
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

CMU-CS-86-167

Avalon: Language Support for Reliable Distributed Systems

Maurice P. Herlihy and Jeannette M. Wing
Department of Computer Science

Carnegie Mellon University
Pittsburgh, PA 15213-3890

3 December 1986

Abstract

Avalon is a set of linguistic constructs designed to give programmers explicit control over transaction-
based processing of atomic objects for fault-tolerant applications. These constructs are to be
implemented as extensions to familiar programming languages such as C++, Common Lisp, and Ada;
they are tailored for each base language so the syntax and spirit of each language are maintained.

This paper presents an overview of the novel aspects of Avalon/C++: (1) support for testing transaction
serialization orders at run-time, and (2) user-defined, but system-invoked, transaction commit and abort
operations for atomic data objects. These capabilities provide programmers with the flexibility to exploit
the semantics of applications to enhance efficiency, concurrency, and fault-tolerance.

Maurice P. Herlihy Jeannette M. Wing
(412) 268-2584 (412) 268-3068
Herlihy@ccs.cmu.edu.arpa Wing@ccs.cmu.edu.arpa

Word count: 4428 (3945 in text, 484 in display).

Conference area: (b) specification, design, testing, verification of reliable software

Copyright © 1986 Maurice P. Herlihy and Jeannette M. Wing

mailto:Herlihy@ccs.cmu.edu.arpa
mailto:Wing@ccs.cmu.edu

1 . Introduction
Large networks of computers supporting both local and distributed processing are emerging as the
computing environments of choice. Application programs running in these environments concurrently
access shared, distributed, and possibly replicated data. Examples of such applications include airline
reservations, electronic banking, process control, and campus-wide networks of workstations. Such
applications must be designed to cope with failures and concurrency, ensuring that the data they manage
remain consistent, that is, are neither lost nor corrupted, and available, that is, accessible even in the
presence of failures such as node crashes and network partitions.

A widely-accepted technique for preserving consistency in the presence of failures and concurrency is to
organize computations as sequential processes called transactions. Transactions are atomic, that is,
serializable and recoverable. Serializability means that transactions appear to execute in a serial order,
and recoverability means that a transaction either succeeds completely or has no effect. A transaction
that completes all its changes successfully commits-, otherwise it aborts, and any changes it has made are
undone.

Although transactions are widely used in the database community, demonstrating that they can be a
foundation for general purpose distributed systems remains a challenge and is currently of active interest.
Appropriate programming language support for application programmers would greatly enhance the
usability and thus, generality, of such systems.

Avalon is a set of linguistic constructs designed as extensions to familiar high-level programming
languages such as C++ [Stroustrup 86], Common Lisp [Steele 84], and Ada [Dod 83]. The extensions
are tailored for each base language, so the syntax and spirit of each language are maintained. The
constructs include new encapsulation and abstraction mechanisms, as well as support for concurrency
and recovery. The decision to extend existing languages rather than to invent a new language was
based on pragmatic considerations. We felt we could focus more effectively on the new and interesting
issues of reliability and concurrency if we did not have to redesign or reimplement basic language
features, and we felt that building on top of widely-used and widely-available languages would facilitate
the use of Avalon outside our own research group.

This paper presents an overview of some of the more novel aspects of Avalon/C++. In Section 2, we
survey the main features of Avalon, and in Section 3 we focus on Avalon's two principal innovations: (1)
support for hybrid atomicity [We\h\ 84], a concurrency control mechanism in which transactions are
serialized in the order they commit, and (2) user-defined, but system-invoked, transaction commit and
abort operations for atomic data objects. In Section 4, we give two examples showing how these
constructs can be combined to enhance concurrency, and in Section 5 we close by comparing the Avalon
constructs with other distributed programming languages and systems. We are currently implementing
the Avalon/C++ constructs on top of Camelot [Spector et al. 86], a distributed transaction management
system being built at Carnegie Mellon University.

