
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

CMU-CS-86-159

PAST:
a

Program-specific and
Architecture-specific

Simulation
Tool

M. S. Project Report

Bruce S. Siegell

June 20,1986

Department of Electrical and Computer Engineering
Carnegie-Mellon University

Pittsburgh, PA 15213

The research was supported in part by Defense Advanced Research Projects Agency (DOD)
momtored by the Air Force Avionics Laboratory under Contract F33615-84-K-1520, and Navai
Electronic Systems Command under Contract N00039-85-C-0134, and in part by the Office of Naval
Research under Contracts N00014-80-C-0236, NR 048-659, and N00014-85-K-0152, NR SDRJ-0O7

TABLE OF CONTENTS

Table of Contents

1. Introduct ion
2. Programming Level Simulation

2.1. The ISPS Simulator
2.2. N.mPc
2.3. The Register Transfer List Interpreter
2.4. The Value Trace Simulator
2.5. Summary

3 . The PAST Simulation Model
3.1. Hardware Description Language
3.2. Implementation language
3.3. PAST simulators are compiled
3.4. PASTs cycle is the target machine instruction cycle.
3.5. PAST reduces costs of Register Transfer operations.

3.5.1. Control Operations
3.5.2. Data Operations
3.5.3. Arithmetic and Logic/Shift Operations
3.5.4. Summary of expected improvement over ISPS

3.6. Architecture-specific and Program-specific simulators
3.7. Standard User Interface
3.8. Standard Input/Output Routines
3.9. The structure of the PAST simulator

3.9.1. The program header
3.9.2. Update and Propagate Macros
3.9.3. Global Variables
3.9.4. Longjump Labels
3.9.5. The variable information table
3.9.6. Variable initialization
3.9.7. Channel initialization
3.9.8. Update and Propagate Routines
3.9.9. The main simulation loop

3.9.9.1. Architecture-specific Simulators
3.9.9.2. Program-specific Simulators

3.9.10. Summary of simulator structure
3.10. Summary

4. Implementat ion
4.1. The ISPS parser
4.2. gdbrtm - the GDB to RTM translator
4.3. PAST - the code generator

UNIVERSITY LIBRARIES
CARNEGIE-MELLON UNIVERSITY

HT'iSBURGH. PENNSYLVANIA 15213

TABLE OF CONTENTS

4.3.1. Data Structures
4.3.1.1. The Symbol Table
4.3.1.2. The Statement Table
4.3.1.3. Dynamic Structures
4.3.1.4. State Structures

4.3.2. Initialization
4.3.2.1. Default parameters
4.3.2.2. Argument parsing
4.3.2.3. Command files
4.3.2.4. Variable initialization
4.3.2.5. Reading the RTM file '
4.3.2.6. Memory Allocation
4.3.2.7. PAST Commands
4.3.2.8. Input and output connections

4.3.3. Preprocessing
4.3.3.1. The CONNECT operation
4.3.3.2. The NEG2C operation
4.3.3.3. LEAVE, RESTART, TERMINATE, RESUME

4.3.4. Code Generation
4.3.4.1. Simulation loop framework
4.3.4.2. Variable state
4.3.4.3. Flow of control
4.3.4.4. Conditional control operations
4.3.4.5. Data, arithmetic, logic, and shift operations
4.3.4.6. Problems with simulator size
4.3.4.7. Current status

4.4. Summary
5 . Resul t s

5.1. Test cases
5.1.1. Manchester Mark-1
5.1.2. Digital PDP-8
5.1.3. Motorola MC6502
5.1.4. CMU Warp Cell

5.2. Timing measurements
5.3. Simulator speed
5.4. Total simulation time
5.5. Simulation ratios
5.6. Summary

6 . Conclus ions
Appendix A. Manual Entry for PAST
Appendix B. Manual entry for s imula to r s p r o d u c e d by PAST

Appendix C. Mark-1 Example
C.l. Architecture-specific simulator

C.l.l. ISPS description - markLisp
C.1.2. GDB file - markl.gdb
C.1.3. RTM file - markl.rtm
C.1.4. PAST command file - markl.pst
C.1.5. The simulator - markl.c

TABLE OF CONTENTS
III

C.1.6. Running the architecture-specific Mark-1 simulator 9(
C.2. Program-specific simulator 91

C.2.1. Multiplication program 91
C.2.2. PAST command file - multpst 93
C.2.3. The simulator - multc 94

Appendix D. P rob l ems with the C compi ler 100
R e f e r e n c e s 101

LIST OF FIGURES
IV

List of Figures

Figure 2-1: Black box model of a functional simulator. 4
Figure 2-2: Simulator Implementation Models: (a) general; (b) architecture-specific; (c) 5

program-specific; (d) completely specified.
Figure 2-3: Block diagram of the C version of the ISPS simulator. 7
Figure 2-4: Simplified block diagram of N.mPc system [27]. 8
Figure 2-5: Block diagram of Register Transfer List Interpreter system [11]. 9
Figure 2-6: Block diagram of the Value Trace simulator [16]. 10
Figure 3-1: PAST command file for generating an architecture-specific simulator. 20
Figure 3-2: PAST command file for generating a program-specific simulator. 21
Figure 3-3: Example of mapped variables: (a) ISPS mapping; (b) update macros; (c) 23

propagate macros.
Figure 4-1: Block diagram of the PAST simulation system. 30
Figure 4-2: Example of the Global Database (GDB) format 31
Figure 4-3: Symbol structure. 34
Figure 4-4: SymbolFlag structure. 34
Figure 4-5: The Statement structure. 37
Figure 4-6: The StatementFlag structure. 37
Figure 4-7: The CodeStruct structure. 39
Figure 4-8: The State structure. 39
Figure 4-9: The MemChunk structure. 40
Figure 4-10: The Word Vector and WordVectorList structures. 40
Figure 4-11: PAST mainline code. 42
Figure 4-12: Example of mapping which PAST cannot handle (from MC68000 52

description).
Figure 5-1: Warp cell datapath [21]. 57

LIST OF TABLES

List of Tables

Table 3-1: Predicted speedup of PAST simulators over the ISPS simulator.
Table 4-1: Tables contained in the RTM file.
Table 4-2: Effect of expanding subroutines in-line for MC68000 description.
Table 4-3: Effect of expanding subroutines in-line for MC6502 description.
Table 5-t: ISPS description complexity.
Table 5-2: Simulator execution times (seconds).
Table 5-3: Simulator speeds (cycles/second).
Table 5-4: PAST speed improvement factor over ISPS.
Table 5-5: Simulator preparation time.
Table 5-6: Number of target cycles when PAST simulator cost equals ISPS cost
Table 5-7: Number of target cycles when program-specific cost equals architecture-specific

cost
Table 5-8: Estimated simulation ratios for PAST simulators.
Table D-l: Limitations of the cc C compiler.

INTRODUCTION 1

Chapter 1
Introduction

There are several levels at which computers can be modelled: the circuit level models the

computer in terms of its component transistors, resistors, and capacitors; at the logic level the

computer is modelled as a set of blocks characterized by boolean functions; the programming level

models the computer as the programmer sees it, as a set of registers, memories, and functional units

whose interactions are controlled by a computer program. At all of these levels, tools are available to

aid the user in simulation. At the lowest level1, the circuit level, Berkeley's SPICE simulator [31] is

the tool most used for circuit verification and providing timing information in our environment At

the next level, a large range of logic simulators are available to test the logical correctness of designs,

ranging from Bryant's MOSSIMII [8], a switch-level simulator implemented in software for modeling

MOS circuits, to commercially available design systems like Daisy's Logician system [10] which

verifies the logic and timing of digital designs based on specifications for the components (chips).

Logic simulators have also been implemented in hardware, e.g. the ZYCAD™ Logic Evaluator [32].

At the programming level, there are many tools available based on several hardware description

languages. Some of the better known tools are based on descendants of the ISP notation, a functional

notation developed by Bell & Newell [3]. Others are based on languages which have both structural

and behavioral modeling capabilities [22] and/or are designed for multi-level simulation [2,17,18].

Each simulation tool is developed and optimized for a particular purpose, be it architecture

evaluation, timing analysis, or just to make sure a design is correct

One of our objectives is to be able to simulate programs running on complex high performance

systems. We wish to be able to run and debug programs in parallel with the development of new

systems. For this purpose, we do not need to model the structure of the computer; we care only

about the model of the computer seen by the programmer. Thus, we need programming level

simulators that are optimized for running and debugging programs. To meet our needs, we have

found it necessary to write custom simulators because the programming level simulation tool

'We use the hierarchy of simulation levels described by Selvaggi [29].

INTRODUCTION

W are gross approximations based on execution of the simulators on a Vax 8650 running Mach/4.3/2/1 BSD Unix
without file I/O. The relative order of magnitude should be correct

available to us, the ISPS simulator, is too slow. Although a simulation ratio of 10,000 to 1 for the

DEC PDP-11 being simulated with the ISPS simulator [28] might be considered tolerable, a ratio of

200,000 for the CMU Warp processing cell, which can process 10,000,000 floating point operations

per second, is not. An ad-hoc simulator for the Warp processor [9] has been written which has a

simulation ratio of 6,000 running the same program2.

We believe that a tool like the ISPS simulator could be useful for simulating programs for

complex architectures like that of the Warp Machine if it meets or exceeds the following

requirements:

• It can execute real programs, e.g. the binary code, for the desired computer architecture.

• It provides state information about the machine it is emulating.

• It is easier to write and modify than an ad-hoc simulator.

• Its speed approximates that of a well-written ad-hoc simulator.

The last of these features is the most difficult to implement for a general simulation tool because such

a general tool must be efficient for a wide range of computer architectures. Our research has

attempted to overcome this difficulty, while meeting the other requirements as well.

We have designed a simulation tool, called PAST which produces simulators that run programs

for the described architecture significantly faster than does the ISPS simulator. We have based our

design on some of the same premises on which Atlas [2] based his research: (1) minimizing level of

detail provides a speedup over the ISPS simulator: (2) reducing monitoring hooks reduces simulation

time; (3) operations done at compile time are less expensive than those done at actual simulation

time. However, we challenge Atlas' assertion that a translator for a hardware description language

can not easily attain the simulation efficiency of a general purpose programming language translator.

Our tool acts as a compiler for the ISPS language, translating ISPS descriptions into C code that can

be compiled into simulators. Our new simulation tool has been named PAST, a Program-specific and

Architecture-specific Simulation Tool because it optionally produces simulators that are specific to a

program to be simulated as well as to the architecture described further taking advantage of the third

premise.

Section 2 of this report describes some of the previous research into simulators at the

INTRODUCTION 3

programming level. Section 3 outlines the simulation model used in our approach and describes the

simulators produced by PAST. In Section 4 are discussed the major issues involved in the

implementation of PAST. The experiments done to determine PASTs performance arc described in

Section 5, along with the presentation and analysis of the results of the experiments. Finally, the

results are summarized, and conclusions are drawn from the data collected.

PROGRAMMING LEVEL SIMULATION
4

Chapter 2
Programming Level Simulation

A programming level simulator generally consists of a user interface and a stream of code which

imitates the control flow and data operations of the machine being simulated. Ideally, the user sees

the simulator as a black box which takes as inputs a program, data, and user commands and produces

data and state information (Figure 2-1).

Program

State
Information

Data Data

Figure 2-1: Black box model of a functional simulator.

However, there are several variations on this model, some requiring more information from the user

and some less (Figure 2-2):

• The simulator can be made general enough to handle any computer architecture by
making a description of the architecture an input (Figure 2-2a). We will call this type of
simulator a general simulator. We also classify this simulator as interpretive because it
interprets the description of the architecture.

• The architecture specifications can be contained within the simulator (Figure 2-2b). We
will refer to this type of simulator as an architecture-specific simulator. In this case, the
simulator is compiled rather than interpretive because the architecture is an intrinsic part
of the simulator.

• Both the architecture and the program can be contained within the simulator program
(Figure 2-2c). This implementation model has limited applications because the cost of
preparing the simulator and running it on all of the data sets for the program must be less
than the cost of running the program on its data sets using a more general simulator. We
call this type of simulator program-specific.

• Even more extreme, all of the inputs including the user commands and data can be

PROGRAMMING LEVEL SIMULATION 5

hardwired into die simulator program (Figure 2-2d). ITiis model has the same limitations
as the previous model but it can only run on one set of data. There arc cases where such
a simulator might be useful, e.g. simulation of a random number generator, but there are
too few cases to warrant a special tool to generate such simulators.

We can classify most functional simulators according to these four types.

User
Architecture Program Commands

Data

State
Information

Data

(a)

User
Program Commands

Oata

r n
1 ; 1

ctu

1 : 1
1 ! l

State
Information

Data

(b)

Data

State
Information

Data

r i r i r - i r -1
1 II • II II 1
1 ita

ctu

2 II - II
1 - I I 5 II S II 3 El
1 II I I I * II o

"1 u J L J L -J

State
Information

Data

(c) (d)

Figure 2-2: Simulator Implementation Models: (a) general; (b) architecture-specific;
(c) program-specific; (d) completely specified.

In the following sections we summarize some of the research which has been done in the area

of functional simulation.

PROGRAMMING LEVEL SIMULATION 6

2 .1 . The ISPS Simulator

Several versions of the ISPS simulator have been implemented at Carnegie-Mellon University.

All are based on ISPS, a well-known hardware description language derived from the ISP notation

introduced by Bell and Newell [7]. The original simulator was written in BLISS and runs on a

DECsystem-10 [5]. This simulator has been translated into Pascal to run on Hewlett Packard 9836

workstations and most recently into C to run under Unix [28,29]. The current work shares some

code with the C version. All of the versions of the ISPS simulator fit our model of a general simulator

as the description of the computer architecture is one of the inputs to the simulator program. Both

the architecture and the programs are interpreted by the simulator.

The ISPS simulator does not interpret ISPS descriptions direcdy. The ISPS descriptions are

first parsed and then converted into an intermediate code which is a set of instructions for the

Register Transfer Machine, a hypothetical 3-address machine with variable length operands. The

ISPS simulator is actually a software implementation of the Register Transfer Machine. Figure 2-3

shows the steps required to simulate an ISPS description on the C version of the ISPS simulator. The

intermediate files shown are the GDB file, containing the parse tree information, and the RTM file

containing the intermediate Register Transfer Machine code (see Chapter 3). The ISPS parser and

the RTM code generator are described in more detail in Chapter 4.

The BLISS version of the simulator has been heavily optimized for use on the DEC-10, a 36-bit

machine, replacing arithmetic and logical operations with host operations where possible, and, thus,

is not portable. The HP9836 version is not portable and is reputed to be quite slow. The Unix ISPS

simulator, adjusted for differences in host processor speeds, runs at a comparable speed to the BLISS

version [28] and has a typical simulation ratio for a medium sized processor of 10000 to 1. The

simulation ratio becomes much larger, however, for large or complicated processors (see Chapter 1).

2.2. N.mPc

N.mPc [27,26]* developed at Case Western Reserve University, is another tool which has been

widely-used for functional level computer simulation. It is based on the ISP language, also a

descendent of the ISP notation. N.mPc is made up of five components which manipulate numerous

files to build a sixth component, a runtime package consisting of a simulation program, a command

interpreter, and a simulation memory manager (Figure 2-4). The original N.mPc system ran on a

DEC PDP-11, was not portable, and had size limitations. A new more portable system called

Af.2[24,27] resolves these problems and also includes an additional description language to specify

PROGRAMMING LEVEL SIMULATION 7

ISPS
Description

ispc
(ISPS Parser)

GDB f i le
12

gdbrtm
(Translator)

^ State
Information

^ Data

Figure 2-3: Block diagram of the C version of the ISPS simulator.

PLAs and a graphics interface for graphical specification and manipulation of topology files, display

of monitoring information, etc. [27].

N.mPc offers greater capabilities for modeling structure than does the ISPS simulator, allowing

a system to be specified as a collection of modules connected by ports. The ISP language includes a

WHEN statement to handle asynchronous processes and a DELAY statement which can be used to

associate a delay with each register transfer for system timing.

Aside from the difference in language features, the major difference between N.mPc and the

ISPS simulators is that N.mPc simulators are compiled rather than interpreted - thus fitting into our

architecture-specific model. However, heavy use of library functions, local states, and port

communication mean that the compilation vs. interpretation tradeoff effects less than 10 percent of

the execution time for the N.mPc simulators [27], thus making the simulator effectively interpretive.

Because the compilation had so little effect, N.2, the successor to N.mPc is interpretive [27]. N.mPc

gives simulation a ratio of approximately 1900 for the MC68000 using a programming level

Target Machine
Program

Simulator
Commands

Data

V

4

RTM f i le
12

ISPS
SIMULATOR

PROGRAMMING LHVEL SIMULATION 8

System Model ing

ISP '
COMPILER V

ECOLOGIST

System S i m u l a t i o n

V
SIMULATION

RUNTIME
ENVIRONMENT

METAMICRO
LINKING
LOADER

SIMULATED
MEMORY

PROCESSOR

S o f t w a r e Development

Figure 2-4: Simplified block diagram of N.mPc system [27],

model [15]. This is significantly better than the rado for the ISPS simulator processing a description

of a PDP-11, a simpler machine than the MC68000. We suspect that this better performance must be

due to more efficient programming techniques and partially to use of compilation rather than

interpretation.

2.3. The Register Transfer List Interpreter

Both ISPS and ISP describe computer instruction sets in terms of their operation codes. Jack

Davidson at the University of Virginia has designed a system called the Register Transfer List

Interpreter(shown in figure 2-5) in which the instructions are specified by their mnemonic names. In

his system, the machine description is a grammar which maps assembly language instructions to ISP

register transfers. The language for the machine description appears to be a mix of ISPS and the

BNF grammar notation. The Machine Description Processor (MDP) converts the machine

description into C language subroutines that implement the described instructions. These routines

are linked with several libraries of standard and custom routines: the MDSIM contains commonly

needed routines such as 16 and 32 bit arithmetic operations; an I/O library provides the standard I/O

routines; and a library provided by the user handles instructions which cannot be described using the

description notation. The resulting simulation program, called the Machine Description Interpreter

or MDl, reads an assembly language program and links each of the programs instructions to the

appropriate C subroutines to handle the operation and operands. The simulation is then executed

under control of the user as a sequence of subroutine calls. Also associated with the simulation

system is a compiler system which can be used to generate the assembly language for the target

machine.

PROGRAMMING LEVEL SIMULATION 9

Machine D e s c r i p t i o n s
Vax-ll PDP-11

Dec-10
370

68000
CDC

Machine
Description
Processor

(MOP)

Machine
Dependent

Instruction
Library

Source Language

P0
Generated
Compi1er

RTL's
[assembler]

Machine
D e s c r i p t i o n
I n t e r p r e t e r

(MDI)

Program
Output

E x e c u t i o n
S t a t i s t i c s

MDSIM
Library

I/O
Op. Sys
Support

Figure 2-5: Block diagram of Register Transfer List Interpreter system [11].

The MDI is capable of simulating 500 Vax 11/780 instructions per second on a Vax 11/780.

This is quite fast. Simulating the MC68000, the ISPS simulator only executed about 15 instructions

per second3. However, the MDI simulator is limited by its description language. A microcoded

machine such as the Warp cell would not be very easy to describe, and the user would probably have

to write quite a few custom routines for the description to work.

2.4. The Value Trace Simulator

Thus far, there has been little research into the use of hardware to speed programming level

simulation. At Carnegie-Mellon, a project has been proposed whereby a logic simulation engine such

as the ZYCAD™ Logic Evaluator [32] can be used for simulation at the functional level [16]. A

functional description in ISPS is first converted into a data flow graph called the Value Trace. The

data flow graph is then converted into an equivalent gate network which can then be simulated using

a logic simulation engine. The steps involved in simulation by this method are shown in figure 2-6.

The main advantage of this approach is that simulation is very fast: the simulation is event-

driven, so only the operations which are needed are executed, and the use of hardware speeds the

This figure was calculated from Schooley's data. [28].

PROGRAMMING LEVEL SIMULATION
10

ISPS
D e s c r i p t i o n

i s p c

(ISPS P a r s e r)

GDB f i l e

VT
T r a n s l a t o r

Value
Trace

1L

T r a n s l a t o r

i t

Gate
Network

Logic
S i m u l a t i o n

Engine

Figure 2-6: Block diagram of the Value Trace simulator [16].

evaluation of the operations. However, disadvantages of this approach include the high cost of

simulation hardware and a long simulator preparation time. The long preparation time may mean

that simulations must be run as batch jobs. This is all right for verifying an architecture design, but

makes use of the tool for debugging programs impractical.

2.5. Summary

In this chapter, we have discussed the different programming level simulation models and have

described some representative programming level simulators. Each simulation approach has

advantages and disadvantages. The main tradeoff is between preparation cost and simulation cost

We need to minimize the time and user efforts involved in preparing simulators and minimize the

time of simulation. We will refer back to some of the simulation techniques presented in this chapter

when we describe our simulation philosophy in Chapter 3.

Till- PAST SIMULATION MODEL
11

Chapter 3
The PAST Simulation Model

Our primary goal in the design of PAST is to be able to produce automatically functional

simulators with speed comparable to that of ad-hoc simulators. The simulators should be produced

from machine descriptions that are easy to write modify. Also, the simulators should have a user

interface which allows the user control of the simulation and provides information about the state of

the machine being simulated. In this chapter, we discuss the choices we made in designing PAST,

emphasizing how we meet these goals. We attempt to predict the impact of our choices, by

estimating the performance improvements of simulators produced by PAST over the performance of

the ISPS simulator. We call the machine to be simulated the target machine and the machine on

which the simulation is done the host machine. Our metric of performance for simulators for a target

machine is the number of instructions for that machine which are simulated per unit time on the host

computer. In the last section of this chapter we explain the structure of the simulators that PAST

produces.

3 .1 . Hardware Description Language

A standard notation is needed to describe computer architectures so that a general simulation

tool can process the description. Such notations are called computer hardware description languages.

We have chosen to base PAST on the ISPS hardware description language.

For a simulation tool to run fast, it is important to choose a description language which models

computers at the proper level. To execute computer programs, we just need a functional description

of the architecture to be simulated. Structural information is not necessary or desirable because

handling communication between structural elements is costly. In general, handling extra

information has costs in either simulation time or simulator preparation time. ISPS is at the

appropriate level for a simulator for program execution because it can model the register transfer

operations which are required to execute programs without regard to the structure of the computer

being simulated.

