
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

CMU-CS-86-176

Durra: A Task-level Description Language

Preliminary Reference Manual

V0.1 - November 15, 1986

M.R. Barbacci and J.M. Wing
Carnegie Mellon University

Abstract
Durra is a language designed to support the development of large-grained parallel programming
applications. This document is a preliminary reference manual for the syntax and semantics of the
language. Comments, suggestions, criticisms, etc., are appreciated. Address them to:

Dr. Mario R. Barbacci Professor Jeannette M. Wing
Software Engineering Institute Department of Computer Science
Carnegie Mellon University Carnegie Mellon University
Pittsburgh, PA 15213 Pittsburgh, PA 15213
(412) 268-7704 (412) 268-3068
Barbacci@sei.cmu.edu.arpa Wing@ccs.cmu.edu.arpa

This research is carried out jointly by the Software Engineering Institute, a Federally Funded Research
and Development Center, sponsored by the Department of Defense, and by the Department of Computer
Science, sponsored by the Defense Advanced Research Projects Agency (DOD), ARPA Order No. 4976,
monitored by the Air Force Avionics Laboratory Under Contract F33615-84-K-1520. Additional support
for J.M. Wing was provided in part by the National Science Foundation under grant DMC-8519254.

The views and conclusions contained in this document are those of the authors and should not be
interpreted as representing official policies, either expressed or implied, of the Software Engineering
Institute, Carnegie-Mellon University, the National Science Foundation, the Department of Defense or the
US Government.

http://cmu.edu
mailto:Wing@ccs.cmu.edu.arpa

Table of Contents
1. Introduction 1

1.1. Scenario 1
1.2. Terminology 2
1.3. Notes on Syntax 5
1.4. Keywords and Predefined Identifiers 5
1.5. Literal Values 7
1.6. How To Read This Manual 7

2. Compilation Units 8
3. Type Declarations 9
4. Task Descriptions 1 o
5. Task Selections 11
6. Interface Information 12

6.1. Port Declarations 12
6.2. Signal Declarations 12
6.3. Rules for Matching Selections with Descriptions 13

7. Behavioral Information 14
7.1. Function Part 14

7.1.1. Larch Traits and Specifications 15
7.1.2. Functional Specification of a Task 16

7.2. Timing Part 16
7.2.1. Time Literals 16
7.2.2. Event Expressions and Time Windows 18
7.2.3. Timing Expressions 19
7.2.4. Restrictions on Time Values and Time Windows 20

7.3. Rules for Matching Selections with Descriptions 20
8. Attributes 21

8.1. Rules for Matching Selections with Descriptions 22
9. Structural Information 23

9.1. Process Declarations 23
9.2. Queue Declarations 23
9.3. Data Transformations 24

9.3.1. Off-Line Data Transformations 24
9.3.2. In-Line Data Transformations 25

9.4. Binding Port Names 27
9.5. Process-Queue Graph Reconfiguration 27

10. Predefined Language Facilities 29
10.1. Functions 29
10.2. Attributes 30

10.2.1. Mode Attribute 30
10.2.2. Implementation Attribute 30
10.2.3. Processor Attribute 30

10.3. Tasks 31
10.3.1. Broadcast 31
10.3.2. Merge 31
10.3.3. Deal 31
10.3.4. Illustrative Task Descriptions 32

10.4. Configuration File 33
11. Appendix An Extended Example 34

11.1. Data Transformation Tasks 34
11.2. Type Declarations 34
11.3. Task Descriptions 34
11.4. Application Description 37

1

COMMENT - Durra, also called "Indian millet'' and "Guinea com, " is a type of grain sorghum
with slender steles, widely grown in warm dry regions. Durra sounds Ike "durable'' which
isnt a bad connotation. Carnegie Institute personnel indicated that com is by far the
largest in size of aH grains. We respectfully declined their suggestion for a name denoting
"largest grain." v

1 . Introduction
Many computation-intensive, reai-time applications require efficient concurrent execution of multiple tasks
devoted to specific pieces of the application. Typical tasks include sensor data collection, obstacle
recognition, and global path planning in robotics and vehicular control applications. Since the speed and
throughput required of each task may vary, these applications can best exploit a computing environment
consisting of multiple special and general purpose processors that are logically, though not necessarily
physically, loosely connected. We call this environment a heterogeneous machine.

During execution time, processes, which are instances of tasks, run on possibly separate processors, and
communicate with each other by sending messages of different types. Since the patterns of
communication can vary over time, and the speed of the individual processors can vary over a wide
range, additional hardware resources, in the form of switching networks and data buffers are required in
the heterogeneous machine.

The application developer is responsible for prescribing a way to manage all of these resources. We call
this prescription a task-level application description. It describes the tasks to be executed, the possible
assignments of processes to processors, the data paths between the processors, and the intermediate
queues required to store the data as they move from source to destination processes. A task-level
description language is a notation in which to write these application descriptions. The problem we are
addressing is the design of a task-level description language.

We are using the term description language rather than programming language to emphasize that a
task-level application description is not translated into object code of some kind of executable "machine
language." Rather, it is to be understood as a description of the structure and behavior of a logical
machine, that will be synthesized into resource allocation and scheduling directives. These directives are
to be interpreted by a combination of software, firmware, and hardware in a heterogeneous machine.

Although our ultimate goal is to design and implement a task-level description language that can be used
for different machines and for varying applications, our first pass is influenced by both a specific
architecture, HETO [4], and by a specific application, the Autonomous Land Vehicle (ALV), and more
specifically, the perception components of the ALV [5]. We assume there is a cross-bar switch, intelligent
buffers on the switch sockets, and a scheduler that can communicate with all processors, buffers, and I/O
devices.

1 . 1 . Scenario
Here is a scenario from the user's viewpoint of how the task-level language is used to help develop an
application to run on some target, heterogeneous machine. We see three distinct phases in the process:

t. the creation of a library of tasks,

2. the creation of an application description, and

3. the execution of the application.

2

Library creation activities
These happen early in the life of an application, when the primitive tasks are defined.

I . The developer breaks the application into specific tasks. Typical tasks are sensor
processing, feature recognition, map database management, and route planning. Other
tasks might be of a more general nature, such as sorting, array operations, etc.

2. The developer writes code implementing the tasks. For a given task, there may be possibly
many implementations, differing in programming language (e.g., one written in C or one
written in W2), processor type (e.g., Motorola 68020 or IBM 1401), performance
characteristics, or other attributes. The writing of a task implementation is more or less
independent of Durra and involves the coding, debugging, and testing of programs in
various languages executing on various machines.

3. The developer writes task descriptions and enters them into the library. This is where Durra
first enters the picture. Durra is used to write specifications of each task's performance and
functionality, the types of data it produces or consumes, and the ports it uses to
communicate with other tasks.

Description creation activities
These happen when the user decides to put together an application (say, autonomous land vehicle) using

as building blocks tasks in the library.
1. The user writes a task-level application description. Syntactically, a task-level application

description is a single task description and could be stored in the library as a new task. This
allows writing hierarchical task-level application descriptions.

2. The user compiles the description. During compilation, the compiler retrieves task
descriptions matching the task selections specified by the user from the library and
generates a set of resource allocation and scheduling commands to be interpreted by the
scheduler.

3. The user links the output of the compiler with run-time support facilities, obtaining a
scheduler program.

Application execution activities
I . The scheduler downloads the task implementations, i.e., code, to the processors and

interprets the scheduling commands and initialization code for the machine.

2. The heterogeneous machine runs the processes on processors as dictated by the
scheduler program.

1.2. Terminology
Durra is used for describing process interaction at a logical, not physical, level, and thus it can be used
independently of any physical configuration of an actual heterogeneous machine. We will use different
terms to distinguish between the physical network (P) of processors, memories, and switches
implementing the heterogeneous machine, and the logical network (L) of processes and data queues
implementing the application (A). Figures 1 and 2, respectively, illustrate the physical and logical
components of the system.
buffers (P) computers acting as input or output devices, interfacing processors with the switch.

As an optimization, buffers execute predefined tasks such as merge, deal, broadcast,
and data transformations.

implementation (A) code written in some programming language for a specific processor, and satisfying

the performance, functional, and other requirements specified in a task description,

ports (L) processes' logical input or output devices. Input ports remove data from queues;

Scheduler

Processors

Buffers
(processor*
memory)

Switch

Buffers
(processor*
memory)

Data Paths Control Paths
Switched
Permanent

Figure 1 Physical Components

PROCESS.PORT

Figure 2 — Logical Components

5

output ports deposit data in queues.

process (L) a uniquely identifiable instance of a task, running on a processo of the heterogeneous
system. The same task may be instantiated any number of times to obtain multiple
processes executing the same code.

processor (P) a computer in the heterogeneous system, not to be confused with the scheduler
processor or the buffers. Each processor in the heterogeneous system has one or
two buffers that act as interfaces between the processor and the switch. Processors
send data to and receive data from buffers as their means of communication with
other processors.

queue (L) a uniquely identifiable logical link between two processes, following a FIFO discipline.
Queues serve as intermediaries between input and output ports.

a computer serving as resource allocator and dispatcher in the heterogeneous
system. It controls the switch, all processors, and all buffers.

an interconnection network used to tie together all processors in the heterogeneous
system. The switch routes data between the buffers attached to the processors.

an abstraction of a set of implementations, each written for a class of processors,
implementing part of an application. Tasks are stored in libraries.

