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1 . Introduction 
Large networks of computers supporting both local and distributed processing are emerging as the 
computing environments of choice. Application programs running in these environments concurrently 
access shared, distributed, and possibly replicated data. Examples of such applications include airline 
reservations, electronic banking, process control, and campus-wide networks of workstations. Such 
applications must be designed to cope with failures and concurrency, ensuring that the data they manage 
remain consistent, that is, are neither lost nor corrupted, and available, that is, accessible even in the 
presence of failures such as node crashes and network partitions. 

A widely-accepted technique for preserving consistency in the presence of failures and concurrency is to 
organize computations as sequential processes called transactions. Transactions are atomic, that is, 
serializable and recoverable. Serializability means that transactions appear to execute in a serial order, 
and recoverability means that a transaction either succeeds completely or has no effect. A transaction 
that completes all its changes successfully commits-, otherwise it aborts, and any changes it has made are 
undone. 

Although transactions are widely used in the database community, demonstrating that they can be a 
foundation for general purpose distributed systems remains a challenge and is currently of active interest. 
Appropriate programming language support for application programmers would greatly enhance the 
usability and thus, generality, of such systems. 

Avalon is a set of linguistic constructs designed as extensions to familiar high-level programming 
languages such as C++ [Stroustrup 86], Common Lisp [Steele 84], and Ada [Dod 83]. The extensions 
are tailored for each base language, so the syntax and spirit of each language are maintained. The 
constructs include new encapsulation and abstraction mechanisms, as well as support for concurrency 
and recovery. The decision to extend existing languages rather than to invent a new language was 
based on pragmatic considerations. We felt we could focus more effectively on the new and interesting 
issues of reliability and concurrency if we did not have to redesign or reimplement basic language 
features, and we felt that building on top of widely-used and widely-available languages would facilitate 
the use of Avalon outside our own research group. 

This paper presents an overview of some of the more novel aspects of Avalon/C++. In Section 2, we 
survey the main features of Avalon, and in Section 3 we focus on Avalon's two principal innovations: (1) 
support for hybrid atomicity [We\h\ 84], a concurrency control mechanism in which transactions are 
serialized in the order they commit, and (2) user-defined, but system-invoked, transaction commit and 
abort operations for atomic data objects. In Section 4, we give two examples showing how these 
constructs can be combined to enhance concurrency, and in Section 5 we close by comparing the Avalon 
constructs with other distributed programming languages and systems. We are currently implementing 
the Avalon/C++ constructs on top of Camelot [Spector et al. 86], a distributed transaction management 
system being built at Carnegie Mellon University. 

2. Overview of Avalon 
A program in Avalon consists of a set of servers, which resemble Argus guardians [Liskov 83]. A server 
encapsulates a set of objects and exports a set of operations and a set of constructors. A server 
resides at a single physical node, but each node may be home to multiple servers. A r y — 
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program explicitly creates a server at a specified node by calling one of its constructors. Rather than 
sharing data directly, servers communicate by calling one another's operations. An operation call is a 
remote procedure call with call-by-value transmission of arguments and results. When a server receives 
an operation call, it creates a short-lived "light-weight" process to execute the operation. A server can 
also provide a special background operation called by the system after it is created, as well as a special 
recover operation called by the system when the server recovers from a crash. Objects may be stable or 
volatile. Stable objects survive crashes, while volatile objects do not. Syntactically, a server resembles a 
C++ class definition, where the objects correspond to class members, the operations correspond to 
member operations, and the constructors correspond to constructors. At the statement level, Avalon 
provides primitives to begin and end transactions, either in sequence or in parallel. Each transaction is 
identified with a process. 

Avalon also supports nested transactions. A transaction commits only if all its children commit or abort; a 
transaction that aborts aborts all its children, even those that have committed. A transaction's effects 
become permanent only when it commits at the top level. Thus, a subtransaction's effects need not be 
written to stable storage until its top-level transaction commits. Nested transactions can be used to make 
applications more robust. For example, if a subtransaction aborts, the parent transaction need not abort, 
but can execute an alternative subtransaction. Nested transactions also increase the level of concurrency 
within a single transaction since subtransactions may execute concurrently. 

