
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

C M U - C S - 8 6 - 1 7 7

Specifying Functional and Timing Behavior
for Real-Time Applications

M.R. Barbacci and J.M. Wing
Carnegie Mellon University

26 November 1986

Abstract

We present a notation and a methodology for specifying the functional and timing behavior of real-time
applications for a heterogeneous machine. In our methodology we build upon well-defined, though
isolated, pieces of previous work: Larch and Real Time Logic. In our notation, we strive to keep separate
the functional specification from the timing specification so that a task's functionality can be understood
independent of its timing behavior. We show that while there is a clean separation of concerns between
these two specifications, the semantics of both pieces as well as their combination are simple.

Comments, suggestions, criticisms, etc., are appreciated. Address them to:

Dr. Mario R. Barbacci Professor Jeannette M. Wing
Software Engineering Institute Department of Computer Science
Carnegie Mellon University Carnegie Mellon University
Pittsburgh, PA 15213 Pittsburgh, PA 15213
(412) 268-7704 (412) 268-3068
Barbacci@sei.cmu.edu.arpa Wing@ccs.cmu.edu.arpa

This research is carried out jointly by the Software Engineering Institute, a Federally Funded Research
and Development Center, sponsored by the Department of Defense, and by the Department of Computer
Science, sponsored by the Defense Advanced Research Projects Agency (DOD), ARPA Order No. 4976,
monitored by the Air Force Avionics Laboratory Under Contract F33615-84-K-1520. Additional support
for J.M. Wing was provided in part by the National Science Foundation under grant DMC-8519254.

The views and conclusions contained in this document are those of the authors and should not be
interpreted as representing official policies, either expressed or implied, of the Software Engineering
Institute, Carnegie-Mellon University, the National Science Foundation, the Department of Defense or the
US Government.

mailto:Barbacci@sei.cmu.edu
mailto:Wing@ccs.cmu.edu.arpa

Table of Contents
1 Problem Context
2 Contributions
3 Introduction to Larch
4 Behavioral Information

4.1 Functional Specifications
4.1.1 Syntax and Meaning
4.1.2 Example

4.2 Timing Specifications
4.2.1 Syntax and Meaning
4.2.2 Example

5 Formal Meaning of Functional and Timing Specifications
5.1 Assigning Meaning to Timing Specifications
5.2 Assigning Meaning to the Combined Specifications

6 Examples
7 Related Work
8 Summary

UNIVERSITY LIBRARIES
CARNEGIli-MEillOM UNIVERSITY

1

1 Problem Context
Many computation-intensive, real-time applications require efficient concurrent execution of multiple tasks
devoted to specific pieces of the application. Typical tasks include sensor data collection, obstacle
recognition, and global path planning, in applications such as robotics and vehicular control. Since the
speed and throughput required of each task may vary, these applications can best exploit a computing
environment consisting of multiple special and general purpose processors that are logically, though not
necessarily physically, loosely connected. We call this environment a heterogeneous machine.

During execution time, processes, which are instances of tasks, run on possibly separate processors, and
communicate with each other by sending messages of different types. Since the patterns of
communication can vary over time, and the speed of the individual processors can vary over a wide
range, additional hardware resources, in the form of switching networks and data buffers are required in
the physical heterogeneous machine. Logically, queues are used to buffer data; processes dequeue data
on queues attached to input ports and enqueue data from queues attached to output ports.

The application developer is responsible for prescribing a way to manage all of these resources. We call
this prescription a task-level application description. It describes the tasks to be executed, the assignment
of processes to processors, the data paths between the processors, and the intermediate queues
required to store the data as it moves from source to destination processes. A task-level description
language is a notation in which to write these application descriptions.

We are using the term "description language" rather than "programming language" to emphasize that a
task-level application description is not translated into object code in some kind of executable "machine
language." Rather, it is to be understood as a description of the structure and behavior of a logical
machine, that will be synthesized into resource allocation and scheduling directives. These directives are
to be interpreted by a combination of software, firmware, and hardware in a heterogeneous machine.