The processes of the system are implemented by downloading and executing task implementations, i.e.,
programs, onto processors of the right kind. The queues of the system are implemented by allocating
space in the corresponding buffers' memories. This is illustrated in Figure 3.

scheduler (P, L)

switch (P)

task (L, A)

1.3. Notes on Syntax
To describe the syntax of the Task-Level Description Language, we use the standard Backus-Naur-Form
(BNF), with the following conventions.

1. Commas separate alternatives. Braces ("{" and "}") indicate optionality.

2. Terminal symbols are enclosed in quotes (" and "), but the quotes do not belong to the
terminal.

3. No distinction is made between upper and lower case letters in terminals and non-terminals.

4. A non-terminal of the form x y z _ L i s t c o m m a stands for a list of one or more xyz's separated by
commas, i.e., the c h a r a c t e r n o t the string "comma."

5. Comments start with the characters Any characters between "--" and the end of the
line are ignored.

6. Identifiers are, in the usual fashion, sequences of letters, digits, and (underscore),
beginning with a letter.

7. Strings are arbitrary sequences of Ascii printable characters, enclosed in double quotes (").
A double quote inside a string must be written as two consecutive double quotes:

"A string with a double q u o t e , i n s i d e "

8. Integer and real numbers are always decimal, i.e., base 10. A real number can terminate
with a period "."without a fractional part.

1.4. Keywords and Predefined Identifiers
Keywords and predefined identifiers are highlighted in normal text by writing them in bold face, or in
"quotes", respectively. The following words are keywords in the language: after, and, array, ast,
attributes, before, behavior, bind, est, date, days, during, end, ensures, est, gmt, hours, identity, if,

Figure 3 — Mapping of Logical and Physical Components

7

index, in, is, local, loop, minutes, months, mst, not, of, or, out, ports, process, pst, queue,
reconfiguration, remove, repeat, requires, reshape, reverse, rotate, seconds, select, signals, size,
structure, task, then, timing, to, transpose, type, union, when, years.

The following words are predefined identifiers in the language: "broadcast", "current_size",
"currentJime", "deal", "delay", "get", "implementation", "merge", "minusjime", "mode", "plusjime",
"processor", "put",

1.5. Literal Values
Each of the non-terminals IntegerValue, RealValue, StringValue, and TimeValue stands for (a) literals
(constants) of the appropriate kind, or (b) names of attributes (Section 8) whose values are literals of the
appropriate kind, or (c) calls to one of the predefined functions in the language (Section 10.1) returning
values of the appropriate kind:

IntegerValue ::= IntegerLiteral ,
GlobalAttrName ,
FunctionCall

RealValue ::= RealLiteral ,
GlobalAttrName ,
FunctionCall

StringValue ::= StringLiteral ,
GlobalAttrName ,
FunctionCall

TimeValue ::= TimeLiteral ,
GlobalAttrName ,
FunctionCall

1.6. How To Read Th is Manual
This manual is written top-down, so the reader should be aware that there are many forward references.
One can read this manual from beginning to end to get an overview of the language, and then read
individual sections to understand the details of each language feature.

8

2 . Compilation Units
Syntax:
Compilation : := CoxnpilationUnit_Li3t##Blicolon * ';''
CompilationUnit ::= TypeDeclaration ,

TaslcDescription
Meaning:
There are two kinds of compilation units (i.e., separately compilable structures): type declarations a

task descriptions.

Any number of compilation units can be submitted to the compiler as a group, in a single text file. Ec
unit is compiled in order, and if no errors are detected, the unit is entered into the library. It can then
used by units compiled later, including units submitted later in the same compilation.

9

3 . Type Declarations
Syntax:
TypeDeclaration :: = '^TYPE''

*'TYPE''
TypeNaxne ''IS' ' TypeStructure ,
TypeName ''IS'' UnionStructure

• — > 11

TypeNaxne
TypeSt rueture

ArrayDimension
ElexnentSize

Unionst ructure
Examples:
type packet is size 128 to 1024;
type tail* is array (5 10) of packet;
type mix is union (heads, tails) ;

:= Identifier
"SIZE" ElementSize ,
' 'ARRAY' ' ArrayDimension * 'OF' ' TypeName
(' IntegerValue_List Positive integer

IntegerValue ,
IntegerValue ' 'TO''

space 1

Positive number of bits
IntegerValue

— Non-negative size range
UNION" '(' TypeName List

— Packets art of variable length
— Tails are 5 by 10 arrays of packets

— Mix data could be heads or tails

Meaning:
Type declarations are compilation units that define the structure of the data produced or consumed by the
tasks. A type declaration introduces a global name for a data type, or a set of previously declared types,
which can then be used in port declarations.

There are two kinds of type declarations. First, a type declaration can specify the structure of the data
moving through a process port. The basic data type is a sequence of bits of fixed or variable (but bound)
length. More complex types are declared as multi-dimensional arrays of simpler types. Second, a type
can specify the union of a number of previously declared, i.e., named, types where data items moving
through a process port could be one of any of the member types.

10

4. Task Descriptions
Syntax:
TaakDescription : : = TASK'' TaskName

InterfacePart
{ BehaviorPart }

{ AttrDescriptionPart }
{ StructurePart }

END'' TaskName

Meaning:
Task descriptions are compilation units used as building blocks for task-level application descriptions.

A task description is divided into four components: (1) interlace information, (2) behavioral information, (3)
attributes, and (4) structural information. All these components will be described in later sections. Figure
4 shows a template for a task description, where the ports and signals clauses constitute the interface
information.

task task-name
ports

port-declarations
— Used for communication between a process end e queue

signals
signal-declarations
— Used for communication between a process and the scheduler

behavior
function-predicates
timing-expressions

A description of the behavior of the task

attributes
a ttribute- va lue-pairs
— Additional properties of the task

structure
process-declarations
queue-declarations
binding-declarations
reconftgura tion-sta tements
— A process-queue graph describing the internal structure of a task

end task-name;

— REQUIRED

— OPTIONAL

— OPTIONAL

— OPTIONAL

— OPTIONAL

Figure 4: A Template for Task Descriptions

11

5. Task Selections
Syntax:
TaskSelection ::= **TASK'' TaakName

{ PortDeclarationPart }
{ SignalDeclarationPart }

{ BehaviorPart }
{ AttrSelectionPart }

{ * 'END'' TaskName }
Meaning:
Task selections are templates used to identify and retrieve task descriptions from the library.

A given task, e.g., convolution, might have a number of different implementations that differ along
dimensions such as algorithm used, code version, performance, or processor type. In order to select
among a number of alternative implementations, the user provides a task selection as part of a process
declaration, as described in Section 9.1. This task selection lists the desirable features of a suitable
implementation.

Syntactically, a task selection looks somewhat like a task description without the structure part, and all
other components except for the task name are optional. For example, notice that in the syntax of a task
declaration, the interface part (Section 6) requires the declarations of the ports, whereas in a task
selection, the declaration of the ports is optional. Figure 5 shows a template for a task selection. For
brevity, if only the task name is given, the terminating "end task-name" is optional.

task task-name
REQUIRED

ports — OPTIONAL
port-declarations

A signature that must match port directions and types of
— that of a task description in tha library.

signals — OPTIONAL
signa (-declarations

A signature that muat match signal directions and names of
— that of a task description in the library.

behavior — OPTIONAL
function-predicates
timing-expressions

A specification of the desired functionality and timing behavior of
that of a task description in the library.

attributes — OPTIONAL
a ttribute- va/ue-pa/rs
— Named (actual) attributes used to match (formal) attributes of

those of a task description in the library.
end task-name optional if only the task name is specified

Figure 5: A Template for Task Selections

12

6. Interface Information

::= PortDeclarationPart { SignalDeclarationPart } Syntax:
InterfacePart

^ n t l r t a c e portion of a task description or a task selection provides information about the ports oi the

processes instantiated from the task and the signals used by the processes instanced from the task to

communicate with the scheduler.

PORTS' ' PortDeclaration_List - a m i c o l o n
\ \ . * r

PortName_List
PortName_List
Identifier
{ ProcessName

y \ . r r t »in'' TypeName
\ y . r r * *0UT' ' TypeName

} PortName

6.1. Port Declarations
Syntax:
PortDeclarationPart :
PortDeclaration

PortName
GlobalPortName
Examples:
ports

inl: in heads;
outl, out2: out tails;

Meaning:
A port declaration specifies the direction of the data movement and the type of data moving through the

port.
Port names must be unique within a task. Outside the task, ports are identified by their global name,
obtained by prefixing the name of a process (instance of a task) to the name of the port, e.g., pi .out2.