We use standard tree terminology when discussing nested transactions: parent, child, ancestor, 
descendant, etc. A transaction is considered to be its own ancestor, but not its own proper ancestor, and 
similarly for descendants. For purposes of discussion, all transactions are considered to be descendants 
of a distinguished root transaction that never commits or aborts. A top-level transaction is a child of the 
root transaction. If B is an ancestor of A, then A has committed with respect to B if every transaction that 
is both an ancestor of A and a proper descendant of B has committed. If B is not an ancestor of A, then A 
is committed with respect to B if A is committed with respect to the least common ancestor of A and B in 
the transaction tree. 

In Avalon programs, each data object performs its own synchronization and recovery. A transaction is 
guaranteed to be atomic if all the objects it manipulates are atomic objects. Avalon provides a set of 
built-in atomic data types that resemble typical built-in types (e.g., arrays and records), but these data 
types guarantee atomicity as well. As discussed below, Avalon also provides primitives to assist 
programmers in implementing their own atomic types. Serializability and recoverability are implemented 
for the built-in atomic types by Camelot facilities such as locking protocols, new value/old value logging, 
and commitment protocols. 

A novel aspect of Avalon is that when a transaction commits, it is assigned a timestamp generated by a 
logical clock [Lamport 78]. Atomic objects are expected to ensure that all transactions are serializable in 
the order of their commit timestamps, a property called hybrid atomicity. This property is automatically 
ensured by two-phase locking protocols [Eswaran 76], but additional concurrency and availability can be 
achieved by taking the timestamp ordering explicitly into account [Herlihy 85]. Avalon provides a built-in 
transaction identifier type tid to assist programmers in implementing their own hybrid atomic data types. 
The tid type provides a restricted set of operations that facilitates run-time testing of serialization orders 
and the state of transaction commitment. Section 3.1 describes this type in more detail, and Section 4.2 
gives an example of how it can be used to implement a highly concurrent atomic FIFO queue. 
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A second novel aspect of Avalon is that programmers may define type-specific commit and abort 
operations for user-defined atomic data types. The system automatically applies commit or abort when 
transactions terminate. Section 3.2 gives guidelines to users on what properties user-defined commit and 
abort operations should preserve and explains how the system invokes them, in particular, in the 
presence of nested transactions. 

3. Avalon Built-in Types 
For our examples we assume some familiarity with C++, in particular its subclassing mechanism. We 
begin by describing the tid type and the atomic type, both of which are used to implement user-defined 
atomic objects. 

3.1. Transaction Identifiers 

Avalon provides a tid data type to assist the programmer to reason about transaction serialization and commitment. 
class tid { 

... // hidden representation public: 
tid(); // constructor 
int operator=(tid&); // equality 
int operator<(tid&); // serialized before? 
int operator>(tid&); // serialized after? 
int done(); // committed to top level? 
friend int both(tid&,tid&); // both committed to lea? 
friend tid& root(); // returns root tid 

}; 

A new tid is created by declaring a variable or by a call to new. 
tid& t = * (new tid) ; 

Rather than simply returning the calling transaction's identifier, the tid constructor creates and commits a 
(dummy) subtransaction, returning the subtransaction's tid to the parent. This alternative semantics was 
chosen because it is often convenient for a transaction to generate multiple tids ordered in the 
serialization order of their creation events. 

The system's current knowledge about the transaction serialization ordering can be tested by the 
overloaded operators "<" and ">." For example, if the expression: 

t i < t 2 

evaluates to true, then if both transactions commit, t1 will be serialized before t2. Note that < induces a 
partial order on tids; as long as t1 and t2 are concurrent, both t1 < t2 and t2 < t1 will evaluate to false. 
Eventually, as transactions commit, t1 and t2 will become comparable. 

To process commits and aborts it is often necessary to determine whether certain transactions have 
committed. The both operation tests whether two transactions have both committed to their least 
common ancestor. If the following expression evaluates to true, 

tid::both(tl,t2) 

then t1 and t2 will either both commit to the top level, or they will both abort, but one cannot commit without the other. 
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The done operation tests whether a transaction has committed to the top level. This operation is primarily 

used to discard unneeded recovery information. 

The root operation returns the tid for the unique transaction at the root of the transaction tree. All "top-
level" transactions are children of the root. The expression t.doneO is equivalent to 

tid::both(t,tid::root()). 

