
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

SCHEDULING OF TASKS FOR DISTRIBUTED PROCESSORS

by

R. Mehrotra and S.N. Talukdar

DRC-18-68-84

December, 1984

SCHEDULING OF TASKS FOR DISTRIBUTED PROCESSORS

Ravi Mehrotra
Electrical and Computer Engineering Department

N.C. State University, Raleigh, North Carolina 27650

Sarosh N. Talukdar
Department of Electrical Engineering

Carnegie-fellon University, Pittsburgh, PA 15213

ABSTRACT

The paper describes a technique for estima-
ting the minimum execution time of an algorithm
or a mix of algorithms on a distributed process-
ing system. Bottlenecks that would have to be
removed to further reduce the execution time are
identified. The main applications are for the
high level design of special purpose distributed
processing systems.

The distributed systems are modelled by Pt
a set of nonidentical processors and R, a set of
resources that the processors can use. The algo-
rithms are nodelled by T, an ordered set of tasks.
The problem of optimally assigning the processors
to the tasks while meeting the resource con-
straints i-s N'P-complete, However, a heuristic
using maximum weighted retchings on graphs has
been devised that Is extrerr.ely fast and comes
reasonably close to the optimal solutions.

1. INTRODUCTION

Our main concern in this paper is assignment of
the tasks of an algorithm or a mix of algorithms
for distributed processing - not the distributed
processors themselves. V.e take a fairly high
level view of distributed processors. Specifi-
cally, we will think of a distributed processor
as consisting of two sets - one of processors and
another of resources that the processors can use.
The collaboration amongst processors can be inti-
mate - processors may access one another's mem-
ories - and use fast corcr.jnication networks so
that arrangements that one traditionally called
multiprocessors are also included in our view of
distributed processing. We will deal with the
problem of assembling a distributed processor from
a given mix of components, to co-pute a given syn-
chronous algorithm, or mix of algorithms, in mini-
mum time. The relevance of this problem is ex-
plained below.

If an algorithm has a great deal of regularity and
a great deal of fine grained parallelism (at the
instruction level), then it is best to vectorize
it and use pipeline or array processors for its
execution. Distributed processing, because of the
relatively large communication overheads it en-
tails, is better suited to exploiting coarser
grains of parallelism, such as occur among large

blocks of instructions or among major tasks. At
this grain, regularity is less cormon. It is un-
usual for an algorithm's major tasks to be identi-
cal or even similar. Kore often an algorithm con-
tains a mix of quite different tasks with quite
different processing requirements. One conse-
quence is that homogeneous machines (i.e., mach-
ines with Identical processors that are symmetri-
cally connected) can, at best, be designed so that
their processors are compatible with the average
task. Bottlenecks invariably develop in the pro-
cessing of non-average tasks. Of course, there is
no reason to restrict distributed processors to
homogeneous structures. There 1s a very wide var-
iety of available processing elements ranging from
large, general purpose main frames like the CRAY-1
to VLSI chips that are dedicated to a single func-
tion. This variety makes for a yery large number
of alternate structures for distributed processors.
How is one to find a good alternative for a given
application? A high level approach to answering
this question is obtained by representing algo-
rithms by graphs (as described In Section 2.1) and
thinking of a distributed processor as consisting
of two sets - one of processing elements, another
of resources (such as I/O devices and interconnec-
ting devices) for the processing elements to use.
To continue the approach one may take the follow-
ing steps:
1. Select a graph representation of the algorithm

(or mix of algorithms) under consideration.
2. Formulate the constraints governing the pro-

cessor set, the resource set and their inter-
actions.

3. Estimate the time that each processor will take
to execute each node (task) of the graph.

4. Find the optimum assignment (that is, find the
subsets of processor and resources and find the
allocation of tasks to processors that minimi-
zes the execution time of the algorithm while
meeting the constraints of step 2).

The result of completing these four steps will be
the high level design of a nonhomogeneous distri-
buted processor.

In this paper, we will yery briefly discuss the
first three steps and then devote the bulk of our
attention to the fourth and most difficult step.

The first step involves tearing the algorithm into
tasks and identifying the ordering constraints on
them. The parent graphs can be torn into more
elaborate offsprings but not till the tasks

0194-7111/84/0000/0263SO1.0001984 IEEE
263

become very small (approaching individual instruc-
tions) do the graphs display enough structural
variety to warrant systematic procedures for their
generation. Of course, when the tasks are this
small, distributed processing is much less desir-
able than array or pipeline processing. In sum-
mary, we feel that the first step is best done by
inspection.

