
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

Measuring Time in Cm*

Thomas H. Kong, Alfred Z. Specter, Daniel P. Siewiorek
Department of Computer Science

Carnegie Mellon University
Pittsburgh, PA 15213

May 1986

A b s t r a c t

A system clock is often used as a time-keeping device for measuring software performance.
Obtaining accurate clock reading in a distributed system with only one system clock may be
difficult due to communication delays and clock contention. This paper investigates the problems
associated with a single time base in multiprocessor systems and uses the Cm* multiprocessor as a
research vehicle. First, the accuracy of the reported time was found to be greatly affected by the
number of simultaneous clock reads and overall system workload. Second, methods were
developed to compensate the clock readings by monitoring the system load during the time
measurements. These methods correct readings so that they are within 7/xS. of the actual time that
the clock read request is issued. Finally, to demonstrate the utility of the methods, an experiment
was performed to measure die latency of messages and message-based remote procedure calls.

Technical Report CMU-CS-86-136

Copyright © 1986

This project was supported by NASA Langley Research Center under contract number
NAG-M90, by NSF under contract number MCS-8120270, and by the Department of the Army
under contract number DASG-60-80-C-0057.

The views and conclusions contained in this document are those of the authors and should not
be interpreted as representing the official policies, either expressed or implied, of NASA, NSF, the
Department of the Army, or the U.S. Government

Table of Contents

1 Introduction 1
2 Background . 2

2.1 Related Work 2
2.2 Research Vehicle 2

2.2.1 Cm* Hardware Structure 2
2.2.2 StarOS 3
2.2.3 Medusa 4

3 Clocks in a multiprocessor 4
3.1 Cm* clocks 5
3.2 Clock reading routines and their performance 5

3.2.1 StarOS results 11
3.2.2 Medusa results 13

3.3 Conclusion 17
4 Methodologies for measuring time 18

4.1 Methodology of performance evaluation 18
4.2 Methodologies for measuring elapsed time (Clock compensation) 19
4.3 Execution speed of computer modules 24
4.4 Evaluation of clock reading compensation techniques (Method I) 25
4.5 Evaluation of clock reading compensation techniques (Method II) 28
4.6 Discussion of results 31
4.7 Conclusion 32

5 An example experiment 33
5.1 Organization of experiment 33
5.2 Experiments 34
5.3 Results 34

5.3.1 Latency measurements 34
5.3.2 Execution time of RPC 35

5.4 Conclusion 36
6 Conclusion 36

UNIVERSITY LIBRARIES
CARNEGIE-MELLON UNIVERSITY

PITTSBURGH, PENNSYLVANIA 152

List of Figures

Figure I: Performance of Medusa Varying-Read clock routine 7
Figure 2: Performance of 4-Read clock routine running under Medusa 9
Figure 3: Performance of Medusa 1-Read clock routine 10
Figure 4: Performance of StarOS 4-Read clock routine 12
Figure 5: Performance of StarOS 1-Read clock routine 13
Figure 6: Performance of Medusa 4-Read clock routine 15
Figure 7: Performance of Medusa 1-Read clock routine 16
Figure 8: Short term averaging algorithm 20
Figure 9: Short term averaging, Method 1 23
Figure 10: Short term algorithm, Method II 24
Figure 11: Histogram of execution time of 34 Cm's 24
Figure 12: Measuring zero elapsed time using Method I with 4-Read routine 26
Figure 13: Measuring zero elapsed time using Method I with Medusa 4-Read routine 27
Figure 14: Measuring zero elapsed time using Method II with StarOS 4-Read routine 29
Figure 15: Measuring zero elapsed time using Method II with Medusa 4-Read routine 30
Figure 16: Latency of StarOS messages in the experiment 35
Figure 17: RPC execution time versus the total number of words accessed 36

1 Introduction

Software methods that rely only on a high resolution clock are more commonly used to measure

the performance of computer systems than are methods involving the use of special purpose

hardware monitors. Certainly, a major motivation for the use of software is cost. However,

software methods are also more flexible: they simplify the automation of performance evaluation,

from data collection to data reduction, and they permit performance analysis to be done remotely

without probing the internals of the machine. The disadvantage of software methods is that they

may be prone to inaccuracy because of possible interactions between the measuring and measured

software.

Inaccurate clock readings may be particularly prevalent when the system clock is used as a time

source. This is because the amount of time required to read the system clock may depend upon

various system loads. Therefore, when a time value is returned to the calling program, it may be

inaccurate. In a distributed system where communication delay is dependent on system activity,

and where a large number of subsystems can attempt to read the clock simultaneously, the time

value that is returned to the calling program may be even less accurate.

This problem is serious in the case of the Cm* [Jones 80] clock. A preliminary study showed

that the result of a clock read can be in error (i.e„ outdated) by as much as 2mS, depending on the

system load and the amount of contention for the clock. Thus, we wanted methods that would

permit more accurate clock reads for Cm*. More importantly,,we wanted to investigate the general

feasibility of measuring the performance of multiprocessor operating systems using software

methods.

The next section surveys previous work related to this project and describes the research vehicle,

Cm*, and its two operating systems, StarOS and Medusa [Jones 80]. Section 3 discusses the clocks

in Cm* and the mechanisms that Cm*'s two operatings systems use to access them. The accuracy of

time measurements as a function of system load is presented and shown to be a problem. Section 4

discusses elapsed time measurements on Cm* and presents algorithms that yield more accurate

measurements of elapsed times. The accuracy of these methods is illustrated by a few examples.

Section 5 presents measurements of the latency of message passing and remote procedure call

mechanisms used on Cm* in order to* illustrate the usage of one of the more accurate clock

algorithms. Section 6 presents general conclusions.

2 Background

2.1 Related Work

Related work can be divided into the categories of empirical performance evaluation, elapsed

time measurement, and performance evaluation of Cm*. With respect to the first category, we refer

the reader to Ferrari [Ferrari 78] for a survey.

Obtaining accurate measurements of elasped time can be difficult on multiprocessors and

distributed systems. Providing each processor with its own time source is one useful approach, but

this can be costly for very large systems and lead to synchronization problems. Lamport [Lamport

78], Ellingson [Ellingson 73], and Marzullo [Marzullo 83] discuss the general issues and present

techniques for synchronizing independent time sources. Using a single time source is an alternate

approach that eliminates synchronization problems, but it is prone to inaccuracy due to

communication and contention delays. Because Cm* does not have an independent clock for each

computer module, this work concentrates on the use of a centralized clock.

At Carnegie-Mellon, many measurements of both Cm* and Cmmp [Wulf 81] have used

specialized hardware. For example, early measurements of Cm* performed by Raskin [Raskin 78]

used the Cm* Map-Bus Monitor, logic state analyzers, and hardware counters. Marathe's

measurements of the operating system kernel of C.mmp/Hydra used both hardware and software

methods. As he correctly observed, measurement tools should match the level of the

measurement [Marathe 77]. This paper is specifically concerned with software methods for

performance evaluation that require no special hardware other than a high resolution system clock.

