NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:

The copyright law of the United States (title 17, U.S. Code) governs the making

of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

CMU-CS-86-159

PAST:

a
Program-specific and
Architecture-specific

Simulation
Tool

M. S. Project Report

Bruce S. Siegell

June 20, 1986

Department of Electrical and Computer Engineering
Carnegie-Meilon University
Piutsburgh, PA 15213

The research was supported in part by Defense Advanced Research Projects Agency (DOD),
monitored by the Air Force Avionics Laboratory under Contract F33615-84-K-1520, and Naval
Electronic Systems Command under Contract N00039-85-C-0134, and in part by the Office of Naval
Research under Contracts N00014-80-C-0236, NR 048-659, and N00014-85-K-0152, NR SDRJ-007.

TABLE OF CONTENTS

Table of Contents

1. Introduction 1
2. Programming Level Simulation 4
2.1. The ISPS Simulator 6
2.2. N.mPe¢ 6
2.3. The Register Transfer List Interpreter B
2.4. The Value Trace Simulator 9

0

2.5. Summary 1
3. The PAST Simulation Model 11
3.1. Hardware Description Language 11
3.2. Implementation language 12
3.3. PAST simulators are compiled 13
3.4. PASTs cycle is the target machine instruction cycle. 13
3.5. PAST reduces costs of Register Transfer operations. . 15
3.5.1. Control Operations 16
3.5.2. Data Operations 17
3.5.3. Arithmetic and Logic/Shift Operations 17
3.5.4. Summary of expected improvement over ISPS 18
3.6. Architecture-specific and Program-specific simulators 18
3.7. Standard User Interface 20
3.8. Standard Input/Output Routines 22
3.9. The structure of the PAST simulator 22
3.9.1. The program header 2
3.9.2. Update and Propagate Macros 23
3.9.3. Global Variables A
3.9.4. Longjump Labels 24
3.9.5. The vaniable information table 24
3.9.6. Variable initialization 25
3.9.7. Channel injtialization 25
3.9.8. Update and Propagate Routines 25
3.9.9. The main simulation loop 25
3.9.9.1. Architecture-specific Simulators 26
3.9.9.2. Program-specific Simulators 26
3.9.10. Summary of simulator structure 27
3.10. Summary 28
4. Implementation) 29
4.1. The ISPS parser : 29
4.2. gdbrtm - the GDB to RTM translator : k)|
4.3. PAST - the code generator _ 13

UNIVERSITY LIBRARIES
PARNEGIE-MELLON UNIVERSITY
TirBURGH, PENNSYLVANIA 15213

TABLE OF CONTENTS

4.3.1. Data Structures
4.3.1.1. The Symbol Table
4.3.1.2. The Statement Table
43.1.3. Dynamic Structures
4.3.1.4. State Structures
4.3.2. Initialization
4.3.2.1. Default parameters
4.3.2.2. Argument parsing
43.2.3. Command files
4.3.2.4. Variable initialization
432.5. Reading the RTM file
4.3.2.6. Memory Allocation
4.3.2.7. PAST Commands
4.3.2.8. Input and output connections
4.3.3. Preprocessing
43.3.1. The CONNECT operation
4.3.32. The NEG2C operation
4.3.3.3. LEAVE, RESTART, TERMINATE, RESUME
4.3.4. Code Generation
4.3.4.1. Simulation loop framework
4.3.4.2. Variable state
4.3.4.3. Flow of control
4.3.4.4, Conditional control operations
4.3.4.5. Data, arithmetic, logic, and shift operations’
4.3.4.6. Problems with simulator size
4.3.4.7. Current status
4.4. Summary

5. Resulls

5.1. Test cases
5.1.1. Manchester Mark-1
5.1.2. Digital PDP-8
5.1.3. Motorola MC6502
5.1.4. CMU Warp Cell
5.2. Timing measurements
5.3. Simulator speed
5.4, Total simulation time
5.5. Simulation ratios
5.6. Summary
6. Conclusions
Appendix A. Manual Entry for PAST
Appendix B. Manual entry for simulators produced by PAST
Appendix C. Mark-1 Example

C.1. Architecture-specific simulator
C.1.1. ISPS description - markl.isp
C.1.2. GDB file - markl.gdb
C.1.3. RTM file - markl.nm
C.1.4. PAST command file - mark1.pst
C.1.5. The simulator - markl.c

1

TABLE OFF CONTENTS ‘ ¢S

C.L.6. Running the architecture-specific Mark-1 simulator : 90

C.2. Program-specific simulator : 91
C.2.1. Multiplication program 91

C.2.2. PAST command file - mult.pst 93

C.2.3. The simuiator - mult.c 94
Appendix D. Problems with the C compiler _ 100

References 101

LIST OF FIGURES

Figure 2-1:
Figure 2-2:

Figure 2-3;
Figure 2-4:
Figure 2-5:
Figure 2-6:
Figure 3-1:
Figure 3-2:
Figure 3-3:

Figure 4-1:
Figure 4-2:
Figure 4-3:
Figure 4-4:
Figure 4-5:
Figure 4-6:
Figure 4-7:
Figure 4-8:
Figure 4-9:

List of Figures

Black box model of a functionai simulator.

Simulator Implementation Models: (a) general; (b) architecture-specific: (©)
program-specific; (d) completely specified.

Block diagram of the C version of the ISPS simulator.

Stmplified block diagram of N.mPc system 27].

Block diagram of Register Transfer List Interpreter system [11].

Block diagram of the Value Trace simulator {16].

PAST command file for gencrating an architecture-specific simulator.

PAST command file for generating a program-specific simulator.

Example of mapped variables: (a) ISPS mapping; (b) update macros; (c)
propagate macros,

Block diagram of the PAST simulation systemt.

Example of the Global Database (GDB) format.

Symbol structure,

SymbolFlag structure.

The Staternent structure,

The Statement¥Flag structure.

The CodeStruct structure.

The State structure,

The MemChunk structure.

Figure 4-10: The WordVector and WordVectorList structures,
Figure 4-11: PAST mainline code. '
Figure 4-12: Example of mapping which PAST cannot handle (from MC68000

Figure 51:

description).
Warp cell datapath [21).

v

o0 -] v

o

20
21

30
3

M
37
37
39
39

42
32

57

LIST OF TABLES

Table 3-1:
Table 4-1;
Tabhle 4-2:
Table 4-3:
Table 5-1;
Table 5-2;
Table 5-3:
Table 5-4:
Table 5-5:
- Table 5-6:
Table 5-7:

Table 5-8:
Table D-1:

List of Tables

Predicted speedup of PAST simulators over the ISPS simulator.
Tables contained in the R'TM file.

Effect of expanding subroutines in-line for MC68000 description.
Effect of expanding subroutines in-line for MC6502 description,
ISPS description complexity.

Simulator execution times (seconds),

Simulator specds (cycles/second).

PAST speed improvement factor over ISPS.

Simulator preparation time.

Number of target cycles when PAST simulator cost equals ISPS cost,
Number of target cycles when program-specific cost equals architecture-specific
CcOost,

Estimated simulation ratios for PAST simulators,

Limitations of the ¢¢ C compiler. :

18
32
51
52
54
59
59
60
62
63
63

66
100

INTRODUCTION : 1

Chapter 1
Introduction

There are several levels at which computers can be modelled: the circuit level models the
computer in terms of its component transistors, resistors, and capacitors; at the logic level the
computer is modelled as a set of blocks characterized by boolean functions: the programmting level
models the computer as the programmer sees it, as a set of registers, memories, and functional units
whose interactions are controlled by a computer program. At all of these levels, tools are available to
aid the user in simulation, At the lowest levell, the circuit level, Berkeley’s SPICE simulator [31] is
the tool most used for circuit verification and providing timing information in our environment. At
the next level, a large range of logic simulators are available to test the logical correctness of designs,
ranging from Bryant’s MOSSIMII [8], a switch-level simulator implemented in software for modeling
MOS circuits, 10 commercially available design systems like Daisy's Logician system [10] which
verifies the logic and tming of digital designs based on specifications for the companents (chips).
Logic simulators have also been implemented in hardware, e.g. the ZYCAD™ Logic Evaluator [32].
At the programming level, there are many tools available based on several hardware description
languages. Some of the better known tools are based on descendants of the ISP notation, a functional
notation developed by Bell & Newell [3]. Others are based on languages which have both structural
and behavioral modeling capabilities [22] and/or are designed for multi-level simulation (2,17, 18].
Each simulation tool is developed and optimized for a particular purpese, be it architecture

evaluation, timing analysis, or just to make sure a design is correct.

One of our objectives is to be able to simulate programs running on complex high performance
systems. We wish to be able to run and debug programs in parallel with the development of new
systems. For this purpose, we do not need to model the structure of the computer; we care only
about the mode!l of the computer seen by the programmer. Thus, we need programming level
simulators that are optimized for running and debugging programs. To meet our needs, we have

found it necessary to write custom simulators because the programming level simulation tool

LWe use the hierarchy of simulation levels described by Selvaggi 129},

INTRODUCTION 2

available to us, the 1SPS simulator, is to0 slow. Although a simulation ratio of 10,000 to 1 for the
DEC PDP-11 being simulated with the ISPS simulator [28] might‘bc considered tolerable, a ratio of
200,000 for the CMU Warp processing cell, which can process 10,000,000 floating point operations
per second, is not. An ad-hoc simulator for the Warp processor [9] has been writien, which has a

simulation ratio of 6,000 running the samc programz.

We believe that a tool like the ISPS simulator could be useful for simulating programs for
complex architectures like that of the Warp Machine if it meets or exceeds the following

requircments:

o It can execute real programs, ¢.g. the binary code, for the desired computer architecture.
o It provides state information about the machine it is emulating.
o It is easier to write and modify than an ad-hoc simulator.

o Its speed approximates that of a well-written ad-hoc simulator.

The last of these features is the most difficult to implement for a general simulation tool because such
a general tool must be efficient for a wide range of computer architectures. Qur research has

attempted to overcome this difficulty, while meeting the other requirements as well.

We have designed a simulation tool, called PAST which produces simulators that run programs
for the described architecture significantly faster than does the ISPS simulator. We have based our
design on some of the same premises on which Atlas [2] based his research: (1) minimizing level of
detail provides a speedup over the ISPS simulator: (2) reducing monitoring hooks reduces simulation
time: (3) operations done at compile time are less expensive than those done at actual simulation
time. However, we challenge Atlas’ assertion that a translator for a hardware description language
can not easily attain the simulation efficiency of a general purpose programming language translapor.
Our tool acts as a compiler for the ISPS language, translating ISPS descriptions into C code that can
be compiled into simulators. Our new simulation tool has been named PAST, a Program-specific and
Architecture-specific Simulation Tool, because it optionally produces simulators that are specific to a
program to be simulated as well as to the architecture described further taking advantage of the third

premise.

Section 2 of this report describes some of the previous research into simulators at the

2’1"heser are gross approximations based on exccution of the simulators on 2 Vax 8650 running Mach/4.3/2/1 BSD Unix
without file /0. The relative order of magnitude should be correct

INTRODUCTION 3

programming level. Scction 3 outlines the simulation model used in our approach and describes the
simulators produced by PAST. In Section 4 are discussed the major issues involved in the
implementation of PAST. The experiments done to determine PASTs performance are described in
Scction 5, along with the presentation and analysis of the results of the experiments. Finally, the

results are summarized, and conclusions are drawn from the data collected.

PROGRAMMING LEVEL SIMULATION _ 4

Chapter 2
Programming Level Simulation

A programming level simulator generally consists of a user interface and a stream of code which
imitates the control flow and data operations of the machine being simutated. Ideally, the user sees
the simulator as a black box which takes as inputs a prograri, data, and user commands and produces

data and state information (Figure 2-1).

User
Program Commands

L State
Infarmation

N

» [ata

Data

Figure 2-1: Black box model of a functional simulator.

However, there are several variations on this model, some requiring more information from the user

and some less (Figure 2-2):

o The simulator can be made general enough to handle any computer architecture by
making a description of the architecture an input (Figure 2-2a). We will call this type of
simulator a general simulator. We also classify this simulator as interpretive because it
interprets the description of the architecture.’

o The architecture specifications can be contained within the simulator (Figure 2-2b). We
will refer to this type of simulator as an architecture-specific simulator. In this case, the
simulator is compiled rather than interpretive because the architecture is an intrinsic part
of the simulator.

e Both the architecture and the program can be contained within the simulator program -
(Figure 2-2¢). This implementation mode! has limited applications because the cost of
preparing the simulator and running it on all of the data sets for the program must be less
than the cost of running the program on its data sets using a more general simulator. We
cail this type of simulator program-specific.

e Even more extreme, all of the inputs including the user commands and data can be

PROGRAMMING LEVEL SIMULATION

hardwired into the simulator program (Figure 2-2d). This model has the same limitations
as the previous model, but it can only run on one set of data. There are cascs where such
a simulator might be useful, c.g. simulation of a random number generator, but there are
too few cascs to warrant a special tool to gencrate such simulators.

We can classify most functional simulators according to these four types.

User User
Architecture Praogram Commands Pragram Commands
r=
State P =1 State
Information - Information
I =1
121
Data > Data i gl > Data
 J
(2) {b)
User
Commands
Eaulin BN mulien | State -~ e "c ar . State
! El ! ' Information ! I E” " a' Information
NN bzt 20 Engd
(N A RN IRERT RN TN
& o = [3
Data 1 511 | =% [Data !]} Ell H i F—> Data
LY e e | Rt | Y | W |
(¢} {d)

Figure 2-2: Simulator Implementation Models: (a) geﬁeral: (b) architecture-specific;
(¢} program-specific; (d) completely specified.

In the following sections we summarize some of the research which has been done in the area

of functional simulation,

PROGRAMMING LEVEL SIMULATION 6
2.1. The ISPS Simulator

Several versions of the ISPS simulator have been implemented at Carnegie-Mellon University.
All are based on ISPS, a well-known hardware description language derived from the ISP notation
introduced by Bell and Newell [7]. The original simulator was written in BLISS and runs on 2
DECsystem-10[S]. This simulator has been wranslated into Pascal to run on Hewlewt Packard 9336
workstations and most recently into C to run under Unix [28.29]. The current work shares some
code with the C version. All of the versions of the ISPS simulator fit our model of a general simulator
as the description of the computer architecture is one of the inputs to the simulator program. Both

the architecture and the programs are interpreted by the simulator.

The ISPS simulator does not interpret ISPS descriptions directly. The ISPS descriptions are
first parsed and then converted into an intermediate code which is a set of instructions for the
Register Transfer Machine, a hypothetical 3-address machine with variable length operands. The
ISPS simulator is actuaily a software implementation of the Regzster Transfer Machine. Figure 2-3
shows the steps required to simulate an ISPS description on the C version of the ISPS simulator. The
intermediate files shown are the GDB file, containing the parse tree information, and the RTM file
containing the intermediate Register Transfer Machine code (see Chapter 3). The ISPS parser and
the RTM code generator are described in more detail in Chapter 4. -

The BLISS version of the simulator has been heavily optimized for use on the DEC-10, a 36-bit
machine, replacing arithmetic and logical operations with host operations where possible, and, thus,
is not portable. The HP9836 version is not portable and is reputed to be quite slow. The Unix ISPS
simulator, adjusted for differences in host processor speeds, runs at a comparable speed to the BLISS
version [28] and has a typical simulation ratio for a medium sized processor of 10000 to 1. The

simulation ratio becomes much larger, however, for large or complicated processors (see Chapter 1).

2.2. N.mPc¢

N.mPc {27, 26); developed at Case Western Reserve University, is another tool which has been
widely-used for functional level computer simulaton. It is based on the ISP’ language, also a
descendent of the ISP notaton. N.mPc is made up of five components which manipulate numerous
files to build a sixth component, a runtime package consisting of a simulation program, a command
interpreter, and a simulation memory manager {Figure 2-4). The original N.mPc system ran on a
DEC PDP-11. was not portable, and had size limitations. A new more portable system called
N.2{24, 27) resolves these problems and also includes an additional description language to specify -

PROGRAMMING LEVEL SIMULATION 7

ISPS
Description

ispc
(ISPS Parser)

GDB file

gdbrtm
{(Translator)

RTM file
Target Machine
Program State
Simulator ISPS Information
Commands SIMULATOR

Data —) Data

Figure 2-3: Block diagram of the C version of the ISPS simulator.

PLAs and a graphics interface for graphical specification and manipulation of topology files, dispiay
of monitoring information, etc. [27].

N.mPc offers greater capabilities for modeling structure than does the ISPS simulator, allowing
a system to be specified as a collection of modules connected by ports. The ISP’ language includes a
WHEN statement to handle asynchronous processes and a DELAY statement which can be used to

associate a delay with each register transfer for system timing.

Aside from the difference in language features, the major difference between N.mPc and the
ISPS simulators is that N.mPc simulators are compiled rather than interpreted -- thus fitting into our
architeciure-specific model. Ho’wevef. heavy use of library functions, local states, and port
communication mean that the compilation vs. interpretation tradeoff effects less than 10 percent of
the execution time for the N.mPc simulators [27), thus making the simulator effectively interpretive,
Because the compilation had so little effect, N.2, the successor to N.mPc is interpretive [27]. N.mPc

gives simulation a ratio of approximately 1900 for the MC68000 using a programming level

PROGRAMMING LEVEL SIMULATION 8

System Modeling System Simulation

ISP’ ECOLOGIST SIRTJL:«LTAITIEON
:> IM
COMPILER 1] ENVIRONMENT

METAMICRO MEMORY
/| LOADER I R,

Software Development

Figure 2-4: Simplified block diagram of N.mPc system [27].

model [15]. This is significantly better than the ratio for the ISPS simulator processing a description
of a PDP-11, a simpler machine than the MC68000. We suspect that this better performance must be
due to more efficient programming techniques and partially to use of compilation rather than

interpretation.

2.3. The Register Transfer List Interpreter

Both ISPS and ISP’ describe computer instruction sets in terms of their operation codes. Jack
Davidson at the University of Virginia has designed a system called the Register Transfer List
Interpreter (shown in figure 2-5) in which the instructions are specified by their mnemonic names. In
his system, the machine description is a grammar which maps assembiy language instructions to ISP
register transfers. The language for the machine description appears to be a mix of ISPS and the
'BNF grammar notation. The Machine Description Processor (MDP) converts the machine
description into C language subroutines that implement the described instructions. ‘These routines
are linked with several libraries of standard and custom routines: the MDSIM contains commonly
needed routines such as 16 and 32 bit arithmetic operations; an 1/Q library provides the standard 17O
routines; and a library provided by the user handles instructions which cannot be described using the
description notation. The resullmg simulation program, called the Machine Description [nierpreier
or MDI, reads an assembly language program and links each of the programs instructions to the
appropriate C subroutines to handle the operation and operands The simulation is then-executed
under control of the user as a sequence of subroutine calls. Also associated with the simulation
system is a compiler system which can be used to generate the assembly language for the target

machine.

PROGRAMMING LEVEL SIMULATION

9
Source Language
PO
Generated
Compiler
Machine Descriptions RTL'Ss
Vax-1] =—————————eennd Machine ssemblar
POP-11 sag0p ————= Description fass] "_'DSI"
pec £ne Processor \ L/ Hibracy
370 MDP .
(MoP) Machine
Description
Interpreter
Machineg /T (MDI) 170
Dependent Op. Sys.
Instruction Support
Library l l
Program Execution
Qutput -Statistics

Figure 2-5: Block diagram of Register Transfer List [nterpreter system fi1].

The MDI is capable of simulating 500 Vax 11/780 instructions per second on a Vax 11/780.
This is quite fast. Sim-ulating the MC68000, the ISPS simulator only executed about 15 instructions
per second®. However, the MDI simulator is limited by its description language. A microcoded
machine such as the Warp cell would not be very easy to describe, and the user would probably have

to write quite a few custom routines for the description to work.

2.4, The Value Trace Simulator

Thus far, there has been little research into the use of hardware to speed programming level
simulation. At Carnegie-Mellon, a project has been proposed whereby a logic simulation engine such
as the ZYCAD™ Logic Evaluator [32] can be used for simulation at the functional level [16). A
functional description in ISPS is first converted into a data flow graph called the Value Trace. The
data flow graph is then converted into an equivalent gate network which can then be simulated using

a logic simulation engine. The steps involved in simulation by this rﬁethod are shown in figure 2-6.

The main advantage of this approach is that simulation is very fast: the simulation is event-

driven, so only the operations which are needed are executed, and the use of hardware speeds the

3This figure was ealculated from Schooley's data_ [28).

PROGRAMMING LEVEL SIMULATION 10

ISPS
Description

ispc
(ISPS Parser}

GDB fite

VT
Translator

Value
Trace

Translator

Gate
Network

S

Logic
Simulation
Engine

Figure 2-6: Block diagram of the Value Trace simulator {16].

evaluation of the operations. However, disadvantages of this approach include the high cost of
simulation hardware and a long simulator preparation tme. The long preparation time may mean
that simulations must be run as baich jobs. This is all right for verifying an architecture design, but
makes use of the tool for debugging programs impractical.

2.5. Summary

In this chapter, we have discussed the different programming levet simulation models and have
described some representative programming level simulators. Each simulation approach has
advantages and disadvantages. The main tradeoff is between preparation cost and simulation cost.

_We need to minimize the time and user efforts involved in preparing simulators and minimize the
time of simulation. We will refer back to some of the simulation techniques presented in this chapter

when we describe our simulation philosophy in Chapter 3.

THE PAST SIMULATION MODEL 11

Chapter 3
The PAST Simulation Model

Qur primary goal in the design of PAST is to be able to produce automatically functional
simulators with speed comparable to that of ad-hoc simulators. The simulators should be produced
from machine descriptions that are easy to write modify. Also, the simulators should have a user
interface which allows the user control of the simulation and provides information about the state of
the machine being simulated. In this chapter, we discuss the choices we made in designing PAST,
emphasizing how we meet these goals, We attempt to predict the impact of our choices, by
estimating the performance improvements of simulators produced by PAST over the performance of
the ISPS simulator. We call the machine to be simulated the target machine and the machine on
which the simulation is done the Aost machine. Our metric of performance for simulators for a target
machine is the number of instructions for that machine which are simulated per unit time on the host
computer. In the last section of this chapter we explain the structure of the simulators that PAST

produces,

3.1. Hardware Description Language

A standard notation is needed to describe computer architectures so that a general simulation
tool can process the description. Such notations are cailed computer hardware description languages.
We have chosen to base PAST on the ISPS hardware description language.

For a stmulation tool to run fast, it is important to choose a description language which models
computers at the proper level. To execute computer programs, we just need a functional description
of the architecture to be simulated, Structural information is not necessary or desirable becagse
handling communication between structural elements is costly. In general, handling extra
information has costs in either simulation time or simulator preparation time. ISPS is at the
appropriate level for a simulator for program execution because it can model the register transfer
operations which are required to execute progfams without regard to the structure of the computer

being simulated.

THE PAST SIMULATION MODEL 12

There are several other benefits to basing PAST on ISPS:

o 1SPS is a well known and well accepted language.
o The ISPS simulator is available for performance comparison.
e [SPS descriptions have aiready been written for many machines.

e An ISPS parser already exists. We can use the intermediate code (RTM code) which it
produces,

o The source code for the ISPS simulator is available. PAST can use much of same code.