The second step involves selecting the set of pro-
cessing elements to be considered for inclusion in
the distributed processor and articulating any
other relevant constraints, such as a limit on the
total cost of the distributed processor.

Much of the information called for In the third
step is available in tfie literature. For example,
one can readily find experimental data on the
times taken by various array processors to com-
plete L-U factorizations of matrices which have
the sparse structures that occur in power systems.
When the requisite information is unavailable in
published or manufacturers1 literature, benchmark-
ing or detailed simulation may be undertaken to
obtain it.

The fourth step - finding an optimum assignment -
is a very difficult constrained minimization prob-
lem. The remainder of this section will be de-
voted to developing and illustrating a heuristic
for solving it. The heuristic is efficient and
finds solutions that are reasonably close to opti-
mal solutions.

The rest of this paper is organized as follows.
Section 2 gives a formal description of the mini-
mization problem. Section 3 briefly reviews
available methods for tackling similar problems
and lists their principal failings. Then Section
3 goes on to develop a heuristic which translates
the •minimization problem into one of Maximum
Weighted Matchings (MWM). The procedures of
Section 3 have been coded to give a friendly,
FORTRAN program called SNONUET. The usage and
features of SNONUET are illustrated in Section 4.

2 MATHEMATICAL FORMULATION OF THE PROBLEM

This section establishes the basic vocabulary for
the remainder of the paper and gives a precise
mathematical formulation of the problem to be con-
sidered.

2.1 Algorithms

Recall that an algorithm A is described by A =

(T,a}, where T is a set of tasks il}, T2,... TN>

and the set a denotes the partial ordering rela-

tion on T such that T a T$ implies that the exe-

cution of tasks T$ (called the successor of T)

cannot begin until the execution of T (called the

predecessor of T) has been completed. We will

represent an algorithm A by a directed graph !

called the Task Order Graph GA(V,E) of A so that

there is one node in V for each task in T and one

arc in E for each relation in partial order a.

When a is empty the tasks are called independent.

It is assumed that the tasks to describe A are

chosen from a finite set of tasks Tp = {T^, T 2
P,

• .. T n
p}ofn primitive tasks. Each task Tx?T

corresponds to some primitive task T P£TP.

2.2 Distributed Computers

At a high level, we may think of distributed com-
puter architectures as assemblies of processors
that can execute tasks in TP provided that they
have access to certain resources such as disk
drives, tapes, memory and interconnecting devices
such as buses and data links. We will represent
a distributed computer system with M processors
and L resources by MP{P,R} where P = {P], P2....
PM> is a set of the M processors and R s {R], R£,
...RL> is a set of the L resources.

2.3 Algorithm - Distributed Computer Interactions

Each task T,£T may be executed on any processor in

P. We define a function n(T.) * (t i r t21,...tM1)

so that the value of t . represents the expected

time it takes to execute task T. on processor P .

Furthermore, we define a function r(T.) * (rii»
r2i•'"'r1i^ *° r e P r e s e n t tne resource requirements

of task T. such" that r is equal to the arrount of

discrete resource R needed while executing T

and 8(Rx) is the total units of Rx in the system.

2.4 Execution Time of A on MP(P,R}

Let T(T.) represent the starting time of the execu-
tion ofUask T^T.

Define X(kl = 1, if task T.- is executed on pro-
cessor P\ in time interval k and zero otherwise.
It is assumed that time is measured in terv.s of
equal and indivisible units. Using the notation
introduced in this section we define a feasible
schedule to be a mapping $: T+] where 1 is a one
dimensional space of integers representing time,
such that the following 3 conditions are satis-
fied:

m
Z X..(k) = 1 for j=l..N, all kei (1)
1-1 1J

If T.aT. then

T(T.)>T(T.)+I t.X.(k) fori.j-l-.N, (2)
J -] H rl rl all kel

N m
6(R.)> I I r..X .(k) for all kel (3)

1 " > 1 p-1 1J PJ

Eq. 1 is needed to avoid the assignment of a task
to more than one processor. Eq. 2 is a statement
of the procedure constraints of A. Eq. 3 is need-
ed to ensure that the resources required by a job
will be available while the job executes.