THE PAST SIMULATION MODEL 12

Vax architecture supports four floating point data types: Fisa32 bit dau type. OandG are 64 bits, and//is 128 bits.

There are several other benefits to basing PAST on ISPS:

• ISPS is a well known and well accepted language.

• The ISPS simulator is available for performance comparison.

• ISPS descriptions have already been written for many machines.

• An ISPS parser already exists. We can use the intermediate code (RTM code) which it

produces.

• The source code for the ISPS simulator is available. PAST can use much of same code.

One detriment of the ISPS language, however, is that it does not provide the user with efficient

floating point operations. The user has to construct floating point routines from fixed point

operations. The resulting routines are inefficient because they do not take advantages of the

capabilities of the host machine. We decided that to be competitive with an ad-hoc simulator, in

particular the Warp simulator, a PAST simulator must use efficient floating point routines. We have

thus incorporated explicit floating point operations into the ISPS language. Our version of the

language provides the same operations for floating point numbers as for the other number formats.

However, these operations can only be applied to operands of the size of floating point numbers

which are handled by the host machine. In our case; the host machine was a Vax, so we had the

choice of 32, 64, or 128 bit floating point arithmetic [14], We chose to base our floating point routines

on the 32 bit F4 type operations because the Warp machine supports 32 bit floating point arithmetic.

3.2. Implementation language

We have implemented the PAST program in the C programming language [20]. We chose C so

that we could easily modify code from the C version of the ISPS simulator for use in PAST. Also,

because our host systems run the Unix™ operating system, C is the best-supported high level

language in our environment

For similar reasons, the code generated by PAST is in the C language also. The PAST library, a

library of functions which are linked with the code generated by PAST, uses some of the same

routines that PAST uses, so using a single language saved us from writing code for the same functions

twice. Alternatively, we could have had PAST produce assembly language code which called the

common C routines as needed. Although this would probably produce faster simulators, C is more

THE PAST SIMULATION MODEL 13

readable, easier to debug, and more portable than assembly language. Also, if we were to generate

assembly language, we would have to worry about low-level compiler issues, such as register

allocation and rcentrancy. Instead we let the C compiler (cc) handle these issues (Figure 4-1). To

improve the speed of our simulators, we could replace cc with a better C compiler.

3.3. PAST simulators are compiled

We designed PAST to produce compiled simulators because it is generally accepted that "the

execution time of an interpreted program is usually slower than that of a corresponding compiled

object program." [1] This is supported by performance comparisons of existing functional simulation

tools. N.mPc simulators, which contain the description of computer architectures in compiled form,

run several times as fast as the ISPS simulator which interprets the description of the architecture (see

Chapter 2). Ad-hoc simulators, which contain the computer descriptions in a hand-compiled form,

also perform much better than the ISPS simulator. PAST's simulators should perform at least as well

as those produced by N.mPc because PAST simulators call library routines for only the most

complicated operations while 90 percent of the N.mPc simulator execution time is spent in library

routines. N.mPc also has additional overhead due to handling of structural definitions.

The ISPS simulator interprets both the description of an architecture and the code to be run on

that architecture. In implementing PAST, we replaced the parts of the ISPS simulator which

interpret the architecture description and program with routines that produce code to execute the

architecture description. Thus we have converted the ISPS simulator from an interpreter to a

compiler. The conversion of a general program into a more specialized one by use of known

parameter values is known as partial, evaluation. Research has been done on automatic partial

evaluation [19], especially for converting programming language interpreters into compilers, but in

the case of PAST, the partial evaluation was done by hand.

3.4. PAST's cycle is the target machine instruction cycle.

One of the most useful features of a functional simulator is the ability for the user to set

breakpoints, so that he can stop the simulation at a particular location in his program and examine

the state of the machine at that point. Breakpoints are typically set by specifying the value that the

program counter has at the desired stopping location. The ISPS simulator defines breakpoints

differently, requiring much more information from the user. In addition to specifying the program

location, the user must specify the name of the program counter variable as specified in the ISPS

description. The ISPS simulator stops as soon as the program counter variable is set to that value,

TIIE PAST SIMULATION MODEL 14

whether the end of the instruction cycle has been reached or not. The user then has to refer to the

ISPS description to determine where to set a breakpoint for the end of the instruction cycle so that he

is not looking at intermediate states. The reason that ISPS makes setting breakpoints difficult is that

it has no concept of an instruction cycle. Each of its cycles processes a single Register Transfer

Machine instruction. The ISPS simulator steps through the RTM instructions until an RTM "STOP"

operation or a user-specified stopping point is reached, with no regard for the instruction cycle of the

target machine.

In PAST simulators the basic cycle is the instruction cycle for the target machine, and the RTM

level is removed. Since a PAST simulator knows what instruction cycles are and knows the name of

the program counter variable (assuming it was specified when creating the simulator), breakpoints

can be set in the normal way, just be specifying a stopping location. The user only has to interact

with the PAST simulator at the beginning of each target machine cycle so he does not need to keep

track of as much information as with the ISPS simulator. Thus, it is easier to debug programs with

PAST simulators than with the ISPS simulator.

Besides reducing the amount of user interaction required at run dme, use of the instruction

cycle as the cycle for PAST improves simulator performance. For each RTM instruction, the ISPS

simulator executes at least ten C statements in addition to the statements necessary to execute the

RTM operation. PAST's simulators have about the same overhead for each loop iteration, but each

iteration represents several to hundreds of RTM operations. The smallest real architecture

description we have encountered, for the Manchester Mark-1 computer, averaged about 13 RTM

operations per instruction cycle. The ISPS description for the Warp cell, which is an architecture of

only medium complexity, averaged over 350 RTM operations per simulated instruction. The loop

overhead for PAST simulators becomes insignificant when compared to the overhead eliminated by

changing from RTM cycles to target machine instruction cycles. On average, PAST only generates

one or two C statements per RTM operation, but each of the generated statements is probably about

two or three times as complicated as each of the loop overhead instructions eliminated by changing to

target machine instruction cycles. A quick calculation shows that we can expect more than a 50

percent (we're being conservative here) reduction in simulation time just due to eliminating the

overhead of using the RTM instruction cycle:

RTM processing cost:
2 generated statements * 3 simple instructions/generated statement

=> 6 simple instructions
Total cost per RTM instruction:

16 simple instructions
Overhead reduction per RTM instruction:

10 simple instructions

THE PAST SIMULATION MODEL 15

Reduced cost per RTM instruction:
6 simple instructions

Percent reduction:
10/16 * 100% = 615%

It should be noted, at this point, that the time reductions that we speak of are all at simulator

run time. The reductions at run time are paid for by an increase in simulator preparation time.

When PAST generates a simulator, it still interprets each RTM operation to translate the instruction

to C. It begins interpreting with the RTM instruction that corresponds to the ISPS instruction which

the user has specified as the beginning of target machine instruction cycle. PAST follows the flow of

control specified by the RTM instructions until it reaches the starting instruction again or an

instruction which corresponds to the ISPS instruction specified by the user as the end of the target

machine instruction cycle. The time required by PAST to interpret an RTM instruction and generate

C code for that instruction may far exceed the time required by ISPS to interpret and execute the

same instruction. The higher cost is acceptable, however, because the simulator preparation time for

a PAST simulator is a one-time cost. PAST only needs to interpret and generate code for each

instruction once: when it generates the simulator. ISPS has to interpret the same RTM instructions

over and over again, for for each iteration of the target machine's instruction cycle for every program

it simulates.

3.5. PAST reduces costs of Register Transfer operations.

In the preceding calculations we assumed that the cost of processing an RTM operation at

simulator run time - 1 or 2 C statements - is the same for both the ISPS simulator and PAST. That

is not actually the case. The run-time cost of processing RTM operations is much less for PAST-

generated simulators than it is for ISPS.

Most RTM operations can be categorized into four groups [2]: control operations, data

operations, arithmetic operations, and logic and shift operations. The remaining operations, masking

operations, are seldom used. Previous research [2,28] has found that 65% of executed RTM

operations are control operations, 20 to 25% are data operations, and the remaining 10 to 15% are

arithmetic and logic/shift operations.

THE PAST SIMULATION MODEL 16

5This was the total for test runs of5 different ISPS descriptions: AM2910, AM2901.18080, PDP11. CDC6600.

3 . 5 . 1 . Control Opera t ions

Since PAST interprets the RTM code to generate C code, it can handle many of the control

operations at translation time and eliminate them completely from the generated code. Several such

control operations are involved in calling subroutines: CALL, PEND, PBEGIN, LOCK. An analysis

by Atlas [2], found these four operations to account for 35% of the RTM instructions executed5.

Schooley [28] came up with similar data. Schooley's data also showed three of these operations to

take 8.3 percent of the simulation time using the C version of the ISPS simulator. Data for the fourth

operation was not given, but we can estimate that the total percentage of simulation time taken by the

four operations is about 10%.

The ISPS simulator gives the user the option of simulating parallel constructs in parallel, using

a round-robin scheduling algorithm for the concurrently executing streams of RTM code, or serially

by executing the streams of code one after another. The serialization option, which disables several

RTM operations, is provided because the round-robin scheduling is very time consuming. Because

PASTs cycle is the target machine instruction cycle, the user can never examine the streams running

in parallel, so PAST always executes RTM instructions serially. (Running streams in parallel could

alter the state of the machine at the end of the cycle if the target machine as described is capable of

producing indeterminate results. We consider such a design a violation of good design practices.)

Even if PAST were to use the round-robin scheduling to model parallel execution, there would be no

cost for the scheduling during simulator run-time; some of the operations would just be reordered.

Thus, PAST completely eliminates the RTM control operations which model parallelism when it

translates them into C code. The run-time savings due to the elimination of these operations by

PAST is minor because the serialized ISPS simulator also eliminates them.

Two other control operations which PAST does not translate into C code are the SMERGE and

SJOIN operations. The SJOIN operation is a jump from the end of a conditional section of code to

the point where the conditional sections rejoin, an SMERGE statement. Schooley's data show these

operations to account for about 4 percent of the simulation time using the ISPS simulator.

We expect a 14 percent reduction in simulation time compared with the ISPS simulator due to

elimination of unnecessary control operations from the simulators produced by PAST.

THE PAST SIMULATION MODEL 17

RBYTE.reads a bit field from a register.

3 .5 .2 . Data Opera t ions

Most of the data operations are transfer operations which move data from one register or

memory into another. Also included in this group are several unary operations: clear, increment,

decrement, etc. Schooley found two of these operations, RBYTE 6 and MOVE, to take more than 41

percent of the ISPS simulation time. Although Schooley made no measurements for the rest of the

data operations, we estimate that the data operations account for more than 50% of the execution

time of the ISPS simulator.

The handling of data operations probably has the greatest potential for improvement in

simulation time. Because the ISPS simulator does not allocate its simulated memory on word

boundaries, the ISPS simulator must access memories and registers one bit at a time. PAST does

allocate memory on word boundaries so its memory accesses are simple memory transfers. Bit fields

are accessed by masking and shifting operations. Since most modern computers have word sizes of

32 bits or less, we can estimate a typical memory access to be 16 bits. A PAST simulator can probably

access a 16 bit memory 16 times as fast as the ISPS simulator. With such great reduction in memory

access times, we estimate 40 or more percent reduction in simulation time compared to ISPS

simulators due to more efficient data operations.

3 . 5 . 3 . Arithmetic and Logic/Shif t Opera t ions

Because arithmetic, logic, and shift operations require transfers of operands, we can expect the

same kinds of speedup for these operations as for data operations. We expect some additional speed

improvements as well because all of the ISPS arithmetic, logic, and shift operations work on 128-bit

data even if the operands are less than 128 bits. For logic operations, the operations are performed

independently on each of the four 32-bit words required to hold the 128 bits. Arithmetic and shift

operations also require data to be passed between the words making up the 128-bit operands. Thus,

with the ISPS simulator, a 32-bit logic operation takes 4 times as much time as necessary, and

arithmetic and shift operations take even longer. PAST uses the information known about operand

lengths to minimize the number of host operations needed to produce a result Since most computers

operate on words of size 32 bits or less, PAST simulators probably perform most arithmetic, logic,

and shift operations four times as fast as the ISPS simulator. We do not know what percentage of the

ISPS run time is accounted for by these operations.

T1IE PAST SIMULATION MODEL
18

Optimization % of total ISPS time remaining

none
100%

RTM Operations
Data

Control

% of total ISPS time reduced
40%
14%

60%
46%

Target cycle change 50% reduction
50% * 46% = 23% 23%

Remaining time
23%

I a D1C j - i : neuicicu ^ w u u F w».. —

In Table 3-1 we have summarized the speedups that PAST should have over the ISPS

simulator. We have estimated that PAST would reduce the total simulation time by more than 54

percent by optimizing the register transfer operations (14% for* control operations, 40+% for data

operations). In addition, using the target machine instruction cycle rather than the RTM cycle as

PASTs cycle reduces the total remaining execution time by 50 percent or more. These speedups

apply to both architecture-specific and program-specific simulators produced by PAST and are very

conservative. The numbers only include the effects of some of the RTM statement optimizations;

and we also do not know how much elimination of monitoring effects the simulation time; these

factors should weigh in PASTs favor, but we can not quantize their effects. From our numerical

data, we predict that simulators generated by PAST will run at least four times as fast as the ISPS

simulator, but we suspect that the results could be even better.

We expect that the program-specific simulators will run faster than the architecture-specific

simulators, but we do not have data from which we can make numerical predictions.

3.6. Architecture-specific and Program-specific simulators

PAST can produce either architecture-specific or program-specific simulators. Our performance

estimates in the previous sections apply to both types of simulators. Our original goal in designing

PAST was to produce program-specific simulators so that we could determine whether

program-specific simulators show significant speed improvements over architecture-specific and

general simulators7. We expect that program-specific simulators are be even faster than

rThis is why we called our tool PAST

3.5 .4 . Summary of expec ted improvement over ISPS

Tl IE PAST SIMULATION MODEL 1 9

Lines beginning with exclamation points are comment lines.

architecture-specific simulators because, in the program-specific case, many evaluations arc done at

code generation time rather than at simulation time. When we started to design the PAST program,

we did not intend to produce architecture-specific simulators at all, but, after some design, we realized

that it would take very little additional work to produce architecture-specific simulators as well We

added this capability to PAST so that PAST would be more general, and, also, so that we would have

architecture-specific simulators that we could compare with the program-specific simulators.

The only information that PAST needs to produce an architecture-specific simulator, other than

the ISPS description (in the form of an RTM file.), are the names of the ISPS entities which mark the

beginning and end of the target machine's instruction cycle. (Though not essential, the name of the

program counter variable should also be supplied so that breakpoints can be set) Additional

information is needed to produce a program-specific simulator:

• A program must be specified. The user specifies the program to PAST in the same way as
to the ISPS simulator, by setting the appropriate memory locations in the simulated
program memory.

• The memory range holding the program must be declared as STATIC. Otherwise PAST
will not know which memory locations to treat as code and which to treat as data. When
a register or memory location has been declared STATIC, PAST can replace code that
accesses the memory location with the contents of the location. This replacement is what
makes the generated simulator program-specific.

• The name of the program counter variable must be given.

• The range of valid values for the program counter must be specified. PAST loops
through the list of program counter values and generates code to simulate each
instruction of the program in much the same way it generates an entire
architecture-specific simulator. The main difference is that before generating an
instruction, the value of the program counter variable is set to one of the valid values and
is marked as known.

Figures 3-1 and 3-2 show representative command files for generating architecture-specific and
program-specific simulators, respectively8.

THE PAST SIMULATION MODEL
20

! Name of ISPS entity which marks the s tar t
! of the instruction cycle is "cstar t" . The
! name of an entity marking the end of the cycle
! does not have to be specified if the cycle
! ends at the same location that i t s t a r t s .
START cstar t

! Name of program counter variable is M cr". This
! declaration is not necessary to generate an
I architecture-specific simulator, but for breakpoints
! to be allowed, the simulator must know which
! variable to compare the breakpoint l i s t to .
PC cr

Figure M : PAST command file for generating an architecture-specific simulator.

3.7. Standard User Interface

One of the most tedious tasks required in writing a simulator is producing a user interface. We

have eliminated this problem by providing a library of standard user interface routines which are

linked with the code produced by PAST to create a complete simulator. The main user interface

routine, Userlnterface, is invoked once per target machine instruction cycle. PAST inserts the call to

Userlnterface at the beginning of the cycle. This is the only call that the code generated by PAST

makes to the user interface routines, but PAST does produce several routines which are called by the

user interface, including the main simulation loop. The main routine for the simulator program is

contained in the library, so the initialization process for the simulator is standardized.

The command set for PAST simulators is based on the command set for the ISPS simulator as

described by Barbacci, et al. [5]. Most of the command names are identical to names of ISPS

commands, but some of the commands have different meanings. A list of the currendy available

commands is provided below:
BREAK ICONNECT READ
! <comment> NAMES RUN
CYCLE 0C0NNECT SETVALUE
DBREAK PROMPT STEP
DUMP QUIT VALUE
ECHO RADIX

Full descriptions of the commands are given in the pastsim manual entry in Appendix B.

THE PAST SIMULATION MODEL

! Name of ISPS entity which marks the s tar t
! of the instruction cycle is "cstar t" .
START cstart

! Name of ISPS entity which marks the end
I of the instruction cycle is "cend".
END cend

! Set the memory locations to the program values.
! The quotation mark declares the number
! following i t to be in hexadecimal notation.
SETVAL m["00] » "4026
SETVAL m["01] * "6023
SETVAL m["02] - "cOOO

SETVAL m["19] - "4027
SETVAL m["la] * "6027
SETVAL m["lb] » "eOOO

! set data locations to ini t ia l values.
SETVAL m["lc] - "00000004
SETVAL m["ld] * "00000007
SETVAL m["le] • "0000000c
SETVAL m["lf] * "00000015
SETVAL m["20] = "0000001a
SETVAL m["21] * "00000001
SETVAL m["22] » "00000000
SETVAL m["23] - "00000000
SETVAL m["24] - "00000000
SETVAL m["25] * "00000135
SETVAL m["26] * "00000007
SETVAL m["27] » "00000000

! Name of program counter variable is "cr".
PC cr

! Ini t ial value of program counter variable is 0.
SETVAL cr * 0

! Range of valid program counter values -> code range.
CODE "0:"lb

! Range of memory locations which do not change
! throughout program execution -> s ta t ic range.
! Note that locations other than the program memory
! range can be declared as s t a t i c . This extra
! knowledge allows PAST to do more evaluations at
! translation time.
STATIC m["0:"21]

Figure >2: PAST command file for generating a program-specific simulator.

THE PAST SIMULATION MODEL 22

9These are the structures which are pointed to by file pointers, e.g. FILE *f p ; .
10We are having difficulties with the read routine. It should block while waiting for input, but it does not

3.8. Standard Input/Output Routines

Also provided in the PAST library are a set of input and output routines to support the

1CONNECT and OCONNECT commands. The ICONNECT command links variables to input

files, and the OCONNECT command links variables to output files. Whenever an ICONNECTed

variable is one of the source operands for an RTM operation, PAST generates a call to a macro which

calls the appropriate input routine. Similarly, when an OCONNECTed variable is the destination for

an RTM operation, PAST generates a call to a macro which calls an output routine.

The input and output routines in the PAST library are based on the Unix™ standard I/O

routines, but have additional code to convert numbers to the proper number format. We have also

provided the option of connecting variables to BSD Unix 4.2 interprocess communication ports in the

same way that variables are connected to files. We create FILE structures9 for the IPC ports which

are compatible with the structures created by the /open command so that the IPC ports may be

accessed using the fprintf and fscanf routines. The routines involved with interprocess

communication have not yet been debugged 1 0, but the groundwork has been completed.

3.9. The structure of the PAST simulator

Appendix C includes samples of architecture-specific and program-specific simulators generated

by PAST for a description of the Manchester Mark-1 computer. The simulators are divided into

sections of code by comment headers. Below we explain the contents of each of the sections of code.

3 . 9 . 1 . The program h e a d e r

The program header is a comment block containing information about the simulator. It lists

the names of the RTM file and the PAST command file from which the simulator was produced.

Also given is the time that the simulator was produced. A # include line includes a file containing

definitions and declarations which are common to all PAST simulators.

THE PAST SIMUI-ATION MODEL 23

In the ISPS description, the user may define variables to be mapped onto other variables as

shown in Figure 3-3. We call a variable which other variables map to a (local) main variable1 1. The

variables which map to it are called primary variables. In C, the primary variables must also be

mapped to the main variables. The next two sections in the simulator file define macros which do

this mapping.

(a)
pi<15:0>,

f<0:2> pi<15:13>,
s<0:12> :» pi<12:0>,

(b)
d̂efine _SET_f \
f * (pi & OxOOOOeOOO) » 13;
d̂efine _SET_s \
s » pi & OxOOOOlfff;

(C)
#define _PR0P_f \
pi • (pi & Oxfffflfff) | (f « 13);
d̂efine J>R0P_s \
pi » (pi & OxffffeOOO) | s;

Figure 3-3: Example of mapped variables: (a) ISPS mapping; (b) update macros;
(c) propagate macros.

The first of these sections contains update macros which are called to extract fields from main

variables to update primary variables. The other section contains a complementary set of macros

which we call propagate macros. A propagate macro is called to move the value of a primary variable

into the appropriate field of its main variable after the contents of the primary variable have been

changed. The macros are used to keep the main and primary variables up to date with respect to each

other. PAST generates one update macro and one propagate macro for each primary variable. Main

variables may have any number of macros associated with them.

The update and propagate macros are also used to implement ICONNECT and OCONNECT.

If a variable is ICONNECTed, an update macro is created for it containing an input routine. If a

variable is OCONNECTed, a propagate macro with an output routine is created. If an

ICONNECTed or OCONNECTed variable is a primary, the input or output routine is added to the

macro for updating or propagating the primary.

"local" is given in parentheses because the variable to which the other variables map may also map to another variable.
True main variables do not map to other variables.

3.9.2. Update and Propagate Macros

THE PAST SIMULATION MODEL 24

Names of update macros begin with "uSETJ* and end with the name of one of the variables

declared in die ISPS description. Propagate macros arc similar, but start with "^PROP,J . instead. If

the named variable is a memory, the macro has an address parameter.

3 . 9 . 3 . Global Var iables

The next three sections contain global variable declarations. The "PAST global variables"

section declares the variables which are used as scratch registers in arithmetic, logical, and shift

operations. The "User global variables - main" section contains declarations for the main variables

declared in the ISPS description. The "User global variables - primary" section contains declarations

for the primary variables.