One detriment of the ISPS language, however, is that it does not provide the user with efficient
floating point operations. The user has to construct floating point routines from fixed point
operations. The resulting routines are inefficient because they do not take advantages of the
capabilitics of the host machine. We decided that to be competitive with an ad-hoc simulator, in
particular the Warp simulator, a PAST simulator must use efficient floating point routines. We have
thus incorporated explicit floating point operations into the ISPS language. QOur version of the
language provides the same operations for floating point numbers as for the other number formats.
However, these operations can only be applied to operands of the size of floating point numbers
which are handled by the host machine. In our case, the host machine was a Vax, so we had the
choice of 32, 64, or 128 bit floating point arithmetic [14]. We chase to base our floating point routines

on the 32 bit F* type operations because the Warp machine supports 32 bit floating point arithmetic.

3.2. implementation language

We have implemented the PAST program in the C programming language [20]. Wechose Cso
that we could easily modify code from the C version of the ISPS simulator for use in PAST. Also,
because our host systems run the Unix™ operating system, C is the best-supported high level

language in our environment.

For similar reasons, the code generated by PAST is in the C language aiso. The PAST library, a
library of functions which are linked with the code generated by PAST, uscs some of the same
routines that PAST uses. so using a single language saved us from writing code for the same functions
twice. Alternatively, we could have had PAST produce assembly language code which called the

common C routines as needed. Although this would probably produce faster simulators, C is more

4The Vax architecture supports four floating point data types: Fis a 32 bit data type, [and G are 64 bits, and His 128 bits.

THE PAST SIMULATION MODEL 13

readable, casicr to debug, and more portable than assembly language. Also, if we were to generate
assembly language, we would have to worry about low-level compiler issues, such as register
allocation and reentrancy. Instcad we let the C compiler (cc) handle these issucs (Figure 4-1). To

improve the speed of our simulators, we could replace cc with a better C compiler.

3.3. PAST simulators are compiled

We designed PAST to produce compiled simulators because it is generaily accepted that "the
execution time of an interpreted program is usually slower than that of a corresponding compiled
object program.” [1] This is supported by performance comparisons of existing functional simulation
tools. N.mPc simulators, which contain the description of corﬁputer architectures in compiled form,
run several times as fast as the ISPS simulator which interprets the description of the architecture (see
Chapter 2). Ad-hoc simulators, which contain the computer descriptions in 2 hand-compiled form,
also perform much better than the ISPS simulator. PAST's simulators should perform at least as well
as those broduced by N.mPc¢ because PAST simulators call library routines for only the most
complicated operations while 90 percent of the N.mPe¢ simulator execution time is spent in library
routines. N.mPc¢ also has additional overhead due to handling of structural definitions.

The ISPS simulator interprets both the description of an architécture and the code to be run on-
that architecture. In implementing PAST, we replaced the parts of the ISPS simulator which
interpret the architecture description and program with routines that produce code to execute the
architecture description. Thus we have converted the ISPS simulator from an interpreter to a
compiler. The conversion of a general program into a more specialized one by use of known
parameter values is known as partial evaluation. Research has been done on automatic partial
evaluation [19], especially for converting programming language interpreters into compilers, but in
the case of PAST, the partial evaluation was done by hand.

3.4. PAST’s cycle is the target machine instruction cycle.

One of the most useful features of a functional simulator is the ability for the user to set
breakpoints, so that he can stop the simulation at a particular location in his program énd examine
the state of the machine at that point. Breakpoints are typically set by specifying the value that the
program counter has at the desired stopping location. The ISPS simulator defines breakpoints
differently, requiring much more information from the user. In addition to specifying the program
location, the user must specify the name of the program counter variable as specified in the ISPS

description. The ISPS simulator stops as soon as the program counter variable is set to that value,

TIE PAST SIMULATION MODEL 14

whether the cnd of the instruction cycle has been reached or not. The user then has.to refer to the
'ISPS description to determine where to scta breakpoint for the end of the instruction cycle so that he
is not looking at intermediate states. The reason that ISPS makes setting breakpoints difficult is that
it has no concept of an instruction cycle. Each of its cycles processes a single Register Transfer
Machine instruction. The ISPS simulator stcps through the RTM instructions until an RTM "STOP"
operation or a user-specified stopping point is reached, with no regard for the instruction cycle of the

target machine.

In PAST simulators the basic cycle is the instruction cycle for the target machine, and the RTM
level is removed. Since a PAST simulator knows what instruction cycles are and knows the name of
the program counter variable (assuming it was specified when creating the simulator), breakpoints
can be set in the normal way, just be specifying a stopping location. The user only has to interact
with the PAST simulator at the beginning of each target machine cycle so he does not need to keep
track of as much information as with the ISPS simulator. Thus, it is easier to debug programs with
PAST simulators than with the ISPS simulator.

Besides reducing the amount of user interaction required at run time, use of the instruction
eycle as the cycle for PAST improves simulator performance. For cach RTM instruction, the ISPS
simulator executes at least ten C statements in addition to the statcments necessary to execute the
RTM operation. PAST's simulators have about the same overhead for each loop iteration, but each
iteration represents several to hundreds of RTM operations. The smallest real architecture
description we have encountered, for the Manchester Mark-1 computer, averaged about 13 RT™
operations per instruction cycle. The ISPS description for the Warp cell, which is an architecture of
only medium complexity, averaged over 350 RTM operations per simulated instruction. The loop
overhead for PAST simulators becomes insignificant when compared to the overhead ¢liminated by
changing from RTM cycles to target machine instruction cycles. On average, PAST only generates
one or two C statements per RTM operation, but each of the generated statements is probably about
two or three times as complicatécl as each of the loop overhead instructions eliminated by changing to
target machine instruction cycles. A quick calculation shows that we can expect more than a 50
percent (we're being ‘conservative here) reduction in simulation time just due to eliminating the
overhead-of using the RTM instruction cycle:

RTM processing cost:
2 generated statements * 3 simple instructions/generated statement
=> 6 simple instructions
Total cost per RTM instruction:
16 simple instructions
Overhead reduction per RTM instruction:
10 simple instructions

TIE PAST SIMULATION MODEL 7 15

Reduced cost per RTM instruction:
6 simple instructions
Percent reduction:
10/16 * 100% = 62.5%

It should be noted, at this point, that the time reductions that we speak of are all at simulator
run tme. The reductions at run time are paid for by an increase in simulator preparation time.
When PAST generates a simulator, it still interprets each RTM operation to translate the instruction
to C. It begins interpreting with the RTM instruction that corresponds to the ISPS instruction which
the user has specified as the beginning of target machine instruction cycle. PAST follows the flow of
control specified by the RTM instructions until it reaches the starting instruction again or an
instruction which corresponds to the ISPS instruction specified by the user as the end of the target
machine instruction cycle. The time required by PAST to interpret an RTM instruction and generate
C code for that instruction may far exceed the time required by ISPS to interpret and execute the
same instruction. The higher cost is acceptable, however, because the simulator preparation time for
a PAST simulator is a one-time cost. PAST only needs to interpret and generate code for each
instruction once: when it generates the simulator. ISPS has to interpret the same RTM instructions
over and over again, for for each iteration of the target machine’s instruction cycle for every program

it simulates.

3.5. PAST reduces costs of Register Transfer operations.

In the preceding calculations we assumed that the cost of processing an RTM operation at
simulator run time — 1 or 2 C statements — is the same for both the ISPS simulator and PAST. That
is not actually the case. The run-time cost of processing RTM operations is much less for PAST-

generated simulators than it is for ISPS.

Most RTM operations can be categorized into four groups [2]: conwol operations, data
operations, arithmetic operations, and logic and shift operations. The remaining operations, masking
operations, are seldom used. Previous research |2, 28] has found that 65% of executed RTM
operations are control operations, 20 to 25% are data operations, and the remaining 10 to 15% are

arithmetic and logic/shift operations.

THE PAST SIMULATION MODEL ' 16
3.5.1. Control Operations

Since PAST interprets the RTM code to generate C code, it can handle many of the control
operations at translation time and climinate them complctely from the generated code. Several such
control operations are involved in calling subroutines; CALL, PEND, PBEGIN, LOCK. An analysis
by Adlas [2], found these four operations to account for 35% of the RTM instructions exccuted®.
Schooley [28] came up with similar data. Schooley's data also showed three of these operations o
take 8.3 percent of the simulation time using the C version of the ISPS simulator. Data for the fourth
operation was not given, but we can estimate that the total percentage of simulation tme taken by the

four operations is about 10%.

The ISPS simulator gives the user the option of simulating parallel constructs in paratlel, using
a round-robin scheduling aigorithm for the concurrently executing strcams of RTM code, or serially
by executing the streams of code one after another. The serialization option, which disables several
RTM operations, is provided because the round-robin schedulixig is very time consuming. Because
PAST's cycle is the target machine instruction cycle, the user can never examine the streams running
in parallel, so PAST always executes RTM instructions serially. (Running streams in parailei could
alter the state of the machine at the end of the cycle if the target x_nachine as described is capable of
producing indeterminate results. We consider such a design a violation of good design pract.ices.)'
Even if PAST were to use the round-robin scheduling to model parallel execution, there would be no
cost for the scheduling during simulator run-time: some of the operations would just be reordered.
Thus, PAST completely climinates the RTM control operations which model parallelism when it
translates them into C code. The run-time savings due to the elimination of these operations by

PAST is minor because the serialized ISPS simulator also eliminates them.

Two other control operations which PAST does not transiate into C code are the SMERGE and
SJOQIN operations. The SJOIN operation is a jump from the end of a conditional section of code 10
the point where the conditional sections rejoin, an SMERGE statement. Schooley's data show these

operations to account for about 4 percent of the simulation time using the ISPS simulator.

We expect a 14 percent reduction in simulation time compared with the ISPS simulator due to

elimination of unnecessary control operations from the simulators produced by PAST.

5-Ihis was the total for test runs of.§ different ISPS descriptions: AM2910, AM2901, 18080, PDP11, CDC6600. '

THE PAST SIMULATION MODEL 17
3.5.2. Data Operations

Most of the data operations are transfer operations which move data from one register or
memory into another. Also included in this group are several unary operations: clear, increment,
decrement, etc. Schooley found two of these operations, RBYTES and MOVE, to take more than 41
percent of the ISPS simulation time. Although Schooley made no measurements for the rest of the
data operations, we cstimate that the data operations account for more than 50% of the execution

time of the ISPS simulator.

The handling of data operations probably has the greatest potential for improvement in
simulation time. Because the ISPS simulator does not allocate its simulated memory on weord
boundaries, the 1SPS simulator must access memories and registers one bit at a time. PAST does
allocate memory on word boundaries so its memory accesses are simple memory transfers. Bit fields
are accessed by masking and shifting operations. Since most modern computers have word sizes of
32 bits or less, we can estimate a typical memory access to be 16 bits. A PAST simulator can probably
access a 16 bit memory 16 times as fast as the ISPS simulator. With such great reduction in memory
access times, we estimate 40 or more percent reduction in simulation time compared to ISPS

simulators due to more efficient data operations.

3.5.3. Arithmetic and Logic/Shift Operations

Because arithmetic, logic, and shift operations require transfers of operands, we can expect the
same kinds of speedup for these operations as for data operations. We expect some additional speed
improvements as well because all of the ISPS arithmetic, logic, and shift operations work on 128-bit
data even if the operands are less thar 128 bits. For logic operations, the operations are performed
mdependently on each of the four 32-bit words required to hold the 128 bits. Arithmetic and shift
operations also require data to be passed between the words making up the 128-bit operands. Thus,
with the ISPS simulator, a 32-bit logic operation takes 4 times as much time as necessary, and
arithmetic and shift operations take even longer. PAST uses the information known about operand
lengths to minimize the number of host operations needed to produce a result. Since most computers
operate on words of size 32 bits or less, PAST simulators probably perform most arithmetic, logic,
and shift operations four times as fast as the ISPS simulator, We do not know what percentage of the |

ISPS run time is accounted for by these operations,

SRBYTE reads a bit field from 2 register.

THE PAST SIMULATION MODEL 18

3.5.4. Summary of expected improvement over ISPS

Optimization % of total ISPS time remaining

none 100%

RTM Operations %, of total ISPS time reduced
Data 40% 60%
Control 14% 46%

Target cycle change 50% reduction

50% * 46% = 23% 23%
Remaining time 23%

Table 31: Predicted speedup of PAST simulators over the ISPS simulator.

in Table 3-1 we have summarized the speedups that PAST should have over the ISPS
simulator. We have estimated that PAST would reduce the total simulation time by more than 54
percent by optimizing the register transfer operations (14% for-control operations, 40+% for data
operations). In addition, using the target machine instruction cycle rather than the RTM cycle as
PAST's cycle reduces the total remaining execution time by 50 percent or more. These speedups
apply to both architecture-specific and program-specific simulators produced by PAST and are very
conservative. The numbers only include the effects of some of the RTM statement optimizatons,
and we also do not know how much climination of monitoring effects the simulation time; these
factors should weigh in PAST's favor, but we can not quantize their effects. From our numerical
data, we predict that simulators generated by PAST will run at least four times as fast as the ISPS

simulator, but we suspect that the results could be even better.

We expect that the program-speécific simulators will run faster than the architecture-specific

simulators, but we do not have data from which we can make numerical predictions.

3.6. Architecture-specific and Program-specific simulators

PAST can produce either architecture-specific or program-specific simulators. Our performance
estimates in the previous sections apply to both types of simulators. Qur original goal in designing
PAST was to produce program-specific simulators so that we could determine whether
program-specific simulators show significant speed improvements over architecture-specific and

general simulators’. We expect that program-specific simulators are be even faster than

T-Ihis is why we called our tool PAST

THE PAST SIMULATION MODEL 19

architecture-specific simulators because, in the program-specific case, many cvaluations are done at
code generation time rather than at simulation time. When we started to design the PAST program,
we did not intend to producé architecture-specific simulators at all, but, after some design, we realized
that it would take very little additional work to produce architecture-specific simulators as well. We
added this capability to PAST so that PAST would be more general, and, also, so that we would have

architecture-specific simulators that we could compare with the program-specific simulators,

The only information that PAST needs to produce an architecture-specific simulator, other than -
the ISPS description (in the form of an RTM file.), are the names of the ISPS entities which mark the
beginning and end of the target machine’s instruction cycle. (Though not essential, the name of the
program counter variable should also be supplied so that breakpoints can be set.) Additional

information is needed to produce a program-specific simulator:

¢ A program must be specified. The user specifies the program to PAST in the same way as
to the ISPS simulator, by setting the appropriate memory locations in the simulated
program memory.

e The memory range holding the program must be declared as STATIC, Otherwise PAST
will not know which memory locations to treat as code and which to treat as data. When
a register or memory location has been declared STATIC, PAST can replace code that
accesses the memory location with the contents of the location. This replacement is what
makes the generated simulator program-specific.

» The name of the program counter variable must be given,

¢ The range of valid values for the program counter must be specified. PAST loops
through the list of program counter values and generates code to simuiate each
instruction of the program in much the same way it generates an entire
architecture-specific simulator. The main difference is that before generating an
instruction, the value of the program counter variable is set to one of the valid values and
is marked as known.

Figures 3-1 and 3-2 show representative command files for generating architecture-specific and

program-specific simulators, respecﬁvelys.

BLines beginning with exclamation points are comment lines,

THE PAST SIMULATION MODEL - 20

1 Nama of ISES entity which marks the start
| of the instructiom cycle ijs "cstart”. The
t name of an entity marking the end of the cycle
| doeg not have to be specified if the cycle
| ends at the same location that it starts.
STARY cstart

Name of program counter variable is "cr”. This
declaration is not necassary to generate an
architectura-specific simuiator. but for treakpoints
to be allowed, the simulator must know which
variaple to compare the preakpoint 1ist to.

Figure 31: PAST command file for generating an architecture-specific simulétor.

3.7. Standard User Interface

One of the most tedious tasks required in writing a simulator is producing a user interface. We
have eliminated this problem by providing a library of standard user interface routines which are
linked with the code produced by PAST to create a comptete simulator. The main user interface
routine, Userlnterface, is invoked once per 1arget machine instruction cycle. PAST inserts the call to
UserInterface at the beginning of the cycle. This is the only call that the code generated by PAST
makes to the user interface routines, but PAST does produce several routines which are calied by the
user interface, including the main simulation loop. The main routine for the simulator program is

contained in the library, so the initialization process for the simulator is standardized.

The command set for PAST simulators is based on the command set for the ISPS simulator as
described by Barbacci, et al. [5]. Most of the command names are identical to names of ISPS
commands, but some of the commands have different meanings. A list of the currently available

commands is provided below:

BREAK ICONNECT READ

1 <comment> NAMES RUN
CYCLE QCONNECT SETVALUE
DBREAK PROMPT STEP
DUMP QUIT VALUE
ECHO RADIX

Fuil descriptions of the commands are given in the pastsim manual entry in Appendix B.

THE PAST SIMUTATION MODEL

! Name of ISPS entity which marks the start
! of the instruction cycle is "cstart"”.
START cstart

! Name of ISPS entity which marks the end
! of the instruction cycle is “"cend".
END cend

! Set the memory locations to the program values.
| The guotation mark declares the number

! following it to be in hexadecimal notation,
SETVAL mf"00] = "4026

SETVAL m["01] = "6023

SETVAL m("02] = "c000

SETVAL m["19] = "4027
SETVAL m["1a] = "6027
SETVAL m["1b] = "&000

! set data locations to initial values.
SETVAL m{"1c] = "00000004

SETVAL m{"1d] = "00000007
SETVAL m("1e] = "0000000c
SETVAL m{"1f] = "00000015
SETVAL m["20] = "0000001a
SETVAL m["21] = "00000001
SETVAL m{"22] = "00000000
SETVAL m{"23] = "00000000
SETVAL m["247 = "0000000C0
SETVAL m["25] = "00000135
SETVAL m["267 = "00000007
SETVAL m["27] = "00000000

! Name of program counter variable is "cr-.
PC cr

! Initial value of program counter variable is 0.
SETVAL ¢r = O

! Range of valid program counter values -» code range.
CODE "0:"1b

! Range of memory locations which do not change

! throughout program execution -» static range.

! Note that locations other than the program memory
! range can be declared as static. This extra

! knowledge ailows PAST to do more evaluations at

! transtation time.

STATIC m["0:"21]

Figure 3-2: PAST command file for generating 2 program-specific simulator,

21

THE PAST SIMULATION MODEL py)
3.8. Standard Input/Output Routines

Also provided in the PAST library are a set of input and output routines to support the
JCONNECT and OCONNECT commands. The ICONNECT command links variabies to input
files, and the OCONNECT command links variables to output files. Whenever an JCONNECTed
variable is one of the source operands for an RTM operation, PAST generates a cail to a macro which
calls the appropriate input routine. Similarly, when an OCONNECTed variable is the destination for

an RTM operation, PAST generates a call to a macro which calls an output routine.

The input and output routines in the PAST library are based on the Unix™ standard /O
routines, but have additional code to convert numbers to the proper number format. We have also
provided the option of connecting variables to BSD Unix 4.2 interprocess communication ports in the
same way that variables are connected to files. We create FILE s;tr‘u*:.tures9 for the IPC ports which
are compatible with the structures created by the fopen command so that the IPC ports may be
accessed using the jfprintf and ficanf routines. The routines involved with interprocess

communication have not yet been debuggedw, but the groundwork has been completed.

3.9. The structure of the PAST simulator

Appendix C includes samples of architecture-specific and program-specific simulators generated
by PAST for a description of the Manchester Mark-1 computer. The simulators are divided into

sections of code by comment headers. Below we explain the contents of each of the sections of code.

3.9.1. The program header

The program header is a comment block containing information about the simulator. It lists
the names of the RTM file and the PAST command file from which the simulator was produced.
Also given is the time that the simulator was produced. A #include line includes a file containing

definitions and declarations which are common to all PAST simulators.

9These are the structures which are pointed to by file pointers, e.g. FILE *fp;.

wWe are having difficulties with the read routine. 1t should block while wailing for input, but it does not

THE PAST SIMULATION MODEL 23
3.9.2. Update and Propagate Macros

In the [SPS description, the user may define variabics to be mapped onto other variables as
shown in Figure 3-3, We call a variable which other variables map to a {local) main variable!l, The
variables which map to it are called primary variables. In C, the primary variables must also be

mapped to the main variables. The next two scctions in the simulator file define macros which do

this mapping.
(@)
pi<15:0>,
f<0:2> := picl5:13>,
5<0:12> := piclZ:0>,
#define _SET_f
f = (pi & 0x0000e000) >> 13;
#define _SET_s \
s = pi & Ox00001fFFF;
(c)

#define _PROP_f \

pi = (pi & OxffFfIFff) | (f << 13);
#define _PROP_s ©\

pi o2 {pi & Oxffffa000) | s;

Figure 3-3: Example of mapped variables: (a) ISPS mapping; (b) update macros;
(c) propagate macros.

The first of these sections contains update macros which are called to extract fields from main
variables to update primary variables. The other section contains a complementary set of macros
which we call propagate macros. A propagate macro is called to move the value of a primary variable
into the appropriate field of its main variable after the contents of the primary variable have been
changed. The macros are used to keep the main and primary variables up to date with respect to each
other. PAST generates one update macro and one propagate macro for each primary variable. Main

variables may have any number of macros associated with them.

The update and propagate macros are also used to implement ICONNECT and QCONNECT.
If a variable is [CONNECTed, an update macro is created for it containing an input routine. If a
variable is OCONNECTed, a propagate macro with an output routine is created. If an
ICONNECTed or OCONNECTed variable is a primary, the input or output routine is added to the

macro for updating or propagating the primary.

11"!0::;1" is given in parentheses because the variable to which the other variables map may aiso map to another variable.
True main variables do not map to other variables.

THE PAST SIMULATION MODEL 24

Names of update macros begin with " SET_" and cnd with the name of onc of the variables
declared in the ISPS description. Propagate macros arc similar, but start with “_PROP.." instead. [f

the named variable is a memory, the macro has an address parameter.

3.9.3. Global Variables

The next three sections contain global variable declarations, The "PAST global variables”
section declares the variables which are used as scraich registers in arithmetic, logical, and shift
operations. The "User global variables - main" section contains declarations for the main variables
declared in the ISPS description. The "User global variables - primary” section contains declarations

for the primary variables.

Register variables which fit into a single integer word are declared as unsigned infs. Register
variables with word sizes of greater than 32 bits and memory variables with ward sizes of less than 32
bits are declared as arrays of unsigned ints. Memory variables with large word sizes are declared as

two dimensional arrays.

3.9.4. Longjump Labels

The seventh section of code contains declarations for special global variabies which store the
stack state and program counter value for a location which is to be the destination of a long jump.
Long jumps are gotos which can jump {0 any memory location which has been previously executed,
even if the location is outside of the routine from which the jump was made. The destnation of a
long jump must be explicitly marked with a call to the setjmp routine, which sets the value of a

corresponding longjump label. We have put the call to setjmp inside of a macro called LABEL.