3.2. Atomic Objects 
Atomic objects are derived from the following built-in type: 

class atomic { 
protected: 

virtual void seize(); 
virtual void release(); 
virtual void pause(); 

public: 
virtual void commit(tid& t) ; 
virtual void abort(tid& t); 

}; 
Each atomic object has a short-term lock, similar to a monitor lock, used to ensure that concurrent 
operations do not interfere. The short-term lock is acquired by the seize operation and released by the 
release operation. The pause operation temporarily releases the lock, suspends the caller, and 
reacquires the lock before returning. Any changes made to the object while the lock is held will not be 
backed up to stable storage until sometime after the lock is released. A transaction's changes are 
guaranteed to be backed up before it commits. These three operations are protected, meaning that they 
are accessible only within the implementations of derived types. These operations are implemented by 
the Avalon system, not the programmer. 

The commit and abort operations are used to process commits and aborts. These operations are 
provided by the programmer but are called by the Avalon run-time system. After a transaction commits 
(aborts), the system will apply the commit (abort) operation to every object operated upon by a 
descendant of that transaction. Log records for commit and abort operations are spooled to the log, but 
need not be forced to stable storage. When a server recovers from a crash, it detects and reschedules 
missing commit and abort operations. 

As illustrated in the examples in Section 4, commit typically releases locks and discards recovery 
information and abort typically releases locks and discards tentative changes. When implementing these 
operations, programmers should follow the following guidelines: (1) Most important, these operations 
should be viewed as "benevolent side-effects" in the sense that they should affect liveness properties, 
but not safety. For example, delaying a commit or abort operation may delay other transactions (e.g., by 
failing to release locks), but it should never cause a transaction to observe an erroneous state. (2) These 
operations should be idempotent, since a crash at an inopportune moment may cause a commit or abort 
operation to be applied to an object more than once for the same transaction. (3) These operations 
should not interact with the transaction system by creating, committing, or aborting transactions, thus they 
should not invoke operations of other atomic objects. 
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3.2.1. The Commit Operation 

When the system calls an object's commit operation, it supplies the tid of the committing transaction as an 
argument. Commit operations are applied in leaf-to-root order. For example, if nested transaction A.B.C 
operates on x, then the system will call x.commit(A.B.C), x.commJt(A.B), and x.commit(A), in that order. 
Commit operations for sibling transactions are applied in serialization order. If A and B operate on x and 
A is serialized before B, then x.commit(A) is applied before x.commit(B). The order in which commit 
operations for a given transaction are applied to multiple objects is left unspecified. 

3.2.2. The Abort Operation 

When the system calls an object's abort operation, it supplies the tid of the aborting transaction as an 
argument. Abort operations are also applied in leaf-to-root order, and the order in which abort operations 
for a given transaction are applied to multiple objects is left unspecified. 

4. User-Defined Atomic Objects 
In this section we give two examples, two-phase locks and FIFO queues, to illustrate how Avalon 
primitives can be used and what typical user-defined commit and abort operations do. 

4.1 . Two-Phase Locking 

Here we give a simple implementation of Moss's nested two-phase locking protocol [Moss 81]. This 
example is for demonstration purposes only; Avalon provides more efficient low-level support for two-
phase locking. 

Moss's rules are: 

1. A lock is granted to the caller if it is held by an ancestor. 

2. If a transaction commits, the lock reverts to the parent transaction. 

3. If a transaction aborts, the lock reverts to whomever held it before. 

Here is the class definition for lock objects. Notice that lock is a derived class from the base atomic class, 
which was defined in the previous section. 

class lock: public atomic { 
tid_stack s; 

public: 
lock(); // Constructor 
void request(); // Acquire lock 
void commit(tid&); // Release on commit 
void abort(tid&); // Release on abort 

}; 
The lock is represented by the tidjstack data type, which implements a stack of tid's. 