Corresponding to each feasible schedule in T-*l we
define the execution time of the algorithm A on MP
as:

LM£ « min {Xij(k)=O for 1*1..m, J-1..N | k > 0}

264

Thus, the problem of finding the optimal assign-
ment of tasks in the algorithm A on a distributed
computer MP, so as to minimize the overall execu-
tion time, may 5e stated as:

GSP:
Minimize L.

subject to t r M (4)

For every node n.^cG.(Y,E) define the weight of n.,

W C ^) , as U(n^) * min (t^, t21,. ., t m t) . Define

the length of a directed path from node n to node

nt to be equal to the sum of weights of all the

nodes in the directed path from n to n+. The

longest directed path from a node with no prede-

cessor to a node with no successor represents a

lower bound on L ^ . This lower bound L^ is ob-

tained by assuming that all the tasks in G.(V,E)

are assigned to the processor on which they take

mir.iir.um execution time and there is a sufficient

number of processors and resources in the system.

Ifpthe solution to GSP of Eq. 4 gives a value of
L A > l%* the elei"ents of the set p dnd R mftX be

modified to reduce the difference between v\ and
LJ. This allows us to reconfigure a distributed
tcr.puter system to rake it best suited for execu-
ting the algorithm under consideration. The solu-
tion procedure (Section 3.1) used to solve GSP
enables us to identify the elements of MP that
limit performance, thus suggesting a natural modi-
fication of the set P and/or R.

2.5 A Cost Constraint

Let CP(Pi) represent the cost of processor Pj,
isl...M. A cost constraint may be added to GSP as
follows:

GSPC:

ftinimize L*

subject to
M
I CP(P.) Y, ±COST
il 1 1

(5)

All processors in the set P are not necessarily
used. The solution procedure attempts to select
the particular mix of processors that minimizes
the overall execution time with the total cost of
processors in the mix being no more than COST.
Note that Y-J is 1 if processor Pi is assigned some
task and 0 otherwise.

3 SOLUTION PROCEDURE

GPS is a well known and notoriously hard problem
(the name is an acronym for General Scheduling
Problem). Much of the work in the area has been
devoted to the subproblem of GSP in which all the
processors are identical [1, 2, 3, 4, 5, 6, 7, 8,
9]. Some work has also been devoted to the use of
enumerative and iterative techniques, such as

local search and branch and bound, for other sub-
problems of GSP [10, 11, 12, 13]. However, we
know of no techniques that adequately address the
more general version of GSP that is of interest
here,

*1
It happens that GSP is NP-complete. This means
that it is unlikely that an algorithm can be de-
vised to find optimal solutions of GSP in any rea-
sonable length of time. A better strategy is to
seek heuristics that will find reasonably good
solutions in reasonable amounts of time. We will
proceed to develop one such heuristic.

3.1 A Heuristic for Solving GSP

The heuristic technique is based on finding maxi-
mum weighted matchings on graphs. Its essential
steps are:

1. Determine the Edge List Matrix of G.(V,E), the
Execution Time fetrix [t^] and the Resource
Requirement Katrix [r^] J(see the Example of
Section 3.3.3). J

2. Assign levels to the nodes, Tx, of the task
graph G (V,E). Intuitively, the level of a
node is^its distance from a node with no suc-
cessor or a nc-̂ e with no predecessor. As such,
levels represent the precedence structure of
GA(V.E).

3. Making use of the levels of the nodes, assign
tasks to the processors while disregarding the
resource constraints. This step is carried out
by finding maximum weighted matchings on graphs.

4. Schedule the tasks on the processors they have
been assigned to, taking resource constraints
into account, f'ake a list of resource short-
ages if any.

5. Repeat steps 3 and 4 until all tasks have been
scheduled.

6. Output the schedule and the list of resource
shortages (see example of Section 3.3).

We will now proceed to describe how steps 2-5 may
be taken.

The nodes, T, of the task graph G.(V,E) of an al-
R

gorithm A are assigned two levels L (T) and
F

L (T) by the following algorithm:
Assign-Levels:

D

1. If T has no successors, then L (T) = 1; other-

wise, LB(Tx) = 1 + max {Lg(Tx) | TxaTy}.
2. Let L (T) represent the smallest integer such

o max n
that Lb(T) > LB(T) for all tasks T .max "̂ x x

T)
max

3. If T has no predecessor, then LF(T) = LB(T \
x r p x max

otherwise, Lr(T) = min { Lr(T) | T a T } - 1.
A J J *

This is a class of difficult problems. Known al-
gorithns for finding their optimal solutions re-
quire execution times that increase exponentially
with problem size [6].