We have an initial design of such a description language [1], a compiler for it, and a simulator that takes
task descriptions as input. A task description (see Figure 1) contains information about four aspects of a
task: (1) its interlace to other tasks (ports) and to the scheduler (signals); (2) its functional and timing
behavior, (3) its attributes, and (4) its internal structure, thereby allowing for hierarchical task
descriptions. Reference [1] contains a more complete explanation of these and other features of the
language. In this paper we focus on only one aspect: the information appearing in the behavior part of a
task description.

2 Contributions
Formal specifications have been used successfully for specifying the functional behavior of software
systems, e.g., individual program modules and abstract data types. These specifications have
traditionally been used to verify a program's correctness ("is the right answer computed?"). Often,
however, one is interested in not only the functional correctness of a system but also other properties,
such as reliability, performance, security, and real-time behavior. Less work has focused on formally
specifying these other properties of software systems, let alone their interactions with each other.

To our knowledge no work has addressed the formal integration of the formal specification of functional
and timing behavior of software. The main contribution of this paper is exactly this integration of
functional and timing specifications as embodied in our task description language.

2

task task-name
ports

port-declarations
signals

signal-declarations
behavior

requires predicate
ensures predicate
timing timing expression

attributes
attribute- value-pairs

structure
process-declarations
queue-declarations
reconfiguration-statements

end task-name

— Usad for coaoninication batwaan a procass and a quaua

— Usad for coominication batwaan a uaar procass and tha schadular

— A description of tha functional and timing bahavior of tha task

— Additional propartias of tha task

A procass-quaua graph describing tha intamal structure of a task

Figure 1: A Template for Task Descriptions

We combine two separate formalisms: an axiomatic specification language, Larch [11, 12], used to

specify functional behavior, and an event expression language used to specify timing behavior. Both are

mapped to the same underlying logic, typed first-order predicate logic, so that their combination has a

formal semantics.

Two significant aspects of our work are as follows:
• Since the formal semantics is relatively simple (first-order logic), not only can people easily

understand our specifications but the specifications themselves can easily be subject to
machine analysis.

• We build upon previous well defined and isolated pieces of research and combine them in a
meaningful way. Their combination is applied in a context (heterogeneous machines) that
itself is of growing interest to those involved in parallel architectures and languages.

3 Introduction to Larch

Before we describe the functional and timing specifications of a task, we give a brief introduction to

Larch1.

Larch uses a two-tiered approach to specifying program modules: a trait defines state-independent
properties, and an interface specification defines state-dependent properties of a program. A trait is
written in the Larch Shared Language (LSL), and it provides the assertion language used to express and
define the meaning of the predicates of an interface specification.
For a program module, such as a procedure, a Larch interface specification is written in a Larch Interface
Language (LIL) and contains predicates about the states before and after the execution of the procedure.
The Larch Interface Language to be used is specific to the programming language in which the procedure
is written (e.g., C, CommonLisp, Ada, etc.). For this paper we will use a relatively simple interface
language, such as would be defined for an Algol-like language.

, ^ K M T h a reader is encouraged to consult the appropnate references .n the
i W e are keeping this introduction to Larch very short The reader .s enc g

bibliography.

3

QVals: trait
introduces
Empty: Q
Insart: Q, S —• Q
Fir»t: Q E
R*«t: Q -> Q
isEmpty: Q —> Bool
isln: Q ; E -4 Bool

constrains Q so that
Q generated by [Empty, Insert]
for all q: Q, a, al: E

First(Insart(Empty), a)) = •
First (Insart(q, •)) - i f isEmpty(q) then a else First (q)
Rast(Insart(q, a)) » if isEmpty(q) then Empty else Insert (Rast (q), a)
i a Empty (Empty) =* trua
isEmpty(Insart(q, •)) * falsa
isln(Empty, a) = falsa
isln(Insart(q, a), al) = (a = al) | ialn(q, al)

a. A Trait for Queue Values

Enquaua =» operation (q: quaua, a: alamant)
ensures s Insart(q, a)

