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1. INTRODUCTION .

The finite element method is based on variational principles developed for the most part in the

last century. While a complete exposition of these principles is beyond the scope of this course,

an introduction to the essential elements of variational calculus is required as a foundation for

the procedures to follow.

Variational principles for electromagnetic field problems can be derived from two alternative

points of view, namely by using Galerkin's method or by using the Rayleigh-Ritz method. Since

Galerkin's method is considerably easier to understand than the Rayleigh-Ritz method, and is fact

turns out to be more general, this lecture will concentrate on the development of Galerkin's

method. Application to electromagnetic field problems will be illustrated by simple examples.

2. A SIMPLE POTENTIAL DISTRIBUTION PROBLEM

A typical electromagnetic field problem which we may use for illustrative purposes is the

following: Determine the electrostatic potential distribution ^<x.y) and the capacitance of the

coaxial conductor shown in Figure 2-1. In this conductor, the inner conductor is raised, to a

potential f « 100 volts with respect to the outer conductor.

To solve this problem we may solve Laplace's equation for ^(x,y)

Ifi. +
ay2

subject to the boundary conditions

- 100 volts

inner conductor
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Figure 2 -2 : One quadrant of the coax of Figure 1 showing the Neuman
boundary conditions on the lines of symmetry.

3y y - 0

1 < x <

- 0

2

(5)

derived from the fact that the solution must be the same on either side of a symmetry line. In

mathematical parlance, boundary conditions specifying the derivative of the unknown, such as is

given in equations (4) or (5), are called Neuman boundary conditions, while boundary conditions

specifying the potential itself, such as in equation (2) or (3), are called Dirichlet boundary

conditions.



Equation (1) is a specific example of the general operator equation

- p(xfy)

(6)

where A is any linear operator and /><x,y) is a given forcing function. The following sections

discuss the solution of the general operator form given in equation (6), but the reader may wish

for clcanty to keep in mind the more specific problem given in equation (1).

3. GALERKIN'S METHOD

Galerkin's method is simplicity itself. It consists of five easy steps:

1. Write f<x,y) as a linear combination of approximation functions {a (x,y)}

(7)

2. Substitute (7) into (6)

n

(8)

3. Multiply both sides of equation* (8) by a (x,y> and integrate over the solution region
Q

- f o(x,y) p(x,y)dfl,0 *j

4.

Notice that equation (9) is actually a matrix equation



s • - p

(10)

/ o4(x,y) p(x,y)dft

(11)

and solve this matrix equation for the unknowns £ .

5. Substitute the solution # of (10) into equation (7) to give the approximate solution

It is a little harder to see why this procedure works as well as it does. One analysis draws

heavily on the concept of linear vector spaces and goes as follows: Since f(x,y) as determined

in Galerkin's method is only approximate, it will leave a residual

r(x,y) - A •^Cx.y) - PCx,y)

(12)

If we multiply both sides of equation (12) by <i.(x,y>,integrate over Q, and use equation (9) we

find that

/ a . ( x f y ) r (x ,y ) <to - 0 , i - l , . . . . n
' a

(13)

Thus, the residual function in a Galerkin solution is orthogonal to all of the



approximation functions used to represent +(x,y). If we choose the approximation functions

{tf.(x^y)} wisely* they will contain all of the important variations in r(xvy) and leave only a

small residual error in the orthogonal subspace. As we shall see in the next lecture, the choice

of approximation functions is a major concern in finite element analysis.

4. THE RAYLEIGH-RITZ METHOD

The Galerkin equations (9) can also be derived from an energy point-of-view using a procedure

called the Rayleigh-Ritz method. The energy stored in a scalar field f (x,y) governed by equation

<6> is

a

(14)

while the energy associated with the forcing function ^(x,y) is

•(x,y) P(x,y)dfl

(15)

A basic variational theorem states that for a positive definite system the energy functional

(16)

is minimized at the true solution equation (6), i.e. when f*f.

It is not hard to prove this result Since we are interested in variations in F ( f ) about the

solution point, we may begin by writing the arbitrary function f<x,y) as a sum of the true

solution f <x,y) and a second arbitrary function £<x,y> multiplied by a scalar *



e C(x,y)

(17)

The first variation of F ( f ) about the solution of f « • is then given by the derivative of F(p)

with respect to e at e - 0

3e

- • e - 0

Substituting equations ( 1 4 ) - ( 1 7 ) into ( 1 8 ) gives

MdQ -J
Q

• - •
- e i

•e - 0

Provided that the energy operator A is self-adjoint

equation (19) becomes

(16)

(19)

(20)

6 ?(•) 1 " I

(21)



Since Af • p by definition of f. we conclude that the first variation of F(f) about the solution

point is zero

- 0
• - •

(22)

To show that F(^) is a true minimum, we may evaluate the second variation of F(p)

(23)

Since the integral J £ A £dO is always positive with a positive definite operator A, the
O

curvature of F(p) is always negative, indicating that F(^) is indeed the true, unique minimum

value of F(p).

