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A b s t r a c t 

A system clock is often used as a time-keeping device for measuring software performance. 
Obtaining accurate clock reading in a distributed system with only one system clock may be 
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research vehicle. First, the accuracy of the reported time was found to be greatly affected by the 
number of simultaneous clock reads and overall system workload. Second, methods were 
developed to compensate the clock readings by monitoring the system load during the time 
measurements. These methods correct readings so that they are within 7/xS. of the actual time that 
the clock read request is issued. Finally, to demonstrate the utility of the methods, an experiment 
was performed to measure die latency of messages and message-based remote procedure calls. 
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1 Introduction 

Software methods that rely only on a high resolution clock are more commonly used to measure 

the performance of computer systems than are methods involving the use of special purpose 

hardware monitors. Certainly, a major motivation for the use of software is cost. However, 

software methods are also more flexible: they simplify the automation of performance evaluation, 

from data collection to data reduction, and they permit performance analysis to be done remotely 

without probing the internals of the machine. The disadvantage of software methods is that they 

may be prone to inaccuracy because of possible interactions between the measuring and measured 

software. 

Inaccurate clock readings may be particularly prevalent when the system clock is used as a time 

source. This is because the amount of time required to read the system clock may depend upon 

various system loads. Therefore, when a time value is returned to the calling program, it may be 

inaccurate. In a distributed system where communication delay is dependent on system activity, 

and where a large number of subsystems can attempt to read the clock simultaneously, the time 

value that is returned to the calling program may be even less accurate. 

This problem is serious in the case of the Cm* [Jones 80] clock. A preliminary study showed 

that the result of a clock read can be in error (i.e„ outdated) by as much as 2mS, depending on the 

system load and the amount of contention for the clock. Thus, we wanted methods that would 

permit more accurate clock reads for Cm*. More importantly,,we wanted to investigate the general 

feasibility of measuring the performance of multiprocessor operating systems using software 

methods. 

The next section surveys previous work related to this project and describes the research vehicle, 

Cm*, and its two operating systems, StarOS and Medusa [Jones 80]. Section 3 discusses the clocks 

in Cm* and the mechanisms that Cm*'s two operatings systems use to access them. The accuracy of 

time measurements as a function of system load is presented and shown to be a problem. Section 4 

discusses elapsed time measurements on Cm* and presents algorithms that yield more accurate 

measurements of elapsed times. The accuracy of these methods is illustrated by a few examples. 

Section 5 presents measurements of the latency of message passing and remote procedure call 

mechanisms used on Cm* in order to* illustrate the usage of one of the more accurate clock 

algorithms. Section 6 presents general conclusions. 



2 Background 

2.1 Related Work 

Related work can be divided into the categories of empirical performance evaluation, elapsed 

time measurement, and performance evaluation of Cm*. With respect to the first category, we refer 

the reader to Ferrari [Ferrari 78] for a survey. 

Obtaining accurate measurements of elasped time can be difficult on multiprocessors and 

distributed systems. Providing each processor with its own time source is one useful approach, but 

this can be costly for very large systems and lead to synchronization problems. Lamport [Lamport 

78], Ellingson [Ellingson 73], and Marzullo [Marzullo 83] discuss the general issues and present 

techniques for synchronizing independent time sources. Using a single time source is an alternate 

approach that eliminates synchronization problems, but it is prone to inaccuracy due to 

communication and contention delays. Because Cm* does not have an independent clock for each 

computer module, this work concentrates on the use of a centralized clock. 

At Carnegie-Mellon, many measurements of both Cm* and Cmmp [Wulf 81] have used 

specialized hardware. For example, early measurements of Cm* performed by Raskin [Raskin 78] 

used the Cm* Map-Bus Monitor, logic state analyzers, and hardware counters. Marathe's 

measurements of the operating system kernel of C.mmp/Hydra used both hardware and software 

methods. As he correctly observed, measurement tools should match the level of the 

measurement [Marathe 77]. This paper is specifically concerned with software methods for 

performance evaluation that require no special hardware other than a high resolution system clock. 

2.2 Research Vehicle 

2.2.1 Cm* Hardware Structure 

Cm* is a multiprocessor consisting of fifty processor-memory pairs made up of Digital 

Equipment Corporation LSI-ll's. Each processor-memory pair is called a computer module. These 

computer modules are grouped into five clusters, forming a hierarchical switching structure. The 

lowest level of the switching hierarchy consists of the Slocals, which are switches placed between 

each processor and its local memory. Their function is to determine if references generated by the 

processor can be directed to the local memory. If the references cannot be directed to local 
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memory, the Slocul forwards the address through the Map Bus to the Kmap of that cluster for 

further address translation. 

The Kmap is a high speed microprogrammable communication controller that permits 

computer modules (Ctrf s) of its own cluster to communicate with each other, and cooperates with 

other Kmaps to service inter-cluster communication requests. All communication between the 

Kmaps is implemented via packet-switching rather than by circuit-switching to avoid possible 

deadlock over dedicated circuit-switching paths. In addition, since the Kmap is much faster than 

the main memory of the LSI-lTs, the Kmap is active only for a small fraction of the time of a 

memory reference. Therefore, packet-switching allows the Kmap to service more than one request 

concurrently. In addition to their communication functions, some StarOS and Medusa functions 

are executed by the Kmaps. 

2.2.2 StarOS 

StarOS is a message based, object oriented operating system for Cm* that is described by 

Gehringer and Chansler [Gehringer 81] and Jones et al. [Jones 79]. Briefly, all StarOS information, 

including code and data, are contained in objects. Each object has an associated type and a special 

set of type-specific operations. Users can define their own abstract object types. 

