental setup and selection of

parameters. A program queries the user on the selection of the parameters, and from the inputs,

generates a command file which properly configures F T M P and collects data . The controllable

parameter include:

• Workload: The system workload includes the amount and distribution of tasks
between the rate groups, the amount of I / O and computation executed by each task,
the inclusion of system tasks, and the overall system configuration.

• Location: The different locations for fault insertions are described in Section 3.3.1.
• Timing: The time of fault insertion is controlled by the Rate-4 frame, hence a 40

millisecond resolution.
• Duration: Either a transient (single) fault or a permanent (repeated) fault may be

inserted, as described in Section 3.3.3.
• Data Collected: The da ta which may be collected includes: the application tasks'

execution time; the fault insertion, detection, identification, and reconfiguration time;
the identification of the failed unit; and the reason code for the failure.

Draper's hardware fault insertion system allowed faults to be inserted in processor 3, hence Draper's
software checked status and activated processor 3 before inserting faults.

Software Implemented Fault Insertion: An FTMP Example

14 Implementation

3.4 .2 E x p e r i m e n t a l E x e c u t i o n

The second phase of the experimental procedure is insertion of faults and the collection of

the data . During each experimental loop the following actions occur:

1. The system repairs any module which failed during the last cycle.
2. The fault inserter is started and the workload da ta collection cycle begins. Workload

da ta (task execution time) is collected for one Rate-1 frame, and the inserted faults
trigger the fault-handling mechanisms whose execution times are also collected.

3. The requested da ta is uploaded to the host and the cycle repeated.

3.4 .3 D a t a A n a l y s i s

The third phase of the experimental procedure is da ta analysis. The da ta analysis program

takes the absolute timer values collected from F T M P and records differences between two events

as requested by the user. The average, s tandard deviation, minimum, maximum, and a

histogram of the da ta is then printed.

Software Implemented Fault Insertion: An FTMP Example

Experiments 15

With Software Fault Insertion implemented, the next step was to run experiments

evaluating the abilities of the environment. The experiments exercised most of the parameters

available in the software fault insertion environment. In particular the location of the fault,

time of insertion, and system configuration were the primary parameters varied. The data

collected from these experiments involve a measurement of the system workload, and the times

of fault insertion, fault detection, fault identification, and fault recovery. Additionally, the unit

which failed and the reason code for the failure were stored for analysis of missed diagnosed

faults. This section details the experiments performed. Comparisons to hardware fault insertion

results [Draper 83a] are made where appropriate.

4.1 S u m m a r y of Draper 's F a u l t Insert ion D a t a

Draper under contract to NASA completed extensive hardware fault insertion experiments

at the pin (gate) level [Draper 83a]. This section summarizes their experiments and presents a

comparison between Draper 's hardware fault insertion and the software fault insertion

experiments.

Draper 's experiments inserted faults at the pin level of the processor; the faults were single

bit stuck-at zero, one, or inverted. The da ta is divided by the fault location, where the locations

are cards in the LRU' s . 4 For each card, several chips were pulled and faults inserted on each of

the chips. For our comparison da ta from four different card was taken: the CPU da ta path card

(CPUD); the CPU control path card (CPUC); the bus interface t ransmit card (BIT); and the

cache controller card (CC). These correspond to the software fault insertion locations of data

path, control path, t ransmit bus, and da ta path respectively; Figure 4-1 diagrams a possible

mapping between hardware and software inserted faults.

The parameters for Draper's da ta was many times unspecific and for the purpose of

comparison to the software inserted faults some assumption were made:

• The time of fault insertion was random for Draper's data , whereas with the software
fault insertion, the insertion time was specified to the output portion of a Rate-4
task.

An LRU is a Line Replaceable Unit, each identical and containing a processor, memory and the
necessary bus interface circuitry.

Software Implemented Fault Insertion: An FTMP Example

4. Exper iments

16 Experiments

• The system workload was unknown, but we will assume a light workload with the
Rate-4 frame size at 40 milliseconds for Draper 's data . The workload for the
software insertion was one Rate-4 task, one Rate-3 (timer) task, and three Rate-1
tasks (display, SCC, and readall), and the Rate-4 frame size was stretched to 50
milliseconds; hence the Rate-1 frame size was 400 milliseconds. The difference in
frame sizes for the two insertion methods should increase the time measurements for
the software inserted faults, approximately 25%, in comparison to the hardware fault
insertion measurements.