Daquaua = operation (q: quaua) raturns (a: alamant)
requires -isEmpty(q)
ensures 3 8 Raat(q) 4 • = First (q)

b. Interfaces for Queue Operations

Figure 2: A Larch Two-Tiered Specification for Queues

Figure 2 depicts a Larch (two-tiered) specification of queues with Enqueue and Dequeue operations. The
top part of the specification (Figure 2.a) is a trait written in LSL used to describe values of queues. A trait
is akin to an algebraic specification (see Section 7 on Related Work). A set of operators and their
signatures following introduces defines a vocabulary of terms to denote values of a type. For example,
Empty and lnsert(Empty, 5) denote two different queue values. The set of equations following the
constrains clause defines a meaning for the terms; more precisely, an equivalence relation on the terms,
and hence on the values they denote. For example, from the above trait, one could prove that
First(Rest(lnsert(lnsert(Empty, 5), 6))) = 6.

The bottom part of the specification (Figure 2.b) contains two interfaces written in our "generic" Larch
interface language. They describe the functional behavior of two queue operations, Enqueue and
Dequeue (queue operation names are used to write timing expressions, which are described later in this
paper). A requires is a pre-condition on the state of an operation's input data that must be true upon
operation invocation; an ensures is a post-condition on the state of an operations input and output data
that is guaranteed to be true upon operation termination. An omitted predicate is taken to be true. The
specification for Dequeue states that Dequeue must be called with a non-empty queue and that it
modifies the original queue by removing its first element and returning it.

4

4 Behavioral Information s p * * ^ and a

of functional and timing specifications.

4.1 Functional Specifications

4.1.1 Syntax and Meaning
The functional information of a task description (see Figure 1) describes the behavior of the task in terms
of predicates about the data in the queues, before and after each execution of the task. It consists of a
requires clause and an ensures clause, together constituting a simple Larch interface specification. LSL
is used as the assertion language in the predicates of these clauses.

A requires clause states what is required to be true of the data coming through the input ports; an
ensures clause states what is guaranteed to be true of the data going out through the output ports, if
one were to view each cycle of a task as one execution of a procedure, the requires and ensures are
exactly the pre- and post-conditions on the functionality of that cycle.

A task implementation must satisfy the predicates, R and E, of the requires and ensures clauses. A task
implementation is simply a program written in some programming language, e.g., C, CommonLisp, or
Ada. Using Hoare-like notation, an implementation, Prog, satisfies the (functional) specification if:

{R} Prog {E}

It is up to the task implementor to show that a task implementation satisfies the functional specification as

given by the requires and ensures clauses. This verification can be done formally — standard

verification techniques can be used ([13, 14]) and some mechanical tools are available to aid this

process ([9, 19, 22, 21]). We defer to Section 5.2 for the definition of the meaning of the predicates in

the presence of timing information.

4.1.2 Example
Consider a matrix multiplication task (Figure 3) that takes input matrices from two queues and outputs the
result matrix on an output queue. The data traveling through these ports are of type matrix. Matrix values
are specified using LSL just as for queue values, so "rows," "cols" and would be defined in a trait
about matrix values. The requires clause states that the task implementor may assume that the number
of rows of the matrix entering through the port in1, equals the number of columns of the matrix entering
through in2. The ensures clause states that the result of multiplying the two input matrices is output
through the output port.

4.2 T iming Specif ications

4.2.1 Syntax and Meaning

The timing information describes the behavior of the task in terms of the operations that it performs on the
queues attached to its input and output ports; this is the behavior of the task seen from the outside.

5

task multiply
ports

inl, in2: in matrix;
outl: out matrix;

behavior
requires rowa (First (inl)) - cola (First (in2))
ensures Insart(outl. First(inl) * First(in2))

end multiply

Figure 3: The Functionality of a Matrix Multiplication Task

The simplest timing expression is the name of a queue operation, e.g., Enqueue or Dequeue, on a queue
attached to a specific port, e.g., inl. The duration of a queue operation or the delay between two
operations is described by a time window. Time windows are denoted by a pair of time values F m i n ' T m a x l
defining the boundaries of the interval. The time window associated with a queue operation describes the
minimum and maximum time needed to perform the operation. Intervals of time between queue
operations are denoted by a Delay "operation" whose time window describes the minimum and maximum
time consumed by the process in between queue operations.