The Galerkin equations are obtained from F(f) by substituting in equation (21) the expansion

for f used before

• a p p (x ,y ) - Z •
3

(7)

In view of equation (22), equation (21) yields

j - 1 3 'a 3
)dQ - 0

<24)

Setting the arbitrar}* function I in the above equal to each of the approximation functions {a , i



( « , • * I* l,.~,n) in torn then yields

n f

- 1 'Q l 2

a.pdft , i • If •• »n

(25)

Equation (25) is identical to equation (9) derived using the Galerkin procedure.

Although the Rayleigh-Ritz equations (25) are identical to the Galerkin equations (9), it must

be emphasized that the Rayleigh-Ritz procedure may be applied only to systems which possess the

self-adjoint property in equation (20), while no such restriction exists in the application of

Galerkin's method.

5. A SIMPLE EXAMPLE

We will illustrate the ideas presented in the previous sections with a simple example. Consider

the infinite parallel plate capacitor illustrated in Figure 5-1 in which a negative linearly varying

charge exists />(x,y) • - x .

V%0c,y)-|x|

1

0

- 1

z
- 0

• 0

Figure 5-1: An infinite parallel plate capacitor containing a space

charge p<x.y) • - | x |.

By symmetry, this problem reduces to solving the one-dimensional boundary value problem



dx2

•(0) - 0

(26)

x - 1

We shall solve this problem by approximating ^(x) using quadratic polynomials

$ (x ) - aA + a.> x + a x 2
v 0 i 2

(27)

<28)

( 2 9 )

First a word about boundary conditions. As we shall see in the next section, the approximation

functions do not always have to satisfy the boundary conditions. For the moment, however, we

shall assume that the approximation functions in the Galerkin or the Rayleigb-Ritz methods satisfy

the boundary conditions exactly. Imposing the boundary condition (27) on the approximation (29)

(30)

Similarly, imposing (28) on (29) gives
-2a2

(31)

We will therefore make a one-term approximation of the potential distribution f(x)

(32)

where the approximation function a (x) is

l(x) - x2 - 2x

The matrix S of equation (10) is one by one. We evaluate it as follows:

(33)
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1
(x2 - 2x) — (x2 - 2x)dx

0 dx2

2 / (x2 - 2x)dx
0

I
3

(34)

On the right-hand-side of equation (10) we obtain

1 2

/

I 2 5

(x - 2x)xdx - J2
P

0

(35)

Therefore, equation (10) yields

4 , 5
3 *! * 12

(36)

or

(37)

The approximate solution is thus

• W " i 6

(38)

This should be compared to the exact solution •



11

(39)

6. NATURAL BOUNDARY CONDITIONS

Up to this point, we have tried to find approximate solutions of the differential equation (6)

but have imposed the boundary conditions on the solution exactly. The boundary conditions may

also be written in operator form

B*(x ,y) - g

(40)

where F is the boundary of the region f l We will now show that imposing boundary conditions

only approximately in Galerkin's method has some advantages over the exact approach.

Suppose that we have solved a boundary value problem using Galerkinvs method and have

required that the approximation functions satisfy the boundary conditions exactly, as in the

example in the preceding section. Since the solution is approximate, it must bend to match the

true solution as well as it can, but it is constrained rigidly to a prescribed behavior on the

boundary. If we loosen the condition boundary a little bit, requiring that the solution satisfy the

boundary condition. Closely but not exactly, then the approximate solution will be more free to

match the true solution in the problem interior. The highest overall accuracy is obtained not with

the approximate solution which satisfies the boundary conditions exactly but with that solution

which gives the smallest overall error to both the differential equation and to the boundary

conditions.

Since equation (40) is an operator equation, we may use Galerkin's method to approximate it

On doing so, we obtain the matrix equation

" • " !
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R±j - f a±(x> y)
rr

(42)
8i " / a i ( X t y ) 8U

Note that equations (41) and (42) differ in form from equations (10) and (11) only in that the

integrals are evaluated over the boundary T and not over the region O.

Equations (10) and (41) represent additional requirements on the approximate solution ^arr(x,y),

else the boundary conditions would not contribute to the solution. One method of imposing both

requirements is to solve the combined system

(S + XR)<fr « p + X g

(43)

Depending on the value of the parameter X, the boundary conditions on £ are more or less

strongly imposed.