The request operation returns after acquiring the lock. It waits until the transaction holding the lock is 
committed to an ancestor of the caller, and then pushes the caller onto the stack before returning, 

void lock.request() { 
tid who = *(new tid); // tid for this operation 
this->seize(); // begin critical region 
for (;;) { // do forever... 

if (s.topO < who) { // if serialized before ... 
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s.push(who); // push self onto stack ... 
this->release(); // leave critical region ... 
return; // and return. 

this->pause(); // otherwise wait and retry 
}; 

}; 
The commit operation reclaims storage by discarding redundant tid's. 

void lock.commit(tid& who) { 
this->seize(); // enter critical region 
while (s.sizeO > 0 && // pop superfluous tid's 

tid::both(who,s.top())) 
s.popO ; 

s.push(who); // push self back onto stack 
this->release(); // leave critical region 

}; 
The abort operation also discards superfluous tid's, restoring the lock to whomever held it last. 

void lock.abort(tid& who) { 
this->seize(); // enter critical region 
while (s.sizeO > 0 && // pop superfluous tid's 

tid::both(who,s.top())) 
s.popO ; 

this->release(); // leave critical region 
>; 

4.2. FIFO Queue 
Here we give a more complex example— a highly concurrent FIFO queue. Our implementation is 
interesting for two reasons. First, it supports more concurrency than commutativity-based concurrency 
control schemes such as two-phase locking. For example, it permits concurrent Enq operations, even 
though Enq's do not commute. Second, it supports more concurrency than any locking-based protocol, 
because it takes advantage of state information. For example, it permits concurrent Enq and Deq 
operations while the queue is non-empty. 

4.2.1. The Representation 
Information about Enq invocations is recorded in the following struct: 

struct enq_rec { 
tid enqr; 
item* what; 
enq_rec(tid& t, item* x) {enqr = t; what = x;} ; 

}; 
The enqr component is a tid generated by the enqueuing transaction, the what component is a pointer to 
the enqueued item, and the last component defines a constructor operation for initializing the struct. 

Information about Deq invocations is recorded similarly: 

struct deq_rec I 
tid deqr; 
tid enqr; 
item* what; 
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deq_rec(tid& d, tid& e f item* x) 
{deqr = d; enqr = e; what = x;}; 

The queue is represented as follows. 
class queue: public atomic { 

stack deqd; 
pqueue enqd; 

public: 
queue(); // Create empty queue 
void enq(item*); // Enqueue an item 
item* deq(); // Dequeue an item 
void commit (tid&) ; // Called on commit 
void abort(tid&); // Called on abort 

}; 

The deqd component is a stack of decree's used to undo aborted Deq operations. The enqd component 
is a partially ordered queue of enqjec's, ordered by their enqr fields. A partially ordered queue provides 
operations to enqueue an enqjec, to test whether there exists a unique oldest enqjec, to dequeue it if it 
exists, and to keep and discard all enqjec's committed with respect to a particular tid. 

This implementation satisfies the following representation invariant: First, an item is either "enqueued* or 
"dequeued," but not both: the encLrec <tid, item> is in the enqd component if and only if for all x the 
deqjec <x, tid, item> is not in the deqd component. Second, the stack order of two items mirrors both 
their enqueuing order and their dequeuing order: if deqjec d1 is below deqjec d2 in the deqd stack, 
then 61.enqr < 62.enqr and d1.deqr < dZ.deqr. Finally, any dequeued item must previously have been 
enqueued: if d is a deqjec, then 6.enqr< d.deqr. 

4.2.2. The Operations 

The conditions under which Enq and Deq operations are allowed to occur are as follows. A transaction A 
may dequeue an item if (1) the most recent transaction to execute a Deq is committed with respect to A, 
and (2) there exists a unique oldest element in the queue whose enqueuing transaction is committed with 
respect to A. A may enqueue an item if the last item dequeued was enqueued by a transaction committed 
with respect to A. 

Given these conditions, Enq is implemented as follows: 
void queue, enq (item* x) { 

tid& who = *(new tid); 
this->seize(); 
for (;;) { 

if (deqd. size () = 0 || deqd. top() .enqr < who) ( 
enqd. enq(enq_rec (who,x)) ; 
this->release(); 
return; 
}; 

this->pause(); 
}; 

}; 

