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comumenT -- Durra, aiso called “Indian millet” and “Guinea com.,” is a type of grain sorghum
with slender stalks, widely grown in warm dry regions. Duma sounds lke “durable” which
isnt a bad cennotation. Camegie Institute personnel indicated that com is by far the
largest in size of al grains. We respectfully deciined their suggestion for a name denoting
“largest grain.”

1. introduction

Many computation-intensive, real-time applications require efficient concurrent execution of multiple tasks
devoted to specific pieces of the application. Typical tasks include sensor data collection, obstacle
recognition, and global path planning in robotics and vehicular control applications. Since the speed and
throughput required of each task may vary, these applications can best exploit a computing environment
consisting of multiple special and general purpose processors that are logically, though not necessarily
physically, loosely connected. We call this environment a heterogeneous machine.

During execution time, processes, which are instances of tasks, run on possibly separate processors, and
communicate with each other by sending messages of different types. Since the patterns of
communication can vary over time, and the speed of the individual processors can vary over a wide
range, additional hardware resources, in the form of switching networks and data buffers are required in
the heterogeneous machine.

The application developer is responsible for prescribing a way to manage all of these resources. We call
this prescription a task-level application description. It describes the tasks to be executed, the possible
assignments of processes to processors, the data paths between the processors, and the intermediate
queues required to store the data as they move from source to destination processes. A task-level
description language is a notation in which 1o write these application descriptions. The problem we are
addressing is the design of a task-levei description language.

We are using the term description language rather than programming language to emphasize that a
task-level application description is not translated into object code of some kind of executable “machine
language.” Rather, it is to be understood as a description of the structure and behavior of a logical
machine, that will be synthesized into resource allocation and scheduling directives. These directives are
to be interpreted by a combination of software, firmware, and hardware in a heterogeneous machine,

Although our ultimate goal is to design and implement a task-level description tanguage that can be used
tor different machines and for varying applications, our first pass is influenced by both a specific
architecture, HETQ [4], and by a specific application, the Autornomous Land Vehicle (ALV), and more
specifically, the perception components of the ALV {5]. We assume there is a cross-bar switch, intelligent
buffers on the switch sockets, and a scheduler that can communicate with all processors, buffers, and /O
devices.

1.1. Scenario

Here is a scenario from the user's viewpoint of haw the task-levet language is used to help develop an

application to run on some target, heterogeneous machine. We see three distinct phases in the process:
1. the creation of a library of tasks,

2. the creation of an application description, and

3. the execution of the application.



Library creation activities
These happen early in the life of an application, when the primitive tasks are defined.

1. The developer breaks the application into specific tasks. Typical tasks are sensor
processing, feature recognition, map database management, and route planning. Other
tasks might be of a more general nature, such as sorling, array operations, etc.

2. The developer writes code implementing the tasks. For a given task, there may be possibly
many implementations, differing in programming language (e.g., one written in C or one
written in W2), processor type (e.g., Motorola 68020 or IBM 1401), performance
characteristics, or other attributes. The writing of a task implementation is more or less
independent of Durra and involves the coding, debugging, and testing of programs in
various languages executing on various machines.

3. The developer writes task descriptions and enters them into the fibrary. This is where Durra
first enters the picture. Durra is used to write specifications of each task's performance and
functionality, the types of data it produces or consumes, and the ports it uses to
communicate with other tasks.

Desctiption creation activities
These happen when the user decides to put together an application (say, autonomaous land vehicle) using
as building blocks tasks in the library.

1. The user writes a task-level application description. Syntactically, a task-level application
description is a single task description and could be stared in the library as a new task. This
allows writing hierarchical task-level application descriptions.

2. The user compiles the description. During compilation, the compiler retrieves task
descriptions matching the task selections specified by the user from the library and
generates a set of resource allocation and scheduling commands to be interpreted by the
scheduder.

3. The user links the output of the compiler with run-time support facilities, obtaining a
scheduler program. i

Application execution activities
1. The scheduler downloads the task implementations, i.e., code. to the processors and
interprets the scheduling commands and initialization code tor the machine.

2. The heterogenecus machine runs the processes on processars as dictated by the
scheduler program.

1.2. Terminology

Durra is used for describing process interaction at a logical, not physical, level, and thus it can be used
independently of any physical configuration of an actual heterogeneous machine. We will use different
terms to distinguish between the physical network {P) of processars, memories, and switches
implementing the heterogeneous machine, and the logical network (L) of processes and data queues
implementing the application (A). Figures 1 and 2, respectively, illustrate the physical and logical
componenis of the system.

buffers (P} computers acting as input or output devices, intertacing processors with the switch.
As an optimization, buffers execute predefined tasks such as merge, deal, broadcast,

and data transformations.

implementation (A} code written in some programming language for a specitic processor, and satisfying
the performance, functional, and other requirements specified in & task description.

ports (L) processes’ logical input or output devices. Input ports remove data from queues,
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process (L)

processor (P)

queue (L)
scheduler (P, L)
switch (P)

task (L, A)

output ports deposit data in queues.

a uniquely identifiable instance of a task, running on a processo of the heterogeneous
system. The same task may be instantiated any number of times to abtain muitipie
processes executing the same code.

a computer in the heterogeneous system, not to be confused with the scheduler
processor or the buffers. Each processor in the heterogeneous system has one or
two buffers that act as interfaces between the processor and the switch. Processors
send data to and receive data from buffers as their means of communication with
other processors.

a uniquely identifiable logical link between two processes, following a FIFO discipline.
Queues serve as intermediaries between input and output ports.

a computer serving as resource allocator and dispaltcher in the heterogeneous
system. It controls the switch, all processors, and all buffers.

an interconnection network used to tie together all processors in the heterogeneous
system. The switch routes data between the buffers attached to the processors.

an abstraction of a set of implementations, each written for a class of processors,
implementing part of an application. Tasks are stored in libraries.

The processes of the system are implemented by downloading and executing task implementations, i.e.,
programs, onto processors of the right kind. The queues of the system are implemented by allocating
space in the corresponding buffers’ memories. This is illustrated in Figure 3.

1.3. Notes on Syntax
To describe the syntax of the Task-Level Description Language, we use the standard Backus-Naur-Form
{BNF), with the following conventions.

1. Commas separate alternatives. Braces ("{"" and “}"} indicate optionatity.

2.

Terminal symbols are enclosed in quotes (* ang "), but the quotes do not belong to the
terminai.

3. No distinction is made between upper and lower case letters in terminals and non-terminais.

4. A non-terminal of the form xyz_List

. {dentifiers are, in the usual tashion, sequences of letters, digits, and

-omma Stands for a list of one or more xyz's separated by
commas, i.e., the character *,”, not the string “comma.”

. Comments start with the characters "--". Any characters between “--" and the end of the

line are ignored.

"ot

(underscore),

beginning with a letter.

. Strings are arbitrary sequences of Ascii printable characters, enclosed in double quotes {7).

A double quote inside a string must be written as two consecutive double quotes:
"A string with a double quote, ™, inside”

. Integer and real numbers are always decimal, i.e., base 10. A real number can terminate

with a period “.” without a fractional part.

1.4. Keywords and Predefined ldentifiers

Keywords and predefined identifiers are highlighted in normal text by writing them in bold face, or in
“quotes”, respectively. The following words are keywords in the language: after, and, array, ast,
attributes, betore, behavior, bind, cst. date, days, during, end, ensures, est, gmt, hours, identity, if,
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index, in, is, local, loop, minutes, months, mst, not, of, or, out, ports, process, pst, queue,
recontiguration, remove, repeat, requires, reshape, reverse, rotate, seconds, select, signais, size,
structure, task, then, timing, to, transpose, type, union, when, years.