Boundary conditions which are imposed only approximately in Galerkin's method are called

natural boundary conditions This name is derived from the fact that with Laplace's equation,

the approximate Neuman boundary condition is obtained in a very natural way.

7. THE SIMPLE EXAMPLE REVISITED

Let's return now to the problem considered in Section 5 and relax the requirement that the

solution satisfy the Neuman boundary condition at x • 1. Since equation (31) no longer holds,

the new approximate solution assumes the form

• a p p ( x ) - • i a 1 ( x ) + * 2 a 2 ( x )

where
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o2(x) -

The matrix S of equation (11) is

(45)

dx

(46)

We may integrate this by parts, letting

1 d«±(x) d a ^ x )
dx

x - 1
dx dx

(47)

For a Neuman boundary condition, B • \ and the matrix R of equation (42) becomes

R,
dft^x)

(46)

(Note that the integral in equation (42) which is a line integral in two-dimensions reduces to

evaluating the integrand at the endpoints of the interval in one-dimensional problems). Equation

(43) therefore becomes
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2 r da
Z I (1 + X)a

1-1 I * dx

r l da da i ,
- I ± J- dx] •. - -h±xdx , i - 1,J

x - 1
(49)

(49)

The obvious choice for X in equation (49) is X »-l , • choice which eliminates the first term in

equation (49) entirely. For the r»m»iiiiiig integrals we obtain

5 1 2 - S 2 1 - L

1 d x - 1

2xdx

f.s 2 2 - I . * * * * ' 3

Pi I1 x2dx

i:

1
3

3dx - - T

(50)

Thus equation (49) yields



IS

1 x ] f*ii ri/3i

1 4/31 L n
l l / 4 J

(51)

Solving this for £ gives ^ * 7/12, ^ « - 1/4. Consequently, the new approximate solution for

^(x) is

••<*>• I ! * " I * 2

(52)

Numerical values for this solution and for the solutions in equations (38) and (39) are given in

Table 1 and plotted in Figure 7-1. Note that although both approximate solutions contain the

same polynomial terms, the approximate solution in equation (52) which does not satisfy the

Neuman boundary condition exactly is considerably more accurate than the approximate solution in

equation (38) which does satisfy i t

Table 7-1: Numerical values for the exact and approximate

solutions of equation (26).

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

from eq.(38)

0.00000
0.05937
0.11250
0.15938
0.20000
0.23438
0.26250
0.28438
0.30000
0.30938
0.31250

f"" from eq.(52)

0.00000
0.05583
0.10667
0.15250
0.19333
0.22917
0.26000
0.28583
0.30667
0.32250
0.33333

Exact

0.00000
0.04983
0.09867
0.14550
0.18933
0.22917
0.26400
0.29283
0.31467
0.32850
0.33333

8. SOLUTION OF LAPLACE'S EQUATION

We return now to the solution of Laplace's equation which was introduced in equation (1).
thiFor this equation, the Galerkin matrix elements S are



0.3

0.2

3.1

I]

0 - exact

x - eq.(52)

- eq.(38)

0.2 0.4 0.6 0.8 1.0

Figure 7-1: Graph of the exact and approximate solutions

of equation (26).

dfi

(53)

and the elements of the matrix R corresponding to the Neuman boundary condition are

3a,
dr

(34)

Green's theorem stales that

?
(55)

Consequently, the Galerkin equation (43) for Laplace's equation with natural Neuman boundary

conditions is
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I I (1 + X) J ° i ! l L dr - f *»< • V a4 dfi 1 •, - 0
j . i I r an 'Q * j J J

(56)

Again, the simplest choice is to take X « - 1 , in which case equation (56) reduces to

J - l J
V a . • V a . da

(57)

Equation (57) is usually derived in the literature in the following way: The energy functional

corresponding to equation (1) is

- - \ f • V2

(58)

Using Green's theorem and assuming Neuman boundary conditions, (58) is converted to

V • dO

(59)

Substituting for f from equation (7), and minimizing with respect to the coefficients f% then

gives equation (57).

While the tradition derivation of the Calerkin equation is admirably short, it confuses the issue

of natural boundary conditions. The step from equation (58) to equation (59) makes it appear

that the boundary integral is simply "thrown away". In view of the derivation in Section 6,

however, we see that this boundary integral is not thrown away but in fact cancels with the

addition of the boundary approximation term.
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Filially, in conclusion. Figure 8-1 presents the solution of the electrostatics field problem gives

in Figure 2-1. using equation (57) and fourth order polynomials for the approximation functions.

DeUils of the specific polynomials used to obtain this solution are left to the next lecture.

Figur« 8-1: EquipotentUl contours in the two-conductor electrosUtics
field problem given in Figure 1
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