• The system configuration for Draper 's da ta was unknown, a reasonable assumption is
three triads executing with either zero or one spare processor. The software da ta
lists the configuration either as two or three triads without spare, or two triads with
spare.

Draper's Hardware
Fault Injection Location

Possible Fault
Manifestations

Software Fault Insertion
Comparison Location

CPU Data Path Card Bad Data from Processor
No Data from Processor

Data Path
Control Path

CPU Control Path Card Processor Hangs
No Data from Processor
Bad Data from Processor

Control Path
Control Path
Data Path

Cache Controller Card Processor Hangs
No Data from Processor
Bad Data from Processor

Control Path
Control Path
Data Path

Bus Interface: T-Bus Card Bad Data on Bus
No Data on Bus

T-Bus
T-Bus

F i g u r e 4 -1 : Possible Fault Mapping Between Hardware and Software Inserted
Faul ts

4.2 F a u l t D e t e c t i o n T i m e

Fault detection time is the time from the insertion of a fault until an error is detected by

the system. For software inserted fault, the insertion time is at the end of a specified frame,

whereas with Draper 's hardware inserted faults, the insertion times are any point within the

frame. Error detection, reading of the error latches, is done by SCC at Rate-1 . Hence the

detection time for software inserted faults should be a maximum of one Rate-1 frame (400

milliseconds), the latency in reading the error latches. For hardware inserted faults the detection

time will include the manifestation of the fault into an error, along with the delay in reading the

error latch.

Software Implemented Fault Insertion: An FTMP Example

Experiments 17

In predicting the detection time for software inserted faults, the parameters affecting the

detection time are:

• Workload: A large workload stretches the frame size, placing the detection point
later in the frame. Likewise, a large workload limits the execution time per Rate-4
frame of the lower rate tasks (e.g. error detection). The workload function is
expressed by R4task, the Rate-4 task size, and R4Frsize, the Rate-4 f rame size,
both measured in milliseconds.

• Time of error detection: The point which error detection occurs within the realtime
cycle affects the latency from the time of fault insertion. This is determined by the
amount of time which the lower rate task executes before the error detection routine
is run. This time is represented as LDet and measured in milliseconds.

• Time of Insertion: The of point of fault insertion within the realtime cycle in
conjunction with the time of error detection governs the fault detection latency. The
time of insertion is represented as Tin and measured in Rate-4 frames.

Finally let: LxTime be defined as the amount of time which the lower rate tasks execute per

frame, where LxTime=m&x [RAFrmSize—RATask, 10) milliseconds, where 10 millisecond is

the amount of time the dispatcher will allow for the execution of lower rate tasks. The detection

time can be represented by:

LDet
DetTime = RAFrmSize X [[(- r - = : —) - Tin] mod 8] (4.1)

LxTime

The quotient in Equation (4.1) marks the Rate-4 frame which the error detection task in run; the

modulo 8 term comes from the realtime cycle of F T M P (eight Rate-4 frames per Rate-1 frames).

Equation (4.1) is plotted in Figure 4-2 as detection time versus frame of insertion for

different workloads; two experimental runs are also plotted. The high workload da ta has a

Rate-4 frame size of 50 milliseconds and the low workload da ta a 40 millisecond frame size. In

comparing the da ta of Figure 4-2, the experimental da ta corresponds closely to the computed

data . The reason for the multiple da ta points for each insertion time is tha t error detection can

be accelerated or delayed one Rate-4 frame. The increase in the slope as the workload increases

is due the lengthening of the basic frame size hence placing the error detection a further time

away from the fault insertion.

Figure 4-3 shows histograms for the fault detection time with the time of fault insertion

varying between graphs. The fault location is the da ta path, but this da ta is representative of

the other fault locations. The time skewing between the graphs show the lengthening of the

detection time as the fault insertion time moves relative to the fixed detection time. Figure 4-4

shows histograms of fault detection time for Draper 's hardware fault inserted data. The

Software Implemented Fault Insertion: An FTMP Example

18 Experiments

500 - ,

Detect ion Time
DetTime

(milliseconds)

0 2 4 6 0 2
Fault Insertion Time, Tin

(Frame Number)

F i g u r e 4-2: Error Detection Time as a Function of Insertion Time

detection time is approximately two times larger than the software inserted faults. The

difference is due to the manifestation of faults to errors, whereas with software inserted faults

the detection time is only the latency between inserting the fault and reading the error latches.