2. Overview of Avalon
A program in Avalon consists of a set of servers, which resemble Argus guardians [Liskov 83]. A server
encapsulates a set of objects and exports a set of operations and a set of constructors. A server
resides at a single physical node, but each node may be home to multiple servers. A r y —

An application

UNIVERSITY LIBRARIES
CARNEOIE-MRl.QN UNIVERSITY

2

program explicitly creates a server at a specified node by calling one of its constructors. Rather than
sharing data directly, servers communicate by calling one another's operations. An operation call is a
remote procedure call with call-by-value transmission of arguments and results. When a server receives
an operation call, it creates a short-lived "light-weight" process to execute the operation. A server can
also provide a special background operation called by the system after it is created, as well as a special
recover operation called by the system when the server recovers from a crash. Objects may be stable or
volatile. Stable objects survive crashes, while volatile objects do not. Syntactically, a server resembles a
C++ class definition, where the objects correspond to class members, the operations correspond to
member operations, and the constructors correspond to constructors. At the statement level, Avalon
provides primitives to begin and end transactions, either in sequence or in parallel. Each transaction is
identified with a process.

Avalon also supports nested transactions. A transaction commits only if all its children commit or abort; a
transaction that aborts aborts all its children, even those that have committed. A transaction's effects
become permanent only when it commits at the top level. Thus, a subtransaction's effects need not be
written to stable storage until its top-level transaction commits. Nested transactions can be used to make
applications more robust. For example, if a subtransaction aborts, the parent transaction need not abort,
but can execute an alternative subtransaction. Nested transactions also increase the level of concurrency
within a single transaction since subtransactions may execute concurrently.

We use standard tree terminology when discussing nested transactions: parent, child, ancestor,
descendant, etc. A transaction is considered to be its own ancestor, but not its own proper ancestor, and
similarly for descendants. For purposes of discussion, all transactions are considered to be descendants
of a distinguished root transaction that never commits or aborts. A top-level transaction is a child of the
root transaction. If B is an ancestor of A, then A has committed with respect to B if every transaction that
is both an ancestor of A and a proper descendant of B has committed. If B is not an ancestor of A, then A
is committed with respect to B if A is committed with respect to the least common ancestor of A and B in
the transaction tree.

In Avalon programs, each data object performs its own synchronization and recovery. A transaction is
guaranteed to be atomic if all the objects it manipulates are atomic objects. Avalon provides a set of
built-in atomic data types that resemble typical built-in types (e.g., arrays and records), but these data
types guarantee atomicity as well. As discussed below, Avalon also provides primitives to assist
programmers in implementing their own atomic types. Serializability and recoverability are implemented
for the built-in atomic types by Camelot facilities such as locking protocols, new value/old value logging,
and commitment protocols.

A novel aspect of Avalon is that when a transaction commits, it is assigned a timestamp generated by a
logical clock [Lamport 78]. Atomic objects are expected to ensure that all transactions are serializable in
the order of their commit timestamps, a property called hybrid atomicity. This property is automatically
ensured by two-phase locking protocols [Eswaran 76], but additional concurrency and availability can be
achieved by taking the timestamp ordering explicitly into account [Herlihy 85]. Avalon provides a built-in
transaction identifier type tid to assist programmers in implementing their own hybrid atomic data types.
The tid type provides a restricted set of operations that facilitates run-time testing of serialization orders
and the state of transaction commitment. Section 3.1 describes this type in more detail, and Section 4.2
gives an example of how it can be used to implement a highly concurrent atomic FIFO queue.

3

A second novel aspect of Avalon is that programmers may define type-specific commit and abort
operations for user-defined atomic data types. The system automatically applies commit or abort when
transactions terminate. Section 3.2 gives guidelines to users on what properties user-defined commit and
abort operations should preserve and explains how the system invokes them, in particular, in the
presence of nested transactions.

3. Avalon Built-in Types
For our examples we assume some familiarity with C++, in particular its subclassing mechanism. We
begin by describing the tid type and the atomic type, both of which are used to implement user-defined
atomic objects.

3.1. Transaction Identifiers

Avalon provides a tid data type to assist the programmer to reason about transaction serialization and commitment.
class tid {

... // hidden representation public:
tid(); // constructor
int operator=(tid&); // equality
int operator<(tid&); // serialized before?
int operator>(tid&); // serialized after?
int done(); // committed to top level?
friend int both(tid&,tid&); // both committed to lea?
friend tid& root(); // returns root tid

};

A new tid is created by declaring a variable or by a call to new.
tid& t = * (new tid) ;

Rather than simply returning the calling transaction's identifier, the tid constructor creates and commits a
(dummy) subtransaction, returning the subtransaction's tid to the parent. This alternative semantics was
chosen because it is often convenient for a transaction to generate multiple tids ordered in the
serialization order of their creation events.