2.2 Research Vehicle

2.2.1 Cm* Hardware Structure

Cm* is a multiprocessor consisting of fifty processor-memory pairs made up of Digital

Equipment Corporation LSI-ll's. Each processor-memory pair is called a computer module. These

computer modules are grouped into five clusters, forming a hierarchical switching structure. The

lowest level of the switching hierarchy consists of the Slocals, which are switches placed between

each processor and its local memory. Their function is to determine if references generated by the

processor can be directed to the local memory. If the references cannot be directed to local

3

memory, the Slocul forwards the address through the Map Bus to the Kmap of that cluster for

further address translation.

The Kmap is a high speed microprogrammable communication controller that permits

computer modules (Ctrf s) of its own cluster to communicate with each other, and cooperates with

other Kmaps to service inter-cluster communication requests. All communication between the

Kmaps is implemented via packet-switching rather than by circuit-switching to avoid possible

deadlock over dedicated circuit-switching paths. In addition, since the Kmap is much faster than

the main memory of the LSI-lTs, the Kmap is active only for a small fraction of the time of a

memory reference. Therefore, packet-switching allows the Kmap to service more than one request

concurrently. In addition to their communication functions, some StarOS and Medusa functions

are executed by the Kmaps.

2.2.2 StarOS

StarOS is a message based, object oriented operating system for Cm* that is described by

Gehringer and Chansler [Gehringer 81] and Jones et al. [Jones 79]. Briefly, all StarOS information,

including code and data, are contained in objects. Each object has an associated type and a special

set of type-specific operations. Users can define their own abstract object types.

A StarOS object is made accessible via the possession of a capability, which contains the name of

the object and a list of rights. Capabilities themselves do not contain the address information of the

objects they name. Rather, they contain pointers to the descriptors that contain the physical

locations of the objects. This way, if an object named by a number of capabilities is to be relocated

physically, only its descriptor needs to be updated while all the capabilities remain unchanged,

The StarOS message facility supports the transmission of messages containing one capability or

one data word. Thus, messages of size larger than one word must be passed by reference. By

reference semantics are possible because names of objects are known system-wide and a capability

is sufficient to access an object anywhere in the system.

4

2.2.3 Medusa

Medusa is another message based operating system for Cm* and is described by Ousterhout et

al. [Ousterhout 80a] [Ousterhout 80b]. All Medusa information is stored in objects that are

addressed through descriptors that contain the type, the location, and the size of the objects.

Descriptors are stored only in protected objects known as descriptor lists. Each Medusa process,

known as an activity, has two descriptor lists. The private descriptor list keeps the descriptors to

objects that are private to the process, while the shared descriptor list keeps the descriptors to objects

that are shared by all processes within a collection of cooperating processes that are performing a

given computation.

In Medusa, all objects are defined by the system. The message facility of Medusa supports

messages of variable size. Messages are transmitted by value through special objects called pipes.

These are similar to Unix [Ritchie 74] pipes except that only complete messages can be sent or

received from the pipes, and that both the identity of the sender and the size of the message are

available to the receiver.

3 C locks in a mult iprocessor

One simple technique for providing access to a global time source is to have a globally readable

clock with a communication delay that is small (compared to the clock resolution) and fixed,

regardless of system load. Such a clock may require a special bus allowing multiple simultaneous

read accesses. An example of such a bus structure is the interprocessor bus of Cmmp [Wulf 81], In

the Cmmp implementation, there is a 56-bit global clock of 4 microseconds resolution. The value

of this clock is continually broadcast on the interprocessor bus.

However, in a large and more loosely coupled system, it may not be feasible to devote a special

purpose bus to the global clock because of the amount of cabling involved as well as the problems

associated with long signal delays and bus arbitration. Also, broadcasting the clock value on the

general purpose bus would use a large portion of the cycles available on the bus. For these two

reasons, broadcasting the clock value is generally not done in large distributed systems. In Cm*,

when a subsystem needs to know the system time, it establishes a connection with the clock and

then reads its value. This way, communication occurs only when necessary. However, because the

time required to establish a connection depends on bus activity, and the transmission delay depends

5

on the physical location of the subsystem, the total delay is unpredictable. When multiple requests

for the system time arrive simultaneously, bus contention results and a queue is formed. The wait

time in this queue adds further uncertainty to the total delay.

In tiiis section, the problems in reading a central clock will be examined, and their effect on the

performance of the Cm* clock will be studied. Schemes that yield more accurate clock readings will

be proposed.

3.1 Cm* clocks

Cm* currently provides three 32-bit real time clocks for time measurements, only one of which

is used to provide the system time. They are connected as peripherals to Cm3 on cluster 1, Cm4 on

cluster 2, and Cml4 on cluster 5. These clocks have a quartz crystal time-base with an adjustable

resolution. The maximum resolution is 0.5 microseconds, but they are currently set for 2

microseconds. This yields a maximum range of 2 3 2 * 2/iS = 2.386 hours. The clocks can be zeroed

under program control for interval measurements.

Since the LS1-11 uses memory mapped I/O, reading die clock is a simple read to a specific

location in the I/O page (page fifteen) of the LSI-11 address space. For both StarOS and Medusa

operating systems, reading the system clock is implemented via remote memory references.

3.2 Clock reading routines and their performance

In both StarOS and Medusa, clock reading is performed using procedure calls rather than by an

LSI-11 "MOV" instruction. This is because the clock is 32 bits while the data bus is only 16 bits

wide. Thus, to read the full clock requires at least two memory references. Since the clock is always

running, there is no guarantee that the high and low order words read correspond to the same 32-bit

clock word. This is because after reading the first word, the low order word may overflow and wrap

around at a clock tick, invalidating the first word read.

When this project began, both StarOS and Medusa provided a standard routine for reading the

clock. For future reference, this algorithm is named "Varying-Read" algorithm because the clock

register is read either three or four times depending on the value of the clock. Below is the pseudo­

code for this routine:

6

V a r y i n g - R e a d :

F i r s t H i = Read h i g h o r d e r word of c l o c k ;
F i r s t L o w = Read low o r d e r word of c l o c k ;
SecondHi = Read h i g h o r d e r word o f c l o c k ;
i f SecondHi > F i r s t H i then b e g i n

SecondLow = Read low o r d e r word of c l o c k ;
r e t u r n SecondHi and SecondLow as the c l o c k r e s u l t ;

end
e l s e b e g i n

r e t u r n F i r s t H i and F i r s t L o w as the c l o c k r e s u l t ;
end ;

When SecondHi is greater than FirstHi, the low order word must have wrapped around between

the first and second read of the high order word. Since it is not known whether FirstLow was read

before or after the wrap around occurred, the low order word must be read a second time.