6.2. Signal Declarations

Syntax:

SignalDeclarationPart

SignalDeclaration
'OUT'

SignalName
GlobalSignalName
Examples:
signals

Stop, Start/ Resume: in ;
RengeError, FormatError: out;
Read: in out;

: := *'SIGNALS' '
SignalDeclaration_List - # m i c o l o n

:= SignalName_ListcotnBA " I N "
SignalName L i s t ^ ^
SignalName List. m ' '

:= Identifier
:= { ProcessName ".'' } SignalName

13

Meaning:
Signals are special messages exchanged between a process and the scheduler. A signal declaration
specifies the direction of the signal. An in signal is a message that a process can receive from the
scheduler; an out signal is a message that a process can send to the scheduler; an in out signal is used
for both directions of communication.

All signal names must be unique within a task. Outside the task, a signal is identified by compounding the
name of a process (instance of a task) with the name of the signal, e.g., p1 .Restart.

6.3. Rules for Matching Selections with Descriptions
If a task selection provides a port declaration clause, the port names provided in the task selection
override the port names provided in the task declaration. The port declaration lists must otherwise be
identical, i.e., the number, the order, the directions, and the types must be identical.

If a task selection provides a signal declaration clause, the clause must be identical to that provided in the
task description, i.e., the names, number, and directions must be identical.

14

7. Behavioral Information
Syntax:
BehaviorPart .= * *BEHAVIOR' ' FunctionPart TimingPart

..- / ^REOUIRES" predicate « \-" }
FunctionPart • t (, , ^ 3 ^ 3 - predicate ' \" ")

TimingPart
predicate
Meaning

• = { % * TIMING' ' TimingExpression »%;' ' }

Larc/r Predicate1

M e a n i n g .
The behavioral information part specifies functional and timing information about the task.

The functional information part of a task description consists of a pre-condition (requires) on what is
required to be true of the data coming through the input ports, and a post-condition (ensures) on what is
guaranteed to be true of the data going out on the output ports.

The timing information part of a task description consists of a timing expression following the keyword

timing. The timing expression describes the behavior of the task in terms of the operations it performs on

its input and output ports.

The formal meaning of the behavioral information is essentially based on first-order logic. In what follows,

we give only an informal meaning of the individual parts and their combination. See[1] for the formal

meaning.

7.1. Function Part
The functional information of a task description describes the behavior of the task in terms of predicates
about the data in the queues, before and after each execution cycle of the task. The Larch Shared
Language is used as the assertion language in the predicates of these clauses. We restrict this section to
a very brief outline of Larch's approach.
Larch [2, 3] uses a two-tiered approach to specifying program modules: a trait defines state-independent
properties, and an interface specification defines state-dependent properties of a program. A trait is
written in the Larch Shared Language (LSL), and it provides the assertion language used to express and
define the meaning of the predicates of an interface specification.

For a program module such as a procedure, a Larch interface specification is written in a Larch Interface
Language and contains predicates about the states before and after the execution of the procedure. The
Larch Interface Language (LIL) to be used is specific to the programming language in which the
procedure is written (e.g., C, CommonLisp, or Ada.)

Essent ia l ly , a first-order assertion, [2\.

15

7.1.1. Larch Traits and Specifications
Figure 6 depicts a Larch (two-tiered) specification of queues with "put" and "get" operations. The top part
of the specification (Figure 6.a) is a trait written in LSL used to describe values of queues. A set of
operators and their signatures following introduces defines a vocabulary of terms to denote values of a
type. For example, Empty and lnsert(Empty, 5) denote two different queue values. The set of equations
following the constrains clause defines a meaning for the terms; more precisely, an equivalence relation
on the terms, and hence on the values they denote. For example, from the above trait, one could prove
that First(Rest(lnsert(lnsert(Empty, 5), 6))) ^ 6.

The bottom part of the specification (Figure 6.b) contains two interfaces written in a "generic" Larch
interface language. They describe the functional behavior of two queue operations, "put" and "get"
(queue operation names are used to write timing expressions, which are described in Section 7.2.3.) A
requires is a pre-condition on the state of an operation's input data that must be true upon operation
invocation; an ensures is a post-condition on the state of an operation's input and output data that is
guaranteed to be true upon operation termination. An omitted predicate is taken to be true. The
specification for "get1' states that "get" must be called with a non-empty queue and that it modifies the
original queue by removing its first element and returning it.

QVals: trait
introduces
Empty: —• Q
Insert: Q, E —• Q
First: Q -» E
Rest: Q -> Q
isEmpty: Q —• Bool
isln: Q, E —> Bool

constrains Q so that
Q generated by [Empty, Insert]
for all q: Q, a, el: E

First(Insert(Empty), e)) = e
First (Insert (q, e)) = if isEmpty(q) then e else First (q)
Rest (Insert (q, e)) » if isEmpty(q) then Empty else Insert (Rest (q) , e)
isEmpty(Empty) = true
isEmpty(Insert(q, e)) = false
isln(Empty, e) = false
isln(Insert(q, e), el) = (e = el) | i«In(q, el)

a. A Trait for Queue Values

Put » operation (q: queue, e: element)
ensures » Insert (q, e)

Get a operation (q: queue) returns (e: element)
requires -isEmpty (q)
ensures g p o < t - Rest(q) & e * First (q)

b. Interfaces for Queue Operations

Figure 6: A Larch Two-Tiered Specification for Queues

16

7.1.2. Functional Specification of a Task
We use a similar approach as Larch's for the specification of the functional behavior of a task. That is, we
view the task as a procedure whose input and output "parameters" are defined by the ports of the task
A requires clause states what is required to be true of the data coming through the input ports; an
ensures clause states what is guaranteed to be true of the data going out through the output ports.

If one were to view each cycle of a task as one execution of a procedure, the requires and ensures are
exactly the pre- and post-conditions on the functionality of that cycle. An omitted predicate is taken to be

true.

These are not assertions about the queues connected to the ports. For instance, an assertion could be
made that a datum of some type was sent to an output port. It cannot be asserted that the datum is in the
associated output queue, at the end of the task execution, because it could have been removed by then.

It is up to the implementor of a task to verify that the functionality of the task satisfies the requires and

ensures predicates. A task description writer and user may assume that the task implementor performed

such verification either formally or informally.

For example, consider the matrix multiplication task in Figure 7. The task takes input matrices from two
queues and outputs the result matrix on an output queue. The requires clause states that the task
implementor may assume that the number of rows of the matrix entering through the port in1 equals the
number of columns of the matrix entering through in2. The ensures clause states that the result of
multiplying the two input matrices is output through the output port.

task multiply
ports

inl, i n 2 : in matrix;
outl: out matrix;

behavior
requires "row§ (First (inl)) « col«(Fir«t (in2))" ;
ensures "Insart(outl. First(inl) * First (i n 2)) " ;

end multiply;
Figure 7: A Matrix Multiplication Task

from the outside.

7.2.1. Time Literals

17

Syntax:
TimeLiteral

Date
years
months
days
TimeOfDay

hours
minutes
seconds

TimeUnit

TimeZone

IndeterminateTime
Examples:
5:15:00 est

15.5 hours ast

{ Date " 8 " } TimeOfDay
IndeterminateTime
years W months ' V "

IntegerValue
IntegerValue
Int egerValue
{ { hours '*:'' } minutes
RealValue TimeUnit ,
IntegerValue TimeUnit ,
IntegerValue
IntegerValue
IntegerValue ,
RealValue
* *YEARS'' ,
* 'MONTHS' ' §
"DAYS'' ,
' *HOURS' ' ,
* 'MINUTES" ,
' ' SECONDS' '
* 'EST' '
> ̂ CST' '
> ̂ MST' '
* 'PST' '
* 'GMT' '
* 'LOCAL'
' 'AST' '
x \ it t I

I TimeZone }

days

— range is 1..12
— range is 1..31

} seconds ,

— range is 0..23
— range is 0..59

— Eastern Standard Time
Central Standard Time

— Mountain Standard Time
Pacific Standard Time

Greenwich Meridian Time
Local Time

Application Start Time

2:10

2.1667 minutes

--An absolute time: 5 hours 15 minutes Eastern Standard Time.
An application relative time: 15 hours and 30 minutes

— after the start of the application.
— An event relative time: 2 minutes 10 seconds

— after some base event.
— Approximately the same event relative time as above

— 10 seconds is l/6th of a minute.
* — An indeterminate point in time.
Meaning:
Time values are used to specify points in time. These can be either (1) absolute, i.e., independent of the
application, in which case they must be followed by the name of a time zone; (2) relative to the application
start time, in which case they must be followed by the fictitious time zone "ast"; or (3) relative to some
prior event in the application, in which case neither a date nor a time zone is allowed.