The following words are predefined identifiers in the language: “broadcast”, “current_size"”,
“current_time”, “deal”, “delay”, “get”, “implementation”, “merge”, “minus_time”, “mode”, “plus_time",
“processor”, "put’,

1.5. Literal Values

Each of the non-terminals IntegerValue, RealValue, StringValue, and TimeValue stands far (a) literals
(constants) of the appropriate kind, or (b) names of attributes (Section 8) whose values are literals of the
appropriate kind, or (c) calls to one of the predefined functions in the language (Section 10.1) returning
values of the appropriate kind:

IntegerValue ::= IntegerLiteral ,

GlobalAttrName ,
FunctionCall

Realvalue ::= Realliteral ,
GlobalAttrName ,
FunctionCall

StringValue ::= Stringliteral ,
GlobalAttrName ,
FunctionCall

TimeValue ;= TimeLiteral ,
GlobalAttrName ,
FunctionCall

1.6. How To Read This Manual

This manual is written top-down, so the reader should be aware that there are many forward references.
One can read this manual from beginning to end to get an overview of the language, and then read
individual sections to understand the details of each language feature.



2. Compilation Units

Syntax:

Compilation .= CompilationUnit_List, ico10n 7"

CompilationUnit := TypeDeclaration ,
TaskDescription

Meaning:

There are two kinds of compilation units (i.e., separately compilable structures): type declarations and
task descriptions.

Any number of compilation units can be submitted to the compiler as a group, in a single text file. Each
unit is compiled in order, and if no errors are detected, the unit is entered into the library. It can then be
used by units compiled later, including units submitted later in the same compilation.



3. Type Declarations

Syntax:
TypeDeclaration ;= 'TYPE'’ TypeName '‘IS’‘ TypeStructure ,
‘‘TYPE" " TypeName '‘IS’’ UnionStructure
TypeName _ 1= Identifier
TypeStructure ::= ''SIZE’'’ ElementSize ,
’ '*ARRAY’ ‘" ArrayDimension ‘‘'OF'’' TypeName
ArrayDimension BN & IntegerValue_List.p“. ‘3 -- Positive integer
ElementSize ::= IntegerValue , -- Positive number of bits
IntegerValue '‘T0O’’ IntegerValue
-~ Non-negative size range
UnionStructure = ''UNION"' ‘(' TypeName List_,._. '}’
Examples:
type packat is size 128 to 1024; ~=- Packets are of variable langth
lype tails is array (5 10) of packet; -- Tails are 5 by 10 arrays of packets
type mix is union (heads, tails); -- Mix data could ba haads or tails
Meaning:

Type declarations are compilation units that define the structure of the data produced or consumed by the
tasks. A type declaration introduces a global name for a data type, or a set of previously declared types,
which can then be used in port declarations.

There are two kinds of type declarations. First, a type declaration can specify the structure of the data
moving through a process port. The basic data type is a sequence of bits of fixed or variable {but bound)
length. More compiex types are declared as multi-dimensional arrays of simpler types. Second, a type
can specify the union of a number of previously declared, i.e., named, types where data items moving
through a process port could be one of any of the member types.
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4. Task Descriptions

Syntax:
TaskDescription ::= ‘‘TASK’’ TaskName

InterfacePart

{ BehaviorPart }
{ AttrDescriptionPart |}
{ StructurePart }
i “'END'‘ TaskName

Meaning:

Task descriptions are compilation units used as building blocks for task-levei appfication descriptions.

A task description is divided into four components: (1) interface information, (2) behavioral information, (3)
attributes, and (4) structural information. All these components will be described in later sections. Figure
4 shows a template for a task description, where the ports and signals clauses constitute the intertace
information.

task task-name
ports -- REQUIRED
port-deciarations
-- Used for communication batwasn a process and a queus

signals -= ORTIONAL
signal-daclarations
-- Usad for communication betwean a procsss and the scheduler

pehavior —— OPTIONAL
function-pradicates
timing-expressions
-~ A description of the behavior of the task

N L ]
atiributes ~- OPTIONAL

attribute-value-pairs
-- Additicnal properties of the task

structure -- OPTIONAL
process-declarations
queug-daclarations
binding-deciarations
reconfiguration-statements
-~ A process-quausd graph describing the internal structura of a task
end task-name;

Figure 4: A Template for Task Descriptions
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5. Task Selections

Syntax:
TaskSelection ::=  ‘'TASK’’ TaskName

{ PortDeclarationPart }

{ SignalDeclarationPart }
{ BehaviorPart }
{ AttrSelectionPart }
{ ''END’’ TaskName }

Meaning:

Task selections are templates used to identify and retrieve task descriptions from the fibrary.

A given task, e.g., convolution, might have a number of different implementations that differ along
dimensions such as algorithm used, code version, performance, or processor type. In order to select
ameng a number of alternative implementations, the user provides a task selection as part of a process
declaration, as described in Section 9.1. This task selection lists the desirable features of a suitable
implementation.

Syntactically, a task selection looks somewhat like a task description without the structure part, and all
other components except for the task name are optional. For example, notice that in the syntax of a task
declaration, the interface part (Section 6) requires the declarations of the ports, whereas in a task
selection, the declaration of the ports is optional. Figure S shows a template for a task selection. For
brevity, if only the task name is given, the terminating “end task-name" is optional.

task ftask-name -=- REQUIRED
ports -- OPTICNAL
port-declarations
== A signature that must match port directions and typeas of
- that of a task dascripticn in the library.

signals ~- OPTIONAL
signai-declarations
== A signature that must match signal directions and names of
- that of a task description in tha library.

behavior -=- OPTICNAL
function-predicates
timing-expressions
-=- A spacification of the desired functicnality and timing behavior of
-= that of a task description in the library.

attributes -~ OPTIONAL
aftnbute-value-pairs
-— Namad (actual) attributes usad o match {formal) attributes of
-- those of a task description in the library.
end task-name == optional if only the task name is spacified

Figure 5: A Tempiate for Task Selections
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6. Interface Information
Syntax:

InterfacePart ..= portDeclarationPart ( SignalDeclarationPart }
Meaning:
The interface portion of a task description or a task selection provides information about the ports of the

processes instantiated from the task and the signals used by the processes instantiated from the task to
communicate with the scheduler.

6.1. Port Declarations

Syntax:

portDeclarationPart ::= ‘‘PORTS'’ portDeclaration List, icolon

PortDeclaration = PortName List_ .., vh.rr YINY T TypeName
PortName List_ .., ‘':'" ' ‘QUT’ ¢ TypeNama

PortName = Identifier

GlobalPortName = { ProcessName '‘. '+ } PortName

Examples:

ports

inl; in heads;
outl, out2: out tails;

Meaning:
A port declaration specifies the direction of the data movement and the type of data moving through the
port.

Port names must be unique within a task. Outside the task, ports are identified by their global name,
obtained by pretixing the name of a process (instance of a task) to the name of the port, e.g., pl.out2.

6.2. Signal Declarations

- Syntax:
SignalDeclarationPart ::= ‘SIGNALS’’
SignalDeclaration LiSt,  ,;colen v
SignalDeclaration ::= SignalName List .., va,er MMINTY
SignalName_List_..q. vorr QUT T
SignalName List g, ''i'° ''IN'T ‘ouT’
SignalNama ::= Identifier
GlobalSignalName ..= { ProcessName ‘'.'’ } SignalName
Examples:
signals

Stop, Start, Resume: in;
RangeError, FormatError: out;
Read: in out;
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Meaning: .

Signals are special messages exchanged between a process and the scheduler. A signal declaration
specifies the direction of the signal. An in signal is a message that a process can receive from the
scheduler; an out signal is a message that a process can send to the scheduler; an in out signal is used
tor both directions of communication.

Al signal names muét be unique within a task. Outside the task, a signal is identified by compaounding the
name of a process (instance of a task) with the name of the signal, e.g., p1.Restart.

