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Abstract 

We present a notation and a methodology for specifying the functional and timing behavior of real-time 
applications for a heterogeneous machine. In our methodology we build upon well-defined, though 
isolated, pieces of previous work: Larch and Real Time Logic. In our notation, we strive to keep separate 
the functional specification from the timing specification so that a task's functionality can be understood 
independent of its timing behavior. We show that while there is a clean separation of concerns between 
these two specifications, the semantics of both pieces as well as their combination are simple. 
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1 Problem Context 
Many computation-intensive, real-time applications require efficient concurrent execution of multiple tasks 
devoted to specific pieces of the application. Typical tasks include sensor data collection, obstacle 
recognition, and global path planning, in applications such as robotics and vehicular control. Since the 
speed and throughput required of each task may vary, these applications can best exploit a computing 
environment consisting of multiple special and general purpose processors that are logically, though not 
necessarily physically, loosely connected. We call this environment a heterogeneous machine. 

During execution time, processes, which are instances of tasks, run on possibly separate processors, and 
communicate with each other by sending messages of different types. Since the patterns of 
communication can vary over time, and the speed of the individual processors can vary over a wide 
range, additional hardware resources, in the form of switching networks and data buffers are required in 
the physical heterogeneous machine. Logically, queues are used to buffer data; processes dequeue data 
on queues attached to input ports and enqueue data from queues attached to output ports. 

The application developer is responsible for prescribing a way to manage all of these resources. We call 
this prescription a task-level application description. It describes the tasks to be executed, the assignment 
of processes to processors, the data paths between the processors, and the intermediate queues 
required to store the data as it moves from source to destination processes. A task-level description 
language is a notation in which to write these application descriptions. 

We are using the term "description language" rather than "programming language" to emphasize that a 
task-level application description is not translated into object code in some kind of executable "machine 
language." Rather, it is to be understood as a description of the structure and behavior of a logical 
machine, that will be synthesized into resource allocation and scheduling directives. These directives are 
to be interpreted by a combination of software, firmware, and hardware in a heterogeneous machine. 

We have an initial design of such a description language [1], a compiler for it, and a simulator that takes 
task descriptions as input. A task description (see Figure 1) contains information about four aspects of a 
task: (1) its interlace to other tasks (ports) and to the scheduler (signals); (2) its functional and timing 
behavior, (3) its attributes, and (4) its internal structure, thereby allowing for hierarchical task 
descriptions. Reference [1] contains a more complete explanation of these and other features of the 
language. In this paper we focus on only one aspect: the information appearing in the behavior part of a 
task description. 

2 Contributions 
Formal specifications have been used successfully for specifying the functional behavior of software 
systems, e.g., individual program modules and abstract data types. These specifications have 
traditionally been used to verify a program's correctness ("is the right answer computed?"). Often, 
however, one is interested in not only the functional correctness of a system but also other properties, 
such as reliability, performance, security, and real-time behavior. Less work has focused on formally 
specifying these other properties of software systems, let alone their interactions with each other. 

To our knowledge no work has addressed the formal integration of the formal specification of functional 
and timing behavior of software. The main contribution of this paper is exactly this integration of 
functional and timing specifications as embodied in our task description language. 
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task task-name 
ports 

port-declarations 
signals 

signal-declarations 
behavior 

requires predicate 
ensures predicate 
timing timing expression 

attributes 
attribute- value-pairs 

structure 
process-declarations 
queue-declarations 
reconfiguration-statements 

end task-name 

— Usad for coaoninication batwaan a procass and a quaua 

— Usad for coominication batwaan a uaar procass and tha schadular 

— A description of tha functional and timing bahavior of tha task 

— Additional propartias of tha task 

A procass-quaua graph describing tha intamal structure of a task 

Figure 1: A Template for Task Descriptions 

We combine two separate formalisms: an axiomatic specification language, Larch [11, 12], used to 

specify functional behavior, and an event expression language used to specify timing behavior. Both are 

mapped to the same underlying logic, typed first-order predicate logic, so that their combination has a 

formal semantics. 

Two significant aspects of our work are as follows: 
• Since the formal semantics is relatively simple (first-order logic), not only can people easily 

understand our specifications but the specifications themselves can easily be subject to 
machine analysis. 

• We build upon previous well defined and isolated pieces of research and combine them in a 
meaningful way. Their combination is applied in a context (heterogeneous machines) that 
itself is of growing interest to those involved in parallel architectures and languages. 