3.9.5. The variable informiation table

The eighth section contains a table, called _varinfof], which lists information about each of the
user variables, the variables declared in the ISPS description, so that the user interface routines can
" provide the user access to them. The following information is given for each variable: the name of
the variable, a pointer to the memory location where the memory is stored, the size of the variable in
integer words, the size of the variable in bits, the minimum and maximum valid addresses for the
variable if the variable is a memory, the address increment for a memory variable, the number of the
port to which the variable is ICONNECTED (if any), the number of the port to which the variable is
OCONNECTED (if any), and the default number format to be used when rcading and writing the

variable.

THE PAST SIMULATION MODEL 25

‘This section also provides (for the uscr interface) the total number of variables accessible to the
user, the number of the program counter variable, and the address of the program counter variable if

it is a location in a memory,

3.9.6. Variable initiatization

The next section contains a routine cailed preset which sets variables to the initia] values
specified in the PAST command file (see Figure 3-2). This routine is called by the user interface

upon initalization of the simulator program and when the user gives the RESET command.

3.9.7. Channel initialization

The tenth section contains code to initialize the ports for ICONNECTed and OCONNECTed
variables. The initialization may be opening a file or creating an interprocess communication

connection.

3.9.8. Update and Propagate Routines

These routines give the user interface routines access to the update and propagate macros since
the macros are local to the simulator file. The user interface specifies the macros by variable number,

3.9.9. The main simulation loop

The last section which is common to all of the simulators that PAST generates is the MainLoop
routine which contains the main simulation loop of the simulator, It is this routine which contains

the stream of code which models the execution of the target machine,

Because MainLoop must loop, the routine begins with labels that can be jumped to at the end
of acycle. Two types of labels are given: StartLabel is a normal C label which is jumped to by a goto
statement at the end of the MainLoop routine; a longjump label is also provided (by the macro
LABEL) so that the head of the loop can be jumped to from anywhere in the simulator program —

even from outside of the MainLoop routine.

The first statement within the simulation loop is a call to the user interface routines. The rest of
the code in the routine is dependent on whether the simulator is architecture-specific or

program-specific, on the size of the description, and on user specifications.

THE PAST SIMULATION MODEL 26

31.9.9.1. Architecture-specific Simulators

The basic form of an architecture-specific simulator is a direct transiation of the RTM code into
C code, fully expanding ail subroutines. But if the description is too big, the C compiler can not
handle the long jumps which may be requiredlz. We have found that much of the cause of the large
amount of code being generated for architecture-specific simulators is the expansion of ISPS
procedures in-line. We allow the user to specify which procedures are expandedB. If the number of
calls made to a procedure in the ISPS description exceeds the amount specified by the user as
allowable for in-line expansion, the procedure is made into a subroutine and the in-line expansions
for that procedure are made subfoutine calls instead. We have created an additional section for these

subroutine definitions, labeled Subroutines.

31.9.9.2. Program-specific Simulators

For the program-specific simulators, the rest of the MainLoop routine is just a call to another
routine called MainSwitch. The MainSwitch routine is a switch statement which switches on the
value of the program counter variable. Each case of the switch statement represents an instruction for
the target machine: it is the code generated by PAST by looping through the RTM statement table
for one instruction cycle with the program counter initially set to the value of that case. A switch
statement is not used directly in the MainLoop routine because the statement often becomes too large
for the goto at the end of the simulation loop to jump over. Again because of the jump distance
limitations, the MainSwitch switch statement is sometimes replaced by 2 statement which switches on
the high bits of the program counter. “The cases for this statement cail other routines, which we call
subswitch routines, that switch on the actual program counter value!®. The subswitch routines, like

the subroutines for the architecture-specific simulators are put in their own section.

12We have summarized our problems with the C ¢ompiler in Appendix D.
1:!'I‘h's is done using the -c option with the PAST program. See Appendix A for an explanation of this option.
mThe high bits of the program counter are golten by doing a shift right opetation. The amount shifted is set by a compiler

flag in the PAST program. Another flag sets the maximum number of cases which are allowed in a switch statement without
using subswitch routines. These compiter flags should be made into user-controllable parameters.

THE PAST SIMULATION MODEL

3.9.10. Summary of simulator structure

27

Most of the sections of the file gencrated by PAST contain information from cither the RTM

symbol table or the RTM statement table which is cssential for simuiating the target machine. The

routines other than MainLoop and its auxiliary routines, contain primarily the symbol table

information: variable names, mappings, sizes, etc. The statement table information is contained in

MainLoop and its auxiliaries. A summary of the parts of the simulator file is given in table 3-1.

Simulator) Primary source
X Function . .
Section of information
Header source files, creation date user

Update macros

keep primary variables up to date

symbol table

Propagate macros

keep main variables up to date

symbol table

PAST global variables

temporaries used in calculations

symbol table

User global variables - main

declarations for ISPS main variables

symbol table

User globat variables - primary

declarations for
(mapped) variables

[SPS primary

symbol table

Longjump labels

labels to store destination informa-
tion for iong jumps

statement tabie

Varlnfo structure

information about the ISPS vari-
ables for the user interface

symbol table

preset routine

routine to initialize variables

user, symbol table

InitChannels routine

routine to open ports connected to
ISPS variables

user, symbol table

Ubpdate and Propagate routines

link to Update and Propagate mac-
ros for user interface

symbol table

MainlLoop routine

main simulation loop

statement table

Subswitch routines

routines 1o break up switch state-
ment for program-specific simula-
tors; auxiliary to MainLoop routine

staternent table

Subroutines

routines 0 implement frequently
called ISPS entities for architecture-
specific simulators; auxiliary to
MainLoo_g routine

statement table

L

THE PAST SIMULATION MODEL 28
3.10. Summary

This chapter has outlined the operation of the PAST simulation system and why we chose to
make it work that way. We have rationalized our decisions with performance estimates, predicting
better than a four times speedup over the ISPS simulator. Chapter 5 will show our estimates to be

conservative, but first, in Chapter 4, our implementation of PAST is described in greater detail .

13 Chapter 4 may be skipped on a first reading of the thesis. It gets quite detailed as it serves also as a maintainers reference -
for PAST. : '

IMPLEMENTATION 29

Chapter 4
Implementation

PAST is actually a simulation system made up of five parts: a program which parses the ISPS
description, a program which translates the parse tree into a set of tables, the PAST program which
generates C code, the C compiler (cc) and a library of user interface and input/output routines (the
PAST library). (See figure 4-1.) Most of the work that we did in designing the system was in writing
the PAST program and the PAST library. The ISPS parsing program, ispe, and the translation
program, gdbrim, are part of the ISPS simulator and required few changes for use with PAST.

[n this chapter, we discuss the features of ispc and gdbrtm which are important to our
implementation of PAST and then we describe the workings of the PAST program. The PAST
library needs no additional clarification as its routines are relatively straightforward. Our C code
conforms with the specifications for the C programming language given by Kernighan and Ritchie
[20] and should be portabie at least between Unix™ systems,

4.1. The ISPS parser

The parser used with the PAST simulation system was written in C by Julius Thaddeus
Kowalski and is called ispc'®. It is based on the parser written in BLISS for the original ISPS
simulation system running under TOPS-10. Both versions of the parser process ISPS descriptions
and produce output in accord with the grammar described in [3]. The output of both parsers is the
same, a GDB (Global Database) file which describes the parse tree for the ISPS description in a
lisp-like format. (See Figure 4-2.) ispc, however, has a few more restrictions on its 'anutr than the
original BLISS parser: ispe follows the ISPS grammar more closely, printing warning messages for

deviations from the grammar; ispe does not allow ISPS macros to be as large as in the BLISS version.

Although we made a major change to the ISPS language — the addition of floating point

16’Ihis is the name used by Selvaggi

IMPLEMENTATION
1SPS
Description
ispc
(ISPS Parser)
GDB file
N
gdbrtim
(translator)
RTM file
PAST
Commands PAST
(may include targer."——‘/
machine program)
Simulator
C code
PAST cc
Library (C compiler)
Compiled
Simuiator

User
Program Commands

1

-

r" i
State
1 =21 .
El Infarmation
121
J
L2
=
Data lsl j——3 Data
[W |

Architecture-specific Simulator

User
Commands

H

- ar
State
| E“ ! Information
AR IRR
AN
= -9
Data L] Ell 1 p—-—> Data
[[S |

Program-specific Simulator

Figure 4-1: Block diagram of the PAST simulation system.

capabilities — no changes (0 ispc were necessary. The ISPS grammar mcludes a mechanism called a

qualifier which can be used to specify additional information to be associated with entities or

operators for use with application programs. The only restriction on the names of qualifiers is that

they be valid identifiers; qualifiers are listed in the parse tree as they were specified in the ISPS
description”. There is a set of predefined qualifiers that specify the number format to be used for

1'i'Em:ept that all characters are converted to a single case, €2 upper or lower.

IMPLEMENTATION i1

GDB:E;UNIX ISPS Compiler V2c;markl.1isp;21 May 86:16:08:17;
{ ISPSDECLARATION
{EDECLR
{EHEAD MARK1)
{SECTIONLIST
(SECTION MP.STATE (EHEAD M NIL (: 08191)(: 31 0)))
(SECTION PC.STATE
(EDECLRLIST
{EHEAD CR NIL NIL (: 12 0 })
{EHEAD ACC NIL NIL (: 31 0 I
(SECTION INSTRUCTION.FORMAT
(EDECLRLIST
(EHEAD PI NIL NIL (: 15 0))
(EDECLR
(EHEAD F NIL NIL (: 0 2 }))
(EHEAD PI NIL NIL (: 15 13 1)
(EDECLR
(EHEAD S NIL NIL {: 0 12))
(EMEAD PI NIL NIL (: 12 0)))))
(SECTION INSTRUCTION.EXECUTION
(EDECLR
(EHEAD ICYCLE NIL MIL NIL {QSET MAIN))
(REPEAT
(NEXT
{(LABELLEDACTION START
(~ (EACCESS PI)(EACCESS M NIL (EACCESS CR){:a: 15 @ DD 3
(DECODE
{EACCESS F)
(NUMBEREDLIST
(:=n #0 (_ (EACCESS CR)(EACCESS M NIL (EACCESS S))))
{(:=n #1 (_ {EACCESS CR)
(+ (EACCESS CR)(EACCESS M NIL (EACCESS S)N)))
(=0 #2 {_ (EACCESS ACC)(-- (EACCESS M NIL (EACCESS S 1))
{:=n #3 (_ (EACCESS M NIL (EACCESS S))(EACCESS ACC M)
(7=n (: ¥4 #5) (_ (EACCESS ACC)
{- (EACCESS ACC)(EACCESS M NIL (EACCESS 5)N)
(:=n #6
(IF
{LSS (EACCESS ACC)0)
{— (EACCESS CR)
(+ {EACCESS CR)1))))
{:=n #7 (EACCESS STOP {ACSET Y)
{— (EACCESS CR)
(+ (EACCESS CR }1))N)N)))

Figure 4-2: Example of the Global Database (GDB) format.
arithmetic operations (TC, OC, SM, and US). To add floating point to the ISPS language we added

another number format qualifier, which we named FP for Floating Point.

4.2. gdbrtm - the GDB to RTM translator

gdbrtm converts GDB files into RTM files that contain tables listing the necessary operations to
simulate the described architecture on a hypothetical 3-address machine called the Register Transfer
Machine. The Register Transfer Machine was designed specifically for use with ISPS and has about
130 operations sufficient for modeling machines which can be described in [SPS. The list of Register
Transfer Machine operations is just one of the tables — the statement table — in the RTM file. The

IMPLEMENTATION

kY

RTM file also contains a symbol table, a nametable, and scven other tables listing additional

information about the statements and symbols and how they are related. The contents of the 10

wables are summarized in Tabic 4-0 and

the tables are described in detail by Barbacci et. al. [4].

The Unix version of

ASCII format. The BLISS version, called GDBRTM, produces the same tables, but as a MACRO-10

Table Name Contents

A Bit-Word Sets Nares of bits and word ranges for symbol declarations
that have word or bit structures. .. for
foof0:127)<31:00, the entry would be "31 0 0 127"

B Formals Lists symbols which arc the formal parameters associat-
ed with ISPS procedures. (not used by PAST.)

C Mapping Information Lists primary variables which map to each main vari-
able,

D Successor Vectors Lists choices for the conditional RTM statements ([F
and DECODE) and gives statement table entry associ-
ated with each choice.

E Name Table Lists names of the symbols.

F NmTop Number of entries in name table.

G Temporary Registers Names and symbol numbers of the temporary registers
allocated by gdbrtm.

H Symbol Table Information about the symbols used in the description

, of the target machine.

I Statement Table RTM statements and associaied informaton.

SyTop and StTop Numbers of entries in the Symbol and Statement tables.
Table 4-1; Tables contained in the RTM file.

gdbrtm is written in Pascal and produces the wables in a human-readable

file which is assembied into object code for the DEC-10.

PAST uses a version of gdbrim that we modified to handle floating point operations. The FP

qualifier was added to the list of predefined qualifiers and 14 new floating point operations were

added to the set of Register Transfer Machine operations.
changes to the gdbrtm program,
throughout the program.

We did not have to make any structural

but we changed array sizes and added extra variables and cases

The code that we changed was placed within #ifdef constructs so that the

changes can be easily spotted and can be removed by changing a single definition.

IMPLEMENTATION : 3
4.3. PAST - the code generator

The PAST program is the part of the PAST system which generates the simulator code. Iis
inputs are the RTM file created by gdbrtm and specifications from the user, provided in a file or
given interactively. Its output is the simulator file described in Section 3.9.10.

We will describe the code generation as a three-phase process. In the first phase, the
initialization phase, variables are initialized, the user specifications are processed, and symbol and
statement tables are built from the information contained in the RTM file. The second phase is the
preprocessing phase: PAST loops through the RTM statement table gathering information and
modifying some of the operations to prepare for code generation. In PAST's final phase, the code
generation phase, PAST generates C code from the information contained in the information
contained in the symbol and statement tables. Before we describe PAST's three phases, we will
describe the data structures which PAST uses to store the great amount of information that it handles,

4.3.1. Data Structures

PAST stores most of its data and state information in lists of structures. For the most part,
these structures fall into four categories: those that make up the symbol table; those that make up the
statement table; those that are dynamicaily created and destroyed as the RTM Statements are
processed; and those which store the state of the Register Transfer Machine when conditional
sections of RTM code are entered. Many of the structures used in PAST are adapted from those used
in the [SPS simulator. In this section we describe the major structures used in the PAST program and
how they interact.

4.3.1.1. The Symbol Table

The symbol table is made up of a list of structures containing information about the individual
symbols which are used in the ISPS description. The main structure describing a symbol is the
Symbol structure shown in Figure 4-3. It contains the information extracted from the symbol table in
the RTM file plus some additional information specific to PAST,

The information from the RTM file is described in Barbacci et. al.[4] and is stored in the
following ficlds of the structure: SyType, SyFlags, SyDefinition, SyLabel, Sylncrement, SyBitCount
(sybitcnt), SyBitWordPir (sybwnptr), SyMapPrr, SyName (sypname), SyWordCount (sywrdcnt), and
SyFather. Some of these ficlds are implemented as pointers to other structures so that they can be
easily manipulated. The SymbolFlag (SyFlags) structure shown in Figure 4-4 holds the flags

IMPLEMENTATION

struct Symbol {

}s

BYTE SyType: /* type of symbol. ./
BYTE SyCType: /% LREG, REG, LMEM, MEM. 4
SYFLAG_TYPE SyFlags: /* boolean flags. '
SYMBOL_PTR SyDefinition, /* local parent if primary. s/
SyMain, /* main pointer if primary. ./

SyFather; /* context. ./

STATEMT_PTR SylLabel; /% associated statement table ./
/* antry. */

int SyIncrement, /* also used to store address */
/* currently in temporary. ./

SyBitCount, /* number of bits in word. ./
SyWordCount, /* number of words. ./
SyBitOffset, /* offset from int boundary. ./
Syworg0Offset, /* offset from main symbol. */

SySize; /* number of integers. */

BWV_PTR SyBitWordPtr: /* range labels. ./
Wwy_PTR SyStaticPtr: /* ptr to static range list. */
WV_PTR SySetPtr: /* pointer to list of locations */
/* which have been initialized. */

WV_PTR SyChangePtr: /* pointer to list of locations */
/* which have been changed in */

/% the current level of L

/* rtmlaop(). b4

SYLIST_PTR SyMapPir: /* dependent symbols. ./
MAME_PTR SyName: /* symbol name. */
unsigned int *Syvalus; /* simutated memory for symbal, */
int SyNumber: /* number which user interface */
/* referances symbol by. -/

int SylIConanect, SyOConnect: /* port aumbers to which symbol */
/* is connected. */

W_PTR SyWConstant: /% structure to store wildcard */
/% constants. ./

SYMBOL_PTR SyNext; /* next symbol in symbol table. */

Figure 4-3: Symbol structure.

provided in the RTM file and some other flags which we have defined. Some of these flags are

remnants from the ISPS simulator and are not used by PAST.

struct Symbolflag {

}:

unsigned Refactual
unsigned Primary
unsigned Secondary
unsigned Refformal
unsigned fault
unsigned Trace
unsigned Undef
unsigned Bitaddr
unsigned IComnected :
unsigned OConnected :
unsigned ProgCtr
unsigned Static
unsigned Set
unsigned Valid H
unsigned Alwaysvalid:
unsigned Change
unsigned Reverse
unsigned Unigue

Y
-
P

. e
P

[e i

(=

/* program counter . ./
/% static marker b4
/* set marker ./
/* valid marker v/
/* always valid marker -/
/* value was changed ./
/% bwv was reversed. »f
/* name has been made ynique. L

we 41 ma #a mn ks we =

[e

PR

Figure 4-4: SymbolFlag structure.

IMPLEMENTATION 35

The Primary flag is used to mark a symbol which maps onto another symbol. The SyDefinition
field of a primary symbol points to another symbol table entry which contains the mapping for the
primary symbol onto the other symbol. The symbol which holds the mapping s called a sccondary
symbol and is marked with the Sccondary flag; its SyDcfinition ficld points to the structure for the
symbol which the primary symbol maps to. A pritnary symbol may map onto another primary
symbol. By following the chain of primary and secondary symbals, cventually a symbol which is not
a primary or secondary is reached. This symbol we have named a main symbol and we have created a
the SyMain field of the Symbol structure to point to the main symbol for cach symbol so that it is not
necessary 1o follow the primary/secondary chain each time access to the main symbol is required.
The SyWordOffset and SyBitOffset fields of the Symbol structure are the offsets of the primary
symbols from their main symbols in integer words and bits from the integer word boundary,

respectively.

Several other fields were included in the Symbol structure to save computation when
information must be accessed. The SySize field determined from SyBitCount is the number of
integers which is needed to store the value of a symbol. The SyCType field, determined from
SyType and SySize, is valid only for symbols that are variables or constants (not labels) and specifies
the type of C variable which is needed to hold the value of the symbol:

¢ WORD - the value of the symbol fits in a single integer word. The declaration for the
symbol in the generated code would be "unsigned int x;".

¢ LWORD - the value of the symbol requires muitiple integer words for storage. The
declaration would be "unsigned int x{number of integer words];".

¢ ARRAY - the symbol is a memory and each of its values fits in a single integer word, The
declaration would be "unsigned int x[mentory sizel;".

¢ LARRAY - the symbol is a memory and each of its values requires muitiple integer
words for storage. The declaration would be "unsigned int x{memory size][number af
integer words);".

Other notable fields of the Symbol structure are SyStaticPtr, SySetPtr, and S yChangePtr which
parallel the Static, Set and Change flags in the SymbolFlags structure. To explain these fields, we
must first define some terms:

* A symbol or memory location is static if it has been declared by the user as having a
constant value throughout the simulation using the STATIC command.

¢ A symbol is ser if its value is currently known by PAST, e.g. a static location is always set.

IMPLEMENTATION 16

e A symbol has been changed if its value has been sct o a new value, known or otherwise.
It is important to known whether a symbol's value has been changed within a conditional
section of RTM code so that PAST can mark the symbol as not sct, i.e. its value is not
known, for the code after the conditional section.

If a symbol is static and is a register or flag, the Static flag is set. For symbols that are memories,
SyStaticPtr points to a list of structures specifying the address ranges where the memory is static. Ina
program-specific simulator, structures listing the locations in memory containing the program code
would be included in the SyStaticPtr list. The Set flag and SySetPtr field mark a symbol that is set
and the Change flag and SyChangePtr ﬁeld.mark symbols that have been changed within the current
level of the loop which processes the RTM operations.

The Valid flag is used.to keep track of whether a primary symbol is up-to-date with its main
symbol. When the value of a primary symbol is needed and its Valid flag is not set, the symbol is
updated from its main symbol, and the Valid flag is set. Whenever a main symbol is changed, the
Valid flags of all of the symbols which map to it are cleared because their values may no longer be
valid. Also, when the value of a primary symbol is changed, the value is propagated back to its main
symbol and all of the Valid flags for the other primaries which map to that main symbol are cleared.
Main symbols are aiways kept up-to-date, but primaries are only updated as needed, so the Valid flag
is used to mark the primaries which are valid. Non-primary symbols are always considered to be’
valid.

The other fields of the Symbol structure are explained adequately in Figure 4-3.

4.3.1.2. The Statement Table

Like the symboi tabie, the statement table is implemented as a list of structures. The Statement
structures (Figure 4-5) are less complicated than the Symbol structures because they hold no dynamic

state information; the statement information is static during PAST's code generation phase.

Most of the information in the Statement structure comes directly from the RTM file. Barbacci
et, al.[4] describes the following fields of the structure: StFlags. StOperation, StDestination,
StSourcel, SiSource2, StSCount, StMergeLabel, StLabel. The stslist field described by Barbacci is
implemented as two fields, StSeilVec and Stlist, in the Statement structure because different control

operations require different amounts of information.

The flags associated with a Statement structure are stored in the StatementFliag structure
(Figure 4-6). Most of the flags were defined for the ISPS simulator apd are not used by PAST. Three
of the flags were defined specifically for PAST:

IMPLEMENTATION

struct Statement {
int StOperation:
SYMBOL_PTR StDestination

StSourcel,
StSource2,
StLabel;

STATEMT_PTR StMergelLabei;

int

StSCount,
StPTime,
StATime;

SELECTVEC_PTR StSelVec:
STLIST_PTR StList:
STFLAG_TYPE StFlags;
STATEMT_PTR StFwdlink,

s

Struct StatementFlag {

unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsignad
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned

unsigned

unsigned

}:

* The SelectIf flag is used 1o mark SEL

v

37

/* used for SELECT ops */
/* used for IF.DIVERGE ,BSELECT ,BRANCH */

StBackLink;
Figure 4-5:

Block 1; /"
Process 1; [
Prcedure 1: /e
Critical 1; /"
Ptime 1; i
Fastrtm 1; /-
Needsrci 1 /.
Needsre? 1: /.
Notime 1; [
Break 1: /e
Trace 1; re
Lock 1; i
Ignorad 1; /
Opaque 1; /.
SelectIf 1; /-
Al

Routine 1; /.
. e
Al

Label : 1 [/
/ L]

/ -

The Statement structure.

body was a labelled block */
PROCESS qualifier ’ ./
entry point far entity body s
CRITICAL qualifiar o
Process/Procedure in effect +/
this op/on can be in line */
operation access SAC1 */
operation access SRC? A
This RTM op/on takes 0 time ¢/
Break fTag ./
Trace flag s/
used to lock param.passing */
serialize joins s/
disables read/write/ex tally =/
use if statemenis tg ./
represent a SELECT aperation */

if a called entity, expand ./
the code iniine (FALSE) or ./
replace with a subroutine, */
the statement is jumped to ./
by a LEAVE, TERMINATE, ./
RESTART, or RESUME aperation.s/

Figure 4-6: The StatementFlag structure.

implement ISPS DECODE Statemen
statements rather than swizch statemernits.