A StarOS object is made accessible via the possession of a capability, which contains the name of 

the object and a list of rights. Capabilities themselves do not contain the address information of the 

objects they name. Rather, they contain pointers to the descriptors that contain the physical 

locations of the objects. This way, if an object named by a number of capabilities is to be relocated 

physically, only its descriptor needs to be updated while all the capabilities remain unchanged, 

The StarOS message facility supports the transmission of messages containing one capability or 

one data word. Thus, messages of size larger than one word must be passed by reference. By 

reference semantics are possible because names of objects are known system-wide and a capability 

is sufficient to access an object anywhere in the system. 
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2.2.3 Medusa 

Medusa is another message based operating system for Cm* and is described by Ousterhout et 

al. [Ousterhout 80a] [Ousterhout 80b]. All Medusa information is stored in objects that are 

addressed through descriptors that contain the type, the location, and the size of the objects. 

Descriptors are stored only in protected objects known as descriptor lists. Each Medusa process, 

known as an activity, has two descriptor lists. The private descriptor list keeps the descriptors to 

objects that are private to the process, while the shared descriptor list keeps the descriptors to objects 

that are shared by all processes within a collection of cooperating processes that are performing a 

given computation. 

In Medusa, all objects are defined by the system. The message facility of Medusa supports 

messages of variable size. Messages are transmitted by value through special objects called pipes. 

These are similar to Unix [Ritchie 74] pipes except that only complete messages can be sent or 

received from the pipes, and that both the identity of the sender and the size of the message are 

available to the receiver. 

3 C locks in a mult iprocessor 

One simple technique for providing access to a global time source is to have a globally readable 

clock with a communication delay that is small (compared to the clock resolution) and fixed, 

regardless of system load. Such a clock may require a special bus allowing multiple simultaneous 

read accesses. An example of such a bus structure is the interprocessor bus of Cmmp [Wulf 81], In 

the Cmmp implementation, there is a 56-bit global clock of 4 microseconds resolution. The value 

of this clock is continually broadcast on the interprocessor bus. 

However, in a large and more loosely coupled system, it may not be feasible to devote a special 

purpose bus to the global clock because of the amount of cabling involved as well as the problems 

associated with long signal delays and bus arbitration. Also, broadcasting the clock value on the 

general purpose bus would use a large portion of the cycles available on the bus. For these two 

reasons, broadcasting the clock value is generally not done in large distributed systems. In Cm*, 

when a subsystem needs to know the system time, it establishes a connection with the clock and 

then reads its value. This way, communication occurs only when necessary. However, because the 

time required to establish a connection depends on bus activity, and the transmission delay depends 
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on the physical location of the subsystem, the total delay is unpredictable. When multiple requests 

for the system time arrive simultaneously, bus contention results and a queue is formed. The wait 

time in this queue adds further uncertainty to the total delay. 

In tiiis section, the problems in reading a central clock will be examined, and their effect on the 

performance of the Cm* clock will be studied. Schemes that yield more accurate clock readings will 

be proposed. 

3.1 Cm* clocks 

Cm* currently provides three 32-bit real time clocks for time measurements, only one of which 

is used to provide the system time. They are connected as peripherals to Cm3 on cluster 1, Cm4 on 

cluster 2, and Cml4 on cluster 5. These clocks have a quartz crystal time-base with an adjustable 

resolution. The maximum resolution is 0.5 microseconds, but they are currently set for 2 

microseconds. This yields a maximum range of 2 3 2 * 2/iS = 2.386 hours. The clocks can be zeroed 

under program control for interval measurements. 

Since the LS1-11 uses memory mapped I/O, reading die clock is a simple read to a specific 

location in the I/O page (page fifteen) of the LSI-11 address space. For both StarOS and Medusa 

operating systems, reading the system clock is implemented via remote memory references. 

3.2 Clock reading routines and their performance 

In both StarOS and Medusa, clock reading is performed using procedure calls rather than by an 

LSI-11 "MOV" instruction. This is because the clock is 32 bits while the data bus is only 16 bits 

wide. Thus, to read the full clock requires at least two memory references. Since the clock is always 

running, there is no guarantee that the high and low order words read correspond to the same 32-bit 

clock word. This is because after reading the first word, the low order word may overflow and wrap 

around at a clock tick, invalidating the first word read. 

When this project began, both StarOS and Medusa provided a standard routine for reading the 

clock. For future reference, this algorithm is named "Varying-Read" algorithm because the clock 

register is read either three or four times depending on the value of the clock. Below is the pseudo­

code for this routine: 
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V a r y i n g - R e a d : 

F i r s t H i = Read h i g h o r d e r word of c l o c k ; 
F i r s t L o w = Read low o r d e r word of c l o c k ; 
SecondHi = Read h i g h o r d e r word o f c l o c k ; 
i f SecondHi > F i r s t H i then b e g i n 

SecondLow = Read low o r d e r word of c l o c k ; 
r e t u r n SecondHi and SecondLow as the c l o c k r e s u l t ; 

end 
e l s e b e g i n 

r e t u r n F i r s t H i and F i r s t L o w as the c l o c k r e s u l t ; 
end ; 

When SecondHi is greater than FirstHi, the low order word must have wrapped around between 

the first and second read of the high order word. Since it is not known whether FirstLow was read 

before or after the wrap around occurred, the low order word must be read a second time. 

A preliminary experiment was set up to evaluate the performance of the Varying-Read clock 

routine of Medusa. The objectives were to determine the average execution time of the routine and 

to see how the accuracy was affected by the system load. The experiment measured the elapsed 

time between two successive clock read procedure calls. This elapsed time was identical to the 

execution time of the routine including all the remote memory references. 

The experiment was performed with eight Cm's distributed between clusters 2 through 5 

reading the clock in cluster 1. The experiment was then repeated with thirty Cnr s, also distributed 

between clusters 2 through 5. The results for all processors are summarized in Figure 1, which plots 

the elapsed time between two clock reads against the time elapsed since the beginning of the 

experiment. The total intercluster memory reference rate is approximately 90 thousand references 

per second in the case of 30 Cm's and approximately 53 thousand references per second in the case 

of8Cm's. 