Another difference between the two da ta sets is the distribution of the data; the software

inserted faults fall into two or three groups, while the hardware inserted faults are distributed

across the whole range. The random insertion time of Draper 's faults and the delay in fault

manifestation at t r ibute to the continuous distribution of the data.

From the fault detection time measurements, we were able to show the parameters affecting

the fault detection time. Furthermore we were able to characterize the processes from the error

occurrence (error latch set) to the error detection (error latch read), but could not map from a

fault occurrence to an error occurrence (Figure 2-1).

4.3 F a u l t Identif icat ion T i m e

The fault identification time is the time from the detection of an error by the system until

the source of the error is identified. For both software and hardware inserted faults the expected

da ta should be similar; the mechanisms involved are the same (Section 2.3).

Software Implemented Fault Insertion: An FTMP Example

Experiments 19

Percent
Frequency

of Occurence

30
25
20
15
10

5
0

F a u l t D e t e c t i o n T i m e
F a u l t I n s e r t e d i n F r a m e 2
100 po in t s

1

30 - F a u l t D e t e c t i o n T i m e 30 - F a u l t I n s e r t e d in F r a m e 4 '

Percent 25 - 153 po in t s
1

Frequency 20 -
15 -

of Occurence 10 -
5 -
0 1 ii . * • , •

Percent
Frequency

of Occurence

30
25
20
15
10

5
0

F a u l t D e t e c t i o n T i m e
F a u l t I n s e r t e d in F r a m e 0
106 po ints

JL

Percent
Frequency

of Occurence

F a u l t D e t e c t i o n T i m e
F a u l t I n s e r t e d in F r a m e 0 30

2g I 70 p o i n t s

20
15
10

5 - 1
0

0 100
1 ' — ' — ' — I —

200 300
Time (milliseconds)

400 500

F i g u r e 4-3: Faul t Detection Time for Software Inserted Faul ts

The primary parameter affecting the da ta is the manifestation of the fault; if a fault

manifests to errors on different buses then the possible sources of the fault is limited. A

secondary parameter is the number of possible sources for the error. This is dependent on

system configuration: the more processors, the more sources of errors. The experiments varied

the fault locations (manifestation), and the system configuration (possible sources).

The da t a should be grouped according to the execution time of the identification routine,

which is dependent on the number of suspect units. The routine runs as a Rate-1 task, once per

400 milliseconds, with the da ta grouped according to the number of passes.

Figure 4-5 shows histograms of fault identification times for the software inserted faults.

Software Implemented Fault Insertion: An FTMP Example

20 Experiments

Percent
Frequency

of Occurence

30
25
20
15 -
10 -

5 -
0

F a u l t D e t e c t i o n T i m e
H a r d w a r e F a u l t In jec t ion
Œ U D C a r d , 7266 p o i n t s

Percent
Frequency-

of Occurence

30 - J
25 - I
20
15
10 . - I

5
0

F a u l t D e t e c t i o n T i m e
H a r d w a r e F a u l t In jec t ion
Œ U C Card , 47Ô1 po in t s

Percent
Frequency

of Occurence

30
25
20
15
1 0 - 1

5
0

F a u l t D e t e c t i o n l i m e
H a r d w a r e F a u l t In jec t ion
C C Card, 3508 po int s

0 100 200 300 400 500 600 700 800 900 1000 1100

Percent
Frequency

of Occurence

60 -
50 - '
40 -
30 -
20 -
10 -
0 —

F a u l t D e t e c t i o n T i m e
H a r d w a r e F a u l t In jec t ion
B I T Card , 2 1 4 po ints

T
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000

Time (milliseconds)

F i g u r e 4-4: Draper 's Hardware Inserted Faul t Detection Time

The main feature of the da ta is the discrete distribution. This was expected; the distribution is

in multiples of the Rate-1 frame size, approximately 400 millisecond. Thus Figure 4-5 also shows

the number of execution cycles required for the identification routines.

Of interest is the control path fault with two triads executing; the identification time is

under 50 milliseconds, hence the source was located without reconfiguring the system. The

reason for this is as follows: the control path fault sends one processor of the triad into an

infinite loop. As the other processors continue execution they will t ransmit on both the poll bus

and the transmit bus causing errors to occur on each. These two errors are sufficient to

determine the source and hence the faulty unit is identified without further information.