Register variables which fit into a single integer word are declared as unsigned into. Register

variables with word sizes of greater than 32 bits and memory variables with word sizes of less than 32

bits are declared as arrays of unsigned ints. Memory variables with large word sizes are declared as

two dimensional arrays.

3 .9 .4 . Longjump Labels

The seventh section of code contains declarations for special global variables which store the

stack state and program counter value for a location which is to be the destination of a long jump.

Long jumps are gotos which can jump to any memory location which has been previously executed,

even if the location is outside of the routine from which the jump was made. The destination of a

long jump must be explicidy marked with a call to the setjmp routine, which sets the value of a

corresponding longjump label. We have put the call to setjmp inside of a macro called LABEL.

3 . 9 . 5 . The var iable information t a b l e

The eighth section contains a table, called jarinfoQ, which lists information about each of the

user variables, the variables declared in the ISPS description, so that the user interface routines can

provide the user access to them. The following information is given for each variable: the name of

the variable, a pointer to the memory location where the memory is stored, the size of the variable in

integer words, the size of the variable in bits, the minimum and maximum valid addresses for the

variable if the variable is a memory, the address increment for a memory variable, the number of the

port to which the variable is ICONNECTED (if any), the number of the port to which the variable is

OCONNECTED (if any), and the default number format to be used when reading and writing the

variable.

THE PAST SIMULATION MODEL 25

3 .9 .8 . Upda te and P r o p a g a t e Rou t ines

These routines give the user interface routines access to the update and propagate macros since

the macros are local to the simulator file. The user interface specifies the macros by variable number.

3 .9 .9 . The main simulat ion loop

The last section which is common to all of the simulators that PAST generates is the MainLoop

routine which contains the main simulation loop of the simulator. It is this routine which contains

the stream of code which models the execution of the target machine.

Because MainLoop must loop, the routine begins with labels that can be jumped to at the end

of a cycle. Two types of labels are given: StartLabel is a normal C label which is jumped to by a goto

statement at the end of the MainLoop routine; a longjump label is also provided (by the macro

LABEL) so that the head of the loop can be jumped to from anywhere in the simulator program -

even from outside of the MainLoop routine.

The first statement within the simulation loop is a call to the user interface routines. The rest of

the code in the routine is dependent on whether the simulator is architecture-specific or

program-specific, on the size of the description, and on user specifications.

This section also provides (for the user interface) the total number of variables accessible to the

user, the number of the program counter variable, and the address of the program counter variable if

it is a location in a memory.

3 .9 .6 . Var iable initialization

The next section contains a routine called preset which sets variables to the initial values

specified in the PAST command file (see.Figure 3-2). This routine is called by the user interface

upon initialization of the simulator program and when the user gives the RESET command.

3 .9 .7 . Channe l initialization

The tenth section contains code to initialize the ports for ICONNECTed and OCONNECTed

variables. The initialization may be opening a file or creating an interprocess communication

connection.

THE PAST SIMULATION MODEL
26

3.9,9.1. Architecture-specific Simulators

The basic form of an architecture-specific simulator is a direct translation of the RTM code into

C code, fully expanding all subroutines. But if the description is too big, the C compiler can not

handle the long jumps which may be required 1 2. We have found that much of the cause of the large

amount of code being generated for architecture-specific simulators is the expansion of ISPS

procedures in-line. We allow the user to specify which procedures are expanded 1 3. If the number of

calls made to a procedure in the ISPS description exceeds the amount specified by the user as

allowable for in-line expansion, the procedure is made into a subroutine and the in-line expansions

for that procedure are made subroutine calls instead. We have created an additional section for these

subroutine definitions, labeled Subroutines.

3.9.9.1 Program-specific Simulators

For the program-specific simulators, the rest of the MainLoop routine is just a call to another

routine called MainSwitch. The MainSwitch routine is a switch statement which switches on the

value of the program counter variable. Each case of the switch statement represents an instruction for

the target machine: it is the code generated by PAST by looping through the RTM statement table

for one instruction cycle with the program counter initially set to the value of that case. A switch

statement is not used directly in the MainLoop routine because the statement often becomes too large

for the goto at the end of the simulation loop to jump over. Again because of the jump distance

limitations, the MainSwitch switch statement is sometimes replaced by a statement which switches on

the high bits of the program counter. The cases for this statement call other routines, which we call

subswitch routines, that switch on the actual program counter value 1 4. The subswitch routines, like

the subroutines for the architecture-specific simulators are put in their own section.

12We have summarized our problems with the C compiler in Appendix D.
13TOs is done using the -c option with the PAST program. See Appendix A for an explanation of this option.

flag m trie rAS 1 program, niiuuit. n«5 ~ w r % O M T T . o t A r c

using otofeA routines. These compiler flags should be made mto user-controllable parameters.

THE PAST SIMULATION MODEL 27

Most of the sections of the file generated by PAST contain information from either the RTM

symbol table or the RTM statement table which is essential for simulating the target machine. The

routines other than MainLoop and its auxiliary routines, contain primarily the symbol table

information: variable names, mappings, sizes, etc. The statement table information is contained in

MainLoop and its auxiliaries. A summary of the parts of the simulator file is given in table 3-1.

Simulator
Section Function Primary source

of information
Header source files, creation date user

Update macros keep primary variables up to date symbol table
Propagate macros keep main variables up to date symbol table

PAST global variables temporaries used in calculations symbol table
User global variables - main declarations for ISPS main variables symbol table

User global variables - primary declarations for ISPS primary
(mapped) variables

symbol table

Longjump labels labels to store destination informa­
tion for long jumps

statement table

Varinfo structure information about the ISPS vari­
ables for the user interface

symbol table

preset routine routine to initialize variables user, symbol table
InitChannels routine routine to open ports connected to

ISPS variables
user, symbol table

Update and Propagate routines link to Update and Propagate mac­
ros for user interface

symbol table

MainLoop routine main simulation loop statement table
Subswitch routines routines to break up switch state­

ment for program-specific simula­
tors; auxiliary to MainLoop routine

statement table

Subroutines routines to implement frequently
called ISPS entities for architecture-
specific simulators; auxiliary to
MainLoop routine

statement table

3 .9 .10 . Summary of s imulator s t r u c t u r e

THE PAST SIMULATION MODEL 2*

W ^ m a y be skipped o n a f i r s t ^
for PAST.

3.10. Summary

This chapter has outlined the operation of the PAST simulation system and why we chose to

make it work that way. We have rationalized our decisions with performance estimates, predicting

better than a four times speedup over the ISPS simulator. Chapter 5 will show our estimates to be

conservative, but first, in Chapter 4, our implementation of PAST is described in greater detail 1 5.

IMPLEMENTATION
29

Chapter 4
Implementation

PAST is actually a simulation system made up of five parts: a program which parses the ISPS

description, a program which translates the parse tree into a set of tables, the PAST program which

generates C code, the C compiler (cc) and a library of user interface and input/output routines (the

PAST library). (See figure 4-1.) Most of the work that we did in designing the system was in writing

the PAST program and the PAST library. The ISPS parsing program, ispc, and the translation

program, gdbrtm, are part of the ISPS simulator and required few changes for use with PAST

In this chapter, we discuss the features of ispc and gdbrtm which are important to our

implementation of PAST and then we describe the workings of the PAST program. The PAST

library needs no additional clarification as its routines are relatively straightforward. Our C code

conforms with the specifications for the C programming language given by Kernighan and Ritchie

[20] and should be portable at least between Unix m systems.

4 .1 . The ISPS parser

The parser used with the PAST simulation system was written in C by Julius Thaddeus

Kowalski and is called ispc16. It is based on the parser written in BLISS for the original ISPS

simulation system running under TOPS-10. Both versions of the parser process ISPS descriptions

and produce output in accord with the grammar described in [3]. The output of both parsers is the

same, a GDB (Global Database) file which describes the parse tree for the ISPS description in a

lisp-like format. (See Figure 4-2,) ispc, however, has a few more restrictions on its input than the

original BLISS parser: ispc follows the ISPS grammar more closely, printing warning messages for

deviations from the grammar; ispc does not allow ISPS macros to be as large as in the BLISS version.

Although we made a major change to the ISPS language - the addition of floating point

1 6Th is is the name used by SelvaggL

IMPLEMENTATION
30

PAST
Commands

(may include target '
machine program)

ISPS
Description

i z

ispc
(ISPS Parser)

GDB f i le

gdbrtm
(translator)

RTM f i le

v i PAST

Simulator
C code

1 2

cc
(C compiler)

Compiled
Simulator

User
Program Commands

Data

State
Information

Data

Architecture-specific Simulator

User
Commands

Data

r n t—i

I 5 I I 2 I

State
Information

Data

Program-specific Simulator

Figure 4-1: Block diagram of the PAST simulation system,

capabilities - no changes to ispc were necessary. The ISPS grammar includes a mechanism called a

qualifier which can be used to specify additional information to be associated with entities or

operators for use with application programs. The only restriction on the names of qualifiers is that

they be valid identifiers; qualifiers are listed in the parse tree as they were specified in the ISPS

description1 7. There is a set of predefined qualifiers that specify the number format to be used for

17Except that all characters are converted to a single case, e.g. upper or lower.

IMPLEMENTATION

GDB:E;UNIX ISPS Compiler V2c;markl.isp;21 May 86;16:08:17;
(ISPSDECLARATION

(EDECLR
(EHEAO MARK1)
(SECTIONLIST

(SECTION MP.STATE (EHEAO M NIL (: 0 8191)(: 31 0)))
(SECTION PC.STATE

(EDECLRLIST
(EHEAO CR NIL NIL (: 12 0))
(EHEAO ACC NIL NIL (: 31 0))))

(SECTION INSTRUCTION.FORMAT
(EDECLRLIST

(EHEAD PI NIL NIL (: 15 0))
(EDECLR

(EHEAD F NIL NIL (: 0 2))
(EHEAD PI NIL NIL (: 15 13)))

(EDECLR
(EHEAD S NIL NIL (: 0 12))
(EHEAD PI NIL NIL (: 12 0)))))

(SECTION INSTRUCTION.EXECUTION
(EDECLR

(EHEAD ICYCLE NIL NIL NIL (QSET MAIN))
(REPEAT

(NEXT
(LABELLEDACTION START
(_ (EACCESS PI)(EACCESS M NIL (EACCESS CR)(:a : 15 0))))
(DECODE

(EACCESS F)
(NUMBEREDLIST

(: a n #0 (_ (EACCESS CR)(EACCESS M NIL (EACCESS S))))
(:-n #1 (_ (EACCESS CR)

(+ (EACCESS CR)(EACCESS M NIL (EACCESS S)))))
(:*n #2 (_ (EACCESS ACC)(- - (EACCESS M NIL (EACCESS S)))))
(:»n #3 (_ (EACCESS M NIL (EACCESS S))(EACCESS ACC)))
(:»n (: #4 #5) (_ (EACCESS ACC)

(- (EACCESS ACC)(EACCESS M NIL (EACCESS S)))))
(:-n #6

(IF
(LSS (EACCESS ACC)0)
(_ (EACCESS CR)

(+ (EACCESS CR)1))))
(:»n #7 (EACCESS STOP (ACSET)))))

(_ (EACCESS CR)
(+ (EACCESS CR)1)))))))))

Figure 4-2: Example of the Global Database (GDB) format

arithmetic operations (TC, OC, SM, and US). To add floating point to the ISPS language we added

another number format qualifier, which we named FP for Floating Point

4.2. gdbrtm - the GDB to RTM translator

gdbrtm converts GDB files into RTM files that contain tables listing the necessary operations to

simulate the described architecture on a hypothetical 3-address machine called the Register Transfer

Machine. The Register Transfer Machine was designed specifically for use with ISPS and has about

130 operations sufficient for modeling machines which can be described in ISPS. The list of Register

Transfer Machine operations is just one of the tables - the statement table - in the RTM file. The

IMPLEMENTATION 3 2

B

Bit-Word Sets

Formats

D

Mapping Information

Successor Vectors

Name Table

Names of bits and word ranges for symbol declarations
that have word or bit structures, e.g. for
foofO:127K31:0>, the entry would be "31 0 0 127"

Lists symbols which arc the formal parameters associat­
ed with ISPS procedures, (not used by PAST.)

Lists primary variables which map to each main vari­

able.
Lists choices for the conditional RTM statements (IF
and DECODE) and gives statement table entry associ­
ated with each choice. ^

Lists names of the symbols.

The Unix version of gdbrtm is written in Pascal and produces the tables in a human-readable

ASCII format The BLISS version, called GDBRTM, produces the same tables, but as a MACRO-10

file which is assembled into object code for the DEC-10.

PAST uses a version of gdbrtm that we modified to handle floating point operations. The FP

qualifier was added to the list of predefined qualifiers and 14 new floating point operations were

added to the set of Register Transfer Machine operations. We did not have to make any structural

changes to the gdbrtm program, but we changed array sizes and added extra variables and cases

throughout the program. The code that we changed was placed within #ifdef constructs so that the

changes can be easily spotted and can be removed by changing a single definition.

RTM file also contains a symbol table, a nametable, and seven other tables listing additional

information about the statements and symbols and how they are related. The contents of the 10

tables are summarized in Table 4-0 and the tables are described in detail by Barbacci e l al. [4].

IMPLEMENTATION
33

The PAST program is the part of the PAST system which generates the simulator code. Its

inputs are the RTM file created by gdbrtm and specifications from the user, provided in a file or

given interactively. Its output is the simulator file described in Section 3.9.10.

We will describe the code generation as a three-phase process. In the first phase, the

initialization phase, variables are initialized, the user specifications are processed, and symbol and

statement tables are built from the information contained in the RTM file. The second phase is the

preprocessing phase: PAST loops through the RTM statement table gathering information and

modifying some of the operations to prepare for code generation. In PASTs final phase, the code

generation phase, PAST generates C code from the information contained in the information

contained in the symbol and statement tables. Before we describe PASTs three phases, we will

describe the data structures which PAST uses to store the great amount of information that it handles.

4 . 3 . 1 . Data S t r u c t u r e s

PAST stores most of its data and state information in lists of structures. For the most part,

these structures fall into four categories: those that make up the symbol table; those that make up the

statement table; those that are dynamically created and destroyed as the RTM statements are

processed; and those which store the state of the Register Transfer Machine when conditional

sections of RTM code are entered. Many of the structures used in PAST are adapted from those used

in the ISPS simulator. In this section we describe the major structures used in the PAST program and

how they interact

4.3.1.1. The Symbol Table

The symbol table is made up of a list of structures containing information about the individual

symbols which are used in the ISPS description. The main structure describing a symbol is the

Symbol structure shown in Figure 4-3. It contains the information extracted from the symbol table in

the RTM file plus some additional information specific to PAST.

The information from the RTM file is described in Barbacci e t al. [4] and is stored in the

following fields of the structure: SyType, SyFlags, SyDefinition, SyLabel, Sylncrement, SyBitCount

(sybitcnt), SyBitWordPtr (sybwnptr), SyMapPtr, SyName (sypname), SyWordCount (sywrdcnt), and

SyFather. Some of these fields are implemented as pointers to other structures so that they can be

easily manipulated. The SymbolFlag (SyFlags) structure shown in Figure 4-4 holds the flags

4.3. PAST - the code generator

IMPLEMENTATION
34

struct Symbol {
BYTE SyType;
BYTE SyCType;
SYFLAG_TYPE SyFlags;
SYMBOL_PTR SyOefinition,

SyMain,
SyFather;

STATEMTJ>TR SyLabel;

int Sylncrement,

} ;

SyBitCount.
SyWordCount,
SyBitOffset.
SyWordOffset,
SySize;

BWV_PTR SyBitWordPtr;
WV_PTR SyStaticPtr;
WV_PTR SySetPtr;

Wv_PTR SyChangePtr;

SYLIST_PTR SyMapPtr;
NAME_PTR SyName;
unsigned int *SyValue;
int SyNumber;

int SylConnect, SyOConnect

W_PTR SyWConstant;

SYMBOL_PTR SyNext;

/* type of symbol.
/ • LREG. REG. LMEM, MEM.
/* boolean flags.
/ • local parent if primary.
/ • main pointer if primary.
/ • context.
/* associated statement table
/* entry.
/* also used to store address
/* currently in temporary.
/* number of bi ts in word.
/* number of words.
/* offset from int boundary.
/* offset from main symbol.
/ • number of integers.
/* range labels.
/* ptr to s ta t ic range l i s t .
/* pointer to l i s t of locations • /
/ • which have been in i t ia l ized . • /
/ • pointer to l i s t of locations */
/* which have been changed in * '
/* the current level of
/ • rtmloop().
/* dependent symbols.
/* symbol name.
/* simulated memory for symbol.
/* number which user interface
/* references symbol by.

; / • port numbers to which symbol
/* is connected.
/ • structure to store wildcard
/ • constants.
/* next symbol in symbol table .

•/

•/

•/

•/

•/

•/

*/

•/

•/

•/

•/

•/

•/

•/

•/

•/

•/

/

•/

•/

•/

•/

•/

•/

•/

•/

•/

•/

•/

•/

Figure 4-3: Symbol structure.

provided in * e RTM ffle and some Cher nags which we ha»e defined. Some of <hese flags are

remnants from the ISPS simulator and are noc used by PAST.

struct Symbo
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned

lFlag {
Refactual :
Primary
Secondary :
Refformal
fault :
Trace
Undef :
Bitaddr
IConnected :
OConnected :
ProgCtr
Static
Set
Valid
AlwaysValid:
Change
Reverse
Unique

program counter
s ta t i c marker
set marker
valid marker
always valid marker
value was changed

' bwv was reversed.
' name has been made unique.

•/

•/

•/

•/

•/

•/

•/

Figure 4-4: SymbolFlag structure.

IMPLEMENTATION 35

The Primary flag is used to mark a symbol which maps onto another symbol. The SyDefinition

field of a primary symbol points to another symbol tabic entry which contains the mapping for the

primary symbol onto the other symbol. The symbol which holds the mapping is called a secondary

symbol and is marked with the Secondary flag; its SyDefinition field points to the structure for the

symbol which the primary symbol maps to. A primary symbol may map onto another primary

symbol. By following the chain of primary and secondary symbols, eventually a symbol which is not

a primary or secondary is reached. This symbol we have named a main symbol and we have created a

the SyMain field of the Symbol structure to point to the main symbol for each symbol so that it is not

necessary to follow the primary/secondary chain each time access to the main symbol is required.

The SyWordOffset and SyBitOffset fields of the Symbol structure are the offsets of the primary

symbols from their main symbols in integer words and bits from the integer word boundary,

respectively.

Several other fields were included in the Symbol structure to save computation when

information must be accessed. The SySize field determined from SyBitCount is the number of

integers which is needed to store the value of a symbol. The SyCType field, determined from

SyType and SySize, is valid only for symbols that are variables or constants (not labels) and specifies

the type of C variable which is needed to hold the value of the symbol:

• WORD - the value of the symbol fits in a single integer word. The declaration for the
symbol in the generated code would be "unsigned int x;".

• LWORD - the value of the symbol requires multiple integer words for storage. The
declaration would be "unsigned int x[numberof integer words]'".

• ARRAY - the symbol is a memory and each of its values fits in a single integer word. The
declaration would be "unsigned int x[memory size];".

• LARRAY - the symbol is a memory and each of its values requires multiple integer
words for storage. The declaration would be "unsigned int x[memory size][number of
integer words];".

Other notable fields of the Symbol structure are SyStaticPtr, SySetPtr, and SyChangePtr which

parallel the Static, Set and Change flags in the SymbolFlags structure. To explain these fields, we

must first define some terms:

• A symbol or memory location is static if it has been declared by the user as having a
constant value throughout the simulation using the STATIC command.

• A symbol is set if its value is currently known by PAST, e.g. a static location is always set

IMPLEMENTATION 36

• A symbol has been changed if its value has been set to a new value, known or otherwise.

It is important to known whether a symbol's value has been changed within a conditional

section of RTM code so that PAST can mark the symbol as not set, i.e. its value is not

known, for the code after the conditional section.

If a symbol is static and is a register or flag, the Static flag is set For symbols that are memories,

SyStaticPtr points to a list of structures specifying the address ranges where the memory is static. In a

program-specific simulator, structures listing the locations in memory containing the program code

would be included in the SyStaticPtr list The Set flag and SySetPtr field mark a symbol that is set

and the Change flag and SyChangePtr field mark symbols that have been changed within the current

level of the loop which processes the RTM operations.

The Valid flag is used to keep track of whether a primary symbol is up-to-date with its main

symbol. When the value of a primary symbol is needed and its Valid flag is not set, the symbol is

updated from its main symbol, and the Valid flag is set Whenever a main symbol is changed, the

Valid flags of all of the symbols which map to it are cleared because their values may no longer be

valid. Also, when the value of a primary symbol is changed, the value is propagated back to its main

symbol and all of the Valid flags for the other primaries which map to that main symbol are cleared.

Main symbols are always kept up-to-date, but primaries are only updated as needed, so the Valid flag

is used to mark the primaries which are valid. Non-primary symbols are always considered to be*

valid.

The other fields of the Symbol structure are explained adequately in Figure 4-3.

4.3.1.1 The Statement Table

Like the symbol table, the statement table is implemented as a list of structures. The Statement

structures (Figure 4-5) are less complicated than the Symbol structures because they hold no dynamic

state information; the statement information is static during PASTs code generation phase.

Most of the information in the Statement structure comes direcdy from the RTM file. Barbacci

e t al. [4] describes the following fields of the structure: StFlags, StOperation, StDestination,

StSourcel, StSource2, StSCount, StMergeLabel, StLabel. The stslist field described by Barbacci is

implemented as two fields, StSelVec and StList, in the Statement structure because different control

operations require different amounts of information.

The flags associated with a Statement structure are stored in the StatementFlag structure

(Figure 4-6). Most of the flags were defined for the ISPS simulator and are not used by PAST. Three

of the flags were defined specifically for PAST:

IMPLEMENTATION

struct Statement {
int StOperation;
SYMBOL_PTR StDestination,

StSourcel,
StSource2,
StLabel;

STATEMT_PTR StMergeLabel;
int StSCount,

StPTime,
StATime;

SELECTVEC_PTR StSelVec;
STLIST_PTR StList; /"
STFLAG_TYPE StFlags;
STATEMT_PTR StFwdLink,

StBackLink;

/• used for SELECT ops V
used for IF,DIVERGE,BSELECT,BRANCH

struct StatementFlag {
unsigned Block
unsigned Process
unsigned Prcedure
unsigned Critical
unsigned Ptime
unsigned Fastrtm
unsigned Needsrcl
unsigned Needsrc2
unsigned Notime
unsigned Break
unsigned Trace
unsigned Lock
unsigned Ignored
unsigned Opaque
unsigned Selectlf

unsigned Routine

unsigned Label

Figure 4-5: The Statement structure.