Figure 1 reveals periodic peaks and troughs in the 30 Cm's curve. The peaks occurred when the 

low order word of the clock wrapped around during the execution of the second clock read routine, 

causing the second clock reading routine to read the low order word a second time. In this instance, 

there were 4 clock reads between the significant low order reads. The troughs occurred when the 

low order word wrapped around during the execution of the first clock read routine, causing the 

low order word to be read again. In this instance, there was only 1 clock read between the 

significant low order reads. (For a more detailed explanation of the reason for the peaks and 
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Figure 1: Performance of Medusa Varying-Read clock routine 

troughs, refer to Kong's Masters Project Description [Kong 82].) Note that in the 8 Cm's case, there 

were fewer Cm's reading the clock and the probability of reading the clock while its low order word 

wraps around was much lower; hence the peaks and troughs did not appear regularly. 

Figure 1 also shows for the 30 Cm's case that the elapsed time rose at the beginning of the 
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experiment from approximately 300/xS to over 800/xS and then fell from 800/iS to approximately 

300/xS at the end of the experiment. This was because not all the Cm's started and finished 

simultaneously. Hence, there was less system load and contention at both the beginning and the 

end of the experiment. In the 8 Cirfs case, the average value was approximately 300/xS and no rise 

or fall was seen; With only 8 Cm's reading the clock, there was insufficient traffic to slow the clock 

read routines. 

Because of the Varying-Read clock routine's erratic behavior when the low order word of the 

clock flips, two new clock reading routines were written. The first one was a modification to the 

original Varying-Read routine. It reads both the high order and the low order word twice, and has 

the property that it always returns the first low order word read as the low order word of the clock. 

Its execution time is essentially independent of the value of the clock readings, as shown in Figure 

2. In Figure 2 the rate of remote memory references was 96 thousand per second for the 30 Cm's 

case and 64 thousand per second for the 8 Cm's case.1 Below is the pseudo-code for the routine: 

4 -Read: 

F i r s t H i g h = read h i g h word o f c l o c k ; 
F i r s t L o w = read low word of c l o c k ; 
SecondHigh = r e a d h i g h word o f c l o c k ; 
SecondLow = read low word of c l o c k ; 
IF SecondHigh > F i r s t H i g h THEN /• c l o c k f l i p p e d */ 

IF SecondLow > F i r s t L o w THEN /* f l i p was b e f o r e F i r s t L o w */ 
r e t u r n F i r s t L o w and S e c o n d H i g h as r e s u l t 

ELSE /* f l i p was a f t e r F i r s t L o w r e a d */ 
r e t u r n F i r s t L o w and F i r s t H i g h as r e s u l t 

ELSE /* no f l i p o c c u r r e d between F i r s t H i g h and S e c o n d H i g h */ 
r e t u r n F i r s t L o w and F i r s t H i g h as r e s u l t ; 

The second routine reads only the low order word of the clock and computes the value of the 

high order word. It assumes the clock is read by each Cm at least once in every interval T f where 

T f is the time between two low word flips and is equal to 2 1 6 * R, where R is the number of seconds 

between a clock tick. With the present R of 2//,S, T f equals 0.131 seconds. 

The routine makes use of two static variables SOldLow and $Hi on each Cm. During a clock 

reset, these variables are zeroed. Every time the routine is called, the low order word of the clock is 

*These numbers are higher than for the previous clock reading routines because 4 remote memery references are done 
for each clock read. 
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Figure 2: Performance of 4-Read clock routine running under Medusa 

read and is compared with the value of $OldLow. If the value of $OldLow is higher than the 

current value of the low word, a flip must have occurred. The variable $Hi is then incremented. If 

the value of $OldLow is lower than that of the low word of the clock, no flip has occurred and the 

value of $Hi remains unchanged. Below is the pseudo-code for the routine: 
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1-Read: 

STATIC SOldLow; 
STATIC $ H i ; 

Low = Read low word of c l o c k ; 
IF SOldLow >= Low THEN 

$Hi = $Hi + 1; 
SOldLow = Low; 
r e t u r n Low and $Hi as the r e s u l t ; 

This routine has a constant execution time. The performance of this l-Read clock routine is 

summarized in Figure 3. Here the remote memory reference rate was 76 thousand per second for 

the 28 Crn s case, and 23 thousand per second for the 8 Cm's case. This lower rate of remote 

memory reference makes the routine execution time quite insensitive to the increasing number of 

Cm's reading the clock. Therefore, the differences between the 28 Cm's curve and the 8 Cm's curve 

were so small that the two curves are visually indistinguishable. 

Since the 1-Read and the 4-Read routines were to be used, a new set of experiments were set up 

to test the performance of both routines as a function of load under both StarOS and Medusa. The 

experiments involved the measurement of elapsed time between two clock reads as a function of the 

number of Cm's reading the clock. 

3.2.1 StarOS results 

Both the average execution time and the standard deviation of the 4-Read clock routine 

increases with the number of participating Cm's. This data is graphically presented in the 

histograms of Figure 4, which are normalized to give the same area under the curve. The 

distributions of all the curves appear to be Rayleigh with a lower bound of 310ju,S, which is the 

minimum time required to execute the 4-Read clock routine. Though it cannot be seen in the 

figure, a careful study of the data shows there is a small peak between 630/iS to 760/xS in addition to 

the main peaks. This is due to 60 hz line clock interrupts occurring between two clock reads. 