The notation allows for alternative ways of denoting time of day or time elapsed between events. Time
can be expressed in the familiar formats "HH:MM:SS", t 4MM:SS", or just "SS". Thus, a plain number
represents a number of seconds. Time can also be expressed as a multiple of other time units by writing

18

a number followed by a unit name such as seconds, minutes, hours, days, months, or years. The use
of seconds as a time unit is redundant, but allowed for completeness' sake. The format adopted by a
user might depend on the nature of the application, on any standard conventions in the application
domain, on the magnitude of the time scale, on the precision required, or simply on aesthetic, personal
preferences.

7.2.2. Event Expressions and Time Windows

Syntax:
EventExpression ::= GlobalPortName

{ ' ' .'' QueueOperation }
{ TimeWindow }

%*DELAY'' TimeWindow
: : = % * [" TimeValue % \ " TimeValue * *] "
::= Identifier — Configuration dependent

TimeWindow
QueueOperation
Examples:
inl
inl.gat
inl.gat[5, 15]

dalay[10, 15]

dalayt*, 10]

dalay[10, *]

Meaning:

An operation (gat, by default) on tha quaua faading port inl.
— An oparation taking a systaa dafault tima to complata.

— An oparation taking batwaan 5 and 15 aaconda to complata.
— A dalay intarval lasting batwaan 10 and 15 saconda.

— A dalay intarval taking at moat 10 saconds.
— A dalay intarval taking at laaat 10 sacond*.

Meaning:
Queue operations performed by the processes constitute the basic events of an application description.
An event expression represents a queue operation on a queue attached to a specific port, taking a
variable amount of time to complete. A pseudo-operation, "delay", is used to represent the time
consumed by the process between (real) queue operations.
The name of the queue operation is optional. If the name is not given, a default queue operation is
assumed: "get" for input ports, "put" for output ports. The complete list of queue operations is
configuration dependent, as described in Section 10.4.

Time windows are used to describe the duration of a queue operation or the delay between two
operations. Time windows are denoted by a pair of time values P"m i n ,Tm a x] defining the boundaries of the

interval.

The time window associated wiih a queue operate descnbes the minimum

consumed by the process in between queue operations.

19

7.2.3. Timing Expressions
Syntax:
TimingExpression ::= { ''LOOP" } CyclicTimingExpression
CyclicTimingExpression ::= ParallelEventExpressionList
ParallelEventExpression
Bas icEventExpres sion

space*
- BasicEventExpression List, "double_vertical Jbar
:= EventExpression ,

{ Guard " = > " } ' (' CyclicTimingExpression ') '
Guard ::= ''REPEAT'' IntegerValue ,

''BEFORE'' TimeValue , — Absolute time
''AFTER'' TimeValue , — Absolute time
''DURING'' TimeWindow , — T . is Absolute time

n u n

''WHEN'' '"' predicate '"'
predicate Larch Predicate?
Examples:
inl || in2[10,15] — Two parallel input operations, starting simultaneously.
inl[0,5] delay[10,15] outl — Two sequential inputs operations with an intervening delay,
repeat 5 => (inl [0,5] delay [10,15] outl) — Same as above but as a cycle repeated five times,
before 18:00:00 local » > (. . .) — A sequence constrained to start before 6 pm.
after 18:00:00 local = > (. . .) — A sequence constrained to start after 6 pm.
during [18:00:00 local, 12 hours] = > (. . .) — A sequence constrained to start at night,
when -empty(inl) and -empty(in2) => ((inl.get)| in2.get) outl.put);

— A sequence constrained to start after both input queues have data,
loop when -empty(inl) and -empty(in2) => ((inl.get || in2.get) outl.put);

— The same sequence as above but repeated indefinetely.
Meaning:
A timing expression is a regular expression describing the patterns of execution of operations on the input
and output ports of a task. The keyword loop can be used to indicate that the pattern of operations is
repeated indefinitely.

A timing expression is a sequence of parallel event expressions. Each parallel event expression consists
of one or more event expressions separated by the symbol "||" to indicate that their executions overlap.
Since the expressions might take different amounts of time to complete, nothing can be said about their
completion, other than a parallel event expression terminates when the last event terminates.

Parallel events start simultaneously but are not necessarily completed at the same time. In the
expression "(inl || in2[10,15])'\ the duration of the input operation on port inl defaults to some
configuration-dependent value (See Section 10.4) and might be shorter or longer than the explicit
duration of the input operation on port in2, i.e., between 10 and 15 seconds.

A basic event expression is either a queue operation (including "delay") or a timing expression enclosed
in parentheses. The latter form also allows for the specification of a guard, an expression specifying the
conditions under which a sequence of operations is allowed to start or repeat its execution.

Essent ia l ly , a first-order assertion, [2].

20

after

during

when

Guard Description
repeat This guard indicates repetitions of a timing expression. The number of repetitions is

a non-negative integer value.
before This guard is followed by an absolute time value representing the latest start time

allowed. If the deadline does not include a date, i.e., it is just a time of day, and the
deadline has passed, then the sequence is blocked at most until midnight of the
current date and will unblock at "00:00:00" of the following day. The task is
terminated if a dated deadline has passed.
This guard is followed by an absolute time value representing the earliest start time
allowed. If necessary, the sequence is blocked until the deadline. If the deadline
does not include a date, i.e., it is just a time of day, then the sequence is blocked at
most 24 hours. For example, if it is "00:00:00.000" and the deadline is
"23:59:59.999" the sequence will unblock at the end of the day.
This guard is followed by a time window during which the sequence is allowed to
start. The first value is the earliest start time allowed and must be an absolute time
value; the second value is the latest start time allowed and can be an absolute time
value or a time value relative to the former.
This guard describes what is required to be true of the state of the system (i.e., time
and queues, see Section 10.1) before the sequence is allowed to start. It is a pre­
condition for starting the sequence.

7.2.4. Restrictions on Time Values and Time Windows
Although the syntax allows both absolute and relative time values to appear in either of the two

boundaries in a time window, not all of the possible combinations make sense:
1. A date in a time value that uses the "ast" time zone is meaningless.
2. In the time window attached to a queue operation, including "delay", the time values must

be relative (i.e., no dates or time zones allowed) and are interpreted relative to the start of
the operation.

3. In the time window of a during guard, the first time value (T m i n) must be absolute. The
second time value (T m a x) can be absolute or relative. In the latter case, the time value is
relative to T m i n .

7.3. Rules for Matching Selections with Descriptions
The meaning of the behavioral information is a predicate, Mf(R, T) => M^E, T), where R is the requires
predicate, E is the ensures predicate, T is the timing expression, and Mf is the meaning function
mapping a predicate and timing expression into a boolean [1].

A task description matches a task selection if the predicate associated with the behavioral information of

the task description implies that of the task selection. If no timing expression appears, the predicate

simplifies to R => E, and that of a task description must imply that of the task selection.

Currently there are no facilities to check these implications and timing expressions, so for the time being

the behavioral information part of a task description is treated as commentary information. However,

timing expressions are used to simulate the behavior of a task and are therefore required by the simulator

[6].

21

8. Attributes
Syntax:
AttrDescriptionPart
AttrDescription
AttrSelectionPart
AttrSelection
AttrName
Globa 1 At t rName
AttrDis junction

AttrConjunction

AttrPrimary

AttrTerm

Attrvalue

:= "ATTRIBUTES" AttrDescription List
— semicolon '

:= AttrName ' ' = '' AttrValue
'ATTRIBUTES" AttrSelection List semicolon

:= AttrName '' = ''
:= Identifier
= { ProcessName

AttrDisjunction

t » t r) AttrName
:= AttrConjunction ,

AttrDisjunction *'OR'' AttrConjunction
:= AttrPrimary,

AttrConjunction ''AND'' AttrPrimary
:= AttrTerm ,

''NOT'' AttrTerm
:= AttrValue ,

'(' AttrDisjunction ') '

OtherAttrValue

-white", "blue");
Vuar/jmw/alv/cowcatcher. o ";

::= OtherAttrValue ,
'(' OtherAttrValue List, , ') ' ,
ModeAttrvalue ,
ImplementationAttrvalue ,
ProcessorAttrValue ,

::= IntegerValue ,
RealValue ,
StringValue ,
TimeValue

Examples:
attributes
author =* "jmww;
color =» ("red",
implementation 3

Queue__Size = 25
attributes

author » " jaw" or "mrb",
color » "red" and "blue" and not ("green" or "yellow");
processor =» Warpl;
mode a grouped__by__4 ;

Meaning:
Attributes specify miscellaneous properties of a task. They are a means of indicating pragmas or hints to
the compiler and/or scheduler. In a task description, the developer of the task lists the possible values of
a property; in a task specification, the user of a task lists the desired values of a property. All attribute
values used in matching task selections with task descriptions must be constants, computable before
execution time, i.e., tasks and their implementations are static properties of an application.

