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ABSTRACT

The pzper describes a technique for estima-
ting the minimum execution time of an algorithm
or a mix of algorithms on a distributed process-
ing system. Bottlenecks that would have to be
removed to further reduce the execution time are
jdentified. The main applications are for the
high level design of special purpose distributed
srocessing systams,

The distrituted systwins are modelled by P,

a set of nonidentical prucessors and R, a set of
resources that the processors can use. The algo-
rithms are iiodelled by T, an orcered set of tasks.
The problem of optimally assigning the processors
to the tasks while meeting the resource con-
straints is hKP-complete. However, a heuristic
using maximum weighted matchings on graphs has
been devised that is extremely fast and comes
rezsonzbly close to the optimal solutions.

1. INTRODUCTION

Our main concern in this paper is assignment of
the tasks of an algorithm or a mix of algorithms
for distributed processing - rot the distributed
processors themselves. We take a fairly high
Tevel view of distributed processors. Specifi-
cally, we will think of a distrituted processor

as consisting of two sets - one of processors and
another of resources that the processors can use.
The collaboration amongst processors can be inti-
mate - processors may access one another's mem-
ories - and use fast cormunication networks so
that arrangements that one traditionally called
multiprocessors are also included in our view of
distributed processing. We will deal with the
problem of assembling a distributed processor from
a given mix of components, to co-pute a given syn-
chronous algorithm, or mix of algorithms, in mini-
mum time. The relevance of this problem is ex-
plained below.

If an algorithm has a great deal of reqularity and
a great deal of fine grained parallelism (at the
instruction level), then it is best to vectorize
it and use pipeline or array processors for its
execution. Distributed processing, because of the
relatively large comnunication overheads it en-
tails, is better suited to exploiting ccarser
grains of parallelism, such as occur among large
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blocks of instructions or among major tasks. At

this grain, regularity is less common. It is un-

usual for an algorithm's major tasks to be identi-
cal or even similar. More often an algorithm con-
tains a mix of quite different tasks with quite
different processing requirements. One conse-
quence {s that hormogeneous machines (i.e., mach-
ines with identical processors that are sy=metri-
cally connected) can, at best, be designed so that
their processors are compatible with the average
task. Bottlenecks invariably develop in the pro-
cessing of non-average tasks. Of course, there is
no reason to restrict distributed processors to
homogeneous structures. There is a very wide var-
jety of available processing elements ranging from
large, general purpose main frames 1ike the CRAY-1
to VLSI chips that are dedicated to a single func-
tion. This variety makes for a very large nu..ber
of alternate structures for distributed processors.

How is one to find a good alternative for a given

application? A high level approach to answering

this question is obtained by representing alco-
rithms by graphs (as described in Section 2.1) and
thinking of a distrituted processor as consisting
of two sets - one of processing elements, another
of resources (such as I/0 devices and interconnec-
ting devices) for the processing elements to use.

To continue the approach one may take the follow-

ing steps:

1. Select a graph representation of the algorithm
(or mix of algorithms) under consideration.

2. Formulate the constraints governing the pro-
cessor set, the resource set and their inter-
actions.

3. Estimate the time that each processor will take
to execute each node (task) of the graph.

4. Find the optimum assignment (that is, find the
subsets of processor and resources and find the
allocation of tasks to processors that minimi-
zes the execution time of the algorithm while
meeting the constraints of step 2).

The result of completing these four steps will be
the high level design of a nonhomogeneous distri-
buted processor.

In this paper, we will very briefly discuss the
first three steps and then devote the bulk of our
attention to the fourth and most difficult step.

The first step involves tearing the algorithm into
tasks and identifying the ordering constraints on
them. The parent graphs can be torn into more
elaborate offsprings but not till the tasks




becone very small (approachi'ng indi'vi'dual instruc-
tions) do the graphs display enough structural
variety to warrant systematic Erocedures for their
generation. O course, when the tasks are this
small, distributed processing is much |ess desir-
able than array or pipeline processing. In sum
mary, we feel that the first step is best done by
i nspection.