6.3. Rules for Matching Selections with Descriptions

It a task selection provides a port declaration clause, the port names provided in the task selection
override the port names provided in the task declaration. The port declaration lists must otherwise be
identical, i.e., the number, the order, the directions, and the types must be identical.

it a task selection provides a signal decfaration clause, the clause must be identical to that provided in the
task description, i.e., the names, number, and directions must be identical.
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7. Behaviora! Information

Syntax:
BehaviorPart ::= “'BEHAVIOR'’ FunctionPart TimingPart
FunctionPart = { ‘‘REQUIRES’' rwr predicate ‘"7 ' oo}

{ 1 \ENsmsf r LRI Predlcate v 1 \:l r }
TimingPart = { ‘‘TIMING'' TimingExpression ‘.’ * o}
predicate o Larch Predicate®
Meaning: '

The behavioral information part specifies functional and timing information about the task.

The functional information part of a task description consists of a pre-candition (requires) on what is
required to be true of the data coming through the input ponts, and a post-condition (ensures) on what is
guaranteed to be true of the data going out on the output pons.

The timing information part of a lask description consists of a timing expression following the keyword
timing. The timing expression describes the behavior of the task in terms of the operations it performs on
its input and output ports.

The formal meaning of the behavioral information is essentially based on first-order logic. In what follows,
we give only an informal meaning of the individual parts and their combination. See [1] for the formal
meaning.

7.1. Function Part

The tfunctional information of a task description describes the behavior of the task in terms of predicates
about the data in the queues, before and after each execution cycie of the task. The Larch Shared
Language is used as the assertion language in the predicates of these clauses. We restrict this section to
a very brief outline of Larch’s approach.

Larch [2, 3] uses a two-tiered approach to specifying program modules: a trait defines state-independent
properties, and an interface specification defines state-dependent properties of a program. A trait is
written in the Larch Shared Language (LSL), and it provides the assertion language used to express and
define the meaning of the predicates of an interface specification.

For a program module such as a procedure, a Larch interface specification is written in a Larch Interface
Language and contains predicates about the states before and after the execution of the procedure. The
Larch Interface Language (LIL) to be used is specitic to the programming language in which the
procedure is written {e.g.. C, CommonLisp, or Ada.)

1 Essentially, a first-order assertion, 2}



15

7.1.1. Larch Traits and Specifications

Figure 6 depicts a Larch (two-tiered) specification of queues with “put” and “get” operations. The top part
of the specification (Figure 6.a) is a trait written in LSL used to describe values of queues. A set of
operators and their signatures following introduces defines a vocabulary of terms to denote vaiues of a
type. For example, Empty and insert{Empty, 5) denote two different queue values. The set of equations
following the constrains clause defines a meaning for the terms; more precisely, an equivalence relation
on the terms, and hence on the values they denote. For example, from the above trait, one could prove
that First(Rest(Insert(Insen(Empty, 5), 6))) = 6.

The bottomn part of the specification {Figure 6.b) contains two interfaces written in a “generic” Larch
interface language. They describe the functional behavior of two queue operations, “put” and “get”
(queue operation names are used to write timing expressions, which are described in Section 7.2.3.) A
requires is a pre-condition on the state of an operation's input data that must be true upon operation
invocation; an ensures is a post-condition on the state of an operation’s input and output data that is
guaranteed to be frue upon operation termination. An omitted predicate is taken to be true. The
specification for “get” states that “get” must be called with a non-empty queue and that it modifies the
original queue by removing its first element and returning it.

OVals: trait
introduces
Empty: — Q
Insert: Q, E — Q
Firat: ¢ - B
Rast: @ 5 ¢
isEmpty: Q@ — Bool
iaIn: Q, E — Bool
constrains Q so that
Q generated by [ Empty, Insert ]
forall q: Q, =, el: B
First (Insert (Expty), e)) = e
First (Insert(q, a)) = if isEmpty(gq) then « efse Firat(g)
Rast (Insert{q, e)) = if isBmpty(q) then Expty else Insect (Rest(q), )
isEmpty (Empty) = true
isEmpty(In-o:t(q, a)) = falze
isIn (Empty, e) = false
isIn(Insart(g, o), al) = (a = el) | isIn(g, el)

a. A Trait for Queue Values
Put = operation (q: queus, &: slament}
ensures 1 = Inseart{qg, =)
Get = operatiocn {q: queus) rsturns (e: slamant)
requires -isEmpty (q)
ensures q . = Reat(q) & a = First{q)

b. interfaces for Queue Operations

Figure 6: A Larch Two-Tiered Specification for Queues
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7.1.2. Functional Specification of a Task

We use a similar approach as Larch's for the specification of the functional behavior of a task. That is, we
view the task as a procedure whose input and output “parameters” are defined by the ports of the task.
A requires dause states what is required to be true of the data coming through the input ports; an
ensures clause states what is guaranteed to be true of the data going out through the output ports,

If one were to view each E:ycle of a task as one execution of a procedure, the requires and ensures are
exactly the pre- and post-conditions on the functionality of that cycle. An omitted predicate is taken to be
true.

These are not assertions about the queues connected to the ports. For instance, an assertion could be
made that a datum of some type was sent 10 an output port. It cannot be asserted that the datum is in the
associated output queue, at the end of the task execution, because it could have been removed by then.

it is up to the implementor of a 1ask to verify that the functionality of the task satisfies the requires and
ensures predicates. A task description writer and user may assume that the task implementor performed
such verification either formally or informally.

For example, consider the matrix multiplication task in Figure 7. The task takes input matrices from two
queues and outputs the result matrix on an output queve. The requires clause states that the task
implementor may assume that the number of rows of the matrix entering through the port in1 equals the
number of columns of the matrix entering through in2. The ensures clause states that the resuit of
muitiplying the two input matrices is output through the output port.

task multiply
poris
inl, in2: in matrix;
ocutl: out matrix;
behavior
requires "rows (First{inl}) = cols (First{in2))";
ensures “Inaart{outl, First{inl) * Firsc(in2))";
end multiply;

Figure 7: A Matrix Multiplication Task

7.2. Timing Part

Processes remove data from their input queues and store data into their output queues following a task-
specific pattem provided by a timing expression. A timing expression describes the behavior of the task
in terms of the operations it performs on its input and output ports; this is the behavior of the task seen
trom the outside.

7.2.1. Time Literals



Syntax:
TimeLiteral

Date
years
months
days
TimeOfDay

hours
minutes

seconds

TimeUnit

TimaZone

IndeterminateTime

Examples:
5:15:00 est

15.5 hours ast
2:10
2.1667 minutes

*

Meaning:

{

Date

\I@J'
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} TimeOfDay ( TimeZone }

IndeterminateTime

years ‘'/’’ months ‘‘/'‘ days

Integervalue
IntegerValue ~- range is 1..12
IntegerValue -- range is 1..31

{ { hours **:°-

} minutes **:’* } seconds ,

RealValue TimaUnit ,
IntegerValue TimeUnit ,

IntegerValue -- range is 0..23
IntegerValue -- range is 0..59
IntegerValue ,
RealValue
' 'YEARS''
‘' 'MONTHS' " ,
“DAYS” ,
*‘HOURS "'
'*MINUTES' © ,
‘*SECONDS’ *
YYEST O, -~ Eastern Standard Time
*'C8T -- Central Standard Time
‘*MST --~ Mountain Standard Time
Y'PSET T, -- Pacific Standard Time
‘GMT - == Greenwich Meridian Time
*‘LOCAL‘ ' , -=- Local Time
‘'AST" -~ Application Start Time
LI "

~- An absolutae timae: 5 hours 15 minutes Eastaecn Standard Time,

-- An application relative time: 15 hours and 30 minutaes
-~ after the start of the application.

~- An event relative time: 2 minutes 10 seconds
-- after some base avent.

-- Approximately the same event relative time as above
== 10 seconds is 1/6éth of a minuts.