265

n« ;

The tasks TxeT are first assigned to processors
PycP without regard to the resource constraints of
R2eR (but taking the precedence constraints into
account) by the algorithm assign-tasks and then
scheduled on the corresponding processors by the
algorithm schedule-tasks. The tasks in T are
scheduled in the decreasing order of their levels
L°(T), taking resource constraints into account.
If resource constraints are violated, the starting
time of the task is delayed until a sufficient
amount of resource is released by tasks which com-
plete execution. While scheduling tasks, the algo-
rithm, schedule-tasks, ensures that the conditions
of Theorem 1 are satisfied. In order to under-
stand how the scheduling procedure works, it is
convenient to assure that all tasks T with LB(T)

> 1 have already been assigned to processors and

scheduled on then. Consider the set % of tasks

1. Let • • {Tx,t T xTx such that L
D(Tx) .. — - T .-x,. -x

Tvl .} and define the set J = {1,2,..!|-H}2so that

the elements of J are in one to one correspondence

with tasks in *. Let PI • {l,2...m> represent the

set of processor indices to which tasks are to be

assigned without regard to the resource require-

ments. This assignment problem may be formulated

as an N?-complete Integer Linear Program as

follows:

ILP:

Minimize

Subject to

COMP TIME

Z t.. z..
1J 1J

Z z.. « 1
iePl 1J

z.. s 0 or 1

- COMP TIME <. 0

all iePl

I all jeJ

all iePl & jeJ (6)

The solution to the above ILP gives the optical
processor assignment that minimizes the latest
finish tiire, COMP TIME, of the independent task set
*' 2 i i ^ ^ Tx- 1S a s s i*S n e d t0 processor P. and
z— s 0 , otherwise. ILP can be solved by a general

ILP algorithm such as a cutting-plane method or
branch and bound but such solution procedures are
NP-coiTiplete. Instead, we solve ILP by transform-
ing it to another problem given below:

ILPM:

Maximize z z c.
ierl jeJ 1

Subject to I y.. <
j J 1J "

y..
1J

1J
all iePl

Z y,
iePl 1

• 1 all jeJ

The

yr « 0 or 1 all iePl & all jeJ (7)

have the same interpretation as the Zjj*s

The Cjj's and b*'s are defined by the altorithm
assign-tasks. ILPM is known as the Maximum
Weighted Matching problem (MWM) [14, 17, 20]. A
polynomial time algorithm to solve MWM on bipar-
tite graphs is described in [15, 16]. Solution to
ILPM yields an upper bound, UB, for the solution
to ILP. The inequality constraints and the objec-
tive function of ILPM are modified to improve UB
and bring it closer to the solution of ILP.

Assign-Tasks:

1. Initialize as follows:
a. b. = |J|, for all iePl

b. C i j *
{Z
iePl

t..> / t,
1J 1

for all iePL & jeJ

c. UB = • and MIX » FALSE

2. Solve ILPM (MM) to determine y^ for uPl,

3. Evaluate tp^ and i as follows:

a. tp.
1

z t..y.
eJ 1J 1

for all

b. 1* = {x| tpx >,tp. for all

c. If CMTC1 is TRUE) go to step 6.

d. if (max {tp^ iePl ^ UB) go to step 5.

4. Evaluate b

a. b

b.* and z.., as follows:

i - |J| for all iePl

b. b.* = (z y.*.) - 1
1 jeJ 1 J

c . z . . « y . . for a l l i e P l , jeJ

d. UB = t p . * & Go to step 2.

5. Update

a. b i '

^ and

iePl

as follows:

b. 5,* « (I y •) -
1 JeJ V

c. MTC = TRUE

d. C.. « { Z t../ Z t..Z.
1J i3PL 1J jeJ 1J 1

e. Go to step 2.

/t ., all iePl &je
1J

6. Check for further improvement and update z. •
follows: J

as

a. If (tp^ >_ UB) go to step 7.

- y^. for all iePl, jeJb. z ^

c. UBf i

d. Go to step 5.