Example attributes include: author, version number, programming language, file name, and processor
type. There may be as many attributes as desired. Attributes defined in other tasks can be accessed by
prefixing the name of the attribute with the name of a process instantiated from that task, e.g., p1 .author.

Attributes in a task declaratic

Attributes in a task selectic

22

The name of an attribute can appear in any context in which its value can appear. For instance, if the
user defines an attribute "Queue_Size" as in the examples then "Queue_Size" can appear anywhere an
integer value is expected. This permits the user to name say, a queue size and use the name to declare
queues with identical size in a number of task descriptions. Another use is to instantiate 'families" of
tasks, i.e., tasks that share the same value for some attribute, as shown in Figure 8.

task Haatar Task process
Mastar__Proca«s:

attributes
Kay__Nama m some value;
... other attributes, maybe...

end Mastar__Task;

pi: task foo
attributes
Kay_Nama » Maatar_Proca«» .KayJNama;
... other attributes, maybe...

end foo;
p2: task bar

attributes
Kay_Nama » Maatar_Procaaa .Kay__Nama;
... other attributes, maybe...

end bar;

— a taak salaction

— S. ilua aa Maatar_Procass

— Sama valua aa Hastar_Proca»a

Figure 8: Use of Global Attribute Names

The syntax and semantics of the attribute values are attribute dependent. If the attribute is not predefined
in the language, the values are treated as uninterpreted numbers, time values, or strings, as the case
may be, and compatibility is based on value equality. If the attribute is predefined in the language, the
syntax for the legal values is given in Section 10.2, and compatibility is attribute dependent.

The following attributes are predefined in the language: "mode" (specifies the mode of operation for a
deal or merge predefined task); "implementation" (specifies the location of the task implementation); and
"processor" (specifies the processor type on which the implementation can run). These are described in
Section 10.2.

8.1. Rules for Matching Selections with Descriptions
If a task selection specifies an attribute not present in a task description, no match occurs, i.e., the
compiler skips this description and continues searching for a candidate. If a task description provides an
attribute not specified in a task selection, the attribute is ignored.

If a task selection provides a predicate (a disjunction) for an attribute, a matching task description must
provide values that satisfy the predicate, i.e., the disjunction yields true when evaluated in the context of
the values declared for the attribute. If a task description provides a single value for an attribute, a
matching task selection must provide exactly that value.

23

9. Structural Information
Syntax:
StructurePart ::= * *STRUCTURE''

StructureClause List ^
— space

{ ReconfigurationClause-Listapac# }
StructureClause ::= *'PROCESS'' ProcessDeclaration_List - # m i c o l o n' '; " ,

' 'QUEUE' ' QueueDeclaration_List - # a i c o l o n ' '; " ,
"BIND" PortBinding_List - # m i c o l o n

ReconfigurationClause : := •''RECONFIGURATION''
Reconf iguration_List # # a i c o l o n

Meaning:
Process and queue declarations appear under the keyword structure in a task description. These
declarations define a graph in which processes are the nodes, and queues are the links. These graphs
depict the internal structure of a compound task. The structure part of a task description provides the
means for developing hierarchical task descriptions.

9.1. Process Declarations
Syntax:
ProcessDeclaration ::= ProcessName List ^ . TaskSelection

_ c omnia
Examples:
p i : task obstacle_finder;
p2: task obstacl*_finder ports foo: in , bar: out end obatacle_findar;
p3, p4: task obstacle_f indar attributes author=Mmrb" end obstacle_findar;
Meaning:
An instance of a task is bound to each process's name. The name of a task is the minimal part of a task
selection. Local, actual names (e.g., ports "foo" and "bar" in the example) can be introduced by
providing a port declaration, provided that the types of ports specified in the task declaration are identical
to those provided in the task selection. If they are left out, the formal names used in the task description
are used instead.

9.2. Queue Declarations
Syntax:
QueueDeclaration
QueueDefinition

QueueName
QueueSize
GlobalQueueName

:= QueueName { QueueSize } '':
:= GlobalPortName

''>" ProcessName ''>' '
GlobalPortName

GlobalPortName
' ' TransformExpression ''>''

GlobalPortName
= Identifier

''['' IntegerValue ''] ' '
= { ProcessName '' . ' ' } QueueName

QueueDefinition

24

Examples:
q l : p i > > p2 ;

q l : p i > (2 1) transpose > p2

q l [1 0 0 J : p i > xyx > p2 ;

— Two porta connactad through an unboundad quaua.
— Tha two porta muat hava tha •ama typa.

— Two porta connactad through an unboundad quaua.
-- Tha data array* ara tranapocad in tha quaua.

— Two porta connactad through a boundad (aiza m 100) quaua.
— Data ara tran*£ormad in tha quaua by a procaaa ''xyz''.

Meaning:
A queue definition establishes a logical link between two ports that communicate by passing data from the
first port (source) to the second port (destination). The queue name must be unique within the task
description defining the process-queue graph. The (optional) queue bound declares the maximum
number of elements that will be stored in the queue at any one time. If a queue is full when a "put"
operation is attempted, the process trying to store the data waits until the queue has space for the new
item. If the queue bound is not provided, a configuration dependent, default queue length is assumed, as
described in Section 10.4.
When establishing a logical connection, the ports are checked for type compatibility. Non-union types are
compatible if they have the same name. Union types are compatible if the source set is a subset of the
destination set. A non-union source type is compatible with a union destination type if the source type
name is a member of the destination set.

If the types are not compatible, the user must provide a data transformation operation that will convert

objects of one type into the other as described below.

9.3. Data Transformations
Data transformations are operations applied to data coming from a source port in order to make them

acceptable to a destination port.

A data transformation is required if the input and output port types are not compatible. Such

transformations are needed if, for instance, the types have the same structure but the data are in the

wrong format, e.g., turning a square array on its side or converting between floating-point formats.

Complicated transformations can be written as separate tasks, in which case an appropriate task must be

selected and instantiated as a process, and the process name must be specified in the queue declaration.

Simple transformations can be specified directly in the queue declaration.

9.3.1. Off-Line Data Transformations
Complex data transformations can be specified as regular tasks by writing a procedure in some
programming language suitable for either the buffers or one of the heterogeneous processors and
entering an appropriate task description in the library. These data transformation tasks must declare
exactly one input port and one output port.

25

task corn*r_turning
ports

inl: in 1 andmar k_ro w_maj o r;
outl: out 1 andmark_co 1 umn__major;

attributes
implamantation m "/usr/mrb/scraatch.o"
proc««for =• buf farjprocassor;

end cornar_turning;

9.3.2. In-Line Data Transformations
Syntax:
TransformExpression :
TransformOp

ReshapeOp
SelectOp
TransposeOp
RotateOp
ReverseOp
DataOp
VectorArgument

ArrayArgument

Examples:

Transf ormOp_List s p A C #

ReshapeOp ,
SelectOp ,
TransposeOp,
RotateOp,
ReverseOp,
DataOp
VectorArgument *'RESHAPE''
ArrayArgument ''SELECT''
VectorArgument ''TRANSPOSE''
ArrayArgument ''ROTATE''
IntegerValue ''REVERSE''
Identifier
' (' IntegerValue_List spaca

1 'IDENTITY' '
' 'INDEX' ' ') '

'(' IntegerValue"
'(' IntegerValue

:= VectorArgument ,
'(' ArrayArgument List ') '

— spaca '

~- Empty vector

If the input is a 2x2x3 3-dimensional array:
(3 4) reshape

(12) reshape
— rashapas tha input array into a 3x4 2-dimansional array.

— unravals tha array.

If the input is a 2-dimensional array:
((3 2 3) (*)) select

(<*) (5 2 3)) select

(2 1) transpose

(1 -2) rotate

Additional examples:
(5 identity)

(5 index)

2 reverse

ganaratas an array conaiating of rows 5 2 and 3, in that ordar.
— ganaratas an array conaiating of columns 5 2 and 3, in that ordar.

— Transposa* tha array in tha normal mannar.
— Rotatas aach row laft 1 position and than rotates

aach column of tha raault down 2 positions.

— Ganaratas tha vactor (1 1 1 1 1) .
— Ganaratas tha vactor (12 3 4 5).

Ravarsas tha alamants along tha 2nd coordinata of an input array.

26

Meaning:
The most common cases of data transformations are expected to be n-dimensional array manipulations.
For these operations, the language provides a short-cut: it is not necessary to write task implementations,
i.e., program code, and task descriptions and to enter them in the library. It suffices to specify the
transformations as part of the queue declaration.
In-line data transformations are specified in post-fix notation, interpreted left-to-right, with arguments
preceding the operators, and with the input port providing the initial argument. In general, the arguments
are multi-dimensional arrays (nested vectors) of scalar data values.