Enq checks whether the item most recently dequeued was enqueued by a transaction uncommitted with 
respect to A. If not, the current stamp and the new item are inserted in enqd. Otherwise, the transaction 
releases the short-term lock and tries again later. 
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Deq is implemented as follows: 
item* queue.deq() { 

tid& who = *(new tid); 
this->seize(); 
for (;;) { 

if (deqd.sizeO — 0 I I deqd.topO .deqr < who) { 
if (enqd.canjdeqO && enqd.oldest () .when < who) { 

enq_rec e = enqd. deq (); 
deqd. push (deq_rec (who, e. when, e. what)) ; 
this->release () ; 
return e.what; 

J; 
}; 
this->pause () ; 

>; 
}; 

Deq tests whether the most recent dequeuing transaction has committed with respect to the caller, and 
whether enqd has a unique oldest item. If the enqueuing transaction has committed with respect to the 
caller, it removes the item from enqd and records it in deqd. Otherwise, the caller releases the short-term 
lock, suspends execution, and tries again later. 

Commit \s implemented as follows: 
void queue, commit (tid& who) { 

if (! who.done()) return; 
this->seize(); 
if (deqd.sizeO > 0 && deqd.topO .deqr < who) deqd.reset(); 
this->release(); 

}; 
When a top-level transaction commits, it discards deq records no longer needed for recovery. (The 
representation invariant ensures that all deq_rec's below the top are also superfluous, and can be 
discarded.) 

Abort has more work to do: 
void queue.abort(tid& who) { 

this->seize(); 
while (deqd.sizeO > 0) { 

deq_rec d = deqd.topO; 
if (d.deqr < who) { 

enqd.enq(enq_rec (d.enqr,d. what)) ; 
d = deqd.popO;} else break; 

}; 
enqd.discard(who); 
this->release(); 

}; 
Abort undoes every operation executed by a transaction committed with respect to the aborting 
transaction. It interprets deqd as an undo log, popping records for aborted operations, and inserting the 
items back in enqd. Abort then flushes all items enqueued by the aborted transaction and its 
descendants. 
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5. Related Work and Discussion 
Transactions have been a primary focus in the context of both distributed and centralized data bases 
[Bernstein 81, Eswaran 76, Gray 78, Lindsay 79]. Reed [Reed 83] and Moss [Moss 81] have additionally 

proposed synchronization mechanisms for nested transactions. Several research projects have chosen 
transactions as the foundation for constructing reliable general-purpose distributed programs, including 
Argus [Liskov 83], Clouds [McKendry 84], and TABS [Spector 85]. Of these projects, however, only 
Argus has addressed the linguistic aspects of the problem. 

On the other hand, other distributed programming languages such as CSP [Hoare 78], SR [Andrews 81], 
Linda [Gelernter 85], Nil [Strom 83], and Ada [Dod 83], have no direct support for transactions, and in 
particular for commit and abort processing of data objects. Many of these languages, e.g., CSP and 
Linda, also suffer from weaker type systems and have fewer abstraction mechanisms than what Avalon 
provides. 

Avalon's model of computation resembles that of Argus and thus many Avalon features resemble those of 
Argus, e.g., servers are comparable to Argus guardians, nested transactions have the same semantics, 
and locking rules are similar. The principal way in which Avalon differs from Argus is in how it supports 
the implementation of user-defined atomic data objects. As described by Weihl and Liskov [Weihl 85], 
Argus does not provide explicit transaction identifiers, nor does it provide explicit commit and abort 
operations. In Avalon, explicit transaction identifiers are needed to support hybrid atomicity. Argus, by 
contrast, is based on a local atomicity property called strong dynamic atomicity [Weihl 84], which permits 
less concurrency, although it requires simpler run-time support. The desire and need for explicit control 
over commit and abort processing have been noted previously by Greif et al. [Greif et al. 86]. 

We chose to use C++, rather than C, to gain the advantages of strong type-checking, syntactic support 
for data abstraction, operator overloading, and subtyping, all of which we rely on. One problem we 
encountered early in our Avalon design for C++ was the lack of support for exception handling. We have 
since designed our own exception handling mechanism compatible with C++. 

In summary, Avalon is a set of linguistic constructs that extend the capability of existing programming 
languages by directly supporting transactions and user-defined atomic objects. Users are relieved from 
the burden of doing low-level system activities such as locking and managing stable storage, and instead 
can concentrate of the logic required of their application. At the same time, however, they are given 
enough flexibility to exploit the semantics of their applications to increase their programs' efficiency, 
concurrency, and fault-tolerance. 
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