1;

1:

1:

1;

/

/

/'
/'
/*

/ <

/«
/*
/*
/*
/•

/•

/•

/*
/*
/ *
/ *
/*
/*
/•

/•

/*

• body was a labelled block
1 PROCESS qualifier
1 entry point for entity body
' CRITICAL qualifier
1 Process/Procedure in effect
' this op/on can be in line
operation access SRC1
operation access SRC2
This RTM op/on takes 0 time
Break flag
Trace flag
used to lock param.passing
serialize joins
disables read/write/ex tally
use if statements to
represent a SELECT operation
if a called entity, expand
the code inline (FALSE) or
replace with a subroutine,
the statement is jumped to
by a LEAVE, TERMINATE,
RESTART, or RESUME operation.*/

*/
V
•/
•/
V
•/
*/
•/
V
V
•/
V
•/

•/

V
•/

*/
V
•/
•/

/

Figure 4-6: The StatementFlag structure.

• The Selectlf flag is used to mark SELECT operations - the RTM operations which
implement ISPS DECODE statements - which are to be implemented using if
statements rather than switch statements.

• The Expand flag marks a called entity which is to be expanded in-line rather than being
implemented as a function call. (In-line expansion is discussed in sections 3.9.9.1 and
4.3.4.6.)

• The Label flag marks the destination statement for the jump operations LEAVE,
TERMINATE, RESTART and RESUME. These jump operations are implemented with
the longjmp function so a setjmp function call must be inserted at the destination of the
jump.

doubly linked list

38

IMPLEMENTATION

4.3.1.3. Dynamic Structures

We call dynamic the structures which arc changed with every RTM statement or which are

frequently created and destroyed. Two important structures fall under this category.

The RTM program counter is a pointer to the RTM statement currently being processed. A list

of ringstructurc structures implements a stack which stores the values of the RTM program counter

for several contexts. The top structure in the stack holds the current RTM program counter value

and changes every RTM cycle. The only other important field of the ringstructure structure stores

the context in which the program counter is defined, e.g. the ISPS entity in which it is located.

For convenience and efficiency we have defined a structure, called the codestruct structure, for

storing information about the operands associated with an RTM statement (Figure 4-7). At the

beginning of an RTM statement requiring source operands, the getsource function is called for each

operand to create a codestruct. Also, the geidest function is called to create a codestruct containing

information about the destination operand. Much of the information in the codestruct structure for

an operand is the same as the information contained in the Symbol structure for the operand, but

fewer pointer dereferences are needed to access the information. Also, there are only three types of

codestruct structures, in contrast to the ten types of Symbol structures, and these three types provide

information that is more relevant to. code generation than is provided by Symbol types. The

getsource function determines whether the value of a symbol is known, and if so, replaces the variable

with its value in the returned codestruct structure; the type for a symbol of known value is

CONSTANT. If the value of a symbol is not known, it is typed REGISTER if it is a single word or

MEMORY if the symbol needs an address to determine its value. For a destination operand, it is

usually not important whether the value of the symbol is known 1 8, so getdest only returns structures

with REGISTER and MEMORY types. Another benefit of the codestruct structure is that it creates

a template which can be used with printf when printing the sources and destinations. The template

contains the name of the symbol and spaces for the necessary indices for accessing its contents (e.g. if

it is a memory); if the indices are known, they are included in the appropriate locations in the

template.

deals with the Symbol structures directly,

IMPLEMENTATION 39

struct codestruct {
int CodeType;
int CodeSize;
int CodeBitCount;
int CodeOffset;
int Codelndex;
CODEFLAG_TYPE CodeFlags;
unsigned int *CodeValue;
char *CodeString;
SYMBOL J>TR syptr;
C0DE_PTR next;

} ;

Figure 4-7: The CodeStruct structure.

4.3.1.4. State Structures

For program-specific simulators, it is essential that the information known about the contents

of the variables is not lost after a conditional section of RTM code (e.g. the code within an ISPS

DECODE or IF statement) because if certain information is lost, a general simulator may be

produced for each instruction of the program; if a general simulator is produced for each instruction,

the simulator preparation time increases greatly, and the execution time of the simulators is increased

as well. We thus save the entire known state of the Register Transfer Machine before each

conditional section is entered and restore the state, adjusted for the changes which occurred in the

conditional section, after the conditional section is exited We store the state information in the State

structure shown in Figure 4-8.

struct State {
unsigned int **flags; /* valid, set. and change flags */

/• for all symbols. •/
MEMCHUNK_PTR memchunk; /* memory state, saved memory V

/* contents. •/
WVLIST_PTR memstate; /* list of memory locations •/

/* where contents were known. */
WVLIST_PTR memchange; /• list of memory locations •/

/* whose contents have been */
/* changed at the current •/
/* rtmloop() level. V

Figure 4-8: The State structure.

The state information is stored in the state structure as four lists. The first list, the flags field,

stores the set, valid, and change flags for all of the symbols. They are stored as pointers to unsigned

integers because the saved set flags double as pointers to the values which the set symbols had before

state was saved. (If the pointers are non-zero, then the corresponding flag was set; otherwise the flag

was not set)

The second field of the State structure points to a list of structures which store the values of the

memory locations which were known when state was saved. The memory values-are stored in blocks

40
IMPLEMENTATION

structure for temporary storage of a section of ™ *
/• used for saving machine state before entering
/• section of rtm code.

struct MemChunk {
int size; /* amount saved in this chunk. •/
unsigned int *value; /* saved value of the memory. */
unsigned int '"location; /* where the values came from. •/
struct MemChunk *next; /* next memchunk structure. */

}:
Figure 4-9: The MemChunk structure.

The memstate and memchange fields of the State structure store the addresses of the memory

ranges which had been marked as set and changed, respectively, before state was saved. The range

information is stored in lists of structures, called WordVectorList structures, each of which contains

the pointer to the symbol to which the range information pertains and a pointer to a list of structures

- WordVector structures - containing pairs of numbers defining set or changed ranges. The

WordVectorList and WordVector structures are shown in Figure 4-10.

/* structure for storing pairs of numbers, or single numbers •/
/• in a linked list. •/

struct WordVector {
int LeftWord;
int RightWord;
struct WordVector *next;

} :
/* structure for storing lists of number pairs associated with •/
/* particular symbols. Each structure stores a list for a */
/• particular symbol. */

struct WordVectorList { w h i c h t M s ./
SYMBOL_PTR syptr; ^ the^sy^

/• list of number pairs which •/ WV.PTR wvptr; ^ ^ c u r r e n t s y m b o l . .,
struct WordVectorList -next;/- next wordvectoMist struct.

Figure 4-10: The WordVector and WordVectorList structures.

Note that there is no list containing validity information for memories. That is because PAST

does not allow primaries to be memories. When one memory maps to another, the primary memory

is converted by past into a register which maps to the main memory. The mapping function in this

case is a little more complicated than a register to register mapping would be, but duplication of

entire memories is prevented.

as .argc as there »er= eontiguous seetions of known »a,ue; the stnrcture wnieh stores these memory

chunks is called the MemChunk structure and is shown in Figure 4-9.

IMPLEMENTATION

4 .3 .2 . Initialization

41

PASTs initialization phase is very similar to the initialization of the ISPS simulator because

both programs must process the RTM file. In fact, most of PASTs initialization code for building

the symbol and statement tables from the RTM file was adapted from ISPS simulator code. Other

functions performed in the initialization of PAST are setting variables to initial and default values,

parsing the command line arguments to PAST, allocating memory to hold the values of the RTM

symbols, and processing commands given by the user.

The mainline code for PAST is shown in Figure 4-11. The initialization phase covers the

routines from the start of the main routine up to and including the ConnectChannels routine. Below

we describe the steps in PASTs initialization phase in the order in which they occur.

4.3.2.1. Default parameters

The defaults routine sets up the initial file pointers for the input and output streams and sets

variables that may be affected by the arguments to PAST to their default values.

4.3.2.2. Argument parsing

getargs processes the command line arguments given to PAST when invoked by the user. The
valid arguments to PAST are described in Appendix A.

4.3.2.3. Command files

PAST keeps the file pointers to all open command files on a stack. The pushreader routine in

main initializes the stack to the pointer to the initial command file (which defaults to stdin).

4.3.14. Variable initialization

The initialize routine initializes variables which do not depend on the inputs to PAST. It also
initializes lists to NULL pointers.

4.3.2.5. Reading the RTM file

The InitTables routine builds the symbol and statement tables from the information contained

in the RTM file. The name of the RTM file is one of the few required arguments to PAST, and if the

name is not given in the command line arguments, the user is prompted for it by the InitTables

routine. Once the name of the RTM file is known, InitTables calls another routine called BuildTables

which procedes to build the tables. InitTables and almost all of the routines in its call tree were

adapted from code from the ISPS simulator; most of these routines were only changed slightly.

IMPLEMENTATION
42

main(argc, argv)
int argc;
char **argv;

/* set up the default parameters.

defaults();
/* process the arguments to the program. Set actual
/• parameters.

getargs(argc. argv);

/• initialize input file pointer.

pushreader(ifp, OFF, 1); /* rd from tty, N0ECH0, level 1 •/

/* initialize variables and structures,

initialize();
/• read in the rtm file and build the Symbol and Statement
/• tables.

InitTables(rtmfilename);

/• allocate simulated memory.

allocate();

/* get past commands from a file or from the user. */

getpst();
/* determine whether simulator is to be general or program- */
/* specific. If the PC variable and a code range have */

a c n o r ^ f i c simulator. */

*/

*/

/• SpeCITIC. IT LUC rv, w«. _
/* been specified, then produce a specific simulator.
/* Otherwise produce a general one.
if (pc_ptr !• NULL && code_ptr !- NULL)

specific • TRUE;
else

specific • FALSE;

/• connect and number the input and output channels.

ConnectChannels()r

/* preoptimize the statement table.

Preprocess();

/• translate the RTM code and memory contents to C code.

translate();

/* close files and exit.

Exit(EXITDONE);
}

Figure 4-11: PAST mainline code.

IMPLEMENTATION 43

Although PAST is a simulator generation program and not a simulator, it still must keep track

of values of ISPS symbols so that it can precalculate results and select conditional options when

enough values are known. The allocate routine allocates memory for storage of the symbol values.

One of the most significant differences between PAST 1 9 and the ISPS simulator is in the way

that they allocate memory. PAST allocates memory for each ISPS memory word or register on an

integer word boundary. When the ISPS simulator allocates simulated memory for an ISPS memory,

the first memory word is aligned with an integer word boundary, but the rest of the memory words

are bit-aligned, e.g the least significant b i t of a memory word is directly adjacent to the most

significant bit of the previous memory word whether the ISPS memory had 32 bit words or not The

ISPS simulator's memory allocation scheme is more efficient in use of memory than the PAST

memory allocation, but the ISPS scheme makes accessing the simulated memories more complicated.

It is probably because of this greater complexity that the ISPS simulator accesses simulated memories

and registers one bit at a time rather than using coarser grain masking operations as PAST does.

PAST allocates memories for primary variables in much the same way as the ISPS simulator

does; the memory pointer for the primary pointer is set to the appropriate word of the corresponding

main variable and the offset of the primary from the word boundary for the main variable is

recorded. This differs from the allocation scheme for the primary variables in the simulators

generated by PAST, in which a primary variable is a copy of the corresponding field of the main

variable (see Section 4.3.1.1).

4.3.2.7. PAST Commands

The getpst routine is the user interface to the PAST program. The PAST user interface is based

on the user interface to the ISPS simulator, but has a different set of commands. The PAST

command set is listed below and is described in detail in Appendix A.
CODE OCONNECT START
END PC STATIC
ICONNECT QUIT
MAKE SETVALUE

The getpst routine processes commands supplied by the user either from a command file or

interactively, getpst first tries to open a command file with the same root name as the RTM file and

19
The simulators generated by PAST allocate memory in the same way that PAST does.

4.3.2.6. Memory Allocation

IMPLEMENTATION 44

the extension ".pst", but if it cannot find the command file, it enters a mode in which the user can

enter commands interactively. The only command mandated by PAST is the START command

which tells PAST where in the ISPS description the target machine cycle begins. If the command file

is found by PAST but docs not contain a START command, PAST will enter its interactive mode and

request a START command from the user. Either way the interactive mode is entered, PAST will not

leave the interactive mode until a START command is supplied.

If only the START command is supplied by the user, PAST will make an architecture-specific

simulator. If the program counter and a code range are supplied, using the PC and CODE

commands, respectively, PAST will make a program-specific simulator2 0. The next section in the

main code checks whether the program counter and a code range have been specified and sets the

flag for the simulator type (specific) accordingly.

4.3.2.8. Input and output connections

The ConnectChannels routine moves information about input and output connections from a

list created by the user interface routines (for the ICONNECT and OCONNECT commands) into

the symbol table. The informadon is not put into the symbol table directly to permit the user to

change his mind about variable connections while in the interactive mode.

4 . 3 . 3 . P r e p r o c e s s i n g

The preprocessing phase of PAST is made up of a single function - Preprocess - which loops

through the statement table collecting information about and making alterations to the statements.

The preprocessing phase could include preoptimizations, but, currently, Preprocess only does

replacements which are essential to the code generation phase. Preprocess is implemented as a loop

that steps through the statement table. Inside the loop is a switch statement that switches on the

RTM operation of the current statement The following paragraphs describe the functions associated

with each of the RTM operations which requires special preprocessing.

The CALL operation One of the conditions which PAST considers the end of a target machine

cycle is reaching a return statement (PEND) for an ISPS entity which PAST did not call previously.

We permit the user to specify any labelled ISPS entity as the starting point of a target machine cycle,

IMPLEMENTATION 45

including labelled statements defined within subroutines. However, gdbrtm makes any labelled

entity into a subroutine. Thus, if the labelled entity is a single statement within a subroutine, PAST

will treat that statement as the entire target machine cycle. To prevent this from happening,

Preprocess makes sure that the start label points to a single RTM statement rather than a subroutine

by expanding the subroutine marked by the start label in-line. This is implemented by searching for

the CALL statement which calls the entity with the name specified by the user as the starting label.

That CALL statement is replaced by the contents of the called entity. Similarly the CALL to the

entity named by the user as the end of the target cycle is replaced by the contents of the entity that it

calls.

Another preprocessing function association associated with the CALL statement is the counting

of the the number of times each ISPS subroutine is called. The call count for each subroutine is

needed to determine whether the code generation phase should expand the routine in-line or make it

a C function. (See sections 3.9.9.1 and 4,3.4.6.)

4.3.3.1. The CONNECT operation

In the ISPS language, parameters to functions are usually passed by value. The values are

copied into formal parameter variables local to the ISPS function and changes to the formal-

parameter variables within the function do not effect the original variables, the actual parameters.

However, the ISPS language includes a qualifier - REF - which also lets the user specify that a

variable should be passed by reference, gdbrtm creates a special RTM statement called CONNECT

which marks a variable as passed by reference. The way that we implement the CONNECT

operation is by replacing it with operations that move the actual parameter value into the formal

parameter before the function call and adding operations that move the formal parameter value back

into the actual parameter after the function has returned.

4.3.3.1 The NEG2C operation

NEG2C is the mnemonic for twos complement negate. In the simulators generated by PAST,

all variables are implemented as unsigned integers. A standard way to do a twos complement negate

with unsigned numbers is to invert the bits of the number and then add one. We implement NEG2C

by replacing it with the two operations NOT and INCR (not and increment).

IMPLEMENTATION 46

4.3.13. LEAVE, RESTART, TERMINATE, RESUME

LEAVE, RESTART, TERMINATE, and RESUME arc all special types of goto operations

which jump out of ISPS entities (subroutines). Because we sometimes implement ISPS entities as C

functions, we can not use the normal C goto statement to implement these jumps. Instead we use a C

routine called longjmp to make the jumps. This routine requires that the destination of the jump was

marked with another routine called setjmp which must have been executed previously to record the

stack state. The destination must be marked before the jump is made. Preprocess searches for

LEAVE, RESTART, TERMINATE, and RESUME and marks the RTM statements that are their

destinations as requiring setjmp routines. (See Section 3.9.4.)

4 .3 .4 . Code Genera t ion

The code generation phase of PAST parallels the structure of the simulator produced by PAST.

First generated is the program header; then macro definitions, variable declarations, and initialization

routines; and, finally, the main simulation loop is generated. The sections which contain symbol

table information (see Figure 3-1) are generated by looping through the elements of the symbol table

and printing the necessary information. These symbol table sections have been described in Chapter

4, and their generation is reasonably straightforward. The remaining sections - the MainLoop

routine and its auxilary routines - are produced by following the flow of control of the RTM

statements and generating C code to represent each RTM statement processed. In the next few

paragraphs we will describe some of the details of the generation of code for MainLoop and its

auxiliaries.

4.3.4.1. Simulation loop framework

The generation of architecture-specific and program-specific simulators differs primarily in the

framework of the simulation loop. To produce an architecture-specific simulator, PAST generates

the frame described in Section 3.9.9.1, and then calls rtmloop which steps through the RTM

statements in the statement table generating C code until one target cycle has been completed. A

program-specific simulator is produced by generating the frame described in Section 3.9.9.2 and

calling rtmloop for each statement of the target program to be simulated. The code generated by

rtmloop for program-specific simulators only differs from that generated for architecture-specific

simulators because the values of more ISPS variables are known before entering rtmloop for the

program-specific simulators, e.g. the value of the program counter and the values of the memory

locations storing the program code.

IMPLEMENTATION

4.3.4.2. Variable state

47

As mentioned in Section 4.3.1.1, PAST keeps track of whether ISPS variables are static, set,

changed at the current rtmloop level, and valid. PAST depends on this information so that it can

produce efficient code. If a variable is static (always set) or set, PAST can replace the variable with its

value when using it in calculations; this allows PAST to precompute results, saving time when the

generated simulator is running. Knowing whether a variable is valid saves PAST from having to

generate code to extract primaries from main variables whenever the primaries are accessed, reducing

both simulator generation time and simulator run time. The changed flag is used to keep track of

variables which have been changed within conditional sections of RTM code so that in the code

following the conditional sections, PAST will not treat unknown variables as known and vice versa.

To keep the variable state information valid, a routine called MarkSet is called every time a variable

is changed to update the flags for the variable. It is very important that the state information is not

lost for program-specific simulators because lost information can make the simulators grow to

unmanageable sizes.

4.3.4.3. Flow of control

As mentioned in Section 3.4, PASTs cycle is the target machine instruction cycle. The cycle

begins at a point in the ISPS description specified by the user as the start of the cycle and ends at

another point in the description specified by the user (or at the starting point if the description

actually contains a cycle). These points, which must be labeled in the ISPS description, are

represented as labeled RTM statements in the statement table. Processing for either an architecture-

specific simulator or a cycle of a program-specific simulator begins at the RTM statement labeled as

the starting point. The flow of control from the starting point is specified by the RTM operations;

rtmloop interprets the RTM statements starting from the specified starting statement. Certain RTM

statements explicitly specify the next statement to jump to; otherwise, control is passed from one

RTM statement to the next statement in the linked list making up the statement table. Processing for

a target cycle (the entire architecture-specific simulator or a single cycle of a program-specific

simulator) ends when one or more of the following conditions is true:

• The RTM statement labeled as the end of the target cycle is reached

• The RTM statement labeled as the start of the cycle is reached again. This may occur if
the ISPS description actually contains a cycle.

• An unmatched PEND statement is reached. An unmatched PEND is a return from a
subroutine which was not called.

• A RTM STOP statement is reached.

IMPLEMENTATION 48

nctri e r r ond BRANCH - but these are just special cases of the 2 W are two other conditional control operations - BSELECT and BRANCH
SELECT operation.

^Notetotthiscallismdefromrrm/oopsorfm^pisa^rsiveroutme.

• A control statement which cannot properly be handled is reached. Currently, this case
only occurs in program-specific simulators for the RTM goto operations RESTART.
RESUME, TERMINATE, and LEAVE. These operations arc difficult to handle because
the destinations for the gotos must be labeled in the generated C code.

Because PAST follows the flow of control of the RTM statements, the code that it generates is

already properly ordered, so it is not necessary to generate C code to represent most of the control

operations. Among the operations in this category are CALL, PEND, PBEGIN, LOCK, SMERGE,

PMERGE. (Some of these were mentioned in Section 3.5.1.) To follow the flow of control of the

RTM statements, PAST must imitate the actions which the Register Transfer Machine would take.

For example, to imitate the CALL operation, PAST calls another level of the rtmloop routine; the

PEND operation marking the end of a subroutine is implemented as a return from the rtmloop

routine.

Not all of the RTM control operations can be imitated at code generation time. The

conditional control operations, IF and SELECT 2 1, must sometimes be imitated in the generated code

because they depend on values of the ISPS variables.

4.3.4.4. Conditional control operations
Conditional control operations depend on the values of ISPS variables. The handling of a

conditional operation depends on whether the value of the condition variable is known or not If the

value of the variable is known, PAST selects the correct branch of the conditional operation and

generates the code for that branch by calling another level of the rtmloop routine . If the value is not

known, PAST generates conditional C code and calls rtmloop to produce code for each of the

branches of the conditional RTM operation.

PAST generates a C //statement to represent an RTM IF statement with an unknown switching

value. An RTM SELECT statement is represented by either a C switch statement or by cascaded if

statements depending on how many cases the SELECT has and how many values of the switching

variable fall into each case. We have tuned PASTs selection of either switch or //statements for the

version of the C compiler that we have available; the parameters for deciding whether to use a switch

statement or //statements are set with # define statements in the PAST code.