Operator

integer identity

integer index

vector reshape

array select

vector transpose

Description
generates the vector (1 1 ... 11).

generates the vector (1 2 ... N).
unravels an array (i.e., linearizes it) and then reshapes into an array with the
dimensionality of the argument vector. The input array is linearized in row order, i.e.,
by scanning all of the positions varying the highest dimension first. This operation
must be specified if the input and output array do not have the same shape but the
array elements are in the right order when the arrays are unraveled,
extracts (slices) pieces of a data array. If the input is a vector, (5) select represents
the 5th element, and (5 2 3) select is a new vector consisting of the 5th, 2nd, and 3rd
elements in that order. A vector of the form "(*)" selects all components along one
dimension.
permutes the dimensions of a data array according to the argument vector (V). The
Ith coordinate of the input array becomes coordinate V[i] of the result.

scaJar_or_vector rotate
specifies rotations of n-dimensional data arrays. The operator is preceded by an
argument which must be either a scalar (signed) integer value or a parenthesized
array of (signed) integer values. The magnitude of the values specify the number of
positions to rotate the input data, and the sign of the values specify the direction of
the rotation: a positive amount indicates rotation towards lower indices.
A scalar argument specifies how to rotate an input vector. An n-length vector of
scalars specifies how to rotate an n-dimensional input array along each dimension
(one element per dimension). An n-length vector of vectors argument specifies how
to rotate an n-dimensional input array along each dimension (one top level vector per
dimension) and within each dimension, how to rotate each "row" (one element of a
second level vector per row.)
For example, consider the transformation "((1 2 0) (-3 -4)) rotate" applied to a 2-
dimensional 3x2 input array. The vector (12 0) specifies how to rotate the rows; the
vector (-3 -4) specifies how to rotate the columns. The first row is rotated left 1
position, the second row is rotated left 2 positions, the third row is left unchanged.
Then the first column is rotated down 3 positions, and finally, the second column is
rotated down 4 positions.

integer reverse reverses the order of the elements of an array along an arbitrary coordinate specified
by the integer argument. If the input is a vector, the argument must be "1". In the
transformation "2 reverse", if the input is a 2-dimensional array, this operation
shuffles columns; if the input is a 3-dimensional array, this operation shuffles planes.

Data Operations scalar operations applied to each element of an input array. The set of operations is
configuration dependent. The initial set will include operations to round, truncate, or
otherwise convert between various integer and floating-point formats, as described in
the configuration file, Section 10.4.

This is a first attempt at 6ei\n\ng the set of the operations a user is likely to perform on n-dimensional

27

— External port
= GlobalPortName „ Internal port

arrays. The guiding principle is to keep the notation simple; more complex transformations should
probably be specified as off-line transformations.

A data transformation operation is more than just a way to achieve type compatibility between ports. It
also serves to specify operations that would be inappropriate or inefficient if written as part of one of the
tasks. For example, consider an application that requires scanning an array in different directions (e.g.,
first by rows, then by columns) and performing some operation on each element (e.g., computing the
average of the neighbors). Rather than writing several versions of the task, one for each traversal
pattern, one could simply write one version of the task, and then instantiate it as many times as
necessary. Each process so instantiated could then take its input arrays from queues that perform the
appropriate transposition, as in "ql:pl>(2 1) transpose>p2". Arrays produced by p1 are transposed
while in the queue, before they are delivered to p2.

9.4. Binding Port Names
Syntax:
PortBinding ::= ExtPortName ' ' = '' IntPortName
ExtPortName : := PortName
IntPortName
Example:
bind
p__daal. inl = obatacla__f indar. inl ;
p__marga. outl = obatacla_f indar. outl ;

Meaning:
A port binding maps a port of the process-queue graph defining the internal structure of a task to a port
defining the external interface of a task.

9.5. Process-Queue Graph Reconfiguration
Syntax:
Reconfiguration ::= ''IF'' RecPredicate ''THEN''

{ ProcessTermination-Listspaca }
Structure_ListspAC4fc

' 'END' ' * * I F "
ProcessTermination ::= ''REMOVE'' GlobalProcessName List

— comma
RecPredicate : := RecDisjunction ,

RecPredicate ''OR'' RecDisjunction
RecDisjunction ::= RecConjunction ,

RecDisjunction ''AND'' RecConjunction
RecConjunction ::= RecRelation ,

''NOT'' '(' RecPredicate ') '

28

RecTerm - if RecTerm ,
RecTerm ' RecTerm ,
RecTerm RecTerm ,
RecTerm ' RecTerm ,
RecTerm RecTerm ,
RecTerm , > < = , ' RecTerm ,

RecRelation : := Keciena - — , — Equal
* * '-' ' o~~n^™ — N o t equal

— Greater
— Greater than or equal

— Less
™ — Less than or equal

RecTerm ::= IntegerValue ,
RealValue ,
StringValue ,
TimeValue

Examples:
if Curr«nt_jrim* > - 6:00:00 local and Currant_Tima < 18:00:00 local

then
process

p_vision: task vision attributes processor » warp2;
queue

cj_vi«ion__i:oad: p_daal.out3 > > p_vision.ini;
C(_obataclas: p_viaion.outl > > p_marga. in3;

end if;

Meaning:
A reconfiguration statement is a directive to the scheduler. It is used to specify changes in the current
structure, i.e., process-queue graph, of the application and the conditions under which these changes
take effect. Typically, a number of existing processes and queues are substituted by new processes and
queues which are then connected to the remainder of the original graph. The reconfiguration predicate is
a boolean expression involving time values, queue sizes, and other information available to the scheduler
at run time.
Notice that nothing is being said about the internal representation of time values. They are definitely not
like integer or real values time values cannot be mixed with regular numeric values in an expression. In
addition, currently the language does not provide any arithmetic operators for time values. However, a
few predefined system functions provide for the computation of past or future time values, as described in
Section 10.1.

29

10. Predefined Language Facilities

10.1. Functions
Syntax:
FunctionCall ::= FunctionName { FunctionParameters }
FunctionName : := ' 1CURRENT_TIME' ' ,

% 'MINUS_TIME' '
* 'PLUS TIME' '
1 'CURRENTSIZE' '

FunctionParameters : := %(' Parameter List r r t W B i a — Function dependent
Parameter ::= IntegerValue ,

RealValue ,
StringValue ,
TimeValue

Examples:
Plu*_JTima (Currant__Tima, 2.5 hours) — 2.5 hours from tha currant tima
Currant_Siza (Ma»tar__Proca«» .Data_Port) — tha aiza of a quaua faading a port
Meaning:
The following functions are predefined in the language: "currenMime", "minus_time", "plus_time"f and
"current_sizeM.

The function call "Current_Time" returns the current time as an absolute date in the local time zone.

The function call "Minus_Time(TimeValue1TimeValue2)M returns the time value obtained by subtracting
TimeValue2 from TimeValue1. The following cases are allowed:

1 - If both parameters are absolute times, the result is a relative time, i.e., a duration.
TimeValue1 must be later than TimeValue2.

2. If TimeValue1 is an absolute time and TimeValue2 is a relative time, the result is an
absolute time in the same time zone as TimeValue1.

3. If both parameters are relative times, the result is a relative time. TimeValue1 must be
larger than TimeValue2.

The function call "Plus_Time(TimeValue1 tTimeValue2) , ? returns the time value obtained by adding
TimeValue2 to TimeValue,. The following cases are allowed:

1. If one parameter is an absolute time and the other parameter is a relative time, the result is
an absolute time in the same time zone.

2. If both parameters are relative times, the result is a relative time, i.e., a duration.

The function call "Current__Size(GlobalPortName)M returns the current number of elements stored in the
queue associated with a given port.

Calls to these functions can appear anywhere a value of the same kind as the return value can appear.
That is, a call to a function returning an integer, a real, a string, or a time value can appear instead of an
integer, a real, a string, or a time value, respectively.

30

10.2. Attributes
The following attributes are predefined in the language: "mode", "implementation", and "processor".

10.2.1. Mode Attribute

Syntax:
ModeAttr : := * 'MODE'' ' % = " ModeAttrValue
ModeAttrValue . ::= Identifier
Meaning:
The values of the "mode" attribute are identifiers denoting the operation performed by one of the
predefined tasks: "broadcast", "merge", and "deal", as described in Section 10.3.
The formal specification of the operation is given by the behavioral part of the task description. The
identifiers used as values for the "mode" attribute are just a convenient shorthand to select what are
expected to be frequently used tasks. Users are more likely to select predefined tasks by specifying a
mode value (i.e., an identifier) than by specifying a timing expression or a function predicate.

The following identifiers are representative of typical values for the "mode" attribute: "random", "fifo",

"round_robin", "byjype", "balanced", "grouped_by__2". The actual values are implementation

dependent.

10.2.2. Implementation Attribute

Syntax:

ImplementationAttr : := 1 'IMPLEMENTATION' ' * * = " Implement at ionAttrValue
ImplementationAttrValue : := StringValue
Examples:
implamantation =* M/usr/cbw/hatO/damo. o" ;

Meaning:
The value of the implementation attribute is the name of the file containing the actual object code. The

format of a file name may vary with the host operating system.