A composite timing expression denotes the sequential and/or concurrent execution of operations on
queues. Sequential composition is denoted by a space between operations; parallel composition is
denoted by a "||" between operations. For example,

loop (in1.Dequeue[10,15] || in2.Dequeue) delay(*,30) outl.Enqueue
is a sequential timing expression that specifies two parallel Dequeue operations on the queues attached
to the input ports inl and in2 followed, after some delay, by an Enqueue on the queue attached to the
output port outl. The Delay lasts some undetermined amount of time less than 30 seconds. The
Dequeue operation on port inl takes between 10 and 15 seconds to complete. The other two operations
take some implementation dependent default time to complete. The keyword loop denotes a cyclic or
repeating task.

An optional guard in a timing expression specifies:

1. the number of times the task is to be executed: "repeat integer => expression," or

2. during what time interval the task is allowed to start: "during timewindow => expression," or

3. the earliest allowable start time: "after timevalue => expression" or

4. the latest allowable start time "before timevalue => expression" or

5. a predicate on the state of the input queues or the current time which must be true before
the task is allowed to start: "when predicate => expression."

In our examples, we will often drop the name of the queue operation and use just the name of the port
(i.e., "inl" instead of "inl.Dequeue"). Since this paper introduces only two queue operations: Enqueue
and Dequeue, and given that the former applies only to input queues and the other applies only to output
queues, no confusion should occur as to which operation is implied.

6

4.2.2 Example
Consider a matrix multiplication task (Figure 4) that takes input matrices from two queues and outputs the
result matrix on an output queue. The timing clause states that the task does not start executing until
both input queues contain data. Once that condition is satisfied, the task will remove its input data from
both input queues concurrently (the Dequeue operations), will operate on the data for between 10 and 15
seconds (this "computation" time is lumped together under the delay operation), and finally will enqueue
some output in the output queue. Notice another use of LSL in our specifications: the when condition
places a constraint on the state of the queues (not on the state of the data in the queues). We use the
trait from Section 3 to define the assertion language for predicates in a when guard.

task multiply
ports

inl, in2: in matrix;
outl: out matrix;

behavior
requires rowa (Firat (inl)) =» cola (First (in2))
ensures Insart(outl, Firat(inl) * First(in2))
timing when (-isEmpty (inl) and -isEmpty (in2)) »>

((inl.Daquaua || in2.Daquaua) dalay[10,15] outl.Enquaua)
end multiply

Figure 4: The Timing of a Matrix Multiplication Task

5 Formal Meaning of Functional „ „ u r « * . expression,

specifications. We use four of their notational conventions:

Syntax

TA

i A

@(E, i)

P(t1. t2)

Meaning

The start of an operation ("action" in RTL's terminology).

The end of an operation.
The time of the i t h occurrence of event E, where events in our context are the start of
an operation or the end of an operation. @ is an occurrence function that captures
the notion of real-time.
The interval of time during which the predicate P holds. P holds before or at t1, from
t1 to t2, and at or after t2. If t1 and t2 are identical, then P holds at an interval around
tt . For brevity, we will use P(t) when t1 =t2 (i.e., "P holds around time t").

5.1 Assigning Meaning to Timing Specifications
In this section we describe the meaning of our timing specifications in terms of RTL logic. In the following

discussion, we assume E, E1, and E2 are arbitrary timing expressions; A, A l , and A2 are operations; t1

and t2 are times (absolute or relative); a1 and a2 are absolute times; r1 and r2 are relative times; and W

is a predicate of a when guard.
To simplify the exposition, we introduce a simple rewite rule: Any timing expression of the form "repeat
n => E" can be rewritten as a sequence of n occurrences of the unguarded expression E ("E E E ... E").
Thus, the only guards we need to consider are before, after, during, and when.