3 Introduction to Larch 

Before we describe the functional and timing specifications of a task, we give a brief introduction to 

Larch1. 

Larch uses a two-tiered approach to specifying program modules: a trait defines state-independent 
properties, and an interface specification defines state-dependent properties of a program. A trait is 
written in the Larch Shared Language (LSL), and it provides the assertion language used to express and 
define the meaning of the predicates of an interface specification. 
For a program module, such as a procedure, a Larch interface specification is written in a Larch Interface 
Language (LIL) and contains predicates about the states before and after the execution of the procedure. 
The Larch Interface Language to be used is specific to the programming language in which the procedure 
is written (e.g., C, CommonLisp, Ada, etc.). For this paper we will use a relatively simple interface 
language, such as would be defined for an Algol-like language. 

, ^ K M T h a reader is encouraged to consult the appropnate references .n the 
i W e are keeping this introduction to Larch very short The reader .s enc g 

bibliography. 
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QVals: trait 
introduces 
Empty: Q 
Insart: Q, S —• Q 
Fir»t: Q E 
R*«t: Q -> Q 
isEmpty: Q —> Bool 
isln: Q ; E -4 Bool 

constrains Q so that 
Q generated by [ Empty, Insert ] 
for all q: Q, a, al: E 

First(Insart(Empty), a)) = • 
First (Insart(q, • ) ) - i f isEmpty(q) then a else First (q) 
Rast(Insart(q, a)) » if isEmpty(q) then Empty else Insert (Rast (q), a) 
i a Empty (Empty) =* trua 
isEmpty(Insart(q, •)) * falsa 
isln(Empty, a) = falsa 
isln(Insart(q, a), al) = (a = al) | ialn(q, al) 

a. A Trait for Queue Values 

Enquaua =» operation (q: quaua, a: alamant) 
ensures s Insart(q, a) 

Daquaua = operation (q: quaua) raturns (a: alamant) 
requires -isEmpty(q) 
ensures 3 8 Raat(q) 4 • = First (q) 

b. Interfaces for Queue Operations 

Figure 2: A Larch Two-Tiered Specification for Queues 

Figure 2 depicts a Larch (two-tiered) specification of queues with Enqueue and Dequeue operations. The 
top part of the specification (Figure 2.a) is a trait written in LSL used to describe values of queues. A trait 
is akin to an algebraic specification (see Section 7 on Related Work). A set of operators and their 
signatures following introduces defines a vocabulary of terms to denote values of a type. For example, 
Empty and lnsert(Empty, 5) denote two different queue values. The set of equations following the 
constrains clause defines a meaning for the terms; more precisely, an equivalence relation on the terms, 
and hence on the values they denote. For example, from the above trait, one could prove that 
First(Rest(lnsert(lnsert(Empty, 5), 6))) = 6. 

The bottom part of the specification (Figure 2.b) contains two interfaces written in our "generic" Larch 
interface language. They describe the functional behavior of two queue operations, Enqueue and 
Dequeue (queue operation names are used to write timing expressions, which are described later in this 
paper). A requires is a pre-condition on the state of an operation's input data that must be true upon 
operation invocation; an ensures is a post-condition on the state of an operations input and output data 
that is guaranteed to be true upon operation termination. An omitted predicate is taken to be true. The 
specification for Dequeue states that Dequeue must be called with a non-empty queue and that it 
modifies the original queue by removing its first element and returning it. 
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4 Behavioral Information s p * * ^ and a 

of functional and timing specifications. 

4.1 Functional Specifications 

4.1.1 Syntax and Meaning 
The functional information of a task description (see Figure 1) describes the behavior of the task in terms 
of predicates about the data in the queues, before and after each execution of the task. It consists of a 
requires clause and an ensures clause, together constituting a simple Larch interface specification. LSL 
is used as the assertion language in the predicates of these clauses. 

A requires clause states what is required to be true of the data coming through the input ports; an 
ensures clause states what is guaranteed to be true of the data going out through the output ports, if 
one were to view each cycle of a task as one execution of a procedure, the requires and ensures are 
exactly the pre- and post-conditions on the functionality of that cycle. 