-- An indeterminate point in time.

Time values are used to specify points in time. These can be either (1) absolute, i.e., independent of the
application, in which case they must be followed by the name of a time zone; (2) relative to the application
start time, in which case they must be followed by the fictitious time zone “ast’; or (3) relative to some
prior event in the application, in which case neither a date nor a time zone is allowed.

The notation allows for alternative ways of denoting time of day or time elapsed between events. Time
can be expressed in the famiiiar formats “HH:MM:SS", "MM:SS", or just “SS". Thus, a plain number
fepresents a number of seconds. Time can aiso be expressed as a multiple of other time units by writing
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a number followed by a unit name such as seconds, minutes, hours, days, months, or years. The use
of seconds as a time unit is redundant, but allowed for completeness’ sake. The format adopted by a
user might depend on the nature of the application, on any standard conventions in the application
domain, on the magnitude of the time scale, on the precision required, o¢ simply on aesthetic, personal
preferences.

7.2.2. Event Expressions and Time Windows

Syntax:
EventExpression = GlobalPortName
{ . QueueOperation |
{ TimeWindow }
‘‘DELAY' ’ TimeWindow
TimeWindow cem MV[7¢ TimeValue Y, 7 TimeValue ''1’’
QueueOperation ::= Identifier -- Configuration dependent
Examples:
inl -- An operation (get, by default) on the quesus fesding peort inl.
inl.get -- An oparation taking a aystem default time to complatas.
inl.get (5, 15] —-- An operation taking betwaen 5 and 15 saconds to complate.
dalay{10, 15} - A delay intarval lasting betwasn 10 and 15 seconds.
delay[*, 0] -- A delay interval taking at most 10 seconds.
dalay[10, *] -- A delay interval taking at least 10 seconds.
Meaning:

Queue operations performed by the processes constitute the pasic events of an application description.
An event expression represents a queue operation on a queue attached to a specific port, taking a
variable amount of time to complete. A pseudo-operation, “delay”, is used to represent the time
consumed by the process between (real) queue operations.

The name of the queue operation is optional. If the name is not given, a default queue operation is
assumed: “get” for input pors, “put” for output ports. The complete list ot queue operations is
configuration dependent, as described in Section 10.4.

Time windows are used to describe the duration of a queue operation or the delay between two
operations. Time windows are denoted by a pair of time vaiues [T in Tmaxl defining the boundaries of the
interval.

The time window associated with a queue operation describes the minimum and maximum tme needed
to pertorm the operation. This time window is optional, and if it is missing, a configuration dependent,
default window is assumed, as described in Section 10.4. Intervals of time between queue operations are
denoted by a “delay” operation whose time window describes the minimum and maximum time
consumed by the process in between queue operations.
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7.2.3. Timing Expressions

Syntax:
TimingExpression 2:= { “'LOOP’’ } CyeclicTimingExpression

[

CyclicTimingExpression ParallelEventExpression_List

spaces

It

ParallelEventExpression BasicEventExpresaion_Liat

double vert ical barx

BasicEventExpression EventExpression ,

{ Guard *‘'=>'' } (- CyclicTimingExpression ‘)’

Guard 1:= 'REPEAT’‘ IntegerValue ,
''BEFORE’’ TimeValue , ~- Absolute time
‘'AFTER’ ' TimeValue , -= Absolute time
' ‘DURING’ * TimeWindow , -- T3, 13 Absolute time
L) ‘WHEN" Ty predicate Ty
predicate s Larch Predicate?
Examples:
inl || in2[10,15} -— Two parallel input oparaticns, starting simultanscusly.
inl[0,5] delay(l10,15] outl -- Two sequential inputa operations with an intervening delay.
repeat 5 => (inl([0,5] delay([10,15] outl) -~ Same as above but as a cycle repeatad five timas.
before 18:00:00 local =» { - . . ~- A saquence constrained to start befors § pm.
after 18:00:00 local => ( . . |, ) —- A sequence conatrained to start after § Pm.
during [18:00:00 iocal, 12 hours] =» (. . . == A saquence constrained to start at night.
when ~eampty(inl) and -ampty(in2) => ({inl.get || in2.get) outl.put);

-~ A smequence constrained to start after both input queues hava data.
loop when ~ampty(inl) and ~ampty (in2) => ((inl.gat || in2.get) outl.put};
-- The same sequenca as above but repsatad indefinetaely.
Meaning:
A timing expression is a reqular expression describing the patterns of execution of operations on the input
and output ports of a task. The keyword loop can be used to indicate that the pattem of operations is
repeated indefinitely.

A timing expression is a sequence of parallel event expressions. Each parallel event expression consists
of one or more event expressions separated by the symbol “||" to indicate that their executions overlap.
Since the expressions might take different amounts of time to complete, nothing can be said about their
completion, other than a paraliel event expression terminates when the last event terminates.

Paraliel events start simuitaneously but are not necessanly compieted at the same time. In the
expression “(in1 || in2[10,15))", the duration of the input operation on port in1 defaults 1o sorme
configuration-dependent value (See Section 10.4) and might be shorter or longer than the explicit
duration of the input operation on port in2, i.e., between 10 and 15 seconds.

A basic event expression is either a queue operation (including “delay”) or a timing expression enclosed
in parentheses. The latter form also allows for the specification of a guard, an expression specifying the
conditions under which a sequence of operations is allowed to start or repeat its execution.

2Es.sentlally, a first-order assertion. (2]
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Guard Description

repeat This guard indicates repetitions of a timing expression. The number ot repetitions is
a non-negative integer vaiue.

before This guard is followed by an absolute time value representing the tatest start time

allowed. If the deadline does not include a date, i.e., it is just a time of day, and the
deadline has passed, then the sequence is blocked at most until midnight of the
current date and will unblock at “00:00:00" ot the following day. The task is
terminated if a dated deadline has passed.

after This guard is followed by an absolute time value representing the earliest start time
allowed. f necessary, the sequence is blocked until the deadline. if the deadline
does not include a date, i.e., itis just a time of day, then the sequence is blocked at
most 24 hours. For example, if # is “00:00:00.000" and the deadiine is
+23:59:59.999" the sequence will unblock at the end of the day.

during This guard is followed by a time window during which the sequence is allowed to
start. The first value is the earliest start time allowed and must be an absolute time
value: the second value is the latest start time allowed and can be an absolute time

value or a time value relative to the former.

when This guard describes what is required to be true ot the state of the system (i.e., time
and queues, see Section 10.1) before the sequence is aliowed to start. Itis a pre-
condition for starting the sequence.

7.2.4. Restrictions on Time Values and Time Windows
Although the syntax aliows both absolute and relative time values to appear in either of the two
poundaries in a time window, not all of the possible combinations make sense:

1. A date in a time value that uses the »ast” time zone is meaningless.

2 In the lime window attached to a queue operation, including “delay", the time values must

be relative {i.e., no dates of time zones allowed) and are interpreted relative 10 the start of
the operation.

3. In the time window ot a during guard, the first time value (T, must be absolute. The
second time value (T, can be absolute or relative. In the |atter case, the time value is
relative to T i

7.3. Rules for Matching Selections with Descriptions

The meaning of the pehavioral information is a predicate, MR, T) => M{(E, T), where R is the requires
predicate, E is the ensures predicate, T is the timing expression, and M; is the meaning function
mapping a predicate and timing expression into a boolean [1].

A task description matches a task selection if the predicate associated with the behavioral information of
the task description implies that of the task selection. If no timing expression appears, the predicate
simplifies to R => E, and that of a task description must imply that of the task selection.

Currently there are no facilities to check these implications and timing expressions, so for the time being
the behavioral information part of a task description is treated as commentary information. However,
timing expressions are used to simulate the behavior of a task and are therefore required by the simulator

[61.