A preliminary experiment was set up to evaluate the performance of the Varying-Read clock

routine of Medusa. The objectives were to determine the average execution time of the routine and

to see how the accuracy was affected by the system load. The experiment measured the elapsed

time between two successive clock read procedure calls. This elapsed time was identical to the

execution time of the routine including all the remote memory references.

The experiment was performed with eight Cm's distributed between clusters 2 through 5

reading the clock in cluster 1. The experiment was then repeated with thirty Cnr s, also distributed

between clusters 2 through 5. The results for all processors are summarized in Figure 1, which plots

the elapsed time between two clock reads against the time elapsed since the beginning of the

experiment. The total intercluster memory reference rate is approximately 90 thousand references

per second in the case of 30 Cm's and approximately 53 thousand references per second in the case

of8Cm's.

Figure 1 reveals periodic peaks and troughs in the 30 Cm's curve. The peaks occurred when the

low order word of the clock wrapped around during the execution of the second clock read routine,

causing the second clock reading routine to read the low order word a second time. In this instance,

there were 4 clock reads between the significant low order reads. The troughs occurred when the

low order word wrapped around during the execution of the first clock read routine, causing the

low order word to be read again. In this instance, there was only 1 clock read between the

significant low order reads. (For a more detailed explanation of the reason for the peaks and

7

2000
to

•8
<D O v.

• *
O
o
o
o

c

Z 14001

1800

1600I

0)

o
E

12001

wool

800

600

400

200

O .50E6 .10E7 .15E7 .20E7
Time (uS)

Results of clock reads show effects of contention

Figure 1: Performance of Medusa Varying-Read clock routine

troughs, refer to Kong's Masters Project Description [Kong 82].) Note that in the 8 Cm's case, there

were fewer Cm's reading the clock and the probability of reading the clock while its low order word

wraps around was much lower; hence the peaks and troughs did not appear regularly.

Figure 1 also shows for the 30 Cm's case that the elapsed time rose at the beginning of the

8

experiment from approximately 300/xS to over 800/xS and then fell from 800/iS to approximately

300/xS at the end of the experiment. This was because not all the Cm's started and finished

simultaneously. Hence, there was less system load and contention at both the beginning and the

end of the experiment. In the 8 Cirfs case, the average value was approximately 300/xS and no rise

or fall was seen; With only 8 Cm's reading the clock, there was insufficient traffic to slow the clock

read routines.

Because of the Varying-Read clock routine's erratic behavior when the low order word of the

clock flips, two new clock reading routines were written. The first one was a modification to the

original Varying-Read routine. It reads both the high order and the low order word twice, and has

the property that it always returns the first low order word read as the low order word of the clock.

Its execution time is essentially independent of the value of the clock readings, as shown in Figure

2. In Figure 2 the rate of remote memory references was 96 thousand per second for the 30 Cm's

case and 64 thousand per second for the 8 Cm's case.1 Below is the pseudo-code for the routine:

4 -Read:

F i r s t H i g h = read h i g h word o f c l o c k ;
F i r s t L o w = read low word of c l o c k ;
SecondHigh = r e a d h i g h word o f c l o c k ;
SecondLow = read low word of c l o c k ;
IF SecondHigh > F i r s t H i g h THEN /• c l o c k f l i p p e d */

IF SecondLow > F i r s t L o w THEN /* f l i p was b e f o r e F i r s t L o w */
r e t u r n F i r s t L o w and S e c o n d H i g h as r e s u l t

ELSE /* f l i p was a f t e r F i r s t L o w r e a d */
r e t u r n F i r s t L o w and F i r s t H i g h as r e s u l t

ELSE /* no f l i p o c c u r r e d between F i r s t H i g h and S e c o n d H i g h */
r e t u r n F i r s t L o w and F i r s t H i g h as r e s u l t ;

The second routine reads only the low order word of the clock and computes the value of the

high order word. It assumes the clock is read by each Cm at least once in every interval T f where

T f is the time between two low word flips and is equal to 2 1 6 * R, where R is the number of seconds

between a clock tick. With the present R of 2//,S, T f equals 0.131 seconds.

The routine makes use of two static variables SOldLow and $Hi on each Cm. During a clock

reset, these variables are zeroed. Every time the routine is called, the low order word of the clock is

*These numbers are higher than for the previous clock reading routines because 4 remote memery references are done
for each clock read.

9

2000г
со

•8
2 WOO
•*
и
о
| 1600

с
ф
ф
~ Г 4 0 0
Ф
•Q
Ф
Е

К 1200

WOO

800

бОО

4 0 0

e C m ' s

200

.50Е6 .10Е7 .15Е7 .20Е7 .25Е7 .30Е7
Time (uS)

Results of clock reads show effects of contention

Figure 2: Performance of 4-Read clock routine running under Medusa

read and is compared with the value of $OldLow. If the value of $OldLow is higher than the

current value of the low word, a flip must have occurred. The variable $Hi is then incremented. If

the value of $OldLow is lower than that of the low word of the clock, no flip has occurred and the

value of $Hi remains unchanged. Below is the pseudo-code for the routine:

10

28Cm's

8Cm's

.10E6 .20E6 .30E6 .40E6 .50E6 .60E6 .70E6 .80E6 .90E6 .10E7
Time (uS)

Only read low-order word of clock register

Figure 3: Performance of Medusa 1-Read clock routine

11

1-Read:

STATIC SOldLow;
STATIC $ H i ;

Low = Read low word of c l o c k ;
IF SOldLow >= Low THEN

$Hi = $Hi + 1;
SOldLow = Low;
r e t u r n Low and $Hi as the r e s u l t ;

This routine has a constant execution time. The performance of this l-Read clock routine is

summarized in Figure 3. Here the remote memory reference rate was 76 thousand per second for

the 28 Crn s case, and 23 thousand per second for the 8 Cm's case. This lower rate of remote

memory reference makes the routine execution time quite insensitive to the increasing number of

Cm's reading the clock. Therefore, the differences between the 28 Cm's curve and the 8 Cm's curve

were so small that the two curves are visually indistinguishable.

Since the 1-Read and the 4-Read routines were to be used, a new set of experiments were set up

to test the performance of both routines as a function of load under both StarOS and Medusa. The

experiments involved the measurement of elapsed time between two clock reads as a function of the

number of Cm's reading the clock.

3.2.1 StarOS results

Both the average execution time and the standard deviation of the 4-Read clock routine

increases with the number of participating Cm's. This data is graphically presented in the

histograms of Figure 4, which are normalized to give the same area under the curve. The

distributions of all the curves appear to be Rayleigh with a lower bound of 310ju,S, which is the

minimum time required to execute the 4-Read clock routine. Though it cannot be seen in the

figure, a careful study of the data shows there is a small peak between 630/iS to 760/xS in addition to

the main peaks. This is due to 60 hz line clock interrupts occurring between two clock reads.