10.2.3. Processor Attribute

Syntax:
ProcessorAttr ::= ''PROCESSOR'' ''='' ProcessorAttrValue
ProcessorAttrValue ::= Identifier ,

Identifier '(' Identifier List, , ') '

Examples:
proc««for * m68000(m68020, m68032);
proc«tfoc a m68020(pl, p2, p3);
proc««cor » m68032(p4, p5);
proc*afor a i.bml 401;
proc«tsor = warp(warpl, warp2);
proc«ffor » buffar_jproca««or;

31

Meaning:
The configuration of the heterogeneous machine specifies the different values for the "processor"
attribute, including names of classes of processors as well as names of individual processors, as
illustrated above. See Section 10.4 for details about specifying the configuration of the heterogeneous
machine.

The value of the ''processor" attribute can vary in specificity by using a processor class name or an
individual processor name. For example, WARP means any Warp processor; WARP1 means that Warp
processor.

If the user specifies the name of a class of processors as the value of the "processor" attribute, any one
of the members of the class can be used to execute the task. If the user specifies a class name and a set
of members (in parentheses), any one of the members of this set can be used to execute the task. The
members of the set must be a subset of the class as defined by the configuration.

10.3. Tasks
The following tasks are predefined in the language: "broadcast", "merge", and "deal".

10.3.1. Broadcast
"broadcast" is a task with one input port and as many output ports as needed. Input data are replicated
and sent to all the output ports. Port names are inl for the input port and out 1, out2,..., outN for the
output ports.

10.3.2. Merge
"merge" is a task with one output port and as many input ports as needed. The type of the output port is
the union of all the input types. Input data items are merged and sent to the output port. Port names are
inl, in2,...t inNior N input ports and outl for the output port.

A merge discipline must be provided as a value to the "mode" attribute, as described in Section 10.2.1.
Possible values include "random" (unordered), "fifo" (ordered by time of arrival to the merge process),
and "round_/obin" (one from each input port and repeating.) Because of transmission delays, the order
of arrival of the data might differ from the order in which the data were sent out. A FIFO merge process
uses time of arrival, not time of creation, to order the data.

10.3.3. Deal
"deal" is a task with one input port and as many output ports as needed. The type of the input port is the
union of all the output types. Input data items are sent to one output port. Port names are inl for the
input port and outl, out2,...f outN for the output ports.

A deal discipline must be provided as a value to the "mode" attribute, as described in Section 10.2.1.
Possible values include "random" (unordered), "round_robin" (one to each output port and repeating),
"by_typeM, "grouped_by_2'\ and "balanced". If dealing by type, the output port must be uniquely
identifiable (i.e., there is exactly one output port of the right type for each possible type accepted by the
input port.) This is the only kind of "deal" process in which multiple output types make sense. Other
kinds of "deal" processes require compatible output types.

32

10.3.4. Illustrative Task Descriptions
Figure 9 illustrates typical task descriptions for the predefined tasks. The task description in Figure 9.a
depicts a 2-output broadcast task that handles items of some type "packet" in parallel. The task
description in Figure 9.b depicts a 2-input merge task that handles items of type packet in round robin
fashion. Finally, the task description in Figure 9.c depicts a 2-output deal task that handles items of type
packet in round robin fashion.

task broadcast
ports

inl: in packat;
outl, out2: OUt packat;

behavior
ensures "insart(outl, first(inl)) £ insart(out2, first(inl))";
timing loop (inl (outl || out2))

attributes
moda » parallal;

end broadcast;

a. Parallel Broadcast

task marga
ports

inl, in2: in packat;
outl: out packat;

behavior
ensures "insart(insart(insart(outl, first(inl)), first(in2)), first(in3))";
timing loop ((inl in2 in3) (rapaat 3 »> outl));

attributes
moda = saquantial_round_robin;

end marga;
b. Round-Robin Merge

task daal
ports

inl: in packat;
outl, out2: OUt packat;

behavior
ensures "insart(outl, first(inl)) £ insart(out2, sacond(inl)) ";
timing loop (inl outl inl out2);

attributes
moda = saquantial_round_robin;

end daal;
c. Round-Robin Deal

Figure 9: Predefined Task Descriptions

These descriptions do not really exist in the library. The compiler generates them on demand to satisfy

process declarations of the form:
pb: task broadcast attributes moda = identifier; end broadcast;
pm: task marga attributes moda * identifier end marga;
pd: task daal attributes moda =* identifier end daal;

where identifier \s "parallel", "sequentialj-ound^robin", etc., as defined by the implementation.

33

10.4. Configuration File
Information about the configuration of the heterogeneous machine, the location of system files and
Hbranes, and other random information required by the compiler, library, and scheduler appears in a
configuration file.

procMior » warp(warp__l, warp2);
proc««ior « •un(iun_l, *un__2, «un__3) ;
implamantation • "/uar/cbw/hatlib/";
dafault_input_oparation - ("gat", 0.01 seconds, 0.02 seconds) ;
dafault_output__oparation » ("put", 0.0*5 seconds, 0.10 seconds) ;
dafault_quau*_langth » 100;
data_oparation - ("fix", "fix.o");
data_oparation • (-float", "float.o H) ;
data_oparat ion » (" round__f loat", " round. o ") ;
data_oparation =» ("truncata_float", "trunc.o");

Figure 10: Configuration File

The configuration file in Figure 10 illustrates the definition of the hardware configuration (values for the
"processor" attribute), the location of the system task implementations, and various pieces of information
about queues and queue operations.

In the "processor" attribute, the meaning of a class name is understood by the scheduler as standing for
any of the specific values in the class (i.e., a run-time choice of processors). Notice that this choice can
be restricted by the user in a task description by specifying a subset of the class, and restricted even
further in a task selection by specifying an even smaller subset of allowable processors.

The example configuration file also specifies the location of system files, in particular, the
implementations of system tasks. Additional information in the file would describe default queue
operations, data transformations, etc.

Keep in mind that the configuration file is not written in the task description language. The example
shown is just an illustration of the kinds of information that are likely to be contained in the file — form and
content of the file are implementation dependent.

34

11 ADDendix -- An Extended Example
^"iL. a ttsR-fcv* descp^on o. a «c « .na , appUcatav A p r o c a s s - q u ^ graph o,the

application appears in Figure 11.

11.1. Data Transformation Tasks
task cornar_turning

porta
inl: in landmark_rowjnajor;
outl: out landiaark_column_ma jor;

attributes
implementation » "/usr/mrb/screeten.o";
proc«ffor =* buf£ar_aprocas•or;

of/70r attributes uniquely identifying an implementation
and cornar_turning;

11.2. Type Declarations
typa map__dat abase is .
typa daatination is
typa local_path is .
typa recognized__road is .
typa road_selection is .
typa vehicle_position is .
typa vehicle_motion is .
typa wheeljmotion is .
typa landmark is .
typa landmark_list is .
typa landmark_row_jaa jor is .
typa 1 andmar k__co lumn_major i«
typa vision_road is .
typa aonar_road is
typa laser_road is
typa road is
typa obstaclas is

11.3. Task Descriptions
task navigator
ports

inl: in map__databasa;
in2: in destination;
outl: out road_aelection;
out2 : out landmark_list;

attributes
author • Hjmw M;
varsion » "l.O";
procassor =* Nm68020 N;

and navigator;
task roadjpr edict or
ports

inl: in map_dat abase;
in2: in road_aelection;
in3: in vehicle^position;
outl: out road;

and road_j?r edict or;
task landmark_j>redictor
ports

inl: in landmark_list;
in2: in vehicle_position;
outl: out landraark__row_major;

end landmark^jpredictor;

Figure 11 — Example Process-Queue Graph

36

task road__£indar
porta

inl: in road;
outl: out racognizad__road;

and road^findar;
taak landmark_racognizar

porta
inl: in landmark__column_major;
outl: out landmark_colunn_major;

and landmark_racognizar;
taak viaion
porta

inl: in viaion__road;
outl: out obataclaa;

attribute*
procaaaor = warp;

and viaion;
taak aonar
porta

inl: in «onar_road;
outl: out obataclaa;

attributaa
procaaaor a warp;

and sonar;
taak laaar
porta

inl: in laaar_road;
outl: out obataclaa;

attributaa
procaaaor — warp;

and laaar;
taak poaition_computation
ports

inl: in 1 andmark__co 1 umn__major;
in2: in vahicla_jnotion;
outl, out2: out vahicla_poaition;

and poaition_computation;
taak local_path_j3lannar
porta

inl: in whaal_motion;
in2: in obataclaa;
outl: out local_path;
out2: out vahiclajmotion;

and local_path__plannar;
taak vahicla__control
porta

inl: in local_j?ath;
outl: out whaaljnotion;

and van icla_control;