The system's current knowledge about the transaction serialization ordering can be tested by the
overloaded operators "<" and ">." For example, if the expression:

t i < t 2

evaluates to true, then if both transactions commit, t1 will be serialized before t2. Note that < induces a
partial order on tids; as long as t1 and t2 are concurrent, both t1 < t2 and t2 < t1 will evaluate to false.
Eventually, as transactions commit, t1 and t2 will become comparable.

To process commits and aborts it is often necessary to determine whether certain transactions have
committed. The both operation tests whether two transactions have both committed to their least
common ancestor. If the following expression evaluates to true,

tid::both(tl,t2)

then t1 and t2 will either both commit to the top level, or they will both abort, but one cannot commit without the other.

4

The done operation tests whether a transaction has committed to the top level. This operation is primarily

used to discard unneeded recovery information.

The root operation returns the tid for the unique transaction at the root of the transaction tree. All "top-
level" transactions are children of the root. The expression t.doneO is equivalent to

tid::both(t,tid::root()).

3.2. Atomic Objects
Atomic objects are derived from the following built-in type:

class atomic {
protected:

virtual void seize();
virtual void release();
virtual void pause();

public:
virtual void commit(tid& t) ;
virtual void abort(tid& t);

};
Each atomic object has a short-term lock, similar to a monitor lock, used to ensure that concurrent
operations do not interfere. The short-term lock is acquired by the seize operation and released by the
release operation. The pause operation temporarily releases the lock, suspends the caller, and
reacquires the lock before returning. Any changes made to the object while the lock is held will not be
backed up to stable storage until sometime after the lock is released. A transaction's changes are
guaranteed to be backed up before it commits. These three operations are protected, meaning that they
are accessible only within the implementations of derived types. These operations are implemented by
the Avalon system, not the programmer.

The commit and abort operations are used to process commits and aborts. These operations are
provided by the programmer but are called by the Avalon run-time system. After a transaction commits
(aborts), the system will apply the commit (abort) operation to every object operated upon by a
descendant of that transaction. Log records for commit and abort operations are spooled to the log, but
need not be forced to stable storage. When a server recovers from a crash, it detects and reschedules
missing commit and abort operations.

As illustrated in the examples in Section 4, commit typically releases locks and discards recovery
information and abort typically releases locks and discards tentative changes. When implementing these
operations, programmers should follow the following guidelines: (1) Most important, these operations
should be viewed as "benevolent side-effects" in the sense that they should affect liveness properties,
but not safety. For example, delaying a commit or abort operation may delay other transactions (e.g., by
failing to release locks), but it should never cause a transaction to observe an erroneous state. (2) These
operations should be idempotent, since a crash at an inopportune moment may cause a commit or abort
operation to be applied to an object more than once for the same transaction. (3) These operations
should not interact with the transaction system by creating, committing, or aborting transactions, thus they
should not invoke operations of other atomic objects.

5

3.2.1. The Commit Operation

When the system calls an object's commit operation, it supplies the tid of the committing transaction as an
argument. Commit operations are applied in leaf-to-root order. For example, if nested transaction A.B.C
operates on x, then the system will call x.commit(A.B.C), x.commJt(A.B), and x.commit(A), in that order.
Commit operations for sibling transactions are applied in serialization order. If A and B operate on x and
A is serialized before B, then x.commit(A) is applied before x.commit(B). The order in which commit
operations for a given transaction are applied to multiple objects is left unspecified.

3.2.2. The Abort Operation

When the system calls an object's abort operation, it supplies the tid of the aborting transaction as an
argument. Abort operations are also applied in leaf-to-root order, and the order in which abort operations
for a given transaction are applied to multiple objects is left unspecified.

4. User-Defined Atomic Objects
In this section we give two examples, two-phase locks and FIFO queues, to illustrate how Avalon
primitives can be used and what typical user-defined commit and abort operations do.

4.1 . Two-Phase Locking

Here we give a simple implementation of Moss's nested two-phase locking protocol [Moss 81]. This
example is for demonstration purposes only; Avalon provides more efficient low-level support for two-
phase locking.

Moss's rules are:

1. A lock is granted to the caller if it is held by an ancestor.

2. If a transaction commits, the lock reverts to the parent transaction.

3. If a transaction aborts, the lock reverts to whomever held it before.

Here is the class definition for lock objects. Notice that lock is a derived class from the base atomic class,
which was defined in the previous section.

class lock: public atomic {
tid_stack s;

public:
lock(); // Constructor
void request(); // Acquire lock
void commit(tid&); // Release on commit
void abort(tid&); // Release on abort

};
The lock is represented by the tidjstack data type, which implements a stack of tid's.