21

8. Attributes

Syntax:
AttrDescriptionPart ::= ‘'‘ATTRIBUTES'' AttrDescription_List.cﬁﬁoloa Vi
AttrDescription 1i= AttrName ‘=’ Attrvalue
AttrSelectionPart 1= '‘ATTRIBUTES'’ AttrSelection_List..dcolm‘ Y
AttrSelection 1:= AttrName '‘='‘ AttrDisjunction
AttrName i:= Identifier
GlobalAttrName ti1= { ProcessName ‘'.’’ |} AttrName
AttrDisjunction = AttrConjunction ,
AttrDisjunction ‘‘OR’” AttrConjunction
AttrConjunction = AttrPrimary,
AttrConjunction ‘‘AND‘’ AttrPrimary
AttrPrimary ::= AttrTerm ,
''NOT’’ AttrTerm
AttrTerm 1= Attrvalue ,
‘(' AttrDisjunction ')’
AttrValue ::= OtherAttrValue ,
Y OtherAttrValue_Listcmm“ 17,
ModeAttrValue ,
ImplementationAttrValue ,
ProcessorAttrValue ,
OtherAttrvalue 1= IntegerValue ,
RealValue ,
StringValue ,
TimeValue
Examples:
attributes ~- Attributes in a task declaration

author = "jmw";

color = (“"rad", “"white", "blue"};
implamentation = "/uar/jm/nlv/co-cntch-:.o";
Qu.u.__siz. = 25 ;

attributes -— Attributes in a task selaction

auther = “jmw" or "mrb*;

color = "red" and “blue” and not ("greean” ox “"yellow");

Processor = Warpl;

mods = grouped by d;
Meaning:
Attributes specify miscellaneous properties of a task. They are a means of indicating pragmas or hints to
the compiler and/or scheduler. In a task description, the developer of the task lists the possible values of
a property; in a task specification, the user of a task lists the desired values of a property. All attribute
values used in matching task selections with task descriptions must be constants, computable before
execution time, i.e., tasks and their implementations are static properties ot an application.

Example attributes include: author, version number, programming language, file name, and processor
type. There may be as many attributes as desired. Attributes defined in other tasks can be accessed by
prefixing the name of the attribute with the name of a process instantiated from that task, e.g., pl.author.
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The name of an attribute can appear in any context in which its value can appear. For instance, if the
user defines an attribute “Queue_Size” as in the examples then “Queue_Size" can appear anywhefe an
integer value is expected. This permits the user to name say, a queue size and use the name to declare
queues with identical size in a number of task descriptions. Another use is to instantiate “tamilies” of
tasks, i.e., tasks that share the same value for some attribute, as shown in Figure 8.

process
Master_Frocess: task Master Task -=- A task sslection
attributes
Key Name = some value;
.. other attnbutes, maybe ...
end Mastar_Task;

pl: lask foo
attributes
Kay Name = Mastar Process.Key Name; -~ Same valua ss Mastar Procass
.. other attributes, maybe ...
end foo;

p2: task bar
attributes
Kay Name = Hnltot_?roc.-l.xoy_yan.; -~ Same valua as Master_ Process
... other attrnbutes, maybe ...
end bar;

Figure 8: Use of Global Aftribute Names

The syntax and semantics of the attribute values are attribute dependent. if the attribute is not predefined
in the language, the values are treated as uninterpreted numbers, time values, or strings, as the case
may be, and compatibility is pased on value equality. If the attribute is predefined in the language, the
syntax for the legal values is given in Section 10.2, and compatibility is attribute dependent.

The following attributes are predefined in the language: “mode” (specifies the mode ot operation for a
deal or merge predefined task); “implementation” (specifies the location of the task impiementation); and
“processor’ (specifies the processor type on which the implementation can run). These are described in
Section 10.2.

8.1. Rules for Matching Selections with Descriptions

It a task selection specifies an attribute not present in a task description, no match occurs, i.e., the
compiler skips this description and continues searching for a candidate. It a task description provides an
attribute not specified in a task selection, the attribute is ignored.

If a task selection provides a predicate (a disjunction) for an attribute, a matching task description must
provide values that satisfy the predicate, i.e., the disjunction yields true when evaluated in the context of
the values deciared for the attribute. If a task description provides a singie value for an attribute, a
matching task selection must provide exactly that value.
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9. Structural Information

Syntax:
StructurePart {i= P 'STRUCTURE’ “
StructureClaFag_LL?t.p‘c. ‘
{ Reconf;guratxonClause-Llst.p““ }
StructureClause’ :=  ‘‘'PROCESS‘ P:ocessDeclaration_List.uu‘olon":",
' ‘QUEUE" ¢ Queuem:_-c:lax:at:'.on_l’.i.at:"mmlﬂ,u Yo,
''BIND ' PortBinding“List.qdcolon e
ReconfigurationClause Pi= ' ‘RECONFIGURATION’ *
Reconf:guratlon_List.uﬁgolon Yoo
Meaning:

9.1. Process Declarations
Syntax:

ProcessDeclaration ::= ProcessName__Listcomﬂu ‘Y1’ TaskSelection

Examples:

pl: task obatacle_ findaer;

P2: task obatacle_finder porls foo: in, bar: out end obstacle findar;

P, pd: task obstacle_findaer atiribules author=“mrb" end obstacle_findar;

Meaning:

An instance of a task is bound to each process’s name. The name of 3 task is the minimal part of a task
selection. Local, actual names {e.g., ports “foo” and "bar' in the example) can be introduced by
providing a port declaration, provided that the types of parts specified in the task declaration are identical
to those provided in the task selection. If they are left out, the formal names used in the task description
are used instead.

9.2. Queue Declarations

Syntax:
QueueDeclaration T QueusName | QueueSize } ' :.-- QueueDefinition
QueueDefinition 1!= GlokalPortName
‘*>"* ProcessName Yt
GlobalPortName
GlobalPortName
T TransformExpression ' ‘>
GlobalPortName
QueuveName ti= Identifier
QueueSize pi= ' [7 IntegerValue A

GlobalQueueNama ‘:= { ProcessName ‘' '~ } QueuaName
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Examples:

ql: pl > > p2 : -= Two ports connactad through an unbounded quause.
-— The two ports must have ths sama type.
ql: pl > (2 1} transpose > p2 ; ~= Two ports connected through an unbounded queue.
== The data AITAYS are transpossd in the quaus.
q1(100): pl > xyz > P2 ; -- Two ports connacted through a bounded (size = 100) quaus.
—-- Data are transformad in the queua by a process ' ‘xyz’ .

Meaning:

A queue definition establishes a logical link between two ports that communicate by passing data from the
first port (source) to the second port (destination). The queue name must be unique within the task
description defining the process-queue graph. The (optional) queue bound declares the maximum
number of elements that will be stored in the queue at any one time. if a queue is full when a “put”
operation is attempted, the process trying to store the data waits until the queue has space tor the new
item. If the queue bound is not provided, a configuration dependent, default queue length is assumed, as
described in Section 10.4.

When establishing a logical connection, the ports are checked for type compatibility. Non-union types are
compatible if they have the same name. Union types are compatible if the source set is a subset of the
destination set. A non-union source type is compatible with a union destination type if the source type
name is a member of the destination set.

If the types are not compatible, the user must provide a data transformation operation that will convert
objects of one type into the other as described below.

9.3. Data Transformations )
Data transformations are operations applied to data coming from a source port in order to make them
acceptable to a destination port.

A data transformation is required if the input and output port types are not compatible. Such
transformations are needed if, for instance, the fypes have the same structure but the data are in the
wrong format, e.g., turning a square array on its side or converting between floating-point formats.

Complicated transtormations can be written as separate tasks, in which case an appropriate task must be
selected and instantiated as a process, and the process name must be specified in the queue declaration.
Simple transformations can be specified directly in the queus declaration.