37

task obstacle_finder
porta

inl: in recognixed_road;
outl: out obstacles;

behavior
loop (inl[10, 15] outl[3, 4]);

structure
process
p_deal: task deal attributes moda » by_type end daal;
p_merge: task marga attributes moda » fifo and merge;
p_»on*r: task sonar;
p_laser: taak laser attributes processor * warpl and lasers-bind
p__deal.ini » obetacle__findar.ini;
p_merge.outl =* obetacle_f inder.outl;

queue
ql: p_sonar.outl > > p__merge.ini;
q2: p_laser.outl > > p__merge. in2 ;
q3: p_deal.outl > > p_sonar.ini;
q4: p_deal.outl > > p_laser.ini;

—for dynamic reconfiguration
if Current_Time >— 6:00:00 local and Current_Time < 18:00:00 local than

process
p_vieion: task vision attributes processor » warp2; and vision; queue
q5: p_deal.out3 > > p_vision.ini;
q6: p_vision.outl > > pjmerge.in3;

end if;
end obstacle finder;

11.4. Application Description
task ALV

attributes
version » "Fall 1986";
processor = HET0;
speed = fasts-

structure
process

navigator: task navigator attributes author =• Mjmw" end navigator;
road_jpredictor: task road_jpredictor ;
landmark__pr edict or: task landmark_pr edict or;
road_finder: taajc road_finder;
landmark_recognizer: task landmark__recognizer;
obstacle_finder: task obstacle__finder;
position_computation:task position_computation;
local_path_j>lanner: task local_path_j?lanner;
vehicle_control: task vehicle_control;
ct_procees: task comer__tuming;

queue
ql: navigator.outl > > road_predictor.in2;
q2: navigator.out2 > > landmarkjpradictor.ini;
q3: road_jpredictor. outl > > road_finder.ini;
q4: road_finder.outl > > obstacle_finder.ini;
q5: ob«tacle_f inder. outl > > local_j>ath_j>lanner. in2;
q6: local^path^plannar.outl > > vehicle_control.ini;
q7: local_path^planner.out2 > > position_computation.in2;
q8 : vehicle__control. outl > > local_path_jplanner.ini;
q9: landmark_jpr edict or.outl > ct_process > landmark_recognizer.ini;

— requires data transformation between rowjmajor and column_major landmarks
qlO:landmark_recognizer.outl > > position_computation.inl;
qll:position_coraputation.out1> > road_j>redictor.in2;
ql2 : posit ion__computat ion . out2> > lanchnarkjp redactor. in2;

end AXV;

References

M.R. Barbacti and J.M. Wing.
Specifying Functional and Timing Behavior for Real-time Applications.
Technical Report, Software Engineering Institute, Carnegie Mellon University, 1986.

J.V. Guttag, J . J . Horning, and J.M. Wing.
Larch in Five Easy Pieces.
Technical Report 5, DEC Systems Research Center, July, 1985.

J.V. Guttag, J . J . Horning, and J.M. Wing.
The Larch Family of Specification Languages.
IEEE Software 2(5):24-36, September, 1985.

H.T. Kung.
Private communication.

S.A. Shafer, A. Stenz, C.E. Thorpe.
An Architecture for Sensor Fusion in a Mobile Robot.
In Proceedings of the IEEE International Conference on Robotics and Automation, pages

2002-2011. San Francisco, California, April, 1986.

R.G. Stockton.
The Heterogeneous Machine Simulator.
Technical Report, Software Engineering Institute, Carnegie Mellon University, 1986.

Index
w 5,14

" 5

(9,19,21,25,27,29,30

) 9,19,21.25,27,29,30

• 17,25

. 5, 18

-- 5

. 5,12,18,21,23

/ 17
/= 28

: 12,17,23

; 8,12,14,21,23,27

< 28
<= 28

= 21. 27, 28, 30
=> 19

> 23,28
>= 28

@ 17

(18,23

I 18,23

5

" 5
{ 5
II 19
) 5

After 5, 19, 20
And 5, 21, 27
Array 5, 9
Array Argument 25
ArrayDimension 9
Ast 5,17.20
AttrConjunction 21
AttrOescription 21
AttrDescriptionPart 10, 21
AttrOisjunction 21
Attnbutes 5, 21
AttrName 21
AttrPnmary 21
AttrSelection 21
AttrSelectionPart 11.21
AttrTerm 21
AttrValue 21

Balanced 30, 31
BasicEventExpression 19

Before 5,19,20
Behavior 5,14
BehaviorPart 10,11,14
Bind 5,23
Broadcast 7,30,31
Buffers 2,5,24
Byjype 30,31

Comment 5
Compilation 8
CompilationUnrt 8
Compiler 8, 32, 33T
Configuration file 18, 19, 24, 26, 31, 33
Constrains 15
Cst 5,17
Current_size 7, 29
CurrenMime 7, 29
CyclicTimingExpression 19

DataOp 25, 26
Date 5, 17
Days 5,17
Deal 7,30,31
Delay 7, 18, 19, 20
During 5,19,20

ElementSize 9
End 5,10,11,27
Ensures 5, 14, 15, 16
Est 5,17
EventExpression 18, 19
ExtPortName 27

F'rfo 30,31
FunctionCall 7, 29
FunctionName 29
FunctionParameters 29
FunctionPart 14

Get 7, 15, 18
GlobalAttrName 7,21
GlobalPortName 12, 18, 23, 27, 29
GlobalProcessName 27
GlobalQueueName 23
GlobalSignalName 12
Gmt 5, 17
Grouped_by_2 30,31
Guard 19

Hours 5,17

Identifier 5, 9, 12, 18, 21, 23, 25, 30
Identify 5,25,26
If 5,27
Implementation 2, 7, 22, 30
ImplementationAttr 30
ImplementationAttrValue 21,30
In 7, 12, 13
IndeterminateTime 17
Index 7,25,26
Integer 5
IntegerLiteral 7
IntegerValue 7,9,17,19,21,23.25,
Interface specification 14
InterfacePart 10, 12
IntPortName 27
Introduces 15
Is 7,9

Larch Interface Language 14
Larch Interface Specification 14
Larch Predicate 14,19
Larch Shared Language 14
Larch Trait 14
Library 8,11,24,26.32.33
Local 7, 17
Loop 7,19

Merge 7,30,31
Minus_time 7, 29
Minutes 7, 17
Mode 7,22,30,31
ModeAttr 30
ModeAttrValue 21,30
Months 7, 17
Mst 7, 17

Not 7,21,27

Of 7,9
Or 7.21,27
OtherAttrValue 21
Out 7, 12, 13

Parallel EventExpression 19
Parameter 29
Plusjime 7, 29
PortBinding 23,27
PortDeclaration 12
PortDeclarationPart 11,12
PortName 12,27
Ports 2,7, 10, 12, 16
Predicate 14, 19
Process 5, 7, 23
Process Declaration 23
Process Name 12, 21, 23
Processor 5, 7, 22, 24, 30, 31, 33
ProcessorAttr 30
ProcessorAttrValue 21, 30
ProcessTermination 27
Pst 7,17
Put 7, 15, 18, 24

Queue 5, 7, 23
QueueDeciaration 23
QueueDefinition 23
QueueName 23
QueueOperation 18
QueueS ize 23

Random 30, 31
Real 5
RealLiteral 7
RealValue 7, 17,21,28,29
RecCexjunction 27
RecDisjunction 27
Reconfiguration 7, 23, 27
ReconfigurationClause 23
RecPredicate 27
RecRelation 27,28
RecTenm 28
Remove 7, 27
Repeat 7, 19,20
Requires 7, 14, 15, 16
Reshape 7. 25. 26
ReshapeOp 25
Reverse 7, 25, 26

ReverseOp 25
Rotate 7,25,26
RotateOp 25
Round_robm 30, 31

Scheduler 5,12, 13,28,33
Seconds 7,17
Select 7,25,26
SeiectOp 25
SignalOeclaration 12
Signal Declaration Part 11,12
SignaiName 12
Signals 7, 10, 12
Size 7,9
String 5
StringLiteral 7
StringValue 7,21,28,29,30
Structure 7, 11, 23, 27
StructureClause 23
StructurePart 10, 23
Switch 5

Task 5, 7, 10, 11
Task Description 8, 10
TaskName 10,11
TaskSelection 11, 23
Then 7,27
TimeLiteral 7, 17
TimeOfDay 17
TimeUnit 17
TimeValue 7, 18, 19, 21, 28, 29
TimeWindow 18, 19
TimeZone 17
Timing 7, 14
TimingExpression 14, 19
TimingPart 14
To 7,9
Trait 14
TransformExpression 23, 25
TransformOp 25
Transpose 7, 25, 26
TransposeOp 25
Type 7, 9
TypeDeclaration 8, 9
TypeName 9, 12
TypeStructure 9

Union 7, 9
UnionStructure 9

VectorArgument 25

When 7,19,20

Years 7,17