The request operation returns after acquiring the lock. It waits until the transaction holding the lock is
committed to an ancestor of the caller, and then pushes the caller onto the stack before returning,

void lock.request() {
tid who = *(new tid); // tid for this operation
this->seize(); // begin critical region
for (;;) { // do forever...

if (s.topO < who) { // if serialized before ...

6

s.push(who); // push self onto stack ...
this->release(); // leave critical region ...
return; // and return.

this->pause(); // otherwise wait and retry
};

};
The commit operation reclaims storage by discarding redundant tid's.

void lock.commit(tid& who) {
this->seize(); // enter critical region
while (s.sizeO > 0 && // pop superfluous tid's

tid::both(who,s.top()))
s.popO ;

s.push(who); // push self back onto stack
this->release(); // leave critical region

};
The abort operation also discards superfluous tid's, restoring the lock to whomever held it last.

void lock.abort(tid& who) {
this->seize(); // enter critical region
while (s.sizeO > 0 && // pop superfluous tid's

tid::both(who,s.top()))
s.popO ;

this->release(); // leave critical region
>;

4.2. FIFO Queue
Here we give a more complex example— a highly concurrent FIFO queue. Our implementation is
interesting for two reasons. First, it supports more concurrency than commutativity-based concurrency
control schemes such as two-phase locking. For example, it permits concurrent Enq operations, even
though Enq's do not commute. Second, it supports more concurrency than any locking-based protocol,
because it takes advantage of state information. For example, it permits concurrent Enq and Deq
operations while the queue is non-empty.

4.2.1. The Representation
Information about Enq invocations is recorded in the following struct:

struct enq_rec {
tid enqr;
item* what;
enq_rec(tid& t, item* x) {enqr = t; what = x;} ;

};
The enqr component is a tid generated by the enqueuing transaction, the what component is a pointer to
the enqueued item, and the last component defines a constructor operation for initializing the struct.

Information about Deq invocations is recorded similarly:

struct deq_rec I
tid deqr;
tid enqr;
item* what;

7

deq_rec(tid& d, tid& e f item* x)
{deqr = d; enqr = e; what = x;};

The queue is represented as follows.
class queue: public atomic {

stack deqd;
pqueue enqd;

public:
queue(); // Create empty queue
void enq(item*); // Enqueue an item
item* deq(); // Dequeue an item
void commit (tid&) ; // Called on commit
void abort(tid&); // Called on abort

};

The deqd component is a stack of decree's used to undo aborted Deq operations. The enqd component
is a partially ordered queue of enqjec's, ordered by their enqr fields. A partially ordered queue provides
operations to enqueue an enqjec, to test whether there exists a unique oldest enqjec, to dequeue it if it
exists, and to keep and discard all enqjec's committed with respect to a particular tid.

This implementation satisfies the following representation invariant: First, an item is either "enqueued* or
"dequeued," but not both: the encLrec <tid, item> is in the enqd component if and only if for all x the
deqjec <x, tid, item> is not in the deqd component. Second, the stack order of two items mirrors both
their enqueuing order and their dequeuing order: if deqjec d1 is below deqjec d2 in the deqd stack,
then 61.enqr < 62.enqr and d1.deqr < dZ.deqr. Finally, any dequeued item must previously have been
enqueued: if d is a deqjec, then 6.enqr< d.deqr.

4.2.2. The Operations

The conditions under which Enq and Deq operations are allowed to occur are as follows. A transaction A
may dequeue an item if (1) the most recent transaction to execute a Deq is committed with respect to A,
and (2) there exists a unique oldest element in the queue whose enqueuing transaction is committed with
respect to A. A may enqueue an item if the last item dequeued was enqueued by a transaction committed
with respect to A.

Given these conditions, Enq is implemented as follows:
void queue, enq (item* x) {

tid& who = *(new tid);
this->seize();
for (;;) {

if (deqd. size () = 0 || deqd. top() .enqr < who) (
enqd. enq(enq_rec (who,x)) ;
this->release();
return;
};

this->pause();
};

};

Enq checks whether the item most recently dequeued was enqueued by a transaction uncommitted with
respect to A. If not, the current stamp and the new item are inserted in enqd. Otherwise, the transaction
releases the short-term lock and tries again later.