The average execution time of the 1-Read routine is quite insensitive to the increasing number 

of Cm's reading the clock. This is because the load generated by this clock routine is low enough 

for the Kmap to handle without saturating. Figure 5 is the summary of all the histograms 

normalized to give the same area under the curve. Since the average execution time varies very 

little and the standard deviation of the results remains almost constant, all the curves are similar and 



12 

overlapping. Also due to line clock interrupts, there is a small secondary peak between 470/xS to 

550/iS. 
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Figure 4: Performance of StarOS 4-Read clock routine 
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Figure 5: Performance of StarOS 1-Read clock routine 

3.2.2 Medusa results 

The minimum time required to execute the 4-Read Medusa clock routine is approximately 

320/iS. The average time increases as the number of Cm's reading the clock increases. Figure 6 is 

the normalized plot of all the histograms. An interesting observation is that while the standard 
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deviation of the result increases as the number of CnVs increases for small numbers of Cms, it starts 

to fall at some point between 16 CnVs and 20 CnVs. This phenomenon is believed to be due to a 

complicated queuing mechanism at the Kmap. 

Figure 7 is the normalized distribution that summarizes the results of the Medusa 1-Read clock 

routine. The standard deviation of the result is extremely small, and the mean value does not 

change significantly with increasing number of CnVs reading the clock. Apparently, the load 

presented by this routine is so small that all clock read requests to the Kmap are processed 

immediately without having to wait in the Kmap queue. 



15 

1 Cm 
2Cm's 
4Cm's 
8Cm's 
12Cm's 
16 Cm's 
20Cm*s 

300 400 500 600 700 800 900 1000 
Time between two clock reads (pS) 

Reading Medusa Clock from remote clusters 

Figure 6: Performance of Medusa 4-Read clock routine 
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3.3 Conclusion 

Comparing Figure 4 with Figure 6, one sees that even though the average execution times are 

roughly the same at light load, the execution time increases as a function of load faster under 

StarOS than it does under Medusa. The di(Terence in the shape of the curves in Figure 4 and 

Figure 6 shows that the two operating systems have very different strategies for handling memory 

contention. Even when the effects of interrupts are discounted, the StarOS results show a larger 

standard deviation. The result is that it is more difficult to get accurate time measurements under 

StarOS. It is also likely that any StarOS experiments using Kmap operations probably have higher 

variability in execution times. 

Although the Cm* global clock is capable of 0.5/xS resolution, such resolution is not usable for 

accurate measurement of time intervals because of the uncertainty in delay involved in an 

intercluster reference in the presence of load. The results of the clock experiments show that short 

time intervals (500jmS or less) cannot be accurately measured using any of the clock reading routines 

described. 

One way to alleviate the problem is to read only the low order word of the clock. This way, only 

one LSI-11 instruction is needed to access the clock and the results should be much improved. The 

problem associated with just reading the low order word is the loss in clock range. With the clock 

tick set at 2/xS, the range provided by the low order word is only about 0.131 second. Larger clock 

range can be obtained by increasing the clock tick value without sacrificing clock resolution because 

the usable clock resolution is limited by the uncertainty in communication delay. Therefore, a 

reasonable value for the clock tick should be commensurate with the uncertainty in communication 

delay. For example, under very light system load, reading a Medusa clock word has a standard 

deviation of 2.3jtiS, and reading a StarOS clock word has a standard deviation of 7.13/iS.2 

Therefore, the 2/iS resolution of the present clock is useful. However, under heavy loads, the 

standard deviation of reading a clock word can be very high. Under such loads, the clock tick can 

be lengthened substantially to increase the range of the clock without losing accuracy. 

For any clock that cannot be completely read in one memory cycle, a clock read operation 

should be provided to latch the clock value and to allow all the clock words to be read indivisibly 

Assuming no processor interrupts. 
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before another clock read operation is accepted. For Cm*, such a feature could be provided by 

using a hardware latch and some Kmap microcode. 

A lesson learned from this study of the clock measurements is that performance measurements 

must be done very carefully since even the most obvious items such as the clocks can fail to perform 

as expected. 

4 Methodologies for measuring time 

Since the inaccuracy of the clock routines for Cm* is mainly due to Kmap load and clock 

contention, corrective measures can compensate for the incorrect clock readings by correcting for 

the Kmap load and clock contention during a measurement Based on this premise, this section 

discusses methods for obtaining more accurate time measurements for performance evaluation. 

More specifically, this section proposes a way to generate a repeatable workload for the system on 

which performance evaluation is done, develops methods for organizing performance evaluation 

experiments, presents algorithms to compute the net elapsed time given inaccurate clock readings, 

and tests these methodologies for validity. 

4.1 Methodology of performance evaluation 

In this project, workloads are synthesized by replicating the measured experiment For 

example, to measure the performance of the message facility, the synthetic load will be the number 

of pairs of processes communicating with each other through messages. 

The generation of a synthetic workload can be best illustrated by an example. Assume the 

execution time of a software routine, R, is to be measured under different system loads. The 

experiment then consists of a Cm executing R, while a number of other Cm's executing R constitute 

the synthetic load. The result is the execution time of R as a function of the number of Cm's 

executing R simultaneously. 

A basic approach for measuring performance is to have N identical experiments running in the 

system. The system workload is parameterized by the value of N and by how the experiments are 

distributed within the system. A simple way to measure performance is to have only one 

experiment per cluster reading the clock. This reduces the number of clock reads generated, 

produces less system load due to fewer clock reads, and results in the improved performance of 
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both the clock reading software and the measured experiments. The decision to measure only one 

experiment per cluster is based on the assumption that all the Cm's have identical execution speed, 

and the symmetry of the Cm* architecture makes Cm's from the same cluster virtually 

indistinguishable from each other3. The validity of the assumption that all Cm's have the same 

execution speed will be shown in a later subsection. 

Also, the timed experiment does not execute continuously. Rather, it is "injected" into the 

system at fixed intervals. This further reduces the amount of data generated. By injecting the timed 

experiment after the start up transients have decayed and the system workload has stabilized, more 

accurate results can be obtained. In the real situation, the user is often interested in finding out the 

execution time of a piece of software if he were to insert it in a system of a given workload. This 

situation is quite accurately modelled by the injection approach. Note that the effects of the 

transients caused by injecting an experiment have not been studied and may be a worthwhile 

subject for future research. 