The average execution time of the 1-Read routine is quite insensitive to the increasing number

of Cm's reading the clock. This is because the load generated by this clock routine is low enough

for the Kmap to handle without saturating. Figure 5 is the summary of all the histograms

normalized to give the same area under the curve. Since the average execution time varies very

little and the standard deviation of the results remains almost constant, all the curves are similar and

12

overlapping. Also due to line clock interrupts, there is a small secondary peak between 470/xS to

550/iS.

; M \

1Cm
2Cm's
4Cm's
8Cm's
12Cm's
16Cm*s
20Cm's

200 400 600 800 1000 1200 1400 1600
Time between two clock reads (^S)

Reading StarOS system clock from remote clusters

Figure 4: Performance of StarOS 4-Read clock routine

13

C
Q)
Q
c o

S . 5 0

Q

. 4 0

. 3 0

. 2 0

.10

too

1 Cm
2 Cm's
4 Cm's
8 Cm's
12 Cm's
16 Cm's

2 0 0 300 400 500 600 700
Time between two clock reads (^S)

Reading low word of StarOS system clock from remote clusters

Figure 5: Performance of StarOS 1-Read clock routine

3.2.2 Medusa results

The minimum time required to execute the 4-Read Medusa clock routine is approximately

320/iS. The average time increases as the number of Cm's reading the clock increases. Figure 6 is

the normalized plot of all the histograms. An interesting observation is that while the standard

14

deviation of the result increases as the number of CnVs increases for small numbers of Cms, it starts

to fall at some point between 16 CnVs and 20 CnVs. This phenomenon is believed to be due to a

complicated queuing mechanism at the Kmap.

Figure 7 is the normalized distribution that summarizes the results of the Medusa 1-Read clock

routine. The standard deviation of the result is extremely small, and the mean value does not

change significantly with increasing number of CnVs reading the clock. Apparently, the load

presented by this routine is so small that all clock read requests to the Kmap are processed

immediately without having to wait in the Kmap queue.

15

1 Cm
2Cm's
4Cm's
8Cm's
12Cm's
16 Cm's
20Cm*s

300 400 500 600 700 800 900 1000
Time between two clock reads (pS)

Reading Medusa Clock from remote clusters

Figure 6: Performance of Medusa 4-Read clock routine

16

O l —
100 120 140 160 180 200 220 240 260 280 300

Time between two clock reads (pS)
Reading low word of Medusa Clock from remote clusters

Figure 7: Performance of Medusa 1-Read clock routine

17

3.3 Conclusion

Comparing Figure 4 with Figure 6, one sees that even though the average execution times are

roughly the same at light load, the execution time increases as a function of load faster under

StarOS than it does under Medusa. The di(Terence in the shape of the curves in Figure 4 and

Figure 6 shows that the two operating systems have very different strategies for handling memory

contention. Even when the effects of interrupts are discounted, the StarOS results show a larger

standard deviation. The result is that it is more difficult to get accurate time measurements under

StarOS. It is also likely that any StarOS experiments using Kmap operations probably have higher

variability in execution times.

Although the Cm* global clock is capable of 0.5/xS resolution, such resolution is not usable for

accurate measurement of time intervals because of the uncertainty in delay involved in an

intercluster reference in the presence of load. The results of the clock experiments show that short

time intervals (500jmS or less) cannot be accurately measured using any of the clock reading routines

described.

One way to alleviate the problem is to read only the low order word of the clock. This way, only

one LSI-11 instruction is needed to access the clock and the results should be much improved. The

problem associated with just reading the low order word is the loss in clock range. With the clock

tick set at 2/xS, the range provided by the low order word is only about 0.131 second. Larger clock

range can be obtained by increasing the clock tick value without sacrificing clock resolution because

the usable clock resolution is limited by the uncertainty in communication delay. Therefore, a

reasonable value for the clock tick should be commensurate with the uncertainty in communication

delay. For example, under very light system load, reading a Medusa clock word has a standard

deviation of 2.3jtiS, and reading a StarOS clock word has a standard deviation of 7.13/iS.2

Therefore, the 2/iS resolution of the present clock is useful. However, under heavy loads, the

standard deviation of reading a clock word can be very high. Under such loads, the clock tick can

be lengthened substantially to increase the range of the clock without losing accuracy.

For any clock that cannot be completely read in one memory cycle, a clock read operation

should be provided to latch the clock value and to allow all the clock words to be read indivisibly

Assuming no processor interrupts.

18

before another clock read operation is accepted. For Cm*, such a feature could be provided by

using a hardware latch and some Kmap microcode.

A lesson learned from this study of the clock measurements is that performance measurements

must be done very carefully since even the most obvious items such as the clocks can fail to perform

as expected.

4 Methodologies for measuring time

Since the inaccuracy of the clock routines for Cm* is mainly due to Kmap load and clock

contention, corrective measures can compensate for the incorrect clock readings by correcting for

the Kmap load and clock contention during a measurement Based on this premise, this section

discusses methods for obtaining more accurate time measurements for performance evaluation.

More specifically, this section proposes a way to generate a repeatable workload for the system on

which performance evaluation is done, develops methods for organizing performance evaluation

experiments, presents algorithms to compute the net elapsed time given inaccurate clock readings,

and tests these methodologies for validity.

4.1 Methodology of performance evaluation

In this project, workloads are synthesized by replicating the measured experiment For

example, to measure the performance of the message facility, the synthetic load will be the number

of pairs of processes communicating with each other through messages.

The generation of a synthetic workload can be best illustrated by an example. Assume the

execution time of a software routine, R, is to be measured under different system loads. The

experiment then consists of a Cm executing R, while a number of other Cm's executing R constitute

the synthetic load. The result is the execution time of R as a function of the number of Cm's

executing R simultaneously.

A basic approach for measuring performance is to have N identical experiments running in the

system. The system workload is parameterized by the value of N and by how the experiments are

distributed within the system. A simple way to measure performance is to have only one

experiment per cluster reading the clock. This reduces the number of clock reads generated,

produces less system load due to fewer clock reads, and results in the improved performance of

19

both the clock reading software and the measured experiments. The decision to measure only one

experiment per cluster is based on the assumption that all the Cm's have identical execution speed,

and the symmetry of the Cm* architecture makes Cm's from the same cluster virtually

indistinguishable from each other3. The validity of the assumption that all Cm's have the same

execution speed will be shown in a later subsection.

Also, the timed experiment does not execute continuously. Rather, it is "injected" into the

system at fixed intervals. This further reduces the amount of data generated. By injecting the timed

experiment after the start up transients have decayed and the system workload has stabilized, more

accurate results can be obtained. In the real situation, the user is often interested in finding out the

execution time of a piece of software if he were to insert it in a system of a given workload. This

situation is quite accurately modelled by the injection approach. Note that the effects of the

transients caused by injecting an experiment have not been studied and may be a worthwhile

subject for future research.