The second step involves selecting the set of pro-
cessing elements to be considered for inclusion in
the distributed processor and articulating any
other relevant constraints, such as a limt on the
total cost of the distributed processor.

Mich of the information called for In the third
step is available in tfie literature. For exanple,
one can readily find experinental data on the
times taken by various array processors to com
plete L-U factorizations of matrices which have
the sparse structures that occur in power systens.
Wien the requisite information is unavailable in
publi shed or manufacturers' literature, benchmaik-
|Qg or detailed sinulation may be undertaken to
obtain it.

The fourth step - finding an optinmum assignnent -
is avery difficult constrained mninization prob-
lem The renainder of this section will be de-
voted to devel oping and iIIustratin% a heuristic
for solving it. The heuristic is efficient and
finds solutions that are reasonably close to opti-
mal sol utions.

The rest of this paper is organized as follows.
Section 2 gives a formal description of the mni-
nization problem  Section 3 brleflkf revi ews
avail abl e methods for tacklin? sinilar problens
and lists their principal failings. Then Section
3 goes on to develop a heuristic which translates
the enininization problem into one of Maxinum

Wi ghted Matchings (MAM. The procedures of
Sectiron 3 have heen coded to give a friendly,
FCRTRAN program cal | ed SNONUET. The usage and
features of SNONUET are illustrated in Section 4.

2 MATHEMATI CAL FOCRMULATION CF THE PROBLEM

This section establishes the basic vocabulary for
the remainder of the paper and gives a precise
rmtdherre(ljtical formulation of the problemto be con-
si dered.

2.1 Agorithnms

Recall that an algorithmA is described by A =
(T,a}, where T is a set of tasks ily, T, ... Ty
and the set a denotes the partial ordering rela-
tion on T such that T, a Ts inplies that the exe-
cution of tasks Tg (called the successor of T.)
cannot begin until the execution of T_ (called the
predecessor of Ts) has been conpleted. V& will
represent an algorithmA by a directed graph !
called the Task Order Gaph Gy(V,E) of A so that
there is one node in V for each task in T and one
arc in E for each relation in partial order a
Wien a is enpty the tasks are called independent.
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It is assumed that the tasks to describe A are
chosen froma finite set of tasks TP = {17, T,°
o .. T,PYofn prinitive tasks. Each task T,?T
corresponds to some prinitive task TyP£TP.

2.2 Distributed Conputers

At a high level, we may think of distributed com
puter architectures as assenblies of processors
that can execute tasks in TP provided that they
have access to certain resources such as disk
drives, tapes, memory and interconnecting devices
such as buses and data links. W will represent
a distributed conputer systemwith M processors
and L resources by MP{P, R} where P = {PJ, P2....
PM> is a set of the Mprocessors and R® {R], RE,
...RL> is a set of the L resources.

2.3 Algorithm - Distributed Conputer Interactions
Each task T’|£T my be executed on any processor in
P. W define a function n(TT.) oty ta, .. t)
so that the value of t .y represents the expected
time it takes to execute task T‘ on processor Pr'
Furthernore, we define a function r(T,) * (’i.i »
M2le' "' T1jn xo Tepresent 1B ragoyrce requirenments
of task T.‘ such" that r_is equal to the arrount of
discrete resource Rx needed while executing Ty
and 8(Ry) is the total units of R, in the system

2.4 Execution Tine of A on MP(P,R}

Let T(T.) represent the starting tine of the execu-
tion of Uask TAT.

Define X(kl =1, if task T- is executed on pro-
cessor P\ in time interval “k and zero otherwise.
It is assumed that time is neasured in terv.s of
equal and indivisible units. Using the notation
introduced in this section we define a feasible
schedule to be a mapping $: T+] where 1 is a one
di nensional space of integers representing tine,
?pcg that the following 3 condi'tions are satis-
i ed:

m
Z X.(k) =1 for j=l..N al ke (1)
1_1 1)
| f TiaT‘.j t hen
m
T(T.)>T(T. )+l t.X. (k) fori.j-1-.N, (2)
Joo by all kel
N m
6(R)>1 I r..X .(kl for all Kkel (3)

st p1 ENRNCIN
Eq. 1 is needed to avoid the assignment of a task
to more than one processor. Eg. 2 is a statement
of the procedure constraints of A Eq. 3 is need-
ed to ensure that the resources required by a job
will be available while the job executes.