IMPLEMENTATION 49

There are additional complications to generating conditional C statements from conditional

RTM statements. PAST must insure that when it generates the code for each case of a conditional

statement, it starts with the same information about the state of the ISPS variables (see Section

4.3.1.1), and that after code has been generated for all cases of the conditional statement, important

information has not been lost. The state of PASTs symbol table may be changed by processing the

branch cases of the conditional, so PAST can not process the cases sequentially without restoring the

state of the symbol table between each case. Thus, before processing any cases of the conditional

RTM statement, PAST saves the state of the symbol table in a State structure (see Section 4.3.1.4);

then, before processing each of the cases, PAST restores the state of the symbol table to the saved

values. To insure that PAST does not lose important information - e.g. the value of a variable

holding the current instruction for a program-specific simulator - PAST also keeps track of the

cumulative changes to the symbol table made in processing the cases. The cumulative changes are

saved in a State structure. After all of the cases of the conditional RTM statement have been

processed, all of the variables which were marked as changed in the cumulative State structure are

marked as not known in the symbol table. If PAST did not keep track of the cumulative changes, it

would have to assume that all variables were changed, and would lose much information.

The routines which save and restore variable state before and after entering conditional sections

of RTM code are the most costly of PASTs routines at PAST run-time. Each of these routines must

loop through the entire RTM symbol table reading and writing flags, and copying values. For

memory variables, the routines must also process lists of address ranges and copy large regions of

memory. This can be quite wasteful because many conditional statements only effect a small number

of the ISPS variables. In future versions of PAST, the cost of these routines should be reduced. One

possible way to do this is to look ahead into the branches of a conditional statement before processing

it to determine which variables are affected by the conditional statement; then it would only be

necessary to save the states of the affected variables.

4.3.4.5. Data, arithmetic, logic, and shift operations

We chose to declare all of the C variables representing the ISPS variables as unsigned integers

(or arrays of unsigned integers) because unsigned integers were the easiest C types from which we

could construct the standard ISPS data types (Unsigned, Twos complement, Ones complement, Sign

Magnitude). For the standard ISPS data types all of the data-related operations are constructed from

unsigned C operations. Floating point data is also stored in unsigned integers but is casted into

floating point numbers when doing calculations so that the simulators produced by PAST can take

advantage of the host machine's floating point operations.

IMPLEMENTATION 50

2 3 W e have described the problems that we found in Appendix D.

Our goal with the data, arithmetic, logic,' and shift operations was to generate as few

instructions as possible to implement the instructions. PAST attempts to do as many computations at

code generation time as are possible from the known data. There are three cases which can occur for

an RTM data operation: all of the source data values are known; only some of the source data values

are known; none of the source data values are known. For the case where all source values are

known, PAST precomputes the result and just generates code to set the destination variable to the

result When none of the source values are known, PAST generates code which will do the necessary

operations to implement the RTM operation. When only some of the source data values are known,

PAST tries to minimize the number and complexity of C statements generated, but in the worst case

produces the same code as when none of the source values are known except that values are

substituted in for the known variables. An example of a case where PAST can compute a result from

only partial knowledge of the source operands is a multiplication of an unknown value by zero;

PAST just generates code to set the destination variable to zero.

Because PAST must handle so many cases, the PAST code for handling some of the RTM

data-related operations gets quite complicated. In future additions to and versions of PAST, attempts

should be made to generate efficient code in a more structured fashion.

We found it very difficult to write code to generate efficient C code to implement some of the

more complicated operations, such as the shift and multiply operations. We decided instead to

implement the more complicated operations as calls to general subroutines. The general subroutines

are contained in the PAST library. Use of subroutines may effect simulator performance slightly, but

assuming that the general subroutines are efficient and that the complicated operations require many

C instructions to implement, the overhead due to the subroutine calls should be relatively small.

Later, some of the subroutines can be replaced by macros.

4.3.4.6. Problems with simulator size

A side result of our research was the discovery of many limitations of the cc compiler 2 3. Most

of these limitations had to do with branching distances and were found because the simulators PAST

produced for certain cases were very large. Because of the limitations we were prompted to

determine why some of our simulators are so large.

For program-specific simulators, the reason is obvious: the size of a program-specific simulator

IMPLEMENTATION 51

is proportional to the size of the program, which it simulates. To reduce the size of the switch

statement that selects the instruction to execute, we replaced this switch with one that calls subswitch

routines (see Section 3.9.9.2) which contain smaller switch statements.

The size problems with the architecture-specific simulators were more unexpected. We had

assumed, as did Selvaggi, that "almost all declared [ISPS] procedures are called only once" [29], and

expanded all of the ISPS entities in-line. Although the assumption itself seems to be true, it does not

take into account the few procedures which are called more than once. For a description of the

MC680002 4, these few procedures turned out to be procedures for accessing memories and registers

and were thus called many times; one routine was called 84 times. The resulting simulator was over 2

Megabytes of code and would not compile. To reduce the size of architecture-specific simulators we

added an option of using subroutines instead of in-line expansion: the user can specify that ISPS

entities called more than a given number of times should be replaced with subroutine calls rather

than be expanded in-line. Table 4-2 shows the effect on generated code size of replacing in-line

expansion with subroutine calls, using the MC68000 example.

Max. no. of calls
expanded in-line

Resulting code size
(bytes)

Max. no. of calls
expanded in-line

Resulting code size
(bytes)

0 186729 15 410408
1 189653 18 469600
2 200699 25 524041
3 203411 26 545933
4 211462 33 567637
6 213088 34 642200
7 223969 46 646471
8 250370 48 771049
14 251786 84 2849628

Table 4-2: Effect of expanding subroutines in-line for MC68000 description.

The size problems due to in-line expansion do not occur for all ISPS descriptions. The Mark-1

description was a single procedure so it could not be effected by in-line expansion. The PDP-8

description only had one procedure which was called multiple times, but the size was not effected

significantly by in-line expansion. The Warp description also had just one multiply-called procedure,

and, again, the effect one size due to in-line expansion was not considerable. In-line expansion did

24v
n 0 t USC MC6800° ™ o u r Wed measurements because PAST can not yet handle all of functions which the MC68000 description requires.

52
IMPLEMENTATION

0 i f 50 P<-»1 150

Max. no. of calls
expanded in-line

Resulting code size
(bytes)

Max. no. of calls
expanded in-line

Resulting code size
(bytes)

0 39200 6 60539

1 35460 7 60988

2 46820 8 87179

3 50255 26 90120

4 51204

Table 4-3: Effect of expanding subroutines in-line for MC6502 description.

4.3.4.7. Current status

PAST can generate code for most of the RTM operations, but does not yet handle the Ones

complement and Sign Magnitude operations. Also lacking are the twos complement multiply

operation and the unsigned and twos complement division operations. Because these operations are

quite complex, we think that they should be implemented as general subroutines.

We had great difficulties implementing the RTM goto operations RESTART, RESUME,

LEAVE and TERMINATE for architecture-specific simulators, and still may not handle them

properly in all cases. Implementing these operations for the program-specific simulators is even more

difficult, so we directed our efforts instead to implementing more common operations. These

operations should be implemented properly, but it may require a major restructuring of the code

generation part of the PAST program.

Due to an oversight, PAST cannot currendy handle primaries which map onto more than one

word of a memory (see Figure 4-12). This is one reason why we did not use the MC68000 description

as one of our test cases.
M\Main.Memory[0:PmemSize]<7:0>,
WM\Word.Size.Memory[0:PmemSize]<15:0> {increment:2} :« M[0:PmemSize]<7:0>,

Figure 4-12: Example of mapping which PAST cannot handle (from MC68000
description).

PAST should eventually be able to handle any ISPS description that the ISPS simulator can

handle (and also ones with data sizes greater than 128 bits) at least for the architecture-specific case.

With the program-specific case, code size problems may make simulator compilation impossible for

some descriptions.

have a significant effect on *c sUe of the MC6502 simuiator 8cnerated by PAST (Table 4-3). though
not as dramatic as for the MC68000 description.

IMPLEMENTATION
53

In this chapter we have described the programs which make up the PAST system. The

information in this chapter can supplemented with the comments contained in the program code and

the code itself; we have tried to produce well-commented and readable code. In the next chapter we

will describe the experiments which we performed to validate and evaluate the PAST system.

4.4. Summary

RESULTS
54

Chapter 5
Results

Since our primary goal was to produce fast simulators, our primary measure of PASTs

performance was the speed of execution of the simulators it produced. We have compared the speeds

of architecture-specific and program-specific simulators produced by PAST with the speed of the ISPS

simulator and in one case the speed of an ad-hoc simulator. We also measured the preparation times

for the PAST-generated simulators so that we could determine whether the extra preparation dme for

the simulators is significant. In this chapter we describe the experiments which we performed, but

first we will say a little bit about the architectures and programs that we simulated.

5.1 . Test cases

Our test cases were descriptions of real architectures ranging in size from a machine with 7

opcodes (6 operations) to a horizontally microcoded architecture with microwords 112 bits wide. In

Table 5-1 we have presented some statistics about the ISPS descriptions. The first two columns list

the sizes of the RTM symbol and statement tables respectively. The third column is the best measure

of architecture complexity because it lists the average number of RTM operations which have to be

processed for each instruction cycle. Note that the Warp description has significantly more RTM

operations per cycle than the MC6502 description even though the MC6502 description has a larger

statement table.

Machine
Description

RTM
Symbols

RTM
Statements

RTM Statements
executed per cycle

Mark-1 54 69 13.6
PDP-8 152 265 35.3

MC6502 288 799 41.3
Warp 455 734 354.0

Table 5-1: ISPS description complexity.

RESULTS 55

Wc simulated one program for each of the described architectures. The programs that we

chose to simulate exercise a representative set of the machine instructions while having enough

instruction cycles so that we could get accurate measurements. Time constraints prevented us from

preparing more programs; however, we believe that the programs that we chose do not have atypical

instruction mixes so our results should not be too inaccurate.

5.1.1. Manchester Mark-1

The Manchester University Mark-1 Computer, one of the first computers, has a very simple

architecture, with a single accumulator, a 32-bit data path and a 16-bit instruction word with a 3-bit

fixed-size operation code. Though there are seven possible opcodes, there are only 6 operations.

Barbacci and Siewiorek [6], from which we obtained the Mark-1 description, describes the

architecture in greater detail. Because of its simplicity, the Mark-1 description was the first for which

we could produce a working simulator.

Our test program for the Mark-1 was a multiplication program which used all six of the

operations. The algorithm we used was repeated addition because it allowed us to vary the number

of instructions executed just by varying the data values; by varying the number of instructions we

could make the execution time of the program great enough to be measured using the Unix time

facility. It would have been very difficult to write a program to implement a shift and add algorithm

because the only arithmetic operations the Mark-1 had were subtract and negate.

We have presented the Mark-1 as a complete example in Appendix C.

5.1.2. Digital PDP-8

The PDP-8 is more complicated than the Mark-1, having a 12-bit instruction word and a 12-bit

datapath, but many more operations. Again, we obtained the ISPS description from Barbacci and

Siewiorek [6], which gives a good overview of the architecture.

We obtained our test program for the PDP-8 from an article by Nestor and Thomas [23]. It is a

multiplication program based on the repeated addition algorithm.

RESULTS
56

We used the MC6502 as a test architecture because it has been used a lot by researchers in

CMU's ECE department We used an ISPS description of the architecture written by Jayanth Rajan.

The MC6502 has a 8-bit instruction words and 8-bit data, but instructions can have a variable number

of words. This is significant in PAST's program-specific mode because PAST assumes fixed length

instructions; unless the user explicidy declares the address of the first word of each instruction, PAST

will generate extra code for the words outside of the assumed fixed length.

The test program that we used was adapted from a double-precision multiplication program

written by David Geiger. This program used a rotate and add algorithm so we could not vary the

execution time by varying the data. Instead, we controlled execution time by putting the

multiplication code within a loop for which we could control the number of iterations.

5 .1 .4 . CMU Warp Cell

The idea for PAST was prompted by the large development times for simulators for machines

which we are building at CMU. The Warp Systolic Array Machine, a special-purpose machine

centered around an array of high-speed floating point processing cells, and several related projects

have required functional simulators so that the architectures could be tested and programs could be

written in parallel with hardware design. Each of these simulators took several weeks to write. It was

hoped that PAST could be used to shorten the development time of future simulators.

We have written an ISPS description of the Warp cell in order to compare the simulators

produced by PAST with the ad-hoc simulator written for the Warp machine and to determine

whether a PAST-like tool could really be used in our design environmenL The ad-hoc simulator has

a slight disadvantage in the comparison because, though we only use it to simulate one Warp cell, it is

capable of simulating the enure Warp array - an interface unit and ten Warp cells. The PAST

simulators based on our ISPS description can only simulate a single Warp cell and thus do not have

the overhead of checking which cells are to be simulated.

Our goal of simulating the Warp machine has had some major influences on the design of the

PAST simulation system. For ISPS-based simulators to have reasonable speed in simulating Warp

programs, we added floating-point capabilities to the ISPS language. We also added the groundwork

for interprocess communication between PAST simulators with Warp in mind.

5 .1 .3 . Motorola MC6502

RESULTS " 57

ADRn

ADRn-1 -

Xn-1 •

Yn-1
Yn + 1

MEM

ADR

W

ADR
SLCT

•BH ADR
FILE

INT

MC

X
FILE

Y
FILE

XBAR

Ml

M2

MPY
REG
RLE

MPY
MPY
REG
RLE

*

MPY

M

A1
ALU
REG ALU
RLE —>

Xo

Yo

Xn

Yn

Figure 5-1: Warp cell datapath [21].

The program used with the Warp simulators was one which computes the Mandelbrot set 2 5 .

This program was chosen because it has been run on the real hardware, it can run on a single Warp

cell, its outputs can be easily verified, and, as with other test programs, its execution time can be

varied easily by changing a few parameters.

^The algorithm for the program is the one presented in Scientific American in August. 1985 [12].

The Warp description, though small, is much more complicated than the other test descriptions

because Warp is horizontally microcoded and its datapath is centered around a crossbar. (See Figure

5-1.) Also, the Warp machine has a major 200ns cycle made up of two 100ns cycles. Kach 100ns cycle

has a 112 bit instruction word. We modeled the Warp cell at the 200ns level, so we had to handle two

of these instruction words for each instruction cycle. The horizontal microcoding and crossbar cause

almost all parts of the machine to be exercised every instruction cycle which made proper sequencing

of events very difficult. Sequencing information was not well documented; the most useful reference

was the ad-hoc Warp simulator code because the timing problems had already been handled, but we

still had to correct the timing by trial and error. Having read the Warp simulator code, it is easy to

see the benefits of writing in a language such as ISPS. The ISPS description was more readable and

more compact

RESULTS * 58

Mach/4.3/2/1 BSD Unix is essentially 4.3 BSD Unix with some additions. Mach is an operating system/environment
being developed at CMU. /2/1 are local additions to 4.3 Unix to maintain compatibility with previous CMU versions of Unix
(CMU Unix 4.2 and 4.1 respectively).

27
The "rounding" may actually be truncation. Sometimes the total user and system time indicated that the real time should

have been 1 second greater. The discrepancy is probably due to real time being measured independently from user and system
times.

28
We verified that the process was the only one running by making sure there were no other users (actually, no users at all)

on the machine. Also, the at server was not working, so we knew that no batch jobs were started.
29

The greatest deviation was 14.8 percent, but was within 1 second of the average for that test case.

The Warp simulator is our only test case which took advantage of the I/O capabilities of PAST.

Because a Warp cell is supposed to communicate with other processors, it required external inputs

and outputs. The communication scheme used in the Warp machine mandated that inputs be

supplied every cycle and that the simulator produce outputs every cycle. The Mandelbrot program

with the parameters that we chose took about 110,500 cycles to finish so die input and output files

were very large (each was 2,200,000 bytes). We found that the I/O routines dominated the execution

time of both the PAST simulators and the ad-hoc Warp simulator.

5.2. Timing measurements

We made our timing measurements using the Unix™ time facility on a Vax 8650 computer

running Mach/4.3/2/1 BSD Unix 2 6. We used the real time value returned by the time program; time

rounds this value to the nearest second 2 7. We adjusted the problem sizes so that the smallest time

values were at least a few seconds to insure that the speed differences between the simulators would

be measurable. All of the measurements were done with the process being measured running as the

only active process on the machine 2 8. We verified that our simulation time measurements were

reasonably accurate by repeating each measurement at least six times. The results were very

consistent, almost all within 1 second or 5 percent of the average value 2 9. The simulations with the

most variations were those which used file I/O (the Warp simulations). Simulator preparation time

measurements were repeated at least three times for each of the architecture-specific and

program-specific simulators. Each time value presented in the tables which follow is the average of

the measurements for the corresponding test case unless otherwise noted.

59

RESULTS

5.3. Simulator speed

For each of the four ISPS descriptions we produced architecture-specific and program-specific

simulators using PAST and measured the execution times of these simulators running their respective

test programs. We also simulated the same programs and descriptions with the ISPS simulator.

Finally, to see how PAST simulators perform compared with an ad-hoc simulator, we ran our test

program for the Warp cell on the ad-hoc Warp simulator [9]. Two versions of each of the Warp

simulators (except for the ISPS simulator) were run - one with I/O and one without - because we

found I/O routines to dominate over 90 percent of the simulation time when it was present, and our

timing measurements are more concerned with processing speed. The execution times of the

simulators are shown in Table 5-2. The values given are averages for several runs, rounded to the

nearest second. The same data is presented in terms of cycles per second in Table 5-3.

rwarp simulators running with no I/O and no real data.
*• Estimated from "10 minutes of running ume.

Table 5-2: Simulator execution times (seconds).

„ Tab,e 5-4 « P - n . * e favors h , which PAST * * » speed up shnulauon s p a r e d

RESULTS
60

with the ISPS simulator. PAST simulators perform quite well, achieving simulation speeds ranging

from 19 to 200 times as fast as those of the ISPS simulator running the same simulations. This is

much better than the conservative 4 times speedup that wc predicted in Section 3.5. It should be

remembered, however, that our predictions did not take all of the RTM operation optimizations into

account and did not include any speedup due to reducing monitoring capabilities.

Machine
Description

Dataword Size
(bits)

PAST
architecture-specific

PAST
program-specific

Mark-1 32 72 24
PDP-8 12 42 48

MC6502 8 19 39
Warp*

* \\r : i

32 114 200

Table 5-4: PAST speed improvement factor over ISPS.

The data confirms that the data operations are indeed a major cause of the slowness of the ISPS

simulator, because the speedup improves as data word size increases. (The second column of Table

5-4 lists the sizes of the data words for the test architectures.) Since ISPS accesses data one bit at a

time, total access time is proportional to the size of the data word. The difference in speedups of the

Mark-1 and Warp architecture-specific simulators is most likely due to the fact that the Warp cell is

much more complicated than the Mark-1, e.g. the description of the Warp cell is made up of many

procedures so it has many more control operations that can be eliminated by PAST (Section 3.5) than

the Mark-1 description, a single procedure.

The data for the program-specific simulators appears to conflict with the hypothesis that greater

use of known information improves simulator performance: some of the program-specific simulators

are slower than the corresponding architecture-specific simulators. However, the apparently

anomalous data can be rationalized. The Mark-1 program-specific simulator which we used for

measurements was a version which implemented the MainSwitch routine as a switch statement calling

subswitch routines 3 0 (see Section 3.9.9.2). Thus, there were two levels of function calls for each cycle

that were not present in the architecture-specific simulator. Because the Mark-1 description is a very

simple one and function calls are expensive3 1, the extra function calls have a great effect on the total

30

This is not the same version shown in Appendix C

b^uSSST i m P' e m e m S C
 ̂ U S J n g *" C A L L S « o«o the stack

RESULTS 61

simulation time. We must attribute the unexpected results for the Warp simulators with I/O to either

the I/O or to some effect of the greater simulator size due to function calls to the I/O routines

because the simulation times without I/O fit our predictions.

The most gratifying result of this research is the data for the Warp simulators running a real

program with real data. The simulators generated by PAST ran within 20 percent of the speed of the

ad-hoc Warp simulator. This is quite reasonable for an automatically generated program, indicating

that our research was successful. The PAST Warp simulators without I/O actually ran faster than the

ad-hoc simulator. Admittedly, there is additional overhead in the custom Warp simulator because it

can simulate the entire Warp system - 10 Warp cells and an interface unit - and we may not have

removed all I/O related routines from the Warp simulator. Even so, these results are quite

promising.

5.4. Total simulation time

Throughout this report, we have stressed that our goal was to speed up simulation by producing

simulators that run fast. However, there is another major time cost involved in simulation: the time

required to prepare the simulators. Simulator preparation time includes the time spent by the

simulator writer in designing and debugging the simulator and the time spent by the computer

converting the designer's representation into executable code. For ad-hoc simulators, the majority of

the preparation time is the time spent by the simulator writer in designing the simulator and writing

and debugging the simulator code; the computer's only task is compilation. Simulation tools, such as

ISPS and PAST, reduce the time spent in design and coding by providing a standard easy-to-use

notation for describing the architecture to be simulated. However, the role of the computer is much

greater when simulation tools are used.

The preparation phase for simulation using the ISPS simulator has several steps. The first step

is writing the description of the architecture; hopefully, the ISPS notation makes writing the

description easy for the designer, thus minimizing the designer's time and efforts. The rest of the

preparation is done by the computer: the ISPS description is parsed (by ispc) and is converted into

an RTM file (by gdbrtm). An additional part of the preparation - loading the contents of the RTM

file into structures - is incurred by the ISPS simulator at run time. We have included this time in

the simulation time measurements.

In preparing PAST simulators, the same steps are taken as for the ISPS simulator, with two

added steps. After the RTM file has been created, it is read by the PAST program and converted into

RESULTS
62

C code. This C code is then compiled by cc into executable code. ITicse extra steps increase the time

involved in preparation significantly. However, it is these steps that reduce the simulation time

compared with the ISPS simulator. Thus, there is a tradeoff between simulator preparation time and

simulation time.

Machine

Description

ISPS
Simulator

(sec.)

PAST
architecture-specific

(sec.)

PAST
program-specific

(sec.)
Mark-1 4 10 11
PDP-8 4 15 14

MC6502 11 26 46
| Warp 23 53 391

Tabic 5-5: Simulator preparation time.

For all of our test cases, the increases in simulation speed due to creating architecture-specific

and program-specific simulators outweighed the increase in preparation time (Table 5-5) when

compared with the ISPS simulator. This is because preparation of the simulators is a one-time cost,

while the simulation-time savings increase linearly with the run time. If either type of PAST

simulator is not run long enough, the extra preparation time may exceed the simulation-time savings."