Evaluate the fin
TIME as follows:

.̂

7. Evaluate the final values for tp,, b- and COMP
TIME as follows:

a. tp. « z t.
1 jeJ 1

b. b, • Z z.
1 jeJ 1

c. COMP TIME =

z.. for all iePl

for all iePl

266

Assume that a l l tasks Tx , such that LB(TX) • 1,

'have been assigned to processors using the algo-
rithm assign-tasks. Before scheduling the as-*
signed tasks to processors, we form the following
2 sets:

I. If Zj j (see step 4c & 7a of the algorithm as-u

sign-task) is 1, task Tx has Been assigned to

processor P .̂ For each jePl , form a s e t . J j «

{ j | Zjj * 1} and a set ^ * (Tx | z ^ * 1 ,

£ r. < E rf.

for i

r.
Kxi+1

-1). Set ^ is a list of tasks
that have been assigned to processor P* in in-
creasing order of their total resource require-

2. For each set J., iePl, tp.j (see step 3a & 7a of
the algorithm assign-task} represents the total
time taken on processor P. assuming all tasks
assigned to it could be executed on it in
succession without violation of resource con-
straints. Form a set TP * (tpi f 0, for all
iePl | tp1 £ tpt+1>. Note that the set TP may
have fewer than n elements.

The assigned tasks are scheduled as follows. The
processors are considered in the increasing order
of tp. (see step 3a & 7a of the algorithm assign-
task) and tasks assigned to them are scheduled on
the processors. Thus, tasks assigned to the pro-
cessor with the minimum value of tp* are scheduled
first. Note that the value of tp* represents the
total time-taken on processor p* assuming all
tasks assigned to it could be executed on it in
succession without violating any resource con-
straints, that is, processor p, is not forced to
idle because of unavailable resources that may be
needed by the task being scheduled on it. The
tasks on a processor are scheduled in the increas-
ing order of their total resource requirements.
Let [r'^.r* ,. . r*,] represent the total resource
requirement^* all L tasks T such that LB(T) *
1+1 or LF(T) = 1 and task T* has been scheduled.
The remaining tasks are scheduled by'the following
algorithm:

Schedule-Tasks
1.. As long as TP is not empty, perform the step

a. Let s » 1 + max {T(T) + tp |L
B(T } » 1+1

vx
b. For each v, 1 <. v <. L, let ry * | r

v/here x is such that LB(TX)
 a

1+1 or LB(TX) * 1 and Tx has been scheduled.
c. Let tpi be the first element in TP. While •

is not empty perform the step
1. Let T be the first element in *..

Xj 1

ii. If for each v, l<y<L, ry' + rv <S(ry)

then let T (T) « s, for each v, let r ' * r ' +xj v v

r w and remove T from t4.v xj xj 1

Task T is scheduled on processor ?4 and X. *
Xj i 1Xj

1 for k * s, s+l,..f s+t1x .

d. Remove tp. from TP.

-2. Form a set of all tasks T which have not
been scheduled and have L (T) * 1.

3, Repeat this step until $ is empty. If for eachp
r
vy i
f

some
if t. <_ idle time of processor p^, then

h d l T P d T fschedule T on
remove T from

and remove T from +. Else

Once all tasks Tx with L
B(Tx) » 1 have been

scheduled, tasks T with LB(T) ^ 1-1 are assigned
to processors and then scheduled. The steps are
repeated until all tasks T2 with L

B(T2) * 1 have
been scheduled. The specific details and the rules
for breaking ties while forming the different sets
are described in [19]. Each time an assigned task
cannot be scheduled because of insufficient re-
sources, an entry is rcade in a Resource Shortage
Table indicating the particular task which could
not be scheduled together with units of the parti-
cular resource/resources which were needed but were
not available. The Resource Shortage Table is used
to determine additions to improve the system per-
formance-.

3.2 A Heuristic to Solve GSPC
Here we will describe a heuristic for solving the
cost constrained problem, GSPC. The heuristic con-
sists of two major steps. The first step is to
identify the mix of processors to use such that the
cost constraint is not violated. The second step
is to solve the resulting GSP by the procedure
described in Section 3.3.1. The solution of the
second step is used to modify the mix of processors.