Corresponding to each feasible schedule in T* we
define the execution time of the algorithmA on MP
as:

LYE « min {X;(k)=Ofor 1*1..m J-1..N | k > 0}

——— sl
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Thus, the problemof finding the optimal assign-
- ment of tasks in the algorithmA on a distributed

conputer MP, so as to mninmize the overall execu-
tion time, may 5e stated as:
GSP:

M ni ni ze Ln

subject totrM (4)

For every node n."cGn(Y, E) define the weight of n,
WCA), as Un*) *min (t*, to,. ., tm). Define
the length of a directed path fromnode ng to node
n, to be equal to the sumof weights of all the
nodes in the directed path from ngto n+. The

| ongest directed path froma node with no prede-
cessor to a node with no successor represents a
lower bound on L”. This lower bound L* is ob-
tarned by assuming that all the tasks in C}'(V, E)
are assirgned to the processor on which they take
mr.iir.un execution tine and there is a sufficient
nunber of processors and resources in the system

Ifpthe solution to GSP of Eq. 4 gives a value of
L A > I% the eleinents of the set p dnd R”ftX be

modified to reduce the difference between v\ and
LJ. This allows us to reconfigure a distributed
tcr.puter systemto rake it best suited for execu-
ting the algorithm under consideration. The solu-
tion procedure (Section 3.1) used to solve GSP
enables us to identify the elements of MP that
[i'mit performance, thus suggesting a natural nodi -
fication of the set P and/or R

2.5 A Cost Constraint

Let CP(Pi) represent the cost of processor Pj,
|fSI|.|..M A cost constraint may be added to GSP as
ol | ows:

GSPC:
ftinimze L*
n

subject to g:T+1

M
| CP(P.) Y, #COST (5)
i) e
Al processors in the set P are not necessarily
used. The solution procedure attenpts to select

the particular nix of processors that mnimzes
the overall executi'on tinme with the total cost of
processors in the mx being no nore than COST.
Note that ¥J is 1 if processor Pi is assigned sone
task and 0 otherw se.

3 SCLUTI ON PROCEDURE

GPS is a well known and notoriously hard probl em
(the name is an acronym for Ceneral Scheduling
Problem). Mich of the work in the area has been
devoted to the subproblemof GSP in which all the
processors are identical [1, 2, 3, 4, 5 6, 7, 8,
9] . Sorme work has al so been devoted to the use of
enunerative and iterative techniques, such as
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local search and branch and bound, for other sub-
Erobl ems of GSP [10, 11, 12, 13]. However, we
now of no techniques that adequately address the
nore general version of GSP that is of interest
here, .

*
It happens that GSP is NP-conplete. Thi s neans
that 1t is unlikely that an algorithmcan be de-
vised to find optimal solutions of GSP in any rea-
sonable length of time. A better strategy is to
seek heuristics that will find reasonably good
solutions in reasonable amounts of time. Ve will
proceed to develop one such heuristic.

3.1 A Heuristic for Solving GSP

The heuristic technique is based on finding maxi-
nmum wei ghted matchings on graphs. Its essential
steps are:

1. Determne the Edge List Matrix of G(V,E), the
Execution Tinme fetrix [t"] and the"Resource
Requirenent Katrix [r~] (see the Exanple of
Section 3.3.3). J

2. Assign levels to the nodes, Ty, of the task
graph G.(V,E). Intuitively, the level of a
node istits distance froma node with no suc-
cessor or a nc-"e with no predecessor. As such,
levels represent the precedence structure of
Gu(V. E)

3. Making use of the levels of the nodes, assign
tasks to the processors while disregarding the
resource constraints. This step is carried out
by finding maxi mum wei ghted matchings on graphs.