This is not a great problem for architecture-specific simulators because run-time savings are

cumulative and, presumedly, at least a few programs will be simulated for the architecture. For

program-specific simulators, it is a single program which must be run frequently and/or for a long

time. It is possible to estimate the number of cycles where the total cost of simulation, including both

preparation time and simulation time, with the ISPS simulator equals the total cost of simulation with

a PAST simulator. This is the break-even point - the number of cycles where the additional time

investment in using PAST rather than ISPS is paid back by the speedup in simulation. We have

determined the breakeven points for our four test cases, for both the architecture-specific and the

program-specific simulators (Table 5-6). Note that break-even points involving program-specific

simulators only apply to the programs simulated and only characterize programs of the same size

running on the same architectures.

We have found that for architecture-specific simulators, the preparation time increases with the

complexity of the architecture being simulated. For program-specific simulators, the preparation time

increases with architecture complexity and is also proportional to the size of the program being

simulated. Thus, for programs exceeding a certain size, program-specific simulators take longer to

prepare than architecture-specific simulators. However, program-specific simulators generally (or at

RESULTS
63

Machine
Description

Equation to be satisfied
(solution = b)

Break-even solution
(target cycles)

Mark-1 4 + b/489.4 = 10 + b/35498.6 2977

PDP-8 4 + b/333.4 = 15 + b/14051.4 3757

MC6502 11 + b/269.2 = 26 + b/5197.6 4259

Warp* 23 + b/24.7 = 53 + b/2833.3 748

(a) Break (:ven for ISPS and PAST architecture-specific simulators.

Machine
Description

Equation to be satisfied
(solution = b)

Break-even solution
(target cycles)

Mark-1 4 + b/489.4 = 11 + b/11513.1 3578

PDP-8 4 + b/333.4 = 14 + b/16393.3 3403 "

MC6502 11 + b/269.2 = 46 + b/10383.1 9673

Warp* 23 + b/24.7 - 391 + b/5022.7 9135

(b) Break even for ISPS and PAST program-specific simulators.

Table 5-6: Number of target cycles when PAST simulator cost equals ISPS cost

least we think they should) run faster than architecture-specific simulators. Again, there is a tradeoff,

and, again, we can calculate a break-even point. Table 5-7 shows the break-even points for our test

cases.

Machine
Description

Mark-J_

PDP-8

MC6502

Equation to be satisfied
(solution = b)

10 + b/35498.6 = 11 + b/11513.1

15 + b/14051.4 = 14 + b/16393.3

26 + b/5197.6 = 46 + b/10383.1

53 + h/2833.3 = 391 + b/5022.7

Break-even solution
(target cycles)

-17039 (never)

-98360 (immediately)

208147

2196956

Table 5-7: Number of target cycles when program-specific cost equals
architecture-specific cost

Note that negative breakeven points can have different meanings. For the Mark-1 case, both

preparation and simulation are more costly with the program-specific simulator than with the

architecture-specific one; it is impossible to break even. In the PDP-8 case, preparation of the

program-specific simulator took less time than preparation of the architecture-specific simulator (the

PDP-8 program was a very short one) so using a program-specific simulator had an immediate payoff,

RESULTS 64

and because die program-specific simulator is the faster simulator, the payoff continues to increase as

the simulator is used. It may also possible to produce a program-specif c simulator which has a

smaller preparation time, but runs slower than the corresponding architecture-specific simulator; in

this case, the breakeven point is a positive number of cycles, but the benefits of the smaller

preparation time decrease with use of the simulator.

If we were to calculate breakeven points for a wide variety of architectures with programs of

varying sizes, we could this and additional information to aid in determining which types of

simulators to use for particular architectures and programs. However, there are several parameters

which vary between problems:

• ISPS description size - if a description is small, PAST can create a small
architecture-specific simulator by not expanding procedures in-line. This would make the
preparation time short, but may not produce the fastest simulator.

• Architecture complexity - If an architecture is complex (in the sense of having many
RTM statements per target cycle) the code for each cycle for a program-specific simulator
can be very large, making the preparation time for long programs very large. Large code
for individual cycles may also cause problems in compilation (see Appendix D). It is
probably more practical to use architecture-specific simulators for very complex
architectures.

• Program size - Large programs make the preparation time for program-specific
simulators large and thus may make using program-specific simulators impractical.
However, the increased preparation time may be compensated for if the program is run
frequently and/or for very many cycles. For small programs, program-specific simulators
may take less time to prepare than architecture-specific simulators and program-specific
simulators may be the best option in that case.

• Cycles simulated - in most cases, the pay back of using architecture-specific simulators
compared with using the ISPS simulator and of using program-specific simulators
compared with using architecture-specific simulators increases with the number of cycles
simulated. For an architecture which is simulated very little, the ISPS simulator may be
the best choice. For a program which is simulated very little, architecture-specific
simulators are more cost-effective than program-specific simulators.

In summary, the ISPS simulator is the best choice for architectures which are simulated for very few

cycles; architecture-specific simulators are the most cost-effective choice in most other cases; and

program-specific simulators are only the best choice for very short programs and/or when a program

is run for a very large number of cycles.

RESULTS 65

» W . have only presented results for the simulations on the Vax 8650 in.this report unless noted

"Aaually.fcespeedo^

» W e assume that the processor is run with a 2 MHz clocL No instruction takes less than two cyc.es. so the speed is 1
instruction per microsecond or slower.

5.5. Simulation ratios

The measure which many researchers have used to gauge the performance of their simulators is

the simulation ratio - the time to simulate a program divided by the actual time it would take to run

the program on the computer being simulated. We find this ratio to be rather ambiguous. The

simulation ratio depends on the processor on which the simulation is run. We ran simulations on

both a Vax 8650 and on a Vax 11/785 3 2 and found the simulations ran about 4 times as fast on the

8650. There is a similar difference between running on a Vax 11/785 and a Vax 11/780. Thus, just

by varying the host machine, we can change the simulation ratio by a factor of 16. If the architecture

that we were simulating was the Vax architecture, we could change the ratio by another factor of 16

just by stating that we were simulating a Vax 11/780 rather than a Vax 8650. Another example is the

10,000 to 1 simulation ratio given in Chapter 1 for the PDP-11. We believe that this ratio was

calculated for a simulation on a Vax 11/780, so for comparison with our results measured on a Vax

8650, the ratio may be off by more than an order of magnitude. Thus, a simulation ratio given by

itself can be very misleading.

In spite of the confusion which simulation ratios can cause, we have estimated them for the test

cases that we simulated. To calculate the simulation ratios we need to know the speeds of the

processors in instructions per second because that is how we measured the speeds of the simulators.

The speeds of the Mark-1 [30] and of the Warp processing cell are known to be correct because they

were presented in seconds per instruction3 3. However, the speeds of the MC6502 and the PDP-8 may

not be very accurate because the speeds given for them were cycle time [25] 3 4 and add time [13],

respectively. We assumed that cycles and additions were the same as instructions in our calculations.

The estimated simulation ratios are presented in Table 5-8 for simulations run on a Vax 8650. Note

that a simulation ratio less than one means that the simulator ran faster than the actual machine.

http://cyc.es

RESULTS
66

Machine

Description

Actual
Machine

Speed

ISPS

Simulator

PAST
architecture-

specific

PAST
program-
specific

Ad-Hoc

Mark-/ 833.3 (instr./scc.) 1.703 0.023 0.072
PDP-8 333333.3 (add time) 999.8 23.72 20.33

MC6502 1000000 (cy./scc.) 3715 192.4 96.31
Warp* 5000000 (instr./scc.) 202429 1765 995.5 5792
Warp

* Warn simiil-i
5000000 (instr./scc.)

HIM m n n i n o \ir\tU «^ J /r\

- 26652 27563 23844

Table 5-8: Estimated simulation ratios for PAST simulators.

5.6. Summary

In this chapter, we have presented measurements which characterize the simulators generated

by PAST and contrast them with the ISPS simulator. We have also shown the effects of in-line

expansion of subroutines on simulator size. In addition to showing the traits of the PAST and ISPS

simulators, the data which we collected can be generalized and can be used to aid in choosing

appropriate simulation methods for particular problems.

file:///ir/tU

CONCLUSIONS 67

Chapter 6
Conclusions

We have developed a tool called PAST which automatically generates functional simulators

from ISPS descriptions. PAST has two modes of operation:

• Architecture-specific mode: an architecture-specific simulator for a computer description
is generated. This simulator can execute any code written to run on the described
computer.

• Program-specific mode: PAST is given both the computer description and code for a
specific program and produces a simulator that executes only the given program.

PAST generates simulator code which is linked with a library of common routines to produce a

complete simulator. The PAST library includes user interface routines that allow the user to interact

with the simulator before each simulated instruction cycle for the target machine. In addition, this

library includes a set of input and output routines that provide the PAST simulators with a uniform

way of reading from files, writing to files, or communicating with other simulators via BSD Unix 4.2

IPC ports. The interprocess communication, when fully implemented, will let PAST support

simulation of multiprocessor systems such as the CMU Warp array. PAST, the PAST library, and the

simulators generated by PAST are all written in the C programming language and are thus portable

among systems that support C. However, the IPC port feature will only function under systems which

support Unix 4.2 IPC ports.

PAST produces compiled simulators from the same inputs (with slightly different

specifications) as the interpretive ISPS simulator. The structure of PAST is similar to that of the C

version of the ISPS simulator, but the loop which interprets and evaluates Register Transfer Machine

(RTM) instructions in the ISPS simulator has been replaced with a a loop which interprets the RTM

instructions and generates optimized C code. The C code is compiled and linked with the PAST

library to create an executable simulator. PAST has to deal with a tradeoff of simulator size, which

effects the preparation time of the simulator and simulator speed. Also, limitations of the C compiler

dictate that the code produced by PAST cannot be too large. When simulators grow too large, in-line

CONCLUSIONS 68

expansion has to be replaced with calls to subroutines, and large switch statements must be broken

up. These concessions slow down the simulators generated by PAST, but the PAST simulators are

still much faster than the ISPS simulator.

The architecture-specific simulators produced by PAST simulate instructions faster than the

ISPS simulator for several reasons:

• The loop overhead associated with processing RTM instructions in the ISPS simulator is
not included in the simulators generated by PAST (Section 3.4).

• PAST does not generate C code for some of the RTM control operations, eliminating
their costs from the simulation time.

• PAST makes better use of the information contained in the ISPS description to create
code that is optimized for the operations and operand sizes of the described architecture.

• The simulators produced by PAST access memories and registers in a more efficient way
than does the ISPS simulator.

These factors combine to let the architecture-specific simulators generated by PAST run 19 to 144

times as fast as the ISPS simulator for our test cases. Our initial analysis of PASTs optimizations over

the ISPS simulator makes us fairly confident that PAST will always produce simulators at least four

times as fast as the ISPS simulator for descriptions of reasonable size (at least as big as the description

of the Mark-1).

Program-specific simulators produced by PAST showed as much as 50 percent speed

improvement over the architecture-specific simulators and as much as a 200 times speed improvement

over the ISPS simulator, but also showed a 67 percent degradation in speed for one case. The speed

improvement is due to use of even more known information than the architecture-specific simulators

have available: with the program known, PAST can precompute many values and often reduce a

conditional statement to a single case. There is a fixed loop overhead for program-specific simulators

which is incurred once for each instruction cycle of the target machine being simulated. This

overhead becomes dominant when very simple descriptions are simulated, and this accounts for the

anomalous case when a program-specific simulator was slower than the corresponding

architecture-specific simulator. The program-specific simulators all ran faster than the ISPS simulator

due to the same reasons as described for the architecture-specific simulators and due to the greater

information known when they were generated.

The cost to generate or prepare a simulator depends on the method used. We have determined

break-even points which can be used to decide which type of PAST simulator or the ISPS simulator is

CONCLUSIONS 69

most cost-effective for a particular application. One simulation method breaks even with another

when its total preparations and run time equal those of the other simulation method.

Architecture-specific simulators are almost always more cost-effective than the ISPS simulator.

Program-specific simulators are usually more cost-effective than the ISPS simulator, but are only

more cost-effective than architecture-specific simulators when the programs to be simulated are

simulated many times or run for many target machine cycles. The ISPS simulator is only the most

cost-effective choice when the architecture is just going to be simulated for a few cycles.

In comparing simulator performance, the effect of input and output routines on simulator

speed cannot be neglected. When a simulator uses much input and output, the I/O can be very

costly and can dominate the simulation time.

As PAST is a prototype tool, there are still more features which can be implemented and other

improvements which can be made. We have implemented most of the operations of the Register

Transfer Machine, but there are still several operations which should be implemented to make PAST

as general as the ISPS simulator, notably the ones complement and sign magnitude operations. With

tuning, the generation time for simulators could be reduced, and it may also be possible to speed up

the generated simulators. Overall, though, we are reasonably satisfied with PASTs performance.

The successful simulation of a real computer system, the Warp cell, in reasonable time makes us

confident that our approach was successful

We saved much time and effort by using some of the existing ISPS software, and also

maintained compatibility with the ISPS simulator by doing so. Although the PAST simulators have

minimal monitoring capabilities, the user can still simulate the same ISPS descriptions with the ISPS

simulator if extensive monitoring is desired (assuming that the description does not use the new

floating point operations).

If another version of PAST is written, it might be interesting to have it generate code in a

language which supports concurrency, such as Concurrent C, so that it can simulate some of the

parallel constructs supported by ISPS more accurately.

In summary, we have successfully met the requirements that we established for a useful

functional simulation tool:

• The simulators produced by PAST can execute real programs. This was demonstrated for
four different computer architectures.

CONCLUSIONS

• PAST simulators provide the. user, with state information through use of a standard
interface. This interface is implemented as a library of routines which can be linked with
the C code that PAST produces.

• The architecture is described to the PAST simulation system as an ISPS description. The
ISPS language has been designed so that descriptions of architectures arc structured, and
thus easy to read, write and modify. The description of the Warp processing cell written
in ISPS is much more concise than the custom simulator written in C, and the writing of
the ISPS code took much less time than writing the custom simulator.

• The speed of the Warp simulators generated by PAST was within 20 percent of the speed
of the ad-hoc Warp simulator when I/O was included. Without I/O the PAST simulators
were faster than the ad-hoc simulator.

M A N U A L ENTRY FOR PAST 71

Appendix A
Manual Entry for PAST

NAME

past - create a simulator from an ISPS description.

SYNOPSIS

past [rimfile] [-0 outfile \ [-e crrfile \ [-c FORCK| number \

DESCRIPTION
Past translates an .rtm file created from an ISPS description (by ispspft) and gdbrtmil)) and an
optional command file into C code with routines to simulate the described architecture. The C file
is compiled and linked with user interface routines (in the library libpasia) using the cc compiler to
create an executable simulator.
By default, output is routed to stdouL If no rtm file is specified, past prompts the user.
Command line arguments can be specified in any order. The following are the valid arguments for
p a s t :

- o outfile routes the output of past to the file outfile. If - 0 is not specified, the output is sent
to stdout.

—e errfUe routes the error output of past to the file errfile. If — e is not specified, error mes­
sages are sent to stderr.

- c ¥ORCY\number
is used to specify the maximum number of calls an ISPS entity can have and still
have its code expanded in-line. If FORCE is specified all ISPS entities will be
expanded; if a number is given, only ISPS entities called fewer than the specified
number of times will be expanded in-line. The default case sets the number of times
an entity can be expanded to one.

- n is used to turn off saving of state information when entering conditional sections of
the RTM code. This saves code production time, but may make the code produced
a little longer and the speed of simulation a little slower. This argument only affects
general simulators; it is ignored for program-specific simulators.

rtmJUe is the name of the file from which the symbol and statement tables for the ISPS
description are to be read If the given filename has no extension, the extension
defaults to .rtm. The name of the past command file is determined by adding the
extension .pst to the root name of the rtmfile.

M A N U A L E N T R Y FOR PAST
72

If no command file is found, past enters an interactive mode in which
the user can enter commands. The only mandatory command is the one which specifies the starting
statement for the simulation loop: START <entity-name>. If a program-specific simulator is
desired, the CODE and PC commands must also be given and the program memory should be set
using the SETVALUE command. The commands are described below:

CODE range specifies the range of program counter values which are valid for the current pro­
gram. The range is given as number pairs separated by commas (e.g. 1:5,8:10 or
1:10). This command is mandatory for generating program-specific simulators.

END label specifics the point in the ISre description which is the end of the instruction cycle
for the machine being simulated. The point in the description must be labeled with
a unique name.

ICONNECT sircamname, streamtype. variablelist
connects a list of variables from the ISPS description to an input stream which can
be cither a file, f. or an IPC port, p. The input connections can be disabled in the
simulator produced by past, but new input connections can not be made. Thus, all
variables which might need to be connected to input streams during simulation
should be ICONNECTed when running past

MAKE causes past to leave its interactive mode and to try to make a simulator from the
information provided. If the START command has not been given, past ignores the
MAKE command and remains in its interactive mode.

OCONNECT streamname, streamtype, variablelist
connects a list of variables from the ISPS description to an output stream which can
be either a file, f. or an IPC port, p. The output connections can be disabled in the
simulator produced by past, but new output connections can not be made. Thus, all
variables which might need to be connected to output streams during simulation
should be OCONNECTed when running past

PC variable address
specifies the ISPS variable which represents the program counter for the machine to
be simulated. If the variable is a memory, the address for the program counter
should also be specified. This command is mandatory for generating program-
specific simulators, and its use is also suggested when generating architecture-specific
simulators so that breakpoints can be set when running the simulator produced.

QUIT exits from the past program without making a simulator.

SETVALUE variable value
SETVALUE memoryvariable address value

initializes an ISPS variable to the specified value. For memory variables, the
memory address must be specified in addition to a value to which the address should
be set The initial values of variables specified to past will be the initial values of
the corresponding variables in the simulators produced by past

START label specifies the point in the ISPS description which is the start of the instruction cycle
for the machine being simulated. The point in the description must be labeled with
a unique name.

M A N U A L E N T R Y FOR P A S T
73

S T A T I C variable
S T A T I C memoryvariable{range]

is used to declare that the value of a variable will remain static throughout the
simultation. past uses this information to precalculate results and to predetermine
which branch of conditional statements to take so that it does not need to generate
code for all of the branches. For a program-specific simulator, the memory range
holding the program code should be declared as static; otherwise, past will generate
an entire architecture-specific simulator for each instruction of the program.

F I L E S

/usr/bss/bin/past
executable past code

Jile.rtm file containing the symbol and statement table information for the ISPS description.
Jile.pst past command file.
/usr/bss/1 ib/1 ibpasta

user interface library.

BUGS

past is not yet fully implemented.

SEE ALSO
"The ISPS Computer Description Language"
'The ISPS Simulator Manual"
pastsim(l), isps(l), gdbrtm(l), gdbsim(l)

HISTORY
20-Jun-86 Bruce Siegell (bss) at Carnegie-Mellon University

Created.

M A N U A L E N T R Y FOR

S I M U L A T O R S P R O D U C E D BY PAST
74

Appendix B
Manual entry for

simulators produced by PAST

N A M E

pastsim - simulator produced by the past program.

S Y N O P S I S

pastsim [options]

D E S C R I P T I O N

ITic name pastsim represents any simulator produced by the past program, pastsim simulates an
architecture described in ISPS. The standard user interface linked with the code produced by past
provides the user with commands for setting breakpoints, single-stepping, and examining and set­
ting die ISPS variables which represent the registers of the machine being simulated.

By default, output is routed to stdout Input can come from command files or from stdin. Com­
mand file names can be listed on the invocation line for the simulator, but should not be preceded
by a pastsim also accepts several other arguments (options) which may override the commands
in the command file. Most arguments are processed from left to righL The - r and - s options
arc executed after all other options except for - q . - q is executed after all other options.

The valid commands for running pastsim interactively are described below:

! text Lines beginning with a exclamation point are treated as comment lines and are
ignored. There must be a blank space between the exclamation point and any fol­
lowing text

BREAKPOINT number
sets a breakpoint at the specified value of the program counter. The program
counter value is checked against the breakpoint list at the beginning of the instruc­
tion loop. The breakpoint list is displayed whenever a BREAKPOINT or
DBREAKPOINT command is issued.

CYCLE displays the number of target machine cycles which have been executed since the
simulator was invoked.

DBREAKPOINT number
removes the specified breakpoint from the breakpoint list The breakpoint list is
desplayed whenever a BREAKPOINT or DBREAKPOINT command is issued

M A N U A L E N T R Y F O R

S I M U L A T O R S P R O D U C E D BY PAST 75

DUMP filename
prints the values of all non-zero valued variables into the specified file. For each
non-zero variable, a SETVALUE command line is printed. The dump file can be
read by the simulator to restore the variable values to the state they were in when
the DUMP command was issued.

E C H O o n | o f f turns the echoing of commands firom command lines o n or off. At program initiali­
zation, echoing is set t o o n .

ICONNECT streamname, streamtype, variablelist
connects a set of variables to the specified input stream. The stream can either be a
file or an IPC port The only variables which can be ICONNECTed are the ones
which were specified as ICONNECTed when PAST created the simulator. When
variables arc ICONNHCTcd, their old connections arc closed and die new connec­
tion starts at die beginning of the specified stream.

NAMES string
displays die variable or variables whose names begin with the given string. If the
string matches wevcral variables, die user is asked whcdier to list all matching vari­
ables.

ICONNECT streamncune, streamtype, variablelist
connects a set of variables to the specified output stream. The stream can cither be
a file or an IPC port. The only variables which can be OCONNECTcd are the ones
which were specified as OCONNECTed when PAST created the simulator. When
variables arc OCONNECTed. their old connections arc closed and the new connec­
tion starts at the beginning of the specified stream.

PROMPT variable
changes the variable displayed as the prompt The default prompt variable is the
program counter if it was specified to PAST. Only the least significant integer word
of the prompt variable is displayed in the prompt

QUIT is the only way to exit the debugger from the interactive mode other than a "kill -9"
initiated from outside the simulator. All other signals are trapped and return to the
user interface.

RADIX binary|octal|decimal|hexadecimal|floatingpoint
specifies the default number format to be used in the reading and writing of values
and addresses of variables. The format can be overrided by prefixing values with
characters which specify their formats: ' for binary, # for octal, % for decimal, "
for hexadecimal, and " for floatingpoint At program initialization, the default
number format is set to hexadecimal.

READ filename
reads a list of simulator commands from the specified file and executes them sequen­
tially. The commands are echoed only if echoing is set to o n .

RESET clears all variables and then resets the values of the variables whose values were
specified to PAST and sets the cycle count back to zero.