4.2 Methodologies for measuring elapsed time (Clock compensation) 

Given the previously discussed methods for organizing performance evaluation experiments, 

the next step is to develop algorithms for accurately measuring elapsed time. Early in this section, it 

was postulated that one can monitor the Kmap workload to improve the accuracy of elapsed time 

measurements. Below are two such algorithms. 

Since reading the clock twice successively yields a result with a mean and variance that are both 

functions of the system load, the net elapsed time of any experiment can be computed by 

subtracting the average value of the elapsed time between two clock reads from the measured result 

Using this algorithm, the expected value of the computed result equals the true elapsed time, while 

the distribution of the computed result is identical to the distribution of the measured result We 

shall refer to this algorithm as the long term averaging technique. 

Since the load on the system is a time varying function, and since tasks performed by the system 

take time to complete, it is reasonable to assume that the system load at times separated by small 

Actually, some CnVs are connected to I/O devices which may affect their performance. In all experiments, Cm's with 
I/O devices such as serial lines or Ethernet interfaces must not be used 
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intervals should be highly correlated. Because the time elapsed between two clock reads is a 

function of load, the autocorrelation of this elapsed time for short time intervals should also be 

high. Based on this assumption, the short term averaging technique approximates the time required 

to read the clock during an experiment by using the elapsed time between two successive clock 

reads that occur closely in time. Below is a mathematical analysis of the short term averaging 

technique. 

clock read 

experiment 

tn -clock read 

clock reads clock reads 

Time 

Figure 8: Short term averaging algorithm 

Assume we are measuring the execution time of an experiment as illustrated in Figure 8. Then 

the variables are defined as follows4: 

• t is the true elapsed time of the experiment 

• T A is the computed elapsed time. ( T A approximates t n .) 

• T m is the measured elapsed time. 

• T 2 is the time interval between the moment the clock is read and the moment the 
experiment begins. 

• T 3 is the time interval between the moment the experiment ends and the moment the 
clock is read again. 

• T 1 and T 4 are the elapsed times between two pairs of clock reads. 

Then t = T - (T~ + T~) and 
n m v l y 

Capital letters denote random variables 
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I A = T - ( I , + T , ) / 2 . (1) 

therefore 
T A = t n + T 2 + T 3 - ( T 1 + T 4 ) / 2 . 

If the expected values 
BJX) = E(T4) = E(T 2 + T 3 ) = S, 

then 

E(TA) = t n + S- (S + S)/2 = t n . 

Therefore, the expected value of the computed result equals the true result 

The variance of the computed result is: 

Let 

then 5 

V(TA) = V(t n + T 2 + T 3 - ( T 1 + T 4)/2). 

VÇTJ = o?, V(T 4) = < T 4

2 , 

V(T 2) = <r2

2, and V(Tj) = <r3

2, 

V(T A) = °2  + °l + CT12/4 + ff42/4 

+ 2 P T 2 , T 3

< T 2 < T 3 " Pl^2

a\ a2 ' \ j ° \ a . 

' P T 2 , T ^ 4 F F 2 " P T 3 . T 4

( T 4 < R 3 + P T l , T 4

( T l a 4 

(2) 

(4) 

where p T T is the correlation coefficient of the random variables T. and T.. 
i' j J 

To simplify Equation (2), the following assumptions are made: 

E(T 2) ~ ECTj) / 2, E(T 3) ~ / 2, VfTj) = VCty = a 2 . (3) 

Now, 

V ( T A ) = CT^I + 0.5p x T - 0 .5p T T - 0 . 5 p x T - 0 .5p T T a i 2 i 3 K . i j i j . i j i 2 , i 4 

- 0.5p T T + 0.5p x x J. 
3 4 ll' lA 

If all correlation coefficients are unity, then 
V(T A) = 0. 

In the worst case when p x x = p x x = p x x = p x x = 0, and p T x = p x T = 1 , 

V(T A) = 2 a 2 

for all non-negative correlation coefficients. 

n n 
5 I f X = 2 a.Y., then V(X) = 2 a.2V(Y.) + 222 a a p . .ff.tr. 

i=l 1 1 i=l 1 1 Kj ' " V ' J 

http://ff.tr


For very short interval measurements, the limc-slamps t, and tj arc very close together and the 

random variables T 2 and T 3 can be replaced by a new T'3 equals to the old 1 2 + Ty Then ~ 0 

and ( T 3

2 = <x2. We now have 

" V(TA) = 1.5a2 - p T T a 2 - p T T a1 + 0.5p T T a 2 . (5) 
' l J 3 l 3 , l 4 l l f l 4 

If all correlation coefficients arc unity, then 

V(T A) = 0. 

If all correlation coefficients are zero, then 

V ( T A ) = 1 . 5 o 2 . 

In the worst case when p T x = p T T = 0 , and p x T = 1, 
h ' l 3 l 3 J 4 l l ' l 4 

V(T A ) = 2 a 2 

for all non-negative correlation coefficients. 

Even though Equation (2) expresses the value of the variance of the result, it cannot be solved 

unless the variances of T 2 and T 3 are known. In our case, this information is not available from the 

experiment. To simplify the problem, the time elapsed between the issuing of a clock read to the 

actual reading of the clock and the time elapsed between the reading of the clock to the returning of 

the result to the reader are assumed to have the same mean and variance. Equation (4) then 

expresses the variance of the result Equation (5) applies when the duration of the experiment to be 

measured is extremely short 

This algorithm shows that for any method used to select the two pairs of clock reads, the worst 

case will yield a result with a variance twice the variance of the elapsed time between two clock 

reads. In the best case, the variance of the result is zero. In cases where assumptions of Equation 

(3) apply, zero variance in the result is obtained when the correlation coefficients between Tl and 

T 2 ( p T T ) and between T 3 and T 4 (p T ^ T ) are both unity. 