¢ The Expand flag marks a called enti

implemented as a function call.

43.4.6.)

® The Label flag marks the de
TERMINATE, RESTART and

Is

ECT operations -~ the RTM operations’ which

which are to be implemented using jf

ty which is to be expanded in-line rather than being

(In-line expansion is discussed in sections 3.99.1 and

stination statement for the jump operations LEAVE,
RESUME. These Jjump operations are implemented with

the Jongjmp function so a sefjmp function call must be inserted at the destination of the

jump,

The StFwdLink and StBekLink fields of the Statement structure connect the structures in a

doubly linked list,

IMPLEMENTATION 8

43.1.3. Dynamic Structures

We call dynamic the structurcs which are changed with every RTM statement of which are

frequently created and destroyed. Tim jmportant structurcs fall under this catcgory.

The RTM program counter is a pointer to the RTM statement currently being processed. A list
of ringstructure SCructures ymplements a stack which storcs the values of the RTM program counter
for several contexts. The 10p structure in the stack holds the current RTM program counter value
and changes every RTM cycle. The only other important field of the ringstructure structure stores

the context in which the program counter is defined, €.8. the ISPS entity in which it is located.

For convenience and efficiency we have defined a structure, called the codestruct structure, for
storing information about the operands associated with an RTM statement (Figure 4-7). At the
beginning of an RTM statement requiring source operands, the gefsource function is called for each
operand (o create a codestruct. Also, the getdest function is called to create a codestruct containing
information about the destination operand. Much of the information in the codestruct structure for
an operand is the same as the information contained in the Symbol structure for the operand, but
fewer pointer dereferences ar¢ needed to access the information. Also, there are only three types of
codestruct structures, in contrast to the ten 1ypes of Symbol structures, and these three types provide
information that is more relevant to. code generation than is provided by Symbol types. The
getsource function determines whether the value of 2 symbol is known, and if so, replaces the variabie
with its value in the returned codestruct structure; the type for a symbol of known value is
CONSTANT. 1f the value of a symbol is not known, it is typed REGISTER ifitisa single word or
MEMORY if the symbol needs an address to determine its valye. For a destination operand, it is
usuaily not important whether the value of the symbol is knownls, so getdest only returns structures
with REGISTER and MEMORY types. Another benefit of the codestruct structure is that it creates
a template which can be used with prinif when printing the SOUTCES and destinations. The templéte
contains the name of the symbol and spaces for the necessary indices for accessing its contents (e.g. if
it is a memory); if the indices are known, they are included in the appropriate locations in the

remplate.

13'me exception is for the operation which sets a bit field of the destination operand, in which case it may be important to
ynow whether the adjacent bits of the destination operand are known. The putbyte routine which implements this operation
deals with the Symbol structures directly.

IMPLEMENTATION 39

struct codestruct {

int CodeType:

int CodeSize:

int CodeBitCount;

int CodeOffset;

int Codelndex;
CODEFLAG_TYPE Codeflags;
unsigned int *CodeValua;
char *CodeString;

SYMBOL_PTR syptr;
CODE_PTR next;

Figure 4-7: The CodeStruct structure.

4.3.14. State Structures

For program-specific simulators, it is essential that the information known about the contents
of the variables is not lost after a conditional section of RTM code {(e.g. the code within an ISPS
DECODE or IF statement) because if certain information is lost, a general simulator may be
produced for each instruction of the program; if a general simulator is produced for each instruction,
the simulator preparation time increases greatly, and the execution time of the simulators is increased
as well. We thus save the entire known state of the Register Transfer Machine before each
conditional section is entered and restore the state, adjusted for the changes which occurred in the
conditional section, after the conditional section is exited. We store the state information in the State
structure shown in Figure 4-8.

struct State {

unsigned int **flags; /* valid, set, and change flags */
/* for all symbals. ./

MEMCHUNK_PTR memchunk ; /* memory state. saved memory */
/® cantents. ./

WVYLIST_PTR memstate: /* 1ist of memory locations */
/* where contents were known. */

WVLIST_PTR memchange: /* list of memory Totations */
' /* whose cantents have baen ./

/% changed at the current ./

/* rtmloop() taevel, ./

Figure 4-8: The State structure,

The state information is stored in the state structure as four lists. The first list, the flags field,
stores the set, valid, and change flags for all of the symbols. They are stored as pointers to unsigned
integers because the saved set flags double as pointers to the values which the ser symbols had before
state was saved. (If the pointers are non-zero, then the corresponding flag was set; otherwise the flag

was not set.)

The second field of the State structure points to a list of structures which store the values of the

memory locations which were known when state was saved. The memory values.are stored in blocks

IMPLEMENTATION : - 40

as large as there were contiguous scctions of known valuc; the structur¢e which stores these memory

chunks is called the MemChunk structurc and is shown in Figure 4-9.

/* structure for temporary storage of a section of memory. LA
/* used for saving machine state before entering a conditional ¢/
/% saction of rtm coda. ./

struct MemChunk {

int size: : /* amount saved in this chunk. ./
unsigned int *vaiue: /* saved value of the memory. ./
unsigned int *location; /* where the values came from. */
struct MemChunk *next: /* next memchunk structure. */

}i
Figure 4-9: The MemChunk structure.

The memstate and memchange ficlds of the State structure store the addresses of the memory
ranges which had been marked as set and changed, respectively, before state was saved. The range
information is stored in lists of structures, called WordVectorList structures, each of which contains
the pointer to the symbol to which the range information pertains and a pointer to a list of struciures
— WordVector structures — containing pairs of numbers defining set or changed ranges. The
WordVectorList and WordVYector structures are shown in Figure 4-10.

/% structure for storing pairs of numbers, or single numbers ./
/* in a linked list. ./

struct Wordvector {
int LeftWord:
int RightWord;
struct WordVector next;

}:

/% structure for storing 1ists of number pairs associated with */
/* particular symbols. Each structure stores a list for a */
/* particular symbol. ./

struct WordvectorList {

SYMBOL_PTR syptr; /* the sympol with which this ./
/% 1ist is associated. ./

WV_PTR wvptr;: /* list of numper pairs which ./
/* go with current symbol. ./

struct WordVectorList *paxt;/" next wordvectorlist struct. s/
}:
Figure 4-10: The WordVector and WordVectorList structures.

Note that there is no list containing validity information for memories. That is because PAST
does not allow primaries to be memories. When one memory maps to another, the primary memory
is converted by past into a register which maps to the main memory. The mapping function in this
case is a little more complicated than a register to register mapping would be, but duplication of

entire memories is prevented.

IMPLEMENTATION 41
4.3.2. initialization

PAST's initialization phase is very similar to the initialization of the ISPS simulator because
both programs must process the RTM file. In fact, most of PAST's initialization code for building
the symbol and statement tables from the RTM file was adapted from 1SPS simulator code. Other
functions performed in the initialization of PAST are sctting variables to initial and default values,
parsing the command line arguments to PAST, allocating memory to hold the values of the RTM

symbols, and processing commands given by the user.

The mainline code for PAST is shown in Figure 4-11. The initialization phase covers the
routines from the start of the main routine up to and including the ConnectChannels routine. Below

we describe the steps in PAST's initialization phase in the order in which they occur.

4.3.2.1. Default parameters

The defaults routine sets up the initial file pointers for the input and output streams and sets
variables that may be affected by the arguments to PAST to their default values.

4.3.2.2. Argument parsing

getargs processes the command line arguments given to PAST when invoked by the user. The
valid arguments to PAST are described in Appendix A.

4.3.2.3. Command files

PAST keeps the file pointers to all open command files on a stack. The pushreader routine in
main initializes the stack to the pointer to the initial command file {which defaults to stdin).

4.3.2.4. Variable initialization

The initialize routine initializes variables which do not depend on the inputs to PAST. It also
initializes lists to NULL pointers.

4.3.2.5. Reading the RTM file

The]mlTab!es routine builds the symbol and statement tables from the information contained
in the RTM file. The name of the RTM file is one of the few required arguments to PAST, and if the
name is not given in the command line arguments, the user is prompted for it by the InitTables
routine. Once the name of the RTM file is known, /nirTables calls another routine called BuildTables
which procedes to build the tables, JnitTables and almost all of the routines in its call tree were

adapted from code from the ISPS simulator; most of these routines were only changed slightly.

IMPLEMENTATION

main(argc. argv)

int argc;

char **argv:

{
/* set up the default parameters. s/
defaults():
/* process the arguments to the program,. Set actual ./
/* parameters. ./

getargs{argc. argv);

/* initialize input file poiater. */
pushreader(ifp, OFF, 1); /+ d from tty, NOECHO, level 1 */
/% initialize variables and structures. */

initialize();

/* read in the rtm file and puild the Symbol and Statement */
/* tables. >/

InitTables{rimfilenama);
/* ailocate simulated memory. - ./

allocate():

/* get past commands from a file or from the user. */
getpst{);

/* determine whether simulator is to be genaral or program- ./
/* specific. If the PC variable and a code range have ./
/* bean specified, then produce a specific simulator. ./
/% Otherwise produce a general oRe. ./

if (pc_ptr != NULL 8& code_ptr 1= NULL)
specific = TRUE;

alse
specific = FALSE;

/* connect and number the input and output channals. ./

ConnactChannels();

/* preoptimize the statgment tabls. ./
preprocess{):
/% translate the RTM code and memory contents to ¢ coda. ./

translate():
/% close files and exit. ./

Exit{EXITDONE);

Figure 4-11: PAST mainline code.

IMPLEMENTATION : 43

4.3.2.6. Memory Allocation

Although PAST is a simulator gencration program and not a simulator, it still must keep track
of values of ISPS symbols so that it can precalculate results and select conditional options when

enough values are known. The allocate routine allocates memory for storage of the symbol values.

One of the most significant differences between PAST! and the ISPS simulator is in the way
that they allocate memory. PAST allocates memory for each ISPS memory word or register on an
integer word boundary. When the ISPS simulator allocates simulated memory for an ISPS memory,
the first memory word is aligned with an integer word boundary, but the rest of the memory words
are bit-aligned, e.g the least significant bit. of a memory word is directly adjacent to the most
significant bit of the previous memory word whether the ISPS memory had 32 bit words or not, The
ISPS simulator'’s memory allocation scheme is more efficient in use of memory than the PAST
memory ailocation, but the ISPS scheme makes accessing the simulated memories more complicated.
Itis probably because of this greater complexity that the ISPS simulator accesses simulated memories

and registers one bit at a time rather than using coarser grain masking operations as PAST does.

PAST allocates memories for primary variables in much the same way as the ISPS simulator
does; the memory pointer for the primary pointer is set to the appropriate word of the corresponding
main variable and the offset of the primary from the word boundary for the main variable is
recorded. This differs from the allocation scheme for the primary variables in the simulators
generated by PAST, in which a primary variable is a copy of the corresponding field of the main
variable (see Section 4.3.1.1).

4.3.2.7. PAST Commands

The getpst routine is the user interface to the PAST program. The PAST user interface is based
on the user interface to the ISPS simulator, but has a different set of commands. The PAST

command set is listed below and is described in detail in Appendix A,

CODE OCONNECT START
END PC STATIC
ICONNECT QUIT

MAKE SETVALUE

The getpst routine processes commands supplied by the user either from a command file or

interactively. gespst first tries to open a command file with the same root name as the RTM file and

lg'lhe simuylators generated by PAST allocate memory in the same way that PAST does.

IMPLEMENTATION 44

the extension ".pst”. but if it cannot find the command file. it enters a mode in which the user can
enter commands interactively. The only command mandated by PAST is the START command
which tells PAST where in the [SPS description the target machine cycle begins. [f the command file
is found by PAST but docs not contain a START command, PAST will enter its intcractive mode and
request a START command from the user. Either way the interactive mode is entered, PAST wiil not

leave the interactive mode until a START command is supplied.

If only the START command is supplied by the user, PAST will make an architecture-specific
simulator. If the program counter and a code range are supplied, using the PC and CODE
conn_nands. respectively, PAST will make a program-specific simulator®. The next section in the
main code checks whether the program counter and a code range have been specified and sets the

flag for the simulator type (specific) accordingly.
4.3.2.8. [nput and output connections

The ConnectChannels routine moves information about input and output connections from a
list created by the user interface routines (for the ICONNECT and OCONNECT commands) into
the symbol table. The information is not put into the symbol table directly to permit the user to

change his mind about variable connections while in the interactive mode.

4.3.3. Preprocessin§

The preprocessing phase of PAST is made up of a single function — Preprocess — which loops
through the statement table collecting information about and making alterations to the statements.
The preprocessing phase could include preoptimizations, but, currently, Preprocess only does
replacements which are essential to the code generation phase. Preprocess is implemented as a loop
that steps through the statement iable. Inside the loop is a switch statement that switches on the
RTM operation of the current statement. The following paragraphs describe the functions associated

with each of the RTM operations which requires special preprocessing.

The CALL operation One of the conditions which PAST considers the end of a target machine
cycle is reaching a retum statement (PEND) for an ISPS entity which PAST did not call previously.
We permit the user to specify any labelled ISPS entity as the starting point of a target machine cycle,

zoAll.hough PAST does not require more information. the user should also specify that the range of memory hoiding the
code is static, using the STATIC command. and should specify the values of the program memory using the SETVALUE
command. Otherwise. PAST will assume that the program merory is dynamic and does not have known value, and PAST will
produce an architecture-specific simulator for each value in the range specified by the CODE command

IMPLEMENTATION 35

including labelled statements defined within subroutines, However, gdbrtm makes any labelled
entity into a subroutine, Thus, if the labelled enlity is a single statement within a subroutine, PAST
will treat that statement as the entire target machine cycle. To prevent this from happening,
Preprocess makes sure that the start labcl points 0 a single RTM statement rather than a subroutine
by expanding the subroutine marked by the start label in-line. This is implemented by scarching for
the CALL statement which calls the entity with the name specified by the user as the starting label.
That CALL statement is replaced by the contents of the calied entity. Similarly the CALL to the
entity named by the user as the end of the target cycle is replaced by the contents of the entity that it
calls.

Another preprocessing function association associated wiﬁl the CALL statement is the counting
of the the number of times each ISPS subroutine is called. The call count for each subroutine is
needed to determine whether the code generation phase should expand the routine in-line or make it
a C function. (See sections 3.9.9.1 and 4.34.6.)

4.3.3.1. The CONNECT operation

In the ISPS language, parameters to functions are usuaily passed by value. The values are
copied into formal parameter variables local to the ISPS function and changes to the formal.
parameter variables within the function do not effect the original variables, the actual parameters.
However, the ISPS language includes a qualifier — REF — which also lets the user specify that a
variable should be passed by reference. gdbrtm creates a special RTM statement called CONNECT
which marks 2 variable as passed by reference. The way that we implement the CONNECT
operation is by replacing it with operations that move the actual parameter value into the formal
parameter before the function call and adding operations that move the formal parameter vafue back

into the actual parameter after the function has returned.

4.3.3.2. The NEG2C operation

NEG2C is the mnemonic for twos complement negate. In the simuiators generated by PAST,
all variables are implemented as unsigned integers. A standard way to do a twos complement negate
with unsigned numbers is to invert the bits of the number and then add one. We implement NEG2C
by replacing it with the two operations NOT and INCR (not and increment).

IMPLEMENTATION : 46

43.3.3. LEAVE, RESTART, TERMINATE, RESUME

LEAVE, RESTART, TERMINATE, and RESUME are all special types of goto operations
which jump out of ISPS entitics (subroutines). Because we somctimes implement ISPS entitics as C
functions, we can not use the normal C geto statement (0 implement these jumps. Instcad we usea C
routine called longjmp to make the jumps. This routine requires that the destination of the jump was
marked with another routine called setjmp which must have peen executed previously to record the
stack state. The destination must be marked before the jump is made. Preprocess searches for
L.LEAVE, RESTART, TERMINATE, and RESUME and marks the RTM statements that are their

destinations as requiring segjmp routines. (See Section 3.9.4.)

4.3.4. Code Generation

The code generation phase of PAST parallels the structure of the simulator produced by PAST.
First generated is the program header; then macro definitions, variable declarations, and initialization
routines; and, finally, the main simulation loop is generated. The sections which contain symbol
table information (see Figure 3-1) are generated by looping through the elements of the symbol table
and printing the necessary information. These symbol table sections have been described in Chapter
4, and their generation is rcasonably straightforward. The remaining sections — the MainLoop
routine and its auxilary routines — are produced by following the flow of control of the RTM
statements and generating C code to represent each RTM statement processed. In the next few
paragraphs we will describe some of the details of the generation of code for MainLoop and its

auxiliaries.
4.3.4.1. Simulation loop framework

The generation of architecture-specific and program-specific simulators differs primarily in the
framework of the simulation loop. To produce an architecture-specific simulator, PAST generates
the frame described in Section_3.9.9.1, and then calls rtmloop which steps through the RTM
statements in the statement table generating C code until one target cycle has been completed. A
program-specific simulator is produced by generating the frame described in Section 3.9.9.2 and -
calling rtmloop for each statement of the target program [0 be simulated. The code generated by
rimioop for program-specific simulators only differs from that generated for architecture-specific
simulators because the vaiues of more ISPS variables are known before entering rtmloop for the
program-specific simulators, e.g. the vaiue of the program counter and the values of the memory

locations storing the program code.

IMPLEMENTATION 47

4.3.4.2. Variable state

As mentioned in Scction 4.3.1.1, PAST keeps track of whether ISPS variables are static, set,
changed at the current rimloop level, and valid. PAST depends on this information so that it can
produce efficient code. If a variabie is static (always set) or set, PAST can replace the variable with its
value when using it in calculations; this allows PAST to precompute results, saving time when the
gencrated simulator is running. Knowing whether a variable is valid saves PAST from having to
generate code to extract primaries from main variables whenever the primaries are accessed, reducing
both simulator generation time and simulator run time. The changed flag is used to keep track of
variables which have been changed within conditional sections of RTM code so that in the code
following the conditional sections, PAST will not treat unknown variables as known and vice versa.
To keep the variable state information valid, a routine called MarkSet is called every time a variable
is changed to update the flags for the variable. It is very important that the state information is not
lost for program-specific simulators because. lost information can make the simulators grow to

unmanageable sizes.

4.3.4.3. Flow of control

As mentioned in Section 3.4, PAST s cycle is the target machine instruction cycle. The cycle
begins at a point in the ISPS description specified by the user as the start of the cycle and ends at
another point in the description specified by the user (or at the starting point if the description
actually contains a cycle), These points, which must be labeied in the ISPS description, are
represented as labeled RTM statements in the statement table, Processing for either an architecture-
specific simulator or a cycle of a program-specific simulator begins at the RTM statement labeled as
the starting point. The flow of control from the starting point is specified by the RTM operations;
rimigop interprets the RTM statements starting from the specified starting statement. Certain RTM
statements explicitly specify the next statement to jump to; otherwise, control is passed from gne
RTM statement to the next statement in the linked list making up the statement table. Processing for
a target cycle (the entire architecture-specific simulator or a single cycle of a program-specific

simulator) ends when one or more of the following conditions is true:

¢ The RTM statement labeled as the end of the target cycle is reached.

® The RTM statement labeled as the start of the cycle is reached again. This may occur if
the [SPS description actually contains a cycle.

® An unmatched PEND statement is reached. An unmatched PEND is a return from a
subroutine which was not called.

¢ A RTM STOP statement is reached.

[MPLEMENTATION 43

o A control statement which cannot properly be handled is reached. Currently, this case
only occurs in prugram-spcciﬁc simulators for the RTM goto operations RESTART,
RESUME, TERMINATE. and LEAVE. These gpcrations arc difficult to handle because
the destinations for the gotos must be labeled in the generated C code.

Because PAST follows the flow of control of the RTM statements, the code that it generates is
already properly ordered, so it is not necessary to generate C code to represent most of the control
operations. Among the operations in this catcgory are CALL, PEND, PBEGIN, LOCK, SMERGE,
PMERGE. (Some of these were mentioned in Section 3.5.1) To follow the flow of control of the
RTM statements, PAST must imitate the actions which the Register Transfer Machine would take.
For example, to imitate the CALL operation, PAST calls another level of the rimloop routine; the
PEND operation marking the end of a subroutine is implemented as a retumn from the rtmloop

routine.

Not all of the RTM control operations can be imitated at code generatioﬁ time. The
conditional control operations, IF and SELECT 2l must sometimes be imitated in the generated code

because they depend on values of the ISPS variables.

4.3.4.4. Conditional control operations

Conditional control opefaﬁons depend on the values of ISPS variables. The handlihg of a
conditional operation depends on whether the value of the condition variable is known or not. If the
value of the variable is known, PAST selects the correct branch of the conditional operation and
generates the code for that branch by calling another level of the rtmloop rdutinen. If the value is not
known, PAST generates conditional C code and calls rtmloop to produce code for each of the

branches of the conditional RTM operation.

PAST generatesa C if statement to represent an RTM IF statement with an unknown switching
value. An RTM SELECT statement is represented by either a C switch statement of by cascaded i
statements depending on how many cases the SELECT has and how many values of the switching
variable fall into each case. We have muned PAST’s selection of either switch or if statements for the
version of the C compiler that we have available; the parameters for deciding whether £o use a switch

statement or if statemenis are set with # define statements in the PAST code.

Zlrere are two other conditional control operations — BSELECT and BRANCH - but these are just special cases of the -
SELECT operation.

DNou'. that this call is made from rmipap so rimloop is a recursive routine.

IMPLEMENTATION . ' 49

There arc additional complications to generating conditional C statements from conditional
R'TM statements, PAST must insurc that when it generates the code for each case of a conditional
statement, it starts with the same information about the statc of the [SPS variables (see¢ Section
4.3.1.1), and that after code has been generated for all cases of the conditional statement, important
information has not been lost. The state of PAST’s symbol table may be changed by processing the
branch cases of the conditional, so PAST can not process the cases sequentially without restoring the
state of the symbol table between each case. Thus, before processing any cases of the conditional
RTM statement, PAST saves the state of the symbol table in a State structure (see Section 4.3.1.4);
then, before processing each of the cases, PAST restores the state of the symbol table to the saved
values. To insure that PAST does not lose important information — e.g. the value of a variable
holding the current instruction for a program-specific simulator — PAST also keeps track of the
cumulative changes to the symbol table made in processing the cases. The cumulative changes are
saved in a State structure. Afier all of the cases of the conditionai RTM statement have been
processed, all of the variables which were marked as changed in the cumulative State structure are
marked as not known in the symbol table. If PAST did not keep track of the cumulative changes, it

would have to assume that all variables were changed, and would lose much information,

The routines which save and restore variable state before and after entering conditional sections
of RTM code are the most costly of PAST’s routines at PAST run-time. Each of these routines must
loop through the entire RTM symbol table reading and writing flags, and copying values. For
memory variables, the routines must also process lists of address ranges and copy large regions of
memory. This can be quite wasteful because many conditional statements only effect a small number
of the ISPS variables. In future versions of PAST, the cost of these routines should be reduced. QOne
possible way to do this is to look ahead into the branches of a conditional statement before processing
it to determine which variables are affected by the conditional statement: then it would only be

necessary to save the states of the affected variables.