M A N U A L E N T R Y F O R

S I M U L A T O R S P R O D U C E D BY PAST

RUN begins the simulation. Simulation continues until the program is interrupted or a
breakpoint is reached.

SETVALUE variable value
SETVALUE memoryvariable address value

sets the specified variable to the given value. If the variable is a memory, the
address into the memory must be specified. The value and the memory address
must be given in the current number format as specified by the RADIX command
or they must be preceded by a character specifying another number format

STEP number begins the simulation. Simulation continues until the specified number of cycles has
been executed, a breakpoint is reached, or the program is interrupted.

VALUE variable
VALUE memoryvariable address displays the value of the specified variable in the
current number format as specified by die RADIX command. If the variable is a
memory, the address into the memory must be specified. ITic memory address must
be given in the current number format as specified by the RADIX command or
must be preceded by a character specifying another number format

O P T I O N S

— b breakpoint
sets a breakpoint A breakpoint is defined to be a value of the program counter vari­
able where the simulator is to stop running,

— B breakpoint

clears a breakpoint The specified breakpoint is deleted from the breakpoint list

—e turns echoing of commands from command files ON.

— E turns echoing of commands from command files OFF.

- o outputfile routes output, which by default is deposited on stdout to the file <outputfile>.

- q tells the simulator to quit after execution of all other command line arguments.

— r tells the simulator to run after processing of all other command line arguments. The
simulator will run until a breakpoint is reached or until stopped by an interrupt
from the user. Subsequent —s arguments or STEP commands from command files
can override - r.

- R radix sets the default radix to the one specified. Valid radices are BINARY, OCTAL,
DECIMAL, HEXADECIMAL, and FLOATINGPOINT.

— s number tells the simulator to run for the specified number of steps after processing of all
other command line arguments. Subsequent - s or - r arguments or STEP or RUN
commands from command files can override — s.

M A N U A L E N T R Y F O R

S I M U L A T O R S P R O D U C E D BY PAST

F I L E S

pastsim the simulator generated by past
cmdfle a file containing commands.

B U G S

The decimal and octal radices are not yet implemented.

S E E A L S O

pasKl)

H I S T O R Y

20-Jun-86 Bruce S. Siegcll (bss) at Carnegie-Mellon University.
Created.

MARK-1 E X A M P L E 78

Appendix C
Mark-1 Example

C.1. Architecture-specific simulator

The architecture-specific Mark-1 simulator was prepared from the I S P S description of the

Mark-1 as follows:
/ u s r / b s s / b i n / i s p c m a r k l

/ u s r / b s s / b i n / p a s t m a r k l -o m a r k l . c -p m a r k l . p s t

cc -c m a r k l . c

cc -o m a r k l m a r k l . o - l p a s t

ispc is a command file which calls the I S P S parser and the gdbrtm translator.

The following sections show all of the files involved in generating an architecture-specific

simulator.

MARK-1 E X A M P L E

C . 1 . 1 . ISPS descr ip t ion - m a r k l . i s p

markl

begin

** mp.state •*

m[0:8191]<31:0>

pc.state •*
cr<12:0>, ! control register
acc<31:0> 1 accumulator

** instruction.format **

pi<15:0>. ! present instruction

begin
REPEAT

begin
start:- pi » m[cr]<15:0> next

DECODE f •>
begin
#0 :- cr - m[s],
#1 :« cr « cr + m[s],
#2 :* acc • -m[s] t

#3 :• m[s] • acc.
#4:#5 :-

acc • acc - m[s],
#6 :• IF acc LSS 0 -> cr « cr + 1.
#7 :• stop()
end next

cr • cr + 1.
end

end
end

f<0:2> •:• pi<15:13>,
s<0:12> :«.pi<12:0>

function
address

** instruction.execution

icycle {main} instruction cycle

MARK-1 E X A M P L E
80

C . 1 . 2 . G D B f i l e - m a r k l . g d b

GDB:E;UNIX ISPS Compiler V2c;mark1.isp;21 May 86;16:08:17;
(ISPSOECLARAriON

(EDECLR
(EHEAD MARK1)
(SECTIONLIST

(SECTION
MP.STATE
(EHEAD M NIL (: 0 8191)(: 31 0)))

(SECTION
PC.STATE
(EDECLRLIST

(EHEAD CR NIL NIL (: 12 0))
(EHEAD ACC NIL NIL (: 31 0))))

(SECTION
INSTRUCTION.FORMAT
(EDECLRLIST

(EHEAD PI NIL NIL (: 15 0))
(EDECLR

(EHEAD F NIL NIL (: 0 2))
(EHEAD PI NIL NIL (: 15 13)))

(EDECLR
(EHEAD S NIL NIL (: 0 12))
(EHEAD PI NIL NIL (: 12 0))))) '

(SECTION
INSTRUCTION.EXECUTION
(EDECLR

(EHEAD ICYCLE NIL NIL NIL (QSET MAIN))
(REPEAT

(NEXT
(LABELLEDACTION START
(-

(EACCESS PI)(EACCESS M NIL (EACCESS CR)(:a: 15 0))))
(DECODE

(EACCESS F)
(NUMBEREDLIST

(:-n
#0
(-

(EACCESS CR)(EACCESS M NIL (EACCESS S))))
(:-n
• #1
(-

(EACCESS CR)
(+ (EACCESS CR)(EACCESS M NIL (EACCESS S)))))

(:«n
#2
(-

(EACCESS ACC)(-- (EACCESS M NIL (EACCESS S)))))
(:-n

#3

(-
(EACCESS M NIL (EACCESS S))(EACCESS ACC)))

(:-n
(: #4 #5)
(-

(EACCESS ACC)
(- (EACCESS ACC)(EACCESS M NIL (EACCESS S)))))

MARK-1 E X A M P L E

(:-n
#6
(IP

(LSS (EACCESS ACC)0)
(-

(EACCESS CR)
(+ (EACCESS CR)1))))

(:-n
#1 (EACCESS STOP (ACSET)))))

(-
(EACCESS CR)
(+ (EACCESS CR)1)))))))))

C.1 .3 . RTM file - m a r k l . r t m

A
3 15 13 0 0
4 12 0 0 0
9 17 0 0 0
11 127 0 0 0
12 127 0 0 0
13 127 0 0 0
15 127 0 0 0
16 7 0 0 0
17 127 0 0 0
18 7 0 0 0
19 127 0 0 0
20 0 0 0 0
22 0 0 0 0
23 127 0 0 0
24 7 0 0 0
25 127 0 0 0
26 127 0 0 0
27 7 0 0 0
28 127 0 0 0
29 127 0 0 0
30 17 0 0 0
31 127 0 0 0
32 127 0 0 0
33 7 0 0 0
34 15 0 0 0
36 0 2 0 0
37 31 0 0 0
38 31 0 0 8191
39 0 12 0 0
40 31 0 0 0
41 31 0 0 0
43 0 0 0 0
44 12 0 0 0

B

10 9
12 11
16 15
18 17
20 19
22 21
25 23 24
28 26 27
31 29 30
33 32

MARK-1 E X A M P L E 82

C
34 39 36

D
15 1 16 46 0 1 18 47 0 1 21 48 0 1 24 49 0 2 26 50 51 1 29 52 0 1 34 53 0
30 32 31

*ACC * 41
'C.O.P.' 32
'COUNT.ONE* 33
'CR* 44
'D.P.' 9
'DELAY* 10
' F' 36
'F.O.P.' 15
' FIRST.ONE' 16
'I.R.P.' 21
'ICYCLE* 5
'IS.RUNNING* 22
'L.O.P.' 17
'LAST.ONE* 18
'M* 38
'M.L.P.I* 23
'M.L.P.2* 24
'M.R.P.l' 26
'M.R.P.2' 27
MARK1 2
'MASK.LEFT* 25
'MASK.RIGHT* 28
'NO.OP* 8
'P.P.* 19
'PARITY' 20
'PI* 34
' PRELUDE * 1
'S' 39
'START* 6
'STOP' 7
'T.W.P.I* 29
'T.W.P.2* 30
'TIME.WAIT* 31
'UNDEFINED* 13
'UNPREDICTABLE' 14
'W.P.' 11
'WAIT* 12

F
36

G
37 /.T00037/
40 /.T00040/
43 /.T00043/

H
0 0 0 9 0 0 0 0
4 0 0 1 0 0 0 0
4 0 0 4 0 0 0 1
2 4 34 0 0 3 0 0
2 4 34 0 0 13 0 0
4 0 0 7 0 0 0 2
4 0 0 10 0 0 0 5
4 0 0 50 0 0 0 1
4 0 0 40 0 0 0 1
2 0 0 0 0 18.0 10

MARK-1 E X A M P L E

4 0 0 42 0 0 0 1
2 0 0 0 0 128 0 12
2 0 0 44 0 128 0 1

CM
 0 0 46 0 128 0 1

4 0 0 48 0 0 0 1
2 0 0 0 0 128 0 16
2 0 0 52 0 8 0 1
2 0 0 0 0 128 0 18
2 0 0 54 0 8 0 1
2 0 0 0 0 128 0 20
6 0 0 56 0 1 0 1
4 8 0 0 0 0 0 22
6 0 0 58 0 1 0 1
2 0 0 0 0 128 0 25
2 0 0 0 0 8 0 25
2 0 0 60 0 128 0 1
2 0 0 0 0 128 0 28
2 0 0 0 0 8 0 28
2 0 0 62 0 128 0 1
2 0 0 0 0 128 0 31
2 0 0 0 0 18 0 31
2 0 0 64 0 128 0 1
2 0 0 0 0 128 0 33
2 0 0 66 0 8 0 1
2 0 0 0 0 16 0 2
5 0 0 0 0 16 0 0 983040
2 2 3 0 0 3 0 2
7 0 0 0 0 32 0 0 37
1 0 0 0 1 32 8192 2
2 2 4 0 0 13 0 2
7 0 0 0 0 32 0 0 40

CM
 0 0 0 0 32 0 2

3 0 0 0 0 2 0 0 0
7 0 0 0 0 1 0 0 43
2 0 0 0 0 13 0 2

CO
 0 0 0 0 2 0 0 1

3 0 0 0 0 3 0 0 0
3 0 0 0 0 3 0 0 1
3 0 0 0 0 3 0 0 2
3 0 0 0 0 3 0 0 3
3 0 0 0 0 3 0 0 4
3 0 0 0 0 3 0 0 5
3 0 0 0 0 3 0 0 6
3 0 0 0 0 3 0 0 7

32 226 0 0 0 0 4 2 0 0
36 208 0 0 0 0 68 1 0 0
32 210 0 0 0 0 4 2 0 0
32 221 0 0 0 0 68 0 0 0
42 208 0 0 0 0 39 2 0 0
32 210 0 0 0 0 7 5 0 0
32 221 0 0 0 0 39 0 0 0
36 208 0 0 0 0 38 5 0 0
32 219 0 0 0 0 37 0 0 0
32 221 0 0 0 0 14 0 0 0 -
33 208 0 0 0 0 13 6 0 0
160 19 37 38 44 0 0 0 0 0
224 21 34 37 35 0 0 0 0 0
32 209 0 0 0 0 10 6 0 0
32 210 0 0 0 0 10 6 0 0
96 193 0 36 0 7 35 0 0 0
160 19 44 38 39 0 0 0 0 0
32 220 0 0 0 0 35 0 0 0
160 19 37 38 39 0 0 0 0 0

MARK-1 E X A M P L E

224 65 44 44 37 0 0 0 0 0
32 220 0 0 0 0 35 0 0 0
160 19 37 38 39 0 0 0 0 0
96 64 41 37 0 0 0 0 0 0
32 220 0 0 0 0 35 0 0 0
224 20 38 39 41 0 0 0 0 0
32 220 0 0 0 0 35 0 0 0
160 19 40 38 39 0 0 0 0 0
224 66 41 41 40 0 0 0 0 0
32 220 0 0 0 0 35 0 0 0
224 75 43 41 42 0 0 0 0 0
96 192 0 43 0 2 32 0 0 0
224 65 44 44 45 0 0 0 0 0
32 219 0 0 0 0 30 0 0 0
32 220 0 0 0 0 35 0 0 0
32 227 0 0 0 0 0 0 0 0
32 219 0 0 0 0 15 0 0 0
224 65 44 44 45 0 0 0 0 0
32 221 0 0 0 0 8 0 0 0
32 209 0 0 0 0 7 5 0 0
32 209 0 0 0 0 4 2 0 0
36 208 0 0 0 0 41 8 0 0
32 209 0 0 0 0 40 8 0 0
36 208 0 0 0 0 43 10 0 0
32 209 0 0 0 0 42 10 0 0
36 208 0 0 0 0 45 12 0 0
32 209 0 0 0 0 44 12 0 0
36 208 0 0 0 0 47 13 0 0
32 209 0 0 0 0 46 13 0 0
36 208 0 0 0 0 49 14 0 0
32 209 0 0 0 0 48 14 0 0
36 208 0 0 0 0 51 7 0 0
32 209 0 0 0 0 50 7 0 0.
36 208 0 0 0 0 53 16 0 0
32 209 0 0 0 0 52 16 0 0
36 208 0 0 0 0 55 18 0 0
32 209 0 0 0 0 54 18 0 0
36 208 0 0 0 0 57 20 0 0
32 209 0 0 0 0 56 20 0 0
36 208 0 0 0 0 59 22 0 0
32 209 0 0 0 0 58 22 0 0
36 208 0 0 0 0 61 25 0 0
32 209 0 0 0 0 60 25 0 0
36 208 0 0 0 0 63 28 0 0
32 209 0 0 0 0 62 28 0 0
36 208.0 0 0 0 65 31 0 0
32 209 0 0 0 0 64 31 0 0
36 208 0 0 0 0 67 33 0 0
32 209 0 0 0 0 66 33 0 0
32 209 0 0 0 0 1 1 0 0

J

53 13 68

MARK-1 E X A M P L E 85

C.1.4. PAST command file - m a r k l . p s t

! start of target cycle
start start

1 program counter variable
pc cr

C.1.S. The s imulator - m a r k l . c

/• ISPS PAST VI.0 at Wed May 21 16:08:36 1986 •/
/• */
/* RTM file: •/
/• markl.rtm */
/• PST file: •/
/• markl.pst •/

#indude "pastsim.h"

/• •/

/* macros to update primary and iconnected variables •/
/• •/

^define _SET_f \
f - (pi & OxOOOOeOOO) » 13;

^define _SET_s \
s « pi & OxOOOOlfff;

/ * * • * * * * * * * * • • « e n (J Qf update macros. ••••••*•••••••/

/• •/
/* macros to propagate primary and oconnected variables •/
/• •/
/ , , , * , * * • « , « • * * , » , » , * * * , • * , * « * * * * * * * , , „ « « * „ * * * * * , » „ * * * , , • * * « « « * * * * * * • « /

^define _PROP_f \
pi * (pi & Oxfffflfff) | (f « 13);

^define _PROP_s \
pi « (pi & OxffffeOOO) | s;

/«••«*••***«*«• e n d Qf propagate macros. •*••••••••••••/

/ • • • • • • • • • • • • • • * • «' /
/• •/
/* PAST global variables •/
/• •/
/«* '* • • • • • • • • • • • • • , „ « , , « , * , „ , • /

/• loop counter variable. •/

int .i;

/* variables which hold mask bit and word boundaries. •/

int _mlw, _m1b, _mhwt _mhb;

MARK-1 E X A M P L E 86

/* borrow and carry variables for subtraction and addition.

unsigned int ..borrow, ..carry;

/* fill variable for shift operations.

unsigned int _fi11;

/* variables to hold sign bits of signed variables.

unsigned int _signl, _sign2;

/* temporary multiprecision variables.

unsigned int _temp[16];
unsigned int _templ[8], _temp2[8];
unsigned int _tempsl[8], _temps2[8];
unsigned int _temp3;

/* input/output port information.

FILE *_port[l];
char _portname[l][MAXNAME];
int _porttype[l];

end of PAST global variables.

•/
•/
•/

User global variables - main

uns igned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned

int d_p_;
int wj)J4];
int wait[4];
int undefined[4];
int f_o_p_[4];
int first_one;
int l_o_p_[4];
int last_one;
int p_p_[4];
int parity;
int is_running;
int m_l_p_l[4];
int m_1_p_2;
int mask_left[4];
int m_r_p_l[4];
int m_r_p_2;
int mask_right[4];
int t_w_p_l[4];
int t_w_p_2;
int time_wait[4];
int c_0_p_[4];
int count_one;
int pi;
int _t00037;
int m[8192];
int _t00040;
int acc;
int _t00043;
int cr;

/ end of User global variables - main. /

M A R K - L E X A M P L E

User global variables - primary

unsigned int f;
unsigned int s;

/***«**«*«***«• e n (j 0f user global variables - primary.

V
labels for setjmp()/longjmp()

LABELTYPE Jstart;

end of labels for setjmp()/longjmp().

_varinfo[] - user variable information

/* {name, variable, type, size, be, left, right, incr, IC, OC, radix}

struct
/•
/•
/•
/•
/•
/•
/•
/•
/•
/•
/•
/•
/•
/*
/•
/*
/*
/•
/*
/•
/*
/•
/•
•/•
/•
/•
/•
/•

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

• /

V

* /

' • /

• /

* /

* /

• /

* /

* /

• /

• /

* /

• /

• / {

• / (

• /

• /

* /

• /

• /

• /

• /

(
(
(

•/ {

-1,
-1,
-1,
0,
1,

0,
0, 1,
0, 0.
1. -1.

1,

Varlnfo _varinfo[] » {
/ { "d.p.". &d_p_, 1, 1, 18, 0. 0, 1,

"w.p.", w_p_, 2. 4, 128, 0. 0, 1,
"wait", wait, 2. 4 t 128, 0. 0, 1,
''undefined", undefined, 2, 4, 128
"f.o.p.", f_o_p_, 2, 4, 128, 0, 0
"first.one", &first_onef 1, 1, 8,
"l.o.p.", l_o_p_, 2, 4, 128, 0
"last.one", &last_one, 1, 1, 8
"p.p.", p_p_, 2. 4. 128, 0, 0,
"parity", &parity, 1, 1. 1, 0, 0
"is. running" , 8tis_running, 1, 1,
"m.l.p.l", m_l_p_l. 2, 4, 128, 0
"m.l.p.2", &m_l_p_2, 1, 1, 8, 0,
"mask.left", mask_left, 2, 4, 128
"m.r.p.l", m_r_p_l, 2, 4, 128, 0,
"m.r.p.2", &m_r_p_2, 1. 1, 8, 0, 0, 1, -1,
mask.right", mask_right, 2, 4, 128, 0, 0,
t.w.p.l", t_w_p_l, 2, 4,. 128, 0,
t.w.p.2", &t_w_p_2, 1, 1, 18, 0.
time.wait", time_wait, 2, 4, 128
'c.o.p.", c_o_p_, 2, 4, 128, 0, 0
count.one", &count_one, 1, 1, 8,
'piw, &pi, 1, 1. 16, 0, 0, 1, -1,
•f", &f. 1, 1, 3, 0, 0, 1, -1, -1
•m", m.. 3, 1, a 2 f 0, 8191, 1, -1,
•s", &s, 1, 1, 13. 0, 0, 1, -1, -
"acc", 8.acc, 1, 1, 32, 0, 0, 1, -1,
"cr", &cr, 1, 1, 13, 0, 0, 1, -1, -1

.varinfo[] */

-1,
-1,
-1.
0,
-1,

0, 1
-1.
1. -
-1,

-1. -
1. o , 0
0, 1, -1
0, 1, -1.

0, 0, 1
0, 1, -1

1. -1
1. -1
0, 1
-1,

0, 1.
16 }

. 16 }.
-1. 1* }
1. 16 }.

1, 16
16 }

0,
, 1,
0,
-1,

16 }.
16 }.
16 }.
. -1. -1.
-1. 16 },
-1. "I.

-1. 16 },
•1. -1. 16
16 },
1. 16 }.
1, -1. -1

-1, 16
-1. 16 }
. -1. -1.
, -1. 16
-1. 16 }
1. "I. -
, -1. 16
. -1, 16
. -1. -1,
-1. 16 },
-1. -1.

16 }.

16 },

16 },

'l6 },

1, 16 }.
}.
}•
16 }.

16 },

MARK-1 E X A M P L E

/ end of Update()/Propagate(). /

/* number of variables in _varinfo[] array. •/

int _varcount a 28;

/* program counter variable number and address. */

int _pcindex * 27; /* program counter is cr. •/
int _pcaddr » 0; /* address into pc variable. */

/****«**«•**«** e n d 0 f _varinfo[]. #•*•**•*•****•/

/**,«,«,,,,«,*«*,«***,«,,*«,,.**«*•********«**** »**,,*«*,•«*,«**,«,,,
/• •/

/* preset() - initialize memories. */
/• •/

preset()
{
}

/*****««**««*** e n d Qf p reset(). **•***•*•****«/

/********•*************•*•********•*********•******•*********************/

/• */
/* InitChannels() - opens default input/output channels •/
/• •/ /**••*«*•«**,«*«*«**•*******«** *****,**•«*•*,*»****«****«***,*«•««*•/

InitChannels()
{
} /* InitChannels() V

/•••••••••••••• end of InitChannels(). ••••••••••*•••/

/«*•«»*••**•******«* **««****«*************••****•*********««****«******«*/
/* •/
/* Update()/Propagate() - update/propagate primary variables •/
/• •/

Update(_vindex, _addr)
int _vindex;
unsigned int _addr;
{
switch(_vindex) {
case 23: _SET_f; break;
case 26: _SET_s; break;
default: break;

} /* switch(_vindex) •/
} /• Update(_vindex) •/

Propagate(_vindex, _addr)
int _vindex;
unsigned int _addr;

• {
switch(_vindex) {
case 23: _PR0P_f; break;
case 26: _PR0P_s; break;
default: break;

} /• switch(_vindex) •/
} /• Propagate(_vindex) •/

MARK-1 E X A M P L E

/* MainLoop() - main loop for general simulator
/•

• «

M a i n L o o p j)

{

LABEL(Jstart, EndLabel);
StartLabel:
Userlnterface();
_t00037 » m[cr];
pi * (_t00037 & OxOOOOffff);
-SET_f;
switch (f) {
case 0x00000000:
_SET_s;
cr a m[s];
break;

case 0x00000001:
_SET_s;
_t00037 « m[s];
_tempsl[0] » cr;
_fill * (_tempsl[0] & 0x00001000) ? Oxffffffff : 0;
_tempsl[0] |» .fill & OxffffeOOO;
cr +* _t00037;
cr &» OxOOOOlfff;
break;

case 0x00000002:
_SET_s;
_tQ0037 - m[s];
acc » ~_t00037;
acc++;
break;
case 0x00000003:
-SET.s;
m[s] « acc;
break;

case 0x00000004:
case 0x00000005:
_SET_s;
_t00040 « m[s];
acc _t00040;
break;
case 0x00000006:
_t00043 - (_signl » acc & 0x80000000, _sign2 » 0,

((-Signl && !_sign2)
|| (_signl && (0x00000000 < acc))
|| (!_sign2 && (acc < 0x00000000))));

if (_t00043) {
cr +• 0x00000001;
cr 8»* OxOOOOlfff;

}
break;
case 0x00000007:
stop();
break;

} •/• switch() •/
cr +* 0x00000001;
cr &- OxOOOOlfff;
goto StartLabel;
EndLabel: ;
} /* MainLoop() •/

/ end of MainLoop().