4.2 Methodologies for measuring elapsed time (Clock compensation)

Given the previously discussed methods for organizing performance evaluation experiments,

the next step is to develop algorithms for accurately measuring elapsed time. Early in this section, it

was postulated that one can monitor the Kmap workload to improve the accuracy of elapsed time

measurements. Below are two such algorithms.

Since reading the clock twice successively yields a result with a mean and variance that are both

functions of the system load, the net elapsed time of any experiment can be computed by

subtracting the average value of the elapsed time between two clock reads from the measured result

Using this algorithm, the expected value of the computed result equals the true elapsed time, while

the distribution of the computed result is identical to the distribution of the measured result We

shall refer to this algorithm as the long term averaging technique.

Since the load on the system is a time varying function, and since tasks performed by the system

take time to complete, it is reasonable to assume that the system load at times separated by small

Actually, some CnVs are connected to I/O devices which may affect their performance. In all experiments, Cm's with
I/O devices such as serial lines or Ethernet interfaces must not be used

20

intervals should be highly correlated. Because the time elapsed between two clock reads is a

function of load, the autocorrelation of this elapsed time for short time intervals should also be

high. Based on this assumption, the short term averaging technique approximates the time required

to read the clock during an experiment by using the elapsed time between two successive clock

reads that occur closely in time. Below is a mathematical analysis of the short term averaging

technique.

clock read

experiment

tn -clock read

clock reads clock reads

Time

Figure 8: Short term averaging algorithm

Assume we are measuring the execution time of an experiment as illustrated in Figure 8. Then

the variables are defined as follows4:

• t is the true elapsed time of the experiment

• T A is the computed elapsed time. (T A approximates t n .)

• T m is the measured elapsed time.

• T 2 is the time interval between the moment the clock is read and the moment the
experiment begins.

• T 3 is the time interval between the moment the experiment ends and the moment the
clock is read again.

• T 1 and T 4 are the elapsed times between two pairs of clock reads.

Then t = T - (T~ + T~) and
n m v l y

Capital letters denote random variables

21

I A = T - (I , + T ,) / 2 . (1)

therefore
T A = t n + T 2 + T 3 - (T 1 + T 4) / 2 .

If the expected values
BJX) = E(T4) = E(T 2 + T 3) = S,

then

E(TA) = t n + S- (S + S)/2 = t n .

Therefore, the expected value of the computed result equals the true result

The variance of the computed result is:

Let

then 5

V(TA) = V(t n + T 2 + T 3 - (T 1 + T 4)/2).

VÇTJ = o?, V(T 4) = < T 4

2 ,

V(T 2) = <r2

2, and V(Tj) = <r3

2,

V(T A) = °2 + °l + CT12/4 + ff42/4

+ 2 P T 2 , T 3

< T 2 < T 3 " Pl^2

a\ a2 ' \ j ° \ a .

' P T 2 , T ^ 4 F F 2 " P T 3 . T 4

(T 4 < R 3 + P T l , T 4

(T l a 4

(2)

(4)

where p T T is the correlation coefficient of the random variables T. and T..
i' j J

To simplify Equation (2), the following assumptions are made:

E(T 2) ~ ECTj) / 2, E(T 3) ~ / 2, VfTj) = VCty = a 2 . (3)

Now,

V (T A) = CT^I + 0.5p x T - 0 .5p T T - 0 . 5 p x T - 0 .5p T T a i 2 i 3 K . i j i j . i j i 2 , i 4

- 0.5p T T + 0.5p x x J.
3 4 ll' lA

If all correlation coefficients are unity, then
V(T A) = 0.

In the worst case when p x x = p x x = p x x = p x x = 0, and p T x = p x T = 1 ,

V(T A) = 2 a 2

for all non-negative correlation coefficients.

n n
5 I f X = 2 a.Y., then V(X) = 2 a.2V(Y.) + 222 a a p . .ff.tr.

i=l 1 1 i=l 1 1 Kj ' " V ' J

http://ff.tr

For very short interval measurements, the limc-slamps t, and tj arc very close together and the

random variables T 2 and T 3 can be replaced by a new T'3 equals to the old 1 2 + Ty Then ~ 0

and (T 3

2 = <x2. We now have

" V(TA) = 1.5a2 - p T T a 2 - p T T a1 + 0.5p T T a 2 . (5)
' l J 3 l 3 , l 4 l l f l 4

If all correlation coefficients arc unity, then

V(T A) = 0.

If all correlation coefficients are zero, then

V (T A) = 1 . 5 o 2 .

In the worst case when p T x = p T T = 0 , and p x T = 1,
h ' l 3 l 3 J 4 l l ' l 4

V(T A) = 2 a 2

for all non-negative correlation coefficients.

Even though Equation (2) expresses the value of the variance of the result, it cannot be solved

unless the variances of T 2 and T 3 are known. In our case, this information is not available from the

experiment. To simplify the problem, the time elapsed between the issuing of a clock read to the

actual reading of the clock and the time elapsed between the reading of the clock to the returning of

the result to the reader are assumed to have the same mean and variance. Equation (4) then

expresses the variance of the result Equation (5) applies when the duration of the experiment to be

measured is extremely short

This algorithm shows that for any method used to select the two pairs of clock reads, the worst

case will yield a result with a variance twice the variance of the elapsed time between two clock

reads. In the best case, the variance of the result is zero. In cases where assumptions of Equation

(3) apply, zero variance in the result is obtained when the correlation coefficients between Tl and

T 2 (p T T) and between T 3 and T 4 (p T ^ T) are both unity.

A way to evaluate the methods used to select the clock read pairs is to compute the

improvement factor k. In any experiment that measures a fixed time interval, let V(T A) be the

variance of the corrected result and let a 2 be the variance of the uncorrected result Then k is

defined such that

k=a1/V(TA).

The larger the value of k is, the better the improvement The range of k is between 0.5 and infinity.

When k is unity, the variance of the corrected result is unchanged. Note that the Long Term

Averaging algorithm always yields a k of unity.

23

The objective for selecting the two pairs of clock reads lor compensation is to maximize the

correlation coefficients p T T and p T r . Though there are many ways this can be done, only two
1 r 1 2 V 4

methods will be presented. Readers are encouraged to design their own implementations, bearing

in mind that the objective is to maximize the correlation coefficients stated above.

clock reads clock reads T3 « T 4
experiment

Figure 9: Short term averaging, Method I

Time

The first method presented, hereafter referred to as Method I, is illustrated in Figure 9. If the

processor that starts the measurement reads the clock twice at the beginning of the experiment and

the processor that terminates the measurement reads the clock twice after the experiment, then Tj

should highly correlate with T 2 while T 3 should highly correlate with T 4 . This is because these

clock reads occur very closely in time.

This method has the advantage that no clock read occurs during the experiment and therefore

the performance of the experiment under measurement is not affected.