4.3.45. Data, arithmetic, logic, and shift operations

We chose to declare all of the C variables representing the ISPS variables as unsigned integers
(or arrays of unsigned integers) because unsigned integers were the easiest C types from which we
could construct the standard ISPS data types (Unsigned, Twos complement, Ones complement, Sign
Magnitude). For the standard ISPS data types all of the data-related operations are constructed from
unsigned C operations. Floating point data is also stored in unsigned integers but is casted into
floating point numbers when doing caiculations so that the simulators produced by PAST can take

advantage of the host machine’s floating point operations.

[MPLEMENTATION ' 50

Our goal with the data, arithmetic, logic, and shift operations was 10 gencrate as few
instructions as possible to implement the instructions. PAST attempts to do as many computations at -
code generation time as are possible from the known data. There are three cases which can occur for
an RTM data operation: all of the source data valugs are known; only some of the source data values
are known; none of the source data values are known. For the case where all source values are
known, PAST precomputes the result and just generates code to set the destination variable to the
result. When none of the source valyes are known, PAST generates code which will do the necessary
operations to implement the RTM operation. When only some of the source data values are known,
PAST tries to minimize the number and complexity of C statements generated, but in the worst case
produces the same code as when none of the source values are known except that values are
substituted in for the known variables. An example of a case where PAST can compute a result from
only partial knowledge of the source operands is a multiplication of an unknown value by zero;

PAST just generates code o set the destination variable to zero.

Because PAST must handle so many Cases, the PAST code for handling some of the RTM
data-related operations gets quite complicated. In future additions to and versions of PAST, attempts

should be made to generate efficient code in a more structured fashion.

We found it very difficult to write code 1o generate efficient C code to implement some of the
more complicated operations, such as the shift and multiply operations. We decided instead 10
implement the more complicated operations as calls to general subroutines. The general subroutines
are contained in the PAST library. Use of subroutines may effect simulator performance slightly, but
assuming that the general subroutines are efficient and that the complicated operations require many
C instructions to implement, the overhead due to the subroutine cails should be relatively small.

Later, some of the subroutines can be replaced by macros.
4.3.4.6. Problems with simulator size

A side result of our research was the discovery of many limitations of the ¢cc compiler23. Most
of these limitations had to do with branching distances and were found because the simulators PAST
produced for certain cases were very large. Because of the limitations we were prompted to

determine why some of our simulators are so large.

For program-specific simulators, the reason is obvious: the size of a program-specific simulator

i

23We have described the problems that we found in Appendix D.

IMPLEMENTATION 51

is proportional to the size of the program which it simulates. To reduce the size of the switch
statement that sclects the instruction to execute, we replaced this swirch with one that calls subswitch

routines (see Section 3.9.9.2) which contain smaller switch statements.

The size problems with the architecture-specific simulators were more unexpected. We had
assumed, as did Selvaggi, that "almost all declared [ISPS] procedures are called only once" [29], and
expanded ail of the ISPS entities in-line. Although the assumption itself seems to be true, it does not
take into account the few procedures which are called more than once. For a description of the
MC68000%%, these few procedures turned out to be procedures for accessing memories and registers
and were thus called many times; one routine was called 84 times. The resulting simulator was over 2
Megabytes of code and would not compile. To reduce the siie of architecturespecific simulators we
added an option of using subroutines instead of in-line expansion: the user can specify that ISPS
entities called more than a given number of times should be replaced with subroutine calls rather
than be expanded in-line. Table 4-2 shows the effect on generated code size of replacing in-line

expansion with subroutine calls, using the MC68000 example.

Max. no. of calls | Resuiting code size || Max. po. of calls Resulting code size

expanded in-line (bytes) ‘ expanded in-line (bytes)
0 186729 15 410408
1 189653 18 469600
2 200699 25 524041
3 203411 26 545933
4 211462 33 567637
6 213088 34 642200
7 223969 46 646471
8 250370 48 771049
14 251786 84 2849628

Table 4-2; Effect of expanding subroutines in-line for MC68000 description.

The size problems due (o in-line expansion do not occur for all ISPS descriptions. The Mark-1
description was a single procedure so it could not be effected by in-line expansion. The PDP-8
description only had one procedure which was called multiple times, but the size was not effected
significantly by in-line expansion. The Warp description also had just one multiply-called procedure,

and, again, the effect one size due to in-line expansion was not considerable. In-line expansion did

24We did not use the MC68000 m our speed measurements because PAST can not yet handle all of functions which the
MC68000 description requires. '

IMPLEMENTATION : 52

have a significant cffect on the size of the MC6502 simulator generated by PAST (Table 4-3), though -

not as dramatic as for the MC68000 description.
0.if 499<150 .or 83 150

Max. no. of calls | Resulting code size Max. no. of calls | Resulting code size
expanded in-line (bytes) expanded in-line (bytes)

0 39200 6 60539

1 35460 7 60988

2 46820 8 87179

3 50255 26 90120

4 51204

Table 4-3: Effect of expanding subroutines in-line for MC6502 description.

4.3.4.7. Current status

PAST can generate code for most of the RTM operations, but does not yet handle the Ones
compiement and Sign Magnitude operations. Also lacking are the twos complement multiply
operation and the unsigned and twos complement division operations. Because these operations are

quite complex, we think that they should be implemented as general subroutines.

We had great difficulties impleinenting the RTM goto operations RESTART, RESUME,
LEAVE and TERMINATE for architecture-specific simulators, and still may not handle them
properly in all cases. Implementing these operations for the program-specific simuiators is even more
difficult, so we directed our efforts instead to implementing more common operations. These
operations should be implemented properly, but it may require a major restructuring of the code

generation part of the PAST program.

Due to an oversight, PAST cannot currently handle primaries which map onto more than one
word of a memory (see Figure 4-12). Thisis one reason why we did not use the MC63000 description
as one of our test cases.

M\Main.Memory[D:PmemSize]<7:0>.
WM\Hord.Size.Memory[a:PmemSize]<15:0> {increment:2} := M[0:PmemSiza]<7:0>,

Figure 4-12: Example of mapping which PAST cannot handle (from MC68000
description).

PAST should eventually be able to handle any ISPS description that the ISPS simulator can
handle (and also ones with data sizes greater than 128 bits) at least for the architecture-specific case.
With the program-speciﬁc case, code size problems may make simulator compilation impossible for

some descriptions.

IMPLEMENTATION 53
4.4. Summary

In this chapter we have described the programs which make up the PAST system. The
information in this chapter can supplemented with the comments contained in the program code and
the code itself; we have tried to produce well-commented and readable code., In the next chapter we

will describe the experiments which we performed to validate and evaluate the PAST system.

RESULTS ' 54

Chapter 5
Results

Since our primary goal was to produce fast simulators, our primary measure of PASTs
performance was the speed of execution of the simulators it produced. We have compared the speeds
of architecture-specific and program-specific simulators produced by PAST with the speed of the [SPS
simulator and in one case the speed of an ad-hoc simulator. We also measured the preparation times
for the PAST-generated simulators so that we could determine whether the extra preparation time for
the simulators is significant, In this chapter we describe the experiments which we performed, but

first we will say a little bit about the architectures and programs that we simulated.

5.1. Test cases

Qur test cases were descriptions of real architectures ranging in size from a machine with 7
opcodes (6 operations) to a horizontally microcoded architecture with microwords 112 bits wide. In
Table 5-1 we have presented some statistics about the ISPS descriptions. The first two columns list
the sizes of the RTM symbol and statement tablés respectively. The third column is the best measure
of architecture complexity because it lists the average number of RTM operations which have to be
processed for each instruction cycle. Note that the Warp description has significantly more RTM
operations per cycie than the MC$502 description even though the MC6502 description has a larger

statement table.
Machine # RTM # RTM RTM Statements
| Description Symbols Statements executed per cycle
Mark-1 54 69 13.6
PDP-8 152 265 353
MC6302 288 79 413
Warp 455 734 354.0

Table 5-1: ISPS description complexity.

RESULTS 55

We simulated one program for cach of the described architecturcs. The programs that we
chose to simulate exercise a representative sct of the machine instructions while having ¢nough
instruction cycles so that we could get accurate measurements. Time constraints prevented us from
preparing more programs, however, we believe that the programs that we chose do not have atypical

instruction mixes o our results should not be too inaccurate.

5.1.1. Manchester Mark-1

The Manchester University Mark-1 Computer, one of the first computers, has a very simple
architecture, with a single accumuiator, a 12-bit data path and a 16-bit instruction word with a 3-bit
fixed-size operation code. Though there are scven possible opcodes, there are only 6 operations.
Barbacci and Siewiorek [6], from which we obtained the Mark-1 description, describes the
architecture in greater detail. Because of its simplicity, the Mark-1 description was the first for which

we could produce a working simulator.

Our test program for the Mark-1 was a multiplication program which used all six of the
operations. The algorithm we used was repeated addition because it allowed us to vary the number
of instructions executed just by varying the data values: by varying the number of instructions we
could make the execution time of the program great enough to be measured using the Unix time
facility. It would have been very difficult to write a program 0 implement a shift and add algorithm

because the only arithmetic operations the Mark-1 had were subtract and negate.

We have presented the Mark-1 as a complete example in Appendix C.

5.1.2. Digital PDP-8

The PDP-8 is more complicated than the Mark-1, having a 12-bit instruction word and a 12-bit
datapath, but many more operations, Agan, we obtained the ISPS description from Barbacci and

Siewiorek [6], which gives 2 good overview of the architecture.

We obtained our test program for the PDP-8 from an article by Nestor and Thomas [23]. Itisa

multiplication program based on the repeated addition algorithm.

RESULTS i 56
5.1.3. Motorola MC6502

We used the MC6502 as a test architecture because it has been used a lot by researchers in
CMU’s ECE department. We uscd an ISPS description of the architecture written by Jayanth Rajan,
The MC6502 has a 8-bit instruction words and 8-bit data, but instructions can have a variable number
of words. This is significant in PAST's program-specific mode because PAST assumes fixed length
instructions; uniess the user explicitly declares the address of the first word of each instruction, PAST

will generate extra code for the words outside of the assumed fixed length.

The test program that we used was adapted from a double-precision multiplication program
written by David Geiger. This program used a rotate and add algorithm so we could not vary the
¢xecution time by varying the data. Instead, we controlled execution time by putting the

multiplication code within a loop for which we could control the number of iterations.

5.1.4. CMU Warp Csll

The idea for PAST was prompted by the large development times for simulators for machines
which we are building at CMU. The Warp Systolic Array Machine, a special-purpose machine
centered around an array of high-speed floating point processing cells, and several related projects
have required functional simulators so that the architectures could be tested and programs could be
written in parallel with hardware design. Each of these simulators took several weeks to write. It was
hoped that PAST could be used to shorten the development time of future simulators.

We have written an ISPS description of the Warp cell in order to compare the simulators
produced by PAST with the ad-hoc simulator written for the Warp machine and to determine
whether a PAST-like tool could really be used in our design environment. The ad-hoc simulator has
aslight disadvantage in the comparison because, though we only use it to simulate one Warp cell, it is
capable of simulating the entire Warp array — an interface unit and ten Warp cells. The PAST
simulators based on our ISPS description can only simulate a single Warp cell and thus do not have

the overhead of checking which cells are to be simulated.

Our goal of simulating the Warp machine has had some major influences on the design of the
PAST simulation system. For ISPS-based simulators to have reasonable speed in simulating Warp
programs, we added floating-point capabilities to the ISPS language. We also added the groundwork
for interprocess communication between PAST simulators with Warp in mind.

RESULTS ’ 57

The Warp description, though smatl, is much morc cdmplicated than the other test descriptions
because Warp is horizontally microcoded and its datapath is centered around a crosshar. (Sce Figure
5-1.) Also, the Warp machine has a major 200ns cycle made up of two 100ns cycles. Fach 100ns cycle
has a 112 bit instruction word. We modeled the Warp cell at the 200ns level, so we had to handle two
of these instruction words for each instruction cycle. The horizontal microcoding and crossbar cause
almost all parts of the machine to be exercised every instruction cycle which made proper scquencing
of events very difficuit. Sequencing information was not well documented; the most useful reference
was the ad-hoc Warp simulator code becausc the timing problems had already been handled, but we
still had to correct the timing by trial and error. Having read the Warp simulator code, it is easy (o

see the benefits of writing in a language such as ISPS. The ISPS description was more readable and

more compact.
ADRn
—>>
W M1
MEM ey [
> R M2 ‘:ﬁ MPY
el -
\/ IND M ‘
ADR ADR INT e
€ SLCT
e
EXT
R ADR _j\ MC XBAR
ADRn-1 E ALE —_— A1
G ALU
a2 | FEG ALU
Xn-1 % X X > FILE]
: X FILE s : Xn
Xo '
Wl — ﬁ
_ Y Y Y Yo "
X FILE —

Figure 5-1: Warp cell datapath {21].

The program used with the Warp simulators was one which computes the Mandelbrot set®,
This program was chosen because it has been run on the real hardware, it can run on a single Warp
cell, its outputs can be easily verified, and, as with other test programs. its execution time can be

varied easily by changing a few parameters.

25‘1119. algorithm for the program is the one presented in Seientific American in August 1985 {12].

RESULTS : . 58

The Warp simulator is our only test case which took advantage of the 1/0 capabilitics of PAST.
Because a Warp cell is supposcd to communicate with other processors, it required cxternal inputs
and outputs. The communication scheme used in the Warp machine mandated that inputs be
supplied every cycle and that the simulator produce outputs every cycle. The Mandelbrot program
with the parameters that we chose took about 110,500 cycles to finish so the input and output files
were very large (each was 2,200,000 bytes). We found that the I/0 routines dominated the execution
time of both the PAST simulators and the ad-hoc Warp simulator,

5.2. Timing measurements

We made our timing measurements using the Unix™ fime facility on a Vax 8650 computer
running Mach/4.3/2/1 BSD Unix?5, We used the real ime value returned by the time program; time
rounds this value to the nearest second?’. We adjusted the problem sizes so that the smallest time
values were at least a few seconds to insure that the speed differences between the simulators would
be measurable. All of the measurements were done with the process being measured running as the
only active process on the machine?®, We verified that our simulation time measurements were
reasonably accurate by repeating each measurement at least six times. The results were very
consistent, aimost all within 1 second or § percent of the average value®’. The simulations with the
most variations were those which used file I/0 (the Warp simulations). Simulator preparation time
measurements were repeated at least three times for each of the architecture-specific and
program-specific simulators. Each time value presented in the tables which follow is the average of

the measurements for the corresponding test case unless otherwise noted.

{CMU Unix 42and 4} respectively).

27The “rounding” may actually be truncation. Sometimes the total user and System time indicated that the real time should
have been 1 second greater. The discrepancy is probabiy due to real time being measured independently from user and system
times,

28We verified that the process was the only one running by making sure there were no other users (zctually, no users at ail)
on the machine. Also, the ar server was not working, so we knew that no batch jobs were started.

29’]'he greatest deviation was 14.8 percent, but was within 1 second of the average for that test case,

RESULTS

5.3. Simulator speed

For cach of the four iSPS descri

simulators using PAST and measure

test programs.

Finally, to sce how PA

found 170 routines to dominate over 90 percent of the si

d the exccution times of these s

ST simulators perform compared with an ad-

program for the Warp cell on the ad-hoc Warp simulator [9]

timing measurements are more concerned with processing

nearest second. The same data is prese

nted in terms of cyc

59

ptions we produced architecture-specific and program-specific
imulators running their respective
We also simulated the same programs and descriptions with the [SPS simulator.

hoc sinulator, we ran our test

. Two versions of each of the Warp

simulators (except for the ISPS simulator) were run — one with 170 and one without — because we

mulation time when it was present, and our

speed. The execution times of the

simulators are shown in Table 5-2. The values given are averages for several runs, rounded to the

les per second in Table 5-3.

Machine Cycles ISPS PAST PAST
, . . Ad-Hoc
Descriotion || Executed Simulator architecture program-spec:ﬁc
p (sec.) specific (sec.) (sec.) (sec)
Mark-1 851967 1741 24 14 -
PDP-8 295 7 6 -
MC6502 270 14 7 -
Warp* 110500 4475** 39 2 128
Warp 110500 - 589 609 527
* Warp simulators running with no 1/0 and no real data.
s+ Estimated from ~10 minutes of running time.
Table 5+2; Simulator execution times {seconds).
Machine ISPS PAST PAST
. . . Ad-Hoc
Description Simulator architecture p_mgram-speczﬁc
P (cy./sec) specific (cy./sec.) (cy./sec.) (cy./sec.)
Mark-1 4394 15498.6 11513.1 -
PDP-8 31334 14051.4 16393.3 -
MC6502 269.2 5197.6 10383.1 -
Warp* 4.7 2833.3 5022.7 863.3
Warp - 187.6 1814 9.7

* Warp simulators running with no [/0 and no real data.
*+ Estimated from 10 minutes of running time.

In Table 5-4 we present the factors b

Table 5-3: Simulator speeds (cycles/second).

y which PAST simulators speed up simulation compared

RESULTS : 60

with the ISPS simulator. PAST simulators perform quite well, achieving simulation specds ranéing
from 19 to 200 times as fast as those of the ISPS simulator ruaning the same simulations, This is |
much better than the conservative 4 times speedup that we predicted in Section 3.5, It should be
remembered, however, that our predictions did not take all of the RTM operation optimizations into

account and did not include any speedup due to reducing monitoring capabilities.

Machine Dataword Size PAST PAST
Description (bits) architecture-specific program-specific
Mark-1 32 72 24
PDP-8 12 42 - 48
MC6502 8 19 39
Warp* 32 114 200

* Warp simulators running with no 1/0 and no real data.
Table 5-4: PAST speed improvement factor over ISPS.

The data confirms that the data operations are indeed a major cause of the slowness of the ISPS
simulator, because the speedup improves as data word size increases, (The second column of Table -
5-4 lists the sizes of the data words for the test architectures.) Since ISPS accesses data one bit at a
time, total access time is proportional to the size of the data word. The difference in speedups of the
Mark-1 and Warp architecture-specific simulators is most likely due to the fact that the Warp cell is
much more complicated than the Mark-], e.g. the description of the Warp cell is made up of many
procedures so it has many more control operations that can be climinated by PAST (Section 3.5) than
the Mark-1 description, a single procedure.

The data for the program-specific simulators appears to conflict with the hypothesis that greater
use of known information improves simulator performance: some of the program-specific simulators
are slower than the corresponding architecture-specific simulators. However, the apparently
anomalous data can be rationalized. The Mark-1 program-specific simulator which we used for
measurements was a version which impiemented the MainSwitch routine as a swirch statement calling
subswitch routines*® (see Section 3.9.9.2). Thus, there were two levels of function calls for each cycle
that were not present in the architecture-specific simulator. Because the ‘Mark-l description is a very

simple one and function calls are expensive’], the extra function calls have a great effect on the total

3‘:)'I‘his is mot the same version shown in Appendix C,

31‘I‘he ce compiler implements C function calls ﬁsing the Vax CALLS instruction, which pushes everything onto the stack
but the kitchen sink,

RESULTS _ 61

simulation time. We must attribute the unexpected results for the Warp simulators with [/0 to either
the 170 or to some cffect of the greater simulator size duc to function calls to the [70 routines

because the simulation times without 170 fit our predictions.

The most gratifying result of this research is the data for the Warp simulators running a real
program with real data. The simulators generated by PAST ran within 20 percent of the speed of the
ad-hoc Warp simulator. This is quite reasonable for an automatically generated prograrﬁ, indicating
that our research was successful. The PAST Warp simulators without 170 actually ran faster than the
ad-hoc simulator. Admittedly, there is additional overhead in the custom Warp simulator because it
can simulate the entire Warp system — 10 Warp cells and an interface unit — and we may not have
removed all 170 related routines from the Warp simulator. Even so, these results are quite

promising.

5.4. Total simulation time

Throughout this report, we have stressed that our goal was L0 speed up simulation by producing
simulators that run fast. However, there is another major time cost involved in simulation: the time
required to prepare the simulators. Simulator preparation time includes the time spent by the
simulator writer in designing and debugging the simulator and the time spent by the computer
converting the designer’s representation into executable code. For ad-hoc simulators, the majority of
the preparation time is the time spent by the simulator writer in designing the simulator and writing
and debugging the simulator code: the computer’s only task is compilation. Simulation tools, such as
ISPS and PAST, reduce the time spent in design and coding by providing a standard easy-10-use
notation for describing the architecture 10 be simulated. However, the role of the computer is much

greater when simulation tools are used.

The preparation phase for simulation using the ISPS simulator has several steps. The first step
is writing the description- of the architecture; hopefully, the ISPS notation makes writing the
description easy for the designer, thus minimizing the designer’s time and efforts. The rest of the
preparation is done by the computer. the 1SPS description is parsed (by ispc) and is converted into
an RTM file (by gdbrtm). An additional part of the preparation — loading the contents of the RTM
file into structures — is incurred by the 1SPS simulator at run time. We have included this tme in

the simulation time measurements.

In preparing PAST simulators, the same steps are wken as for the ISPS simulator, with {wo

added steps. After the RTM file has been created, it is read by the PAST program and converted into

RESULTS

C code. This C code is then compiled by cc into exceutable code.
involved in preparation significantly. However, it is thesc steps that reduce the simulation time

compared with the ISPS simulator. Thus, there is a tradeoff between simulator preparation time and

simulation time.

These extra steps increase the time

Machine ISPS PAST PAST
. Simulator architecture-specific program-specific
Description
(sec.) (sec.) (sec.)
Mark-1 4 10 11
PDP-8 15 14
MC6502 1] 26 46
Warp 23 53 91

Table 5-5: Simulator preparation time.

For all of our test cases, the increases in simulation speed due to creating architecture-specific
and program-specific simulators outweighed the increase in preparation time (Table 5-5) when
compared with the ISPS simulator, This is because preparation of the simulators is a one-time cost,
while the simulation-time savings increase linearly with the run tme. I[f either type of PAST
simulator is not run long enough, the extra preparation time may exceed the simulation-time savings.”
This is not a great problem for architecture-specific simulators because run-time savings are
cumulative and, presumedly, at least a few programs will be simulated for the architecture. For
program-specific simulators, it is a single program which must be run frequently and/or for a long
time. Itis possible to estimate the number of cycles where the total cost of simulation, including both
preparation time and simulation time, with the ISPS simulator equals the total cost of simulation with
a PAST simulator. This is the break-even point — the number of cycles where the additional time
investment in usihg PAST rather than ISPS is paid back by the speedup in simulation. We have
determined the breakeven points for our four test cases, for both the architecture-specific and the
program-specific simulators (Table 5-6). Note that break-even points involving program-specific
simulators only apply to the programs simulated and only characterize programs of the same size

running on the same architectures,

We have found that for architecture-specific simulators, the preparation time increases with the
complexity of the architecture being simulated. For program-specific simulators, the preparation time
increases with architecture compiexity and is also proportional 10 the size of the program being
simulated. Thus, for programs exceeding a certain size, program-specific simulators take lenger to

prepare than architecture-specific simulators, However, program-specific simulators generaily (or at

RESULTS - 63

Machine Equation to be satisfied Break-cven solution
Description (solution = b} (target cycles)
Mark-1 4 + b/489.4 = 10 + b/35498.6 2971
PDP-8 4 + b/3334 = 15 + b/14051.4 3757
MC6502 || 11 + /2692 = 26 + b/5197.6 4259
Warp* 73 + b/247 = 53 + b/28333 748

(a) Break even for ISPS and PAST architecture-specific simulators.