4. Schedule the tasks on the processors they have

~ been assigned to, taking resource constraints
into account, f'ake a Iist of resource short-
ages if any.

5. Repeat steps 3 and 4 until
schedul ed.

6. Qutput the schedule and the list of resource
shortages (see exanple of Section 3.3).

W will now proceed to describe how steps 2-5 may
be taken.

The nodes, Tx

all tasks have been

of the task graph G(V,E) of an al-
R

ggrithm A are assigned two levels L (T*) and
L (T™) by the following algorithm:
o
1. If ™ has no successors, then L (Tx) = 1, other-
wise, L%(T,) =1 +mx {Lg(T,) | T«aTy}.
2. Let L (T ) represent the smallest Integer such

that L% T"“Hég) LTy

F —
3. If 'Tx has norpredecessor, tBen L (TX) =

for all tasks T

LB(TmaX.\.

otherwi'se, L'(T,) =nin { L(T,) | T,aTJ} - L
A ¥ 3 ¥

¥

1T_his is aclass of difficult problems. Known al-
gorithns for finding their optimal solutions re-
quire execution tinmes that increase exponentially
with problemsize [6].
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The tasks T,eT are first assi‘gned to processors
PycP without regard to the resource constraints of
R.eR (but taking the precedence constraints into
account) by the algorithm assign-tasks and then
schedul ed on the corresponding processors by the
al gorithm schedul e-tasks. The tasks in T are
scheduled in the decreasing order of their |evels
L®(T), taking resource constraints into account.

If resource constraints are violated, the starting
time of the task is delayed until a sufficient
amount of resource is released by tasks which com
pl ete execution. While scheduling tasks, the al go-
rithm schedul e-tasks, ensures that the conditions
of Theorem 1l are satisfied. In order to under-
stand how the scheduling procedure works, it is
convenient to assure that all tasks Ty Wi th L5( y)

> 1 have already been assigned to processors and
schedul ed on then. Consider the set % of tasks

T, such that LP(Ty) = 1. Let ¢ ¢ {Tut Tx 4+ + =
To .} and define the set J = {1,2,..!]|-H?%so0 that
tﬁe elements of J are in one to one correspondence
with tasks in *. Let Pl « {I,2...nm> represent the
set of processor indices to which tasks are to be
assigned without regard to the resource require-
ments. This assignnment problemmay be formulated
as an N?-conplete Integer Linear Program as

foll ows: -
| LP:
Mnimze COWP TIME
Subject to Z t.. z.. - COPTIME<Z O
jEJ 13 1J.
all ieM
Z z.. «1 all jed
ieAl M
zijSOOr 1 all ieP &jel (6)

The solution to the above ILP gives the optical
processor assignnment that minimzes the |atest

fini sh tiire, COW_TIME, of the independent task set
LA 'S 18 assiy gned 10 processor P. pnd
zﬁso otherwi se. [ILP can be solved by a general
ILP algorithm such as a cutting-plane nmethod or
branch and bound but such solution procedures are

NP-coi Tiplete. Instead, we solve ILP by transform
ing it to another problem given bel ow

I LPM

Maxi m ze 7 1z cl.jy-lj

ierl jel 0 ien
Subject to | yaw <1 &1 IE
EJ 1J n
J I jed
Zy,;*1 alje
i iep 14
y. « 0or 1 al iePM &all jed (7)

) ?!. Theyﬁ's have the sanme interpretation as the Zj*s

Mt oo e e et e i vt e+ e o e i

The Gj's and b*'s are defined by the altorithm
assign-tasks. ILPMis known as the Maxinum

\\i ght ed Matching problem (MAW) [14, 17, 20]. A
polynom al tine algorithmto solve MW on bi par-
tite graphs is described in [15 16]. Solution to
ILPMyields an upper bound, UB, for the solution
to ILP. The inequality constraints and the objec-
tive function of ILPMare nodified to inprove UB
and bring it closer to the solution of ILP.