7

We also introduce the following axioms:

1. For any queue operation A, and for some implementation defined duration T, the following
axiom expresses the duration of A:

V i [@(iA , i) -@(TA , i) = T]

2. For any queue operation A[t1,t2], with a duration defined by the time window [t1,t2], the
following axiom expresses the duration of A:

V i [t 1 < @ (U j) - @ (t A , i) < t 2]

3. For any sequence of queue operations, A1 ... An, the following axiom relates the start and
end times of the sequence to the start and end times of the individual operations:

V i [@(tA, i) = @(TA1, i) A @(lA , i) = @ (i A n , i)]

4. For any parallel queue operations, A1 || ...|| An, the following axiom relates the start and
end times of the composition to the start and end times of the individual operations:

V i [@(TA, i) = min(@(TA1, i),. . . . @(TAn, i)) A @(iA, i) = max(@(iA1, i) f @(iAn , i))]

5. The last two axioms state that cycles in a repeating task do not overlap. Thus, we cannot
have an input operation finish after any of the output operations and we cannot have an
output operation start before any input operation starts:

V i [max(@(iout 1,i),@(iout 2,i),...,@(lout J li)) > max(@(iin 1 fi),@(iin 2,i),...,@(iin K,i)) J

V i [min(@(Tout1 .̂ .(^(Toutg,!) @(Tout J ti)) > min(@(Tin1,i),@(Tin2,i),...,@(TinK,i))]

where J and K are the number of output and input queues, respectively.

We assign a meaning to timing expressions by introducing a function, (Table 1 .a), which maps timing
expressions to Boolean values,

Mj : Timing Expression -H> Boolean.

We use an auxiliary function, op (Table 1.b), which maps timing expressions to operations,

op: Timing Expression -> Operation.

op is needed because "start time" and "end time" are meaningful only for queue operations.

As an example of how to interpret the formalism intuitively, consider the entries for the during guard in
Table 1.a. They specify a time window during which the operation is allowed to start. The first value is
the earliest start time allowed and must be an absolute time value. The second value is the latest start
time allowed and can be an absolute time value or a time value relative to the former. The meaning of the
guarded expression is the conjunction of the meaning of the expression proper and a predicate stating
the restriction on starting times.

5.2 Assigning Meaning to the Combined Specif ications
Given a task description of the form:

task taskname

behavior
requires Req ;
ensures Ens ;
timing E ;

end taskname;

8

TiminQ Expression

(El)

El ... En

E1||...||En

E1 E2

E1 || E2

when W => E1

before a1 => E1

after al => E1

during [a1, a2] => E1

during [a1, r2] => E1

A[r1,r2]

A C M]

A[r1,*]

A

Timing Expression

loop El

E1 ... En

El ||... || En

G = > E 1

A{t1,t2]

A

M^Expression)

M,(E1)

M,((E1 E2) ...En)

A N^EiHEj) for all i

M,(E1) A M,(E2) A V i [@(iflp(E1).i) < @(Top(E2),i)]

M t (E 1)AM t (E 2)A

V i t @(Top(E1). i) < @(iop(E2),i) A @(Top(E2),i) < @(4op(E2) (i)]

M,(E1) A Vi[W(@(Top(E1). i))]

M,(E1) A Vi(@(Top(E1), i1) < a1]

M , (E1) A V i [@(Top(E1), i) > a1]

M,(E1) A V i [a 1 <@(Top(E1), i) < a 2]

M,(E1) A V i [a 1 <@(top(E1), i) < a 1 + r 2]

V i [@(tA, i) + r1 < @(lA, i) < @(TA, i) + r2J

V i [@(iA, i) < @(tA, i) + r1 J

V i [@ (t A , i) + r1 < @ (i A , i)]

true
a. Mapping from Timing Expressions to Booleans

op(Expression)

°p(E1)

op(E1)...op(En)

op(E1)| | . . . | |op(En)

op(E1) for all guards G (when, before, during, and after).

A

A

b. Mapping From Timing Expressions to Operations

Table 1: Assigning Meaning to Timing Expressions

9

we give meaning to the predicates of the functional specification as related to time (i.e., at what times are
these predicates to hold?) via a function Mf which maps from behavioral specifications to Boolean values:

Mf : Predicate x Timing Expression -» Boolean

Predicate Timing Expression ^(Predicate, Expression)

Req E V i [Req(@(Top(E), i)) A M,(E)]
Ens E V i [Ens(@(iop(E), i)) A M^E)]

The function Mf is precisely the link between the functional and timing specifications. This link is
characterizable purely in terms of first-order logic.