Machine Equation to be satisfied Break-even solution
Description (solution = b} (target cycles)
Mark-1 4 + b/489.4 = 11 + b/11513.1 3578
PDP-8 4 + b/333.4 = 14 + b/16393.3 3403
MC6502 || 11 + b/269.2 = 46 + b/10383.1 9673
Warp* 23 + b/24.7 = 391 + b/5022.7 9135

(b) Break even for ISPS and PAST program-specific simulators.
Table 5-6: Number of target cycles when PAST simulator cost equals ISPS cost.

least we think they should) run faster than architeqturespec:ﬁc simulators. Again, there is a wradeofT,

and, again, we can calculate a break-even point. Table 5-7 shows the break-even points for our test

cases.
Machine Equation to be satisfied Break-even solution
Description (solution = b) {target cycles)
Mark-1 10 + b/35498.6 = 11 + b/ 115131 -17039 (never)
PDP-8 15 + b/140514 = 14 + b/16393.3 -98360 (immediately)
MC6502 26 + b/5197.6 = 46 + b/10383.1 208147
Warp* 53 + 5728333 = 391 + b/5022.7 || 2196956

Note that negative breakeven points can have diffe
preparation and simulation are more costl

architecture-specific one; it is impossible to break even.

Table 37: Number of target cycles when program-speciﬁc cost equals
architecture-specific cost.

y with the program-
In the PDP-8 case, preparation of the

rent meanings. For the Mark-1 case, both

specific simulator than with the

program-specific simulator took less time than preparation of the architecture-specific simulatot (the

PDP-8 program was

a very short one) so using a program-spec

ific simulator had an immediate payoff,

RESULTS 64

and because the program-specific simulator is the faster simulator, the payoff continues to increase as
the simulator is used. It may also possible to produce a program-specific simulator which has a
smailer preparation time, but runs slower than the corresponding architecture-specific simulator; in
this case, the breakcven point is a positive number of cycles, but the benefits of the smaller

preparation time decrease with use of the simulator.

If we were to calculate breakeven points for a wide variety of architectures with programs of
varying sizes, we could this and additional information to aid in determining which types of
simulators to use for particular architectures and programs. Hawever, there are several parameters

which vary between problems:

o ISPS description size ~ if a description is small, PAST can create a small
architecture-specific simulator by not cxpanding procedures in-line. This would make the
preparation time short, but may not produce the fastest simulator.

® Architecture complexity — If an architecture is complex (in the sense of having many
RTM statements per target cycle) the code for each cycle for a program-specific simulator
can be very large, making the preparation time for long programs very large. Large code
for individual cycles may also cause problems in compilation (see Appendix D). It is
probably more practical to use architecture-specific simulators for very complex
architectures,

e Program size —~ Large programs make the preparation time for program-specific
simulators large and thus may make using program-specific simulators impractical.
However, the increased preparation time may be compensated for if the program is run
frequently and/or for very many cycles. For small programs, program-specific simulators
may take less time to prepare than architecture-specific simulators and program-specific
simulators may be the best option in that case.

o Cycles simulated ~ in most cases, the pay back of using architecturespecific simulators
compared with using the ISPS simulator and of using program-specific simulators
compared with using architecture-specific simulators increases with the number of cycles
simulated. For an architecture which is simulated very little, the ISPS simulator may be
the best choice. For a program which is simulated very little, architecture-specific
simulators are more cost-effective than program-specific simulators.

In summary, the ISPS simulator is the best choice for architectures which are simulated for very few
cycles; architecture-specific simulators are the most cost-effective choice in most other cases; and
program-specific stmulators are only the best choice for very short programs and/or when a program

is run for a very large number of cycles.

RESULTS 65
5.5. Simulation ratios

The mecasure which many researchers have used (o gauge the performance of their simulators is
the simulation ratio — the time 1© simulatc a program divided by the actual time it would take to run
the program on the computer being simulated. We find this ratio to be rather ambiguous. The
simulation ratio depends on the processor on which the simulation is run. We ran simulations on
both a Vax 8650 and on a Vax 11/785% and found the simulations ran about 4 times as fast on the
8650. There is a similar difference between mnning on a Vax 117785 and a Vax 11/780. Thus, just
by varying the host machine, we can change the simulation ratio by a factor of 16. If the architecture
.that we were simulating was the Vax architecture, we could change the ratio by another factor of 16
just by stating that we were simulating a Vax 11/780 rather than a Vax 8650. Another example is the
10,000 to ! simulation ratio given in Chapter 1 for the PDP-11. We believe that this ratio was
calculated for a simulation on a Vax 11/780, so for comparison with our results measured on a Vax
8650, the ratio may be off by more than an order of magnitude, Thus, a simulation ratio given by

itself can be very misleading.

In spite of the confusion which simulation ratios can cause, we have estimated them for the test
cases that we simulated. To calculate the simulation ratios we need to know the speeds of the
Processors in instructions per second because that is how we measured the speeds of the simulat.ors.-
The speeds of the Mark-1 [30] and of the Warp processing ceil are known to be correct because they
were presented in seconds per instruction . However, the speeds of the MC6502 and the PDP-8 may
not be very accurate because the speeds given for them were cycle time [25]34 and add time [13],
respectively. We assumed that cycles and additions were the same as instructions in our calculations.
The estimated simulation ratios are presented in Table 5-8 for simulations run on a Vax 3650. Note

that a simulation ratio less than one means that the simulator ran faster than the actual machine.

37‘We have only presented results for the simulations on the Vax 8650 in this report unless noted.
33Actually. the speed of the Warp cell was givenasa cyde time, but one microinstruction is processed per cycle.

34We assume that the processor is run with 2 2 MHz dlock. No instruction takes less than two cycles, 50 the speed is 1
instruction per microsecond ot slower.

http://cyc.es

RESULTS

Machine Actuat ISPS PAST PAST
Descriptien N;';Z}:;Ie Simulator arcsl:::;cfti: re psr:f:;;:- Ad-Hoc
Mark-1 833.3 (instr./scc.) 1.703 0.023 0.072
PDP-8 3333333 (add time) 999.8 23.72 20.33 -
MC6502 1000000 (cy./scc.) 3715 192.4 96.31 -
Warp* 5000000 (instr./scc.) 202429 1765 995.5 5792
Warp 5000000 (instr./sec.) - 26652 27563 23844

* Warp simulators running with ne 170 and no real data.

Table 5-8: Estimated simulation ratios for PAST simulators,

5.6. Summary

In this chapter, we have presented measurements which characterize the simulators generated
by PAST and contrast them with the ISPS simuiator.
expansion of subroutines on simulator size. In addition to showing the traits of the PAST and ISPS
simulators, the data which we collected can be generalized and can be used to aid in choosing

appropriate simulation methods for particular problems.

We have also shown the effects of in-line

file:///ir/tU

CONCLUSIONS 67

Chapter 6
Conclusions

We have developed a tool called PAST which automatically generates functional simulators

from ISPS descriptions. PAST has two modes of operation:

e Architecture-specific mode: an architecture-specific simulator for a computer description
is generated. This simulator can execute any code written to run on the described
computer.

e Program-specific mode: PAST is given both the compulter description and code for a
specific program and produces a simulator that executes only the given program.

PAST generates simulator code which is linked with a library of common routines to produce a
complete simulator. The PAST library includes user interface routines that allow the user to interact
with the simulator before each simulated instruction cycle for the target machine. In addition, this
library includes a set of input and output routines that provide the PAST simulators with a uniform
way of reading from files, writing to files, or communicating with other simulators via BSD Unix 4.2
IPC ports. The interprocess communication, when fully implemented, will let PAST support
simulation of multiprocessor systems such as the CMU Warp array. PAST, the PAST library, .and the
simulators generated by PAST are all written in the C programming language and are thus portable
among systems that support C. However, the IPC port feature will only function under systems which
support Unix 4.2 [PC ports.

PAST produces compiled simulators from the same inputs (with slightly different
specifications) as the interpretive ISPS simulator. The structure of PAST is similar to that of the C
version of the ISPS simulator, but the loop which interprets and evaluates Register Transfer Machine
(RTM) instructions in the ISPS simulator has been replaced with a a loop which interprets the RTM
instructions and generates optimized C code. The C code is compiled and linked with the PAST
library to create an executable simulator. PAST has to deal with a tradeoff of simulator size, which
effects the preparation time of the simulator and simulator speed. Also, limitations of the C compiler

dictate that the code produced by PAST cannot be too large. When simulators grow too large, in-line

CONCLUSIONS 68

expansion has to be replaced with calls to subroutincs, and large switch statements must be broken
up. These concessions slow down the simulators generated by PAST, but the PAST simulators are

still much faster than the ISPS simulator.

The architecture-specific simulators produced by PAST simulate instructions faster than the

ISPS simulator for several reasons:

o ‘The loop overhead associated with processing RTM instructions in the ISPS simulator is
not included in the simulators generated by PAST (Section 3.4).

o PAST does not generate C code for some of the RTM control operations, eliminating
their costs from the simulation time.

« PAST makes better use of the information contained in the ISPS description to create
code that is optimized for the operations and operand sizes of the described architecture.

o The simulators produced by PAST access memories and registers in a more efficient way
than does the ISPS simulator. -

These factors combine to let the architecture-specific simulators generated by PAST run 19 to 144
times as fast as the ISPS simulator for our test cases. Qur initial analysis of PAST's optimizations over
the ISPS simulator makes us fairly confident that PAST will always produce simulators at least four
times as fast as the ISPS simulator for descriptions of reasonable size (at least as big as the description’
of the Mark-1).

Program-specific simulators produced by PAST showed as much as 50 percent speed
improvement over the architecture-specific simulators and as much as a 200 times speed improvement
over the ISPS simulator, but also showed a 67 percent degradation in speed for one case. The speed
improvement is due to use of even more known information than the architecture-specific simulators
have available: with the program known, PAST can precompute many values and often reduce a
conditional statement to a single case. There is a fixed loop overhead for program-specific simulators

‘which is incurred once for each instruction cycle of the target machine being simulated. This
overhead becomes dominant when very simple descriptions are simulated, and this accounts for the
anomalous case when a program-specific simulator was slower than the corresponding
architecture-specific simulator. The program-specific simulators all ran faster than the ISPS simulator
due to the same reasons as described for the architecture-specific simulators and due to the greater

information known when they were generated.

The cost to generate or prepare a simulator depends on the method used. We have determined

break-even points which can be used to decide which type of PAST simulator or the ISPS simulator is

CONCLUSIONS . 69

most cost-cffective for a particular application. Onc simulation mcthod breaks even with another
when its total preparations and run tme equal thosc of the other simulation methed.
Architecture-specific simulators are almost always more cost-cffective than the ISPS simulator.
Program-specific simulators are usually more cost-cffective than the ISPS simulator, but are only
more cost-cffective than architecture-specific simulators when the programs to be simulated are
simulated many times or run for many target machine cycles. The ISPS simulator is only the most

cost-effective choice when the architecture is just going to be simulated for a few cycles,

In comparing simulator performance, the effect of input and output routines on simulator
speed cannot be neglected. When a simulator uses much input and output, the [/0 can be very

costly and can dominate the simulation time.

As PAST is a prototype tool, there are still more features which can be implemented and other
improvements which can be made. We have implemented most of the operations of the Register
Transfer Machine, but there are still several operations which should be implemented to make PAST
as general as the ISPS simulator, notably the ones complement and sign magnitude operations. With
tuning, the generation time for simuiators could be reduced, and it may also be possible to speed up-
the generated simulators. Overall, though, we are reasonably satisfied with PAST's performance.
‘The successful simulation of a real computer system, the Warp cell, in reasonable time makes us

confident that our approach was successful.

We saved much time and effort by using some of the existing ISPS software, and also
maintained compatibility with the ISPS simulator by doing so. Although the PAST simulators have
minimal monitoring capabilities, the user can still simulate the same ISPS descriptions with the ISPS
simulator if extensive monitoring is desired (assuming that the description does not use the new

floating point operations).

If another version of PAST is written, it might be interesting to have it generate code in a
language which supports concurrency, such as Concurrent C, so that it can simulate some of the

parallel constructs supported by ISPS more accurately.

In summary, we have successfully met the requirements that we established for a useful

functional simulation tool;

¢ The simulators produced by PAST can execute real programs, This was demonstrated for
four different computer architectures.

CONCLUSIONS

e PAST simulators provide the_ user. with state information through use of a standard
interface. This interface is implemented as a fibrary of routines which can be linked with
the C code that PAST produces.

o The architecture is described to the PAST simulation system as an 1SPS description. The
ISPS language has been designed so that descriptions of architectures are structured, and
thus easy to read, write and modify. The description of the Warp processing cell written
in ISPS is much more concise than the custom simulator written in C, and the writing of
the ISPS code took much less time than writing the custom simulator.

o The speed of the Warp simuiators generated by PAST was within 20 percent of the speed
of the ad-hoc Warp simulator when 1/0 was included. Without 1/0Q the PAST simulators

were faster than the ad-hoc simulator.

70

MANUAL ENTRY FOR PAST ’ n

NAME

Appendix A
Manual Entry for PAST

past — create a simulator from wn [SPS description.

SYNOPSIS

past [rimfile | [-o outfile | |- errfile) {-¢ FORCE] number |

DESCRIPTION

Past translates an .rtm file created from an /SPS description (by ispsp(1) and gdbrm1)} and an
optional command file into C code with routnes w simulate the described architectufe. The C file
is compiled and linked with user interface routines (in the library /ibpast.a) using the cc compiler to
¢reate an ¢xecutable simulator.

By default, output is routed to stdout. If no rtm file is specified, past'prompts the user.

Command line arguments can be specified in any order. - The following are the valid arguments for

past:

—o outfile

~¢ errfile

routes the output of past to the file outfile. If —o is not specified, the output is sent
to stdout.

routes the error output of past to the file errmfile. If —e is not specified, error mes-
sages are sent {0 siderr,

—c¢ FORCE|number

-n

rtmfile

is used to specify the maximum number of calls an ISPS entity can have and stll
have its code expanded in-line. If FORCE is specified, all ISPS entities will be
expanded; if a number is given, only {SPS entities called fewer than the specified
number of times will be expanded in-line. The default case sets the number of times
an entity can be expanded to cne.

is used to turn off saving of state information when entering conditional sections of
the RTM code. This saves code production time, but may make the code produced
a little longer and the speed of simulation a little slower. This argument only affects
general simulators; it is ignored for program-specific simulators.

is the name of the file from which the symbol and statement tables for the ISPS
description are to be read. If the given filename has no extension, the extension
defaults to .rtm. The name of the past command file is determined by adding the
extension .pst {0 the root name of the rimyfile.

MANUAL ENTRY FOR PAST ‘ 72

If no command file is found, past enters an interactive mode in which

the user can enter commands. The only mandatory command is the one which specifies the starting
statement for the simulation loop: START Centity-name>. If a program-specific simulator is
desired, the CODE and PC commands must also be given and the program memory should be set
using the SETVALUE command. The commands are described below:

CODE range specifies the range of program counter values which are valid for the current pro-
gram. The range is given as number pairs separated by commas (e.g. 1:58:10 or
1:10). This command is mandatory for generating program-specific simulators.

KEND label specifics the point in the ISPS description which is the end of the instruction cycle
for the machine being simulated. The point in the description must be labeled with
a uniquc name.

WCONNECT strcamname, streantype. variablelist
connects a list of variubles from the I1SPS description to an input stream which can
be cither a file, £ or an IPC port, p. ‘The input connections can be disabled in the
simulator produced by past, but new input connections can not be made. Thus, ail
variables which might need to be connected tO input strcams during simulation
should be ICONNECTed when running past.

MAKE causes past to lcave its interactive mode and to try to make a simulator from the
information provided. If the START command has not been given, past ignores the
MAKE command and remains in its interactive mode.

OCONNECT sireamname, streamiype, variablelist
connects a list of variables from the [SPS description to an output stream which can
be cither a file, f, or an IPC port, p. The output connections can be disabled in the
simulator produced by past, but new output connections can not be made. Thus, all
variables which might need to be connected to output streams during simulation
should be OCONNECTed when running past.

PC variable address
specifies the ISPS variable which represents the program counter for the machine to
be simulated. [f the variable is a memory, the address for the program counter
should also be specificd. This command is mandatory for generating program-
specific simulators, and its use is also suggested when generating architecture-specific
simuiators so that breakpoints can be set when running the simulator produced.

QUIT exits from the past program without making a simulator.

SETVALUE variable value

SETVALUE memoryvariable address value -
initializes an ISPS variable to the specified value. For memory variables, the
memory address must be specified in addition to a value to which the address should .
be set. The initial values of variables specified to past will be the initial values of
the corresponding variables in the simulators produced by past.

START label specifies the point in the ISPS description which is the start of the instruction cycle
' for the machine being simulated. The point in the description must be labeled with
a unique name.

MANUAL ENTRY FOR PAST -

STATIC variable

STATIC memoryvariablerange)
is used to declare that the value of a variable will remain static throughout the
simultation. past uses this information to precalculate results and to predetermine
which branch of conditional statements to take so that it does not need to generate
code for all of the branches. For a program-specific simulator, the memory range
holding the program code should be declared as static: otherwise, past will generate
an cntire architecture-specific simulator for cach instruction of the program,

FILES
/usr/bss/bin/past
exccutable past code

Sfile.tm file containing the symbol and statement table information for the ISPS description.
Sfile.pst past command file,

/usr/bss/lib/libpast.a
user interface library,

BUGS
past is not yet fully impiemented.

SEE ALSO
"The 1SPS Computer Description Language”
“The ISPS Simutator Manual”
pastsim(1), isps(1), gdbrtm(1), gdbsim(1)

HISTORY
20-Jun-86 Bruce Siegeil (bss) at Carnegie-Mellon University
Created.

MANUAL ENTRY I'OR

SIMULATORS PRODUCED BY PAST 74

NAME

Appendix B

Manual entry for
simulators produced by PAST

pastsim — simulator produccd by the past program.

SYNOPSIS

pastsim { options]

DESCRIPTION

‘The name pastsim represents any simulator produced by the past program. pastsim simulates an
architecture described in ISPS. The standard user interface linked with the code produccd by past
provides the user with commands for sctting breakpoints, single-stepping, and cxamining and set
ting the ISPS variables which represent the registers of the machine being simuilated.

By defauit, output is routed to stdout Input can come from command files or from stdin. Com-
mand file names can be listed on the invocation line for the simulator, but should not be preceded
by a -, pastsim also accepts several other arguments (options) which may override the commands
in the command file. Most arguments are processed from left to rightt The —r and —s options
are exccuted after all other options except for —g. —q is executed after all other options.

The valid commands for running pastsim interactively are described below:

! text Lines beginning with a exclamation point are treated as comment lines and are
ignored. There must be a blank space between the exclamation point and any fol-
lowing text.

BREAKPOQINT number ,
sets a breakpoint at the specified value of the program counter. The program
counter value is checked against the breakpoint list at the beginning of the instruc-
tion loop. The breakpoint list is displayed whenever a BREAKPOINT or
DBREAKPOINT command is issued.

CYCLE disptays the number of target machine cycles which have been executed since the
simulator was invoked.

DBREAKPOINT number '
removes the specified breakpoint from the breakpoint list. The breakpoint list is
desplayed whenever a BREAKPOINT or DBREAKPOINT command is issued.

MANUAL ENTRY [FOR
SIMULATORS PRODUCED BY PAST 15

DUMP filename
prints the values of all non-zero valued variables into the specified file. For each
non-zero variable, a SETVALUE command line is printed. The dump file can be
read by the simulator to restore the variable values to the state they were in when
the DUMP command was issued.

ECHO onjoff turns the echoing of commands from command lines on or off. At program initiali-
zation, echoing is set to on.

ICONNECT streamname, streamiype, variablelist
connects a set of vanables to the specified input stream. The stream can either be a
file or an [PC port. The only variables which can be ICONNECTed are the ones
which were specified as ICONNECTed when PAST created the simulator. When
variables are ICONNECTed. their old connections are closed and the new connec-
tion starts at the beginning of the specified stream,

NAMES string
displays the variable or variables whose namcs begin with the given string. If the
string matches weveral variables, the user is asked whether to list all matching vari-
abies.

ICONNECT streamnaine, streamiype, variablelist
connects a set of variablcs to the specificd output stream. The stream can cither be
a file or an IPC port. The only variables which can be OCONNECTed are the ones
which were specified as OCONNECTed when PAST created the simulator. When
variables are OCONNECTed, their old connections are ciosed and the new connec-
tion starts at the beginning of the specified stream.

PROMPT variable ‘
changes the variable displayed as the prompt. The defauit prompt variable is the
program counter if it was specified to PAST. Only the least significant integer word
of the prompt variable is displayed in the prompt

QUIT is the only way to exit the debugger from the interactive mode other than a "kill -9"
initiated from outside the simulator. All other signals are trapped and return to the
user interface.

RADIX binary|octaildecimal|hexadecimalifloatingpoint
specifies the default number format to be used in the reading and writing of values
and addresses of variables. The format can be overrided by prefixing valucs with
characters which specify their formats: ' for binary, # for octal, % for decimal, "
for hexadecimal, and ~ for floatingpoint. At program initialization, the default
number format is set to hexadecimal.

READ filename :
reads a list of simulator commands from the specified file and executes them sequen-
tially. The commands are echoed only if echoing is set to on.

RESET . clears all variables and then resets the values of the variables whose values were
specified to PAST and sets the cycle count back to zero. :

MANUAL ENTRY FOR .
SIMULATORS PRODUCED BY PAST 7%

RUN

begins the simulation. Simulation continues until the program is interrupted or a
breakpoint is reached.

SETVALUE variable value
SETVALUE memoryvariable address vaiue

sets the specified variable to the given value. If the variable is a memory, the
address into the memory must be specified. The value and the memory address
must be given in the current number format as specified by the RADIX command
or they must be preceded by a character specifying another number format.

STEP number begins the simulation. Simulation continues until the specified number of cyclcs has

been executed, a breakpuint is reached, or the program is interrupted.