At the other extreme is the transmit bus fault with three triads executing. Here the number

Software Implemented Fault Insertion: An FTMP Example

Experiments 21

Percent
Frequency

of Occurence

30 - \

20 - |

10

0

F a u l t Ident i f i ca t ion T i m e
D P F a u l t 2 T r i a d s w i t h o u t Spare
473 po int s

Percent
Frequency

of Occurence

Percent
Frequency

of Occurence

30 -
20 -
10

0

30 -
20 -
10
0

F a u l t Ident i f i ca t ion T i m e
D P F a u l t 2 T r i a d s w i t h Spare
440 po in t s

F a u l t Ident i f i ca t ion T i m e
D P F a u l t 3 T r i a d s w i t h o u t Spare
455 po int s

A
Percent

Frequency
of Occurence

Percent
Frequency

of Occurence

Percent
Frequency

of Occurence

50 —I
40
30
20
10

0

50
40
30 - I
20
1 0 - 1

0

30
20

1 0 - 1
0

F a u l t Ident i f i ca t ion T i m e
C P F a u l t 2 T r i a d s w i t h o u t Spare
502 po ints

F a u l t Ident i f i ca t ion T i m e
C P F a u l t 2 Tr iads w i t h Spare
500 po int s

F a u l t Ident i f i ca t ion T i m e
C P F a u l t 3 Tr iads w i t h o u t Spare
244 po in t s

Percent 3 0 -
Frequency ^0

of Occurence 10 —
0 -<

F a u l t Ident i f i ca t ion T i m e ~~ ~
T B u s F a u l t 2 T r i a d s w i t h o u t Spare
000 po ints

1 . , ill .

3 0 -
rercent

Frequency ^0 —
of Occurence 10 —

0

3 0 -
rercent

Frequency ^0 —
of Occurence 10 —

0

F a u l t Ident i f i ca t ion T i m e ~ ~ ~ " — ,
T B u s F a u l t 2 T r i a d s w i t h Spare
500 po int s

jit 1 AJ

Percent
Frequency

of Occurence

30

20 - I

10

0

F a u l t Ident i f i ca t ion T i m e
T B u s F a u l t 3 T r i a d s w i t h o u t Spare
308 po int s

A
200 400 600 800

Time (milliseconds)

F i g u r e 4-5: Faul t Identification Time for Software Inserted Faul ts

1000

Software Implemented Fault Insertion: An FTMP Example

22 Experiments

of error sources is four, the bus and the three processors enabled on the bus. This should require

a minimum of two bus swaps to determine the source of the error. In this example three bus

swaps were required. This is due to an error in the identification routine which does not swap

buses on all t r i ads . 5

Percent
Frequency

of Occurence

90 - |
70 -I
50
30 - \
10

0

F a u l t I d e n t i f i c a t i o n T i m e
H a r d w a r e F a u l t In jec t ion
Œ U D Card , 7266 po in t s

Percent
Frequency

of Occurence

90
70 —I

50 - I
30

F a u l t I d e n t i f i c a t i o n T i m e
H a r d w a r e F a u l t In jec t ion
C P U C Card , 4761 po in t s

Percent
Frequency

of Occurence

90
70
50
30
10

0

F a u l t I d e n t i f i c a t i o n T i m e
H a r d w a r e F a u l t In jec t ion
C C Card, 3508 po in t s

Percent
Frequency

of Occurence

90
70
50
30
10

0 I
100 200 300

F a u l t Ident i f i ca t ion T i m e
H a r d w a r e F a u l t In jec t ion
B I T C a r d , 2 1 4 po in t s

400 500 600 700 800
Time (milliseconds)

900
I 1—

1000 1100

F i g u r e 4-6: Draper 's Fault Identification Time

Figure 4-6 presents histograms of Draper 's da ta for fault identification times for the four

different cards in the comparison. The major difference between Draper 's da ta and the software

inserted fault da ta is that a significant amount of Draper 's da ta points lie in the first bin, 0 to

100 milliseconds, with fewer outliers at the Rate-1 frame size, 320 milliseconds. As stated earlier

the error identification time is a function of the number of suspect units to which the errors can

This error was further evident in the observations of the transient fault routines conducted during
preliminary experiments with Software Fault Insertion.

Software Implemented Fault Insertion: An FTMP Example

Experiments 23

be at t r ibuted. From analysis of Draper 's data, the hardware inserted faults manifest to errors on

multiple buses which can only be at tr ibuted to a single unit.