MARK-1 E X A M P L E

/ * *

/• Subroutines *'
/• v

end of Subroutines.

/ - • * • ' ^
/• Statistics m /

/*

/* Total RTM operations processed: 32 */

/• Finished at Wed May 21 16:08:39 1986. •/

C.1.6. Running the a rch i tec ture-spec i f ic Mark-1 s imulator

Below is a sample run of the architecture-specific Mark-1 simulator generated by PAST.
Script started on Thu Jun 26 17:09:31 1986

% markl -E mult.psim
cr»00000000> value ?
Must match one of these:

d.p. last.one
w.p. p.p.
wait parity
undefined is.running
f.o.p. m.1.p.l
first.one m.l.p.2
1.o.p. mask.left

cr»00000000> value m 25
m[37] * "00000135
cr~00000000> value m 26
m[38] * "00000007
cr*00000000> value m 27
m[39] - "00000000
cr«00000000> set m 25 321
cr*00000000> set m 26 12
cr»00000000> value m 25
m[37] * "00000321
cr*00000000> value m 26
m[38] » "00000012
cr*00000000> step 100
cr=0000000e> value m 25
m[37] « "00000321
cr=0000000e> value m 26
m[38] - "00000012
cra0000000e> value m 27
m[39] « "000015e7
cr=0000000e> run
Exiting simulation loop
cr=0000001b> value m 27
m[39] * "00003852
cr=0000001b> quit
Cycles executed: 246.
% exit
X

m. r. p. 1
m. r. p. 2
mask.right
t.w.p.l
t .w.p.2
time.wait
c.o.p.

count.one
Pi
f
m
s
acc
cr

simulation ended normally.

MARK-1 EXAMPLE 91

C.2. Program-specific simulator

A Mark-1 simulator specific to the multiplication program that we used as our test case was

prepared from the ISPS description as follows:
/ u s r / b s s / b i n / i s p c markl
/ u s r / b s s / b i n / p a s t markl -o m u l t . c -p m u l t . p s t
cc -c m u l t . c
cc -o mul t m u l t . o - l p a s t

The following sections show the files involved in generating the program-specific simulator that

differ from those involved in generating the architecture-specific simulator. The ISPS description,

GDB file, and RTM file are the same for both architecture-specific and program-specific simulators.

Also, the same sequence of commands can be run on both types of simulators with identical results.

C . 2 . 1 . M u l t i p l i c a t i o n p r o g r a m

Program to multiply two numbers by repeated additions.

Source operands are in X and Y.
Result ends up in R.

if (y < 0) {
nflag » TRUE;
y • -y:

}

00: 40 26 ldn Y ; A <- -Y
01: 60 23 sto N3
02: cO 00 cmp ; if A Iss 0 (y > 0)
03: 00 lc jmp LI
04: 00 Id jmp L2
05: 60 22 LI: sto HZ ; nflag « TRUE;
06: 40 23 ldn N3 ; y « -y;
07: 60 23 sto N3

; for (i • y - 1; i >• 0 ; 1-)
; r • r + x;

08: 40 23 L2: ldn N3 ; A <- YTemp
09: 80 21 sub Nl ; A <- YTemp - 1
0a: cO 00 cmp ; if A lss 0 then L4
0b: 00 le jmp L3
0c: 00 If jmp L4
Od: 60 24 L3: sto M4 ; YTemp » A * YTemp
Oe: 40 24 ldn N4
Of: 60 23 sto N3

MARK-1 EXAMPLE 92

R + X

10: 40 27 ldn R ; A <- -R
11: 80 25 sub X ; A <- -R
12: 60 27 sto R ; R » -R
13: 40 27 ldn R
14: 60 27 sto R

15: 00 Id jmp L2

if (nflag « TRUE)
R - -R;

16: 40 22 L4: ldn N2
17: cO 00 cmp
18: 00 20 jmp L5
19: 40 27 ldn R
la: 60 27 sto R

lb: eO 00 L5: stop

; label values are jump location - 1 because the PC
; is incremented after the jump.

lc: 00000004 labels: LI
Id: 00000007 L2
le: 0000000c L3
If: 00000015 L4
20: 0000001a L5
21: 00000001 Nl: 1
22: 00000000 N2: negative
23: 00000000 N3: Ytemp
24: 00000000 N4: not used
25: 00000135 X: source
26: 00000007 Y: source
27: 00000000 R: result

; 0x0135 • 0x0007

iMARK-1 E X A M P L E 93

C . 2 . 2 . P A S T c o m m a n d f i l e • m u l t . p s t

radix hex
setval m[00] - 4026
setval m[01] - 6023
setval m[02] - cOOO
setval m[03] - 001c
setval m[04] - OOld
setval m[05] - 6022
setval m[06] - 4023
setval m[07] - 6023
setval m[08] - 4023
setval m[09] • 8021
setval m[0a] a cOOO
setval m[0b] a OOle
setval m[0c] a OOlf
setval m[0d] • • 6024
setval m[0e] • • 4024
setval m[0f] « • 6023
setval m[10] -• 4027
setval m[ll] -• 8025
setval m[12] -• 6027
setval m[13] a - 4027
setval m[14] « - 6027
setval m[15] » > OOld
setval m[16] « - 4022
setval m[17] • > cOOO
setval m[18] a » 0020
setval m[19] • • 4027
setval m[la] « - 6027
setval m[lb] - eOOO
setval m[lc] - 00000004
setval m[ld] « 00000007
setval m[le] - 0000000c
setval m[lf] * 00000015
setval m[20] - 0000001a
setval m[21] - 00000001
setval m[22] - 00000000
setval m[23] » 00000000
setval m[24] » 00000000
setval m[25] * 00000135
setval m[26] - 00000007
setval m[27] - 00000000
set cr - 0

I set the program counter variable to be cr.
pc cr

! code range,
code 0:1b

! static range,
static m[0:21]

! start of cycle,
start start

MARK-1 EXAMPLE 94

C . 2 . 3 . T h e s i m u l a t o r • m u l t . c

/• ISPS PAST VI.0 at Wed May 21 17:28:51 1986
/•
/* RTM file:
/• markl.rtm
/• PST file:
/• mult.pst

/* the initial definition and */
/* declaration sections are the same */
/* for both architecture-specific and */
/* program-specific simulators. See •/
/* the architecture-specific simulator. */

/************** e n d o f _varinfo[]. **************/

preset() - initialize registers and memories.

preset()
{
m[0
m [r
m[2 :

m[3]
m[4]
m[5]
m[6]
m[7]
m[8]
m[9]
m[10]
m[ll]
m[12]
m[13]
m[14]
m[15]
m[16]
m[17]
m[18]
m[19]
m[20]

. m[21]

0x00004026
0x00006023
OxOOOOcOOO
0x0000001c
OxOOOOOOld
0x00005022
0x00004023
0x00006023
0x00004023
0x00008021
OxOOOOcOOO
OxOOOOOOle
OxOOOOOOlf
0x00006024
0x00004024
0x00006023
0x00004027
0x00008025
0x00006027
0x00004027
0x00006027
OxOOOOOOld

MARK-1 EXAMPLE 95

m[22] * 0x00004022;
m[23] » OxOOOOcOOO;
m[24] = 0x00000020;
m[25] » 0x00004027;
m[26] * 0x00006027;
m[27] = OxOOOOeOOO;
m[28] - 0x00000004;
m[29] « 0x00000007;
m[30] = OxOOOOOOOc;
m[31] » 0x00000015;
m[32] » 0x0000001a;
m[33] » 0x00000001;
m[34] * 0x00000000;
m[35] » 0x00000000;
m[36] » 0x00000000;
m[37] » 0x00000135;
m[38] » 0x00000007;
m[39] * 0x00000000;
cr » 0x00000000;

}

/«****•***•***« e n Cj of preset(). ••••••••••*•••/

/*
/* InitChannels() - opens default input/output channels */
/• •/

/ ' ' • • •••

InitChannels()
{
} /• InitChannels() •/

/*******•••*«** e n d Qf initChannels().
/ * • * * * » * » * V
/• •/
/• Update()/Propagate() - update/propagate primary variables */
/• •/

•••• • •••••••••••••••••••••••••/

Update(_vindex, _addr)
int _v index;
unsigned int _addr;
{
switch(_vindex) {
case 23: _SET_f; break;
case 26: _SET_s; break;
default: break;

} /* switch(_vindex) •/
} /• Update(_vindex) •/

Propagate(_vindex, _addr)
int _v index;
unsigned int _addr;
{
switch(_vindex) {
case 23: _PROP_f; break;
case 26: _PROP_s; break;
default: break;

} /• switch(_vindex) •/
} /• Propagate(_vindex) •/

/ • m m . . . * e n d 0f update()/Propagate().

MARK-1 EXAMPLE

/* MainLoopO - main loop for program-specific simulator •/

MainLoop()
{
while(l) {
Userlnterface(30);
MainSwi tch();
} /• while(l) •/
} /• MainLoopO •/

MainSwitch()
{
switch(cr) {
case 0:
_t00037 » 0x00004026;
pi - 0x00004026;
_t00037 » m[38];
acc 3 ~_t00037;
acc++;
cr • 0x00000001;
break;
case 1:
_t00037 * 0x00006023;
pi • 0x00006023;
m[35] • acc;
cr * 0x00000002;
break;
case 2:
_t00037 * OxOOOOcOOO;
pi » OxOOOOcOOO;
_t00043 « (_signl » acc & 0x80000000. _sign2 » 0,

((_signl && !_sign2)
|| (_signl && (0x00000000 < acc))
|| (!_sign2 && (acc < 0x00000000))));

if (_t00043) {
cr » 0x00000003;

}
cr +« 0x00000001;
cr &- OxOOOOlfff;
break;

case 3:
_t00037 » 0x0000001c;
pi * 0x0000001c;
cr * 0x00000004;
cr = 0x00000005;
break;

case 4:
_t00037 * OxOOOOOOld;
pi - OxOOOOOOld;
cr * 0x00000007;
cr » 0x00000008;
break;

case 5:
_t00037 « 0x00006022;
pi - 0x00006022;
m[34] » acc;
cr » 0x00000006;
break;

MARK-1 EXAMPLE

case 6:
_t00037 = 0x00004023;
pi - 0x00004023;
_t00037 » m[35];
acc * ~__t00037;
acc++;
cr » 0x00000007;
break;
case 7:
_t00037 » 0x00006023;
pi * 0x00006023;
m[35] * acc;
cr » 0x00000008;
break;
case 8:
_t00037 » 0x00004023;
pi » 0x00004023;
_t00037 - m[35];
acc * ~_t00037;
acc++;
cr * 0x00000009;
break;
case 9:
_t00037 * 0x00008021;
pi - 0x00008021;
_t00040 = 0x00000001;
acc 0x00000001;
cr * 0x0000000a;
break;
case 10:
_t00037 » OxOOOOcOOO;
pi ' OxOOOOcOOO;
_t00043 * (_signl » acc & 0x80000000, _sign2 » 0,

((_signl && !_sign2)
|| (.signl && (0x00000000 < acc))
|| (!_sign2 && (acc < 0x00000000))));

if (_tOQ043) {
cr * 0x0000000b;

}
cr +- 0x00000001;
cr &» OxOOOOlfff;
break;
case 11:
_t00037 - OxOOOOOOle;
pi 3 OxOOOOOOle;
cr * 0x0000000c;
cr » OxOOOOOOOd;
break;
case 12:
_t00037 - OxOOOOOOlf;
pi - OxOOOOOOlf;
cr » 0x00000015;
cr » 0x00000016;
break;
case 13:
_t00037 » 0x00006024;
pi =• 0x00006024;
m[36] • acc;
cr • OxOOOOOOOe;
break;

MARK-1 E X A M P L E

case 14:
_t00037 * 0x00004024;

pi * 0x00004024;

_t00037 = m [3 6] ;

acc 3 ~ _ t 0 0 0 3 7 ;

acc++;
cr * OxOOOOOOOf;

break;
case 15:
_t00037 * 0x00006023;

pi * 0x00006023;

m [3 5] * acc;
cr * 0x00000010;

break;
case 16:
_t00037 * 0x00004027;

pi * 0x00004027;

_t00037 » m [3 9] ;

acc * ~ _ t 0 0 0 3 7 ;

acc++;
cr * 0x00000011;

break;
case 17:
_t00037 * 0x00008025;

pi * 0x00008025;

_t00040 - m [3 7] ;

acc — __t00040;

cr « 0x00000012;

break;
case 18:
_t00037 » 0 x 0 0 0 0 6 0 2 7 ;

pi * 0x00006027;

m [3 9] • acc;
cr * 0x00000013;

break;
case 19:
_t00037 * 0 x 0 0 0 0 4 0 2 7 ;

pi » 0x00004027;

_t00037 » m [3 9] ;

acc 3 - _ t 0 0 0 3 7 ;

acc++;
cr * 0x00000014;

break;
case 20:
_t00037 - 0x00006027;

pi » 0x00006027;

m [3 9] • acc;
cr » 0x00000015;

break;
case 21:
_t00037 * OxOOOOOOld;

pi - OxOOOOOOld;

cr - 0x00000007;

cr • 0x00000008;

break;
case 2 2 :
_t00037 * 0x00004022;

pi * 0x00004022;

_t00037 » m [3 4] ;

acc * ~ _ t 0 0 0 3 7 ;

acc++;
cr » 0x00000017;

break;

MARK-1 EXAMPLE 99

case 23:
_t00037 » OxOOOOcOOO;
pi s OxOOOOcOOO;
_t00043 • (_signl * acc & 0x80000000, _sign2 * 0,

((..signl && l_sign2)
II (_signl 8t& (0x00000000 < acc))
|| (!_sign2 && (acc < 0x00000000))));

if (_t00043) {
cr * 0x00000018;

}
cr 0x00000001;
cr &» OxOOOOlfff;
break;
case 24:
_t00037 * 0x00000020;
pi * 0x00000020;
cr « 0x0000001a;
cr = 0x0000001b;
break;
case 25:
_t00037 » 0x00004027;
pi = 0x00004027;
_t00Q37 - m[39];
acc • ~_t00037;
acc++;
cr * 0x0000001a;
break;
case 26:
_t00037 - 0x00006027;
pi » 0x00006027;
m[39] » acc;
cr » OxOOOOOOlb;
break;
case 27:
_t00037 » OxOOOOeOOO;
pi - OxOOOOeOOO;
stop();
break;
default:
fprintf(stderr,
"cr * %d: the program counter is outside of the specified code range.\n",
cr);
1ongjmp(JStart, PCOUTOFRANGE);
break;

} /• switch(cr) •/
} /• MainSwitch() •/
/*»****•*«***«• e n d 0f MainLoop().

/*••«*,*«**,*«»*,«,***»••*««•**«««*«,«,*
/•
/• Statistics
/•
/***««****«•««*•*««*«*•«*»««****•*«*«•«•

/* Total RTM operations processed: 274
/*
/* Finished at Wed May 21 17:28:56 1986.

PROBLEMS WITII I I I E C C O M P I L E R 100

Appendix D
Problems with the C compiler

We encountered numerous problems with the cc C compiler when we tried to compile

simulators produced by PAST. To circumvent some of the compiler's problems, we had to determine

what its limits were. We wrote several C programs to test the limits, and have summarized our

findings in Table D-l. Some of these limits are probably quite easy to vary if one has access to the

source code for the cc compiler, but we do not have access to that code.

Limited parameter Limit Error Message
Number of distinct cases in a switch
statement

499 compiler error: switch table overflow

Number of cases which can drop through
to same code in a switch statement

137 yacc stack overflow

Number of C functions 2999 compiler error: symbol table full
Jump size brw: Branch too far: try -J flag (as­

sembler error)

Table D-l: Limitations of the cc C compiler.

R E F E R E N C E S

References

[1] Alfred V. Aha Jeffrey D. Ullman.
Principles of Compiler Design

Addison-Wesley Publishing Company, Reading, Massachusetts, 1984.

[2] Benjamin Atlas.
Mixed Level Functional Specification: A Modeling Methodology for Computer System

Simulation.
PhD thesis, Carnegie-Mellon University, August, 1985.
SRC Research Report CMUCAD-85-64.

[3] Mario R. Barbacci, Gary E. Barnes, Roderic G. Cattell, Daniel P. Siewiorek.
The ISPS Computer Description Language.
Manual, Departments of Computer Science and Electrical Engineering Carnegie-Mellon

University, August, 1979.

[4] Mario R. Barbacci.
The Register Transfer Machine.
Technical Report, Computer Science Department Carnegie-Mellon University, September,

1979.

[5] Mario Barbacci, Andrew W. Nagle, J. Duane Northcutt
An ISPS Simulator.

Manual, Departments of Computer Science and Electrical Engineering Carnegie-Mellon
University, January, 1980.

[6] Mario R. Barbacci, Daniel P. Siewiorek.
The Design and Analysis of Instruction Set Processors.
McGraw-Hill Book Company, New York, 1982.

[7] C. Gordon Bell, Allen Newell.
Computer Structures: Reading and Examples.
McGraw-Hill, Inc., 1971.

[8] Randy Bryant, Mike Schuster, Doug Whiting.
MOSSIMII: A Switch Level Simulator for MOS LSI - User's Manual
10 January 85 edition, Carnegie-Mellon University, 1985.

[9] C. H. Chang, Y. Shintani, P. J. Lieu.
Warp System Simulator User's Manual
Department of Computer Science, Carnegie-Mellon University, Pittsburgh, PA 15213,1985.

R E F E R E N C E S 102

[10] Daisy Systems Corporation.
LOGICIAN User's Guide
Daisy Systems Corporation, Mountain View, California 94039,1985.

[11] Jack W. Davidson.
Fast Interpretation of Instruction Sets: Implementation and Applications.
In C. J. Koomen and T. Moto-oka (editor), Computer Hardware Description Languages and

their applications, pages 179-191. Kyoto, Japan, August, 1985.

[12] A. K. Dewdney.
A computer microscope zooms in for.a look at the most complex object in mathematics.
Scientific American : 16-24, August, 1985.

[13] Digital Logic Handbook
Digital Equipment Corporation, 1968.

[14] VAX Architecture Handbook
Digital Equipment Corporation, 198L

[15] Roy L. Druian.
Functional Models for VLSI Design.
In Twentieth Design Automation Conference Proceedings, pages 506-514. IEEE, 1983.

[16] David John Geiger.
A New Look at Algorithmic Simulation.
PhD thesis. Carnegie-Mellon University, June, 85.
Ph.D. Thesis Proposal, June 5,1986.

[17] Dwight Hill, Willem vanCleemput
SABLE: A Tool for Generating Structured, Multi-level Simulations.
In Sixteenth Design Automation Conference Proceedings. IEEE, 1979.

[18] Beatriz Infante, Mark Bales, Ed Lock.
MADL: A Language for Describing Mixed Behavior and Structure.

In T. Uehara and M. Barbacci (editor), Computer Hardware Description Languages and their

Applications, pages 115-126.1983.

[19] Neil D.Jones.
Towards Automating the Transformation of Programming Language Specifications into

Compilers.
unpublished, January, 1986.
Unpublished draft dated January 1986.

[20] Brian W. Kernighan and Dennis M. Ritchie.
The C Programming Language.
Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1978.

[21] H. T. Kung, Onat Menzilcioglu.
Design Specifications for the CMU Warp Processor

Computer Science Department, Carnegie-Mellon University, Pittsburgh, PA 15213, August

21,1984.

REFERENCES 103

[22] Karl J. Licberhcrr.
Toward a Standard Hardware Description Language.
IEEE Design <£ Test :55-62, February, 1985.

[23] J. A. Nestor, D. E. Thomas.
Defining and Implementing a Multilevel Design Representation.
In Nineteenth Design Automation Conference Proceedings, pages 740-746. IEEE, 1982.

[24] Greg M. Ordy, Charles W. Rose.
The N.2 System.
In Twentieth Design Automation Converence Proceedings, pages 520-526. 1983.

[25] Adam Osborne, Gerry Kane.
Osborne 4 & 8-bit Microprocessor Handbook
Osborne/McGraw Hill, Berkeley, CA, 1981.

[26] Charles W. Rose, Greg M. Ordy, Frederic I. Parke.
N.mPC: A Retrospective.
In Twentieth Design Automation Conference Proceedings, pages 497-505. IEEE, 1983.

[27] Charles W. Rose, Greg M. Ordy, Paul J. Drongowski.
N.mPc: A Study in University-Industry Technology Transfer.
IEEE Design & Test of Computers l(l):44-56, February, 1984.

[28] Jay W. Schooley.
Translation and Instrumentation Of An ISPS Simulator.
Master's thesis, Carnegie-Mellon University, August, 1985.
SRC Report Number CMUCAD-85-62.

[29] Richard J. Selvaggi.
A Parallel ISPS Simulator for a Multiprocessor.
Master's thesis, SRC-CMU Center for Computer-Aided Design, Department of Electrical and

Computer Engineering, Carnegie-Mellon University, February, 1986.

[30] Daniel P. Siewiorek, C. Gordon Bell, Allen Newell.
Computer Structures: Principles and Examples.
McGraw-Hill Book Company, New York, 1982.

[31] A. Vladimirescu, Kaihe Zhang, A. R. Newton, D. O. Pederson, A. Sangiovanni-Vincentelli.
SPICE Version 2G User's Guide
Department of Electrical Engineering and Computer Sciences, University of California,

Berkeley, CA, 94720,1981.

[32] ZYCAD Intermediate Form Reference Manual, Volume 1: Logic Evaluator
ZYCAD Corporation, 1985.