A way to evaluate the methods used to select the clock read pairs is to compute the 

improvement factor k. In any experiment that measures a fixed time interval, let V(T A) be the 

variance of the corrected result and let a 2 be the variance of the uncorrected result Then k is 

defined such that 

k=a1/V(TA). 

The larger the value of k is, the better the improvement The range of k is between 0.5 and infinity. 

When k is unity, the variance of the corrected result is unchanged. Note that the Long Term 

Averaging algorithm always yields a k of unity. 
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The objective for selecting the two pairs of clock reads lor compensation is to maximize the 

correlation coefficients p T T and p T r . Though there are many ways this can be done, only two 
1 r 1 2 V 4 

methods will be presented. Readers are encouraged to design their own implementations, bearing 

in mind that the objective is to maximize the correlation coefficients stated above. 

clock reads clock reads T3 « T 4 
experiment 

Figure 9: Short term averaging, Method I 

Time 

The first method presented, hereafter referred to as Method I, is illustrated in Figure 9. If the 

processor that starts the measurement reads the clock twice at the beginning of the experiment and 

the processor that terminates the measurement reads the clock twice after the experiment, then Tj 

should highly correlate with T 2 while T 3 should highly correlate with T 4 . This is because these 

clock reads occur very closely in time. 

This method has the advantage that no clock read occurs during the experiment and therefore 

the performance of the experiment under measurement is not affected. 

The second method presented is referred to as Method II, as illustrated in Figure 10. If a clock 

process runs concurrently with the experiment and periodically samples the load by reading the 

clock twice in succession, the elapsed time can be used for compensation. One approach is to select 

the clock read pair of the clock process that is closest in time to the clock read that starts the 

measurement to give T x , and to select the clock read pair of the clock process that is closest in time 

to the clock read that stops the measurement to give T 4 . 

This method is less desirable than the previous method because of its added complexity and 

because of its interference with the performance of the experiment by the presence of a clock 

reading process. However, subsequent sections will show that this method yields quite accurate 

results. 
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experiment 
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Figure 10: Short term algorithm, Method II 

Time 

4.3 Execution speed of computer modules 

The method for generating workload assumes that all the computer modules in Cm* execute at 

the same speed. To verify this assumption, an experiment was set up to measure the execution 

speed of the computer modules in Cm*. This experiment involved timing the execution of a piece 

of code stored in the local memory of each Cm. Once the program execution begins, the Kmaps are 

not involved. 
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Figure 11: Histogram of execution time of 34 Cm's 



The results show that all of the thirty-four computer modules tested had execution speeds 

within 4.6% of each other. A histogram of the execution speed of the computer modules is shown in 

Figure 11. The conclusion for this experiment is that every computer module can be considered to 

have essentially identical execution speed, therefore experiments performed on any computer 

module should be equally valid. 

4.4 Evaluation of clock reading compensation techniques (Method I) 

The methods to compensate the clock readings cannot be rigorously proved to produce correct 

results because they employ only heuristic approaches. Therefore, to validate our methods, an 

attempt is made only to show that an accurate result for a fixed interval measurement (e.g., 0 

seconds) is obtained under some reasonable system load. 

The experiment to validate Method I consists of a process reading the clock four times in 

succession. The first two clock reads are used to compute T x , the second and third clock reads 

measure a null experiment which has zero execution time. The third and fourth clock reads are 

used to compute T 4 . The synthetic workload is generated by replicating a large number of 

processes distributed evenly among the clusters reading the system clock. The experiment was 

performed for both StarOS and Medusa. 

Figure 12 illustrates the result of the experiment using the StarOS 4-Read clock routine to 

measure time. The solid curve is the distribution density of the compensated result, while the 

dashed curve is the distribution density of the result before correction is applied. The ideal result is 

an impulse of unit magnitude at 0/xS. The mean compensated result was -1.90/xS, and the 

improvement factor, k, was 0.8. Recall that for k < 1, the variance of the result is increased. The 

same experiment using the 1-Read clock routine gave an improvement factor of 0.81. 
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Figure 12: Measuring zero elapsed time using Method I with 4-Read routine 
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Figure 13: Measuring zero elapsed time using Method I with Medusa 4-Read routine 

Figure 13 illustrates the result under Medusa using the 4-Read clock routine to measure time. 

The mean compensated result was 6.69/iS, and the improvement factor k was 3.57. This represents 

a great improvement in the variance of the results. The 1-Read clock routine gave an improvement 

factor of 0.68. 
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4.5 Evaluation of clock reading compensation techniques (Method II) 

The experiment that validates Method II consists of a clock process executing in a computer 

module from the cluster where the experiment is performed, a process that does two successive 

clock reads to measure the elapsed time (which should ideally be zero if reading the clock does not 

take any time), and a number of pairs of communicating processes that send each other messages to 

create a synthetic system workload. Each pair of these communicating processes is independent of 

the other processes in the system, and their sole purpose is to generate load to the Kmaps through 

which clock read requests are routed. The experiment process measuring zero elapsed time is 

synchronized with the clock process. It signals the clock process to start reading the clock, reads the 

clock twice successively, and then sends the results of the two clock reads to the clock process which 

computes the net elapsed time according to Equation (1). 