From the data,- the fault identification behavior was characterized. Draper 's da ta had

mostly multiple errors, whereas the software inserted faults allowed evaluation under single

detected errors. This shows software implemented fault insertion can be a tool for the

evaluation and characterization of fault-handling routines.

4.4 F a u l t Recovery T i m e

The fault recovery time is the time from the identification of a faulty unit to the time when

the unit is removed from the active system. The da ta for software inserted faults should be

similar to Draper 's hardware inserted faults. The primary parameter is the system

configuration, the présense or absence of spares. The expected da ta should show an increase in

recovery time when spares are not available.

Figure 4-7 shows histograms of fault recover times under various system configurations and

fault locations. With the da ta path and control path faults, the unit failed was a processor and

hence the processor was retired; for the transmit bus fault a bus was marked faulty and replace.

The da ta shows the expected increase in recovery time when no spares are available, further

more the da ta is grouped at 45 and 95 millisecond. This represents the period of the dispatcher

which executes the reconfiguration commands.

Figure 4-8 shows Draper 's fault recovery data. Their da ta is similar to the sum of the

software inserted fault data . Draper's da ta lacks the resolution and specification of experimental

condition for useful comparisons, but from the two da ta sets, it is evident software implemented

fault insertion can be used to characterize and evaluate the fault recovery procedure of a system.

Software Implemented Fault Insertion: An FTMP Example

24 Experiments

Percent
Frequency

of Occurence

15
F a u l t R e c o n f i g u r a t i o n T i m e

1 D P F a u l t 2 T r i a d s w i t h o u t Spare

1 473 po int s

r- , , , , , , , .IhfflflnW^l^llllllljh. ^fL _

15 -
F a u l t R e c o n f i g u r a t i o n T i m e

Percent 15 - D P F a u l t 2 T r i a d s w i t h Spare

Frequency 10 -
f i d

449 po in t s

of Occurence 5 -
0 i l l

F a u l t R e c o n f i g u r a t i o n T i m e

Percent 15 - D P F a u l t 3 T r i a d s w i t h o u t Spare

Frequency 10 - 455 po int s

of Occurence 5 -
0

Percent
Frequency

of Occurence

15
10

5
0

F a u l t R e c o n f i g u r a t i o n T i m e
C P F a u l t 2 T r i a d s w i t h o u t Spare
585 po int s

Percent
Frequency

of Occurence

F a u l t R e c o n f i g u r a t i o n T i m e
C P F a u l t 2 T r i a d s w i t h Spare
500 po ints

Percent
Frequency

of Occurence

15
10

5
0 flhm,|l

F a u l t R e c o n f i g u r a t i o n T i m e
C P F a u l t 3 T r i a d s w i t h o u t Spare
247 po int s

Percent
Frequency

of Occurence

Percent
Frequency

of Occurence

Percent
Frequency

of Occurence

15
10

5
0

15 -
1 0 -

5 -
0

10 — I
5
0

ilu,

F a u l t R e c o n f i g u r a t i o n T i m e
T B u s F a u l t 2 T r i a d s w i t h o u t Spare
eoo po in t s

F a u l t R e c o n f i g u r a t i o n T i m e
T B u s F a u l t 2 T r i a d s w i t h Spare
315 po int s

F a u l t R e c o n f i g u r a t i o n T i m e
T B u s F a u l t 3 T r i a d s w i t h o u t Spare
000 po int s

0

F i g u r e 4-7:

1 1 ' ' - ' I 1 ' -

100 150 200
Time (milliseconds)

Fault Recovery T i m e for Software Inserted Faul t s

250

Software Implemented Fault Insertion: An FTMP Example

Experiments 25

Percent
Frequency

of Occurence

Percent
Frequency

of Occurence

Percent
Frequency

of Occurence

Percent
Frequency

of Occurence

60
50 H
40
30 -)
20
10

0

F a u l t R e c o n f i g u r a t i o n T i m e
H a r d w a r e F a u l t In jec t ion
C P U C C a r d , 4761 po int s

F a u l t R e c o n f i g u r a t i o n T i m e
H a r d w a r e F a u l t Inject ion
O C Card , 3508 p o i n t s

F a u l t R e c o n f i g u r a t i o n T i m e
H a r d w a r e F a u l t Injec t ion
B I T Card , 214 po int s

50 100 150
Time (milliseconds)

200 250

F i g u r e 4-8: Draper 's Fault Recovery Time

Software Implemented Fault Insertion: An FTMP Example

Experiments

Software Implemented Fault Insertion: An FTMP Example

Conclusions 27

5. Conclusions

This paper presented a model for software implemented fault insertion and implemented the

model on a fault tolerant computer, F T M P . Experiments were conducted and from the data the

following information was gathered about F T M P :

• Measured Detection Times: are a function of workload, and time of insertion.
• Measured Identification Times: are a function of configuration and type of faults

inserted. Errors in the identification code were uncovered by observing system
response.