A task implementation must satisfy the predicates, R and E, of the requires and ensures clauses. A task 
implementation is simply a program written in some programming language, e.g., C, CommonLisp, or 
Ada. Using Hoare-like notation, an implementation, Prog, satisfies the (functional) specification if: 

{R} Prog {E} 

It is up to the task implementor to show that a task implementation satisfies the functional specification as 

given by the requires and ensures clauses. This verification can be done formally — standard 

verification techniques can be used ([13, 14]) and some mechanical tools are available to aid this 

process ( [9, 19, 22, 21]). We defer to Section 5.2 for the definition of the meaning of the predicates in 

the presence of timing information. 

4.1.2 Example 
Consider a matrix multiplication task (Figure 3) that takes input matrices from two queues and outputs the 
result matrix on an output queue. The data traveling through these ports are of type matrix. Matrix values 
are specified using LSL just as for queue values, so "rows," "cols" and would be defined in a trait 
about matrix values. The requires clause states that the task implementor may assume that the number 
of rows of the matrix entering through the port in1, equals the number of columns of the matrix entering 
through in2. The ensures clause states that the result of multiplying the two input matrices is output 
through the output port. 

4.2 T iming Specif ications 

4.2.1 Syntax and Meaning 

The timing information describes the behavior of the task in terms of the operations that it performs on the 
queues attached to its input and output ports; this is the behavior of the task seen from the outside. 
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task multiply 
ports 

inl, in2: in matrix; 
outl: out matrix; 

behavior 
requires rowa (First (inl)) - cola (First (in2)) 
ensures Insart(outl. First(inl) * First(in2)) 

end multiply 

Figure 3: The Functionality of a Matrix Multiplication Task 

The simplest timing expression is the name of a queue operation, e.g., Enqueue or Dequeue, on a queue 
attached to a specific port, e.g., inl. The duration of a queue operation or the delay between two 
operations is described by a time window. Time windows are denoted by a pair of time values F m i n ' T m a x l 
defining the boundaries of the interval. The time window associated with a queue operation describes the 
minimum and maximum time needed to perform the operation. Intervals of time between queue 
operations are denoted by a Delay "operation" whose time window describes the minimum and maximum 
time consumed by the process in between queue operations. 

A composite timing expression denotes the sequential and/or concurrent execution of operations on 
queues. Sequential composition is denoted by a space between operations; parallel composition is 
denoted by a "||" between operations. For example, 

loop (in1.Dequeue[10,15] || in2.Dequeue) delay(*,30) outl.Enqueue 
is a sequential timing expression that specifies two parallel Dequeue operations on the queues attached 
to the input ports inl and in2 followed, after some delay, by an Enqueue on the queue attached to the 
output port outl. The Delay lasts some undetermined amount of time less than 30 seconds. The 
Dequeue operation on port inl takes between 10 and 15 seconds to complete. The other two operations 
take some implementation dependent default time to complete. The keyword loop denotes a cyclic or 
repeating task. 

An optional guard in a timing expression specifies: 

1. the number of times the task is to be executed: "repeat integer => expression," or 

2. during what time interval the task is allowed to start: "during timewindow => expression," or 

3. the earliest allowable start time: "after timevalue => expression" or 

4. the latest allowable start time "before timevalue => expression" or 

5. a predicate on the state of the input queues or the current time which must be true before 
the task is allowed to start: "when predicate => expression." 

In our examples, we will often drop the name of the queue operation and use just the name of the port 
(i.e., "inl" instead of "inl.Dequeue"). Since this paper introduces only two queue operations: Enqueue 
and Dequeue, and given that the former applies only to input queues and the other applies only to output 
queues, no confusion should occur as to which operation is implied. 
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4.2.2 Example 
Consider a matrix multiplication task (Figure 4) that takes input matrices from two queues and outputs the 
result matrix on an output queue. The timing clause states that the task does not start executing until 
both input queues contain data. Once that condition is satisfied, the task will remove its input data from 
both input queues concurrently (the Dequeue operations), will operate on the data for between 10 and 15 
seconds (this "computation" time is lumped together under the delay operation), and finally will enqueue 
some output in the output queue. Notice another use of LSL in our specifications: the when condition 
places a constraint on the state of the queues (not on the state of the data in the queues). We use the 
trait from Section 3 to define the assertion language for predicates in a when guard. 

task multiply 
ports 

inl, in2: in matrix; 
outl: out matrix; 

behavior 
requires rowa (Firat (inl)) =» cola (First (in2)) 
ensures Insart(outl, Firat(inl) * First(in2)) 
timing when (-isEmpty (inl) and -isEmpty (in2)) »> 

((inl.Daquaua || in2.Daquaua) dalay[10,15] outl.Enquaua) 
end multiply 

Figure 4: The Timing of a Matrix Multiplication Task 

5 Formal Meaning of Functional „ „ u r « * . expression, 

specifications. We use four of their notational conventions: 

Syntax 

TA 

i A 

@(E, i) 

P(t1. t2) 

Meaning 

The start of an operation ("action" in RTL's terminology). 