VALUE variable

OPTIONS

—b breakpoint

VALUE memoryvariable address displays the value of the specified variable in the
current number format as specified by the RADIX command. [f the variabic is a
memory. the address into the memory must be specified. The memory address must
be given in the current number format as specified by the RADIX command or
must be preceded by a character specifying another number format

scts a breakpoint. A breakpoint is defined to be a value of the program counter vari-
able where the simulator is to stop running. :

— B breakpoint

—e
-E
— 0 outputfile
|

-TI

—R radix

—§ number

clears a breakpoint. The specified breakpoint is dcleted from the breakpoint list.
turns echoing of commands from command files ON,

turns echoing of commands from command files OFF.

routes output, which by default is deposited on stdout, to the file <oufpuifile>.
tells the simulator to quit after execution of a{l other command line arguments.

tells the simulator to run after processing of all other command line arguments. The
simulator will run until a breakpoint is reached or until stopped by an interrupt
from the user. Subsequent —s arguments or STEP commands from command files
can override —r.

sets the default radix to the one specified. Valid radices are BINARY, OCTAL,
DECIMAL, HEXADECIMAL, and FLOATINGPOINT.

tells the simulator to run for the specified number of steps after processing of all
other command line arguments. Subsequent —s or —r arguments or STEP or RUN
commands from command files can override —s.

MANUAL ENTRY FOR
SIMULATORS PRODUCED BY PAST

FILES
pasisim the simulator generated by past.
cmdfile a file containing commands.
BUGS ‘
The decimal and octal radices are not yet implemented. -
SEE ALSO
pasK1)
HISTORY

20-Jun-86 Bruce S. Siegell (bss) at Carncgic-Mcllon University.
Created.

MARK-1 EXAMPLE ‘ 78

Appendix C
Mark-1 Example

C.1. Architecture-specific simulator

The architecture-specific Mark-1 simulator was prepared from the ISPS description of the

Mark-1 as follows:

fusr/bss/bin/ispc mark1l

/fusr/bss/bin/past markl -o markl.c -p markl.pst
cc -¢ markl.c

cc -o markl markl.o -l1past

ispc is a command file which calls the ISPS parser and the gdbrtm translator.

The following sections show all of the files involved in generating an architecture-specific

simulator.

MARK-1 EXAMPLE

C.1.1.ISPS description - mark1l.isp
markl :=
begin
** mp.statea **
m{0:8191]<31:0>
** pc.state **

cr<iz: 0>, | contrel register
acc<31:0> | accumulator

** jastruction.format **

pi<16:0>, | present instruction
f<0:2> ;= picld:13>, | function
s<0:12> := pi<l2:0> | address

s+ ipstruction.execution **

icycle {main} := ! tastruction cycle
begin
REPEAT
begin
start:s pi » m{cr]<15:0> next
DECODE f =»
begin
#0 := cr = m(s],
#1 := ¢cr = cr + mfs],
#2 :» acc = -m{s],
#3 := m[s] = ace,
#4845 =
acc = acc - m{s],
#6 := IF acc LSS 0 => cr = ¢r + 1,
#1 := stop()
end next
¢r = cr + 1,
and
and
end

MARK-1 EXAMPLE 80

C.1.2. GDB file - mark1.gdb

GDB:E;UNIX ISPS Compiler v2c;markl,isp;21 May 86;16:08:17;
{ ISPSDECLARATION
(EDECLR
{EHEAD MARK1)
(SECTIOMLIST
(SECTION
MP, STATE
(EHEAD M NIL {: 0 8191 }(: 31 0 }))
(SECTION
PC.STATE
(EDECLRLIST -
(EHEAD CR NIL NIL (: 12 0 })
(EHEAD ACC NIL NIL (: 31 0))))
(SECTION
INSTRUCTION. FORMAT
(EDECLRLIST
{EHEAD PI NIL NIL (: 150)
{ EDECLR
{EHEAD F NIL NIL (: 0 2))
(EHEAD PI NIL RIL (: 15 13 i3]
(EDECLR
(EHEAD S NIL NIL (: 0 12))
(EHEAD PT NIL NIL (: 12 0 }))})
(SECTION
INSTRUCTION.EXECUTION
{EDECLR
(EHEAD ICYCLE NIL NIL NIL (QSET MAIN 1)
{REPEAT
{NEXT
{LABELLEDACTION START

(- _
(EACCESS P1)(EACCESS M NIL (EACCESS CR){:a: 15 0)}))
(DECODE
(EACCESS F)
(NUMBEREDLIST
{:=n
#0
(-

{:=n
- M
{-
(EACCESS CR) .
(+ (EACCESS CR){EACCESS M NIL (EACCESS S)))))

(EACCESS CR)(EACCESS M NIL (EACCESS $)

(:=n
#2
(-
(EACCESS ACC){(-- (EACCESS M NIL (EACCESS SN
(:*n
#3

T (EACCESS M NIL (EACCESS S5))(EACCESS ACC)))
(:=n
(: ¥4 #5)

(-
(EACCESS ACC)
(- (EACCESS ACC)}(EACCESS M NIL (EACCESS S)}))}

MARK-1 EXAMPLE : 81

(:=n
#6
(IF
(LSS (EACCESS ACC)0)
(-
(EACCESS CR)
(+ {EACCESS CR)1))))
(:2n

#7 (EACCESS STOP {ACSET)}))))

"~ (EACCESS CR)
(+ (EACCESS CR)1 }}))0N))

C.1.3. RTM file - mark1.rtm

3151300
4129
9170
11 127
12 127
13 127
15 127
16 7 0
17 127
18710
19 127
2000
2200
23 127
2470
25 127
26 127
21 740
28 127
29 127

[=J =R =% ~]

OO QOO0 OO0 0000000000
(=TI =0 — R =~ = — = R = = B = B o B e B Y o e B —
o

26 23 24
28 26 27
31 29 30

MARK-1 EXAMPLE

c
34 39 36

3]
15 1 16 46 0 1 18 47 0 1 21 48 0 1 24 4% 0 2 26 50 §1 129 52 01 34 339

30 32 1

E
*ACCT 41
C.g.p.t 32
"COUNT.ONE® 33
'CR" 44
‘0.P." 9
"DELAY" 10
‘FT 36
‘F.O.P.T 15
"FIRST.ONE® 16
‘T.R.P." 21
"ICYCLE® 5
"IS.RUNNING® 22
‘L.0.P.0 17
'LAST.ONE® 18
‘Mt 38
' v 23
' 24
* 26
. *27
‘MARK1® 2
'MASK.LEFT" 25
"MASK.RIGHT" 28
"NO.OP' 8
'P.P." 189
"PARITY" 20
‘PIT 34
"PRELUDE" 1
'S5t 39
"START' &
‘STOP® 7
'T.W.P.1" 29
‘T.W.P.2" 30
"TIME . WAIT' 31
"UNDEFINED® 13
'UNPREDICTABLE" 14

xxxx
D
s oo
N ke R e

‘WP 11
'WALIT® 12

F
36

G

37 /.T00037/

40 /.T00040/

43 /.T00043/

H

00000000
40010000
40040091
243400300
2434001300
400709002
400100005
400500001
400400001
2000018010

000 128 018
05408001

000 128 0 20
0560101
a00060¢0 22
0008025

0600 128 01

000 128 0 28

6 128 01

0128 ¢ 31

20000 128 012
600580101

400420001
20048 012801
200460 128 01
40040001
20000 128 0 16
200520801
200600 128 0 25

290
20
20
60
20
20

MARK-1 EXAMPLE
4

[=]
-
[=]
o
= ~ (-]
—m o L] -+ (]
- ™ o o oo T U WD
Lar = --aNo O MmN OO o
o ~ — oo (== =~ = = B = =]
(=] L= = =] (=28 -« B~ I =] (=]
[.} (=] oo (== 0 — B = = = =
[BB VI - I o Y 7] o BN 3
-~ Ll e Bt R el B B R R B AU o B B B T B B B]
[=] o
040 o000 OoO000000000CCDQO0 D
i+
OO0 DO0OO0OO0O0O0OOO0OO000O0D0D OO0
COoOMoOOYTOoOOoOOoOOoOOoOoODooDoD o000

(U
006
ago
006

COoONOONODODODOOODOQODDO OO0

O N O N) BN P o O e N MM 0T 0T 000D)

0
0

8
6

96 193 036 0 735000
160 19 44 38 39

322200000
. 160 19 37 38 39

0000
35000
Dooao

o000
a0¢o0

3222600004200
9000
1000

36 208

3z 210
3221000 0 0 10

33 208000
160 19 37 38
224 21 34 37
32 2090000 10

3z 21
32 22

G 00D
gooo
Doo

0

224 20 38 39 4100000
32 220000035000
160 19 40 38 39 0 0

160 19 37 38 3900000
224 66 41 41 40 O

224 65 44 44 37 00000
32 220000035000
96 64 41 37 000000
32 220000035000

32 220 0 0 0 O 35

MARK-1 EXAMPLE

o =] o

o

oo oo

-] (=] ocooo
= coo (==

(-] o ooc o
o ocooo oo

o o [T LY
S =-N-N" 0 o

Mmoo o @~
o~ N wy
-+ St oo0o@oO o

(=]

- T o000 T OO0
< 0 «

- oocoe oo o
™ e et
dodtooooTooo
W NN OO MO WD Do,
OO NN O N O

— o O o ™~ O
< - <
SO NN NN DN
NP NOIMMONMmere

0
0
2
5
0
0
0
0

00067 33
000 &6 33

32 2000 0 00 40 800
36 208 0 0 0 0 43 10
32 209 0 0 00 64 31

0

0
322000000110

36 208

36 208 0 0 0 0 63 28
a2 209

35 208 0 0 00D 41 8¢0
32 20900 0 0 42 10
36 208 0 0 0 0 45 12
32 208 0000 44 12
36 208 D O OO 471
32 209000 9 461
36 208 0 0 00 49 1
32 209 0 0 0 0 48 14
36 208 0 0 0 0 51 7
32 2000000507
32 209 0 0 0 0 58 2
36 208 0 0 8 0 61 2
32 208 0 0 0 0 60 25

53 13 63

MARK-1 EXAMPLE
C.1.4. PAST command file - mark1.pst
| start of target cycle

start start

| program counter variable
pec cr

C.1.5. The simulator - mark1.¢c

/* ISPS PAST V1.0 at Wed May 21 16:08:36 1886 ./
I ./
/* RTM file: */
/* markl.rtm ./
rad PST file: o/
A markl.pst ./

#include "pastsim.h”

/“.’."‘-‘-'."...‘....‘..'..“..-.I..‘-‘-'-.-..‘..‘-t‘-.'.“."‘."-...!

’* ./
/" macros to update primary and jconnectad variables ./
P LY

[..t‘t-“‘..l‘..l't."l'l.'ll"!l!#l.l.--ttlt.“t.tt“t“"!t..t"“'l!l'l

#define _SET_Ff \

f = (pi & 0x0000e000) >> 13;
#define _SET_s \

s = pi & Ox00001FFF;

/.“..‘II‘*.‘.C end Of update macros.t-‘."‘.../

f“'.'..l'.IC.....l‘.l..l...-lt.““--...‘.“..““-.“.".'l.'.‘.....l.l,

,. .I
i macros to propagate primary and oconnectad variables ./
/* .

f'.'l."-'-.I".l..‘.‘l.l-...t.l--..‘.--"“‘.‘..““‘“..‘--‘.-.'.'-'.lll

#define _PROP_F \

pi = (pi & OxffffIfff) | (f << 13);
#define _PROP_s ©\

pi = (pi & Oxffffel00) | s;

/-...I..“".‘- end of propagate macros. ‘.““.“‘.‘../

/‘-“""‘."--.'".-.--.-....-'.'.l“...ll'.....‘S‘t‘.‘.‘l.‘..ll...‘.t..,

/" .
/* PAST global variables ./
/* ./

/l'..l-...'ll.l...l...ll..l‘.-i....-.-...-.l...--l.--‘.‘t-.-.‘..‘....-...I

/* toop counter variable. i s/
int _i;
/* variables which hold mask bit and word boundaries. */

int _miw, _mlb mhw, _mhb;

L

MARK-1 EXAMPLE

/* porrow and carry variables for subtraction and addition, A4
unsigned int _borrow, _carry;

/* fi11 variable for shift operations. ./
unsigned int _Till;

/* variables to hold sign bits of signed variables. */
unsigned int _signl, _sign2:

/* temporary multiprecision variables.) o
unsigned int _tempf16]:

unsigned int _tempi[8], _temp2[87]:

unsigned int _tempsif[8], _temps2{8];

unsigned int _temp3:

/* input/output port information, ./
FILE *_port[1];

char _portname{1]J[MAXNAME];

int _porttype[1]:

fEsssususnsanes angd of PAST global variables.) bbb hdahhhd b dd

/".'-‘--“.--t‘.-‘..“.t.---..-.‘...i".....I--‘--“..“““-‘.‘.....‘..‘,

Vi ./
/* User global variables - main b
/* .y

/“-"“"..‘.‘..i--t--...#"l-...I..-'.".i.-“t‘lt‘..‘.“‘.“‘-“'..‘../

unsigned int d_p_:
unsigned int w_p_[4];
unsigned int wait[4];
unsigned int undefined[4];
unsigned int f_o_p_[4];
unsigned int first_one;
unsigned iat J1_o_p_[4]:
unsigned int Jast_ane;
unsigned int p_p_[47;
unsigned int parity;
unsigned int is_running;
unsigned int m_1_p_1[4];
unsigned int m_)_p_2;
unsigned int mask_left{4];
unsigned int m_r_p_1[4];
unsigned int m_r_p_2;
unsigned int mask_right[4]:
unsigned int t_w_p_1[47];
unsigned int t_w_p_ 2;
unsigned int time_wait{4];
unsigned int c_o_p_[4]:
unsigned int count_ona;
unsigned int pi;

unsigned int _t00037;
unsigned int m{8192];
unsigned int _t00040;
unsigned int acc;

unsigned int _tD0043;
unsigaed int cr;

fewdvnssnnrnssr ond of User global variables - main. s rnssERRINy

86

MARK-1 EXAMPLE

/.‘..".‘.l..‘“l‘..““-.."“‘t-l.l...!..““-"t.‘itt..‘....‘.l“"l‘-,

/. : ./
/* User global variables - primary - LY
f! "

/‘.““...Ql...i."...".'.“‘--‘..“.“““‘“-‘“..."‘..“‘.‘tl‘.‘.'ll,

unsigned int f;
unsigned int s;

yesessesannesss gnd of User global variabies - primary. srusassssbsen/

/.“'.‘.8‘.."“‘.."--...“-"l‘--.I...-.*“"‘.-‘--....-.l““‘.i..l.../

/® ./
/" labels for setjmp()/longjmp() ' o/
’* Y]

/l---..l..'.‘.l-‘-‘.-.lI‘.‘l.-.““-.".l‘.'.l“.“t‘i‘t-."..‘-“““..'!

LABELTYPE Jstart:

/‘...‘.t---‘..' end of]abe]s for Setjmu()/1ongjmp(). "".“*‘..l..l

/‘tt-tl.‘.l‘.“‘.‘.'tl-‘.‘..“.‘.‘..l.‘..-‘..'..“‘..I‘.'C"'ll‘t‘.‘..lI./

/* ay
/e _varinfo[] - user variable information */
/* .

/-.“...l'l.l"““..t-.‘.‘...“‘t.-l.l.“-"“‘.‘t“.‘.-.‘..t--...'-I..l,

/* {name, variabie, type, size, bc, left, right, incr, IC, 0C, radix} */

struct VarInfo _varinfo[] = {

A 0 * { "d.p.”, &d_p_, 1. 1, 18, 0, 0, 1, -1, -1, 16 },

/* 1%/ { "w.p.". w_p_, 2, 4, 128, 0, 0, 1, -1, -1, 16 },

/o 2 s { "wait", wait, 2. 4, 128, 0, 0, 1, -1, -1, 16 },

/* 3 %/ { "undefined”, undefined, 2, 4, 128, 0, 0, 1. -1, -1, 16 },
/- 4+ { "f.o.p.", foo_p_. 2. 4, 128, 0, 0, 1, -1, -1, 16},

/* & %/ { "first.one", &first_onme, 1, 1, 8, 0, 0, 1, -1, -1, 16 },
/" 6 */ { "l.0.p.”. 1 o_p_, 2, 4, 128, 0, 0, 1, -1, -1, 16 },

/* 7 % { "last.one", &last_one, 1, 1, 8, 0, 0, 1, -1, -1, 16 },

/% 8 * { "p.p.", p_p_, 2. 4, 128, 0,0, 1, -1, -1, 18 },

/¢ 9 %/ { "parity", &parity, 1, 1, 1, 0, 0, 1, -1, -1, 16 },

/% 10 *7 { "is.running”, Eis_runaing. 1, 1, 1, 0, 0, &, -1, -1, 16 },
/¢ 11 %/ { "m.1.p.1", m_i_p_1, 2, 4, 128, 0, 0, 1, -1, -1, 18 },

/* 12 */ { "m.t.p.2", &m_1_p 2, 1, 1, 8, 0, 0, 1, -1, -1, 16},

/* 13 */ { "mask.left”, mask_left, 2, 4, 128, 0, 0, %, -1, -1, 16 },
/* 14 % { "m.r.p.1", m_r_p_1, 2, 4, 128, 0, 0, 1, -1, -1, 16 }.

/* 15 */ { "m.r.p.2", &m_r_p 2, 1, 1, 8, 0, 0, 1, -1, -1, 16 },

/* 16 */ { "mask.right", mask_right, 2, 4, 128, 0, 0, 1, -1, -1, 16 },
f* 17 %7 { “t.w.p.17, twop l, 2, 4,128, 0, 0, 1, -1,.-1, 16 },

/* 18 */ { "t.w.p.2", &t _w_p 2, 1, 1, 18, ¢, 0, 1, -1, -1, 16 }.

/% 19 */ { "time.wait”, time_wait, 2, 4, 128, 0, 0, 1. -1, -1, 18 }.
/* 20 */ { "c.o.p.”, c_o_p_, 2. 4, 128, 0, 0, 1, -1, -1, 16 },

/* 21 %/ { "count.one”, &count_one, 1, 1, 8, 0, 0, 1, -1, -1, 16 }.
/e 22 */ { "pi", &pi, 1. 1, 16, 0, 0.1, -1, -1, 16 },

4% 23 *7 ["f", &f, 1,1, 3,0, 0,1, -1, -1, 16 },

/* 24 %/ { "m",. m 3,1, 32,0, 8131, 1, -1, -1, 16 }.

¢ 25 %/ { "s", &s, 1, 1,13, 0, 0, 1, -1, -1, 16 },

/* 26 */ { "acc", &acc, 1, 1, 32,0, 0,1, -1, -1, 16 }.

/* 27 %/ { "crm, &er, 1, 1, 13, 0, 0, 1, -1, -1, 16 },

/* _varinfo[] */

i

87

MARK-1 EXAMPLE

/* number of variables in _varinfo[] array. ./

int _varcount = 28;

/* program counter variable number and address. ./
int _pcindex = 27; /* program counter is cr, */

int _pcaddr = 0; /* address into pc variable. %/

/t"‘tlttltt-t. eﬂd Df _Variﬂfo[]. t‘t‘.““-‘.“/

/.-'.--O.‘O..‘.“....Oi.-..'..".‘.'....l.-.l...l.l““..“‘l-“--.-.‘..-,

f. .’
/" presat() - initialize memories. v
/‘ !/

/.'--."..‘....‘..‘.“‘.....‘-...-t....."‘-"-““l“.-l“.-"--‘-..‘...l

presat{)

{
}

/..‘."...-.'.' end uf presat()_ ‘.-“-‘...‘.‘./

/....“....*'..-‘.."-‘.t-.‘-“.-t-‘-t‘“.‘"-“*'.-‘*.'“.‘-..“-.‘..‘..f

I Y
/* InitChannels() - opens default input/output channels */
/* "y

/.i..‘.".#....O-.-l--t..‘."“.“““.-‘.“.'-Il".“““.‘I..“"l..l“,

InitChannels()
{
} /% InitChanneis() */

FALLLLLLLELL RS L IN-Y .Y I3 Initchaﬂne]s(). ArsssavanRLeS/

/‘-'.-"".."'..'.tt‘.‘l’...-.‘..‘..“‘-.‘.“."'.'l‘..“‘.C.l.il....‘."

/I ./
/* Update()/Propagate() - update/propagate primary variables ./
Iad 'Y

/“"‘-"“‘.-.i".‘.-.‘....I..‘.tl...".l"‘l“‘-'l‘t".‘.'."'.l‘..ll.l!

Update(_vindex, _addr)
int _vindex;
unsignaed int _addr:

switch({_vindex) {

case 23: SET_f; break;
case 26: _SET_s; break;
default: break;
} /* switch(_vindex) */
} /* Update(_vindex) */

Propagate(_vindex, _addr}
int _vindex;
unsigned int _addr;

switch(_vindex) {

case 23: PROP_F; break;
case ~ 26: _PROP_s: break;
default: break;

} /* switeh(_vindex) */

3 /* Propagate{_vindex) */

/‘."."..l.--' and Of Update()fpropagata()'‘Il‘--‘..“,

83

MARK-1 EXAMPLE 39

/‘-tll.‘-I‘t"-""."-.i“‘.‘.'.."...I..1‘--.“““-.‘."..‘.....“'--‘f

/" Y
/e MainLoop() - main loop for gemeral simulator */
/* ’ */

/t..‘l""‘-‘i.i..ll"“‘-t‘.l--—‘l-..“-‘.“‘-“.t..‘“‘.“.-"C.‘-...‘.!