'gn-TaskS'

1. In |a||zeasfollows
a. = |J|, for all ieP . .
b. i jx i{gPI t'lj>/t1’jf°r all iePL &jel

c. UB=+ and MX » FALSE .

N

Solve ILPM (MM) to deternine y* for UPI, jed
3. Evaluate tp® and i’|r

a. tp, = szt_iJ. Y 3

as fol |l ows:
forall {ePl

b. 1% = {x| tpx>__,tp1for all ieP1}

o

If OMICL is TRUE) go to step 6.
if (max {tp™ ieM " UB) go to step 5.

o

4. Evaluate bi’ b,* and z as follows:

1 1Y
a. by = |J for all ieR
b. b.*=(zy.*.)-1
1 ]eJ 113
c. z1) « y1} for all iePl, jed
d. UB = tpt* & Go to step 2.

5. Update b,

SBe

b~ and cﬁ. as foll ows:

b. 5, « (1 ye) -1
Jed v
c. MIC = TRUE
d C.«{Zt..] Zt. ZJ/..,aII iePl & ed
1) IBPL 1J Je\] 1J 1 1 .
e. G to step 2.
6. Check for further mproverrent and update z. W 88
foll ows:
a. If (tp® > UB) goto step 7.
b =y',\J for all iePl, jed
c. UBi= tp.* .
d. G to step 5. R
7. Evaluate the final valués for tp,, by and COW
TIME as follows: )
a. tp. « ztjz.forall ieM ’
ojed
b. b, « Z z., for al ieM
1 ]eJ 13

c. COW TIME = tpi*

—— . o = [ L T P R el




Assume that all tasks Ty, such that LE(Tyx) * 1,

"have been assigned to processors using the algo-
rithm assign-tasks. Before scheduling the as-*
signed tasks to processors, we form the following
2 sets:

I. If Zjj (see step 4c & 7a of the algorithm as-u
sign-task) ‘is 1, task Ty
processor P".

has Been assigned to

For each “jePl, form aset.._Jj «
. L
{1 ij*l}andaset"*(ijlz"*l,

£ r < E
R B = L T
for i= 1..] 1). Set » is alist of tasks

that have been assi %ned to processor P* in in-
creasing order of their total resource®require-
ments.

2. For each set Jy iePl, tpj (see step 3a & 7a of

the algorithm a55|gn-tasl|§} represents the total
time taken on processor P, assuming all tasks
assigned to it could be ‘executedon it in
succession without violation of resource con-
straints. Forma set TP * &tpi f 0, for all
ieP | tpy £tpi+1> Note that the set TP may

have fewer than n el enents.

The assigned tasks are scheduled as follows. The
processors are considered in the increasing order
of tp, (see step 3a & 7a of the al gorithm assign-
task) "and tasks assigned to themare schedul ed on
the processors. ThuS, tasks assigned to the pro-
cessor with the mninumvalue of tp* are schedul ed
first. Note that the value of tp* represents the
total time-taken on processor p* ‘assuming all
tasks assigned to it could be etecuted on’it in
succession without violating any resource con-
straints, that is, processor p,” is not forced to
idle because of unavailable resources that may be
needed by the task being scheduled on it. The

tasks on"a processor are scheduled in the increas-
ing order of their total resource requirenents.
Let [r'~.r* ri,] represent the total resource

requi reen{® all “'tasks T such that L%(T ) *
141 or L'(T.) =1 and task T* has been schedul ed.