Figure 14 shows the distribution density of the results of the StarOS experiment. The dashed 

curve is the result of the measured reading (T in Equation (1) and Figure 10). The solid curve is 

the result after Method II has been applied ( T A in Equation (1)). The results were taken from 1000 

repetitions of the experiment The mean value was -5.24/xS, while the improvement factor k was 

1.14. The improvement factor for the 1-Read clock routine was 1.98. 
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Figure 14: Measuring zero elapsed time using Method II with StarOS 4-Read routine 
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Figure 15: Measuring zero elapsed time using Method II with Medusa 4-Read routine 

When executing under Medusa, the experiment yields different results. Figure 15 shows the 

distribution density of the Medusa experiment. The mean value of the compensated result was 

6.69/jlS and the improvement factor was 1.11. The improvement factor was 0.81 for the 1-Read 

clock routine. 
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4.6 Discussion of results 

As shown by the result of the above eight experiments, the mean corrected value was less than 

6.7JLAS. This provides an upper bound to the accuracy of measurement obtainable. It is concluded 

that these measurement methods are not suitable for measuring elapsed times that are less than filly 

microseconds because the relative error for small interval measurements is high. 

Of the eight experiments performed, four showed improvement in the variance of the corrected 

result (with the improvement factor k ranging from 1.11 to 3.57). The other four cases showed a k 

less than 1 but greater than 0.67. Recall in Equation (4), it was shown that the worst case k would 

be 0.5, while if the clock reads used for compensation were totally uncorrelated to the clock reads 

that they were supposed to compensate, the value of k would be 0.67. In the Medusa experiment 

using Method 1 with the 1-Read clock routine, the value of k was 0.68. This shows that the system 

load was changing so rapidly during the experiment that the execution time of any clock read was 

essentially uncorrelated to the execution time of any previous or subsequent clock reads. 

It is interesting to note that three out of the four experiments using Method II resulted in 

improved variance, while only one out of the four experiments using Method I resulted in the 

improved variance. This phenomenon is mostly due to the difference in the type of system load. In 

all the experiments using Method II, the system workload was the load created by a large number of 

processes sending and receiving messages. Since sending and receiving of messages are lengthy 

processes (on the order of a millisecond), the load of the system is trackable by the clock reads. 

When the granularity of the system load decreases to a duration comparable or shorter than the 

time required to execute a clock read, the tracking of the system load using clock reads fails. This 

was the case for the experiments to validate Method I. The synthetic workload was a large number 

of processes reading the clock. Because the load on the system had the same duration as the clock 

reads used to sample the load on the system, the tracking of the system load failed. 

A problem with Method I is that it does not track system load correctly when an interrupt 

occurs. This is because an interrupt during an experiment will either affect the clock read used to 

obtain the measurement or the clock read used to obtain the compensator, but not both. This 

explains why Method I did not work very well under StarOS since the StarOS processes were 

interrupted sixty times per second. Method II tracks well even with interrupts. This is because 

interrupts by the line time clocks are system-wide, therefore an interrupt affecting the clock read 
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used to obtain the measurement is likely to occur in the clock process as well. This means that the 

extra time required to handle an interrupt during a clock read is likely to be compensated for. 

4.7 Conclusion 

In this section, methods have been developed to measure the performance of Cm* software 

under system load. Two algorithms have been developed to yield more accurate elapsed time 

measurements than the clock routines can provide. 

Experiments were performed to validate the measurement methodologies. The variation of 

execution speed among different Cnrs was found to be around 4.6%. The long term algorithm 

developed to compensate for clock readings has a very predictable behavior and no experiment was 

performed to test its validity. The short term algorithm was implemented with two variations -

Method I and Method II. Experiments were set up to evaluate both methods. The base line 

accuracy of these methods was around 6.7/JLS. Therefore these methods are not suitable for 

measuring short duration events (50/AS or less), but are perfectly suitable for measuring longer 

duration events such as operating system calls. 

Because Method I was theoretically superior to Method II, it was given the tough task of 

executing under system load of very small granularity. Results showed that Method I was unable to 

perform properly in small granular system loads. Method II was tested with a more reasonable load 

and was found to perform quite well. The short term algorithm using Method II performed better 

than the long term algorithm would have performed in three of the four experiments tested. 

Because Method I is more desirable than Method II in that it does not affect the experiment under 

measurement, it is believed that Method I should perform at least as well as Method II under a 

reasonable system load provided that there are no interrupts. When there are interrupts, Method II 

is the preferred method. 

An important conclusion is that it is not possible to present a clock compensation scheme that 

works under arbitrary system load because the clock readings can only sample the system load at a 

finite rate. Readers are encouraged to develop their own clock compensation technique. However, 

they must test their scheme to ensure that it tracks the system load reasonably well. The zero 

elapsed time measuring experiment is recommended for such testing. Below is the procedure for 

testing a clock compensation method: 
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no 
P ick a c l o c k compensat ion method; 
DO 

E x p e r i m e n t a l l y . measure z e r o e l a p s e d t i m e ; 
TF r e s u l t not s a t i s f a c t o r y THEN 

F ine tune the method; 
UNTIL method i s o p t i m a l or r e s u l t s s a t i s f a c t o r y ; 

UNTIL exhausted a l l methods or r e s u l t s s a t i s f a c t o r y ; 

5 An example experiment 

This experiment evaluates two performance measures of a message-based operating system. The 

first measure is the latency of the message mechanism. Latency is defined as the time elapsed from 

the moment a sender begins to send a message to the moment the receiver receives the message. 

The second measure is the execution time of a message-based remote procedure call (RPC). 

While a message mechanism is often provided by an operating system as a primitive for 

interprocess communication (IPC), remote procedure calls using request/response protocols are 

often layered on the basic mechanism [Nelson 81] [Spector 82] [Birrell and Nelson 84]. The remote 

procedure call of this experiment consists of a client, which sends a message containing the 

arguments for the call, and a server, which receives the message, performs the specified function, 

and returns a message containing the result The time elapsed from the moment the client begins to 

send a message to the moment it finishes .accessing the returned result constitutes the execution 

time of the RPC. While this RPC implementation does not do type checking or error recovery, it is 

a simplified model of RPC that can indicate the RPC performance of a system. 