9.3.1. Off-Line Data Transformations

Complex data transformations can be specified as regular tasks by writing a procedure in some
programming language suitable for either the bufters or one of the heterogeneous processors and
entering an appropriate task description in the tibrary. These data transformation tasks must declare
exactly one input port and one output port.
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task cormer_turning
ports
inl: in landmark_row major;
eutl: out 1and-a:h_colunn_pajor;
attributes
implementation = '/u.r/nrb/nc:utch.o':
Procezscr = buffer processor;
end corner_turming;

9.3.2. In-Line Data Transformations

Syntax:
TransformExpresasion ;:= TransformOp_List,p.c_
TransformOp :'= ReshapeCp ,
SelectOp ,
TransposeOp,
RotateOp,
ReverseOp,
DataOp
ReshapeOp 1= VectorArgument ‘‘RESHAPE’’
Selectop :!= ArrayArgument ‘‘SELECT’‘
TransposeCp 1i= VectorArgument ' ‘TRANSPOSE’’
RotateOp ' i= ArrayArgument ' ‘ROTATE’ *
ReverseCp ::= IntegerValue '‘REVERSE’’
Dataop 1= Identifier
VectorArgument N IntegerValue_List‘p‘G. Yy,
'(’ IntegerValue ' *IDENTITY'* ‘)~ .
‘(' Integervalue 'YINDEX‘" ')’ ,
V(r vrwes vy - Empty vector
ArrayArgument ::= VectorArgument ,
(r ArrayArgument_Listsp‘c. 'y
Examples:
It the input is a 2x2x3 3-dimensional array:
(3 4) reshape -= reshapas the input array into a 3Ixd 2-dimensional array.
(12) reshape -- unravals the array.

i the input is a 2-dimensional array:

({3 2 3) (%)) select T~ generates an array consisting of rows 5 2 and 3, in that ordar.
({*} (5 2 3)) select TT generatss an array c¢onsisting of columns 5 2 and 3, in that order.
{2 1) transpose == Transpcsas the array in the normal manner.
(1 ~2) rotate -~ Rotates each row left 1 position and then rotataes

== each column of tha rasult down 2 positicna.

Additional examples:
{5 identity) =~ Generates the vector (1 1 1 1 1).

(5 index) -~ Ganerates the vector (1 2 3 4 5).

2 reverse ~= Revarses tha alamantas along the 2nd coordinate of an inpuk array.
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Meaning:

The most common cases of data transformations are expected to be n-dimensional array manipulations.
For these operations, the language provides a short-cut: it is not necessary to write task implementations,
i.e., program code, and task descriptions and to enter them in the library. It suffices to specify the
transformations as part of the queue declaration.

In-line data transformations are specified in post-fix notation, integpreted left-to-right, with arguments
preceding the operators, and with the input port providing the initial argument. In general, the arguments
are multi-dimensionat arrays {nested vectors) ot scalar data values.

Operator
integer identity
integer index
vector reshape

array select

vector transpose

Description
generates the vector (11...11).
generates the vector (12... N

unravels an array (i.e., linearizes ity and then reshapes into an array with the
dimensionality of the argument vector. The input array is linearized in row order, i.e.,
py scanning all of the positions varying the highest dimension first. This operation
must be specified if the input and output array do not have the same shape but the
array elements are in the right order when the arrays are unraveled.

extracts (slices) pieces of a data amay. if the input is a vector, (5) select represents
the 5th element, and {5 2 3} select is a new vector consisting of the 5th, 2nd, and 3rd
elements in that order. A vector ot the form “(*)" selects all components along one
dimension.

permutes the dimensions of a data amay according to the argument vector (V). The
ith coordinate of the input array becomes coordinate V(i] of the result.

scalar_or_vector rotate

integer reverse

Data Operations

specifies rotations of n-dimensional data arrays. The operator is preceded by an
argument which must be either a scalar (signed) integer value or a parenthesized
array of (signed) integer values. The magnitude of the values specify the number of
positions to rotate the input data, and the sign of the values specify the direction of
the rotation: a positive amount indicates rotation towards lower indices.

A scalar argument specifies how 1o rotate an input vector. An n-length vector of
scalars specifies how to rotate an n-dimensional input array along each dimension
(one element pef dimension). An n-length vector of vectors argument specifies how
to rotate an n-dimensional input asray along each dimension (one top levet vector per
dimension) and within each dimension, how to rotate each “row” (one element of a
second level vector per row.)

For example, consider the transformation “{(1 2 0) (-3 -4)} rotate” applied to a 2-
dimensional 3x2 input array. The vector (1 2 0) specifies how to rotate the rows; the
vector (-3 -4) specifies how to rotate the columns. The first row is rotated fleft 1
position, the second row is rotated left 2 positions, the third row is left unchanged.
Then the first column is rotated down 3 positions, and finally, the second column is
rotated down 4 positions.

reverses the order ot the elements of an array along an arbitrary coordinate specified
by the integer argument. If the input is a vector, the argument must pe “1”. Inthe
sransformation "2 reverse’, it the input is a 2.dimensional array, this operation
shuffles columns; if the input is @ 3-dimensional array, this operation shuifies planes.

scalar operations applied to each element of an input array. The set of operations is
configuration dependent. The initial set will include operations to round, truncate, or
otherwise convert between various integef and floating-point formats, as described in
the configuration tile, Section 10.4.

This is a first attempt at defining the set of the operations a user is likely to perform on n-dimensional
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arrays. The guiding principle is to keep the notation simple; more compiex transformations should
probably be specified as off-line transformations.

A data transformation cperation is more than just a way to achieve type compatibility between ports. 1t
also serves to specify operations that would be inappropriate or inetficient it written as part of one of the
tasks. For example, consider an application that requires scanning an array in different directions {e.g.,
first by rows, then by columns) and performing some operation on each element {e.g., computing the
average of the neighbors). Rather than writing several versions of the task, one for each traversal
pattern, one could simply write one version of the task, and then instantiate it as many times as
necessary. Each process so instantiated could then take its input arrays from queues that perform the
appropriate transposition, as in “qlip1>(2 1) transpose>p2". Arrays produced by p1 are transposed
while in the queue, before they are deiivered to pa.

9.4. Binding Port Names

Syntax:

PortBinding = ExtPortName ‘'‘='‘ IntPortName

ExtPortName = PortName -- External port
IntPortName = GlobalPortName -- Internal port
Example:

bind

p_deal inl = obatacle_finder.inl;
P_marge.outl = chatacla finder.outl;

Meaning:
A port binding maps a port of the process-queue graph defining the internal structure of a task to a port
defining the external interface of a task.

9.5. Process-Queue Graph Reconfiguration

Syntax:
Reconfiguration ::= ‘''IF'’ RecPredicate ‘' ‘THEN’’
{ ProcessTermlnétlon—Llstapac- }
Structure_Llstup.c.
A} \ENDI‘ r 1 \IFJ ’
ProcessTermination ::= ' 'REMOVE'’ GlobalProcessName_Listcmwu trpry
RecPredicate 1= RecDisjunction ,
RecPredicate "‘OR’’ RecDisjunction
RecDisjunction i 1= RecConjunction ,
RecDisjunction ‘' ‘AND’’ RecConjunction
RecConjunction 1= RecRelation ,

'*NOT'’ ‘(' RecPredicate ‘)
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RecRelation .:= RecTerm ‘'‘=’'’ RecTerm , -- Equal
RecTerm ‘‘/='’ RecTerm ., -- Not equal
RecTerm ‘'‘>’’ RecTerm ., -- Greater
RecTerm '‘>='’ RecTerm , -- Greater than or equal
RecTerm '‘'<'’ RecTerm , -- Less
RecTerm ‘'‘<='' RecTerm , -- Less than or equal
RecTerm .:= IntegerValue ,
Realvalue ,
StringvValue ,
TimeValue
Examples:
it Current_Time >= 6:00:00 local and Current_Time < 18:00:00 local
then
process
p_vision: task vision altributes processor = warp2;
queue
q_visian_rond: p_d.ul.outB > > p_vision.inl;
q_obstacl-.: p__v:i.lion.outl > > p_m:g-.inJ;
end if;
Meaning:

A reconfiguration statement is a directive fo the scheduler. 1t is used to specify changes in the current
structure, i.e., process-queue graph, of the application and the conditions under which these changes
take eftect. Typically, a number of existing processes and queues are substituted by new processes and
queues which are then connected to the remainder of the original graph. The reconfiguration predicate is
a boolean expression involving time values, quéue sizes, and other information available to the scheduler
at run time.