8

Deq is implemented as follows:
item* queue.deq() {

tid& who = *(new tid);
this->seize();
for (;;) {

if (deqd.sizeO — 0 I I deqd.topO .deqr < who) {
if (enqd.canjdeqO && enqd.oldest () .when < who) {

enq_rec e = enqd. deq ();
deqd. push (deq_rec (who, e. when, e. what)) ;
this->release () ;
return e.what;

J;
};
this->pause () ;

>;
};

Deq tests whether the most recent dequeuing transaction has committed with respect to the caller, and
whether enqd has a unique oldest item. If the enqueuing transaction has committed with respect to the
caller, it removes the item from enqd and records it in deqd. Otherwise, the caller releases the short-term
lock, suspends execution, and tries again later.

Commit \s implemented as follows:
void queue, commit (tid& who) {

if (! who.done()) return;
this->seize();
if (deqd.sizeO > 0 && deqd.topO .deqr < who) deqd.reset();
this->release();

};
When a top-level transaction commits, it discards deq records no longer needed for recovery. (The
representation invariant ensures that all deq_rec's below the top are also superfluous, and can be
discarded.)

Abort has more work to do:
void queue.abort(tid& who) {

this->seize();
while (deqd.sizeO > 0) {

deq_rec d = deqd.topO;
if (d.deqr < who) {

enqd.enq(enq_rec (d.enqr,d. what)) ;
d = deqd.popO;} else break;

};
enqd.discard(who);
this->release();

};
Abort undoes every operation executed by a transaction committed with respect to the aborting
transaction. It interprets deqd as an undo log, popping records for aborted operations, and inserting the
items back in enqd. Abort then flushes all items enqueued by the aborted transaction and its
descendants.

9

5. Related Work and Discussion
Transactions have been a primary focus in the context of both distributed and centralized data bases
[Bernstein 81, Eswaran 76, Gray 78, Lindsay 79]. Reed [Reed 83] and Moss [Moss 81] have additionally

proposed synchronization mechanisms for nested transactions. Several research projects have chosen
transactions as the foundation for constructing reliable general-purpose distributed programs, including
Argus [Liskov 83], Clouds [McKendry 84], and TABS [Spector 85]. Of these projects, however, only
Argus has addressed the linguistic aspects of the problem.

On the other hand, other distributed programming languages such as CSP [Hoare 78], SR [Andrews 81],
Linda [Gelernter 85], Nil [Strom 83], and Ada [Dod 83], have no direct support for transactions, and in
particular for commit and abort processing of data objects. Many of these languages, e.g., CSP and
Linda, also suffer from weaker type systems and have fewer abstraction mechanisms than what Avalon
provides.

Avalon's model of computation resembles that of Argus and thus many Avalon features resemble those of
Argus, e.g., servers are comparable to Argus guardians, nested transactions have the same semantics,
and locking rules are similar. The principal way in which Avalon differs from Argus is in how it supports
the implementation of user-defined atomic data objects. As described by Weihl and Liskov [Weihl 85],
Argus does not provide explicit transaction identifiers, nor does it provide explicit commit and abort
operations. In Avalon, explicit transaction identifiers are needed to support hybrid atomicity. Argus, by
contrast, is based on a local atomicity property called strong dynamic atomicity [Weihl 84], which permits
less concurrency, although it requires simpler run-time support. The desire and need for explicit control
over commit and abort processing have been noted previously by Greif et al. [Greif et al. 86].

We chose to use C++, rather than C, to gain the advantages of strong type-checking, syntactic support
for data abstraction, operator overloading, and subtyping, all of which we rely on. One problem we
encountered early in our Avalon design for C++ was the lack of support for exception handling. We have
since designed our own exception handling mechanism compatible with C++.

In summary, Avalon is a set of linguistic constructs that extend the capability of existing programming
languages by directly supporting transactions and user-defined atomic objects. Users are relieved from
the burden of doing low-level system activities such as locking and managing stable storage, and instead
can concentrate of the logic required of their application. At the same time, however, they are given
enough flexibility to exploit the semantics of their applications to increase their programs' efficiency,
concurrency, and fault-tolerance.

Acknowledgments
The authors are grateful to Alfred Spector and Eric Cooper for their advice and assistance. We would
also like to thank members of the Avalon group, Stewart Clamen, David Detlefs, David Waitzman, and
Karen York, and members of the Camelot group, Dan Duchamp, Jeffrey Eppinger, and Dean Thompson.