6 Examples
Figure 5 shows our multiply task with functional and timing information together. The figure shows two
different multiply tasks, specified to have the same functionality but with different timing behavior. The
timing expression in Figure 5.a states that the multiply task first checks that the input queues are non­
empty, and if so perform two parallel Dequeue operations followed by an Enqueue operation. The timing
expression in Figure 5.b states that the inputs come in sequentially instead of in parallel.

task multiply
ports

inl, in2: in matrix
outl: out matrix

behavior
requires rows (First (inl)) » cols (First (in2))
ensures Insart(outl. First(inl) * First(in2))
timing when (-isEmpty (inl) and -isEmpty (in2)) =>

((inl.Daquaua || in2.0aquaua) dalay[10,15] outl.Enquaua)

a. Parallel Input

task multiply
ports

inl, in2: in matrix
outl: out matrix

behavior
requires rows (First (inl)) =» cols (First (in2))
ensures Insart(outl, First(inl) * First(in2))
timing when (-isEmpty (inl) and -isEmpty (in2)) =>

(inl.Daquaua in2.Daquaua dalay[10,15] outl.Enquaua)

b. Serial Input

Figure 5: Matrix Multiplication Task

To further illustrate the richness of our specification language and to show the benefits of cleanly
separating the functional from the timing information, we write three alternative descriptions for a task built
into our library. This task, deal, has one input port and a number of output ports. Data dequeued from the
input port is enqueued to one of the output ports, but this can be implemented in a number of ways as
illustrated in Figure 6, below2.

FiICR̂ R .SEC

I°ND(IN1)- t h i ^(«n1) . and fourth(inl) as abbrev.at.ons for First(Rest(in1)) First* Rest* Rest< in 1 m F.rst(Rest(Rest(Rest(«n1))», respectively, are defined in the tra.t for queues. Mrsn«esi(Hest(ini))),

http://abbrev.at.ons

10

The first example (Figure 6.a) states that we alternate the dequeueing of input and enqueueing of output
and ensures that first (second) output queue will see the first (second) item removed from the input
queue. The second example (Figure 6.b) states that we dequeue all input before the output operations
start, which themselves take place concurrently. It allows for the first dequeued data item to be enqueued
on either of the output queues, but ensures that the second dequeued item will not be enqueued to the
same as the first. The third example (Figure 6.c) states that input data are dequeued and grouped in
pairs before enqueueing them into the output ports. The first pair is enqueued to the first output queue;
the second pair, to the second.

task daal
ports

inl: in matrix;
outl, out2: out matrix;

^ e n l r e , U M * ^ , rir.t(inl), * ..concMinl,,
timing loop (inl outl inl out2)

end daal
a. Alternating Input and Output

task daal
ports

inl: in matrix;
outl, out2: out matrix;

behavior
ensures [Insart(outl, first(inl)) & Insart(out2, sacond(inl))] |

(Insart(out2, first(inl)) £ Insart(outl, sacond(inl))]
timing loop (inl inl (outl || out2))

and daal
b. Concurrent Output

task daal
ports

inl: in matrix;
outl, out2: out matrix;

behavior
ensures [Insart(outl. First(inl)) £ Insart(outl, sacond(inl)))]

[Insart(out2, third(inl)) & Insart(out2, fourth(inl))]
timing loop (inl inl inl inl (outl I I out2) (outl I I out2))

and daal
c. Grouping Data

Figure 6: Deal Task

7 Related Work
The axiomatic approach to specifying a programs functional behavior has its origins in Hoare's early work
on verification [13] and later work on proofs of correctness of implementations of abstract data types [14],
where first-order predicate logic pre- and post-conditions are used for the specification of each operation
of the type. The algebraic approach, which defines data types to be heterogeneous algebras [2], uses
axioms to specify properties of programs and abstract data types, but the axioms are restricted to
equations. Much work has been done on algebraic specifications for abstract data types
[8 , 7 , 1 0 , 2 7 , 3 , 6 , 2 5 , 1 6] ; we use more recent work on Larch specifications [11, 12] for program

modules. None of this work addresses the formal specification of timing behavior of systems.