The second method presented is referred to as Method II, as illustrated in Figure 10. If a clock

process runs concurrently with the experiment and periodically samples the load by reading the

clock twice in succession, the elapsed time can be used for compensation. One approach is to select

the clock read pair of the clock process that is closest in time to the clock read that starts the

measurement to give T x , and to select the clock read pair of the clock process that is closest in time

to the clock read that stops the measurement to give T 4 .

This method is less desirable than the previous method because of its added complexity and

because of its interference with the performance of the experiment by the presence of a clock

reading process. However, subsequent sections will show that this method yields quite accurate

results.

24

clock read

experiment
J 3 .

— ^
-clock read

C m X-Y

clock reads clock reads

C m X-Z

Figure 10: Short term algorithm, Method II

Time

4.3 Execution speed of computer modules

The method for generating workload assumes that all the computer modules in Cm* execute at

the same speed. To verify this assumption, an experiment was set up to measure the execution

speed of the computer modules in Cm*. This experiment involved timing the execution of a piece

of code stored in the local memory of each Cm. Once the program execution begins, the Kmaps are

not involved.

CO

E
O
O
v.
O

E

25 r

20

15

10

Mean = 15019mS. Standard Deviation = 147.3

14.5 14.6 14.7 14.8 14.9 15.0 15.1 15.2 15.3 15.4 15.5
Time (Seconds)

Figure 11: Histogram of execution time of 34 Cm's

The results show that all of the thirty-four computer modules tested had execution speeds

within 4.6% of each other. A histogram of the execution speed of the computer modules is shown in

Figure 11. The conclusion for this experiment is that every computer module can be considered to

have essentially identical execution speed, therefore experiments performed on any computer

module should be equally valid.

4.4 Evaluation of clock reading compensation techniques (Method I)

The methods to compensate the clock readings cannot be rigorously proved to produce correct

results because they employ only heuristic approaches. Therefore, to validate our methods, an

attempt is made only to show that an accurate result for a fixed interval measurement (e.g., 0

seconds) is obtained under some reasonable system load.

The experiment to validate Method I consists of a process reading the clock four times in

succession. The first two clock reads are used to compute T x , the second and third clock reads

measure a null experiment which has zero execution time. The third and fourth clock reads are

used to compute T 4 . The synthetic workload is generated by replicating a large number of

processes distributed evenly among the clusters reading the system clock. The experiment was

performed for both StarOS and Medusa.

Figure 12 illustrates the result of the experiment using the StarOS 4-Read clock routine to

measure time. The solid curve is the distribution density of the compensated result, while the

dashed curve is the distribution density of the result before correction is applied. The ideal result is

an impulse of unit magnitude at 0/xS. The mean compensated result was -1.90/xS, and the

improvement factor, k, was 0.8. Recall that for k < 1, the variance of the result is increased. The

same experiment using the 1-Read clock routine gave an improvement factor of 0.81.

26

.30
CO

c
Q
c
o

CO

Q

.25

. 2 0

.75

.to

Compensated result
Uncorrected result

• i

f
f

- 4 0 0 - 2 0 0 2 0 0 400 600

Reading StarOS clock

800 1000 1200
Elapse Time (pS)

Figure 12: Measuring zero elapsed time using Method I with 4-Read routine

27

^.30r

c

Q
c
o

<•»*
CO

Q

.20

.15

• 10

— Compensated result
Uncorrected result

¿1 i z i .
- 4 0 0 - 2 0 0 0 2 0 0 4 0 0 6 0 0 8 0 0 7000 7 2 0 0 7 4 0 0 7 6 0 0 7 8 0 0 2000

Elapse Time (pS)

Figure 13: Measuring zero elapsed time using Method I with Medusa 4-Read routine

Figure 13 illustrates the result under Medusa using the 4-Read clock routine to measure time.

The mean compensated result was 6.69/iS, and the improvement factor k was 3.57. This represents

a great improvement in the variance of the results. The 1-Read clock routine gave an improvement

factor of 0.68.

28

4.5 Evaluation of clock reading compensation techniques (Method II)

The experiment that validates Method II consists of a clock process executing in a computer

module from the cluster where the experiment is performed, a process that does two successive

clock reads to measure the elapsed time (which should ideally be zero if reading the clock does not

take any time), and a number of pairs of communicating processes that send each other messages to

create a synthetic system workload. Each pair of these communicating processes is independent of

the other processes in the system, and their sole purpose is to generate load to the Kmaps through

which clock read requests are routed. The experiment process measuring zero elapsed time is

synchronized with the clock process. It signals the clock process to start reading the clock, reads the

clock twice successively, and then sends the results of the two clock reads to the clock process which

computes the net elapsed time according to Equation (1).

Figure 14 shows the distribution density of the results of the StarOS experiment. The dashed

curve is the result of the measured reading (T in Equation (1) and Figure 10). The solid curve is

the result after Method II has been applied (T A in Equation (1)). The results were taken from 1000

repetitions of the experiment The mean value was -5.24/xS, while the improvement factor k was

1.14. The improvement factor for the 1-Read clock routine was 1.98.

29

. 3 0

co
c
CD

Q
c
o

Q

•25i

.20

1$

.10

.0$

!

Compensated result
Uncorrected result

- 4 0 0 - 2 0 0 2 0 0 4 0 0

Reading StarOS clock

600 800 1000
Elapse Timers)

Figure 14: Measuring zero elapsed time using Method II with StarOS 4-Read routine

30

.30
<o
c
0)
Q
t:
o
•*»•
.Q

Q

.25

•2d

.1$

.10

.05

I t
I I
I I

Compensated result
Uncorrected result

- 4 0 0 - 2 0 0 O 2 0 0 4 0 0 6 0 0 8 0 0 fOOO
Elapse Time (¡1S)

Figure 15: Measuring zero elapsed time using Method II with Medusa 4-Read routine

When executing under Medusa, the experiment yields different results. Figure 15 shows the

distribution density of the Medusa experiment. The mean value of the compensated result was

6.69/jlS and the improvement factor was 1.11. The improvement factor was 0.81 for the 1-Read

clock routine.

31

4.6 Discussion of results

As shown by the result of the above eight experiments, the mean corrected value was less than

6.7JLAS. This provides an upper bound to the accuracy of measurement obtainable. It is concluded

that these measurement methods are not suitable for measuring elapsed times that are less than filly

microseconds because the relative error for small interval measurements is high.

Of the eight experiments performed, four showed improvement in the variance of the corrected

result (with the improvement factor k ranging from 1.11 to 3.57). The other four cases showed a k

less than 1 but greater than 0.67. Recall in Equation (4), it was shown that the worst case k would

be 0.5, while if the clock reads used for compensation were totally uncorrelated to the clock reads

that they were supposed to compensate, the value of k would be 0.67. In the Medusa experiment

using Method 1 with the 1-Read clock routine, the value of k was 0.68. This shows that the system

load was changing so rapidly during the experiment that the execution time of any clock read was

essentially uncorrelated to the execution time of any previous or subsequent clock reads.