• Measured Recovery Times: are a function of the system configuration.

In comparison to hardware fault insertion the following points can be made regarding the

two fault insertion schemes:

• Both fault insertion schemes were able to characterize the fault identification and
reconfiguration times of the system.

• Hardware fault insertion places the fault at a lower level (pin level) than the software
insertion (processor level). For this reason the detection times for the hardware
inserted faults included the fault latency times, whereas software fault insertion only
included the error detection latency, Figure 2-1.

• The fault manifestation and propagation for hardware inserted faults allows less
control in the generation of specific error types than the software inserted faults.
This control may be useful during the evaluating of specific fault identification
routines.

In summary, although software implemented fault insertion does not fully emulate hardware

fault insertion, it provides a means to evaluate the fault detection, identification, and recovery

means of a system. The software fault insertion can also be used to in the characterization the

systems across architectural and implementation boundaries. Furthermore, as the controllability

and observability of processors decrease due to the increased used of VLSI technology, software

implemented fault insertion may be a reasonable approach to system evaluation.

Software Implemented Fault Insertion: An FTMP Example

Software Implemented Fault Insertion: An FTMP Example

References 29

References

[Boone et al. 80] L.A. Boone, H.L. Liebergot, and R.M. Sedmak.
Availability, Reliability, and Maintainability Aspects of the Sperry UNIVAC

1100/60.
In FTCS-10, pages 3-9. IEEE, June, 1980.

[Draper 83a] Development and Evaluation of a Fault-Tolerant Multiprocessor Computer,
Vol III, FTMP Test and Evaluation
Charles Stark Draper Laboratories,. 1983.
NASA Contract Report 166073.

[Draper 83b] Development and Evaluation of a Fault-Tolerant Multiprocessor Computer,
Vol. I, FTMP Principles of Operations
Charles Stark Draper Laboratories, 1983.
NASA Contract Report 166071.

[Draper 83c] Development and Evaluation of a. Fault-Tolerant Multiprocessor Computer,
Vol. II, FTMP Software
Charles Stark.Draper Laboratories, 1983.
NASA Contract Report 166072.

[Feather et al. 85]
Frank Feather, Daniel Siewiorek, and Zary Segall.
Validation of a Fault-Tolerant Multiprocessor: Baseline Experiments and

Workload Implementation.
Technical Report CMU-CS-85-145, Carnegie Mellon University, July, 1985.

[Hopkins et al. 78]
A.L. Hopkins, T.B. Smith, and J.H. Lala.
F T M P - A Highly Reliable Multiprocessor.
In Proceeding of the IEEE, pages 1221-1237. October, 1978.

(NASA 79a) NASA-Langley Research Center.
Validation Methods for Fault-Tolerant Avionics and Control Systems -

Working Group Meeting I, NASA-Langley Research Center, 1979.
NASA Conference Publication 2114.

(NASA 79b) Research Triangle Institute.
Validation Methods for Fault-Tolerant Avionics and Control Systems -

Working Group Meeting II, NASA-Langley Research Center, 1979.
NASA Conference Publication 2130.

[Schuette, et al. 86]
M.A. Schuette, J .P. Shen, D.P. Siewiorek, and Y.X. Zhu.
Experimental Evaluation of Two Concurrent Error Detection Approaches.
In FTCS-16, pages 138-143. IEEE, July, 1986.

Software Implemented Fault Insertion: An FTMP Example

[Siewiorek and Swarz 82]
Daniel P . Siewiorek and Robert S. Swarz.
The Theory and Practice of Reliable System Design.
Digital Press, 1982.

[Yang et al. 85] X.Z. Yang, G. York, W.P. Birmingham, and D.P. Siewiorek,
Faul t Recovery of Triplicated Software on the Intel iAPX 432.
In Distributed Computing Systems, pages 438-443. May, 1985.

Software Implemented Fault Insertion: An FTMP Example