Notice that nothing is being said about the internal representation of time values. They are definitely not
like integer or real values -- ime values cannot be mixed with regular numeric values in an expression. In
addition, currently the language does not provide any arithmetic operators for time values. However, a
few predefined system functions provide for the computation of past or future time values, as described in
Section 10.1.



29

10. Predefined Language Facilities

10.1. Functions

Syntax:
FunctionCall ' 1= FunctionName { FunctionParameters }
FunctionName - = “CURRENT_TIME" .

' 'MINUS TIME' " ,

‘'PLUS_TIME' "’ ,

' 'CURRENT_SIZE’’

It

-- Function dependent

FunctionParameters Y(r Parameter List

\) r
Conuna
Parameter 1= IntegerValue ,

RealValue ,

StringValue ,

TimeValue
Examples:
Plus_Tim.(Currtnt_rimn, 2.5 hours) == 2.5 hours from the cutrent timae
Curr-nt_six-(Mnitoq_Proc.s-.Dntn_?ort) -- the siza of a queus faeding a port
Meaning:

The following functions are predefined in the language: “current_time”, “minus_time", “plus_time”, and
“current_size".

The function call “Current_Time" returns the current time as an absolute date in the local time zone.

The function call “Minus_Time{T"lmeValue,,'ﬁmeValuez)" returns the time value obtained by subtracting
TimeValue, from TimeValue,. The following cases are allowed:
1.1f both parameters are absolute times. the result is a relative time, i.e., a duration.
TimeValue, must be later than TirneVaIuez.

2. if TimeValue, is an absolute time and TimeValue, is a relative time, the result is an
absolute time in the same time zone as TimeValue, .

3. If both parameters are relative times, the result is a relative time. TimeValue, must be
larger than TimeValue,.

The function call "PIus_Time(ﬂmeVaiue,,TimeVaIuez)" retums the time value obtained by adding
TimeValue, to TimeValue,. The following cases are allowed:
1. it one parameter is an absoiute time and the other parameter is a relative time, the result is
an absolute time in the sarme time zone.

2. It both parameters are relative times, the resuit is a relative time, i.e., a duration.

The function call “Current_Size(GlobalPortName)" returns the current number of eiements stored in the
queue associated with a given port.

Calls to these functions can appear anywhere a value of the same kind as the return value can appear.
That is, a call to a function returning an integer, a real, a string, or a time value can appear instead of an
integer, a real, a string, or a time value, respectively.
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10.2. Attributes
The following attributes are predefined in the language: “mode”, “implementation”, and “processor”.

10.2.1. Mode Attribute

Syntax:

ModeAttr - ..= Y'MODE'’ ‘="' ModeAttrValue
ModeAttrValue . ::= Identifier

Meaning:

The values of the “mode” attribute are identifiers denoting the operation performed by one of the
predefined tasks: “proadcast”, “merge”, and “deal”, as described in Section 10.3.

The formal specification of the operation is given by the behavioral pan of the task description. The
identifiers used as values for the “mode” attribute are just a convenient shorthand to select what are
expected to be frequently used tasks. Users are more likely to select predefined tasks by specitying a
mode value (i.e., an identifier) than by specifying a timing expression or a tunction predicate.

The following identifiers are representative of typical values for the “mode" attribute: “random”, “fita",
“round_robin”, “by_type", “pajanced”, “grouped_by 2". The actual values are implementation
dependent.

10.2.2. implementation Attribute

Syntax:

ImplementationAttr ::= ‘¢ ITMPLEMENTATION'® ' ="' ImplementationAttrValue
ImplementationAttrValue .:= StringValue

Examples:

jmplementation = »fusc/cbw/het.0/damo.0";

Meaning:
The value of the implementation attribute is the name of the file containing the actual object code. The
format of a file name may vary with the host operating system.

10.2.3. Processor Attribute

Syntax:
ProcessorAttr = 'PROCESSOQR’ " ‘="' ProcessorAttrvalue
ProcessorAttrValue ::= Identifier ,

Tdentifier ‘(' Identifier LiSt .., )
Examples:

procassor = m&B0O00 (m68020, m6BO32);
processor = m68020(pl, p2, P
processcr = m68032 (pd, P5):
processcr = ibml40l;
processor = warp(warpl, warp2);

-

procassor = buffar processor;
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Meaning:

The configuration of the heterogeneous machine specifies the different values for the “processor’
attribute, including names of classes of processors as well as names of individual processors, as
illustrated above. See Section 10.4 for details about specifying the configuration of the heterogeneous
machine.

The value of the “processor” attribute can vary in specificity by using a processor class name or an
individual processor name. For example, WARP means any Warp processor, WARP1 means that Warp
processor.

It the user specifies the name of a class of processors as the vaiue of the “processor” attribute, any one
of the members of the class can be used to execute the task. If the user specifies a class name and a set
of members (in parentheses), any one of the members of this set can be used to execute the task. The
members of the set must be a subset of the class as defined by the configuration.

10.3. Tasks
The following tasks are predefined in the language: “broadcast”, “merge”, and “deal".

10.3.1. Broadcast

“broadcast” is a task with one input port and as many output ports as needed. Input data are replicated
and sent to all the output ports. Port names are inf for the input port and out!, out?...., outN for the
output ports.

10.3.2. Merge _

“merge” is a task with one output port and as many input ports as needed. The type of the output port is
the union of all the input types. Input data items are merged and sent to the output port. Port names are
i, in2...., inN for N input ports and out? for the output port.

A merge discipline must be provided as a value to the “mode” attribute, as described in Section 10.2.1.
Possible values include “random” (unordered), “fifo” (ordered by time of arrival to the merge process),
and “round_robin” {one from each input port and repeating.} Because of transmission delays, the order
of arrival of the data might differ from the order in which the data were sent out. A FIFQ merge process
uses time of arrival, not time of creation, to order the data.

10.3.3. Deal

“deal” is a task with one input port and as many output ports as needed. The type of the input port is the
union of all the output types. Input data items are sent to one output port. Port names are in? tor the
input port and out?, out2,..., outN for the cutput ports.