It is interesting to note that three out of the four experiments using Method II resulted in

improved variance, while only one out of the four experiments using Method I resulted in the

improved variance. This phenomenon is mostly due to the difference in the type of system load. In

all the experiments using Method II, the system workload was the load created by a large number of

processes sending and receiving messages. Since sending and receiving of messages are lengthy

processes (on the order of a millisecond), the load of the system is trackable by the clock reads.

When the granularity of the system load decreases to a duration comparable or shorter than the

time required to execute a clock read, the tracking of the system load using clock reads fails. This

was the case for the experiments to validate Method I. The synthetic workload was a large number

of processes reading the clock. Because the load on the system had the same duration as the clock

reads used to sample the load on the system, the tracking of the system load failed.

A problem with Method I is that it does not track system load correctly when an interrupt

occurs. This is because an interrupt during an experiment will either affect the clock read used to

obtain the measurement or the clock read used to obtain the compensator, but not both. This

explains why Method I did not work very well under StarOS since the StarOS processes were

interrupted sixty times per second. Method II tracks well even with interrupts. This is because

interrupts by the line time clocks are system-wide, therefore an interrupt affecting the clock read

32

used to obtain the measurement is likely to occur in the clock process as well. This means that the

extra time required to handle an interrupt during a clock read is likely to be compensated for.

4.7 Conclusion

In this section, methods have been developed to measure the performance of Cm* software

under system load. Two algorithms have been developed to yield more accurate elapsed time

measurements than the clock routines can provide.

Experiments were performed to validate the measurement methodologies. The variation of

execution speed among different Cnrs was found to be around 4.6%. The long term algorithm

developed to compensate for clock readings has a very predictable behavior and no experiment was

performed to test its validity. The short term algorithm was implemented with two variations -

Method I and Method II. Experiments were set up to evaluate both methods. The base line

accuracy of these methods was around 6.7/JLS. Therefore these methods are not suitable for

measuring short duration events (50/AS or less), but are perfectly suitable for measuring longer

duration events such as operating system calls.

Because Method I was theoretically superior to Method II, it was given the tough task of

executing under system load of very small granularity. Results showed that Method I was unable to

perform properly in small granular system loads. Method II was tested with a more reasonable load

and was found to perform quite well. The short term algorithm using Method II performed better

than the long term algorithm would have performed in three of the four experiments tested.

Because Method I is more desirable than Method II in that it does not affect the experiment under

measurement, it is believed that Method I should perform at least as well as Method II under a

reasonable system load provided that there are no interrupts. When there are interrupts, Method II

is the preferred method.

An important conclusion is that it is not possible to present a clock compensation scheme that

works under arbitrary system load because the clock readings can only sample the system load at a

finite rate. Readers are encouraged to develop their own clock compensation technique. However,

they must test their scheme to ensure that it tracks the system load reasonably well. The zero

elapsed time measuring experiment is recommended for such testing. Below is the procedure for

testing a clock compensation method:

33

no
P ick a c l o c k compensat ion method;
DO

E x p e r i m e n t a l l y . measure z e r o e l a p s e d t i m e ;
TF r e s u l t not s a t i s f a c t o r y THEN

F ine tune the method;
UNTIL method i s o p t i m a l or r e s u l t s s a t i s f a c t o r y ;

UNTIL exhausted a l l methods or r e s u l t s s a t i s f a c t o r y ;

5 An example experiment

This experiment evaluates two performance measures of a message-based operating system. The

first measure is the latency of the message mechanism. Latency is defined as the time elapsed from

the moment a sender begins to send a message to the moment the receiver receives the message.

The second measure is the execution time of a message-based remote procedure call (RPC).

While a message mechanism is often provided by an operating system as a primitive for

interprocess communication (IPC), remote procedure calls using request/response protocols are

often layered on the basic mechanism [Nelson 81] [Spector 82] [Birrell and Nelson 84]. The remote

procedure call of this experiment consists of a client, which sends a message containing the

arguments for the call, and a server, which receives the message, performs the specified function,

and returns a message containing the result The time elapsed from the moment the client begins to

send a message to the moment it finishes .accessing the returned result constitutes the execution

time of the RPC. While this RPC implementation does not do type checking or error recovery, it is

a simplified model of RPC that can indicate the RPC performance of a system.

5.1 Organization of experiment

The experiment consists of one or more client/server pairs. Below is the pseudo-code for such a

client/server pair:

c l i e n t : s e r v e r :
p r e p a r e argument
T l
send the arguments > w a i t f o r a message

T2
a c c e s s p a r a m e t e r s
p e r f o r m c o m p u t a t i o n

w a i t f o r the r e s u l t s < send r e s u l t s
a c c e s s r e s u l t s
T3

34

The latency of a message is 12 - 11, while the execution time of the RPC is 13 - 11. For the

latency measurement to be meaningful, the server must be blocked before the client sends a

message.

The experiment is implemented under StarOS and consists of a master process which spawns

client/server pairs in locations specified by the user. Since both processes of a client/server pair

reside in the same cluster, all communications within a client/server pair are intracluster. Of all the

client/server pairs spawned, only one pair reads the clock to measure performance. This pair is

responsible for sending all its results to the master process. The master process ships the results to a

VAX/UNIX system via the Ethernet for storage and analysis. The clock compensation technique

used is Method II of the short term averaging algorithm, as presented in Section 4.

5.2 Experiments

The experiment was performed with different levels of load ranging from one client/server pair

per cluster to three client/server pairs per cluster. The total number of words accessed by the client

and server varied from 0 to 200 in increments of 50. All measurements were repeated 512 times.

The measurement of zero elapsed time was performed during each repetition of the experiment

as a run-time check to see how well the clock compensation scheme was tracking the system load. It

was found that the mean error was no worse than 4.9/iS, while the improvement factor was between

0.74 and 0.78. This low improvement factor was due to interrupts that were not trackable by

Method I. By simulating the situation that there are no interrupts, the improvement factor was

between 1.01 and 1.22,

5.3 Results

5.3.1 Latency measurements

Figure 16 illustrates the latency of the StarOS messages in our experiment. The solid curve

shows that latency is constant at approximately 7050jutS and is independent of the total number of

message words accessed. The dashed curve shows that when two client/server pairs are executing

in the same cluster, the latency rises to 7960/xS because of increased Kmap load. As the total

number of message words accessed increases, more time is spent accessing remote memory,

resulting in fewer RPC executions per unit time. This causes a decrease in the rate of message

35

. 10000
co
a.