11

Operational approaches, such as those based on Timed Petri-net models [20, 23J, are more commonly
used for specifying behavior of real-time systems. Timed Petri-nets can be roughly characterized by
whether "operation" time is assigned to the transitions, as in the original model by Ramchandani [20], or
is assigned to the places, as in Sifakis' model [23]. In addition, both deterministic and stochastic timing
are allowed, giving origin to a variety of models for specifying or evaluating performance requirements.
This has been illustrated in recent work by Coolahan [4] (places, deterministic), Smith [24] (transitions,
deterministic), Wong [26] (places, stochastic), and Zuberek [28] (transitions, stochastic). In contrast, our
work takes a more axiomatic than operational approach to specifying timing behavior.

Specification and verification of timing requirements for real-time systems include recent work by
Dasarthy [5], and by Lee, Gehlot, and Zwarico [17, 29]. This work as well as that by Jahanian and Mok,
whose real-time logic we borrow, all focus on timing properties and not on functional behavior. Either
states are left uninterpreted or predicates on states are simplistic, e.g., boolean modes as in Jahanian
and Mok's work. In contrast, since we have a formal means of specifying the functional behavior of tasks
and the data on which they operate, we have a more expressive specification language with a richer
semantics.

8 Summary
Our approach to specifying the functional and timing behavior of real-time applications for a
heterogeneous machine has the following characteristics:

• It takes advantage of two well defined, though isolated, pieces of previous work.

• There is a clean separation of concerns between the two specifications.

• The semantics of both specifications as well as their combination are simple.

In our language design, we strove to separate the functional specification from the timing specification so
that a task's functionality could be understood independent of its timing behavior. This separation of
concerns gives us the usual advantages of modularity. Different timing specifications can be attached to
the same functional specification. Task implementors can focus on satisfying functionality first, timing
second. Task validation can be performed separately. For example, one could use formal verification for
functionality and simulation for timing.

Since the semantics can be given in terms of first-order predicate logic, our specifications are amenable
to machine manipulation and analysis. The algebraic style of Larch traits can be analyzed by rewrite-rule
tools, e.g., Reve[18]; the two-state predicates of Larch interfaces and thus, task predicates, can be
analyzed by verification systems that support first-order reasoning, e.g., Gypsy, HDM, and FDM
[9,21,22]; formulae in real-time logic can be mechanically transformed into equivalent formulae in

Presburger arithmetic. However, though many of these tools are available, much work is needed to
integrate them so our specifications could be machine checked and analyzed.

12

References

[1] M.R. Barbacd and J.M. Wing.
Durra: A Task-level Description Language.
Technical Report, Software Engineering Institute, Carnegie Mellon University, 1986.

[2] G. Birkhoff and J.D. Lipson.
Heterogeneous Algebras.
Journal of Combinatorial Theory 8:115-133,1970.

[3] R.M. Burstall, and J.A. Goguen.
Putting Theories Together to Make Specifications.
In Fifth InternationalJoint Conference on Artificial Intelligence, pages 1045-1058. August, 1977.
Invited paper.

[4] J.E. Coolahan and N. Roussopulos.
A Timed Petri Net Methodology for Specifying Real-Time System Requirements.

In International Workshop on Timed Petri Nets, pages 24-31. IEEE Computer Society Press,

Torino, Italy, July, 1985.

[5] Dasarthy.

Timing Constraints of Real-Time Systems: Constructs for Expressing Them, Methods of
Validating Them.

IEEE Transactions on Software Engineering 11 (1):80-86, January, 1985.
[6] H.-D. Ehrich.

Extensions and Implementations of Abstract Data Type Specifications.
Lecture Note's in Computer Science. Volume 64.Proceedings of the 7th Symposium on

Mathematical Foundations of Computer Science.
Springer-Verlag, 1978, pages 155-164.

[7] H. Ehrig and B. Mahr.
Fundamentals of Algebraic Specification 1.
Springer-Verlag, 1985.

[8] J.A. Goguen, J.W. Thatcher, E.G. Wagner, and J.B. Wright.
Abstract Data Types as Initial Algebras and Correctness of Data Representations.
In Proceedings from the Conference of Computer Graphics, Pattern Recognition and Data

Structures, pages 89-93. ACM, May, 1975.
D.I. Good, R.M. Cohen, C.G. Hoch, LW. Hunter, and D.F. Hare.
Report on the Language Gypsy, Version 2.0.