The end of an operation. 
The time of the i t h occurrence of event E, where events in our context are the start of 
an operation or the end of an operation. @ is an occurrence function that captures 
the notion of real-time. 
The interval of time during which the predicate P holds. P holds before or at t1, from 
t1 to t2, and at or after t2. If t1 and t2 are identical, then P holds at an interval around 
tt . For brevity, we will use P(t) when t1 =t2 (i.e., "P holds around time t"). 

5.1 Assigning Meaning to Timing Specifications 
In this section we describe the meaning of our timing specifications in terms of RTL logic. In the following 

discussion, we assume E, E1, and E2 are arbitrary timing expressions; A, A l , and A2 are operations; t1 

and t2 are times (absolute or relative); a1 and a2 are absolute times; r1 and r2 are relative times; and W 

is a predicate of a when guard. 
To simplify the exposition, we introduce a simple rewite rule: Any timing expression of the form "repeat 
n => E" can be rewritten as a sequence of n occurrences of the unguarded expression E ("E E E ... E"). 
Thus, the only guards we need to consider are before, after, during, and when. 
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We also introduce the following axioms: 

1. For any queue operation A, and for some implementation defined duration T, the following 
axiom expresses the duration of A: 

V i [@( iA , i ) -@(TA , i ) = T ] 

2. For any queue operation A[t1,t2], with a duration defined by the time window [t1,t2], the 
following axiom expresses the duration of A: 

V i [ t 1 < @ ( U j ) - @ ( t A , i ) < t 2 ] 

3. For any sequence of queue operations, A1 ... An, the following axiom relates the start and 
end times of the sequence to the start and end times of the individual operations: 

V i [@(tA, i) = @(TA1, i) A @( lA , i) = @ ( i A n , i)] 

4. For any parallel queue operations, A1 || ...|| An, the following axiom relates the start and 
end times of the composition to the start and end times of the individual operations: 

V i [@(TA, i) = min(@(TA1, i),. . . . @(TAn, i)) A @( iA, i) = max(@(iA1, i) f @( iAn , i))] 

5. The last two axioms state that cycles in a repeating task do not overlap. Thus, we cannot 
have an input operation finish after any of the output operations and we cannot have an 
output operation start before any input operation starts: 

V i [ max(@(iout 1,i),@(iout 2,i),...,@(lout J li)) > max(@(iin 1 fi),@(iin 2,i),...,@(iin K,i)) J 

V i [ min(@(Tout1 .̂ .(^(Toutg,!) @(Tout J ti)) > min(@(Tin1,i),@(Tin2,i),...,@(TinK,i)) ] 

where J and K are the number of output and input queues, respectively. 

We assign a meaning to timing expressions by introducing a function, (Table 1 .a), which maps timing 
expressions to Boolean values, 

Mj : Timing Expression -H> Boolean. 

We use an auxiliary function, op (Table 1.b), which maps timing expressions to operations, 

op: Timing Expression -> Operation. 

op is needed because "start time" and "end time" are meaningful only for queue operations. 

As an example of how to interpret the formalism intuitively, consider the entries for the during guard in 
Table 1.a. They specify a time window during which the operation is allowed to start. The first value is 
the earliest start time allowed and must be an absolute time value. The second value is the latest start 
time allowed and can be an absolute time value or a time value relative to the former. The meaning of the 
guarded expression is the conjunction of the meaning of the expression proper and a predicate stating 
the restriction on starting times. 