10

References
[Andrews 81]

[Bernstein 81]

G.R. Andrews.
Synchronizing Resources.
ACM Transactions on Programming Languages and Systems 3(4):405-430, October,

1981.
P.A. Bernstein and N. Goodman.
A survey of techniques for synchronization and recovery in decentralized computer

systems.
ACM Computing Surveys 13(2):185-222, June, 1981.

[Dod 83]

[Eswaran 76]

[Gelernter 85]

[Gray 78]

[Greif et al. 86]

[Herlihy 85]

[Hoare 78]

[Lamport 78]

[Lindsay 79]

[Liskov 83]

[McKendry 84]

Dept. of Defense.
Reference manual for the ADA programming language.
1983.
ANSI/MIL-STD-1815A-1983.
K.P. Eswaran, J.N. Gray, R.A. Lorie, and I.L. Traiger.
The Notion of Consistency and Predicate Locks in a Database System.
Communications ACM 19(11) .624-633, November, 1976.

D. Gelernter.
Generative Communication in Linda.
ACM Transactions on Programming Languages and Systems 7(1):80-112, January,

1985.
J.N. Gray.
Notes on Database Operating Systems.
Lecture Notes in Computer Science 60.
Springer-Verlag, Berlin, 1978, pages 393-481.

I. Greif, R. Seliger, and W.E. Weihl.
Atomic Data Abstractions in a Distributed Collaborative Editing System.
In Proceedings of the 13th Annual ACM SIGACT-SIGPLAN Symposium on Principles

of Programming Languages, pages 160-172. January, 1986.

M.P. Herlihy.
Comparing How Atomicity Mechanisms Support Replication.
In Proceedings of the 4th Annual ACM SIGACT-SIGOPS Symposium on Principles of

Distributed Computing. April, 1985.

C.A.R. Hoare.
Communicating sequential processes.
Communications of the ACM 21 (8):666-677, August, 1978.

L. Lamport.
Time, clocks, and the ordering of events in a distributed system.
Communications of the ACM 21 (7):558-565, July, 1978.

B.G. Lindsay et al.
Notes on Distributed Databases.

Technical Report RJ2571, IBM San Jose Research Laboratory, July, 1979.

B. Liskov, and R. Scheifler.
Guardians and actions: linguistic support for robust, distributed programs.
Transactions on Programming Languages and Systems 5(3) :381 -404, July, 1983.
M.S. McKendry.
Clouds: A Fault-Tolerant Distributed Operating System.
IEEE Tech. Com. Distributed Processing Newsletter 2(6), June, 1984.

11

[Moss 81] J.E.B. Moss.
Nested Transactions: An Approach to Reliable Distributed Computing.
Technical Report MIT/LCS/TR-260, Laboratory for Computer Science, April, 1981.

[Reed 83] DP. Reed.
Implementing atomic actions on decentralized data.
ACM Transactions on Computer Systems 1(1):3-23, February, 1983.

[Spector 85] A.Z. Spector, J. Butcher, D.S. Daniels, D.J. Duchamp, J.L. Eppinger, C.E. Fineman,
A. Heddaya, and P.M. Schwarz.
Support for Distributed Transactions in the TABS prototype.
IEEE Transactions on Software Engineering 11(6):520-530, June, 1985.

[Spector et al. 86] A.Z. Spector, J.J. Bloch, D.S. Daniels, R.P. Draves, D. Duchamp, J.L. Eppinger, S.G.
Menees, D.S. Thompson.
The Camelot Project.
Database Engineering 9(4), December, 1986.
Also available as Technical Report CMU-CS-86-166, Carnegie Mellon University,

November 1986.

[Steele 84]

[Strom 83]

[Stroustrup 86]

[Weihl 84]

[Weihl 85]

G. Steele Jr.
Common LISP.
Digital Press, 1984.

R.E. Strom and S. Yemini.
NIL: An Integrated Language and System for Distributed Programming.
In SIGPLAN '83 Symposium on Programming Language Issues in Software Systems.

June, 1983.
Also an IBM research report (RC 9499 (#44100)) from April 1983.

B. Stroustrup.
The C++ Programming Language.
Addison Wesley, 1986.
W.E. Weihl.
Specification and implementation of atomic data types.
Technical Report TR-314, Massachusetts Institute of Technology Laboratory for

Computer Science, March, 1984.

W.E. Weihl, and B.H. Liskov.
Implementation of resilient, atomic data types.
ACM Transactions on Programming Languages and Systems 7(2):244-270, April,

1985.