The solution procedure works roughly as follows.
Initially, all tasks are assumed to be independent
and the cost constraint is relaxed. The tasks are
assigned to processors using the algorithm assign-
tasks. This assignment is used to calculate a-
which represents the value of processor P.
with respect to the assignment. We then solve a
knapsack problem ^ given below:

2
The name comes from a physical manifestation of

this single constraint problem - trying to maximize
the total value of different sized articles that
can be packed into a knapsack.

267

KSAK:

Maximize

subject to

IeP 1"1

I CP(P.) Y, <

Yt
 s 0 or 1 all ieP

(8)

Many efficient algorithms are possible to solve
Eq. 3-8 because ft has only one constraint [14].
We use a variation of branch and bound to solve it.

The set PI is identified from the solution to KSAK.
The tasks are then assigned to the selected set of
processors using the algorithm assign-tasks and
scheduled on them using the algorithm schedule-
tasks. The schedule is used to modify a. and the
KSAK is resolved. The steps are repeated until no
further improvement results. The details of the
procedjre are described in [15, 16].

3,3 An Example

Consider a distributed computer system MP{P,R>
with P = {P P P> and R « { R R >with P

pu
P2, P3> and R {R

]
R2>.

The inputs required, for the task graph of Fig.
3-1 are given in Tables lt 2 and 3. Table 1 is
a matrix representation of G.(Y,E) - the task
graph of Fig. 1. Note that the task graph is
represented as a 2 by |E| matrix called the Edge
List Matrix (ELM) such that if an edge e.eE Ts
incident from node n eV to node n.eV then ELM
(l.e^ - ns and ELM

 s(2,et) » n^

The values of [t1.] and [r..] are specified in

Tables 2 and 3 respectively. 8(Ri J = 3 units and

8(R2) = 2 units. L^ • 3.

Fig. 2 is a pictorial representation of the output
of the heuristic procedure of Section 3.1.

MP
Note that L £ * 5. Table 4 is the output which

indicates ways to decrease the overall execution
time by suitable additions to the system. Task T4
could not be started in parallel with T5 and T6 be-
cause of resource shortage. It needed 3 units of
R, and 2 units of R~ and none were available. If
I £ up

we let 8(R1)=6 and 8(R2)=4 then L A would be equal

to L-

4 A BRIEF DESCRIPTION OF SNONUET'S USES AND
FEATURES

The solution procedure outlined in Section 3.3 has
been translated into a user friendly, interactive,
FORTRAN program called SNONUET. It allows the user
to modify the input parameters until either satis-
factory execution time is obtained, or no further
improvement is possible. SNONUET has been tested
on a number of randomly generated examples and it
produced near optimal schedules in most cases. The
purpose of this section is to illustrate some of
the uses and features of SNONUET. To do this we
will use a simple example, chosen for explanatory
purposes rather than realism.

4.1 Preparation of Input Data for SNONUET

The steps in preparing the input data for SNONUET
are described below:

1. Select a level of decomposition and identify a
set of primitive tasks, TP, in terms of which to
describe the algorithm(s) in question. The
primitives can be at various levels. A reason-
able way to proceed is to use high level primi-
tives (i.e., relatively large tasks) for the
initial design and then refine the design with -
lower level primitives.

2. Choose the processor and communication network
alternatives to be considered.

3. Estimate the time and resource requirement of
each primitive task.

4. Estimate the costs of the processors.

5. Prepare the Edge List Matrix, the Execution Time
Matrix and the Resource Requirement Matrix as
illustrated in Section 3.3.

*-2 An Illustration of the Design Process Using
SNOiTUET

We consider the execution of the FuTl Load Flow
(FLF) [23] on the distributed computer of Fig. 3.
The task graph G.fV.E) of FLF is given in Figure 3
in terms of the primitive task set shown in Table

Three different types of processors are considered,
an array processor, AP, (such as the AP 120B) and
two special purpose VLSI peripheral processors SP1
and SP2. SP1 does vector sorting operations wery •
quickly. SP2's function is to do L-U factoriza-
tions and bdck substitutions quickly.

The estimates of the execution time of the host and
the three types of special processors considered
are listed in Table 6. Estimates of the per unit
costs of the three types of processors are shown
in Table 7.