5.2 Assigning Meaning to the Combined Specif ications 
Given a task description of the form: 

task taskname 

behavior 
requires Req ; 
ensures Ens ; 
timing E ; 

end taskname; 
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TiminQ Expression 

(El) 

El ... En 

E1||...||En 

E1 E2 

E1 || E2 

when W => E1 

before a1 => E1 

after al => E1 

during [a1, a2] => E1 

during [a1, r2] => E1 

A[r1,r2] 

A C M ] 

A[r1,*] 

A 

Timing Expression 

loop El 

E1 ... En 

El ||... || En 

G = > E 1 

A{t1,t2] 

A 

M^Expression) 

M,(E1) 

M,((E1 E2) ...En) 

A N^EiHEj) for all i 

M,(E1) A M,(E2) A V i [ @(iflp(E1).i) < @(Top(E2),i) ] 

M t ( E 1 )AM t ( E 2 )A 

V i t @(Top(E1). i) < @(iop(E2),i) A @(Top(E2),i) < @(4op(E2) (i) ] 

M,(E1) A Vi[W(@(Top(E1). i))] 

M,(E1) A Vi(@(Top(E1), i1) < a1 ] 

M , (E1) A V i [ @(Top(E1), i) > a1 ] 

M,(E1) A V i [ a 1 <@(Top(E1), i ) < a 2 ] 

M,(E1) A V i [ a 1 <@(top(E1), i ) < a 1 + r 2 ] 

V i [ @(tA, i) + r1 < @( lA, i) < @(TA, i) + r2J 

V i [ @( iA, i) < @(tA, i) + r1 J 

V i [ @ ( t A , i) + r1 < @ ( i A , i)] 

true 
a. Mapping from Timing Expressions to Booleans 

op(Expression) 

°p(E1) 

op(E1)...op(En) 

op(E1)| | . . . | |op(En) 

op(E1) for all guards G (when, before, during, and after). 

A 

A 

b. Mapping From Timing Expressions to Operations 

Table 1: Assigning Meaning to Timing Expressions 
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we give meaning to the predicates of the functional specification as related to time (i.e., at what times are 
these predicates to hold?) via a function Mf which maps from behavioral specifications to Boolean values: 

Mf : Predicate x Timing Expression -» Boolean 

Predicate Timing Expression ^(Predicate, Expression) 

Req E V i [ Req(@(Top(E), i)) A M,(E) ] 
Ens E V i [ Ens(@(iop(E), i)) A M^E) ] 

The function Mf is precisely the link between the functional and timing specifications. This link is 
characterizable purely in terms of first-order logic. 

6 Examples 
Figure 5 shows our multiply task with functional and timing information together. The figure shows two 
different multiply tasks, specified to have the same functionality but with different timing behavior. The 
timing expression in Figure 5.a states that the multiply task first checks that the input queues are non­
empty, and if so perform two parallel Dequeue operations followed by an Enqueue operation. The timing 
expression in Figure 5.b states that the inputs come in sequentially instead of in parallel. 

task multiply 
ports 

inl, in2: in matrix 
outl: out matrix 

behavior 
requires rows (First (inl) ) » cols (First (in2)) 
ensures Insart(outl. First(inl) * First(in2)) 
timing when (-isEmpty (inl) and -isEmpty (in2)) => 

((inl.Daquaua || in2.0aquaua) dalay[10,15] outl.Enquaua) 

a. Parallel Input 

task multiply 
ports 

inl, in2: in matrix 
outl: out matrix 

behavior 
requires rows (First (inl) ) =» cols (First (in2)) 
ensures Insart(outl, First(inl) * First(in2)) 
timing when (-isEmpty (inl) and -isEmpty (in2) ) => 

(inl.Daquaua in2.Daquaua dalay[10,15] outl.Enquaua) 

b. Serial Input 

Figure 5: Matrix Multiplication Task 

To further illustrate the richness of our specification language and to show the benefits of cleanly 
separating the functional from the timing information, we write three alternative descriptions for a task built 
into our library. This task, deal, has one input port and a number of output ports. Data dequeued from the 
input port is enqueued to one of the output ports, but this can be implemented in a number of ways as 
illustrated in Figure 6, below2. 

FiICR̂ R .SEC

I°ND(IN1)- t h i ^(«n1) . and fourth(inl) as abbrev.at.ons for First(Rest(in1)) First* Rest* Rest< in 1 m F.rst(Rest(Rest(Rest(«n1))», respectively, are defined in the tra.t for queues. Mrsn«esi(Hest(ini))), 

http://abbrev.at.ons
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The first example (Figure 6.a) states that we alternate the dequeueing of input and enqueueing of output 
and ensures that first (second) output queue will see the first (second) item removed from the input 
queue. The second example (Figure 6.b) states that we dequeue all input before the output operations 
start, which themselves take place concurrently. It allows for the first dequeued data item to be enqueued 
on either of the output queues, but ensures that the second dequeued item will not be enqueued to the 
same as the first. The third example (Figure 6.c) states that input data are dequeued and grouped in 
pairs before enqueueing them into the output ports. The first pair is enqueued to the first output queue; 
the second pair, to the second. 