The remaini Mg tasks are scheuled by'the follow ng

al gorithm
Schedul e- Tasks
L. As long as TP is not enpty, performthe step

a. Let s» 1 +mx{(T) +tpp|LB(TL » 1+1
X

" b. For eachv, 1 SV letry*f|r
VX
vihere x is such that LB(Ty) @

1+1 or LB(Ty) * 1 and T, has been schedul ed.

c. Let tPi be the first element in TP. While o
is not enpty performthe step

1 Let T be the first element in 7.

ii. If for each v, l<yL, ry' 4rmj.<S(ry)
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-2. Forma set

then let T(T..) «s, for eachv, letr ' *r ' +
j \Y; Y,

rija”d remove TXJ_ fromt,.
Task T
X

J
1 for k *s, s+ ,..; s+tqy .

is scheduled on processor 7, and . "
| Xj

d. Renove tp, fromTP.

of all tasks T, which have not
heen schedul ed and have LF(‘r’) * 1

3, Reﬁeat this step until $ is enpty. |f for each
rvl s rvy | s.(l"“I and if for sone

is t"|Y<' idle time of processor p”, then
scheduleTr’ on P1 and remove Ty from +. Else
remove T, from ¢.

Once all tasks T, with L3(T,) » 1 have been
schedul ed, tasks T with L8(T,) » 1-1 are assigned

to processors and then schedufed. The steps are
repeated until all tasks T, with L°(T,) * 1 have

been schedul ed. The specific details and the rules
for breaking ties while forming the different sets
are described in [19]. Each tine an assigned task
cannot be schedul ed because of insufficient re-
sources, an entry isrcadein a Resource Shorta[qe
Tabl e indi catlng the Fartlcul ar task which could
not be schedul ed together with units of the parti-
cular resource/resources which were needed but were
not available. The Resource Shortage Table is used
%o determne additions to inprove the system per-
or nance- . -

3.2 A Heuristic to Solve GSPC

Here we will describe a heuristic_for solving the
cost constrained problem GSPC. The heuristic con-
sists of two mgjor steps. The first step is to
identify the mix of processors to use such that the
cost constraint is not violated. The second step
is to solve the resulting GSP by the procedure
described in Section 3.3.”1, The solution of the
second step is used to modify the mx of processors.

The sol ution Procedure works roughly as follows.
Initially, all tasks are assumed to be independent
and the cost constraint is relaxed. The tasks are
assigned to processors using the algorithm assign-
tasks. This assignment is uUsed to calculate a-
which represents fhe value of processor P, !
with respect to the assignment. W then 'solve a
knapsack problem * given bel ow.

¥
2
The nane cones froma physical manifestation of

this single constraint problem- trying to maximze

the total” value of different sized articles that
can be packed into a knapsack.




S R

KSAK:
Maxi m ze I a.y,
lep "t
. H
subject to | CP(P,I) v, < COST (8
=] -

Y.*0or1 all ieP

Many efficient algorithns are possible to solve
Eq. 3-8 because ft has only one constraint [14].
W use a variation of branch and bound to solve it.

The set Pl is identified fromthe solution to KSAK
The tasks are then assigned to the selected set of
processors using the algorithn1assiﬁn-tasks and
schedul ed on them using the al gorithm schedul e-
tasks. The schedule is used to modify a. and the
KSAK is resolved. The steps are repeated until no
further inprovenent results. The details of the
procedjre are described in [15, 16].

3,3 An_Exampl e
Consider a distributed conpyter system MP{P, R>
WHR P = {5 7, PR (RR R,

The inputs required, for the task graph of Fig.
3-1 are given in Tables |, 2 and 3. Table 1 Is
a matri'x representation of G(Y,E) - the task
graph of Fig. 1. Note that ®the task graph is
represented as a 2 hy |EL matrix called the Edge
List Matrix (ELM such that if an edge e, eE Ts
incident fromnode n eV to node n.eV thed ELM
(I.e* - ng and ELM®(2,€;) » n?

The values of [t;.] and [ri.] are specified in
Tables 2 and 3 respectively. 8(HlJ = 3 units and
8(R)) =2 units. LM 3.

Fig. 2 is a pictorial representation of the output
of ‘the heuristic procedure of Section 3.1.