We start with a unibus, distributed computer sys-
tem shown in Fig. 4 (the communication network is
the data channel of the host computer). The moti-
vation for using the common data bus is the sim-
plicity of the interconnection. Also if the com-
munication over the bus does not limit performance,
there would be no need to consider more sophisti-
cated interconnection schemes. The unibus of the
system is considered to be a resource of the sys-
tem. The resources corresponding to the communi-
cation network are handled in a special way. If
the total time needed for all data transfers over
the bus of all tasks in G/\(V,E) at any level is
found to be more than the user specified percentage
of LJ, then the bus is considered to be congested. .
The details of the bus modelling procedure are
described in [18]. SNONUET finds the latest fin-
ishing time of all tasks and identifies resource
shortages and processor additions to the system
which would improve performance. If the unibus of
the system is not congested, the number of special
processors of a given type may be increased to
check if further reduction in the overall execu-
tion time is possible. On the other hand, if the
unibus turns out to be congested, we introduce
another bus amongst the processors sharing the

268

'congested bus, to relieve the congestton and im-
prove speedup. The above steps are repeated until
no further reduction in execution time results.
The output of SNONUET, where there was no cost
constraint, indicated that overall execution time
could be reduced by increasing the number of APs
to 5. The overall execution time obtained by
SNONUET has been plotted vs the number of APs in

' pig. 5 after scaling it so that the stand alone
host could sequentially execute FLF in 100 units
of time.

11 The results when a cost constraint is included are
shown in Figure 6. As the constraint is tightened,
SN'ONUET produces the points along the dotted line
(the Pareto Frontier*3). The other points corres-
pond to poorer designs.

5 CONCLUSIONS
This paper has described a systematic procedure
that is useful in the selection and design of
dedicated distributed computers. The procedure
has been coded into an interactive FORTRAN program
called SNONUET.
Before SNONUET can be used one must break the al-
gorithm(s) into ordered tasks, select a set of
processors for consideration and select a set of
resources for the processors to use. One must
also estimate the tine and resource requirements
for each primitive task. SNONUET will then
schedule the tasks on the processors and identify
some changes that ;~ay be made if further decreases
in the overall execution time are to be obtained.
One may include the cost of the processors and an
upper limit on what the system is to cost.
SNON'UET will select a subset of processors and
schedule them so as to minimize the execution time
of the algorithm(s) and satisfy the cost con-
straint. This procedure enables us to plot the
optimal speedup vs cost for a fixed conr.unication
network and would be wery useful when selecting a
set of processors from those conroercially avail-
able.

The example in Section 5 was chosen more to illus-
trate the use of SNOfWET than as a realistic de-
sign exercise. It could, however, be used for
designing distributed computers if they were to be
dedicated to solving load flow problems.
Some further work needs to be done to obtain ways
to model complicated coircr.unication networks and
the queuing delays that result from packet
switching. In the present model, for each task
requiring the cornmunication network, expected

• queuing delays are added to the message transmit
times. The sum is treated as a deterministic time
for which the resource corresponding to the com-
munication network may not be used by another
task. This is a major drawback and its remedy may
allow us to extend the range of applicability of
the procedure to include some asynchronous algo-
rithms.

7 REFERENCES
[1] E. 6. Coffman, editor, Computer and Job-Shop

Scheduling
[2] S. Lam and R. Sethi, "Worst Case Analysis of

, p
Scheduling Theory, Wiley, 1976.

ompu
, 19

Two Scheduling Algorithms," SIAM Journal of
Computing, Vol. 6, 1977, pp. 518-536.

[3] D. K. Goyal, Scheduling Equal Execution Time
Tasks Under Unit Resource Restriction, Ph.D7
dissertation, Washington State University,
1976, Computer Science Department.

[4] J. Y. T. Leung, "Bounds on List Scheduling of
UET Tasks With Restricted Resource Constaints,1
Information Processing Letters, Vol. 9, 1979,

[5]

[6]

[7]

[8]

[9]

[10]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

The surface on which the best tradeoffs are ob-
tained between conflicting attributes like speed
and cost.