task daal 
ports 

inl: in matrix; 
outl, out2: out matrix; 

^ e n l r e , U M * ^ , rir.t(inl), * ..concMinl,, 
timing loop (inl outl inl out2) 

end daal 
a. Alternating Input and Output 

task daal 
ports 

inl: in matrix; 
outl, out2: out matrix; 

behavior 
ensures [Insart(outl, first(inl)) & Insart(out2, sacond(inl))] | 

(Insart(out2, first(inl)) £ Insart(outl, sacond(inl))] 
timing loop (inl inl (outl || out2)) 

and daal 
b. Concurrent Output 

task daal 
ports 

inl: in matrix; 
outl, out2: out matrix; 

behavior 
ensures [Insart(outl. First(inl)) £ Insart(outl, sacond(inl)))] 

[Insart(out2, third(inl)) & Insart(out2, fourth(inl))] 
timing loop (inl inl inl inl (outl I I out2) (outl I I out2)) 

and daal 
c. Grouping Data 

Figure 6: Deal Task 

7 Related Work 
The axiomatic approach to specifying a programs functional behavior has its origins in Hoare's early work 
on verification [13] and later work on proofs of correctness of implementations of abstract data types [14], 
where first-order predicate logic pre- and post-conditions are used for the specification of each operation 
of the type. The algebraic approach, which defines data types to be heterogeneous algebras [2], uses 
axioms to specify properties of programs and abstract data types, but the axioms are restricted to 
equations. Much work has been done on algebraic specifications for abstract data types 
[ 8 , 7 , 1 0 , 2 7 , 3 , 6 , 2 5 , 1 6 ] ; we use more recent work on Larch specifications [11, 12] for program 

modules. None of this work addresses the formal specification of timing behavior of systems. 
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Operational approaches, such as those based on Timed Petri-net models [20, 23J, are more commonly 
used for specifying behavior of real-time systems. Timed Petri-nets can be roughly characterized by 
whether "operation" time is assigned to the transitions, as in the original model by Ramchandani [20], or 
is assigned to the places, as in Sifakis' model [23]. In addition, both deterministic and stochastic timing 
are allowed, giving origin to a variety of models for specifying or evaluating performance requirements. 
This has been illustrated in recent work by Coolahan [4] (places, deterministic), Smith [24] (transitions, 
deterministic), Wong [26] (places, stochastic), and Zuberek [28] (transitions, stochastic). In contrast, our 
work takes a more axiomatic than operational approach to specifying timing behavior. 

Specification and verification of timing requirements for real-time systems include recent work by 
Dasarthy [5], and by Lee, Gehlot, and Zwarico [17, 29]. This work as well as that by Jahanian and Mok, 
whose real-time logic we borrow, all focus on timing properties and not on functional behavior. Either 
states are left uninterpreted or predicates on states are simplistic, e.g., boolean modes as in Jahanian 
and Mok's work. In contrast, since we have a formal means of specifying the functional behavior of tasks 
and the data on which they operate, we have a more expressive specification language with a richer 
semantics. 

8 Summary 
Our approach to specifying the functional and timing behavior of real-time applications for a 
heterogeneous machine has the following characteristics: 

• It takes advantage of two well defined, though isolated, pieces of previous work. 

• There is a clean separation of concerns between the two specifications. 

• The semantics of both specifications as well as their combination are simple. 

In our language design, we strove to separate the functional specification from the timing specification so 
that a task's functionality could be understood independent of its timing behavior. This separation of 
concerns gives us the usual advantages of modularity. Different timing specifications can be attached to 
the same functional specification. Task implementors can focus on satisfying functionality first, timing 
second. Task validation can be performed separately. For example, one could use formal verification for 
functionality and simulation for timing. 

Since the semantics can be given in terms of first-order predicate logic, our specifications are amenable 
to machine manipulation and analysis. The algebraic style of Larch traits can be analyzed by rewrite-rule 
tools, e.g., Reve[18]; the two-state predicates of Larch interfaces and thus, task predicates, can be 
analyzed by verification systems that support first-order reasoning, e.g., Gypsy, HDM, and FDM 
[9,21,22]; formulae in real-time logic can be mechanically transformed into equivalent formulae in 

Presburger arithmetic. However, though many of these tools are available, much work is needed to 
integrate them so our specifications could be machine checked and analyzed. 
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