Mainloop()

LABEL(Jstart, EndlLabel);
StartlLabel:
UserInterface();
_t00037 = m{cr];
pi = {_t00037 & 0xQ000fFFff);
_SET_f;
switch (f) {
case 0x00000000:
_SET_s:
cr = m(s];
break;
case 0x00000001:
_SET_s:
_t00037 = m[s]:
_tempsi[0] = cr:
_fill = (_tempsi[0] & 0x00001000) 7 OxfIFeFfeff : 0;
_tempsi[0] |= _fi11 & Oxffffe000;
cr += _100037;
cr & O0x00001FFf;
break;
case 0x00000002:
SET_s;
_t00037 = m(s]:
ace = ~_t00037;
accH+;
break;
case Qx00000003:
SET_s;
m[s] = acc;
break;
case 0x00000004:
case 0x00000005:
_SET_s:
_t00040 = m[s];
acc -=» _t00040;
break:
case 0x00000006:
_t00043 = {_signl = acc & 0x80000000, _sign2 = 0,
{{_signl %& !_sign2)
| (_signl && (0x00000000 < acc))
il (1_.sign2 %& (acc < 0x00000000))}):
if (_t00043) {
cr += 0x00000001;
cr &= 0x00001FFT;
1
break:
case 0x00000007:
stop(): -
break;
3 /* switeh() */
cr += 0x00000001;
cr &= Ox00001fff;
goto StartiLabel;
EndLabel: H
} /* MainLoop() */

f‘l‘-t.l.....-‘ end Of MainLoop()_ . . - ..-...‘-.ttiiﬂf

MARK-1 EXAMPLE

/."-lli‘..l"-"t'-“l.lll‘.'.it-i.'.'.‘““‘.-‘l.‘.“.i.‘-.““-“‘t..l/

f. ' .I
TAS Subroutines */
r* Y

/t-“.'...‘.‘.‘-t‘...'-‘l‘-tlt“."‘!-ltll‘-‘i.“'U‘““t"‘.‘t..i‘.‘.“‘/

/l‘-!.‘.'.‘---' End of 5ubr°utines_ “..l"-t-.“.,

/l-“"-".'-'.""..‘.t.-‘l'.l‘.‘-..‘."--“-.‘t‘-t.-t!....-‘ltlt‘t,..‘.,

/" ./
/* Statistics ./
f. .f

'[“-..-‘-‘-‘-‘....‘....-‘."t...‘.-.-‘.‘.‘.t-.‘I.'-.‘.-C“""tt..‘..ﬂﬂl‘/

/% Total RTM operations processed: 32 */

/* ./
/* Finished at Wed May 21 16:08:39 1986. ./

C.1.6. Running the architecture-specific Mark-1 simulator

Below is a sample run of the architecture-specific Mark-1 simulator generated by PAST.
Script started on Thu Jun 26 17:09:31 1986

% markl -E mulit.psim
cr=00000000> value ?
Must match one of thesa:

d.p. Tast.one m.r.p.1 count.one
w.p. p.pP. m.r.p.2 pi

wait parity mask.right f
undefined is.running t.w.p.1 m

f.o.p. m.1.p.1 t.w.p.2 H
first.one m.t.p.2 time, wait ace
t.0.p. mask.left c.0.9. cr

cr=00000000> vaive m 25

m{37] = "00600135

¢r=00000000> value m 26

m{387 = "00000007

cr=00000000> value m 27

m{38] = "00000000

¢cr=00000000> set m 25 321

cr=00000000> set m 26 12

cr=00000000> value m 25

m{37] = "00000321

cr=00000000> value m 26

m{38] = "000000%2

cr=00000000> step 100

cr=0000000e> value m 25

m{37] = "00000321

cr=0000000e> valua m 26

m{38] = 00000012

¢cr=0000000e> valua m 27

m{39] = "00001587

cr=0000000e> run

Exiting simulation loop - simulation ended normally.
cr=0000001b> value m 27
m[39] = "00003852
cr=0000001b> quit
Cycles executed: 246.
X exit

%

MARK-1 EXAMPLE : 91
C.2. Program-specific simulator

A Mark-1 simulator specific to the multiplication program that we used as our test case was

prepared from the [SPS description as follows:

/usr/bss/bin/ispc markl

/usr/bss/bin/past markl -o mult.c -p mult.pst
cc -c mulit.c

cc -o mult muit.o -lpast

The following sections show the files involved in generating the program-specific simulator that
differ from those involved in generating the architecture-specific simulator, The ISPS description,
GDB file, and RTM file are the same for both architecture-specific and program-specific simulators.

Also, the same sequence of commands can be run on both types of simulators with identical results.

C.2.1. Multiplication program

Program to multiply two numbers by raepeated additions.

Source operands are in X and Y.
Result ends up in R.

it (y < 0) {
; nflag = TRUE:
: y = -y
i}
00: 40 26 1dn Y . A <= =Y
01: 60 23 sto N3
g2: c0 Q0 cmp . if A 1ss 0 (y > 0} then L2 alse L1
03: 00 1c jmp L1
04: 00 1d jmp L2
05: B0 22 L1 sto N2 ; nflag = TRUE:
06: 40 23 Tdn N3 HE B H
07: 60 23 sto N3

s for (i=y - 1; 15>=10; i-=)
H rF =T+ X

08: 40 23 L2: 1dn N2 : A <= YTemp

09: 80 21 sub N1 : A <= YTemp - 1

Da: <0 00 cmp : if A 1ss 0 then L4 else 13
Ob: 00 1le jmp L3

0c: 00 1f jmp L4

0d: 60 24 L3: sto N4 : YTemp = A = YTemp - 1

fe: 40 24 ldn N4

of: 60 23 sto N3

MARK-1 EXAMPLE

: R=R+ X
10: 40 27 1dn R ;A <= =R
11: 80 25 sub X s A <= -R - X
12; 60 27 sto R ; R = -R
13: 40 27 ldn R
14: 60 27 sto R
15: 00 1d jmp L2
; if (nflag == TRUE)
: R = -R;
16: 40 22 L4: 1dn N2
17: c0 00 cmp
18: 00 20 jmp L5
19: 40 27 1dn R
la: 60 27 sto R
ib: e0 00 LS: stop ; end of program

Jabel values are jump tocation - 1 because the PC
; is incremented after the jump.

1c: 00000004 labels: L1

1d: 000060007 L2

le: 0000000c L3

1f: 00000016 L4

20: 0000001a L5

21: 00000001 N1: 1

22: Q0000000 NZ: negative flag

23: Q0000000 N3: Ytemp

24: 00000000 N4: not used

25: 00000135 X: source ; 0x0135 * 0x0007
26: 00000007 Y: source

27: 00000000 R: rasult

MARK-I EXAMPLE

C.2.2. PAST command file - muit.pst

radix hax

setval m{00]
setval m[01]
setval m{02]
setval m[03]
setval m{04]
setval m{05]
setval m{06]
setval m{07]
setval m{08]
setval m[09]
setval m[Da]
setval m{0b]
setval m{0c]
setval m{0d]
setval m[0e]
setval m{0f]
setval m{10]
setval m{11] = 8025
setval m[12] = 6027

=
setval m{13] = 4027

4026
6023
000
001c
001d
6022
4023
6023
4023
8021
c000
001e
porf
6024
4024
6023
4027

setval m{14] = 6027
setval m{15] = 001d
setval m[16] = 4022
setval m{17] = c009
setval m{187 = 0020
setval m{{19] = 4027
setval m[1a] = 6027
-sgtval m{1ib] = e000
setval m{1c] = 00000004
setval m{1d] = 00060007
setval m{1e] = 0000000¢c
setval m{1f] = 00000015
setval m{20] 0000001a
setval m{21] 00000001
setval m{22] = 00000000
setval m{23] = 00000000
setval m{24] = 00000000
setval m{25] 00000136
setva) m[26] = 00000007
setval m{27] = 00000000
set ¢r = 0

! set the program counter variable to be ¢r. .
pc ¢r

! code range.
code 0:1b

| static range.
static m{D:21]

| start of cycle.
start start

MARK-1 EXAMPLE

C.2.3. The simulator - mult.c

/* ISPS PAST v1.0 at Wed May 21 17:28:51 1986 ./
/" ./
’* RTM file: ./
/* marki.rtm *
/" PST file: : ./
/. mult.pst b4

/* the initial definition and ./

/* declaration sections are the same ./

/* for both architecture-specific and ./

/* program-specific simulators. See */

/* the architecture-specific simulator. */

I-‘-.'.l.‘t..-. end of -varinfo[]l ..‘.“."“.“f

fl-'..-‘.."““-‘.-.'-t.ttltt-.‘.“.l.‘-.--l‘.“-""‘t“‘l‘t‘.".'..‘l’/

fl .,
/* preset{) - initialize registers and memories. ./
f- .,

/“t.‘.t-‘.---.t-#--t..".-."l'-‘.l‘.‘."-‘.‘.‘..‘-t-l“-t“li‘t‘l.‘.-.‘/

preset()

m(0] = 0x00004026;
m{1] = 0x00006023;

m[2] = 0x0000c000;
m[3] = 0x0000001¢;
m(4] = 0x00000014d;
m{5] = 0x00005022;
m[6] = 0x00004023;
m[7] = 0x00006023;

m(8] = 0x00004023;
m{9] = 0x00008021;
m[10] = 0x0000¢000;

m{11] = 0x0000001e;
m{12] = 0x0000001f:
m{13] = 0x00006024;
m[147 = 0x00004024;
mf15] = 0x00006023;
m[16] = 0x00004027;
mf17] = 0x00008025;
m[18] = 0x00006027;
mf18] = 0x00004027:
mf20] = 0x00008027;

mf21] = 0x0000001d:

MARK-1 EXAMPLE

m[22] = 0x00004022;
m[23] = 0x0000c000;
m{24] = 0x00000020;
m[25] = 0x00004027;
m{26] = 0x00006027;
m{27] = 0x00002000;
m{28] = 0x00000004;
m{29] = 0x00000007;
m[30] = 0x00000060c;
m[31] = 0x00000015;
m{32] = 0x0000001a;
m[33] = 0x0000000%;
m[34] = 0x00000000;
m{35] = 0x00000000;
m{36] = 0x0D0000000;
m{37] = 0x00000135;
m{38] = 0x00000007;

m[38] = 0x00000000;
cr = 0x00000000;

}

/l‘.‘.‘..“"lt end of preset()_ ‘l".‘.t-.."‘j

/.*.t‘#...““t.i.-‘.‘-"“'titt..-'l.“.‘.t‘.*.."‘..‘-i“.‘..‘.“-'.“./

I ./
/" InitChannels() - opens default input/output channels s
/* Y

/l.‘.t..‘.I.".“.“t.‘.‘..'-“.t.‘l..‘-'.““.‘.I“.‘.l““‘l-‘..-‘..‘.ll

InitChannels()

{
} /* InitChannels() */
/‘.-“..-"‘t-- end Of Initchanna1s()‘ '.l"“ll-'l‘./

III“‘--.'..'l.“t“t.‘..l‘“‘..“l.."'.".".l'.".“.t..‘l‘..".“..‘i!

/= L)
/* Update()/Propagate{) - update/propagate primary variables ./
FL L)

/.“..‘.II'.-.llt.."'-l.S.-—‘..‘..'..-‘.‘-l“.'-".‘-“.‘--"‘.-..-.‘l'.’

Update(_vindax, _addr)
int _vindaex;
uynsigned int _addr:

switch(_vindex) {

case 23: _SET_f; break:

case 26: _SET_s; bresk;
default: break;

/* switch(_vindex) */

} /* Update(_vindex) %/

Propagate(_vindex, _addr)
int _vindex;
unsigned int _addr;

switch{_vindex) {

case 23: _PROP_f: break:;
case 26: _PROP_s; break:
default: break;
} /* switch(_vindex) */
3} /* Propagate(_vindex) */

f‘...."--'.t.l end of Update{)lpropagate(). l““.‘lf‘.‘.‘f

95

MARK-1 EXAMPLE

f’tl....'..“.“‘..t....“"“"‘--t..‘I."“.““-“"““-t‘.l.“.‘.l-'..f

FL ’ */
/* MainLoop{)} - main loop for program-specific simultator */
/. ./

f'-‘-"t"t.l.'."..“i-lil‘.t‘..-l‘.-‘.l'i..""l‘.."t“‘l.t‘tl.‘&tt‘.‘./

MainLoop{)

whila{1l) {
Userinterface(d0);
MainSwitch()}:

} /* whilte(1l) */
3 /* MainLoop{) */
MainSwitch()

switch{cr}) {
case 0:
_t00037 = 0x00004026;
pi = 0x00004026;
_t00037 = m{38];
acec = ~_t000a7;
acc++:
cr = 0x00000001;
break:
case 1:
_t00037 = 0x00006023;
pi = 0x00006023;
m({35] = acc:
cr = 0x00000002;
break;
case 2:
_t00037 = 0x0000c00D;
pi = 0xDO00cO00;
_t00043 = (_sign! = acc & 0x80000000, _sign2 = 0,
({_signl && !_sign2)
j] (_signl && (0xQ000D000 < acc))
|1 (!_sign2 &% (acc < 0x00000000)))):
if (_t00043) {
cr = 0x00000003;

}

cr += 0x00000001;

cr &= Gx00001Fff;
break;

case 3:

_t00037 = 0x0000001c;
pi = 0x0000001¢;

cr = 0x00000004;

cr = 0x00000005;
break:

case 3:

_t00037 = 0x00000014;
pi = 0x0000001d;

cr = 0x00000007;

cr = 0x00000008;
break;
case 5:

_t00037 = 0x00006022;
pi = 0x00006022;
m[34] = acc:

cr = Qx00000006;
break;

MARK-1 EXAMPLE

case 6:
_t00037 = 0x00004023;
pi = 0x00004023;
_t00037 = m[35];
acc = ~_t00037;
acct+;
cr = 0x00000007:
break:
case 7:
_t00037 = 0x00006023;
pi = 0x00006023;
m[35] = acc;
cr = 0x00000008;
break,;
case 8:
_t00037 = 0x00004023;
pi = 0x00004023;
_t00037 = m(35]:
acc = ~_t00037;
acc++;
cr = 0x00000009;
break;
case 9:
_tD0037 = 0x00008021:
pi = 0x00008021%:
_t00040 = 0x00000001;
acc -= 0x00000001;
cr = O0x0000000a;
break;
case 10:
_t00037 = 0x0000¢000;
pi = 0x0000c000;
_t00043 = {_signl = acc & 0x80000000, _signZ = 0.
({_signl && 1_sign2)
|| {.signl &% (0x00000000 < acc))
1] (I_sign2 && (acc < 0x00000000)))):
if (_t00043) {
cr = 0x0000000b:

}

cr += (x00000001;

cr &= 0x00001Fff;
break;
case 11:

_t00037 = 0x0000001e;
pi = 0x0000001e;

cr = Ox0000000¢;

cr = 0x00000004d;
break:
case 12:

_t00037 = 0x0000001F;
pi = 0x0000001f;

cr = 0x00000015;

¢r = 0x000000186;
break; '

case 13:

_100037 = 0x00006024;
pi = 0xD0D0B024;
m[(36] = ace:

cr = 0x0000000e;
break;

MARK-1 EXAMPLE

case 14:

_t00037? = 0x00004024;
pi = Dx00004024;
_t00037 = m{36];

acc = ~_t00037;
acc++;

cr = 0x0000000F;
break;

case 15:

_t00037 = 0x00006023;
pi = 0x00006023;
m{36]F = acc:

cr = 0x00000010;

. hreak;

case 16:

_t00037 = Gx00004027;
pi = 0x00004027;
_to0037 = m[397:

ace = ~_t00037;
acc++

cr = 0x00000011;
break;

case 17:

_t00037 = 0xQ0008025;
pi = 0x00008025;
_t00040 = m(37]:

ace -= _t00040;

cr = Gx00000012;
break;

case 18:

_tQ0037 = 0Ox00008027;
pi = Qx00006027;
m{39] = acc:

cr = 9x00000013;
break; :
case 19:

_t00037 = 0x00004027;
pi = 0x00004027;
00037 = m{39];

ace = ~_t00037;
acc++;

cr = 0x00000014;
break;
case 20:

_t00037 = OxD000BO27;
pi = 0x00006027;
m(39] = ace;

cr = 0x00000015;
break;

case 21:

100037 = 0x000006014d;
pi = 0xQ0000014;

cr = (0x00000007;

cr = 0x00000008;
break;
case 22:

_t00037 = 0x00004022;
pi = 0x00004022;
_t00037 = mf{34]:

ace = ~_t00037;
acc++;

cr = 0xQ0000017;
break;

MARK-1 EXAMPLE

case 23:
_t00037 = 0x0000¢000;
pi = 0x0000c000;
_t00043 = (_signl = acc & 0x80000000, _signZ = 0,
((_signl && 1_sign2)
It (_signl && (0x00000000 < acc))
Il (t_sign2 && (acc < 0x00000000)})}:
T 9f {_t00043)
cr = 0x00000018;

}

cr += 0x00000001;

cr &= 0x00001FFT;
break;

casa 24:

_t00037 = 0x00000020;
pi = 0x00000020;

cr = 0x0000001a;

cr = Ox0000001b;
break;

case 25:

_t0D0037 = 0x0D004027;
pi = 0x00004027;
_t00037 = m{39]:

ace = ~_t00037;
AccH++;

cr = 0x0000001a;
break;
case 28:

_t000a7 = 0x00006027;
pi = 0xD0006027;
m{38] = acc:

cr = 0x0000001b;
break;
case 27:

_t00037 = Dx()00Ce000;
pi = 0x0000e000;

stop():
break:
default:
fprintf(stderr,
“er = %d: the program counter is outside of the specified code range.\n",
cr);
longjmp{JStart, PCOUTOFRANGE}):
break: :
} /* switch{cr) */
3} /* MainSwitch() */
/lt"t‘-tt.ll-. Qnd Df MainLoop()' SARNTESAIRREDEN /

/‘“-.l“"““ll.’.‘-t-‘.‘-‘...-t.“‘..'.--".“.‘.""‘-.t-‘ll““...‘.f

/» oy
/- Statistics L7
’t "

/.‘-!‘t--!l....“t.-l‘..-..-.t.-.--t-t.’-.’..."“-Cll.."“.t.l.'-.‘t..‘/

/* Total RTM operations processed: 274 ./
'f‘ .I
/* Finished at Wed May 21 17:28:56 1986. ./

PROBLEMS WITH THE C COMPILER 100

Appendix D
Problems with the C compiler

We encountered numerous problems with the ¢c C compiler when we tried to compile
simulators produced by PAST. To circumvent some of the compiler's problems, we had to determine
what its limits were. We wrote several C programs to test the limits, and have summarized our
findings in Table D-1. Some of these limits are probably quite easy to vary if one has access to the

source code for the cc compiler, but we do not have access to that code.

Limited parameter Limit Error Message

Number of distinct cases in a swiich 499 | compiler error: switch table overflow
statement

Number of cases which can drop through 137 | yace stack overflow
to same code in a switch statement

Number of C functions 2999 | compiler error: symbol table full

Jump size ? brw: Branch too far: try -J flag (as-
sembler error)

Table D-1: Limitations of the cc C compiler.

REFERENCES

References

(1]

2]

(3]

[4]

51

(6]

[7]

(8]

91

Alfred V. Aho, Jeffrey D. Ullman.
Principles of Compiler Design,
Addison-Wesley Publishing Company, Reading, Massachusetts, 1984,

Benjamin Atlas,

Mixed Level Functional Specification: A M odeling Methodology for C omputer System
Simulation,

PhD thesis, Carnegie-Mellon University, August, 1985.

SRC Research Report CMUCAD-85-64.

Mario R. Barbacci, Gary E. Barnes, Roderic G. Cattell, Daniel P. Siewiorek.

The ISPS Computer Description Language.

Manual, Departments of Computer Science and Electrical Engineering Carnegie-Mellon
University, August, 1979,

Mario R. Barbacci.

The Register Transfer Machine.)

Technical Report, Computer Science Department Carnegie-Mellon University, September,
1979,

Mario Barbacci, Andrew W. Nagle, J. Duane Northeurt,

An ISPS Simulator,

Manual, Departments of Computer Science and Electrical Engincering Carnegie-Mellon
University, January, 1980,

Mario R. Barbacci, Daniel P, Siewiorek.
The Design and Analysis of Instruction Set Processors,
McGraw-Hill Book Company, New York, 1982,

C. Gordon Bell, Allen Newell.
Computer Structures: Reading and Examples,
McGraw-Hill, Inc., 1971.

Randy Bryant, Mike Schuster, Doug Whiting.
MOSSIM IT: A Switch-Level St’mularorj Sor MOS LSI - User'’s Manual
10 January 85 edition, Carnegie-Meilon University, 1985.

C. H. Chang, Y. Shintani, P. J. Lieu.
Warp System Simuiator User’s Manual

101

Department of Computer Science, Carnegie-Meilon Univemity, Pittsburgh, PA 15213, 1985.

REFERENCE3 102

[10]

f11]

(12}

[13)
[14]

[15]

[16]

[17]

(18]

[19]

(20}

[21]

Daisy Systems Corporation.
LOGICIAN User's Guide
Daisy Systems Corporation, Mountain Vicw, California 94039, 1985.

Jack W. Davidson.
Fast Interpretation of Instruction Sets: fmplementation and Applications.

InC.J. Koomen and T. Moto-oka (editor), Computer Hardware Description Languages and
their applications, pages 179-191. Kyoto, Japan, August, 198S.

A. K. Dewdney.
A compulter microscope 20oms in for a look at the most complex object in mathematics.
Scientific American -16-24, August, 1985.

Digital Logic Handbook
Digital Equipment Corporation, 1968.

VAX Architecture Handbook
Digital Equipment Corporation, 1981

Roy L. Druian.
Functional Models for VLSI Design. : _
In Twentieth Design Automation Conference Proceedings, Dages 506-514. IEEE, 1983.

David John Geiger.

A New Look at Algorithmic Simulation.

PhDD thesis. Carnegie-Mellon University, June, 85.
Ph.D. Thesis Proposal, June 5, 1986.

Dwight Hill, Willem vanCleemput.
SABLE: A Tool for Generating Structured, Multi-level Simulations.
in Sixteenth Design Automation Conference Proceedings. IEEE, 1979.

Beatriz Infante, Mark Bales, Ed Lock.
MADL: A Language for Describing Mixed Behavior and Structure.
InT. Uehara and M. Barbacci (editor), Computer Hardware Description Languages and their

Applications, pages 115-126. '1983.

Neil D. Jones.

Towards Automating the Transformation of Programming Language Specifications into
Compilers.

unpublished , January, 1986.

Unpublished draft dated January 1986.

Brian W. Kernighan and Dennis M. Ritchie.
The C Programming Language.
Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1978.

H. T. Kung, Onat Menzilcioglu.

Design Specifications for the CMU Warp Processor

Computer Science Department, Camegie-Mellon University, Pittsburgh, PA 15213, August
21, 1984

REFERENCES 103

[22)

23]

(24]

(25]

[26]

27)

28]

[29]

(30]

[31]

[32]

Karl J. Licberherr. |
Toward a Standard Hardware Description Language.
IELE Design & Test :55-62, February, 1985,

J. A. Nestor, D. E. Thomas.
Defining and Implementing a Multilevel Design Representation,
In Nineteenth Design Autumation Conference Proceedings, pages 740-746, 1EEE, 1982.

Greg M. Ordy, Charles W. Rose.
The N.2 System.
In Twentieth Design Automation Converence Proceedings, pages 520-526. 1983.

Adam Osbome, Gerry Kane,
Osborne 4 & 8-bit Microprocessor Handbook.
Osborne/McGraw Hill, Berkeley, CA, 1981.

Charles W. Rose, Greg M. Ordy, Frederic 1. Parke,
N.mPC: A Retrospective.
In Twentieth Design Automation Conference Proceedings, pages 497-505. IEEE, 1983.

Charles W. Rose, Greg M. Ordy, Paul J. Drongowski.
N.mPc: A Study in University-Industry Technology Transfer.
[EEE Design & Test of Computers 1(1):44-56, February, 1984.

Jay W, Schooley.

Translation and Instrumentation Of An ISPS Simulator.
Master’s thesis, Carnegie-Mellon University, August, 1985.
SRC Report Number CMUCAD-85-62.

Richard J. Selvaggi.

A Parallel ISPS Simulator for a Multiprocessor.

Master's thesis, SRC-CMU Center for Computer-Aided Design, Department of Electrical and
Computer Engineering, Carnegie-Mellon University, February, 1986,

Daniel P. Siewiorek, C. Gordon Bell, Allen Newell.
Computer Structures: Principles and Examples.
McGraw-Hill Book Company, New York, 1982.

A. Vladimirescu, Kaihe Zhang, A. R. Newton, D, O. Pederson, A. Sangiovanni-Vincentelli.

SPICE Version 2G User's Guide

Deparunent of Electrical Engineering and Computer Sciences, University of California,
Berkeley, CA, 94720, 1981.

ZYCAD Intermediate Form Reference Manual, Volume I: Logic Evaluator
ZYCAD Corporation, 1985.