A deal discipline must be provided as a value to the “mode” attribute, as described in Section 10.2.1.
Possible values inciude “"random” (unordered), “round_robin” (one to each output port and repeating),
“by_type”, “grouped_by 2", and “balanced”. If dealing by type, the output port must be uniguely
identifiable (i.e., there is exactly one output port of the right type for each possible type accepted by the
input port.) This is the only kind of “deal” process in which multiple output types make sense. Other
kinds of “deal” processes require compatible output types.
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10.3.4. lllustrative Task Descriptions

Figure 9 illustrates typical task descriptions for the predefined tasks. The task description in Figure 9.a
depicts a 2-output broadcast task that handles items of some type “packet” in paraliel. The task
description in Figure 9.b depicts a 2-input merge task that handles items of type packet in round robin
fashion. Finally, the task description in Figure 9.c depicts a 2-output deal task that handles items of type
packet in round robin fashion.

task broadcast
ports
inl: in packat;
sutl, out2: oul packaet;

behavior
ensures "insaert (outl, first (inl)) & insert {out, firat{inl))";
timing loop (inl {outl |[| out2})

attributes

mode = parallel;
end broadcast;

a. Parallel Broadcast

task marge
ports
inl, in2: in packet;
outl: oul packat;
behavior
ensures "insart{insert(insert {outl, first (inl)), firat(in2)),firat(ind))";
timing loop ((inl inZ in3) (repsat 3 => outl));
attributes
mode = sagquential round robin;
end marge;

b. Round-Robin Merge

task deal
ports
inl: in packet;
outl, out2: oul packet;
behavior
ensures “insert (outl, first({inl)} & insert{outl, sacond{inl})}";
timing loop (inl outl inl out2);
attributes
mode = soqu-ntial__round.__robin;
end deal;

¢. Round-Robin Deal
Figure 9: Predefined Task Descriptions

These descriptions do not really exist in the library. The compiler generates them on demand to satisfy

process declarations of the form:

pb: task broadcast attributes moda = dantfier; end broadcaet;
pm: lask merge attributes mode = idantifier end marga;
pd: task deal aliributes moda = dentfior end deal;

where identifieris “parallel”, “sequential_round_robin”, etc., as defined by the implementation.
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10.4. Configuration File

Information about the configuration of the heterogeneous machine, the location of system files and
libraries, and other random information required by the compiler, library, and scheduler appears in a
configuration file.

Processcor = warp(warp_l, warp2);

processor = sun(sun_l, sun 2, aun_3);

implamantation = "/usr/chw/hetlib/";

default input_operation = ("gat®, 0,01 seconds, 0.02 seconds);
default output_operation = {"put*, 0.0S seconds, .10 seconds);
dafault queue_langth = 100;

data oparation = ("fix"*, "fix.o"};

data cperation = ("float", “float.o"};

d.ntn_op.rltion - (':ound__float", “round.o");

dal:n_cp.ration = (“tn:ncat.__tlont', "trunae.o");

Figure 10: Configuration File

The configuration file in Figure 10 illustrates the definition of the hardware configuration (values for the
“processor” attribute), the location of the system task implementations, and various pieces of information
about queues and queue operations.

In the “processor” -attribute, the meaning of a class name is understood by the scheduler as standing for
any of the specific vaiues in the class (i.e., a run-time choice of processors). Notice that this choice can
be restricted by the user in a task description by specifying a subset of the class, and restricted even
further in a task selection by specifying an even smaller subset of allowable processors.

The example configuration file also specifies the location of system files, in particular, the
implementations of system tasks. Additional information in the file would describe default queue
operations, data transformations, elc.

Keep in mind that the configuration file is not written in the task description language. The example
shown is just an iliustration of the kinds of information that are likely to be contained in the file — form and
content of the file are implementation dependent.



34

11. Appendix -- An Extended Example
This appendix illustrates a task-level description ot a fictional application. A process-queue graph of the
application appears in Figure 11.

11.1. Data Transformation Tasks

task corner_turning
porta
inl; in landmark row _major;
outl: out landmark column major;
actributes .
implementation = * /usr/mzb/scrastch.o®;
processoer = buffer processor;
other attributas uniquely identifying an implemantation . - .
end com.r__tuming;

11.2. Type Declarations

type map_databass is ... H
type destination im ... H
typs local_path is ... ;
Lyps recognized road is ..... ;
typs road selection is ... H
type voh:‘.clo_position ia ..-.. ;
typa vehicle motionh im ... ;
typs wheal motion is ..... H
typs landmark is ... ;
type landmark list - is ....- ;
typs landmark_row_major is ... ;
tyFpe lnndm.l:k__column_njo: is ..... H
type vision_road is ... H
LYPe sonar_road is ....- ;
type laser_road is ... H -
type road is ... ;
type obstacles is ... ;

11.3. Task Descriptions

task navigator
ports
inl: in map_database;
in2: in destination;
outl: out road_selectiocn;
out2: out landmark list;
attributes
author = "jmw";
varsicn = “1.0%;
processor = *m68020%;
end navigator;

task road_yrodiato:
pores
inl: in map database;
in2: in road_sslection;
in3: in vehicle positicn;
outl: out road;
and rcnd_pr.dictor;

task landmark predictor
ports
inl: in landmark list;
in2: in vehicle position;
outl: out landmark row_major;
and landmark predicter;
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task rcad_findar
ports
inl: in road;
ocutl: out recogunized road;
snd road_ finder;

task landmark_recoguizer
perts
ianl: in 1Andna:k_polunn_pajo::
outl: out landmark column major;
and landmark recognizer;

task vision
ports
inl: in wision_road;
sutl: out ocbatacles;
attributas
ProOCessor = WALP;
and vision;

task sonar
ports
inl: in sonar_road;
outl: out chataclas;
attributes
ProcCessor = WAILP)
and sonar;

task laser
porta
inl: in las-:_road;
outl: cut cbataclas;
attributas
PLOCessor = Warp;
end laser;

cask po'ition_ponputltion
potrts
inl: in landnnrk_polumn_pgjor;
in2: in vehicle _motion;
outl, out2: out vohiclo_polition;
and position_pomputntion;

task local_pnth_plannor
ports
inl: in wheael motion;
in2: in obstacles;
outl: out local path;
out2: out v-hicl-_potion;
and 1ocalﬂpnth_ylann-r;

task vohiclo_gontrol
pores
inl: in locul_pnth;
outl: out wh.nl_potion;
and v.hicl-_cantzol;



taak obstacle findar

ports

inl: in recognized road;

outl:

oyt obstacles;

behavior

loop (iml([l0, 15] outl[3d, 4]);
structure

pProcess

p_deal:
p_merge:

P_sonar: task sonar;

p_lasar:

bind

task deal attributes mode = bx_typa end deal;
task merge attributes mode = fifo ead marge;

task laser attributes processer = warpl and laser;

pP_deal.in] = obstacle findaer.inl;
p_merge.outl = ohstacle_findar.outl;

quena
ql:
g2:
q3:
qd:

-=for

P_sonar.outl > > p marge.
P_laser.outl > > P_merge.
p_deal.outl > > P_aonar,
p_deal.outl > > P_laser.

dynamic reconfiguration

inl;
in2;
inl;
inl;

if Current Time >= 6:00:00 local and Current_Time < 18:00:00 local

then

procass

P_viaion: task vision attributes Processor = warp2;

queue

q5: p_daal.out3 > > p vision.inl;

qé: p_vision.outl > > P_merge.in3;
end if;

and abltlclq_findor;

11.4. Application Description

task ALV

attributes
version = "Fall 1986";
processor = HETO;

spasd = faat;
structurs

Process
navigator: taask navigator attributes author = “juw" eand navigator;
road predictor: task road predictor;
landmark predicteor: task lnndmark_p:odictor;
road findar: tank road finder;
landmark_recognizer: task landnarkq:.cogniz-r;
ob-t;cl._!ind-r: task ob-tlclo_find.:;

Position computaticn:task Position computation;
local path planner: task local path planner;

vehicle contreol: task vehicle_control;
ct_procass: task corner turning;

quauas
ql: navigator.sutl > > road_pradictor.in2;
q2: navigator.out2 > > landmark predicteor.inl;
33: zoad predictor.outl > > road_finder.inl;
q4: road finder.outl > > obstacle finder.inl;
q5: cbstacle finder.outl > > local path_planner.inZ;
qé: local path planner.outl > > vahicle control.inl:
q7: 1ocal_pnth_pllnnor.out2 > > position_computation.in2;
qd: vehicle control.outl > > local path planner.inl;
q9: landmark predictor.ocutl > ct_process > landmark recognizer.inl;

-- Eequirss data transfo

q10:landmark recognizer.outl > > position computation.inl;
qll:position _computation.outl> > road predictor.in2;
ql2:poaition computation.out2> > landmark predictor.in2;

and ALV,

end vision:

37
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