pp
J. Jaffe, Parallel Computation: Synchroniza-
tion, Scheduling and Schen-tes, Ph.D. disserta-
tion, Massachusetts Institute of Technology,
1979, Department of Electrical Engineering and
Computer Science.
J. D. Ullnan, "NP-Complete Scheduling Prob-
lems," Computer and Systems, 1975, pp. 384-393.
J. D. uYli-an, "Polynomial Computer Scheduling
Problems," Operating Systems Review, 1973,
pp. 96-101.
E. J. Coffman, editor, Complexity of Sequen-
cing Problems, Wiley, Computer and Job Shop
Scheduling, 1976, pages 130-164.
J. Bruno, E. J. Coffman, and R. Sethi, "Sche-
duling Independent Tasks to Reduce Mean Fin-
ishing Time," CACM, 1974, pp. 382-387.
M. Held and R. Karp, "A Dynamic Programming
Approach to Sequencing Problems," SIAM J. Appl.
rath 10, 1, 1962, pp. 196-210.
E". Horowitz and S. K. Sahni, "Exact and Approx-
imate Algorithms for Schedulino Nonidentical
Processors," JACH 23, 2, 1976, pp. 317-327.
E. 6. Coffnan, editor, Enurerative and Itera-
tive Computational Approaches, John Wiley &
Sons, Inc., Computer Job/Shop Scheduling Theory
1976.
M. J. Krone, Heuristic Prograrming Applied to
Scheduling Problems, Ph.D. dissertation,
Princeton University, 1970.
John Wiley & Sons, editors, Integer Programming
A Wiley-Interscience Publication, 1972.
R. Mehrotra, "Maximum Weighted Patchings on Bi-
partite Graphs," Technical Report, Carnegie
Mellon University, December 1982.
R. Mehrotra, "An Algorithm Based on Finding
Weighted Hatchings on Graphs to Schedule Tasks
on Multiprocessors," Technical Report, Carnegie
Mellon University, December 1982.
J. Edmonds, "Hatching: A Well Solved Class of
Integer Linear Programs," Proc. of the Calgary
Int. Conf. on Comb. Structures and Their Appl.,
Gordon and Breach, 1970, pp. 89-92.
J. Edmonds, "Paths, Trees and Flowers," Can. J.
Math., Vol. 17, 1965, pp. 449-467.
J. Edmonds, "Maximum Matchinq and a Polyhedron
with 0,1 - Vertices," J. Res' Nat. Bur. Stds.,
Vol. 69 B, 1965, pp. 125-130.
J. Edmonds, "An Introduction to Matching,"
Lecture Notes, University of Michigan Summer
Eng. Conf.

269

Table 1. Edge List Matrix for GA(V,E) of rig. 3-1. T t o l e 2 Executive Time Natrix [t ^] . Table 4. Resource Shortage Table.

P i 2 3 4 4 5 5 1 "1

I 4 S I 7 S a t f I

Table 3. Resource Requirement Matrix [r f j] .

R

At

R2

T«ble

A

3

2

S.

71 72 73 T4 75

1 1 1 3 1

0 1 1 2 2

70

0

0
A • Amomtfef R«OOMTC«W

Estimate of Execution

tst*r*f% of Tufc E*«c

HOST Ar»

77

2

1

7a

0

0

Tin* .

Ttrm»

SF1

79

3

0

p%

n
P9

2 t 1 1 1 f t 1 1

Task

74

Ri

3

R2

2

Table S. A Set of Primitive Tasks to Describe FIF T t b l e 7
of Figure 3.

Estimates.

t?x

fP2

90
10
20
0

V«ctar Sex S

vector 3^e«

VA

VF

vs

VD

V M

V Son

LUF 4 SS

0

100

1100

1000

1000

1000

4950

4000

0

39

410

3 * 0

3 4 0

3 4 0

9000

3000

VS

vo

VM

V Sort

700

PI

P2

73

T2

Tl

T5

T9

T4 TB

T3

77

Figurs GA(V,£).

1 2 3 4 1

Figure 2. Pictorial Representation of the Scheiul*.

Figure 3. Task Srsph for FUf In Teras of Che
Primitive T»sSc Set of Tisls 5.

i i i i ra | i op i
I E 1 I I E l I

Figure 4. A Unibus Distributed Computer System.

£>

j r .

- A •>
- 1 •>
- C • >
• 9 •>

991 «a£
§91 «M
m »ot
BotJl %9

m »ot iMi -
4. 992 tot %*++•

•**4. 192 l**^-

V

v *..

S.0 4.0
aat or **• n o

ft.01.0 2.0

Figure 5. Execution Times Obtained by SNCNUET.

120. ISO.

Figure 6. Plot of Relat ive Time vs Cost. Points
on the broken Hne were obtained by
SNOWUET.

270