M
Note that L £ * 5. Table 4 is the output which
indicates ways to decrease the overall execution
time by suitable additions to the system Task T4
could not be started in parallel with T5 and T6 be-
cause of resource shortage. |t needed 3 units of

R and 2 units of R; and none were available. If
| £ e

we let 8(R)=6 and 8(R;)=4 then L , would be equal

to 1A

4 A BRI EF DESCR PTION COF SNONUET' S USES AND
FEATURES

The solution procedure outlined in Section 3.3 has
been translated into a user friendly, interactive,
FORTRAN program cal l ed SNONUET. It allows the user
to nodify the input paraneters until either satis-
factory execution tinme is obtained, or no further

i mprovenent is possible. SNONUET has been tested
on a nunber of randomy generated exanples and it
produced near optimal schedules in nost cases. The
purpose of this section is to illustrate sone of
the uses and features of SNONUET. To do this we
will use a sinple exanple, chosen for expl anatory
purposes rather than realism
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4.1 Preparation of Input Data for SNONUET

The steps in preparing the input data for SNONUET
are described bel ow.

1. Select a level of deconposition and identify a
set of primtive tasks, TP, in terms of which to
describe the al %orithrr(s) in question. The
primtives can be at various levels. A reason-
able way to proceed is to use high level prinm-
tives (i.e., relatively large tasks) for the
initial design and then refine the design with -
[ ower level primtives.

. Choose the processor and comunication network
alternatives to be considered.

. Estimate the tine and resource requirenent of
each primtive task.

Estimte the costs of the processors.

. Prepare the Edge List Matrix, the Execution Tine
Matrix and the Resource Requirement Matrix as
illustrated in Secti'on 3.3.

*.2 An Illustration of the Design Process Using
SNO TOET

& consider the execution of the FuTl Load Flow
(FLF) [23] on the distributed computer of "Fig. 3.
The task graph G fV.E) of FLF is given in Figure 3
én terns of the Prinitive task set shown in Table

Three different types of processors are considered,
an array processor, AP, (such as the AP 120B) and
two special purpose VLSl peripheral processors SPL
and SP2. 'SPl does vector sorting operations wery
quickly. SP2's function is to do L-U factoriza-
tions and bdck substitutions quickly.

The estimates of the execution time of the host and
the three types of special processors considered
are listed In Table 6. Estimates of the per unit
costs of the three types of processors are shown
in Table 7.

W start with a unibus, distributed computer sys-
tem shown in Fig. 4 (the conmmunication network is
the data channel of the host conputer). The moti-
vation for using the common data bus is the sim
plicity of the interconnecti-on. Aso if the com
nuni cation over the bus does not limt performnce,
there would be no need to consider nore sophisti-
cated interconnection schemes. The unibus of the
system is consirdered to be a resource of the sys-
tem The resources correspondirng to the communi -
cation network are handled in a special way. If
the total tinme needed for all data transfers over
the bus of all tasks in G\(V,E) at any level is
found to be more than the user specifred percentage
of LJ, then the bus is considered to be congested.
The details of the bus modelling procedure are
described in FlB]. SNONUET finds the latest fin-
ishing time of all tasks and identifies resource
shortages and processor additions to the system
whi ch woul d inprove performance. |f the unibus of
the systemis not congested, the number of special
processors of a given type may be increased to
check if further reduction in the overall execu-
tion tinme is possible. On the other hand, if the
unibus turns out to be congested, we introduce
anot her bus amongst the processors sharing the
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" congested bus, to relieve the congestton and im
prove SEeedup. The above steps are repeated until
no further reduction in execution time results.

The output of SNONUET, where there was no cost
constraint, indicated that overall execution time
could be reduced by increasing the number of APS
to 5. The overall execution time obtained by
SNONUET has been plotted vs the number of APS in
pl%. 5after scall,n? it so that the stand al one
hgst.could sequentially execute FLF in 100 units
of tinme.

" The results when a cost constraint is included are
shown in Fi 8ure 6. As the constraint is tlghtened,
SN ONET produces the gm nts al on% the dotted line
(the Pareto Frontier*3). The other points corres-
pond to poorer designs.