5.1 Organization of experiment 

The experiment consists of one or more client/server pairs. Below is the pseudo-code for such a 

client/server pair: 

c l i e n t : s e r v e r : 
p r e p a r e argument 
T l 
send the arguments > w a i t f o r a message 

T2 
a c c e s s p a r a m e t e r s 
p e r f o r m c o m p u t a t i o n 

w a i t f o r the r e s u l t s < send r e s u l t s 
a c c e s s r e s u l t s 
T3 
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The latency of a message is 12 - 11, while the execution time of the RPC is 13 - 11. For the 

latency measurement to be meaningful, the server must be blocked before the client sends a 

message. 

The experiment is implemented under StarOS and consists of a master process which spawns 

client/server pairs in locations specified by the user. Since both processes of a client/server pair 

reside in the same cluster, all communications within a client/server pair are intracluster. Of all the 

client/server pairs spawned, only one pair reads the clock to measure performance. This pair is 

responsible for sending all its results to the master process. The master process ships the results to a 

VAX/UNIX system via the Ethernet for storage and analysis. The clock compensation technique 

used is Method II of the short term averaging algorithm, as presented in Section 4. 

5.2 Experiments 

The experiment was performed with different levels of load ranging from one client/server pair 

per cluster to three client/server pairs per cluster. The total number of words accessed by the client 

and server varied from 0 to 200 in increments of 50. All measurements were repeated 512 times. 

The measurement of zero elapsed time was performed during each repetition of the experiment 

as a run-time check to see how well the clock compensation scheme was tracking the system load. It 

was found that the mean error was no worse than 4.9/iS, while the improvement factor was between 

0.74 and 0.78. This low improvement factor was due to interrupts that were not trackable by 

Method I. By simulating the situation that there are no interrupts, the improvement factor was 

between 1.01 and 1.22, 

5.3 Results 

5.3.1 Latency measurements 

Figure 16 illustrates the latency of the StarOS messages in our experiment. The solid curve 

shows that latency is constant at approximately 7050jutS and is independent of the total number of 

message words accessed. The dashed curve shows that when two client/server pairs are executing 

in the same cluster, the latency rises to 7960/xS because of increased Kmap load. As the total 

number of message words accessed increases, more time is spent accessing remote memory, 

resulting in fewer RPC executions per unit time. This causes a decrease in the rate of message 
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Figure 16: Latency of StarOS messages in the experiment 

operations, resulting in a decreased latency. The broken curve shows that latency is 9615/AS when 

three client/server pairs are executing in the same cluster. The vertical bars at each point of the 

curves show the magnitude of the standard deviation at that point 

5.3.2 Execution time of RPC 

Figure 17 shows the execution time of the remote procedure call as a function of the total 

number of words (0 to 200) accessed by the client and the server. The execution time of the call is a 

linear function of the number of words accessed. In the solid curve, the slope is 49.9/xS per word6. 

This value must not be interpreted as the intracluster memory access time for StarOS. Rather, it is the time required 
for an iteration through the following Bliss-11 program loop: 

INCR k FROM 0 TO .1 r e u s e d - 1 DO 
temp = . R e s u l " t P a g e [ . k ] ; 

This loop compiles into six LSI-11 instructions, with one of them performing a remote memory reference. 
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Figure 17: RPC execution time versus the total number of words accessed 

5.4 Conclusion 

This section presented an example of measuring StarOS message latency and message-based 

RPC execution time. The example experiment implemented two ideas developed in Section 4. 

First, it generated system workload by replicating the experiment in different parts of the system. 

The number of replicas and how they were distributed in the system were both controlled by the 

experimenter at program run time. Second, the experiment employed one of the clock 

compensation techniques developed in Section 4. The addition of the clock compensation 

technique into the basic experiment required only the addition of a subroutine which computed net 

elapsed times given four time-stamps. 

6 Conc lus ion 

This project discovered the erratic behavior of the Cm* clock reading software and presented an 

alternate set of clock reading software. Additionally, it recommended that the length of a clock tick 

should be set to be commensurate with the variation in communication delays. It proposed that a 
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Kmap operation be provided to latch the clock value and to read the clock register indivisibly. 

Most important of all, it provided a clock compensation scheme for measuring elapsed time with an 

accuracy much greater than that provided by the clock, reading software. 

However, in developing the mathematical model of the clock compensation techniques, it was 

assumed that the correlation between the time elapsed for two successive clock reads and the system 

load was non-negative, and that the autocorrelation of system loads separated by short time 

intervals was non-negative. The validity of these assumptions should be investigated. Also, the 

clock compensation technique fails when the granularity of system load is too small. At present, 

little is known about the granularity and the time profile of system load. Further study is required 

to gain this knowledge. 

Of more general concern, this project stressed the importance of real-time clock designs in 

multiprocessors since they greatly affect the clock's usability. Future multiprocessor designs should 

include a globally readable clock that is accessed through a special bus unaffected by system load 

and contention. An example of such a clock is the system clock of C.mmp multiprocessor. When 

such a design is not feasible, the clock should be of the same width as the data bus so that the entire 

clock word can be read in one access. If this is not practicable, there should be an instruction that 

latches the clock value and reads it indivisibly. The implementation of such an instruction should 

be straightforward when the clock register size is compatible with one of the machine supported 

data types, since multiprocessor should allow indivisible read/write accesses to all machine 

supported data types to guarantee data consistency. Thus, the instruction in essence is simply a 

latch operation followed by a read operation. 

For multiprocessor systems using a single global clock and experiencing the same problems 

experienced by Cm*, this project provided a general scheme for measuring elapsed time accurately. 

The study of Cm* clock performance shows that system load can be gauged by reading the system 

clock. This is because reading the clock exercises many of the system resources (Map-bus, 

intercluster bus, Kmaps, etc.). This idea of exercising system resources to measure their load is 

worth exploring. 
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