Technical Report ICSCA-CMP-10, Certifiable Minicomputer Project, The University of Texas at
Austin, September, 1978.

[10] J.V. Guttag.
The Specification and Application to Programming of Abstract Data Types.
PhD thesis, University of Toronto, Toronto, Canada, September, 1975.

[11] J.V. Guttag, J.J. Horning, and J.M. Wing.
Larch in Five Easy Pieces.
Technical Report 5, DEC Systems Research Center, July, 1985.

[12] J.V. Guttag, J.J. Horning, and J.M. Wing.
The Larch Family of Specification Languages.
IEEE Software 2(5)24-36, September, 1985.

[13] C.A.R. Hoare.
An axiomatic basis for computer programming.
Communications of the ACM 12(10):576-583. October, 1969.

[9]

13

[14] C.A.R. Hoare.
Proof of Correctness of Data Representations.
Acta Informatica t(1):27t-281, 1972.

[15] F. Jahanian and A.K. Mok.
Safety Analysis of Timing Properties in Real-Time Systems.
IEEE Transactions on Software Engineering 12(9) :890-904, September, 1986.

[16] S. Kamin.
Final Data Types and Their Specification.
ACM Transactions on Programming Languages and Systems 5(1):97-121, January, 1983.

[17] I. Lee, and V. Gehlot.
Language Constructs for Distributed Real-Time Programming.
In Proceedings of the Real-Time Systems Symposium, pages 57-66. San Diego, December,

1985.

[18] P. Lescanne.
Computer Experiments with the REVE Term Rewriting System Generator.
In Proceedings of Tenth Symposium on Principles of Programming Languages, pages 99-108.

ACM, Austin, Texas, January, 1983.

[19] D.R. Musser.
Abstract Data Type Specification in the Affirm System.
IEEE Transactions on Software Engineering 6(1):24-32, January, 1980.

[20] C. Ramchandani.
Analysis of Asynchronous Concurrent Systems by Petri Nets.
Technical Report TR-120, MIT Project MAC, 1974.

[21] L Robinson, and O. Roubine.
SPECIAL - A Specification and Assertion Language.
Technical Report CSL-46, Stanford Research Institute, Menlo Park, Ca., January, 1977.

[22] J. Scheid and S. Anderson.
The Ina Jo Specification Language Reference Manual.
Technical Report TM-(L)-6021/001/00, System Development Corporation, Santa Monica, CA,

March, 1985.

[23] J. Sifakis.
Use of Petri Nets for Performance Evaluation.
In Proceedings of the IFIP Third International Workshop on Modeling and Performance Evaluation

of Computer Systems, pages 75-93. North-Holland Publishing Co., Amsterdam, The
Netherlands, 1977.

[24] C.U. Smith.
Robust Models for the Performance Evaluation of Hardware/Software Designs.
In International Workshop on Timed Petri Nets, pages 172-180. IEEE Computer Society Press,

Torino, Italy, July, 1985.

[25] M. Wand.
Final Algebra Semantics and Data Type Extensions.
Journal of Computer and System Sciences 19(1):27-44, August, 1979.

[26] C.Y.Wong, T.S. Dillon, and K.E. Forward.
Timed Places Petri Nets With Stochastic Representation of Place Time.
In International Workshop on Timed Petri Nets, pages 96-103. IEEE Computer Society Press,

Torino, Italy, July, 1985.

14

[27] S.N. Zilles.
Abstract Specifications for Data Types.
IBM Research Laboratory, San Jose, CA, 1975.

[28] W.M. Zuberek.
Performance Evaluation Using Extended Timed Petri-nets.
In International Workshop on Timed Petri Nets, pages 272-278. IEEE Computer Society Press,

Torino, Italy, July, 1985.
[29] A. Zwarico and I. Lee.

Proving a Network of Real-time Processes Correct.
In Proceedings of Real-Time Systems Symposium, pages 169-177. San Diego, December, 1985.