•S j
>»
u
c

13 9000

8000

700OT

6000

1 Pair
o- - -o 2 Pairs
x . x 3 Pairs

5 0 100 150 200 250
Total number of words accessed

Figure 16: Latency of StarOS messages in the experiment

operations, resulting in a decreased latency. The broken curve shows that latency is 9615/AS when

three client/server pairs are executing in the same cluster. The vertical bars at each point of the

curves show the magnitude of the standard deviation at that point

5.3.2 Execution time of RPC

Figure 17 shows the execution time of the remote procedure call as a function of the total

number of words (0 to 200) accessed by the client and the server. The execution time of the call is a

linear function of the number of words accessed. In the solid curve, the slope is 49.9/xS per word6.

This value must not be interpreted as the intracluster memory access time for StarOS. Rather, it is the time required
for an iteration through the following Bliss-11 program loop:

INCR k FROM 0 TO .1 r e u s e d - 1 DO
temp = . R e s u l " t P a g e [. k] ;

This loop compiles into six LSI-11 instructions, with one of them performing a remote memory reference.

36

o o iPair
o - - -o 2 Pairs
x . . — - K 3 Pairs

10000
50 100 150 200 250

Total number of words accessed

Figure 17: RPC execution time versus the total number of words accessed

5.4 Conclusion

This section presented an example of measuring StarOS message latency and message-based

RPC execution time. The example experiment implemented two ideas developed in Section 4.

First, it generated system workload by replicating the experiment in different parts of the system.

The number of replicas and how they were distributed in the system were both controlled by the

experimenter at program run time. Second, the experiment employed one of the clock

compensation techniques developed in Section 4. The addition of the clock compensation

technique into the basic experiment required only the addition of a subroutine which computed net

elapsed times given four time-stamps.

6 Conc lus ion

This project discovered the erratic behavior of the Cm* clock reading software and presented an

alternate set of clock reading software. Additionally, it recommended that the length of a clock tick

should be set to be commensurate with the variation in communication delays. It proposed that a

37

Kmap operation be provided to latch the clock value and to read the clock register indivisibly.

Most important of all, it provided a clock compensation scheme for measuring elapsed time with an

accuracy much greater than that provided by the clock, reading software.

However, in developing the mathematical model of the clock compensation techniques, it was

assumed that the correlation between the time elapsed for two successive clock reads and the system

load was non-negative, and that the autocorrelation of system loads separated by short time

intervals was non-negative. The validity of these assumptions should be investigated. Also, the

clock compensation technique fails when the granularity of system load is too small. At present,

little is known about the granularity and the time profile of system load. Further study is required

to gain this knowledge.

Of more general concern, this project stressed the importance of real-time clock designs in

multiprocessors since they greatly affect the clock's usability. Future multiprocessor designs should

include a globally readable clock that is accessed through a special bus unaffected by system load

and contention. An example of such a clock is the system clock of C.mmp multiprocessor. When

such a design is not feasible, the clock should be of the same width as the data bus so that the entire

clock word can be read in one access. If this is not practicable, there should be an instruction that

latches the clock value and reads it indivisibly. The implementation of such an instruction should

be straightforward when the clock register size is compatible with one of the machine supported

data types, since multiprocessor should allow indivisible read/write accesses to all machine

supported data types to guarantee data consistency. Thus, the instruction in essence is simply a

latch operation followed by a read operation.

For multiprocessor systems using a single global clock and experiencing the same problems

experienced by Cm*, this project provided a general scheme for measuring elapsed time accurately.

The study of Cm* clock performance shows that system load can be gauged by reading the system

clock. This is because reading the clock exercises many of the system resources (Map-bus,

intercluster bus, Kmaps, etc.). This idea of exercising system resources to measure their load is

worth exploring.

References

[Birrcll and Nelson 84|
Andrew D. Birrcll, Bruce J. Nelson.
Implementing Remote Procedure Calls.
ACM Transactions on Computer Systems 2(l):38-59,1984.

[Etlingson 73]

[Ferrari 78]

[Gehringer 81]

[Jones 79]

[Jones 80]

[Kong 82]

[Lamport 78]

[Marathe 77]

C. Ellingson & R. J. Kulpinski.
Dissemination of System Time.
IEEE Trans. Comm. Com. 23(5):605-624, May, 1973.

D. Ferrari.
Computer Systems Performance Evaluation.
Prentice Hall, 1978.

E. F. Gehringer and R. J. Chansler, Jr.
StarOS User and System Structure Manual.
Technical Report, Carnegie-Mellon University, Computer Science Department,

June, 1981.

A. K. Jones, R. J. Chansler, I. Durham, K. Schwans, S. R. Vegdahl.
StarOS: A Multiprocessor Operating System for die Support of Task Forces.
In Proceedings of the 7 th Symposium on Operating Systems. Asoilomar Grove,

CA, December, 1979.

A. K. Jones and E. F. Gehringer, editors.
The Cm* Multiprocessor Project: A Research Review.
Technical Report, Carnegie-Mellon University, Computer Science Department,

July, 1980.

Thomas H. Kong.
Measuring Time for Performance Evaluation of Multiprocessor Systems.
November, 1982.
Masters Project Carnegie-Mellon University Department of Electrical

Engineering.

Leslie Lamport.
Time, Clocks, and the Ordering of Events in a Distributed System.
Communications of the ACM 21(7):558-565, July, 1978.

Madhav V. Marathe.
Performance Evaluation at the Hardware Architecture Level and the Operating

System Kernel Design Level.
PhD thesis, Carnegie-Mellon University Computer Science Department,

December, 1977.

[Marzullo 83] K. Mar/uIlo, S. Owicki.
Maintaining the Time in a Distributed System.
In Proceedings of the 1983 Principles of Distributed Computing Confererence.

Montreal, Canada, August, 1983.

[Nelson 81] Bruce Jay Nelson.
Remote Procedure Cali
PhD thesis, Carnegie-Mellon University Computer Science Department, May,

1981.

[Ousterhout 80a] J. K. Ousterhout, D. A. Scelza and P. S. Sindhu.
Medusa: An Experiment in Distributed Operating System Structure.
Communications of the ACM 23(2), February, 1980.

[Ousterhout 80b] John K. Ousterhout
Partitioning and Cooperation in a Distributed Multiprocessor Operating System:

Medusa.
PhD thesis, Carnegie-Mellon University, Computer Science Department April,

1980.

[Raskin 78] Levy Raskin.
Performance Evaluation of Multiple Processor Systems.
PhD thesis, Carnegie-Mellon University Department of Electrical Engineering,

August 1978.

[Ritchie 74] D. M. Ritchie and K. Thompson.
The UNIX Time-Sharing System.
Communications of the ACM 17(7):365-375, July, 1974.

[Spector 82] Alfred Z. Spector.
Performing Remote Operations Efficiently on a Local Computer Network.
Communications of the ACM 25(4), April, 1982.

[Wulf 81] William A. Wulf, Roy Levin, and Samuel P. Harbison.
Hydra/C.mmp: An Experimental Computer System
McGraw-Hill, 1981.