5 CONCLUSI ONS

This paper has described a systematic procedure
that 1s useful in the selection and design of
dedicated distributed computers. Th%Rprrocedure
has been coded into an interactive FORTRAN program
called SNONUET.

Before SNONUET can be used one nust break the al -
gorithm's) into ordered tasks, select a set of
processors for consideration and select a set of
resources for the processors to use. (ne nust
also estifmate the tine and resource requirenents
for each Prlmtlve task. SNONUET will ‘then
schedul e the tasks on the processors and identify
sone changes that :~ay be made if further decreases
in the overall execution tine are to be obtained.
One WHY' include the cost of the processors and an
léQB\GIr imt on what the systemis to cost.

LET will select a subset of Processors_and ,
schedul e them so as to minimze the execution tine
of the algorithn(s) and satisfy the cost con-
straint. "This procedure enables us to plot the
optimal speedup vs cost for a fixed conr.unication
network and woul d be werK useful when sel ect|n? a
sgtI of processors from those conroercially avail-
abl e.

The example in Section 5 was chosen nore to illus-
trate the use of SNOTVET than as a realistic de-
sign exercise. It could, however, be used for
desi gni ng distributed conputers if they were to be
dedicated to solving load flow problens.

Sone further work needs to be done to obtain ways
to model conplicated coircr.unication networks and
the queuing delays that result from packet
switching.” In the present nodel, for each task
requiring the cornmunication network, expected

¢+ queuing delays are added to the message transmit
times,  The sumis treated as a deterninistic tine
for which the resource corresponding to the com
muni cation network may not be used by another
task. This is a mgjor drawback and 1ts remedy may
allowus to extend the range of applicability of
thtehprocedure to include some asynchronous al go-
rithns.

'3The surface on which the best tradeoffs are ob-
tahned {)etween conflicting attributes like speed
and cost.
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. Table 1. Edge List Matrix for G4(V,E) of Fig. 3-1.
-
»
12344558
45673899

Table 3. Resaurce Requiremeat Vatrix [.—U'_l,

R|A|TI T2 T3 T4 75 76 T7 T8 T®
[ 3] 1 1 1. 3 ¢+ 0 2 0 3
R2 o 1 1.2 2 0 1 0 o
A = Amourt ¢f Resource.
Table §. Estimate of Execution Time.
Esurmates of Task Execution Temes
Primtve Task HOST ' o1 2
T [ 0 [ ]
VA 100 3s ® ™
w 1100 410 [ @
vs 1000 340 L) ®
vo 1000 340 [ ] ®
™ 1000 340 - o«
V Sort 49%9 8000 700 »
WF & 8S 4000 3000 - 4co

Figure 3.

Table 2. Executive Time Matrix [t“]. Table 4. Resource Shartaje Table.
TN AR ITII™ Task | R2
” 2 T £ 3 1 9 T4 3 2
”2|3 v 1+ 3 3+ 2 2 1
3|1 v 2 4 3 1t & v 3
Table 5. A Set of Primitive Tasks to Describe FLF Table 7. Cost Estirates.
of Figure 3.
-r [0
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Vecwr reer Proaxc 'c'z a8) w
Vecixr Scae Bazey = l...-: vs
Vector Dwce bae.: win vo o T2 ‘
Vecir MUty € a3 etlw ™
Ve Sort
A:r‘;::c CETers O AT NG rzert v son @ @ @
LW Feczarzazon 1V 3
Figure 1. A Task Graon GA(‘I.E .
[ o] hr} T4 |[TO
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P3 [Tt |Te T3
Tume Unk 1 2 3 ¢4 &
Figure 2. Pictorial Rapresencation of the Schedula.

3 (<

Figure &

Task Graph for FLF in Terms of the
Primitiva Task Set of Tadle §.
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Figure 6. Plot of Relative Time vs Cost. Points
Figure S. Execution Times Obtained by SNCNUET. on the broken line were obtained by

SNCNUET.
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